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Abstract
This thesis focuses on the use of machine learning for the design, optimization,

and performance analysis of rotors.
The ML models were trained using a public dataset provided by the University of

Illinois, containing both data related to rotor geometry and performance data under
static conditions, in which the advance ratio J is zero, and dynamic conditions, in
which J > 0. The training was carried out using MATLAB’s Regression Learner,
selecting the most suitable models based on prediction errors.

During the course of the work, two codes were developed, designed to be flexible
and scalable. The first allows for the design of rotors starting from performance
or geometric specifications provided as input; the user can choose whether to
generate a Pareto front using a multi-objective genetic algorithm, or to directly
obtain a single configuration through a standard genetic algorithm. The second
code is dedicated to the optimization of existing rotors: starting from an initial
configuration, the model modifies the geometry within user-defined tolerances in
order to improve a single selected performance metric, namely the thrust coefficient
(CT) or the power coefficient (CP).

In addition to design and optimization, the developed models are used for
the prediction of the performance of new rotors, allowing for a significant time
saving compared to traditional numerical simulations. The results obtained are
compared with those derived from BEM (Blade Element Momentum) and CFD
(Computational Fluid Dynamics) analyses in order to verify their consistency.

Overall, the work constitutes a basis for future extensions, such as the integration
of neural networks and the use of larger datasets to improve the generalization
capability of the models.
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Chapter 1

Introduction

In recent years, Machine Learning (ML) has been emerging as a valuable complement
to traditional aerodynamic analysis techniques. In this work, which focuses on
the analysis of small two-bladed rotors, regression models trained on experimental
data can estimate rotor performance in a fraction of time, drastically reducing the
computational costs of CFD simulations and blade element methods (BEM). This
speed makes it possible to examine many geometric configurations from the earliest
design stages, accelerating the design–test–optimization cycle.
This thesis proposes a data-driven framework for the analysis, generation and
optimization of small and medium scale aeronautical rotors. The main goal is
to determine whether low-complexity ML models can deliver sufficiently accurate
predictions while requiring far fewer resources than conventional approaches.
The work sets out to:

• generate new rotor geometries with respect to one or more objectives;

• optimise existing rotors by introducing limited variations in chord and angle
of incidence;

• predict the thrust (CT) and power (CP) coefficients starting solely from the
blade geometry, in both static and dynamic regimes;

• validate the predictions by comparing them with CFD and BEM results and,
where available, experimental data.

In this way, analysis times are expected to shrink from hours or days (CFD) to just
a few tenths of a second, while keeping the average errors on CT and CP within
acceptable limits.
In summary, the thesis explores the possibility that low complexity ML models
can accompany traditional methodologies, drastically reducing computation times
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without significantly compromising accuracy. The results obtained will constitute
a basis for future developments in rotor design.
The following chapters present the fundamental steps carried out for training the
ML models, performed using MATLAB’s Regression Learner, followed by the
analysis of the MATLAB codes developed to obtain the results listed above.
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Chapter 2

Machine Learning

2.1 Introduction
This chapter provides an introductory overview of ML. It includes key concepts
underlying ML, its main categories, the most common problems encountered during
model training and strategies to mitigate them. The typical ML project pipeline,
from data acquisition to model validation, is also described. These theoretical
concepts supply the context needed to understand the techniques and choices
adopted in the following chapters.

2.2 What is Machine Learning
ML is a subset of artificial intelligence that aims to build, from input data, al-
gorithms capable of learning patterns and relationships, automatically improving
their behaviour through experience. As Arthur Samuel stated in 1959:

“[Machine Learning is the] field of study that gives computers the ability to learn
without being explicitly programmed.” [1]

Once ML models have been trained, they can be used to make predictions, perform
analyses, classify information, and more.

2.3 Types of Machine Learning
The concept of ML encompasses numerous applications across different fields and
this has led over the years to the development of various kinds of ML. In particular,
the following ones are recognised:

• supervised ML;
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• unsupervised ML;

• reinforcement ML.

2.3.1 Supervised Machine Learning
Supervised learning is the most widespread form of ML and relies on labelled data
to train models capable of classifying or predicting outcomes. The algorithm learns
from a set of examples in which every input datum is associated with the correct
output. It is essential that the training data realistically represent the situations
the model will encounter in the real world, including complex or borderline cases.
During training, the model adjusts its parameters by minimising a loss function
that measures the error between its predictions and the expected results. This
process, often supported by validation techniques, progressively improves model
accuracy. Supervised learning leverages classification and regression techniques to
develop ML models. [2, 3, 4, 5]

2.3.2 Unsupervised Machine Learning
Unsupervised ML analyses unlabelled data, allowing the model to autonomously
discover hidden structures, patterns, or relationships. Unlike supervised learning,
no predefined outputs are provided: the algorithm explores the data without
external guidance, searching for meaningful clusters or anomalies. One of its
principal applications is clustering, which organises data into groups based on
shared characteristics. This approach is particularly useful when working with
large volumes of raw data that are difficult to analyse manually. Moreover, data
preparation requires less effort, because labelling or providing expected results is
unnecessary. [2, 3, 5]

2.3.3 Reinforcement Machine Learning
Reinforcement learning is a branch of ML in which an autonomous agent learns
to perform optimal actions within an environment by interacting with it. Unlike
supervised learning, which relies on labelled data, and unsupervised learning, which
seeks hidden patterns, reinforcement learning is based on a reward mechanism:
the agent receives positive or negative feedback in response to its actions and,
through trial and error, refines its behaviour. The goal is to maximise cumulative
reward over time, even at the cost of making sub-optimal choices in the short
term. Reinforcement learning is particularly suited to tackling complex, sequential
decision-making problems in dynamic environments. Data are not independent but
form sequences of states, actions and rewards, making the process more akin to
the learning observed in biological agents. [2, 3, 6]
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Figure 2.1: Comparison between supervised and unsupervised Machine Learn-
ing [7]

Throughout this thesis project, supervised ML models will be used; therefore, the
analysis will focus on them.

2.4 Classification and Regression
As mentioned earlier, supervised learning can be divided into two main problem
categories depending on the type of output the model must produce: classification
and regression.

2.4.1 Classification
Classification makes it possible to predict discrete categories. An algorithm receives
input data and assigns them to predefined classes (for example, determining whether
an email is spam or legitimate, or performing automatic handwriting recognition).

2.4.2 Regression
Regression is employed when the expected result is a continuous variable, with the
aim of estimating a functional relationship between independent and dependent
variables.

In both cases, the model is trained on a labelled dataset in which both the inputs
and the corresponding outputs are known. The algorithm learns a function that
maps inputs to outputs in order to make predictions on previously unseen data.
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Learning quality is assessed using error functions that measure the distance between
the model’s predictions and the expected results. [8, 7, 9]
In the present case, regression is required because rotor performance needs to be
analysed.

2.5 Overfitting and Underfitting
Overfitting and underfitting are two issues that may arise when training ML models,
as both result in poor performance in regression or classification. The two concepts
are briefly introduced below.

Figure 2.2: Overfitting and Underfitting [10]

2.5.1 Overfitting
Overfitting occurs when the model fits the training data excessively and memorizes
noise or irregularities, as illustrated in Figure 2.2. This leads to poor generalisation
on new data. It is typically caused by:

• excessive model complexity (high variance);

• a small or noisy dataset;

• the presence of irrelevant features.
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Overfitting can be detected when the training (validation) error is much smaller
than the test error. [11]

2.5.2 Underfitting
Underfitting represents the other side of the coin: it occurs when the model is
too simple to capture the complexity of the data. Again, the model cannot make
accurate predictions on new data. The main causes that can lead a model to
underfit are:

• a model that is too simple or has too few parameters (high bias);

• insufficient training;

• poorly representative data.
Unlike overfitting in this case, errors are high in both validation and test phases. [12]
The main features of overfitting and underfitting can be summarised as shown in
Table 2.1.

Feature Overfitting Underfitting
Model complexity Too complex Too simple
Performance on training set High Low
Performance on test set Low Low
Generalisation Poor Poor

Table 2.1: Comparison between Overfitting and Underfitting

2.5.3 Avoiding Overfitting and Underfitting
Having ML models that exhibit either of the two problems described above repre-
sents an obstacle to the success of the intended project. Several approaches can
improve model generalisation on new data; some of them are presented below.

k-fold Cross-Validation

Cross-validation is a validation technique that allows all data to be used both to
train and to validate the model. Depending on the chosen number of folds k, the
dataset is divided into k equal parts. Of these, k - 1 parts are used to train the
model, while the remaining part is used for validation. This process is repeated k
times, as shown in Figure 2.3, and the errors computed at each iteration are then
averaged. Using this technique, the computational cost of training increases and,
in some cases, if the model is heavy to train, it becomes unsustainable without
sufficient computing power. [14]
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Figure 2.3: k-fold cross-validation [13]

Feature Selection

Feature selection is a technique used to reduce the likelihood of the model overfitting.
It limits the information the model receives by identifying the variables that are
most relevant for predicting the target variable. This makes it possible to remove
from the dataset all unnecessary information that could generate noise and worsen
model performance. Reducing the number of input variables allows the model to
focus on relevant informative signals, limiting the learning of spurious correlations
that do not replicate in future data. The most commonly used methods for feature
selection are:

• Filter Methods;

• Wrapper Methods;

• Embedded Methods.

Other methods, such as the Genetic Algorithm (GA), can also be employed1. [15]

Parameter Tuning

Every ML model is characterised by settings (hyperparameters) that govern its
operation. By properly adjusting hyperparameters, it is possible to improve the
model’s ability to generalise2.

1This thesis will use this method for feature selection. The details of its operation will be
explained in a later chapter.

2Hyperparameter optimisation can enhance a model’s generalisation capability but, if not
conducted properly, it risks leading to overfitting.
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2.6 Machine Learning Pipeline

Figure 2.4: Machine Learning Pipeline

This section briefly describes the steps required to train and deploy a ML model.
Specifically, the steps are:

• data collection, cleaning, and preparation;

• ML model selection;

• model training and validation;

• model deployment. [16]

2.6.1 Data Collection, Cleaning, and Preparation
Data Collection

The data collection phase is the essential starting point for training a ML model.
Performing it accurately is crucial to guarantee the quality of the final model.
Data collection consists of obtaining a sufficiently large3 and representative set of
raw data from reliable sources. The data must be consistent with the problem to
be solved and they must contain all variables useful for the intended task.

Data Cleaning

Data cleaning involves identifying and correcting any anomalies, such as:

• missing or null values;

• duplicate values;

• outliers (extreme anomalous values);

• formatting or encoding errors.

Dirty or inconsistent data can compromise model training, introducing bias or
leading to unreliable results.

3Having an insufficient amount of data could limit model performance or, in some cases, make
training impossible.
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Data Preparation

Finally, data preparation (preprocessing) transforms the data into a form suitable
for the ML algorithm. All database entries must be in the same format. Typical
operations in this phase are:

• normalising or standardising numerical variables;

• selecting relevant variables (feature selection);

• splitting data into inputs (x) and targets/outputs (y).

Proper data preparation improves model effectiveness, reduces the risk of overfitting
and speeds up training times.

2.6.2 Machine Learning Model Selection
Choosing the model to use is one of the most critical steps in the ML process and
depends on various factors, including:

• Type of problem: classification, regression, clustering, and so on;

• Problem complexity: linearity or non linearity of relationships between vari-
ables;

• Quantity and quality of available data;

• Desired interpretability;

• Available time and computational resources.

Numerous supervised ML models exist, each with specific characteristics, advan-
tages, and limitations. The most commonly used are:

• Linear regression: simple but effective for linear data or data with few
variables. It has low computational cost and it trains quickly even on large
datasets.

• Decision trees and Random Forests: excellent for structured data and
easy to interpret. Computational cost increases with tree depth and the
number of trees in the forest, but it remains manageable for medium sized
datasets.

• Support Vector Machines (SVM): suitable for complex problems with
clear margins between classes. Computational cost can become high, especially
with non linear kernels and very large datasets.
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• K-Nearest Neighbors (KNN): simple to implement but computationally
expensive on large datasets, as it requires computing distances to all training
points for each prediction.

• Neural networks (NN): effective on complex non linear problems, but
less interpretable and more demanding computationally, particularly for deep
models with many parameters to optimise.

• Gaussian Process Regression (GPR): a powerful non parametric prob-
abilistic model for regression problems. It provides both an expected value
estimate and a measure of predictive uncertainty. However, computational
cost grows cubically with the number of data points, limiting its use on large
datasets.

The initial choice of a model is not the final one: it is often necessary to test
several algorithms, compare their performance through validation methods and
select the one that offers the best compromise among accuracy, generalisation, and
complexity.

2.6.3 Model Training and Validation
Once the ML models to be trained have been chosen, the training phase can begin.
At this point, it becomes necessary to identify a metric that helps determine which
of the trained models might yield the best results.
To evaluate model performance and avoid issues such as overfitting, the dataset is
divided into three subsets:

• Training set;

• Validation set;

• Test set.

Training Set

Training data are used only to train the models. These data enable the model to
learn the relationships among the various variables, seeking to understand how
their values or changes relate to the value or change of the target variable.

Validation Set

Validation data are unseen by the algorithm and they are used to check the model’s
behaviour in the presence of new data. So it is necessary to define performance
metrics, such as:
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• RMSE (Root Mean Squared Error): RMSE measures the square root of
the mean of squared errors.

RMSE =
ó

1
n

Ø
(ypred − ytrue)2 (2.1)

where ypred,i is the model’s predicted value for the i-th example, ytrue,i is the
actual value, and n is the total number of examples. A lower RMSE indicates
better model performance. RMSE penalises large errors more heavily and is
useful when high precision is required.

• MSE (Mean Squared Error): MSE measures the mean of squared errors
between predicted and actual values.

MSE = 1
n

Ø
(ypred − ytrue)2 (2.2)

Like RMSE, MSE strongly penalises large errors.

• MAE (Mean Absolute Error): MAE calculates the mean of absolute errors
between predicted and actual values too.

MAE = 1
n

Ø
|ypred − ytrue| (2.3)

Unlike RMSE, MAE is less sensitive to outliers.

• R2: measures how well the model explains data variability. It ranges between
0 and 1, where 1 indicates perfect predictive capability.

R2 = 1 − SSres

SStot

(2.4)

– SSres = q (ytrue − ypred)2 is the residual sum of squares;
– SStot = q (ytrue − ymean)2 is the total sum of squares.

Using these metrics for each model makes it possible to choose the best one and to
move to the next phase4. If validation set performance is poor, the model can be
improved, for example by adjusting hyperparameters and repeating the training
phase. This iterative process continues until satisfactory results are obtained.
Some validation techniques are:

4The choice of metric must align with the model’s objectives: for example, in domains where
large errors are more penalising, RMSE is preferable to MAE.
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• Resubstitution: evaluates the model on the same data used for training
(training set equals validation set). It is very simple to implement but tends to
give overly optimistic results and it is unsuitable for estimating generalisation
ability.

• Hold-out: simple division of the dataset into training, validation, and test
sets.

• k-Fold Cross-Validation: splits the dataset into k subsets so that the model
is trained and validated k times, changing the validation fold each time.

• Leave-One-Out Cross-Validation (LOOCV): a k-Fold variant where k
equals the number of observations. Each example is used as the test case
exactly once.

To avoid unrealistic estimates of model performance, data leakage (such as including
the same rotor in both the training and validation sets) should be prevented, as it
compromises assessment of the models’ true predictive capability.

Test Set

Once the model achieves satisfactory results on the validation set, the test set can
also be used. This set may be omitted, as it serves to evaluate and visualise the
model’s performance and behaviour.

In general, the dataset is split as follows5 (or similarly): 70% train, 20% validation,
and 10% test.

2.6.4 Model Deployment
After completing all the steps described, the chosen model is ready to be integrated
into the code or the application for which it was designed.
The main deployment steps are:

• Model saving: after training, the model is saved in a format that allows
reuse (for example, a .mat file in MATLAB).

• Loading into the production environment: the model is loaded into
an operational environment where it can receive new input data to generate
predictions.

5Considering Hold-out validation.
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• Input data preprocessing: before new data are fed to the model, they must
undergo the same type of preprocessing used during training (for example,
normalisation or feature selection).

• Prediction: data are supplied to the model, which returns the desired
prediction.

2.7 Conclusions
In conclusion, this chapter introduced the fundamentals of ML, highlighting the
different learning types, common issues, and strategies for proper model design.
The following chapters present the execution of the steps shown here for the case
under study and delve deeper into the techniques and models employed.
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Chapter 3

Data Collection

3.1 Introduction
It is essential to have data to train the ML models on, so that they can learn
the relationships that exist between rotor characteristics and their performance.
Several approaches could have been followed during the development of this thesis:

1. purchase and experimental analysis of various rotors under different operating
conditions;

2. use of existing databases;

3. CFD analyses of several rotors.

The choice fell on the second option, because the third one would have required
excessive time, while the first one would also have involved unsustainable expenses.

3.2 Database
The selected database is the one hosted on the University of Illinois website [17].
The site contains experimental data collected on various rotors from 2005 to 2022.
Specifically, the database is divided as follows:

• volume 1: UIUC MS thesis by John Brandt and following tests (2005-2008);

• volume 2: UIUC PhD dissertation by Robert Deters and following tests
(2009-2015);

• volume 3: publication and tests by Or Dantsker (2020);

• volume 4: publication and tests by Or Dantsker (2021-2022).
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Together, the four volumes contain the experimental results of about 270 rotors.
The data are subdivided as follows:

• volume 1: roughly 140 rotors used on small UAVs and model aircraft. The
rotor families in this volume are:

– Aeronaut;
– APC;
– Graupner;
– GWS;
– Kavon;
– Kyosho;
– Master Airscrew;
– Rev Up;
– Zingali.

• volume 2: around 70 small scale propellers. The rotor families in this volume
are:

– APC;
– Crazyflie;
– Da4002;
– DA4022;
– DA4052;
– E-Flite;
– GWS;
– KP;
– Micro Invent;
– NR640;
– Plantraco;
– Union;
– Vapor.

• volume 3: 40 Aero-Naut CAM carbon fiber folding propellers;

• volume 4: 17 APC Thin Electric 2-bladed.
Not all of these roughly 270 rotors could be used, because rotors with more than
two blades and those lacking geometric data were discarded. Therefore the total
number of rotors considered amounts to 162.
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3.2.1 Geometry data

Within the database, rotor geometry data are provided as shown in Table 3.1.

r/R c/R beta
0.15 0.141 31.67
0.20 0.147 37.59
0.25 0.183 38.78
0.30 0.207 35.90
0.35 0.218 32.07
0.40 0.223 28.50
0.45 0.222 25.81
0.50 0.217 23.58
0.55 0.209 21.66
0.60 0.197 19.99
0.65 0.183 18.58
0.70 0.167 17.29
0.75 0.150 16.37
0.80 0.132 15.46
0.85 0.114 14.30
0.90 0.098 13.40
0.95 0.075 12.02
1.00 0.051 10.61

Table 3.1: Geometric data of the rotor APC Thin Electric 9 X 6

As the table shows, for each rotor only the distributions of normalised chord and
profile incidence angle along the blade span are available.
From the rotor name it is also possible to deduce the diameter and the pitch; for
instance, in the rotor APC Thin Electric 9 × 6, the first number indicates the
diameter in inches, while the second represents the pitch in inches per revolution.
For many rotors in the database, however, this geometric information is not available
directly in this format; in particular, for many APC rotors the data were taken
from the manufacturer’s website [18], where they are given as in Table 3.2. It was
necessary to extract the data from the columns STATION, CHORD and TWIST and
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interpolate them1 at the stations listed in Table 3.1.

STATION CHORD PITCH PITCH PITCH SWEEP THICKNESS TWIST MAX-THICK CROSS-SECTION ZHIGH CGY CGZ
(in) (in) (QUOTED) (LE-TE) (PRATHER) (in) RATIO (deg) (in) (in2) (in) (in) (in)

1.0000 0.8667 6.0000 5.9969 5.4265 0.4034 0.1561 43.6646 0.1353 0.0749 0.3541 0.1212 0.1289
1.0500 0.8902 6.0000 6.0000 5.4638 0.4090 0.1515 42.2852 0.1349 0.0764 0.3554 0.1140 0.1315
1.1000 0.9105 6.0000 6.0000 5.4957 0.4141 0.1472 40.9618 0.1340 0.0775 0.3538 0.1075 0.1318
1.1500 0.9278 6.0000 6.0000 5.5262 0.4188 0.1430 39.7053 0.1327 0.0781 0.3492 0.1016 0.1297
1.2000 0.9435 6.0000 6.0000 5.5549 0.4231 0.1392 38.5119 0.1313 0.0784 0.3418 0.0960 0.1250
1.2500 0.9577 6.0000 6.0000 5.5820 0.4270 0.1355 37.3778 0.1298 0.0787 0.3333 0.0906 0.1194
1.3000 0.9706 6.0000 6.0000 5.6073 0.4304 0.1321 36.2996 0.1283 0.0788 0.3248 0.0853 0.1138
1.3551 0.9833 6.0000 6.0000 5.6332 0.4337 0.1287 35.1715 0.1265 0.0788 0.3155 0.0797 0.1077
1.4492 1.0014 6.0000 6.0000 5.6723 0.4382 0.1234 33.3824 0.1236 0.0786 0.2995 0.0706 0.0974
1.5483 1.0157 6.0000 6.0000 5.7063 0.4415 0.1188 31.6641 0.1207 0.0783 0.2827 0.0616 0.0866
1.6475 1.0254 6.0000 6.0000 5.7324 0.4433 0.1151 30.0976 0.1180 0.0780 0.2658 0.0532 0.0756
1.7467 1.0306 6.0000 6.0000 5.7503 0.4437 0.1124 28.6661 0.1158 0.0777 0.2490 0.0454 0.0647
1.8458 1.0317 6.0000 6.0000 5.7596 0.4427 0.1106 27.3545 0.1141 0.0776 0.2322 0.0383 0.0536
1.9450 1.0289 6.0000 6.0000 5.7611 0.4405 0.1096 26.1495 0.1128 0.0775 0.2155 0.0318 0.0424
2.0442 1.0223 6.0000 6.0000 5.7599 0.4369 0.1088 25.0396 0.1112 0.0771 0.1988 0.0258 0.0311
2.1433 1.0123 6.0000 6.0000 5.7585 0.4322 0.1080 24.0146 0.1094 0.0762 0.1821 0.0204 0.0199
2.2425 0.9991 6.0000 6.0000 5.7567 0.4264 0.1073 23.0659 0.1072 0.0749 0.1655 0.0155 0.0088
2.3417 0.9829 6.0000 6.0000 5.7533 0.4195 0.1066 22.1856 0.1048 0.0730 0.1490 0.0111 -0.0021
2.4408 0.9639 6.0000 6.0000 5.7472 0.4115 0.1059 21.3670 0.1021 0.0708 0.1327 0.0072 -0.0129
2.5400 0.9424 6.0000 6.0000 5.7404 0.4026 0.1053 20.6041 0.0992 0.0682 0.1164 0.0039 -0.0233
2.6392 0.9185 6.0000 6.0000 5.7336 0.3928 0.1047 19.8916 0.0962 0.0653 0.1003 0.0010 -0.0336
2.7383 0.8927 6.0000 6.0000 5.7271 0.3821 0.1042 19.2250 0.0930 0.0621 0.0842 -0.0014 -0.0436
2.8375 0.8649 6.0000 6.0000 5.7191 0.3706 0.1036 18.6001 0.0897 0.0586 0.0683 -0.0034 -0.0534
2.9367 0.8356 6.0000 6.0000 5.7113 0.3584 0.1032 18.0132 0.0862 0.0549 0.0526 -0.0049 -0.0630
3.0358 0.8050 6.0000 6.0000 5.7036 0.3455 0.1027 17.4611 0.0827 0.0511 0.0370 -0.0062 -0.0724
3.1350 0.7732 6.0000 6.0000 5.6964 0.3319 0.1023 16.9409 0.0791 0.0472 0.0215 -0.0073 -0.0816
3.2342 0.7405 6.0000 6.0000 5.6898 0.3178 0.1019 16.4499 0.0755 0.0433 0.0063 -0.0082 -0.0907
3.3333 0.7072 6.0000 6.0000 5.6834 0.3032 0.1015 15.9859 0.0718 0.0395 -0.0088 -0.0090 -0.0996
3.4325 0.6734 6.0000 6.0000 5.6774 0.2881 0.1012 15.5467 0.0682 0.0358 -0.0237 -0.0099 -0.1084
3.5317 0.6395 6.0000 6.0000 5.6718 0.2726 0.1009 15.1304 0.0646 0.0322 -0.0383 -0.0110 -0.1172
3.6308 0.6056 6.0000 6.0000 5.6667 0.2568 0.1007 14.7354 0.0610 0.0288 -0.0528 -0.0123 -0.1261
3.7300 0.5720 6.0000 6.0000 5.6617 0.2407 0.1005 14.3601 0.0575 0.0257 -0.0670 -0.0141 -0.1350
3.8292 0.5388 6.0000 6.0000 5.6571 0.2243 0.1003 14.0030 0.0540 0.0228 -0.0809 -0.0162 -0.1440
3.9283 0.5065 6.0000 6.0000 5.6531 0.2077 0.1001 13.6629 0.0507 0.0202 -0.0946 -0.0187 -0.1530
4.0275 0.4751 6.0000 6.0000 5.6482 0.1911 0.1000 13.3386 0.0475 0.0177 -0.1081 -0.0218 -0.1620
4.1267 0.4449 6.0000 6.0000 5.6253 0.1743 0.1000 13.0292 0.0445 0.0156 -0.1219 -0.0254 -0.1718
4.2258 0.4162 6.0000 6.0000 5.5730 0.1576 0.0999 12.7335 0.0416 0.0136 -0.1360 -0.0296 -0.1824
4.3235 0.3712 6.0000 6.0000 5.3711 0.1232 0.0999 12.4549 0.0371 0.0108 -0.1546 -0.0440 -0.1960
4.4105 0.2850 6.0000 6.0000 4.9817 0.0460 0.0999 12.2167 0.0285 0.0064 -0.1824 -0.0828 -0.2145
4.5000 0.0088 6.0000 6.0240 6.0240 -0.2185 0.1000 12.0274 0.0009 0.0000 -0.2529 0.0000 0.0000

Table 3.2: Geometric data of the rotor APC Thin Electric 9 X 6 — APC website
[18]

3.2.2 Static data
For each analysed rotor, hover performance data are provided as shown in Table
3.32. In the table, RPM represents the rotor speed in revolutions per minute, while
CT (thrust coefficient) and CP (power coefficient) are calculated as follows:

CT = T

ρn2D4 (3.1)

CP = P

ρn3D5 (3.2)

where:

1A linear interpolation was used, and values outside the interval in the manufacturer’s table
were extrapolated.

2The RPM values available for individual rotors are not the same for all rotors.
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• T : thrust in Newton;

• P : power in Watt;

• ρ: air density in kg/m3;

• n: revolutions per second;

• D: diameter in metre.

RPM CT CP
2333 0.1096 0.0541
2620 0.1095 0.0528
2901 0.1117 0.0526
3145 0.1121 0.0526
3476 0.1132 0.0525
3779 0.1137 0.0522
4079 0.1139 0.0521
4353 0.1141 0.0518
4667 0.1142 0.0515
4963 0.1145 0.0514
5251 0.1151 0.0514
5537 0.1158 0.0515
5841 0.1159 0.0515
6108 0.1160 0.0513
6415 0.1165 0.0515
6717 0.1169 0.0516

Table 3.3: Static data of the APC Thin Electric 9 X 6 rotor

3.2.3 Dynamic data
The database also includes a large number of experimental data under dynamic
conditions, i.e. with J > 0. The advance ratio J is defined as:

J = V

nD
(3.3)

where V is the vertical velocity of the rotor expressed in m/s. Static data clearly
represent the special case in which J = 0. As mentioned, for each rotor several
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dynamic datasets are provided, varying both J and RPM. For a fixed rotational
speed3 the data are supplied as in Table 3.4.

J CT CP η
0.158 0.1349 0.0728 0.292
0.197 0.1290 0.0718 0.355
0.239 0.1222 0.0702 0.417
0.275 0.1163 0.0688 0.466
0.325 0.1088 0.0670 0.528
0.361 0.1022 0.0651 0.566
0.400 0.0965 0.0638 0.606
0.442 0.0898 0.0618 0.642
0.478 0.0841 0.0600 0.670
0.521 0.0762 0.0569 0.697
0.554 0.0699 0.0545 0.711
0.600 0.0614 0.0510 0.722
0.648 0.0515 0.0464 0.718
0.677 0.0456 0.0439 0.704
0.721 0.0352 0.0388 0.654
0.759 0.0258 0.0340 0.577
0.806 0.0141 0.0285 0.399

Table 3.4: Dynamic data of the APC Thin Electric 9 X 6 rotor — RPM = 4016

The efficiency η can be calculated in two ways:

η = CT · J

CP
(3.4)

η = T · V

P
(3.5)

Since η can be obtained from the other data in the table, it will not be used to
train the ML models.
Each rotor has data for roughly five or six RPM values, which greatly increases
the amount of available data.

3The RPM value is indicated in the file name. For example, apcsf_9x6_kt0980_4016.txt
indicates RPM = 4016.
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3.3 Data merging
After downloading all the files in the database, it is necessary to create a matrix4

that combines the data, so that they can be used to train the ML models. Because
of this, a MATLAB script was written to perform the task automatically.

3.3.1 MATLAB script operation
To compare models trained with different databases, the script is designed so that
it can be chosen whether to use only the static data or also the dynamic data. In
this way the models can be trained using either a reduced database or the complete
one.
The files downloaded from the database are saved in three separate folders:

• geometry data folder;

• static data folder;

• dynamic data folder.

Depending on the type of database to be used, the script extracts the data from
the relevant folders and it builds the matrix for training the ML models.

Figure 3.1: MATLAB code flow chart

Static database

The static database combines the rotor geometry data with only the hover data
(static data folder). In the matrix, the data are arranged as follows:

• columns 1–18: c/R data;

4In the matrix each row represents a different rotor or operating condition.
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• columns 19–36: β data in degrees.
The composition of the last columns depends on whether it is used a dimensional
or non dimensional model:

• dimensional model:

– column 37: angular velocity (Ω) in rad/s;
– column 38: radius (R) in m.

• non dimensional model:

– column 37: Mach number
M = Ω · R

cSL

(3.6)

where the speed of sound is taken as cSL = 340.29m
s

;
– column 38: Reynolds number at 75 % span

Re75 = ρSL · (Ω · R · 0.75) · C75

µSL

(3.7)

with ρSL = 1.225 kg
m3 and µSL = 1.79 · 10−5Pa · s;

Since the database provides no information about the conditions under which the
experimental data were acquired, sea level values of density and viscosity are used
by default.
A total of 2611 different data are available, so the matrix is 2611 × 38.

Columns 1–18 Columns 19–36 Column 37 Column 38
c/R β Angular velocity [rad/s] Radius [m]

Data 1
Data 2

· · ·
Data 2611

Table 3.5: Data arrangement for the dimensional static case

Columns 1–18 Columns 19–36 Column 37 Column 38
c/R β Mach Reynolds

Data 1
Data 2

· · ·
Data 2611

Table 3.6: Data arrangement for the non dimensional static case
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Dynamic database

The dynamic database includes, in addition to the static data, the dynamic data
(dynamic data folder). The first 36 columns are arranged as in the static case,
while the last columns are:

• dimensional model:

– column 37: J ;
– column 38: angular velocity in rad/s;
– column 39: radius in m.

• non dimensional model:

– column 37: J ;
– column 38: Mach number;
– column 39: Reynolds number at 75 % span.

As mentioned earlier, the available data increase greatly compared with the static
database, and the resulting matrix is 18910 × 39.

Columns 1–18 Columns 19–36 Column 37 Column 38 Column 39
c/R β J Angular velocity [rad/s] Radius [m]

Data 1
Data 2

· · ·
Data 18910

Table 3.7: Data arrangement for the dimensional dynamic case

Columns 1–18 Columns 19–36 Column 37 Column 38 Column 39
c/R β J Mach Reynolds

Data 1
Data 2

· · ·
Data 18910

Table 3.8: Data arrangement for the non dimensional dynamic case

3.3.2 Output
The output vector is a column vector containing the experimental results, consisting
of either the CT or CP values, depending on whether the model is trained to predict
one or the other.
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3.4 Conclusions
The rotor geometry data used to train the ML models include only the distributions
of chord and β along the span. These data should be sufficient for a good prediction
of rotor performance, but they cannot be fully accurate owing to the lack of
information on:

• the airfoil type used;

• the leading edge coordinates of the airfoils along the span;

• the environmental conditions under which the data were acquired.

Indeed, informations on the airfoil (and leading edge coordinates) are available
only for APC rotors. However, since there are not many rotor types in this family
(three or four) and each type has the same airfoil, there are insufficient data to
train the models.
In general, it should also be noted that the data provided by the database themselves
have an inherent uncertainty both in the geometric measurements of the rotors and
in the experimental results.
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Chapter 4

Machine Learning Models

4.1 Introduction
This chapter describes MATLAB’s Regression Learner environment, which is used
to train and compare various supervised regression models. The main algorithms
available in the application are presented, with a focus on their characteristics,
advantages and limitations. Finally, the criteria and methodology adopted for
selecting the most suitable ML models for the development of this thesis are
outlined.

4.2 Regression Learner
The Regression Learner is a MATLAB app [19] that enables supervised learning
for data prediction using regression models. To train the models, both input and
output data must be provided. It is possible to:

• explore the data, select variables, choose a validation method, train and
optimise models;

• use automated training to find the best model among several options;

• compare models with result tables and plots;

• evaluate performance on test data.

Once the model has been trained, it can be exported to MATLAB. Unfortunately,
the app currently lacks the option to perform group cross-validation. For this
reason, as will be seen later, some analyses must be implemented manually in
MATLAB code. The operating scheme of the application is shown in Figure 4.2.

25



Machine Learning Models

Figure 4.1: Regression Learner screen [20]

As mentioned, the Regression Learner includes several ML models:

• Linear regression models;

• Regression Trees;

• Support Vector Machines;

• Efficiently Trained Linear Regression models;

• Gaussian Process Regression models;

• Kernel Approximation Regression models;

• Ensembles of Trees;

• Neural Networks.

A brief introduction to each of these models is provided below to analyse their
main features.
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Figure 4.2: Models training flow chart in Regression Learner [19]

4.2.1 Linear regression models
Linear regression is one of the simplest and most widely used methods for supervised
prediction [4]. The goal of these models is to estimate a linear function that
approximates the relationship between the input variables and the output variable.
The general form is:

y = w0 + w1x1 + w2x2 + · · · + wnxn + ε (4.1)

where wi are the coefficients to be estimated, xi the input variables and ε an error
term.
In MATLAB’s Regression Learner several variants are available:

• Linear;

• Interactions Linear;

• Robust Linear;

• Stepwise Linear.

The advantages of these models are:

• high interpretability and ease of use;

• suitability as a baseline for initial comparisons;

• short training times.

On the other hand, the disadvantages are:

• poor ability to model non linear relationships;

• sensitivity to outliers.

Computational cost

The computational cost of linear regression is generally very low, even on large
datasets. The more complex variants are Stepwise and Robust, yet they remain
suitable for applications with limited computational resources.
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4.2.2 Regression Trees
Regression Trees are predictive models based on tree structures that recursively
split the feature space into regions increasingly homogeneous with respect to the
target variable [5]. Each node of the tree represents a split condition on a feature,
while the leaves contain the prediction.
In the Regression Learner various tree parameters can be set, such as the maximum
depth or the minimum number of observations per node. The following variants
are available:

• Fine Tree;

• Medium Tree;

• Coarse Tree.

The advantages are:

• ease of interpretation and visualisation;

• good handling of non linear data and categorical variables;

• little sensitivity to preprocessing.

On the other hand, the disadvantages are:

• tendency to overfit if not properly pruned;

• model instability: small data variations can produce very different trees.

Computational cost

The computational cost of regression trees is moderate. Training time increases
with the tree depth and the number of observations, but tree models are quick to
train and evaluate.

4.2.3 Support Vector Machines
Support Vector Machine (SVM) regression models aim to find a function that
deviates from the true targets by less than a margin ε, penalising only deviations
that exceed this threshold [4].
In MATLAB’s Regression Learner the following variants are available:

• Linear SVM;

• Quadratic SVM;
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• Cubic SVM;

• Fine Gaussian SVM;

• Medium Gaussian SVM;

• Coarse Gaussian SVM.

The advantages are:

• effectiveness in high dimensional spaces;

• robustness to noise thanks to the ε tolerance zone;

• ability to model non linear relationships through kernels.

On the other hand, the disadvantages are:

• high computational cost with large datasets;

• difficulty in tuning hyperparameters.

Computational cost

The computational cost of SVMs is high, especially with non linear kernels and
large datasets. Training time grows faster than linearly with the number of samples.

4.2.4 Efficiently Trained Linear Regression models
The Efficiently Trained Linear Regression models category includes optimised
versions of linear regression models, implemented to reduce computation time and
memory requirements, particularly on large datasets.
These models use efficient numerical techniques to estimate parameters without
altering the predictive model structure compared with classical regression.
In MATLAB’s Regression Learner the following models are available:

• Efficient Linear Least Squares;

• Efficient Linear SVM.

The advantages are:

• improved computational efficiency;

• suitability for datasets with many observations or features.

The disadvantages are the same accuracy limitations as the ones for ordinary linear
regression.
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Computational cost

The computational cost of Efficiently Trained Linear Regression Models is low.
As noted, they are designed to optimise computational performance using fast
numerical solvers, making them ideal for large datasets where the standard version
would be slow.

4.2.5 Gaussian Process Regression models

Gaussian Process Regression (GPR) is a non parametric method that assumes the
data can be modelled as a multivariate normal distribution [4]. Each prediction
point is associated with both an expected mean and an uncertainty estimate
(variance).
In the Regression Learner it is possible to choose among:

• Rational Quadratic;

• Squared Exponential;

• Matern 5/2;

• Exponential.

The advantages are:

• provision of probabilistic estimates and confidence intervals;

• high flexibility in modelling non linear phenomena.

On the other hand, the disadvantages are:

• high computational cost (O(n3));

• poor scalability to datasets with many thousands of observations.

Computational cost

The computational cost of GPR is very high. As mentioned, training complexity
is O(n3), where n is the number of observations. Consequently, GPR is poorly
scalable and suitable only for relatively small datasets.
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4.2.6 Kernel Approximation Regression models
Kernel Approximation Regression models approximate kernel behaviour through
projection techniques into a finite space, thereby reducing computational costs
compared with exact kernel methods [21].
In the Regression Learner it is possible to choose among:

• SVM Kernel;

• Least Squares Kernel Regression.
The advantages are:

• greater scalability than standard kernel models;

• performance similar to standard kernel models but with reduced computational
costs on large datasets.

On the other hand, the disadvantages are:
• possible reduction in accuracy due to the approximation;

• need for an accurate approximation method.

Computational cost

The computational cost of Kernel Approximation Regression models is moderate.
Approximation techniques drastically reduce the cost relative to classical kernel
models (such as SVMs), making them suitable for large datasets.

4.2.7 Ensembles of Trees
Ensembles combine multiple tree based regression models to create a more robust
and accurate predictive model [22].
In the Regression Learner the following are available:

• Boosted Trees;

• Bagged Trees.
The advantages are:

• high accuracy;

• reduction of variance (bagging) or bias (boosting).
On the other hand, the disadvantages are:

• reduced interpretability of individual trees;

• need for greater computational resources.
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Computational cost

The computational cost of Ensembles of Trees is medium-high. Cost increases
with the number of trees and the complexity of each tree. Boosted models require
sequential training and they are slower than the Bagged ones.

4.2.8 Neural Networks
Neural Networks are models inspired by the functioning of the human brain,
composed of neurons organised in layers [12].
In MATLAB’s Regression Learner the following models are available:

• Narrow Neural Network;

• Medium Neural Network;

• Wide Neural Network;

• Bilayered Neural Network;

• Trilayered Neural Network.

The advantages are:

• high flexibility for modelling complex, non linear relationships;

• good performance on large datasets.

On the other hand, the disadvantages are:

• reduced interpretability;

• need for careful tuning and possible susceptibility to overfitting.

Computational cost

The computational cost of Neural Network models is high. Neural networks require
significant training times, especially with many layers and neurons. Cost grows
with the architectural complexity and the number of epochs1.

The main characteristics of the various models are summarised in Table 4.1.

1The number of epochs is a critical hyperparameter because it determines how many times
the model learns from the entire dataset.
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Model Computational cost Interpretability Accuracy
Linear Regression models Low High Low–Medium
Regression Trees Moderate High Medium
Support Vector Machines High Low High
Efficiently Trained Linear models Low High Medium
Gaussian Process Regression models Very high Low High
Kernel Approximation Regression models Moderate Low Medium–High
Ensembles of Trees Medium–High Medium High
Neural Networks High Low High

Table 4.1: Comparison of the regression models in Regression Learner

4.3 Selection of Machine Learning models
The choice of the ML models used in this thesis is based on a comparative analysis
of the errors made on the test set2 in order to identify those with the best predic-
tive performance. For this comparison the previously created dimensional static
database is used.3 Each time, an increasingly larger percentage of data is excluded
in order to be used as a test set and to evaluate the prediction errors of the various
models.

4.4 Creation of the test set
The creation of the test set was implemented manually in MATLAB, even though
the Regression Learner offers the option to automatically leave part of the data as
a test set. The reason for this choice lies in the fact that the Regression Learner
draws data from the database to create the test set randomly. This approach is
not suitable here because in the database each rotor appears several times, with
only the last columns concerning operating conditions differing. This would imply
training the model on observations of certain rotors that are simultaneously present
in the test set, generating data leakage.
Indeed, as observed in Figure 4.3, the predicted values are practically perfect even
though a 10 % test set is considered and despite all the simplifications introduced.
Consequently this approach cannot be used.
As schematically shown in Figure 4.4, a percentage of rotors was manually extracted
from the database, in order to be used as a test set. This approach is correct

2It is not possible to evaluate the models using validation because, as mentioned, group
cross-validation cannot be performed in the Regression Learner.

3The static database is chosen because some models take a long time to train when the dynamic
database is used.
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because the models are certainly trained on a dataset that has nothing in common
with the test data, thus simulating the condition under which these models are
called upon to work, namely predicting the performance of previously unseen rotors.

Figure 4.3: GPR Exponential with a 10 % test set

Figure 4.4: Models test flow chart

4.5 Results

Figures 4.5 and 4.6 show the results obtained by varying the percentage of database
data used as the test set from one to ten percent and by analysing the RMSE error
(Equation (2.1)) of the various ML models.
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Figure 4.5: RMSE trend versus test set percentage for CT

Figure 4.6: RMSE trend versus test set percentage for CP

As can be seen, the tests show lower and more consistent errors for both CT and
CP with the Gaussian Process Regression and the Support Vector Machine. In
particular, the models that have the lowest average errors on the test set are:
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• Exponential GPR;

• Medium SVM.

In the thesis these two models will be implemented so that their performance can
be compared.

4.6 Conclusions
This chapter introduced the MATLAB Regression Learner application, used to train
the ML models. After an overview of the main algorithms available, a comparative
evaluation was carried out based on prediction error on carefully selected test data
to avoid data leakage.
The results showed that the Exponential GPR and Medium SVM models are
the most performant in terms of accuracy and robustness. Consequently, these
models will be implemented in the subsequent phases of the thesis to predict rotors
performance.
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Chapter 5

Feature selection

5.1 Introduction
When dealing with high dimensional datasets such as the one analysed in this
thesis, the choice of features plays a fundamental role in building ML models
that are effective and generalisable. In fact, the presence of redundant or scarcely
significant features can not only burden the model, but also compromise its ability
to correctly learn the relations present in the data. In this chapter the method
used to automatically select the most relevant features is illustrated, according to
the predictive performance obtained.
The chosen approach is based on the use of a Genetic Algorithm (GA), an evolu-
tionary optimisation technique that is able to efficiently explore complex search
spaces. After a concise discussion of the reasons that led to the adoption of feature
selection, there is a detailed description of the phases of the algorithm, the imposed
constraints, the fitness function and the configuration options employed. Afterwards
the results obtained with different models and databases are presented, and finally
the automated implementation of the procedure in the MATLAB environment is
illustrated.

5.2 Reasons for Using Feature Selection
In Chapter 3 the format in which the data are stored in the database was presented.
The motivation for using feature selection lies in the possibility that the model may
yield better results by considering only a limited number of features. So the goal is
to verify whether the model can improve its performance without exploiting all the
data available in the database, thus increasing its capacity for generalisation. As
explained in that chapter, depending on the use of whether the static or dynamic
database, and the dimensional or non dimensional version, the data differ, however
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those concerning geometry are arranged in the same way. Consequently, for each
database and for each model, the combination of geometric features that allows
the smallest errors will be identified1.

5.3 Feature Selection Algorithm
As discussed in Chapter 2, several approaches exist for performing feature selection.
However, because of the complexity of the present problem, which is characterised
by high dimensionality and possible non linear interactions among variables, it was
decided to adopt a GA for the feature selection stage. This choice is motivated by
the ability of evolutionary algorithms to efficiently explore large and complex search
spaces, to avoid becoming trapped in local minima and to offer good solutions even
when the objective function is non differentiable or discontinuous. [23, 24]

5.3.1 Genetic Algorithm
GA are a class of optimisation methods inspired by the principles of natural selection
and biological evolution [25]. In the context of feature selection, every individual
of the population represents a possible combination of variables coded as a binary
chromosome: each gene of the chromosome indicates the presence (1) or absence
(0) of a specific feature.
The main phases of the GA are the following:

• Initialisation. A starting population composed of randomly generated individ-
uals is created.

• Evaluation (Fitness function). Each individual is evaluated by means of a
fitness function, for instance the predictive performance of a model trained
only with the features selected by that chromosome. [15]

• Selection. The fittest individuals (those with lower fitness values) are chosen
for the next generation.

• Elitism. A certain number of the best individuals of the current generation
(the elite) are copied unchanged into the next generation, which ensures that
the best solutions are not lost.

• Crossover . The remaining individuals of the new population (the children)
are generated by crossing the genetic information of two parents. Crossover

1Actually, as will be explained later, in the case of GPR the dynamic case is not considered.
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combines the features of the parents to explore new regions of the solution
space.

• Mutation. With a certain probability some genes in the children mutate,
switching from 0 to 1 or from 1 to 0. This introduces genetic variation and
allows the algorithm to avoid local minima.

• Iteration. The process of evaluation, selection, crossover and mutation is
repeated for a fixed number of generations or until predefined stopping criteria
are reached.

The described approach is particularly effective in high dimensional contexts, where
exhaustive methods2 would be too computationally expensive. [26]

5.3.2 MATLAB Implementation of the Genetic Algorithm
Implementing the GA in MATLAB involves a few key steps:

• definition of constraints;

• definition of the fitness function;

• choice of the options.

Constraints

When performing feature selection, constraints were introduced to allow interpola-
tion of the results. Specifically, in order to prevent the feature selection procedure
from choosing too few features to interpolate the data along the blade span3, the
presence of features was forced at the following stations, both for normalised chord
and β:

15%, 20%, 30%, 45%, 60%, 70%, 75%, 80%, 90%, 100%

As a further limitation, the GA is compelled to choose both the normalised chord
and β for a given station. It means that, if one elects to select the features at 55 %
span, both normalised chord and β for that station must necessarily be selected. By
proceeding in this way, the code is slightly simplified and, in principle, no excessive
worsening of the results is expected. After introducing these limitations, the number
of possible combinations is markedly reduced, going from 236 possibilities to 28.

2Exhaustive methods test every possible feature combination.
3In a later chapter, these features will be used not only to predict CT and CP, but also to

generate rotors that satisfy certain characteristics.
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The choice of features to be locked was made on the basis of rotor physics and
geometry. In fact, for a generic rotor, the largest variations of incidence angle and
chord occur near the root of the blade, whereas the most important region for lift
generation lies around 75 % of the span. For this reason those areas of the rotor
are densified.
It would have been possible to make other choices, which probably would have led
to different results from those reported later4.

Fitness function

The fitness function is the function containing the metrics that enable the GA
to evaluate individuals. In the present case individuals are assessed according
to how the ML model predicts CT and CP for the rotors in the database when
only some features are considered. To do that, group cross-validation is employed,
which is a variant of cross-validation used when the data are divided into groups
and when it is requested that data belonging to the same group do not end up in
both the training and the validation sets. In this case the database contains many
rows that differ only by a few values, since the same rotor appears under different
operating conditions. If standard cross-validation were applied, the training and
validation data would contain the same rotors, and this would give results that
are too optimistic. As stated in Chapter 3, 162 different rotors are present in the
database and they have to be divided into groups whose number can be estimated
with Sturges’ rule5:

k = 1 + log2(n) (5.1)

Applied to the present case, the rule gives k = 8. Since using such a large number
of groups would require too much time to train a single model when GPR is
considered, applying it within the GA would become unsustainable6, hence k = 3
was set manually7.
Therefore the code operates as follows:

1. it selects the database columns chosen by the GA;

2. it trains the ML model with group cross-validation for both CT and CP;

4The feature selection code was designed to be easily modified, so that if it is required to
change the constraints described above, it can be done very simply.

5Sturges’ rule is an empirical guideline for determining the optimal number of classes (or
intervals) when building a histogram.

6Considering an ordinary laptop. If sufficient computational resources are available, it can be
used k = 8.

7The code nevertheless allows Sturges’ rule to be used.
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3. it calculates the RMSE (Equation (2.1)) for both CT and CP;

4. it sums the two RMSEs after normalising them by the average value of CT
and CP in the database output:

errtot = errCT

mean(outputCT ) + errCP

mean(outputCP ) (5.2)

The best individuals are those with smallest errors.

Options

The GA allows a wide number of options to be specified so that it can be adapted
to various situations. The options used are listed below, along with the reasons
why they were chosen [27]:

• CreationFcn = @gacreationuniformint. Function that creates the initial
population.
MATLAB uses this function by default whenever the optimisation problem
includes integer constraints. The routine imposes an artificial bound on
unbounded components, generates individuals uniformly at random within
the specified limits, and then enforces the integer constraints.

• CrossoverFcn = @crossoverlaplace. Function used by the algorithm to
create crossover children.
This function is also used by MATLAB by default when the problem contains
integer constraints. The operator produces children by combining the parents
through a Laplace distribution while preserving the integer nature of the
solutions. One of the two following formulas is chosen randomly:

xOverKid = p1 + bl · abs(p1 − p2)

xOverKid = p2 + bl · abs(p1 − p2)
where:

– p1 and p2 are the two parents;
– bl is a random number drawn from a Laplace distribution;
– xOverKid is the newly generated child.

• SelectionFcn = @selectiontournament. Function that selects the parents
for crossover and mutation children.
Tournament selection chooses the parents by randomly extracting a group of
individuals and then taking the best among them. In this work the default
tournament size of 4 is used.

41



Feature selection

• MutationFcn = @mutationpower. Function that produces mutation chil-
dren.
MATLAB applies this power–mutation operator by default when integer
constraints are present. For each component x(i) of the parent, the i-th
component of the child is computed as

mutationChild(i) = x(i) − s · (x(i) − lb(i)) if t < r

mutationChild(i) = x(i) + s · (ub(i) − x(i)) if t ≥ r

where:

– t is the scaled distance of x(i) from the lower bound lb(i);
– s is a random variable drawn from a power distribution;
– r is a random variable drawn from a uniform distribution.

The function also handles the case lb(i) = ub(i), in which the child’s i-th
component is simply set equal to that common bound.

• PopulationSize = 20. Size of the population.
Because the total number of admissible combinations is small in the present
case, a low population size is sufficient. Should the constraints be relaxed, the
number of individuals per generation can be increased.

• EliteCount = 1. Number of individuals in the current generation that are
guaranteed to survive to the next one (the elite).
A value of one is chosen so that only the best individual is preserved intact,
whereas all the others are used to generate offspring, ensuring genetic diversity.

• Generations = 400. Maximum number of iterations before the algorithm
stops.
A rather high limit is set to make sure the algorithm has enough time to reach
a good solution. In practice this limit is never reached8.

• Display = ’diagnose’. Level of output displayed. The ’diagnose’ level is
chosen to obtain an overall view of what the GA is doing.

8With only 28 possible combinations and a population of 20 individuals, just 14 generations
are theoretically required. More generations appear in the plots because the default GA tolerance
was not tightened.
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• PlotFcns = @gaplotbestf. Function that plots data produced by the
algorithm.
This routine displays both the best fitness and the mean fitness for each
generation.

• OutputFcns. Function called by the GA at every iteration.
A custom MATLAB function is implemented so that, once the GA has finished,
a graph shows how the number of features selected for the best individual
evolves from one generation to the next. By examining that graph it can
be observed the variation in the feature count of the best solution at each
iteration.

• UseParallel = true. This option allows the computation to use the com-
puter’s CPU cores in parallel, speeding up the calculations.

• InitialPopulationMatrix. The possibility of specifying an initial population
has been added. If a certain feature combination is thought to be the best,
the GA can be started from that solution9. If no initial population is supplied,
the algorithm creates it randomly via @gacreationuniformint, as mentioned
earlier.

The GA configuration and execution script is reported below.

Listing 5.1: GA configuration and execution
1 %% === CONFIGURAZIONE GA ===
2 n_staz ion i = 18 ;
3 num_features = n_staz ion i ;
4 lb = ze ro s (1 , num_features ) ;
5 ub = ones (1 , num_features ) ;
6 IntCon = 1 : num_features ;
7

8 % Forza a lcune s t a z i o n i se vuoi
9 lb ( staz ioni_geometr ia_da_tenere ) = 1 ;

10

11 %% D e f i n i z i o n e d e l l a funz ione d i f i t n e s s per GA
12 f i t n e s s F c n = @( subset ) f i tnessFunct ion_nuova ( subset , dat i , output_CT ,

output_CP , c , sce l ta_mode l lo ) ;
13

14 %% Conf iguraz ione Algoritmo Genetico
15 i f isempty ( I n i t i a l p o p u l a t i o n )
16 opt ions = opt imopt ions ( ’ ga ’ , . . .

9If the number of individuals in the initial population is smaller than the specified population
size, @gacreationuniformint is used to generate the remaining individuals.
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17 ’ Popu lat ionS ize ’ , num_population , . . .
18 ’ MaxGenerations ’ , num_generations , . . .
19 ’ PlotFcn ’ , ’ g a p l o t b e s t f ’ , . . .
20 ’ Display ’ , ’ d iagnose ’ , . . .
21 ’ OutputFcn ’ , @gaoutfun , . . .
22 ’ El i teCount ’ , E l i t e , . . .
23 ’ U s ePara l l e l ’ , t rue ) ;
24 e l s e
25 opt ions = opt imopt ions ( ’ ga ’ , . . .
26 ’ Popu lat ionS ize ’ , num_population , . . .
27 ’ MaxGenerations ’ , num_generations , . . .
28 ’ PlotFcn ’ , ’ g a p l o t b e s t f ’ , . . .
29 ’ Display ’ , ’ d iagnose ’ , . . .
30 ’ OutputFcn ’ , @gaoutfun , . . .
31 ’ El i teCount ’ , E l i t e , . . .
32 ’ U s ePara l l e l ’ , true , . . .
33 ’ I n i t i a l Popu l a t i on Mat r i x ’ , I n i t i a l p o p u l a t i o n ) ;
34 end
35

36 %% Esecuz ione GA per s e l e z i o n e f e a t u r e
37 [ s e l e c t ed_ f ea tu r e s , b e s t _ f i t n e s s ] = ga ( f i tne s sFcn , num_features , [ ] ,

[ ] , [ ] , [ ] , lb , ub , [ ] , IntCon , opt ions ) ;

The code of the fitness function and the @gaoutfun routine is provided in Appen-
dices A.1 and A.2.
The MATLAB workflow is summarised in Figure 5.1.

Figure 5.1: MATLAB code flow chart
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5.4 Results
For each analysed case the following are shown:

• the plot of the number of features of the best individual versus generations;

• the @gaplotbestf plot;

• the selected features;

• the fitness error of the best solution computed with Equation (5.2).

5.4.1 GPR
As mentioned earlier, for GPR the analyses are performed only with the static
database, because the model is very heavy to train and its computational cost
grows with O(n3)10. So the feature subset found for the static database is used
also for the dynamic database.

Dimensional database

Stations:

15%, 20%, 30%, 45%, 55%, 60%, 65%, 70%, 75%, 80%, 90%, 95%, 100%

Fitness error: 0.3350.

Figure 5.2: Number of features — di-
mensional GPR

Figure 5.3: @gaplotbestf — dimen-
sional GPR

10Using a laptop the feature selection with the static database (n = 2611) and a population of
20 individuals takes several hours. With the dynamic database (n = 18910) the execution time
becomes unsustainable.
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Non dimensional database

Stations:

15%, 20%, 30%, 45%, 55%, 60%, 65%, 70%, 75%, 80%, 90%, 95%, 100%

Fitness error: 0.3328.

Figure 5.4: Number of features — non
dimensional GPR

Figure 5.5: @gaplotbestf — non di-
mensional GPR

Both databases converge to the same combination of features. A similar behaviour
will be observed when comparing dimensional and non dimensional SVM.

5.4.2 SVM

Static database

• Dimensional database

Stations:

15%, 20%, 30%, 45%, 60%, 70%, 75%, 80%, 90%, 100%

Fitness error: 0.4443.
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Figure 5.6: Number of features —
static dimensional SVM

Figure 5.7: @gaplotbestf — static di-
mensional SVM

• Non dimensional database
Stations:

15%, 20%, 30%, 45%, 60%, 70%, 75%, 80%, 90%, 100%

Fitness error: 0.4345.

Figure 5.8: Number of features —
static non dimensional SVM

Figure 5.9: @gaplotbestf — static
non dimensional SVM
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Dynamic database

• Dimensional database

Stations:

15%, 20%, 30%, 45%, 60%, 70%, 75%, 80%, 90%, 95%, 100%

Fitness error: 0.7659.

Figure 5.10: Number of features — dy-
namic dimensional SVM

Figure 5.11: @gaplotbestf — dy-
namic dimensional SVM

• Non dimensional database

Figure 5.12: Number of features — dy-
namic non dimensional SVM

Figure 5.13: @gaplotbestf — dy-
namic non dimensional SVM
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Stations:

15%, 20%, 30%, 45%, 60%, 70%, 75%, 80%, 90%, 95%, 100%

Fitness error: 0.7639.

The results obtained are summarized in Table 5.1.

Model Number of stations Fitness error
Dimensional GPR 13 0.3350
Non dimensional GPR 13 0.3328
Static dimensional SVM 10 0.4443
Static non dimensional SVM 10 0.4345
Dynamic dimensional SVM 11 0.7659
Dynamic non dimensional SVM 11 0.7639

Table 5.1: Comparison of ML models

As anticipated, dimensional and non dimensional cases yield identical feature
subsets, whereas static and dynamic cases differ: dynamic databases converge on
subsets with more stations11.
When the GPR and the SVM are compared under identical conditions (static
database), it can be seen that the former employs a larger number of features.
In addition, the SVM exhibits greater errors than the GPR, and they increase
when the dynamic database is used. This behaviour stems from the fact that the
dynamic database is much larger than the static one. Therefore, with the same
number of folds in the grouped cross-validation, the test is carried out on a far
greater number of rotors.

5.5 MATLAB Implementation of the Results
Once the optimal feature combinations for each analysed case had been identified,
a dedicated MATLAB script was developed to manage feature selection automati-
cally. It contains a structured logic based on if statements, enabling the correct
combination of features to be selected according to the user’s choices.
Specifically, the code takes as input the desired ML model (GPR or SVM) and the
type of database to be used (static or dynamic, dimensional or non dimensional).
On the basis of this information, the system automatically retrieves the feature

11Shown for SVM; GPR could not be tested with the dynamic database.

49



Feature selection

combination previously selected by the GA for that particular scenario, thereby
making the process fully automated. This approach ensures consistency in applying
the feature selection results to later stages of the work, such as model training or
rotor generation.
The structure of the code also makes it easy to extend the framework in case new
models or analysis scenarios will be added in the future.
The MATLAB code that implements the automatic feature selection logic is
provided in Appendix A.3.

5.6 Conclusions
This chapter presented the procedure adopted for automatic feature selection, with
the goal of improving the predictive capability of the employed ML models. The
chosen technique was the genetic algorithm (GA), selected despite the reduced
number of possible combinations imposed by the constraints. Although an exhaus-
tive search would have been theoretically feasible in this case, the GA was adopted
to develop a generalisable and flexible approach, applicable even to more complex
scenarios where the combination space is too large for a brute force search.
Using the GA makes it possible to explore the space of candidate configurations
efficiently, to avoid the sub-optimal solutions typical of simpler approaches, and to
keep the method robust when the objective function is non linear, discontinuous or
non differentiable.
From the comparison between models it emerges that the GPR, although it requires
a larger number of features, achieves the lowest fitness error. By contrast, the SVM
model selects fewer features at the cost of higher error.
Moving from the static to the dynamic database, the number of features selected
for the SVM increases. For lack of time, the same verification was not performed
for the GPR; consequently, the feature set adopted for this model may not be
optimal and the reported performance should be regarded as conservative.
Another noteworthy observation concerns the comparison between dimensional
and non dimensional databases: overall the results are very similar in the two
configurations; however, the non dimensional database yields slightly lower fitness
errors, suggesting that removing dimensional information can enhance model
generalisation.
Finally, the results have been integrated into MATLAB by means of a script that
automatically selects the most appropriate features according to the user’s choices.
This structure is easily extendable and makes the entire workflow scalable for future
developments, new models, or new datasets.
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Chapter 6

Rotors Generation

6.1 Introduction
This chapter includes the description of the functioning of a MATLAB developed
code, which allows the generation of rotors based on user inputs, using rotors from
the database as a starting point.
The final goal is to create a tool that, given specific operating conditions selected
by the user, can rapidly generate theoretically optimal rotors for the required
performance specifications. However, considering the possibility that the ML
models predict rotor performance inaccurately, it becomes necessary to validate
the obtained results through further numerical analyses to verify the performance
of the generated rotor.
The code has two main functionalities:

1. construction of the Pareto front;

2. generation of a single rotor.

In the following sections both functionalities are described in depth, along with the
various options selectable by the user. Finally, the results obtained are presented
and they are validated through BEM and CFD analyses.

6.2 Input
The code is structured to offer users a wide range of configurability through a series
of input parameters. The available options allow control of both the objective of
the analysis and the methods by which it is carried out. The code used for input
management is reported in Appendix B.1.
The selectable options are listed and described below:
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• Type of analysis (’pareto’ or ’diretta’): represents the main choice to
be made.
Selecting ’pareto’, the code constructs the Pareto front. Selecting ’diretta’,
it generates a single rotor with the desired characteristics. Both modes are
detailed in the following paragraphs.

• Type of database (’statico’ or ’dinamico’): allows selection of the
database on which the predictive model is based.
The ’statico’ database does not consider variations of the advance ratio J ,
while the ’dinamico’ database includes them.

• Type of model (’dimensionale’ or ’non dimensionale’): allows choosing
models trained with dimensional or nondimensional data.

• ML algorithm (’GPR’ or ’SVM’): selects the type of predictive model.
’GPR’ corresponds to Gaussian Process Regression with Exponential kernel,
while ’SVM’ refers to the Medium-type Support Vector Machine model.

• Visualization of graphs (’si’ or ’no’): enables or disables the visualization
of graphs showing trends of CT, CP, and efficiency η (Formula (3.4)), as a
function of advance ratio J1.
This option is only available with the ’dinamico’ database since the ’statico’
database does not provide data varying with J .

• Local optimization (’si’ or ’no’): allows application of a local optimization
phase to refine the solution found by the GA.
In ’diretta’ mode, it is possible to choose between the algorithms @fmincon
and @patternsearch; in ’pareto’ mode, @fgoalattain is used instead. Note
that activating optimization significantly increases execution time2.

• Maximum Mach number at the tip: specifies the maximum allowed value
for the Mach number at the rotor tip. It prevents the code from generating
unrealistic solutions that would require excessively high rotational speeds to
achieve certain performance levels.

• Performance targets (CT, CP): desired thrust and power coefficient targets
can be defined.

1The range of variation of J can be freely defined.
2In the ’pareto’ mode, optimization with many points on the front may make the analysis

computationally too heavy.
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In ’pareto’ mode, at most one target must be specified, while in ’diretta’
mode both of them can be set.

• Geometric and operational targets: optionally, users can define geometric
parameters (rotor radius) and operating conditions (angular velocity in rad/s
and advance ratio J) to be respected during rotor generation.

• Tolerances: indicate the allowed precision relative to the defined targets.
In ’diretta’ mode, CT and CP tolerances are expressed as percentages,
whereas in ’pareto’ mode, they are absolute values.

• Genetic Algorithm (GA) parameters: the user must specify population
size and maximum generation number.

• NACA profile selection: allows selection of the specific four digit NACA
airfoil profile used for rotor construction3.

• CT and CP weight (peso_CT_CP): a parameter active only in the ’diretta’
mode, designed to compel the GA to seek improved solutions4.

6.3 Analysis: ‘pareto’

In this paragraph the detailed operation of the code dedicated to constructing the
Pareto front is explained.

6.3.1 Pareto front
The Pareto front is the set of optimal solutions in a multi-objective optimization
problem. It comprises all non dominated points; that is, those solutions for which
there exists no alternative that is simultaneously better in all objectives considered.
A solution can belong to the Pareto front even if it does not dominate others,
provided that it is not dominated by any. [28]

6.3.2 Implementation in MATLAB
The construction of the Pareto front is based on using the multi-objective GA via
the MATLAB function @gamultiobj. The operation of this function is similar
to the GA explained in Chapter 5. Therefore, it is necessary to define a fitness
function and a constraint function.

3Additional details on its usage are provided in the following sections.
4Increasing its numerical value forces the GA to move closer to the Pareto front.

53



Rotors Generation

Fitness function

The fitness function used is reported in Appendix B.2. Its task is to evaluate the
rotors’ performance by computing CT and CP. In addition to estimating these two
parameters, infinite penalties are assigned to rotors that have tip Mach numbers
exceeding the imposed constraint and also to rotors having negative CP5.
Since the GA might generate unrealistic geometries (especially with small popu-
lations), a constraint is imposed on variations between successive stations along
the blade span, based on an analysis of the rotors in the database. Therefore, a
function that analyses all rotors in the database was created.

Constraint function

The constraint function analyses the database rotors to determine the admissible
variations between one station of the rotor and the next one. In particular, it
examines how the normalized chord and the β vary for all rotors in the database
and extracts an interval of variation. This process is carried out for each interval
between two rotor stations. Once the maximum and the minimum variation values
for each station are extracted, they are implemented in the multi-objective GA as
non linear inequality constraints. In this way, the GA is allowed to generate rotors
closer to real ones even using few individuals per generation. The two functions
used to perform this procedure are reported in Appendix B.3.

Options

As done for feature selection in Chapter 5, it is possible to specify the operating
options for the multi-objective GA. All selected options are reported below and
some of them are explained6 [27]:

• CreationFcn = @gacreationuniformint.

• CrossoverFcn = @crossoverintermediate.
Used by default in the presence of linear constraints, it generates offspring by
computing a weighted average between the two parents.
The child is generated from the two parents parent1 and parent2 according to
the following formula:

child = parent1 + rand · Ratio · (parent2 − parent1)

5This second option was added to prevent the Pareto front from developing in regions of no
practical interest.

6Many of them were already introduced in Chapter 5.

54



Rotors Generation

where Ratio represents a weight.

• SelectionFcn = @selectiontournament.

• MutationFcn = @mutationadaptfeasible.
Default option in the presence of non integer constraints, it randomly generates
directions that adapt based on the success or the failure of the previous
generation.

• Display = ’diagnose’.

• PlotFcn = @gaplotpareto.
Plots the Pareto front for the objective functions.

• UseParallel = false.
Parallelization is not used because various tests show that its use, in this
specific case, slows down code execution7.

• MaxGenerations.
The maximum number of generations that the multi-objective GA can perform
is set by the user.

• PopulationSize.
The population size is also set by the user, bearing in mind that larger
populations can yield potentially better results but require more execution
time.

• InitialPopulationMatrix.
As the initial population, the data present in the database are used. If the
number of chosen individuals is smaller than the database size, only a part of
it is used; if it is larger, additional individuals are generated randomly using
the function @gacreationuniformint.

• HybridFcn.
As previously mentioned, it is possible to use the function @fgoalattain to
optimize the Pareto front. This is the only function implemented natively in
MATLAB for the multi-objective GA.

7This effect occurs because the function evaluation is very fast and the overhead of starting,
synchronizing and copying data between workers outweighs any savings from parallel execution.
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Below there is the code used to configure and run the multi-objective GA with all
implemented options.

Listing 6.1: Script for configuring and running the multi-objective GA
1 % D e f i n i s c o l a popo laz ione i n i z i a l e da l database
2 i n i t i a l P o p u l a t i o n = dat i ;
3

4 % D e f i n i z i o n e d e l l a funz ione d i f i t n e s s per GA
5 f i t n e s s F c n = @( x ) stima_CT_CP(x , Modello_ML_CT, Modello_ML_CP ,

densita_aria_SL , viscosita_dinamica_aria_SL , velocita_del_suono_SL
, mach_massimo_al_tip , scelta_dim_nondim , colonna_075 ) ;

6

7 % D e f i n i s c o l a funz ione v in co l o con parametr i . Questa funz ione s e rve
a l i m i t a r e i l GA per non f a r g l i generare geometr ie troppo s t rane

8 nonlcon_fun = @( x ) nonlcon_funzione_massimi (x , massimi_corda ,
massimi_beta ) ;

9

10 i f strcmp ( ott imizzaz ione_loca le_GA_mult iobiett ivo , ’ s i ’ )
11 opt s_ fgoa l a t t a in = opt imopt ions ( ’ f g o a l a t t a i n ’ , ’ Display ’ , ’ i t e r ’ )

;
12 opt ions = opt imopt ions ( ’ gamult iobj ’ , . . .
13 ’ Display ’ , ’ d iagnose ’ , . . .
14 ’ PlotFcn ’ , ’ gap lo tpare to ’ , . . .
15 ’ U s ePara l l e l ’ , f a l s e , . . .
16 ’ MaxGenerations ’ , numero_generazioni , . . .
17 ’ Popu lat ionS ize ’ , grandezza_popolazione , . . .
18 ’ I n i t i a l Popu l a t i on Mat r i x ’ , i n i t i a l P o p u l a t i o n , . . .
19 ’ HybridFcn ’ , { @fgoa lat ta in , op t s_ fgoa l a t t a in }) ;
20 e l s e i f strcmp ( ott imizzaz ione_loca le_GA_mult iobiett ivo , ’ no ’ )
21 opt ions = opt imopt ions ( ’ gamult iobj ’ , . . .
22 ’ Display ’ , ’ d iagnose ’ , . . .
23 ’ PlotFcn ’ , ’ gap lo tpare to ’ , . . .
24 ’ U s ePara l l e l ’ , f a l s e , . . .
25 ’ MaxGenerations ’ , numero_generazioni , . . .
26 ’ Popu lat ionS ize ’ , grandezza_popolazione , . . .
27 ’ I n i t i a l Popu l a t i on Mat r i x ’ , i n i t i a l P o p u l a t i o n ) ;
28 end
29

30 % Faccio p a r t i r e i l GA m u l t i o b i e t t i v o
31 [ x_sol_pareto , f v a l ] = gamult iobj ( f i tne s sFcn , nVars , [ ] , [ ] , [ ] , [ ] ,

lb , ub , nonlcon_fun , opt ions ) ;

The lower (lb) and upper (ub) bounds are set to the minimum and maximum values
present in the database for each column.
After the Pareto front has been constructed, considering the various inputs and
constraints used, if a target on CT or CP has been imposed, it is possible to
determine which rotor on the front best satisfies the target. The rotor’s charac-
teristics, together with the chosen NACA profile, are then automatically exported
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to an Excel file containing a macro that generates the rotor in SolidWorks. In
the same Pareto front plot, the database rotors that satisfy the imposed targets
and tolerances are also shown. Specifically, the database rotor that meets the
constraints and that is closest to the user’s requested CT or CP is automatically
selected8. The two rotors, database and Pareto front, are displayed on screen via a
3D plot to give an idea of their shapes9. Finally, if graph display has been enabled,
the variation of CT, CP and η as functions of J is also shown.
Below there is an example of results generated by the dimensional dynamic GPR
ML model.

Figure 6.1: Trend of CT Figure 6.2: Trend of CP

Figure 6.3: Trend of η

8Rotors closer to the Pareto front are favoured.
9The shape shown may differ slightly from that exported to SolidWorks due to different

interpolation applied.
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Figure 6.4: Pareto Front

6.4 Analysis: ’diretta’

This paragraph includes the explanation of the operation of the code dedicated to
generating new rotors from user defined inputs.

6.4.1 Implementation in MATLAB
The code uses the GA to generate new rotors and for this reason it is necessary to
define a fitness function.

Fitness function

The fitness function used is reported in Appendix B.4. The function evaluates how
closely a rotor approaches the imposed CT and CP targets as follows:

• if a CT target is imposed, the relative error is calculated as:

valore = valore + |CT_new_rotor − target_CT |
target_CT

(6.1)

• if no CT target is imposed:

valore = valore − CT_new_rotor

mean(output_CT ) · peso (6.2)
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• if a CP target is imposed:

valore = valore + |CP_new_rotor − target_CP |
target_CP

(6.3)

• if no CP target is imposed:

valore = valore + CP_new_rotor

mean(output_CP ) · peso (6.4)

Rotors with lower valore are better. Again, when the tip Mach number exceeds the
maximum value, valore = Inf is set, thus preventing the algorithm from returning
a rotor that does not respect this constraint. peso, as previously explained, acts to
push the solution toward the Pareto front by increasing valore and forcing the GA
to seek better solutions before converging due to the tolerances.

Constraint function

The constraint function used, reported in Appendix B.5, is more complex than in
the previous case. The reason is that, besides implementing the same constraints
explained previously, it must also consider the CT and CP targets. Indeed, when
at least one of the two targets is imposed, it must ensure that the generated rotor’s
value falls within the imposed tolerance:

• if target_CT imposed:

|CT_new_rotor − target_CT |
target_CT

≤ tolerance_CT (6.5)

• if target_CP imposed:

|CP_new_rotor − target_CP |
target_CP

≤ tolerance_CP (6.6)

Options

The selected options are the following ones (only those different from ’pareto’ are
reported) [27]:

• CrossoverFcn = @crossoverscattered.
Generates a random binary vector used to combine the genes of the two
parents.
For each position of the vector:
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– if the value is 1, the gene is taken from the first parent;
– if the value is 0, the gene is taken from the second parent.

The resulting child is thus a random combination of the parents’ genes.

• SelectionFcn = @selectionstochunif.
Arranges a line where each parent corresponds to a section of line proportional
to its scaled fitness value.
The algorithm moves along the line in steps of equal size. At each step, it
selects the parent corresponding to the section on which it lands. The first
step is a random uniform number less than the step size.

No PlotFcn is present and for HybridFcn it is possible to choose between @fmincon
and @patternsearch.

Listing 6.2: Script for configuring and running the GA
1 % FUNZIONE OBIETTIVO
2 i nver se_des ign = @( x ) punteggio (x , target_CT , Modello_ML_CT, peso_CT ,

target_CP , Modello_ML_CP , peso_CP , media_output , densita_aria_SL ,
viscosita_dinamica_aria_SL , mach_massimo_al_tip ,

velocita_del_suono_SL , scelta_dim_nondim , colonna_075 ) ;
3 % Metto v i n c o l i
4 nonlcon = @( x ) v i n c o l i (x , target_CT , target_CP , Modello_ML_CT,

Modello_ML_CP , tolleranza_CT , tolleranza_CP , densita_aria_SL ,
viscosita_dinamica_aria_SL , velocita_del_suono_SL ,
scelta_dim_nondim , colonna_075 , massimi_corda , massimi_beta ) ;

5

6 % Fase Globale (GA) : Popolaz ione i n i z i a l e basata s u l database
7 % f p r i n t f (’−−− FASE GLOBALE (GA) −−−\n ’ ) ;
8

9 p o p o l a z i o n e _ i n i z i a l e = dat i ;
10

11 i f strcmp ( ottimizzazione_locale_GA , ’ s i ’ )
12 i f strcmp ( ott imizzazione_locale_GA_funzione , ’ fmincon ’ )
13 funz ione = @fmincon ;
14 opz ion i_funz ione = opt imopt ions ( ’ fmincon ’ , ’ Display ’ , ’ i t e r ’ )

;
15 e l s e i f strcmp ( ott imizzazione_locale_GA_funzione , ’ pa t t e rn sea r ch ’ )
16 funz ione = @patternsearch ;
17 opz ion i_funz ione = opt imopt ions ( ’ pa t t e rn sea r ch ’ , ’ Display ’ , ’

d iagnose ’ , ’ MeshTolerance ’ , 1e −8, ’ Us ePa ra l l e l ’ , f a l s e ) ;
18 end
19 options_ga = optimopt ions ( ’ ga ’ , . . .
20 ’ Display ’ , ’ d iagnose ’ , . . .
21 ’ Popu lat ionS ize ’ , grandezza_popolazione , . . .
22 ’ MaxGenerations ’ , numero_generazioni , . . .
23 ’ I n i t i a l Popu l a t i on Mat r i x ’ , popo l a z i one _ in i z i a l e , . . .
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24 ’ El i teCount ’ , E l i t e , . . .
25 ’ U s ePara l l e l ’ , f a l s e , . . .
26 ’ HybridFcn ’ , { funz ione , opz ion i_funz ione }) ;
27

28 e l s e i f strcmp ( ottimizzazione_locale_GA , ’ no ’ )
29 options_ga = optimopt ions ( ’ ga ’ , . . .
30 ’ Display ’ , ’ d iagnose ’ , . . .
31 ’ Popu lat ionS ize ’ , grandezza_popolazione , . . .
32 ’ MaxGenerations ’ , numero_generazioni , . . .
33 ’ I n i t i a l Popu l a t i on Mat r i x ’ , popo l a z i one _ in i z i a l e , . . .
34 ’ El i teCount ’ , E l i t e , . . .
35 ’ U s ePara l l e l ’ , f a l s e ) ;
36 end
37

38 % Faccio p a r t i r e i l GA
39 [ s o l _ f i n a l , ~ ] = ga ( inverse_des ign , nVars , [ ] , [ ] , [ ] , [ ] , lb , ub ,

nonlcon , options_ga ) ;

Once again, as soon as the best rotor has been selected considering the various inputs
and constraints, its characteristics and the chosen NACA profile are automatically
exported to an Excel file containing a macro to generate the rotor in SolidWorks.
The rotor is displayed on screen via a 3D plot to visualize its shape, and, if graph
display has been activated, CT, CP and η versus J are plotted.

6.5 Blade Element Momentum
Within the code there is a function that uses BEM to estimate the effect of the
airfoil profile on the rotor’s performance.
The methodology by which the BEM was employed will not be reported here. For
a detailed analysis of the method used, refer to [29].
The function runs simulations with NACA 0012 and NACA 4412 profiles, calculating
CT and CP in both cases.
Measuring the delta of CT and CP and locating the value predicted by the algorithm
within the interval, it is possible to determine the effect of the airfoil profile. Since
most rotors in the database are APC and have a NACA 4412 profile for most of the
span, it is assumed that the model’s predictions anticipate the use of this profile.
The output shows both the value predicted by the model and the delta due to the
possibility of choosing different profiles.

CT = 0.0926 – Maximum value 0.0926 – Minimum value 0.0806
CP = 0.0444 – Maximum value 0.0444 – Minimum value 0.0388

The operation of the MATLAB code can be schematized as in Figure 6.5.
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Figure 6.5: Flow chart of MATLAB Pareto code

6.6 Computational Fluid Dynamics
Similarly to the BEM analyses, the detailed description of the CFD methodology
adopted will not be explored in depth in this thesis. For a comprehensive treatment
of this methodological aspect, see [30].

6.7 Results
The results shown concern only the ’pareto’ analysis. A target CT of 0.15 and
a J = 0 were set in order to use both the static and dynamic models. The other
targets were not set, so the models are free to modify their values within the
constraints.
Firstly the rotor geometries and operating conditions are reported and then there
are CT and CP values compared with those obtained via BEM and CFD10.

10The CFD analyses were performed only for some ML models.
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6.7.1 GPR
Static

• Dimensional

Figure 6.6: Rotor geometry - static dimensional GPR – top view

Figure 6.7: Rotor geometry - static dimensional GPR - front view

r/R c/R β [◦]
0.1500 0.1200 30.9710
0.2000 0.1582 32.8080
0.3000 0.2252 31.3370
0.4500 0.2253 24.1470
0.5500 0.2208 20.5240
0.6000 0.2112 18.9050
0.6500 0.2093 17.1910
0.7000 0.2033 15.7370
0.7500 0.2037 14.6860
0.8000 0.1919 13.3630
0.9000 0.1419 11.3540
0.9500 0.1032 10.5440
1.0000 0.0389 9.3646

Table 6.1: Rotor geometry - static dimensional GPR

Radius = 0.2259m.
Angular velocity = 450.21 rad

s
.
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• Non dimensional

Figure 6.8: Rotor geometry - static non dimensional GPR - top view

Figure 6.9: Rotor geometry - static non dimensional GPR - front view

r/R c/R β [◦]
0.1500 0.1256 19.0880
0.2000 0.1657 25.3140
0.3000 0.2546 26.9340
0.4500 0.2481 22.6730
0.5500 0.2471 20.4600
0.6000 0.2434 18.5680
0.6500 0.2353 16.7020
0.7000 0.2251 15.2760
0.7500 0.2142 14.7570
0.8000 0.2043 13.5450
0.9000 0.1579 10.6450
0.9500 0.1168 9.2730
1.0000 0.0395 8.1564

Table 6.2: Rotor geometry - static non dimensional GPR

Radius = 0.1721m.

Angular velocity = 355.01 rad
s

.
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Dynamic

• Dimensional

Figure 6.10: Rotor geometry - dynamic dimensional GPR - top view

Figure 6.11: Rotor geometry - dynamic dimensional GPR - front view

r/R c/R β [◦]
0.1500 0.1207 24.2320
0.2000 0.1582 28.6790
0.3000 0.2076 28.6540
0.4500 0.2208 23.9880
0.5500 0.2177 20.3400
0.6000 0.2124 18.8610
0.6500 0.2074 17.1660
0.7000 0.2040 15.8190
0.7500 0.1948 15.0400
0.8000 0.1850 14.1550
0.9000 0.1391 11.3490
0.9500 0.1069 10.1870
1.0000 0.0413 7.9292

Table 6.3: Rotor geometry - dynamic dimensional GPR

Radius = 0.1730m.
Angular velocity = 589.66 rad

s
.
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• Non dimensional

Figure 6.12: Rotor geometry - dynamic non dimensional GPR - top view

Figure 6.13: Rotor geometry - dynamic non dimensional GPR - front view

r/R c/R β [◦]
0.1500 0.1187 19.3010
0.2000 0.1560 26.5140
0.3000 0.2161 27.1770
0.4500 0.2236 23.4040
0.5500 0.2284 20.3300
0.6000 0.2229 18.6750
0.6500 0.2199 17.2890
0.7000 0.2118 15.8380
0.7500 0.2051 15.0180
0.8000 0.1881 13.9650
0.9000 0.1388 11.6150
0.9500 0.1091 10.2170
1.0000 0.0407 8.1197

Table 6.4: Rotor geometry - dynamic non dimensional GPR

Radius = 0.1439m.

Angular velocity = 471.75 rad
s

.
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6.7.2 SVM
Static

• Dimensional

Figure 6.14: Rotor geometry - static dimensional SVM - top view

Figure 6.15: Rotor geometry - static dimensional SVM - front view

r/R c/R β [◦]
0.1500 0.1183 35.1840
0.2000 0.1587 37.6220
0.3000 0.1990 31.7430
0.4500 0.2141 22.6160
0.6000 0.1833 20.1150
0.7000 0.1846 17.0800
0.7500 0.1854 16.5780
0.8000 0.1873 15.8570
0.9000 0.1322 13.6500
1.0000 0.0269 9.5379

Table 6.5: Rotor geometry - static dimensional SVM

Radius = 0.2034m.
Angular velocity = 501.60 rad

s
.
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• Non dimensional

Figure 6.16: Rotor geometry - static non dimensional SVM - top view

Figure 6.17: Rotor geometry - static non dimensional SVM - front view

r/R c/R β [◦]
0.1500 0.1209 23.6580
0.2000 0.1611 31.7950
0.3000 0.1996 30.4320
0.4500 0.2173 23.7090
0.6000 0.2020 20.0830
0.7000 0.1968 16.9050
0.7500 0.1972 16.2120
0.8000 0.1960 15.6560
0.9000 0.1405 13.3060
1.0000 0.0351 6.0647

Table 6.6: Rotor geometry - static non dimensional SVM

Radius = 0.1392m.
Angular velocity = 385.71 rad

s
.
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Dynamic

• Dimensional

Figure 6.18: Rotor geometry - dynamic dimensional SVM - top view

Figure 6.19: Rotor geometry - dynamic dimensional SVM - front view

r/R c/R β [◦]
0.1500 0.1188 30.1540
0.2000 0.1586 32.9210
0.3000 0.1779 34.6560
0.4500 0.1769 24.5430
0.6000 0.1597 17.4110
0.7000 0.1582 15.8840
0.7500 0.1592 15.4680
0.8000 0.1577 14.5200
0.9000 0.1018 13.3620
0.9500 0.0978 12.1370
1.0000 0.0500 5.1973

Table 6.7: Rotor geometry - dynamic dimensional SVM

Radius = 0.1627m.
Angular velocity = 626.45 rad

s
.
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• Non dimensional

Figure 6.20: Rotor geometry - dynamic non dimensional SVM - top view

Figure 6.21: Rotor geometry - dynamic non dimensional SVM - front view

r/R c/R β [◦]
0.1500 0.1154 20.2460
0.2000 0.1562 27.2750
0.3000 0.1747 27.7460
0.4500 0.1930 22.8990
0.6000 0.1926 16.1250
0.7000 0.1745 14.0710
0.7500 0.1707 13.6480
0.8000 0.1627 12.9370
0.9000 0.1128 10.4260
0.9500 0.0994 10.3060
1.0000 0.0457 5.0804

Table 6.8: Rotor geometry - dynamic non dimensional SVM

Radius = 0.1391m.
Angular velocity = 571.29 rad

s
.
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The CT and CP values of the generated rotors are reported in Table 6.9.

ML model ML BEM CFD
CT CT_0012 CP CP_0012 CT CP CT CP

Stat. dim. GPR 0.15 0.1123 0.0578 0.0437 0.1335 0.0492 - -
Stat. non dim. GPR 0.15 0.1091 0.0604 0.0442 0.1389 0.0541 - -

Dyn. dim. GPR 0.15 0.1111 0.0612 0.0472 0.1330 0.0489 - -
Dyn. non dim. GPR 0.15 0.1107 0.0625 0.0480 0.1314 0.0514 0.1203 0.0509

Stat. dim. SVM 0.15 0.1159 0.0491 0.0367 0.1316 0.0490 - -
Stat. non dim. SVM 0.15 0.1123 0.0545 0.042 0.1251 0.0527 - -

Dyn. dim. SVM 0.15 0.1186 0.0482 0.0384 0.1100 0.0393 - -
Dyn. non dim. SVM 0.15 0.1173 0.0540 0.0426 0.1086 0.0393 0.1010 0.0396

Table 6.9: Comparison of ML, BEM, and CFD values

The results show that for both CT and CP the lowest errors, with respect to BEM
and CFD values, are obtained by the GPR models.
Considering only these models, the percentage errors on CT with respect to BEM
range between 7% and 14%, while relative to CFD the error, for the single case
considered, is about 25%.
For CP, the errors with respect to BEM vary between 10% and 25%, whereas with
respect to CFD they are about 23%.

Examining Figure 6.4, it can be noted that the CT value, at which the analyses
were performed, has a lower data density in the database, which could affect the
model’s ability to generate rotors for that CT. To verify this, a simulation was
carried out with a target CT of 0.1111 and the results are shown below.

6.7.3 Analysis at CT = 0.11

Figure 6.22: Rotor geometry - dynamic non dimensional GPR - top view

11The analysis was performed using the dynamic non dimensional GPR model.
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Figure 6.23: Rotor geometry - dynamic non dimensional GPR - front view

r/R c/R β [◦]
0.1500 0.1279 47.5170
0.2000 0.1411 41.4190
0.3000 0.1894 33.3550
0.4500 0.1758 21.7730
0.5500 0.1582 17.7840
0.6000 0.1471 16.9480
0.6500 0.1368 15.4490
0.7000 0.1236 14.7620
0.7500 0.1196 14.1620
0.8000 0.1157 13.4660
0.9000 0.0773 11.6300
0.9500 0.0754 11.2890
1.0000 0.0023 10.425

Table 6.10: Rotor geometry - dynamic non dimensional GPR

Radius = 0.2302m.
Angular velocity = 433.95 rad

s
.

ML model ML BEM CFD
CT CT_0012 CP CP_0012 CT CP CT CP

Dyn. non dim. GPR 0.11 0.0831 0.0338 0.0257 0.0941 0.0303 0.0917 0.0336

Table 6.11: Comparison of ML, BEM, and CFD values

In this case the percentage errors on CT are approximately 17% for BEM and 20%
for CFD. Considering the latter as reference, this represents a slight improvement.
For CP, the percentage errors are 12% with BEM and 0.6% with CFD, indicating
a significant improvement.
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6.8 Conclusions
In this chapter a MATLAB code capable of constructing a Pareto front and
generating rotors based on user-provided inputs, using ML models, was presented.
The code is highly configurable, so it allows the user to customize numerous
geometric and performance parameters.
Two operating modes were analysed in detail:

1. the ’pareto’ mode;

2. the ’diretta’ mode.

In both modes a GA is used with constraints derived from the database.
The analysis of the results highlighted that the GPR models provide more reliable
predictions compared to the SVM models. However, a certain discrepancy emerged
between the model-predicted values and those obtained via BEM and CFD simu-
lations. The results seem to improve when considering performance targets with
higher rotor density in the database but remain not sufficiently reliable for fully
autonomous rotor generation, especially when precise performance is desired.
To fully exploit the potential of this code, it is necessary to further improve the
predictive capability of the models. This can be achieved, for example, through
the use of deep neural networks (Deep Learning) or by increasing the quantity and
the quality of training data, in order to expand the database representativeness
and reduce generalization error.

73



Chapter 7

Rotors Optimization

7.1 Introduction
This chapter explains the functioning of a MATLAB code developed to optimize
rotors. The code offers two main operating modes, which are described below:

1. ‘costruzione’ mode;

2. ‘pareto’ mode.

To optimize the rotors, the code employs a GA to generate new geometries and
trained ML models, with the aim of evaluating their performance. The code makes
it possible to modify a rotor in order to increase the CT while keeping the CP
constant, or to decrease the CP while holding the CT constant, thereby improving
efficiency.
The T-Motor 15 X 5 CF rotor will be optimized, and the results will be compared
with those obtained via BEM and CFD analyses.

7.2 T-Motor 15 X 5 CF Rotor Geometry
The geometry of the T-Motor 15 X 5 CF rotor is given in Table 7.1. Of the six
columns only Station, Pitch and Chord are used, as these are the only data accepted
by the trained models. The values along the blade span must be interpolated1 at
the stations required by the various ML models for their analyses, and the chord
must be normalised with respect to the radius. Consequently, the geometry matrix
employed is the one shown in Table 7.2.

1Linear interpolation was adopted in this case.
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Station (in) r/R Pitch (deg) Chord (in) Xqc (in) Zqc (in)
1.240 0.165 17.171 0.982 -0.169 0.028
1.550 0.207 17.284 1.101 -0.177 0.038
1.860 0.248 21.264 1.349 -0.148 0.025
2.170 0.289 19.863 1.449 -0.141 0.026
2.480 0.331 17.925 1.498 -0.135 0.027
2.790 0.372 16.355 1.511 -0.132 0.025
3.100 0.413 15.090 1.497 -0.132 0.025
3.410 0.455 13.921 1.467 -0.138 0.025
3.720 0.496 12.928 1.427 -0.145 0.028
4.030 0.537 12.168 1.379 -0.153 0.031
4.340 0.579 11.468 1.329 -0.159 0.031
5.890 0.785 9.385 1.008 -0.175 0.039
6.510 0.868 8.527 0.860 -0.173 0.047
6.820 0.909 8.128 0.764 -0.164 0.059
7.130 0.951 7.833 0.633 -0.136 0.079
7.285 0.971 7.629 0.530 -0.102 0.092
7.440 0.992 7.987 0.310 0.011 0.100

Table 7.1: T Motor 15 X 5 Carbon Fiber geometry [31]

Figure 7.1: T-motor 15 X 5 CF geometry - top view

Figure 7.2: T-motor 15 X 5 CF geometry - front view
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r/R c/R β [◦]
0.1500 0.1253 17.1306
0.2000 0.1442 17.2652
0.2500 0.1805 21.1957
0.3000 0.1949 19.3554
0.3500 0.2005 17.1974
0.4000 0.2002 15.4911
0.4500 0.1961 14.0602
0.5000 0.1896 12.8539
0.5500 0.1818 11.9513
0.6000 0.1728 11.2557
0.6500 0.1624 10.7501
0.7000 0.1521 10.2445
0.7500 0.1417 9.7389
0.8000 0.1308 9.2299
0.8500 0.1189 8.7131
0.9000 0.1047 8.2156
0.9500 0.0848 7.8400
1.0000 0.0302 8.1234

Table 7.2: ML model geometry - T Motor 15 X 5 Carbon Fiber

7.3 Operating conditions
The analyses are carried out at J = 0 to enable the use of all the trained models.
Moreover, the environmental conditions correspond to sea level, while the rotor
rotational speed is set to 314.16 rad

s
, i.e. 3000 RPM.

7.4 Input
The inputs that can be selected in this code, listed in Appendix C.1, are very similar
to those described in Chapter 6; therefore, only the differing ones are presented
here.

• Type of analysis (’costruzione’ o ’pareto’): this is the main choice to
be made.
Selecting ’costruzione’, the code optimises the loaded rotor. Selecting
’pareto’, the code generates the Pareto front together with the various rotors
optimised for different percentages of allowable modification. The two modes
are described in detail in the following paragraphs.
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• Type of optimisation: specifies the direction in which the code proceeds to
improve rotor efficiency.
If the aim is to increase CT, the code modifies the initial rotor to raise CT
while keeping CP constant. If the aim is to reduce CP, the code modifies the
initial rotor to lower CP while keeping CT constant.

• Tolerances: different types of tolerance can be implemented depending on
the chosen analysis.
When ’costruzione’ is selected, only a single tolerance value can be entered,
whereas with ’pareto’ a vector of tolerances can be provided. This arrange-
ment allows identification of the tolerance at which the desired improvements
are achieved. The rotor is modified solely by altering its geometry (radius
excluded) and not the operating conditions. For example, a tolerance of 5 %
permits the normalised chord and β values to vary by that percentage.

In addition to defining these parameters, it is necessary to import the geometry of
the rotor to be optimised. Three vectors2 are required:

1. Station: indicates the spanwise stations along the rotor for which data are
available.

2. Chord: vector of the rotor chord lengths along the blade span.

3. Pitch: vector of the pitch angles of the profiles along the blade span.

The values are then processed automatically into the format accepted by the ML
model in use.

Since the two analysis types share most of the code, the common parts are presented
first, followed by a detailed examination of the two analyses.

7.5 Common codes

7.5.1 Tolerance application
The tolerance is applied by modifying the upper and lower bounds of the GA3. The
function implemented for this purpose is shown below.

2The rotor diameter must also be available.
3Before the tolerance is applied, ub and lb are identical and equal to the vector describing the

characteristics of the rotor to be modified.
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Listing 7.1: Tolerance function
1 f unc t i on [ lb , ub ] = minimi_massimi ( rotore , to l l e ranza_geometr ia ,

zeri_e_uni_corda , zeri_e_uni_beta )
2 part i_geometr ia = r o t o r e ( 1 : ( sum( zeri_e_uni_corda +

zeri_e_uni_beta ) ) ) ;
3 lb = part i_geometr ia − to l l e ranza_geometr ia ∗ part i_geometr ia ;
4 ub = part i_geometr ia + to l l e ranza_geometr ia ∗ part i_geometr ia ;
5

6 lb = [ lb , r o t o r e ( ( ( sum( zeri_e_uni_corda + zeri_e_uni_beta ) )+1) :
end ) ] ;

7 ub = [ ub , r o t o r e ( ( ( sum( zeri_e_uni_corda + zeri_e_uni_beta ) )+1) :
end ) ] ;

8 end

The specified tolerance causes both the lower and upper limits within which the
GA explores the various configurations to be modified by the given percentage.
The code also includes a function that prevents the algorithm from considering
geometries whose variations in normalised chord or β exceed those present in the
database, like the one introduced in Chapter 6.

7.5.2 Fitness function

Two fitness functions are used, depending on whether the aim is to construct the
Pareto front or to generate a single rotor.
For rotor generation, the fitness function employed is very similar to that imple-
mented in the ’diretta’ analysis of Chapter 6 and it is reported in Appendix C.2.
The function adopted for the Pareto front is practically identical to the one shown
in Appendix B.2, so it is not reproduced here4.

7.5.3 Constraint function

As in Chapter 6, the constraint function ensures that, if the rotor is not being
optimised with respect to, for example, CT, the generated rotors remain within
the desired tolerance on CT5.
The function is provided in Appendix C.3.

4The only difference is that the check on the tip Mach number is omitted, because that value
is set by selecting the rotational speed and radius.

5CT is kept in the vicinity of the initial rotor value.

78



Rotors Optimization

7.6 Analysis: ’costruzione’

The modified rotor is generated by means of a GA, to which the inputs and functions
described previously are supplied.

7.6.1 GA

The GA modifies the input rotor by varying its geometric characteristics within the
specified tolerance. For each geometry created, the algorithm evaluates performance
using the previously trained ML models. The options employed are identical to
those presented in Chapter 6 for the ’diretta’ analysis, except for the initial
population: in the present case, the population is generated by forming a matrix
that contains the initial rotor together with random perturbations whose maximum
amplitude equals the prescribed tolerance.

Listing 7.2: InitialPopulationMatrix
1 % Creo una popo laz ione i n i z i a l e con i l r o t o r e + v a r i a z i o n i c a s u a l i
2 i n i t i a l P o p u l a t i o n = repmat ( rotore , grandezza_popolazione , 1) ;
3 per turbat i on = to l l e ranza_geometr ia ∗(ub − lb ) . ∗ randn (

grandezza_popolazione , nVars ) ;
4 per turbat i on ( 1 , : ) = 0 ;
5 i n i t i a l P o p u l a t i o n = i n i t i a l P o p u l a t i o n + per turbat i on ;
6 i n i t i a l P o p u l a t i o n = max(min ( i n i t i a l P o p u l a t i o n , ub) , lb ) ;

After the modified rotor has been generated, a 3D view of both the modified
and initial rotor is displayed, and the expected percentage improvement obtained
through the implemented modifications is reported.
An example of the output is shown below.

=== FINAL RESULTS ===
Percentage change CT: 5.1136 %
Percentage change CP: 0.0000 %

7.7 Analysis: ’pareto’

When ’pareto’ is selected as the analysis type, the procedure described for
’costruzione’ is repeated a number of times equal to the length of the tolerance
vector, and the Pareto front is also constructed. This code produces neither
numerical values nor geometries as output, but it serves as an initial analysis
to determine the tolerance to be adopted. It is expected that, as the tolerance
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increases, the modified rotors will progressively approach the Pareto front6. The
front is again built using MATLAB’s @gamultiobj function, with the same options
and inputs presented in Chapter 67.
Since this part of the analysis yields neither rotors nor numerical values, only an
example result is provided below. The example is carried out using the T-Motor
15 X 5 CF as the input rotor, and the geometry tolerances used are:

5%, 20%, 50%, 90%

Figure 7.3: Example of the ’pareto’ analysis

From Figures 7.3 and 7.4 it is apparent that, as the tolerance increases, the rotors
move progressively closer to the Pareto front. In particular, the rotors generated
with a 90 % tolerance practically coincide with the front and they are therefore not
visible. The plot is useful because it enables a comparison between the performance
of the initial rotor (as evaluated by the ML model) and that of the modified rotors,
and it assists in selecting an appropriate tolerance level for modifying the rotor
under examination. Although increasing the tolerance moves the design farther
from the original rotor characteristics, the graph shows that it provides a greater
chance of generating a rotor with improved performance.

6For each specified tolerance, the rotor is modified both to increase CT at constant CP and to
decrease CP at constant CT.

7The initial population is slightly different, as it also contains the rotor to be modified and
the already modified rotors.
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Figure 7.4: Example of the ’pareto’ analysis - zoom

Figure 7.5: Flow chart MATLAB code

Once again, when ’costruzione’ is selected, the rotor data and the chosen airfoil
are exported to Excel so that they can subsequently be generated in SolidWorks.
The resulting designs must then be evaluated with more accurate analyses such as
BEM or CFD to verify that the modified rotor actually provides a performance
benefit8. As with the code presented in Chapter 6, the advantage of using ML for
this type of study lies in the analysis time, which is an order of magnitude shorter

8It should be noted that the trained models may not have captured the relationships among
the various features correctly; consequently, the results may sometimes differ from expectations.
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than that required by BEM9. This allows a much larger number of geometries to
be analysed simultaneously, enabling different solutions to be explored.
The operation of the MATLAB code is summarised in Figure 7.5.

7.8 Results
This section presents the results obtained by performing the ’costruzione’ anal-
ysis. The outcomes from all trained ML models are compared for a tolerance of
5% while improving CT. Subsequently, the results are validated through BEM and
CFD analyses10.
For each ML model used, a table is provided showing the geometry of the modified
rotor (similar to Table 7.2), along with two views of the rotor (a top view and a
front one), as illustrated in Figures 7.1 and 7.2.

7.8.1 GPR
Static

• Dimensional

r/R c/R β [◦]
0.1500 0.1191 17.9850
0.2000 0.1460 18.1260
0.3000 0.2046 20.3170
0.4500 0.2059 13.9270
0.5500 0.1907 12.5130
0.6000 0.1756 11.3830
0.6500 0.1621 10.7250
0.7000 0.1516 10.1930
0.7500 0.1488 9.7828
0.8000 0.1373 9.4237
0.9000 0.1099 8.6243
0.9500 0.0842 8.1798
1.0000 0.0304 7.7234

Table 7.3: Modified T-Motor – dimensional static GPR

9A ML evaluation takes on the order of tenths or hundredths of a second, whereas a BEM
analysis takes several seconds.

10The NACA 4412 airfoil is employed.
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Figure 7.6: Modified T-Motor – dimensional static GPR – top view

Figure 7.7: Modified T-Motor – dimensional static GPR – front view

• Non dimensional

r/R c/R β [◦]
0.1500 0.1191 17.9810
0.2000 0.1513 18.1230
0.3000 0.2046 20.3130
0.4500 0.2059 14.3360
0.5500 0.1906 12.5440
0.6000 0.1643 11.8140
0.6500 0.1543 11.2660
0.7000 0.1482 10.6320
0.7500 0.1488 10.2200
0.8000 0.1373 9.6882
0.9000 0.1099 8.6206
0.9500 0.0889 8.2242
1.0000 0.0317 7.7201

Table 7.4: Modified T-Motor – non dimensional static GPR
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Figure 7.8: Modified T-Motor – non dimensional static GPR – top view

Figure 7.9: Modified T-Motor – non dimensional static GPR – front view

Dynamic

• Dimensional

r/R c/R β [◦]
0.1500 0.1264 17.9830
0.2000 0.1371 18.1260
0.3000 0.2046 20.3190
0.4500 0.2059 14.7350
0.5500 0.1863 12.5450
0.6000 0.1679 11.8150
0.6500 0.1646 11.2840
0.7000 0.1597 10.7510
0.7500 0.1488 10.2240
0.8000 0.1373 9.6898
0.9000 0.1099 8.6245
0.9500 0.0867 8.1358
1.0000 0.0317 7.7189

Table 7.5: Modified T-Motor – dimensional dynamic GPR
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Figure 7.10: Modified T-Motor – dimensional dynamic GPR – top view

Figure 7.11: Modified T-Motor – dimensional dynamic GPR – front view

• Non dimensional

r/R c/R β [◦]
0.1500 0.1191 17.9830
0.2000 0.1450 18.1250
0.3000 0.2046 20.3190
0.4500 0.2059 13.6610
0.5500 0.1827 12.5450
0.6000 0.1787 11.8160
0.6500 0.1637 11.2840
0.7000 0.1596 10.7500
0.7500 0.1488 10.2250
0.8000 0.1373 9.6900
0.9000 0.1098 8.6249
0.9500 0.0877 8.2184
1.0000 0.0317 7.7187

Table 7.6: Modified T-Motor – non dimensional dynamic GPR
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Figure 7.12: Modified T-Motor – non dimensional dynamic GPR – top view

Figure 7.13: Modified T-Motor – non dimensional dynamic GPR – front view

7.8.2 SVM

Static

• Dimensional

r/R c/R β [◦]
0.1500 0.1191 17.9860
0.2000 0.1460 18.1280
0.3000 0.2022 19.8920
0.4500 0.2059 14.7540
0.6000 0.1761 11.8180
0.7000 0.1535 10.7530
0.7500 0.1488 10.2260
0.8000 0.1373 9.6886
0.9000 0.1099 8.6251
1.0000 0.0317 7.7189

Table 7.7: Modified T-Motor – dimensional static SVM
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Figure 7.14: Modified T-Motor – dimensional static SVM – top view

Figure 7.15: Modified T-Motor – dimensional static SVM – front view

• Non dimensional

r/R c/R β [◦]
0.1500 0.1191 17.9830
0.2000 0.1513 18.1280
0.3000 0.1968 20.2580
0.4500 0.2059 14.3660
0.6000 0.1739 11.8150
0.7000 0.1492 10.6820
0.7500 0.1488 10.2230
0.8000 0.1373 9.6895
0.9000 0.1099 8.6258
1.0000 0.0317 7.7178

Table 7.8: Modified T-Motor – non dimensional static SVM

Figure 7.16: Modified T-Motor – non dimensional static SVM – top view
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Figure 7.17: Modified T-Motor – non dimensional static SVM – front view

Dynamic

• Dimensional

r/R c/R β [◦]
0.1500 0.1238 17.9850
0.2000 0.1514 18.1260
0.3000 0.2045 20.3220
0.4500 0.1983 14.7620
0.6000 0.1659 11.8170
0.7000 0.1498 10.6320
0.7500 0.1488 10.2240
0.8000 0.1373 9.6810
0.9000 0.0999 8.6255
0.9500 0.0890 8.2287
1.0000 0.0317 7.7179

Table 7.9: Modified T-Motor – dimensional dynamic SVM

Figure 7.18: Modified T-Motor – dimensional dynamic SVM – top view

Figure 7.19: Modified T-Motor – dimensional dynamic SVM – front view
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• Non dimensional

r/R c/R β [◦]
0.1500 0.1191 17.9830
0.2000 0.1514 18.1250
0.3000 0.2038 20.3210
0.4500 0.1964 14.7620
0.6000 0.1646 11.8150
0.7000 0.1513 10.6310
0.7500 0.1488 10.2240
0.8000 0.1373 9.6834
0.9000 0.1053 8.6255
0.9500 0.0890 8.2266
1.0000 0.0317 7.7179

Table 7.10: Modified T-Motor – non dimensional dynamic SVM

Figure 7.20: Modified T-Motor – non dimensional dynamic SVM – top view

Figure 7.21: Modified T-Motor – non dimensional dynamic SVM – front view
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ML GPR model CT variation [%]
ML BEM CFD

Static dimensional 3.7618 4.3554 -
Static non dimensional 5.1123 6.1516 -
Dynamic dimensional 6.2621 7.2392 -

Dynamic non dimensional 6.4648 6.6772 13.6709

Table 7.11: CT variation - GPR

ML GPR model CP variation [%]
ML BEM CFD

Static dimensional 0 5.1540 -
Static non dimensional 0 7.3074 -
Dynamic dimensional 0 8.8190 -

Dynamic non dimensional 0 8.0327 6.9767

Table 7.12: CP variation - GPR

ML SVM model CT variation [%]
ML BEM CFD

Static dimensional 7.0349 7.2060 -
Static non dimensional 6.8367 6.1767 -
Dynamic dimensional 6.8052 4.8865 -

Dynamic non dimensional 6.5451 5.3042 12.4051

Table 7.13: CT variation - SVM

ML SVM model CP variation [%]
ML BEM CFD

Static dimensional 0 8.6283 -
Static non dimensional 0 7.3657 -
Dynamic dimensional 0 5.8440 -

Dynamic non dimensional 0 6.3354 5.8140

Table 7.14: CP variation - SVM

The results presented in Tables 7.11 and 7.13 show that, by following the modifica-
tions suggested by the ML, there is indeed an improvement in CT. Moreover, the
percentage change is roughly the same across all models, and the values are very
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close to those obtained with the BEM. For the only two models analysed with CFD,
however, the improvement is greater. Tables 7.12 and 7.14 indicate that, although
the code was constrained to produce zero variation in CP, analyses with BEM and
CFD nonetheless show a percentage increase that sometimes is even larger than
that observed for CT. This is because the model introduces some error in evaluating
rotor performance and, in addition, the T-Motor 15 X 5 CF exhibits relatively
low hover CP values (≈ 0.025) compared with CT (≈ 0.076). Consequently, small
absolute variations lead to more pronounced percentage changes.
In hover, the figure of merit (FoM) of a rotor, which is an indicator of its aerodynamic
efficiency, is defined as

FoM = CT
3
2

CP
(7.1)

This relation shows that the FoM depends non linearly on the CT, whereas its
dependence on CP is linear. Consequently, an increase in CT can offset a propor-
tionally similar, or even slightly larger, increase in CP, still leading to an overall
improvement in efficiency. Tables 7.15 and 7.16 report the percentage change in
FoM for the various modified rotors. In every case considered the FoM increases,
confirming that the models have successfully optimised the rotor. Moreover, taking
the CFD values as a reference, it is observed a large percentage rise in FoM, indi-
cating that the rotor’s performance improves significantly when the modifications
proposed by the models are applied.

ML GPR model FoM variation [%]
ML BEM CFD

Static dimensional 5.6954 1.3782 -
Static non dimensional 7.7656 1.9202 -
Dynamic dimensional 9.5387 2.0530 -

Dynamic non dimensional 9.8523 1.9887 13.2882

Table 7.15: FoM variation - GPR

ML SVM model FoM variation [%]
ML BEM CFD

Static dimensional 10.7358 2.1846 -
Static non dimensional 10.4284 1.9010 -
Dynamic dimensional 10.3795 1.4876 -

Dynamic non dimensional 9.9766 1.6227 12.6253

Table 7.16: FoM variation - SVM
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7.9 Conclusions
In this chapter, the operation of a MATLAB code that makes it possible to optimize
rotors with the aim of increasing their efficiency was illustrated. The results have
shown how all the models are able to modify the T-Motor 15 X 5 CF rotor in order
to improve its performance. Therefore, while exhibiting some errors concerning
the prediction of rotor performance, especially on CP, all the models succeeded
in modifying the rotor while respecting the imposed geometric tolerances and in
improving efficiency in hover.
The percentage variation of CP (which is not desired) influences the analyses carried
out but, considering the CFD analyses, it does not seem to affect the successful
outcome of the optimization. Also in this case, to obtain better results, it proves
necessary to retrain the ML models on datasets of larger size and higher quality, or
to use more advanced models.

92



Chapter 8

Rotor Performance Analysis

8.1 Introduction
In addition to the generation and the optimization of rotors, the trained ML models
can simply be employed to predict the performance of existing rotors. This chapter
reports the performance analyses carried out on the T-Motor 15 X 5 CF rotor,
already presented in Chapter 7. All the trained models are used in these analyses.
Specifically, to allow a comparison between the static and dynamic models, the
performance analyses are conducted at J = 0. For the dynamic models, the trend
of CT and CP as J varies is also provided. The results are compared with BEM,
CFD and experimental analyses (when available).

8.2 Data Collection
Experimental data available in the literature were used for the performance analyses
of the T-Motor 15 X 5 CF rotor.
Specifically, the reference data were extracted from a NASA publication [31], which
provides rotor performance measurements under known conditions. These data
were used as a benchmark to analyse the errors made by the models.

8.2.1 NASA Data
From the data in Table 8.1, only the columns Density1, RPM, Fz and Mz are
used. After extracting and converting the values to the International System of
Units (SI), formulas (3.1) and (3.2) were used to non dimensionalize the force and

1Used for non dimensional ML models and to non dimensionalize forces and moments.
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moment values2. The NASA data are useful for analysing the hover performance
of the rotor, but they do not provide data for J > 0, for which BEM and CFD
analyses are used.

Speed q Density RPM Fx Fy Fz Mx My Mz Vesc I1
(ft/s) (lb/ft2) (slug/ft3) (lb) (lb) (lb) (in-lb) (in-lb) (in-lb) (V) (A)
0.00 0.00 0.00238 2000 -0.014 -0.001 0.459 0.036 0.073 0.358 16.726 0.976
0.00 0.00 0.00238 2500 -0.013 -0.000 0.720 0.058 0.066 0.558 16.715 1.772
0.00 0.00 0.00238 3000 -0.014 0.003 1.049 0.015 0.067 0.802 16.698 2.934
0.00 0.00 0.00238 3500 -0.020 0.006 1.427 -0.008 0.071 1.070 16.676 4.638
0.00 0.00 0.00238 4000 -0.031 -0.003 1.897 0.024 0.136 1.414 16.633 7.541
0.00 0.00 0.00238 4500 -0.028 -0.001 2.388 0.028 0.153 1.770 16.574 11.960

Table 8.1: Experimental data for the T-Motor 15 × 5 CF rotor (NASA) [31]

8.3 Results at J = 0

Several tables containing NASA data, BEM results, and predictions from the ML
models are presented. For each RPM value, the percentage error is calculated
using:

Error =
-----valuemodel − valueNASA

valueNASA

----- · 100 (8.1)

The average error is calculated by averaging the error over the number of rotational
speeds considered.

8.3.1 CT

In Table 8.2 the NASA and BEM values are reported, while in Tables 8.3 and
8.4 there are the values predicted by the ML models. In the tables, the mean
percentage errors with respect to NASA values are also reported.

2Since a moment is available, the formula CQ = Mz

ρn2D5 must be used and it is multiplied by
2π to obtain CP.
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RPM NASA BEM
2000 0.071095 0.0647
2500 0.071374 0.0676
3000 0.072213 0.0692
3500 0.072173 0.0708
4000 0.073457 0.0716
4500 0.073063 0.0723

Error [%] - 3.99

Table 8.2: NASA and BEM CT values

RPM Stat. dim. Dyn. dim. Stat. non dim. Dyn. non dim.
2000 0.075674 0.069101 0.071708 0.069645
2500 0.077307 0.070898 0.075938 0.073290
3000 0.07891 0.072626 0.079640 0.076311
3500 0.080478 0.074277 0.082835 0.078730
4000 0.082001 0.075841 0.085631 0.080507
4500 0.083475 0.077313 0.088146 0.081564

Error [%] 10.24 2.67 10.97 6.79

Table 8.3: CT values for ML models – GPR

RPM Stat. dim. Dyn. dim. Stat. non dim. Dyn. non dim.
2000 0.082869 0.075539 0.077342 0.075668
2500 0.084346 0.077832 0.081139 0.080270
3000 0.085840 0.080006 0.084567 0.084445
3500 0.087340 0.082047 0.087657 0.088075
4000 0.088838 0.083947 0.090527 0.090928
4500 0.090323 0.085694 0.093284 0.092697

Error [%] 19.86 11.89 18.66 18.09

Table 8.4: CT values for ML models – SVM

Analysing the results, it can be noted that the ML models captured the trend of
CT increasing with RPM although, if compared to NASA values, all models show
a more pronounced increase in CT with RPM, while compared to BEM values
the variation is similar. Among the various trained models, both for GPR and for
SVM, the one with the lowest prediction error (compared to NASA values) is the
model trained with the dynamic dimensional database, as it shows a less marked
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increase of CT with RPM. However, in general, all ML models of GPR perform
better than those of SVM. Moreover, for this particular case, the error made by
the dynamic dimensional GPR model is lower than the one made by BEM3. It is
also important to note that in the transition from static to dynamic models the
percentage errors decrease, indicating that having more data available, even if not
at J = 0, allows the models to generalise better.

8.3.2 CP

In Table 8.5 the NASA and BEM values are reported, while in Tables 8.6 and 8.7
there are the values predicted by the ML models. Once again, the tables list the
mean percentage errors with respect to the NASA values.

RPM NASA BEM
2000 0.023227 0.0221
2500 0.023170 0.0220
3000 0.023126 0.0220
3500 0.022668 0.0219
4000 0.022935 0.0218
4500 0.022684 0.0217

Error [%] - 4.43

Table 8.5: NASA and BEM CP values

RPM Stat. dim. Dyn. dim. Stat. non dim. Dyn. non dim.
2000 0.027410 0.024442 0.024801 0.023000
2500 0.027297 0.024519 0.025080 0.023163
3000 0.027208 0.024603 0.025588 0.023556
3500 0.027140 0.024691 0.026228 0.024118
4000 0.027092 0.024785 0.026931 0.024752
4500 0.027065 0.024882 0.027643 0.025342

Error [%] 18.44 7.35 13.44 4.82

Table 8.6: CP values for ML models – GPR

3This is not a definitive conclusion since results could differ with other rotors.
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RPM Stat. dim. Dyn. dim. Stat. non dim. Dyn. non dim.
2000 0.031702 0.028633 0.026822 0.025245
2500 0.031505 0.028758 0.026600 0.025453
3000 0.031392 0.028903 0.026920 0.026126
3500 0.031360 0.029066 0.027708 0.027195
4000 0.031410 0.029248 0.028940 0.028539
4500 0.031541 0.029447 0.030623 0.029988

Error [%] 37.09 26.32 21.33 18.02

Table 8.7: CP values for ML models – SVM

The percentage errors for almost all the models are higher than the ones for CT.
The reason is that the trend of CP with rotational speed is more complex than the
one of CT, and the models fail to capture it. The models with the lowest mean
percentage error, for both GPR and SVM, are the dynamic non dimensional ones.
Again, the GPR models exhibit lower percentage errors than the SVMs; therefore,
the model with the lowest mean percentage error is the dynamic non dimensional
GPR, even though it shows an excessive increase in CP as the RPM rises and thus a
large error at high RPM (≈ 20 %). A more constant error across the various RPMs
is maintained by the dynamic dimensional GPR, which proves better because it is
more reliable. Moreover, even in this case, the errors made by the dynamic models
are lower than those of the static models, confirming the earlier observations.
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8.4 Results at J > 0
Since the NASA data provide no values for J > 0, the ML models are compared
with the results of BEM and CFD.

8.4.1 CT trend

By analysing Figures 8.2–8.6, it can be seen that all the ML models captured the
trend of CT as the advance ratio varies. Moreover, the models understood that
higher rotational speeds imply higher CT. Compared with the non dimensional
models, the dimensional ones display a less pronounced increase in CT with RPM,
more in line with the behaviour obtained from the BEM analysis.

Figure 8.1: 3000 RPM analysis Figure 8.2: BEM

Figure 8.3: Dimensional GPR Figure 8.4: Non dimensional GPR
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Figure 8.5: Dimensional SVM Figure 8.6: Non dimensional SVM

Figure 8.1 shows that the model which most closely matches the data obtained
from the BEM and CFD simulations is, once again, the dimensional GPR. The
errors of this model with respect to the CFD results are about 10 %, and the
model exhibits a slightly sharper decrease in CT as J increases. Overall, both GPR
models perform better than the SVM models, confirming the earlier findings.

8.4.2 CP trend

In this case, the conclusions reached by analysing Figures 8.8-8.12 are similar
to the ones for CT. Indeed, all the models have understood that having higher
rotational speeds entails having higher CP and, again, it can be found that the
non dimensional models show a more accentuated variation with the RPM.

Figure 8.7: 3000 RPM analysis Figure 8.8: BEM
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Figure 8.9: Dimensional GPR Figure 8.10: Non dimensional GPR

Figure 8.11: Dimensional SVM Figure 8.12: Non dimensional SVM

From Figure 8.7 it can be seen that even in this case, the best models are the GPRs
although, if compared with the previous case, the best is the non dimensional GPR.
This could be expected, as it has already been noted in Table 8.6. The problem
with this model is that, as stated in that paragraph, it shows an excessive increase
in CP with the RPM.

8.4.3 η trend

The efficiency trend (Equation (3.4)) is a direct consequence of the trends of CT
and CP. All the models (Figures 8.15, 8.16, 8.17, and 8.18) show that efficiency
increases with rising RPM, in line with the BEM results (Figure 8.14).
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Figure 8.13: 3000 RPM analysis Figure 8.14: BEM

Figure 8.15: Dimensional GPR Figure 8.16: Non dimensional GPR

Figure 8.17: Dimensional SVM Figure 8.18: Non dimensional SVM
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Figure 8.13 shows that efficiency is predicted very well by the models but, as J
increases, an over-estimate appears because the models’ prediction of CP decreases
more sharply than in the BEM and CFD results.

8.5 Conclusions
This chapter has demonstrated the possibility of using ML models to analyse the
performance of the T-Motor 15 X 5 CF rotor.
In particular, the static CT analysis showed that for the GPR models the mean
percentage errors range from 2 % to 11 %, whereas for the SVM models the errors
are larger. All the models exhibit a pronounced increase in CT with rising RPM,
which makes the error grow; for this kind of analysis, the best model proves to
be the dimensional dynamic GPR, because it shows a less marked rise in CT. It
was also seen that, for the rotor considered, this model’s errors are lower than
those of the BEM. The static CP analysis, on the other hand, revealed that the
various models did not manage to capture adequately how CP varies with RPM. In
this case, the model with the lowest errors relative to the NASA values is the non
dimensional dynamic GPR, but its errors increase sharply as the RPM rises. For
this reason, the model to be chosen is still the dimensional dynamic GPR; indeed,
although it has a higher mean error, it remains more or less constant as RPM
varies. These two analyses also showed that using larger databases helps reducing
the errors made by the models.
When examining the trends of CT and CP as J varies, it can be observed that all
the models behave similarly in both cases. The trends of both CT and CP are
in line with those of the BEM and CFD, and, even for these analyses, the best
models prove to be the GPRs, particularly the dynamic GPR.
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Chapter 9

Conclusions and Future
Developments

This thesis has shown that simple ML algorithms can be used to predict rotor
performance and significantly accelerate their preliminary design.
Of the various analyses performed with the models, optimisation and performance
evaluation produced positive results, whereas rotor generation exposed the models’
limitations. At present, it is not possible to use these models to generate rotors with
precise performance targets because of the errors they introduce. These errors can
stem from many causes: inaccuracies in the database, models’ excessive simplicity
for this type of analysis, limited coverage of the design space in the database, and
more.
The results indicate that, among all the models examined, the dimensional dynamic
GPR appears to produce the lowest errors with the available data.
From a computational standpoint, the advantage is clear: a single prediction takes
only fractions of a second, whereas a CFD simulation can require hours or even
days and a BEM analysis several seconds; the benefit becomes decisive when
hundreds or thousands of different configurations must be evaluated. Nevertheless,
the scalability of GPR remains an open issue because its cubic complexity with
respect to the number of samples makes training progressively more demanding
beyond a certain threshold.
In light of these results, future work should aim to improve model performance
along two paths:

1. experiment with more complex and scalable learning models, such as deep
neural networks, capable of capturing the non linear correlations between
chord distribution, angle of incidence and aerodynamic response;

2. enhance and expand the database. This could involve purchasing and scanning
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rotors to obtain more accurate geometric data and collecting additional infor-
mation beyond what was used to train the ML models in this thesis. These
improvements would help the models generalise better and enable the analysis
of further cases, such as the effect of airfoil profile on performance.

In addition, new codes could be developed to perform analyses beyond those
presented here, broadening the possible applications of the ML models.
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Appendix A

Feature Selection Codes

This appendix contains the main MATLAB scripts developed for running and
managing the feature selection process through a GA. The presented codes include:

• the fitness function used to evaluate each individual on the basis of predictive
performance for the CT and CP targets;

• the callback function @gaoutfun, which allows the evolution of the number of
selected features to be monitored over time;

• a script that automatically selects the most suitable features according to the
chosen configuration (model and database type).

All scripts were designed to guarantee modularity, flexibility, and future extensibility.

A.1 Fitness function code

Listing A.1: fitnessFunction
1 f unc t i on er ror_tot = f i tnessFunct ion_nuova ( subset , dat i , output_CT ,

output_CP , c , sce l ta_mode l lo )
2

3 s e l e c t e d _ s t a t i o n s = f i n d ( subset == 1) ;
4 i f isempty ( s e l e c t e d _ s t a t i o n s )
5 er ror_tot = 1e6 ;
6 re turn ;
7 end
8

9 s e l e c t ed_idx = [ ] ;
10 f o r i = s e l e c t e d _ s t a t i o n s
11 s e l e c t ed_idx = [ se l ected_idx , i , i + 1 8 ] ;
12 end
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13

14 colonne_extra = 37 : s i z e ( dat i , 2) ;
15 s e l e c t ed_idx = [ se l ected_idx , colonne_extra ] ;
16

17 dati_reduced = dat i ( : , s e l e c t ed_idx ) ;
18

19 r isultato_CT = modello_ML( dati_reduced , output_CT , c ,
sce l ta_mode l lo ) ;

20 mse_CT = kfo ldLos s ( risultato_CT , ’ LossFun ’ , ’mse ’ ) ;
21 error_CT = sqr t (mean(mse_CT) ) ;
22

23 r isultato_CP = modello_ML( dati_reduced , output_CP , c ,
sce l ta_mode l lo ) ;

24 mse_CP = kfo ldLos s ( risultato_CP , ’ LossFun ’ , ’mse ’ ) ;
25 error_CP = sqr t (mean(mse_CP) ) ;
26

27 er ror_tot = error_CT / mean(output_CT) + error_CP / mean(
output_CP) ;

28 end

The fitness function takes as input:

• the stations selected by the GA;

• the database data;

• the CT and CP outputs from the database;

• the database partitioning into folds for grouped cross-validation;

• the chosen ML model.

The first part of the code checks whether the vector of stations selected by the
GA is empty and, in this case, it assigns a large error value1. Next, the database
columns corresponding only to the stations selected by the GA are extracted, and
a reduced dataset that is used to train the chosen ML model on both CT and CP
is generated. Finally, the errors on CT and CP are combined using Equation (5.2),
yielding the function’s output.

1In the present case this step could be omitted, because the constraints guarantee a non zero
number of stations. It has been included so that the code can also be used when no station
constraints are imposed.
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A.2 Code @gaoutfun

Listing A.2: @gaoutfun
1 f unc t i on [ s ta te , opt ions , optchanged ] = gaoutfun ( opt ions , s ta te , f l a g

)
2 p e r s i s t e n t bestFeatureCounts bestGenerat ions ;
3 optchanged = f a l s e ;
4 i f strcmp ( f l ag , ’ i n i t ’ )
5 bestFeatureCounts = [ ] ;
6 bestGenerat ions = [ ] ;
7 e l s e i f strcmp ( f l ag , ’ i t e r ’ )
8 [ ~ , best Idx ] = min ( s t a t e . Score ) ;
9 b e s t I n d i v i d u a l = s t a t e . Populat ion ( bestIdx , : ) ;

10 currentFeatureCount = sum( b e s t I n d i v i d u a l ) ;
11 bestFeatureCounts = [ bestFeatureCounts ; currentFeatureCount ] ;
12 bestGenerat ions = [ bes tGenerat ions ; s t a t e . Generation ] ;
13 a s s i g n i n ( ’ base ’ , ’ bestFeatureCounts ’ , bestFeatureCounts ) ;
14 a s s i g n i n ( ’ base ’ , ’ bes tGenerat ions ’ , bes tGenerat ions ) ;
15 e l s e i f strcmp ( f l ag , ’ done ’ )
16 f i g u r e ;
17 p lo t ( bestGenerat ions , bestFeatureCounts , ’b−o ’ , ’ LineWidth ’ ,

1 . 5 ) ;
18 x l a b e l ( ’ Generation ’ ) ;
19 y l a b e l ( ’Number o f S e l e c t ed S ta t i on s ’ ) ;
20 t i t l e ( ’ Evolut ion o f S ta t i on s in the Best So lu t i on ’ ) ;
21 g r id on ;
22 end
23 end

Without going into implementation details, at every generation the function saves
the number of features used by the best individual and it plots the graph once the
GA has finished its execution.

A.3 Automatic feature selection code
The following MATLAB script implements the logic required to automatically
select the correct features based on the chosen model (GPR or SVM) and on the
database type. This module is called within other scripts of the thesis to ensure
consistency in feature selection during training and evaluation phases.

Listing A.3: Script for automatic feature selection
1 i f strcmp ( sce l ta_model lo , ’GPR’ )
2 i f strcmp ( scelta_stat_dinam , ’ s t a t i c o ’ )
3 i f strcmp ( scelta_dim_nondim , ’ d imens iona le ’ )
4 f e a tu r e s_se l e c t i on_geomet r i a = [1 2 4 7 9 10 11 12 13 14

16 17 18 19 20 22 25 27 28 29 30 31 32 34 35 3 6 ] ;
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5 e l s e i f strcmp ( scelta_dim_nondim , ’ non dimens iona le ’ )
6 f e a tu r e s_se l e c t i on_geomet r i a = [1 2 4 7 9 10 11 12 13 14

16 17 18 19 20 22 25 27 28 29 30 31 32 34 35 3 6 ] ;
7 end
8 e l s e i f strcmp ( scelta_stat_dinam , ’ dinamico ’ )
9 i f strcmp ( scelta_dim_nondim , ’ d imens iona le ’ )

10 f e a tu r e s_se l e c t i on_geomet r i a = [1 2 4 7 9 10 11 12 13 14
16 17 18 19 20 22 25 27 28 29 30 31 32 34 35 3 6 ] ;

11 e l s e i f strcmp ( scelta_dim_nondim , ’ non dimens iona le ’ )
12 f e a tu r e s_se l e c t i on_geomet r i a = [1 2 4 7 9 10 11 12 13 14

16 17 18 19 20 22 25 27 28 29 30 31 32 34 35 3 6 ] ;
13 end
14 end
15 e l s e i f strcmp ( sce l ta_model lo , ’SVM’ )
16 i f strcmp ( scelta_stat_dinam , ’ s t a t i c o ’ )
17 i f strcmp ( scelta_dim_nondim , ’ d imens iona le ’ )
18 f e a tu r e s_se l e c t i on_geomet r i a = [1 2 4 7 10 12 13 14 16 18

19 20 22 25 28 30 31 32 34 3 6 ] ;
19 e l s e i f strcmp ( scelta_dim_nondim , ’ non dimens iona le ’ )
20 f e a tu r e s_se l e c t i on_geomet r i a = [1 2 4 7 10 12 13 14 16 18

19 20 22 25 28 30 31 32 34 3 6 ] ;
21 end
22 e l s e i f strcmp ( scelta_stat_dinam , ’ dinamico ’ )
23 i f strcmp ( scelta_dim_nondim , ’ d imens iona le ’ )
24 f e a tu r e s_se l e c t i on_geomet r i a = [1 2 4 7 10 12 13 14 16 17

18 19 20 22 25 28 30 31 32 34 35 3 6 ] ;
25 e l s e i f strcmp ( scelta_dim_nondim , ’ non dimens iona le ’ )
26 f e a tu r e s_se l e c t i on_geomet r i a = [1 2 4 7 10 12 13 14 16 17

18 19 20 22 25 28 30 31 32 34 35 3 6 ] ;
27 end
28 end
29 end
30 % Creo ve t t o r e numerico (0 o 1) per i v a l o r i da 1 a 18
31 zeri_e_uni_corda = double ( ismember ( 1 : 1 8 , f ea tu r e s_se l e c t i on_geomet r i a

) ) ;
32 % Creo ve t t o r e numerico (0 o 1) per i v a l o r i da 19 a 36
33 zeri_e_uni_beta = double ( ismember ( 19 : 36 , f ea tu r e s_se l e c t i on_geomet r i a

) ) ;
34 % Trovo l a p o s i z i o n e de l va l o r e 13 in f ea tu r e s_se l e c t i on_geomet r i a
35 colonna_075 = f i n d ( f ea tu r e s_se l e c t i on_geomet r i a == 13) % colonna d i

f ea tu r e s_se l e c t i on_geomet r i a in cu i s i t rova i l 13 che sarebbe c/
R_0.75

Inside each if block there are the geometry stations obtained through the feature
selection procedure described in Chapter 5. Subsequently, vectors are created to
count the number of stations of the chord and of β (identical in this case), and
finally the position of the column containing the value of c/R at 75 % of the span
is found, which is needed to compute the Reynolds number.
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Codes for Rotors Generation

In this appendix the main MATLAB scripts used by the code described in Chapter
6 are reported. The presented codes includes:

• the inputs that the user can select to set the desired analysis;

• the fitness functions used to evaluate the rotors within the GA;

• the constraint functions applied to the GA.

B.1 Input
The code lists all the choices the user can make to have the ML model to generate
the desired rotor. The options are described in detail in Section 6.2.

Listing B.1: Input
1 % S c e g l i e r e che t ipo d i a n a l i s i f a r e ’ pareto ’ o ’ d i r e t t a ’ ( tu t to

minuscolo )
2 s c e l t a 1 = ’ pareto ’
3 % S c e g l i e r e i l database che deve u t i l i z z a r e ’ s t a t i c o ’ o ’ dinamico ’ (

tu t to minuscolo )
4 scelta_stat_dinam = ’ s t a t i c o ’
5 % S c e g l i e r e se s i vuole u t i l i z z a r e un model lo d imens iona le o non

dimens iona le
6 % ’ dimens ionale ’ o ’ non dimens ionale ’
7 scelta_dim_nondim = ’ non dimens iona le ’
8 % S c e g l i e r e i l model lo d i machine l e a r n i n g da u t i l i z z a r e . ’GPR’ o ’

SVM’
9 sce l ta_mode l lo = ’SVM’

10 % S c e g l i e r e se p l o t t a r e l ’ andamento d i CT, CP e eta con J . Val ido
s o l o SE

11 % s c e l t a 2 = ’ dinamico ’ . ’ s i ’ o ’ no ’

109



Codes for Rotors Generation

12 g r a f i c i = ’ s i ’ ;
13 vettore_J = 0 : 0 . 1 : 0 . 8 ; % D e f i n i s c e l ’ i n t e r v a l l o in cu i c o s t r u i r e i

g r a f i c i
14 % S c e g l i e r e se dopo i l GA o t t i m i z z a r e loca lmente ’ s i ’ o ’ no ’ . VALIDO

SOLO SE s c e l t a 1 = ’ d i r e t t a ’
15 ott imizzazione_locale_GA = ’ s i ’ ;
16 % Se ottimizzazione_locale_GA = ’ s i ’ s c e g l i e r e come o t t i m i z z a r e ’

fmincon ’ o
17 % ’ patternsearch ’
18 ott imizzazione_locale_GA_funzione = ’ fmincon ’ ;
19 % S c e g l i e r e se dopo i l GA m u l t i o b i e t t i v o o t t i m i z z a r e loca lmente ’ s i ’

o ’ no ’ . VALIDO SOLO SE s c e l t a 1 = ’ pareto ’
20 ott imizzaz ione_loca le_GA_mult iob iett ivo = ’ no ’ ;
21 % Popolaz ione E l i t e SE s c e l t a 1 = ’ d i r e t t a ’
22 E l i t e = 1 ;
23 % Ve lo c i t à de l suono e Mach massimo a l t i p
24 mach_massimo_al_tip = 0 . 3 ;
25 % Valor i t a r g e t . Mettere zero a l t a r g e t che non s i vuole imporre
26 % Valor i su p r e s t a z i o n i
27 target_CT = 0 . 1 5 ;
28 target_CP = 0 ;
29 % Valor i geometr ia e c o n d i z i o n i ope ra t i v e
30 ta rget_ragg io = 0 ;
31 target_omega = 0 ;
32 target_J = 0 ; % mettere −1 se non s i vuole questo v in co l o . VINCOLO

VALIDO SOLO SE s c e l t a 2 = ’ dinamico ’
33 % Tol l e ranze s u i t a r g e t ( scostamento massimo dal va l o r e vo luto ) .

Mettere zero se s i vog l i ono i v a l o r i p r e c i s i
34 t o l l e r anza_ragg i o = 0 . 0 0 0 1 ;
35 tol leranza_omega = 5 ;
36 to l l e ranza_J = 0 ;
37 tolleranza_CT = 0 ; % SE s c e l t a 1 = ’ d i r e t t a ’ Valore in pe r c entua l e

sennò è a s s o l u t o
38 tol leranza_CP = 0 ; % SE s c e l t a 1 = ’ d i r e t t a ’ Valore in pe r c entua l e
39 % D e f i n i z i o n e grandezza popo laz ione GA ( numero p i ù a l t o maggiore

accuratezza ma maggior tempo di a n a l i s i )
40 grandezza_popolaz ione = 40000;
41 numero_generazioni = 500000; % massimo numero d i g e n e r a z i o n i per i l

GA
42 % Imposta i l p r o f i l o con cu i c o s t r u i r e i l r o t o r e
43 Naca = ’ 4412 ’
44 % D e f i n i s c o p e s i . SE s c e l t a 1 = ’ d i r e t t a ’
45 % Più è a l t o p i ù s i f o r z a i l c od i c e a c e r c a r e s o l u z i o n i m i g l i o r i (

avv i c ina l e s o l u z i o n i a l f r o n t e d i Pareto )
46 peso_CT_CP = 9999 ;
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B.2 Fitness function – ‘pareto’

This fitness function evaluates the performance of the rotors generated by the
multi-objective GA. If the tip Mach or CP constraints are violated, an infinite
penalty is applied to force the GA to discard the rotor.

Listing B.2: Fitness function ’pareto’
1 f unc t i on CT_CP = stima_CT_CP( v e t t o r e _ c a r a t t e r i s t i c h e , Modello_ML_CT,

Modello_ML_CP , densita_aria_SL , viscosita_dinamica_aria_SL ,
velocita_del_suono_SL , mach_massimo_al_tip , scelta_dim_nondim ,
colonna_075 )

2 p e n a l i t a = 0 ;
3 i f strcmp ( scelta_dim_nondim , ’ non dimens iona le ’ )
4 ragg i o = v e t t o r e _ c a r a t t e r i s t i c h e ( end ) ;
5 raggio_75 = ragg io ∗ 0 . 7 5 ;
6 rpm_rad_sec = v e t t o r e _ c a r a t t e r i s t i c h e ( end−1) ;
7 ve loc i ta_75 = rpm_rad_sec∗ raggio_75 ;
8 corda_75 = v e t t o r e _ c a r a t t e r i s t i c h e ( colonna_075 ) ∗ ragg i o ;
9 v e t t o r e _ c a r a t t e r i s t i c h e ( end ) = ( densita_aria_SL ∗ ve loc i ta_75 ∗

corda_75 ) / viscosita_dinamica_aria_SL ;
10 v e t t o r e _ c a r a t t e r i s t i c h e ( end−1) = ( rpm_rad_sec∗ ragg i o ) /

velocita_del_suono_SL ;
11 i f v e t t o r e _ c a r a t t e r i s t i c h e ( end−1) > mach_massimo_al_tip
12 p e n a l i t a = I n f ;
13 end
14 e l s e i f strcmp ( scelta_dim_nondim , ’ d imens iona le ’ )
15 i f ( v e t t o r e _ c a r a t t e r i s t i c h e ( end−1)∗ v e t t o r e _ c a r a t t e r i s t i c h e (

end ) ) / velocita_del_suono_SL > mach_massimo_al_tip
16 p e n a l i t a = I n f ;
17 end
18 end
19 CT = Modello_ML_CT . predictFcn ( v e t t o r e _ c a r a t t e r i s t i c h e ) ;
20 CP = Modello_ML_CP . predictFcn ( v e t t o r e _ c a r a t t e r i s t i c h e ) ;
21 i f CP <= 0
22 p e n a l i t a = I n f ;
23 end
24 CT_CP = [−CT + pena l i t a , CP + p e n a l i t a ] ;
25 end

B.3 Constraint functions – ‘pareto’

The combination of the two functions reported below allows the application of non
linear constraints in the use of the GA. By analysing the values in the database,
the admissible variation intervals are extracted and applied as constraints.

Listing B.3: Function to compute intervals from database

111



Codes for Rotors Generation

1 f unc t i on [ massimi_corda , massimi_beta ] = funzione_massimi_database (
dat i , zeri_e_uni_corda , zeri_e_uni_beta )

2 numRotori = s i z e ( dat i , 1 ) ; % Numero d i r o t o r i p r e s e n t i ne l
database

3 Nc = sum( zeri_e_uni_corda ) ; % Numero d i componenti che desc r ivono
l a corda

4 Nb = sum( zeri_e_uni_beta ) ; % Numero d i componenti che desc r ivono
i l beta

5 % I n i z i a l i z z o : [ min , max ] per ogni d i f f e r e n z a t ra s t a z i o n i
6 massimi_corda = ze ro s (Nc−1, 2) ;
7 massimi_beta = ze ro s (Nb−1, 2) ;
8 f o r j = 1 : ( Nc−1)
9 d i f f s_c_j = ze ro s ( numRotori , 1) ;

10 f o r i = 1 : numRotori
11 c = dat i ( i , 1 : Nc) ;
12 d i f f s_c_j ( i ) = c ( j +1) − c ( j ) ; % D i f f e r e n z a r e a l e
13 end
14 massimi_corda ( j , 1 ) = min ( d i f f s_c_j ) ; % Limite i n f e r i o r e
15 massimi_corda ( j , 2 ) = max( d i f f s_c_j ) ; % Limite s u p e r i o r e
16 end
17 f o r j = 1 : (Nb−1)
18 di f f s_b_j = ze ro s ( numRotori , 1) ;
19 f o r i = 1 : numRotori
20 b = dat i ( i , (Nc+1) : ( Nc+Nb) ) ;
21 di f f s_b_j ( i ) = b( j +1) − b( j ) ; % D i f f e r e n z a r e a l e
22 end
23 massimi_beta ( j , 1 ) = min ( d i f f s_b_j ) ;
24 massimi_beta ( j , 2 ) = max( d i f f s_b_j ) ;
25 end
26 end

Listing B.4: Non linear constraint function
1 f unc t i on [ c , ceq ] = nonlcon_funzione_massimi (x , massimi_corda ,

massimi_beta )
2 % massimi_corda e massimi_beta sono mat r i c i Nx2 :
3 % colonna 1 = l i m i t e minimo
4 % colonna 2 = l i m i t e massimo
5 Nc = s i z e ( massimi_corda , 1) + 1 ;
6 Nb = s i z e ( massimi_beta , 1) + 1 ;
7 corda = x ( 1 : Nc) ;
8 beta = x (Nc+1:Nc+Nb) ;
9 d i f f_c = d i f f ( corda ) ;

10 di f f_b = d i f f ( beta ) ;
11 minDiffC_lim = massimi_corda ( : , 1 ) ;
12 maxDiffC_lim = massimi_corda ( : , 2 ) ;
13 minDiffB_lim = massimi_beta ( : , 1 ) ;
14 maxDiffB_lim = massimi_beta ( : , 2 ) ;
15 c = [ d i f f_c ’ − maxDiffC_lim ; % d i f f_c <= maxDiffC_lim
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16 −di f f_c ’ + minDiffC_lim ; % d i f f_c >= minDiffC_lim
17 dif f_b ’ − maxDiffB_lim ;
18 −dif f_b ’ + minDiffB_lim ] ;
19 ceq = [ ] ;
20 end

B.4 Fitness function - ’diretta’

This fitness function evaluates rotor performance by how close their CT or CP is to
the set target. If no target is set, the GA seeks solutions nearer to the Pareto front
improving both CT and CP. The formulas are those presented in Section 6.4.1.

Listing B.5: Fitness function ’diretta’
1 f unc t i on va l o r e = punteggio (x , target_CT , Modello_ML_CT, peso_CT ,

target_CP , Modello_ML_CP , peso_CP , media_output , densita_aria_SL ,
viscosita_dinamica_aria_SL , mach_massimo_al_tip ,
velocita_del_suono_SL , scelta_dim_nondim , colonna_075 )

2 va l o r e = 0 ;
3 i f strcmp ( scelta_dim_nondim , ’ non dimens iona le ’ )
4 ragg i o = x ( end ) ;
5 raggio_75 = ragg io ∗ 0 . 7 5 ;
6 rpm_rad_sec = x ( end−1) ;
7 ve loc i ta_75 = rpm_rad_sec∗ raggio_75 ;
8 corda_75 = x ( colonna_075 ) ∗ ragg i o ;
9 x ( end ) = ( densita_aria_SL ∗ ve loc i ta_75 ∗corda_75 ) /

viscosita_dinamica_aria_SL ;
10 x ( end−1) = ( rpm_rad_sec∗ ragg i o ) / velocita_del_suono_SL ;
11 i f x ( end−1) > mach_massimo_al_tip
12 va l o r e = I n f ;
13 end
14 e l s e i f strcmp ( scelta_dim_nondim , ’ d imens iona le ’ )
15 i f ( x ( end−1)∗x ( end ) ) / velocita_del_suono_SL >

mach_massimo_al_tip
16 va l o r e = I n f ;
17 end
18 end
19 i f target_CT > 0
20 va l o r e = va l o r e + abs (Modello_ML_CT . predictFcn ( x ) − target_CT

) /target_CT ;
21 e l s e
22 va l o r e = va l o r e − (Modello_ML_CT . predictFcn ( x ) /media_output

(1 ) ) ∗peso_CT ;
23 end
24 i f target_CP > 0
25 va l o r e = va l o r e + abs (Modello_ML_CP . predictFcn ( x ) − target_CP

) /target_CP ;
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26 e l s e
27 va l o r e = va l o r e + (Modello_ML_CP . predictFcn ( x ) /media_output

(2 ) ) ∗peso_CP ;
28 end
29 end

B.5 Constraint function – ‘diretta’

This function applies constraints considering both performance targets and station
to station variations from the database.

Listing B.6: Constraint function ’diretta’
1 f unc t i on [ c , ceq ] = v i n c o l i (x , target_CT , target_CP , Modello_ML_CT,

Modello_ML_CP , tolleranza_CT , tolleranza_CP , densita_aria_SL ,
viscosita_dinamica_aria_SL , velocita_del_suono_SL ,
scelta_dim_nondim , colonna_075 , massimi_corda , massimi_beta )

2 numero_target_non_nulli = nnz ( [ target_CT , target_CP ] ) ;
3 c = ze ro s ( numero_target_non_nulli , 1) ;
4 i f strcmp ( scelta_dim_nondim , ’ non dimens iona le ’ )
5 ragg i o = x ( end ) ;
6 raggio_75 = ragg io ∗ 0 . 7 5 ;
7 rpm_rad_sec = x ( end−1) ;
8 ve loc i ta_75 = rpm_rad_sec∗ raggio_75 ;
9 corda_75 = x ( colonna_075 ) ∗ ragg i o ;

10 x ( end ) = ( densita_aria_SL ∗ ve loc i ta_75 ∗corda_75 ) /
viscosita_dinamica_aria_SL ;

11 x ( end−1) = ( rpm_rad_sec∗ ragg i o ) / velocita_del_suono_SL ;
12 end
13 contegg io = 1 ;
14 i f target_CT > 0
15 CT_val = Modello_ML_CT . predictFcn ( x ) ;
16 c ( contegg io ) = abs (CT_val − target_CT ) /target_CT −

tolleranza_CT ;
17 contegg io = contegg io + 1 ;
18 end
19 i f target_CP > 0
20 CP_val = Modello_ML_CP . predictFcn ( x ) ;
21 c ( contegg io ) = abs (CP_val − target_CP ) /target_CP −

tolleranza_CP ;
22 contegg io = contegg io + 1 ;
23 end
24 [ c_massimi , ~ ] = nonlcon_funzione_massimi (x , massimi_corda ,

massimi_beta ) ;
25 c = [ c ; c_massimi ] ;
26 ceq = [ ] ;
27 end
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Codes for Rotors
Optimization

In this appendix, the main MATLAB scripts used in the implementation of the
code described in Chapter 7 are presented. The scripts shown include:

• the inputs that the user can select to set up the desired analysis;

• the fitness function used to evaluate the rotors within the GA;

• the constraint function applied to the GA.

C.1 Input
This script lists all the various choices that the user can make to perform the
desired analysis. The options have been partly described in Section 7.4 and the
remaining part in Section 6.2.

Listing C.1: Input
1 % S c e g l i e r e i l database che deve u t i l i z z a r e ’ s t a t i c o ’ o ’ dinamico ’ (

tu t to minuscolo )
2 scelta_stat_dinam = ’ dinamico ’
3

4 % S c e g l i e r e i l funzionamento de l cod i c e ( ’ co s t ruz i one ’ o ’ pareto ’ )
5 s c e l t a 2 = ’ pareto ’ ;
6

7 % S c e g l i e r e se s i vuole u t i l i z z a r e un model lo d imens iona le o non
dimens iona le

8 % ’ dimens ionale ’ o ’ non dimens ionale ’
9 scelta_dim_nondim = ’ d imens iona le ’
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10

11 % S c e g l i e r e i l model lo d i machine l e a r n i n g da u t i l i z z a r e . ’GPR’ o ’
SVM’

12 sce l ta_mode l lo = ’GPR’
13

14 % S c e g l i e r e se p l o t t a r e l ’ andamento d i CT, CP e eta con J . Val ido
s o l o SE

15 % s c e l t a 1 = ’ dinamico ’ e s c e l t a 2 = ’ co s t ruz i one ’ . ’ s i ’ o ’ no ’
16 g r a f i c i = ’ s i ’ ;
17 vettore_J = 0 : 0 . 1 : 0 . 8 ; % D e f i n i s c e l ’ i n t e r v a l l o in cu i c o s t r u i r e i

g r a f i c i
18

19 % S c e g l i e r e se dopo i l GA o t t i m i z z a r e loca lmente ’ s i ’ o ’ no ’ . VALIDO
SOLO SE s c e l t a 2 = ’ co s t ruz i one ’

20 ott imizzazione_locale_GA = ’ s i ’ ;
21 % Se ottimizzazione_locale_GA = ’ s i ’ s c e g l i e r e come o t t i m i z z a r e ’

fmincon ’ o
22 % ’ patternsearch ’
23 ott imizzazione_locale_GA_funzione = ’ fmincon ’ ;
24

25 % S c e g l i e r e se dopo i l GA m u l t i o b i e t t i v o o t t i m i z z a r e loca lmente ’ s i ’
o ’ no ’ . VALIDO SOLO SE s c e l t a 2 = ’ pareto ’

26 ott imizzaz ione_loca le_GA_mult iob iett ivo = ’ no ’ ;
27

28 % Mettere 0 a l t a r g e t che non s i vuole mig l i o ra r e , mettere 1 a l
t a r g e t che

29 % s i vuole m i g l i o r a r e SOLO SE s c e l t a 2 = ’ co s t ruz i one ’
30 migliorare_CT = 1 ;
31 migliorare_CP = 0 ;
32

33 % D e f i n i r e l e t o l l e r a n z e
34 tolleranza_CT = 0 ; % t o l l e r a n z a a s s o l u t a
35 tol leranza_CP = 0 ; % t o l l e r a n z a a s s o l u t a
36

37 % D e f i n i z i o n e grandezza popo laz ione GA ( numero p i ù a l t o maggiore
accuratezza ma maggior tempo di a n a l i s i )

38 grandezza_popolaz ione = 100 ;
39 numero_generazioni = 20000; % massimo numero d i g e n e r a z i o n i per i l GA
40 % SOLO SE s c e l t a 3 = ’ pareto ’ ;
41 grandezza_popolazione_pareto = 20000 ;
42

43 % Popolaz ione E l i t e SE s c e l t a 2 = ’ co s t ruz i one ’
44 E l i t e = 1 ;
45

46 % Tol l e ranza s u l l a geometr ia in pe r c entua l e . SE s c e l t a 2 = ’
co s t ruz i one ’

47 % s o l o un va l o r e . SE s c e l t a 2 = ’ pareto ’ può e s s e r e un ve t t o r e per
poter va lu ta r e p i ù c a s i s t i c h e ins i eme .

48 t o l l e r a n z e = [ 0 . 0 5 , 0 . 2 , 0 . 5 , 0 . 9 ] ;
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49 % D e f i n i r e l a t o l l e r a n z a s u l l a geometr ia per c o s t r u i r e i l f r o n t e d i
pareto .

50 % SOLO UN NUMERO
51 to l l e ranza_pare to = 1 ;
52

53 % Imposta i l p r o f i l o con cu i c o s t r u i r e i l r o t o r e
54 Naca = ’ 4412 ’ ;
55

56 % Più è a l t o p i ù s i f o r z a i l c od i c e a c e r c a r e s o l u z i o n i m i g l i o r i (
avv i c ina l e s o l u z i o n i a l f r o n t e d i Pareto )

57 peso = 9999 ;

C.2 Fitness function
The following fitness function evaluates the performance of the rotors generated by
the GA by analysing the values of CT and CP.

Listing C.2: Fitness function
1 f unc t i on va l o r e = punteggio (x , migliorare_CT , migliorare_CP , rotore ,

Modello_ML_CT, Modello_ML_CP , peso , densita_aria_SL ,
viscosita_dinamica_aria_SL , velocita_del_suono_SL ,
scelta_dim_nondim , colonna_075 )

2 va l o r e = 0 ;
3

4 i f strcmp ( scelta_dim_nondim , ’ non dimens iona le ’ )
5 ragg i o = x ( end ) ;
6 raggio_75 = ragg io ∗ 0 . 7 5 ;
7 rpm_rad_sec = x ( end−1) ;
8 ve loc i ta_75 = rpm_rad_sec∗ raggio_75 ;
9 corda_75 = x ( colonna_075 ) ∗ ragg i o ;

10 x ( end ) = ( densita_aria_SL ∗ ve loc i ta_75 ∗corda_75 ) /
viscosita_dinamica_aria_SL ;

11 x ( end−1) = ( rpm_rad_sec∗ ragg i o ) / velocita_del_suono_SL ;
12

13 ragg i o = r o t o r e ( end ) ;
14 raggio_75 = ragg io ∗ 0 . 7 5 ;
15 rpm_rad_sec = ro to r e ( end−1) ;
16 ve loc i ta_75 = rpm_rad_sec∗ raggio_75 ;
17 corda_75 = ro to r e ( colonna_075 ) ∗ ragg i o ;
18 r o t o r e ( end ) = ( densita_aria_SL ∗ ve loc i ta_75 ∗corda_75 ) /

viscosita_dinamica_aria_SL ;
19 r o t o r e ( end−1) = ( rpm_rad_sec∗ ragg i o ) / velocita_del_suono_SL ;
20 end
21

22 CT_rotore = Modello_ML_CT . predictFcn ( r o t o r e ) ;
23 CP_rotore = Modello_ML_CP . predictFcn ( r o t o r e ) ;
24
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25 i f migliorare_CT == 1
26 va l o r e = va l o r e + CT_rotore − Modello_ML_CT . predictFcn ( x ) /

CT_rotore∗ peso ;
27 e l s e i f migliorare_CT == 0
28 va l o r e = va l o r e + abs ( CT_rotore − Modello_ML_CT . predictFcn ( x )

) /CT_rotore∗ peso ;
29 end
30 i f migliorare_CP == 1
31 va l o r e = va l o r e + CP_rotore + Modello_ML_CP . pred ictFcn ( x ) /

CP_rotore∗ peso ;
32 e l s e i f migliorare_CP == 0
33 va l o r e = va l o r e + abs ( CP_rotore − Modello_ML_CP . predictFcn ( x )

) /CP_rotore∗ peso ;
34 end
35 end

valore is calculated in different ways depending on whether improvement of a
specific performance metric is desired:

• if improving CT is desired:

valore = valore + CT_rotor − CT_new_rotor

CT_rotor
· peso

• if improving CT is not desired:

valore = valore + |CT_rotor − CT_new_rotor|
CT_rotor

· peso

• if improving CP is desired:

valore = valore + CP_rotor + CP_new_rotor

CP_rotor
· peso

• if improving CP is not desired:

valore = valore + |CP_rotor − CP_new_rotor|
CP_rotor

· peso

Rotors characterized by a lower valore are the best.

C.3 Constraint function
The function applies the constraints, taking into account both the desired perfor-
mance improvement (CT or CP) and the variations among the stations present in
the database.
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Listing C.3: Constraint function
1 f unc t i on [ c , ceq ] = v i n c o l i (x , rotore , migliorare_CT , migliorare_CP ,

Modello_ML_CT, Modello_ML_CP , tolleranza_CT , tolleranza_CP ,
densita_aria_SL , viscosita_dinamica_aria_SL , velocita_del_suono_SL
, scelta_dim_nondim , colonna_075 , massimi_corda , massimi_beta )

2 numero_target_null i = sum ( [ migliorare_CT , migliorare_CP ] == 0) ;
3 c = ze ro s ( numero_target_null i , 1) ;
4

5 i f strcmp ( scelta_dim_nondim , ’ non dimens iona le ’ )
6 ragg i o = x ( end ) ;
7 raggio_75 = ragg io ∗ 0 . 7 5 ;
8 rpm_rad_sec = x ( end−1) ;
9 ve loc i ta_75 = rpm_rad_sec∗ raggio_75 ;

10 corda_75 = x ( colonna_075 ) ∗ ragg i o ;
11 x ( end ) = ( densita_aria_SL ∗ ve loc i ta_75 ∗corda_75 ) /

viscosita_dinamica_aria_SL ;
12 x ( end−1) = ( rpm_rad_sec∗ ragg i o ) / velocita_del_suono_SL ;
13 ragg i o = r o t o r e ( end ) ;
14 raggio_75 = ragg io ∗ 0 . 7 5 ;
15 rpm_rad_sec = ro to r e ( end−1) ;
16 ve loc i ta_75 = rpm_rad_sec∗ raggio_75 ;
17 corda_75 = ro to r e ( colonna_075 ) ∗ ragg i o ;
18 r o t o r e ( end ) = ( densita_aria_SL ∗ ve loc i ta_75 ∗corda_75 ) /

viscosita_dinamica_aria_SL ;
19 r o t o r e ( end−1) = ( rpm_rad_sec∗ ragg i o ) / velocita_del_suono_SL ;
20 end
21

22 contegg io = 1 ;
23 i f migliorare_CT == 0
24 CT_rotore = Modello_ML_CT . predictFcn ( r o t o r e ) ;
25 CT_val = Modello_ML_CT . predictFcn ( x ) ;
26 c ( contegg io ) = abs (CT_val − CT_rotore ) − tolleranza_CT ;
27 contegg io = contegg io + 1 ;
28 end
29 i f migliorare_CP == 0
30 CP_rotore = Modello_ML_CP . predictFcn ( r o t o r e ) ;
31 CP_val = Modello_ML_CP . predictFcn ( x ) ;
32 c ( contegg io ) = abs (CP_val − CP_rotore ) − tolleranza_CP ;
33 end
34

35 [ c_massimi , ~ ] = nonlcon_funzione_massimi (x , massimi_corda ,
massimi_beta ) ;

36 % Appendi i nuovi v i n c o l i a q u e l l i p r e c eden t i
37 c = [ c ; c_massimi ] ;
38 % Vinco l i d i uguag l ianza ( ceq = 0)
39 ceq = [ ] ;
40 end
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