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Abstract

Accurate modeling of free-surface waves is crucial for simulating realistic ocean
conditions and for analyzing wave-structure interactions. However, replicating
the wave profile at target locations, especially for irregular or steep wave groups,
remains a complex and technically demanding task.

The current work focuses on the numerical reproduction of free-surface waves,
both regular and irregular, using the Smoothed Particle Hydrodynamics method.
This Lagrangian, meshless approach is implemented with the open-source solver
DualSPHysics, widely used for free-surface flows in coastal and ocean engineering
applications.

After a theoretical overview of the method and its properties, a two-dimensional
numerical wave tank was generated and optimized for wave generation and ab-
sorption. A parametric study was conducted to investigate the influence of key
simulation parameters - such as particle spacing, smoothing length, and artificial
speed of sound - on numerical stability and fidelity.

To improve control over wave reproduction, an iterative calibration process was
implemented. The simulated wave height and phase at a control location were
compared with a theoretical target, and the input signal was adjusted accordingly
until convergence was reached. The procedure was initially validated on regular
waves and later extended to the reproduction of irregular waves with a predefined
spectrum.

The proposed approach, inspired by grid-based CFD strategies, was successfully
adapted to the Lagrangian nature of SPH. The results confirm the method capability
to accurately reproduce wave dynamics, making it a reliable tool for wave generation
studies in free-surface flow contexts.
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Chapter 1

Introduction

Free surface waves are a type of wave generated at the interface between two
media and governed by restoring forces, such as gravity and surface tension. This
natural phenomenon is widely observed and of great interest in many engineering
contexts and hydrodynamic problems: automotive, aerospace and aeronautics,
hydraulics, industrial processes, fuel transport, nuclear engineering, coastal and
marine engineering [1].

The latter specifically focuses on ocean waves, a type of free surface waves that
occur at the interface between air and water. Their behaviour, primarily driven
by wind, is subjected to a wide range of physical processes, such as refraction,
diffraction, shoaling and breaking. As such, they represent a complex free-surface
phenomenon governed by nonlinear hydrodynamic equations. Over the years, many
methods have been proposed to address this problem. Among the earliest, in the
1980s and 1990s, were the Volume of Fluid and the Level Set Methods [2], used to
track interfaces in multiphase flows using mesh-based solvers.

Traditional mesh-based methods, which are widely used in this context, often face
challenges in handling large deformations and complex fluid–structure interactions.
This issues can lead to mesh distortion and high computational costs due to the
need for remeshing strategies [1]. For this reason, particle methods are becoming
increasingly popular for simulating complex free surface flows, as they do not require
a mesh connecting computational nodes. They are based on particles tracked in
their motion, whose properties evolve according to the governing equations. This
allows to manage complex free surfaces and large deformations [3]. Among these
methods, the meshless Smoothed Particle Hydrodynamics stands out thanks to
its Lagrangian nature, which has proven to be extremely effective in simulating
complex hydrodynamic phenomena and describing wave motion [4].
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1.1 Challenge
A proper definition of wave characteristics is essential in ocean engineering, especially
for offshore structures, vessels and coastal installations, to ensure their safety and
prevent accidents. Especially in advanced engineering scenarios, it is often necessary
to generate a controlled wave event, that is a specific target wave shape occurring
at a defined point in the computational domain [5].

However, studying wave propagation in water can be challenging, due to nonlin-
earities, surface deformations, wave breaking. Additionally, waves are subjected
to viscous dissipation and energy loss, which cause amplitude decay along the
domain [6]. Excessive numerical dissipation poses a significant issue in modeling
free-surface waves, as it results in amplitude decay within just a few wavelengths
from the point of generation, limiting physical reproducibility. In this regard, SPH
is a promising method, since it does not require an explicit treatment of the free
surface particles, avoiding to introduce numerical diffusion in the interface tracking.
However, the dissipation mechanism of gravity waves must still be addressed for
simulations involving viscous fluids [3].

Linear theory predicts that in an inviscid fluid, a wave should propagate indefi-
nitely without amplitude change, so that total energy should be conserved. SPH,
although wave generation is based on linear theory, does not preserve energy due
to the presence of the numerical viscosity term in the momentum equation. As a
result, wave amplitude decreases over time [3].

Many studies have focused on the dissipation and attenuation of free surface
waves for SPH models, and various improvements and variants have been proposed,
involving the study of parameters such as spatial resolution, the Reynolds number,
the smoothing length and the choice of the viscous dissipation term in the SPH
momentum equation [6, 3, 7].

Another important aspect in achieving accurate wave reproduction, which
depends directly on the generation process and the proper definition of the input
signal. In addition to the already mentioned linear theory, several approaches have
been proposed in the literature based on higher-order corrections and nonlinearities
of the wave group, as well as iterative techniques to compute both input phases
and amplitudes [5, 8].

1.2 Contribution
In this study, the focus is on the accurate reproduction of a wave train with
predefined characteristics, and its generation at a specific point in the computational
domain. To address the issue of wave decay from the generation point to the point
of interest, an iterative calibration method has been implemented. This process
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adjusts the input signal at the wave generator (both in phases and amplitudes) to
produce an output that matches the target waveform as closely as possible. Unlike
other approaches, this method uses the linearized spectrum of the target instead of
the full target spectrum, intentionally excluding nonlinear components in order to
test the method’s ability to naturally generate them. This approach has already
been validated in various CFD contexts [5] where Reynolds–averaged Navier–Stokes
(RANS) solvers were successfully used to simulate focused waves.

In this work, the methodology is adapted and applied within the meshless
Smoothed Particle Hydrodynamics framework. Specifically, the DualSPHysics code
is employed, which represents one of the most advanced open-source environments
for applying SPH to maritime engineering.

Following a brief overview of the main wave modeling approaches, Chapter 2
focuses on high-fidelity models, among which meshless methods stand out as the
most versatile and suitable for representing free surface phenomena. In this study,
the choice of the Smoothed Particle Hydrodynamics method was deemed optimal
for its ability to accurately capture nonlinear behaviors, its flexibility in handling
complex geometries, and its robustness in dynamic boundary conditions.

Chapter 3 explores the generation and calibration procedure for wave motion
implemented in DualSPHysics, based on linear wave theory, through which it
becomes possible to adjust the input signal at the wavemaker to obtain, at a fixed
point in the domain, a wave with a spectrum that closely matches the desired
target. Both regular and irregular wave cases are analyzed. Particular attention is
given to the Biesel transfer function, through which free surface motion is converted
into the motion of the wavemaker.

The numerical model built in DualSPHysics was presented in Chapter 4. First,
the description of the numerical domain - a numerical wave tank - is introduced,
parameterized according to the target wave dimensions. Following, a parametric
study is conducted, assessing the model’s performance and response to variations in
key wave modeling parameters, in order to validate the model ability to accurately
reproduce specific wave signals under different numerical conditions. Ultimately, the
optimal values obtained from this study were selected for subsequent simulations.

Chapter 5 presents the results of the iterative calibration procedure, first applied
to regular waves as a benchmark and then extended to irregular waves. In particular,
the reproduction of an experimental signal is tested, starting solely from its linear
components, assessing whether the full spectral content can emerge through the
natural evolution of the SPH model.
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Chapter 2

State of the Art

Due to this inherent complexity, free-surface wave modeling has become a mul-
tidisciplinary field. Over time, various approaches have been developed, each
with specific strengths and limitations [9]. For instance, analytical and empirical
models offer simplified representations of wave behavior. The former relies on
simplified equations, often linear or weakly nonlinear, and are mainly used for
theoretical insight or basic predictions. The latter derive from experimental data
and provides practical formulas for engineering use, though they are only reliable
within specific conditions. Physical models, on the other hand, involve scaled
laboratory reproductions of real systems, offering high-fidelity but limited flexibility
and relatively high cost. Numerical models overcome many of these limitations:
they can simulate complex, nonlinear wave phenomena over arbitrary geometries
and boundary conditions, making them the preferred approach for accurate and
versatile wave modeling.

Before introducing high-fidelity schemes, it is useful to briefly recall the main
categories of numerical wave models, each suited to different wave conditions [9]:

• Spectral Models (e.g., WAM, SWAN): efficient for large-scale forecasts, they
resolve energy across frequencies and directions. However, since they do
not operate in time domain, they discard phase information, limiting their
accuracy on local effects such as wave diffraction or nearshore transformations
[10].

• Boussinesq Models: based on depth-averaged equations, they include weak
nonlinearity and dispersion, making them suitable for nearshore applications
where shoaling, refraction, and wave breaking occur [11, 12].

• Potential Flow Models: solve the Laplace equation under inviscid, irrotational
assumptions, and are often implemented using Boundary Element Methods
(BEM) [13].
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• Navier–Stokes Models: the most detailed, solving fully viscous flow with
turbulence. They can potentially capture breaking, air entrainment, and
structure interaction, at the cost of a high computational demand [9].

High-fidelity hydrodynamic models are generally based on the Navier–Stokes
equations and are essential when nonlinear effects dominate and fine-scale accuracy
is required.

2.1 High-Fidelity Numerical Models
A high-fidelity numerical model is characterized by the resolution of the fundamental
dynamics equations, the use of fine spatial and temporal discretizations, the ability
to include multiple and coupled phenomena, and the capacity to handle dynamic
boundary conditions and complex domains.

In the context of hydrodynamic modeling, Computational Fluid Dynamics (CFD)
consists of high-fidelity models based on the numerical resolution of the Navier–
Stokes equations, widely used in engineering applications for their robustness and
accuracy. Traditional CFD methods, such as Finite Volume Method, Finite Element
Method and Finite Difference Method adopt an Eulerian approach [14], where the
fluid domain is discretized on a mesh with fixed connectivity and flow variables are
calculated at spatial locations that are stationary relative to the mesh. In this case,
the validity of simulations strongly depends on the ability of the chosen method to
capture localized phenomena and handle deformable or dynamic domains.

However, this approach can become unstable in the presence of large defor-
mations, complex geometries or moving discontinuities. As a matter of fact,
mesh-based methods face significant challenges when solid surfaces experience
structural deformations or rigid bodies have relative motion with contacts. The
required adaptation and remeshing techniques – such as dynamic mesh generation
and deconstruction, penalty methods, augmented Lagrangian formulations, or
immersed boundary conditions – are associated with the risk of element distor-
tion and often come with higher computational cost [15, 16, 1]. In this context,
meshless methods – particularly Smoothed Particle Hydrodynamics (SPH) – offer
a promising alternative for building more flexible high-fidelity models [17, 18].

2.2 Meshless Numerical Methods
Meshless methods (or meshfree methods) have been developed precisely to overcome
these obstacles. Instead of relying on a discretization based on elements with fixed
connectivity, they build numerical approximations from a set of nodes distributed
within the domain, without requiring an explicit mesh. The key concept is to
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represent physical fields (e.g., pressure or velocity) through weighted combinations
of basis functions centered at the nodes, according to the general interpolation
formula:

u(x) ≈
NØ

i=1
ϕi(x)ui, (2.1)

where ϕi(x) are the shape functions associated with node i, N is the number of
nodes and ui represents the nodal value of the variable u. Unlike Finite Element
Methods, in which ϕi depends on the geometry of the element, in meshless methods
these functions are built based on the local distribution of nodes and supported
weight functions [16].

Over the years, several meshless methods have been developed, each with specific
characteristics:

• Smoothed Particle Hydrodynamics (SPH): a Lagrangian method originally
developed for astrophysical problems, widely used in engineering and scien-
tific applications. It uses kernel functions to interpolate field variables and
is well-suited for problems involving large deformations, free surfaces, and
fragmentation [1]

• Moving Particle Semi-implicit (MPS): uses simplified local averaging oper-
ators instead of kernel gradients. It has been widely adopted in hydraulics,
coastal/ocean engineering, and nuclear safety applications [19].

• Element-Free Galerkin (EFG): a meshless extension of the Galerkin method
that uses Moving Least Squares shape functions. It is particularly effective
for problems requiring higher-order continuity and has shown robust results
in fracture mechanics and large deformation simulations [20];

• Reproducing Kernel Particle Method (RKPM): a Galerkin meshless method
that extends SPH by using corrected kernel functions to ensure consistency. It
is mainly effective for problems involving fractures and large deformations[20];

• Meshless Local Petrov-Galerkin (MLPG): based on a local weak form applied
over small subdomains surrounding each node. It offers great flexibility in
choosing test functions enables easier treatment of boundary conditions. It
has been applied successfully in problems ranging from elastostatics to free
surface fluid dynamics [15].

These various meshless methods share the goal of overcoming the limitations of
discretization, but they differ in numerical formulation, interpolation construction,
and integration strategy.
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For example, one of the most common approaches to constructing shape functions
is the Moving Least Squares method [16], used in methods like EFG, RKPM and
MLPG. The principle is to minimize a functional that measures the difference
between nodal values and the field approximation:

J =
NØ

i=1
wi(x)

è
pT (x)a(x) − ui

é2
, (2.2)

where wi(x) is a weight function centered at node i, pT (x) is a vector of monomials
(e.g., pT = [1, x, y] for a linear basis in 2D), a(x) are the coefficients to be determined.

The optimal solution provides a continuous and differentiable approximation
of the field, with consistency properties that can be controlled by choosing the
polynomial basis.

In contrast, other formulations such as SPH use a kernel-based approximation
that appears simpler and more intuitive, even if less accurate in terms of polynomial
consistency. These differences reflect a trade-off between computational efficiency
and implementation complexity [16].

Additionally, most meshless methods adopt a Lagrangian approach, in which
the computational nodes (or particles) follow the motion of the fluid. This enables
accurate representation of transport, deformation, and interfaces [21, 20].

From a computational point of view, the implementation of meshless methods
does present some challenges [16]. In particular:

• the computation of shape functions and their derivatives requires operations
on local support domains;

• numerical integration (especially in weak formulations) requires more advanced
techniques than grid-based methods;

• the imposition of boundary conditions is not straightforward and requires
special treatments, such as penalty methods or modified collocation.

Despite these difficulties, meshless methods have demonstrated excellent effec-
tiveness in simulating free-surface flows, problems involving large deformations, and
fluid–structure interactions. Their flexibility makes them ideal candidates for the
numerical modeling of waves in coastal and offshore environments, where geometry
is often irregular and constantly evolving [21, 19].

Among the most widely used meshless methods today, Smoothed Particle
Hydrodynamics holds a leading position, thanks to its conceptual simplicity, purely
Lagrangian formulation, and adaptability to highly nonlinear phenomena.
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2.3 Smoothed Particle Hydrodynamics
The Smoothed Particle Hydrodynamics method, or SPH, is a meshfree numerical
technique based on a Lagrangian formulation, in which the motion of fluid particles
is tracked over time. Originally developed for astrophysical applications [22, 23], it
has rapidly spread to various fields, including free-surface flow modeling, coastal
fluid dynamics, wave-structure interaction, multiphase phenomena and many other
engineering applications. The Lagrangian approach allows the motion of each fluid
particle to be tracked over time, eliminating the need for a fixed spatial grid and
enabling natural adaptation to deformable geometries and domains.

2.3.1 SPH Method Formulation
The central idea of the SPH method is to represent a continuous field as a weighted
sum of discrete contributions from neighboring particles. Each particle carries
physical information such as mass, velocity, pressure and density, and interacts
with others within a defined influence radius.

The method starts from the integral representation of a generic function f(x):

f(x) =
Ú

Ω
f(x′)δ(x − x′) dΩ, (2.3)

where Ω is the domain in which x is defined, and δ(x − x′) is the Dirac delta
function:

δ(x − x′) =
1, x = x′

0 x /= x′ . (2.4)

In SPH, the representation of a generic function f(x) in a continuous domain is
approximated by a convolution with a smoothing function (or weighting function)
called a kernel W , defined as follows [17, 18]:

⟨f(x)⟩ =
Ú

Ω
f(x′)W (x − x′, h) dx′, (2.5)

where:

• W (x − x′, h) is the kernel function, defined over a compact support controlled
by the parameter h,

• h is the smoothing length, which controls the extent of the kernel support.

For numerical implementation, the integral is approximated by a discrete sum
over neighboring particles [17]:

8
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Figure 2.1: Schematic of the SPH discretization with a compactly supported
kernel function [24].

fa ≈
Ø

b

mb
fb

ρb

W (ra − rb, h), (2.6)

where index a refers to the observation particle, and b ranges over particles within
the kernel support. This approximation can be interpreted as a simple quadrature,
where each particle represents an infinitesimal volume Vb = mb/ρb, with the
advantage of preserving the Lagrangian formulation [16].

Kernel Function Properties To be used effectively, the kernel W must satisfy
several fundamental properties [16]:

• Non-negativity: W (x − x′, h) ≥ 0;

• Compact support: W (x − x′, h) = 0 for ∥x − x′∥ > kh;

• Normalization:
s

Ω W (x − x′, h)dx′ = 1;

• Symmetry: W (x − x′, h) = W (x′ − x, h);

• Delta function limit: limh→0 W (x − x′, h) = δ(x − x′).

The choice of the kernel significantly affects both accuracy and numerical
stability; the accuracy of the SPH discretization also depends on the degree of
consistency of the formulation. Some versions of the kernel and the discrete sum
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are specifically designed to ensure higher consistency, especially near boundaries or
in the presence of strong gradients. Among the most commonly used examples are:

• Cubic spline:

W (q) = σ

hd


1 − 3

2q2 + 3
4q3, 0 ≤ q < 1

1
4(2 − q)3, 1 ≤ q < 2
0, q ≥ 2

,

• Wendland C2

W (q) = σ

hd
(1 − q)4(1 + 4q), 0 ≤ q ≤ 1,

where q = ∥x−x′∥/h, σ is a normalization coefficient, and d is the spatial dimension.

Figure 2.2: Example of a 2-D particle distribution surrounding particle a. The
radius of influence of the kernel is expressed as a multiple, k, of the smoothing
length, h [17]

Kernel Approximation of Derivatives Starting from the continuous represen-
tation of a function f(x) (2.3), one can derive a formulation for its gradient based
on the kernel [18]. The integral identity is considered:

∇f(x) =
Ú

Ω
f(x′)∇δ(x − x′) dx′, (2.7)

which, like the function itself (2.5), is regularized by replacing the Dirac delta δ
with a kernel function W :

∇f(x) ≈
Ú

Ω
f(x′)∇W (x − x′, h) dx′. (2.8)

10
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This formulation highlights a fundamental aspect of the method: the differential
operator acts on the kernel rather than on the function, simplifying the approxima-
tion over complex domains. By discretizing the integral as a sum over neighboring
particles, an initial approximation is obtained:

∇fa ≈
Ø

b

mb
fb

ρb

∇Wab, (2.9)

where index a identifies the observed particle, and b those within the kernel support.
However, this formulation can lead to errors in the conservation of momentum,

as it is not symmetric [18]. To improve this property and ensure better conservation
of physical quantities, a symmetric version of the gradient is preferred:

∇fa =
Ø

b

mb

A
fb − fa

ρb

B
∇Wab. (2.10)

This form ensures that the contribution from each particle pair is balanced,
contributing to numerical stability and the correct conservation of fundamental
physical laws [18].

2.3.2 Governing Equations in the SPH Formulation
The fundamental equations of fluid dynamics are here expressed in the Lagrangian
form of the Navier–Stokes equations. The continuity equation (or mass conservation)
is as follows:

dρ

dt
= −ρ∇ · v, (2.11)

while the momentum equation is:

dv
dt

= −1
ρ

∇P + ν∇2v + f . (2.12)

where ρ is the density, v is the velocity vector, P is the pressure and f is the
acceleration due to external forces. Here, d refers to the material derivative.

In SPH, these equations are rewritten and discretized based on the particle
representation [17], as shown below:

• Continuity equation:

dρa

dt
= ρa

Ø
b

mb

ρb

vab · ∇Wab + Da. (2.13)

11
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• Momentum equation:

dva

dt
= −

Ø
b

mb

A
Pa

ρ2
a

+ Pb

ρ2
b

B
∇Wab + Γa + f . (2.14)

where vab = va − vb; Pk, ρk and vk are respectively pressure, density and velocity
evaluated for the particle k. In the momentum equation the term Γa represents
the dissipation term, while in the continuity equation Da is the numerical density
diffusion term.

To account for viscous dissipation, a laminar viscosity model is commonly used
for Γa [25]:

ν0∇2va =
Ø

b

mb
4ν0

ρa + ρb

vab · rab

r2
ab + η2 ∇Wab, (2.15)

where rab = ra − rb,ν0 is the kinematic viscosity (typically 10−6 m2) and η = ϵ · h2,
with ϵ = 0.01 being a small regularization parameter to avoid singularities in the
formulation.

As an alternative – especially in the presence of discontinuities or high-velocity
gradients – an artificial viscosity term Πab is added to the pressure term [26]. It does
not represent a physical viscosity, but is included to prevent numerical instabilities.

Πab =


−αcabµab

ρab
, if vab · rab < 0

0, if vab · rab ≥ 0
, (2.16)

with:
µab = hvab · rab

r2
ab + ϵh2 . (2.17)

Here, α is an empirical parameter (typically between 0.01 and 0.1) to introduce
proper dissipation and cab = 0.5 (ca + cb) is the mean speed sound between a and b.

To close the system, the pressure is calculated using a barotropic equation of
state [26]:

P = c2
sρ0

γ

CA
ρ

ρ0

Bγ

− 1
D

, (2.18)

where cs =
ñ

∂P
∂ρ

is the numerical speed of sound (typically at least 10 times the
characteristic speed of the problem) and γ is the polytropic exponent, often assumed
to be 7 for weakly compressible flows – such as water.

This formulation, known as WCSPH (Weakly Compressible SPH), avoids the
direct solution of a Poisson equation for pressure as in incompressible methods,
maintaining the computational simplicity of the method.

12
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2.3.3 Consistency of the SPH Method
One of the fundamental issues of the SPH method concerns the loss of consistency,
that is the method’s ability to exactly reproduce polynomial functions up to a
certain order. In other words, it is the local truncation error introduced by the
numerical discretization of the governing equations [27]. This property is essential
to ensure the accuracy and convergence of numerical solutions. Consistency involves
not only scalar interpolation but also the correct approximation of derivatives (such
as gradient and divergence), which can deteriorate significantly near free surfaces
or under conditions of strong deformation [24].

Unlike grid-based methods, for SPH, two levels of consistency are distinguished
[27]: kernel approximation and particle approximation. The first refers to the
continuous integral approximation of the function via the kernel and is independent
of particle distribution. The second originates from particle discretization and
is highly dependent on the number of particle neighbors (thus on the smoothing
length, h) and their spatial distribution (i.e., particle spacing, dp).

First-order consistency of the kernel is linked to the satisfaction of moments
conditions [24]:

Ml =
Ú

Ω
(x′ − x)lW (x − x′, h)dx′ = 0 for l ≥ 1. (2.19)

However, this property is not guaranteed in the discrete formulation, especially
near boundaries or in the presence of irregular particle distributions – for example,
due to kernel support truncation, particle contributions may be unbalanced (a
fluid particle near a boundary will have fewer neighbors than those in the interior),
generating errors in the estimation of derivatives and physical quantities. This
phenomenon is known as boundary deficiency [24].

Figure 2.3: SPH particle approximations in one-dimensional cases [18]. (a) Particle
approximation for a particle whose support domain is truncated by the boundary.
(b) Particle approximation for a particle with irregular particle distribution in its
support domain.
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The loss of consistency due to particle discretization – known as particle incon-
sistency – arises from three main causes: truncation of the kernel support near
physical boundaries, irregular particle distribution and variable smoothing length.
This has a negative impact on the physical accuracy of the simulation, since it
can compromise the conservation of mass, momentum, and energy [24]. However,
Quinlan et al. [27] suggest that such errors decrease when h is reduced while
keeping the ratio dp

h
constant, at a rate of h2. Conversely, when dp

h
is decreased

(i.e., the number of neighboring particles is increased) with h fixed, the error also
decreases. Therefore, by adjusting these parameters, it is possible to restore particle
consistency and ensure local conservation.

To mitigate consistency issues, several correction methods have been developed
[24]. Among the most robust are those based on the Taylor series expansion of the
kernel approximation and its spatial derivatives, such as the Corrective SPH [28].

It is important to note that consistency, while necessary to ensure the convergence
of the numerical solution, is not sufficient by itself. Other factors, such as numerical
stability and the treatment of boundary conditions, play equally crucial roles.

2.3.4 Boundary Conditions
Proper treatment of boundary conditions is fundamental to ensure numerical
stability and simulation accuracy, especially in the presence of free surfaces or
wave-structure interactions, as typically occurs in SPH simulations for coastal
applications. Due to the absence of a fixed grid, the treatment of boundary
conditions in the SPH method becomes extremely delicate. The fully Lagrangian
formulation allows great geometric flexibility, but it also introduces boundary
deficiency [24, 18].

Regarding free-surface treatment, SPH does not require explicit handling due to
its Lagrangian formulation. However, the surface shape can only be resolved with
a precision limited by the particle spacing [17].

For solid walls, the implementation of boundary conditions is carried out through
various approaches. For instance, real boundary particles techniques [29] involve
particles that are distributed along the edge of the domain. They may be static or
dynamic (in case of moving walls) and interact directly with fluid particles. An
alternative is given by the fictitious (or ghost) particles method [17], which generates
artificial particles placed beyond the physical boundary, with properties defined
to ensure symmetry (Figure 2.4a). They reflect or interpolate the properties of
nearby fluid particles, contributing to proper kernel evaluation without altering the
dynamics. Another example is the repulsive particles method [17]. This solution
implements fixed particles that exert a central repulsive force to prevent fluid
particles from penetrating the solid (Figure 2.4b). The force depends on distance
and acts only within a certain radius, making it particularly useful in simulations
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of impact or wave-obstacle interaction.
Each approach has advantages and limitations: ghost particles are effective

for rigid walls and symmetry conditions, while real boundary particles provide a
more direct and physical description of boundaries [29]. The choice of the most
appropriate technique depends on the type of problem, the geometry of the domain,
and the presence of free surfaces or moving structures.

(a) Ghost particles. (b) Repulsive particles.

Figure 2.4: SPH boundary treatments for rigid walls as particle a approaches the
boundary ∂Ωb. The grey shaded area represents the solid boundary [17].

2.4 The DualSPHysics software
In recent years, the efficacy of the SPH formulation has been improved by the
development of optimized numerical codes capable of handling realistic simulations.
Among these, DualSPHysics [25] stands out as one of the most mature and widely
used open-source implementations. Developed through collaboration between the
University of Vigo, the University of Manchester, the Polytechnic University of
Catalonia, the New Jersey Institute of Technology, The University of Edinburgh,
the Instituto Superior Técnico in Lisbon, and the University of Parma, the code is
designed to simulate large-scale fluid dynamics phenomena. Based on the WCSPH
approach, it is optimized for GPU acceleration and enables efficient modeling of
coastal dynamics.

In this regard, the main applications of the code include wave–structure interac-
tion (e.g., dams, breakwaters, bridges), wave impact and overtopping phenomena,
dynamics of floating bodies, wave propagation in channels or basins, analysis of
wave energy conversion devices.

Architecture DualSPHysics features a modular architecture, structured into
three main stages:
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1. Pre-processing: domain setup and particle generation using the GenCase utility.
Simulation parameters are defined through XML files, allowing detailed and
reproducible control;

2. Core solver: execution of the SPH simulation, with support for multi-threaded
CPU computation (OpenMP) and GPU (CUDA);

3. Post-processing: analysis and visualization of results using dedicated tools
such as MeasureTool, and FlowTool.

The code is written in C++ and highly parallelized and capable of managing
simulations with tens of millions of particles in reasonable computational times.

2.4.1 Numerical Methods
In the WCSPH formulation, pressure is evaluated with an equation of state (2.18);
viscous effects can be modeled using physical laminar viscosity (2.15) or alternatively
Monaghan’s artificial viscosity (2.16).

Different boundary conditions are implemented in DualSPHysics to manage
fluid–solid interactions and domain behavior [30], namely Dynamic Boundary
Condition (DBC), Modified Dynamic Boundary Condition (mDBC) and Open
Boundary. In particular, mDBC [31] implements a set of boundary particles that
satisfy the continuity equation just like the fluid particles, while their velocity
is not computed using the momentum equation. Unlike the standard approach,
however, the modified version includes an additional boundary interface between
the fluid and the boundary particles, located at a distance of dp

2 , where dp is the
particle spacing, from the boundary itself. Across this interface, ghost particles are
mirrored, as previously described in subsection 2.3.4.

Two explicit time integration schemes are available [25]. The velocity Verlet
algorithm or, alternatively, the Symplectic Position Verlet scheme. The latter is
implemented for improved stability and time-reversibility in conservative systems.
It evolves the state of the particles as follows:

r n+ 1
2 = r n + ∆t

2 v n, (2.20)

ρ n+ 1
2 = ρ n + ∆t

2
dρ

dt

n

(2.21)

r n+1 = r n+ 1
2 + ∆t

2 vn+1, (2.22)

v n+1 = v n+ 1
2 + ∆t

2
dv
dt

n+ 1
2
. (2.23)

16



State of the Art

The time step ∆t is computed according to the Courant–Friedrichs–Lewy (CFL)
condition. In DualSPHysics, the condition is dynamically adjusted based on particle
velocity, viscous effects, smoothing length h, and speed of sound cs [30].

∆t = 0.25 · min(∆tf , ∆tcv), (2.24)

where:

∆tf = min
a

Aó
h

|fa|

B
and ∆tcv = min

a

 h

cs + maxb

3
4νabτab

r2
ab

+η2

4
 . (2.25)

Here, fa is the force per unit mass on particle a, and the second term in ∆tcv

accounts for viscous diffusion between neighboring particles.

Particle Shifting Algorithm As discussed in subsection 2.3.3, particle distribu-
tion can often be irregular, leading to discretization errors. To address this issue,
DualSPHysics includes a shifting algorithm proposed by Lind et al. [32], based on
Fick’s first law of diffusion, which relates the diffusion flux J to the concentration
C gradient:

J = −DF ∇C, (2.26)

where DF is the Fickian diffusion coefficient. The shifting distance [25] is computed
as:

δra = −Ds∇Ca. (2.27)

Here
Ds = Ash∥v∥∆t, (2.28)

where As is a dimensionless constant, raging between 1 and 6, with 2 proposed as
default [25]. The kernel gradient of the particle concentration can be expressed as:

∇Ca =
Ø

j

mj

ρj

∇Waj (2.29)

2.4.2 Validation and Case Studies
The software DualSPHysics was validated by many reference works [30, 25], where
the code was tested through numerous comparisons with physical experiments and
other numerical models. Some of the most significant case studies include wave
impact on rigid and moving walls, overtopping on coastal structures, oscillation of
constrained floating bodies, tsunami propagation in laboratory tanks (Figure 2.5).
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In all cases, DualSPHysics demonstrated good agreement with experimental
data, both qualitatively (wave shape, flow behavior) and quantitatively (pressure,
elevation, forces). Many of these tests are aligned with the SPHERIC benchmark
suite, which provides standardized test problems for evaluating SPH solvers in
terms of accuracy, stability, and computational performance [33].

The code, documentation, and test cases are available on the official website
[34], which hosts an active international community of users and developers.
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(a) Snapshot of the simulation of the Vertical Slot Fishway; colour of the particles
represent the horizontal velocity.

(b) Simulation snapshot of an armour breakwater; colour of the particles represent the
longitudinal velocity.

(c) Simulation snapshot of the moored box under regular waves; colour of the particles
represent the horizontal velocity.

Figure 2.5: Significant case studies presented by Dominguez et al. [25].
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Chapter 3

Wave Generation and
Calibration in DualSPhysics

Accurate wave generation is essential for reproducing target conditions and ensuring
that the simulated wave field matches theoretical or experimental expectations.
This chapter focuses on the implementation and refinement of regular and irregular
wave generation using a piston–type wavemaker in the DualSPHysics environment.
The theoretical formulation of the target wave profile is first introduced, alongside
the concepts of near field and far field, which are central to interpreting wave
evolution along the domain.

However, despite the use of an idealized motion derived from linear theory, the
actual wave profile generated by the piston may differ from the theoretical target
due to a combination of numerical and physical effects, such as dissipation caused
by numerical viscosity, partial reflections at the domain boundaries, limited spatial
resolution. As a result, the wave height and phase observed in the far field may
not match the prescribed values, even under nominally correct input conditions.

To address this issue, an iterative calibration procedure has been implemented
in DualSPHysics, aimed at reproducing a wave shape that matches as close as
possible the theoretical profile at a specific location within the numerical domain.

3.1 Wave Generation Theory

The definition of a target wave profile is a necessary prerequisite for assessing the
accuracy of wave generation in numerical models. In this study, the reference signal
is derived from linear wave theory, which provides an analytical description of wave
propagation under simplifying assumptions.
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3.1.1 Linear Wave Theory
Linear wave theory, also known as Airy wave theory [35], represents one of the
earliest and most widely used analytical models for describing the two-dimensional
propagation of surface gravity waves. This theory is based on the assumptions that
the fluid is incompressible, inviscid and irrotational, and the wave height H is small
relative to both the wavelength λ and the water depth h: H/L ≪ 1, H/h ≪ 1.
Under these conditions, the wave free surface elevation is described by:

η(x, t) = a cos(kx − ωt), (3.1)
where a is the wave amplitude, ω = 2π

T
is the angular frequency, k = 2π

λ
is the wave

number, T is the wave period, and λ is the wavelength.
The wave number k and angular frequency ω are linked by the linear dispersion

relation:
ω2 = gk tanh(kh), (3.2)

which couples the wave propagation characteristics to the water depth h. In
deep water conditions (h ≫ λ), tanh(kh) ≈ 1, while in shallow water (h ≪ λ),
tanh(kh) ≈ kh. These assumptions yield the simplified dispersion relation valid
under deep water conditions:

λ = gT 2

2π
. (3.3)

The speed at which the wave phase propagates, known as the phase velocity, is
defined as:

c = ω

k
=
ò

g

k
tanh(kh). (3.4)

Depending on the water depth, the expression simplifies to:

• Deep water: c ≈
ñ

g
k
;

• Shallow water: c ≈
√

gh.

Fluid particles in linear wave theory follow elliptical trajectories that become
increasingly flattened with depth. The horizontal and vertical components of
particle velocity, u and w, are given by [35]:

u(x, z, t) = 2πH

T
· cosh(k(z + h))

sinh(kh) cos(kx − ωt), (3.5)

w(x, z, t) = 2πH

T
· sinh(k(z + h))

sinh(kh) sin(kx − ωt), (3.6)

where z is the vertical coordinate measured from the still water level (positive
upwards), and h is the local water depth. These expressions describe how the particle
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motion decays exponentially with depth and are instrumental for understanding
wave kinematics, particularly when implementing wave generation methods.

The accuracy of this wave description has been experimentally validated in large-
scale wave tanks and serves as a standard reference for SPH validation campaigns
[36].

3.1.2 Spectral Representation of Irregular Waves
In natural environments, wave motion is rarely regular. Instead, it results from
the superposition of numerous harmonic components with varying frequencies,
amplitudes, and directions (and phase). This complexity can be effectively captured
through a spectral approach, where wave energy is distributed continuously over a
range of frequencies [37].

In the linear spectral model, the free surface elevation is described as the sum
of multiple sinusoidal components:

η(t) =
NØ

i=1
ai cos(ωit + ϕi), (3.7)

where ai is the amplitude, ωi is the angular frequency, and ϕi is the phase of each
component. The distribution of amplitudes ai is governed by the wave energy
spectrum S(ω), which represents the energy density per unit frequency:

ai =
ñ

2S(ωi)∆ω, (3.8)

with ∆ω representing the frequency discretisation interval.
Two commonly used spectra are the Pierson–Moskowitz and the JONSWAP

spectra [37], reported here in their parametrized formulation as functions of the
significant wave height, Hs, and the peak frequency, fp:

1. Pierson–Moskowitz (PM) describes a fully developed sea:

Sη(f) = 5
16H2

s f 4
p f−5 exp

−5
4

A
fp

f

B4
 . (3.9)

2. JONSWAP is suitable for young, developing seas with a sharper spectral peak
enhanced by a factor γ = 3.3:

Sη(f) = 1.4
γ

· 5
16H2

s f 4
p f−5 γα exp

−5
4

A
fp

f

B4
 , (3.10)

where:
α = exp

A
−(f − fp)2

2σ2
ff 2

p

B
. (3.11)
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The spectral width σf is set to 0.10 when f ≤ fp, while it is set to 0.50 when
f > fp.

Each spectrum characterizes the sea state based on meteorological input, and
the choice depends on whether the target sea is mature or still developing.

Validation of irregular wave simulations is typically based on spectral analysis
of the simulated free surface elevation, which is then compared to the input wave
spectrum. These aspects are critical in calibration procedures, especially when
evaluating the fidelity of wave energy distribution in both time and frequency
domains.

3.1.3 Near and Far Fields
The analytical description introduced earlier defines the target condition for the
DualSPHysics simulations presented in this work. All input signals for wave
generation, validation procedures, and error assessments are carried out with
respect to this idealized form. However, due to both physical and computational
(numerical dissipation) reasons, the wave profile generated near the boundary is not
immediately identical to the theoretical solution. A transitional region, referred to
as the near field [37], typically develops adjacent to the piston. In this region, the
wave is still forming: it may exhibit non-periodic behavior, amplitude overshoots,
or phase distortions caused by initial particle acceleration and local rearrangements.

As the wave propagates through the domain, it gradually stabilizes and converges
toward the theoretical shape (Figure 3.1). This downstream area, where the wave
exhibits periodicity and steady characteristics, is referred to as the far field [37]. It
is in this region that comparisons with the theoretical target are most reliable, and
where measurements of wave height and phase are typically carried out.

A more rigorous representation of the wave field near the wavemaker is given in
Frigaard et al. [37], where the free surface elevation η(x, t) is expressed as the sum
of a propagating wave and a set of evanescent modes:

η(x, t) = A cos(kx − ωt) +
∞Ø

n=1
Bne−κnx cos(ωt), (3.12)

where A is the amplitude of the primary wave, Bn are the modal coefficients of
the evanescent components and κn are the spatial decay constants, increasing with
n. The exponential terms e−κnx ensure rapid attenuation with distance from the
generator.

This formulation shows that, very close to the wavemaker, the wave profile
is significantly altered by non-propagating components that decay exponentially
with x. The evanescent modes originate from the complex interaction between
the moving boundary and the fluid column, and their effect becomes negligible
approximately one wavelength (λ) away from the source.
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Figure 3.1: Wave amplitude and phase of the generated wave field relative to
the far field solution by Frigaard et al. [37]. Water depth fixed at 0.7 m and wave
period of 0.7 s.

Numerical and experimental evidence shows that a distance of 1-1.5 λ is typically
required before the wave reaches a steady, periodic shape [38]. Beyond this point,
the recorded wave signal corresponds predominantly to the propagating wave and
aligns with theoretical expectations. In the present study, the far field is considered
to begin at approximately x = 1.5λ from the wave paddle, based on observations
of waveform stabilization in the performed simulations (see subsection 4.2.1).

3.2 Implementation of Wave Generation in Du-
alSPHysics

3.2.1 Overview of WaveMaker Types

In numerical wave tanks, wave generation is typically achieved by imposing a
time-dependent boundary condition at one end of the domain. In the context of
DualSPHysics, this is accomplished using a moving boundary element referred to
as a wavemaker, which induces wave motion by displacing fluid particles.

Two common types of wavemakers are available [38]:

1. Piston-type wavemaker: horizontal translation of a vertical paddle, that
displaces water uniformly along the vertical face;
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2. Flap-type wavemaker: rotation of a paddle around a hinge located near the
bed, simulating a vertical oscillation of the paddle tip.

The two types differ significantly in the resulting velocity field: the piston-type
induces a nearly uniform horizontal velocity profile, while the flap-type leads to
a more vertically varying field. Hence, the selection of the wavemaker type must
consider the target wave conditions: flap-type systems better represent the vertical
orbital motion typical of shallow water waves, as the induced particle velocity
decreases with depth, while piston-type are more appropriate for deeper water due
to their uniform velocity distribution.

An additional option is to impose the wave motion using the Relaxation Zone
method (see subsection 4.3.1) [39].

3.2.2 Motion Signal Definition
In DualSPHyics, the approach used for defining the paddle motion is based on
the Biesel transfer function, which relates the desired wave height and period to
the displacement of the paddle through a geometry-dependent correction factor.
According to Biesel’s formulation [37], the displacement signal s(t) of the wavemaker
is expressed as:

s(t) = S0

2 sin(ωt + ϕ), (3.13)

specifically, the paddle stroke S0 is obtained from
• Piston-type wavemaker (Figure 3.2):

H

S0
= 2 sinh2(kh)

sinh(kh) cosh(kh) + kh
, (3.14)

• Flap-type wavemaker (Figure 3.3):
H

S0
= 2 sinh(kh)(1 − cosh(kh) + kh sinh(kh))

kh(sinh(kh) cosh(kh) + kh) . (3.15)

For irregular waves, DualSPHysics generates the free surface elevation by dis-
cretizing the input energy spectrum S(ω) into a set of discrete harmonic components
using the random-phase method. The continuous spectrum is sampled over a range
of N angular frequencies ωi, and each frequency is assigned an amplitude (according
to equation 3.8) and a random phase.

The phases ϕi are uniformly distributed in [0, 2π), allowing the reconstructed
time series to reflect the irregular and random nature of real sea states. This
approach follows the classical spectral reconstruction techniques [37], commonly
adopted in both numerical and laboratory studies.

To ensure repeatability between simulations, the random number generator used
for the phase assignment is initialized with a fixed seed.
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Figure 3.2: Biesel transfer function of piston-type wavemaker [37].

Figure 3.3: Biesel transfer function of flap-type wavemaker [37].

3.2.3 Signal Generation Options
DualSPHysics provides two main approaches for prescribing the motion of a
wavemaker:

1. Internal signal generation using predefined wave parameters;

2. External input via a user-defined time series.

In the first case, the user specifies the target wave characteristics either through
the graphical interface or directly in the XML configuration file:
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• Regular waves: defined through parameters such as <waveheight>, <period>,
<phase>;

• Irregular waves: spectrum–driven using <spectrum="jonswap"> or PM, with
input parameters like <number of waves> and <seed> for random phase
reproducibility.

The software then automatically generates the paddle motion using Biesel’s
equation, which accounts for the wavemaker geometry and tank depth. This method
is fast and convenient and is especially useful for simple, idealized test cases.

Alternatively, DualSPHysics allows define the paddling trajectory explicitly by
importing a displacement time series from a text file (.txt or .csv). This input
file typically contains four columns: time and displacement in each direction (e.g.,
x, y, z). It is referenced in the XML file through the <motion> tag associated with
the moving boundary object. This method offers greater flexibility and control over
the imposed motion, especially when advanced tuning or calibration procedures
are required.

3.2.4 Implementation in this Study
For the simulations presented in this work, the piston–type wavemaker was selected,
due to its simplicity and compatibility with two-dimensional setups. This type
is particularly effective when generating regular wave trains for calibration and
benchmarking purposes.

The wavemaker motion was defined using a user-generated external file, contain-
ing the time history of the piston displacement. The signal was computed in MATLAB
using Biesel’s formulation for regular and irregular wave generation, given the target
wave shape. This approach was preferred over the internal auto-generation feature,
as it provides direct access to the input signal and simplifies the implementation of
iterative calibration strategies described later in this work. Moreover, the external
file can be updated independently of the main simulation setup, allowing fast
testing of alternative waveforms.

3.3 Wave Calibration
For industrial applications, RANS solvers combined with free surface capturing
algorithms – such as the Volume of Fluid method – represent the standard ap-
proach for reproducing wave dynamics using CFD tools [5]. Recent research has
focused on the numerical modeling of wave groups; however, inconsistency with
experimental results are frequently reported: a major limitation lies in the absence
of a methodology to correct the input signal in CFD models [5].
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In fact, the most challenging aspect in accurately generating such wave groups is
the proper selection of the amplitudes and phases of the spectral components at the
inlet. Linear wave theory and empirical iterative processes have been suggested over
the years in order to achieve the required phase and amplitude focusing. However,
the efficiency of these methods reduces as the non-linearity of the wave group
increases: as a result, the focal point is shifted in both space and time and the
quality of focusing reduces considerably [8].

The methodology proposed by Stagonas et al. [8] for highly accurate focused
wave generation represents a significant improvement over previous techniques, as
it effectively addresses these issues by implementing an iterative correction. The
main innovation compared to previous approaches lies in the use of linearized
target spectra as the initial condition at the wave maker, rather than the full target
spectrum.

In reality, the full wave spectrum includes not only the primary linear components
but also second-order effects arising from nonlinear interactions between linear
modes, as described by second-order wave theory (e.g., Stokes theory) [35]. These
interactions generate additional frequency components in the spectrum:

• Subharmonic components, resulting from the difference between pairs of linear
frequencies (fi −fj), which appear in the low-frequency region of the spectrum;

• Superharmonic components, generated by the sum of linear frequencies (fi+fj),
observed at higher frequencies beyond the main spectral band.

The objective of the methodology presented in this study is to accurately
reproduce the dynamics of a real wave starting solely from its linear components. A
controlled wave generation procedure is adopted, inspierd by the previous approach
[5, 8] but implemented within the SPH framework. The iterative correction process
acts on the wavemaker transfer function, with the aim of precisely focusing the
wave group of a prescribed spectrum.

3.3.1 Main contribution of this Study
The methodology uses amplitudes and phases of linearized spectral components
as input parameters and applies linear theory to generate a desired wave group
at specified time and position within the numerical wave tank. The structure is
presented as follows and illustrated in Figure 3.4:

1. The target spectrum is defined and his linear components are selected;

2. The corresponding motion signal for the wavemaker is generated and the
simulation is performed;
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3. The wave elevation is evaluated at the target location and the linear output
spectrum is extracted;

4. The linearized output spectrum is compared with the target spectrum and a
corrected input spectrum is calculated;

5. The procedure is applied iteratively until convergence is reached in both phase
and amplitude.

The practical implementation of the methodology is presented in the following
sections.

Figure 3.4: Interpolated free surface elevation signal used as input.

3.3.2 Calibration Procedure
The calibration procedure is based on the principle of feedback correction and
consists of several stages: first, a free surface elevation signal is selected from
experimental data. A Fast Fourier Transform (FFT) is then applied to obtain
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the complete wave spectrum, from which only the linear components – namely
the first-order harmonic modes – are isolated. The corresponding amplitudes and
phases are extracted, in order to test whether the model can naturally regenerate
second-order effects during the simulation.

Next, a specific location within the numerical domain – referred to as the target
point – is selected: this is the location where the desired wave shape is expected
to be reproduced. The phases of the harmonic components are then propagated
backward to the generator using the linear dispersion relation 3.3. The motion
file for the wavemaker is constructed by applying the Biesel transfer function 3.13,
ensuring a consistent relationship between the imposed motion and the desired free
surface elevation.

After each simulation, the signal is sampled at the control point. The linear
components are extracted again via FFT, and the resulting output amplitudes
and phases are compared to the target values. Any discrepancies are corrected
by applying the following correction algorithm, inspired by Vyzikas et al. [5] and
Stagonas et al. [8].

The correction strategy consists of two components:

1. A scaling factor applied to the theoretical motion, to correct the amplitude of
the generated wave:

α
(i+1)
in = α

(i)
in · αtgt

α
(i)
out

. (3.16)

2. A phase shift introduced in the input signal, to account for time delays in
wave formation:

ϕ
(i+1)
in = ϕ

(i)
in +

1
ϕtgt − ϕ

(i)
out

2
. (3.17)

α
(i)
in and ϕ

(i)
in represent the input amplitudes and phases at iteration i, while α

(i)
out

and ϕ
(i)
out are the values measured at the target location. αtgt and ϕtgt denote the

theoretical target values.
This procedure is repeated until the desired tolerance in amplitude and phase is

met. Once convergence is achieved, the complete spectrum of the simulated wave
is analyzed in order to assess the emergence of nonlinear components, particularly
second-order harmonics (both super- and sub-harmonics). The results will be
discussed in Chapter 5.

3.3.3 Process Automation
All stages of the procedure have been fully automated using a custom MATLAB script
which, given a target signal, performs the following operations:

1. computes the physical parameters of the target wave and propagates them
from the target point to the wavemaker using the linear dispersion relation;
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2. generates the motion signal of the piston-type wavemaker using the Biesel
transfer function;

3. updates the XML configuration file accordingly;

4. launches GenCase and DualSPHysics in sequence;

5. extracts the free surface elevation at the control point using MeasureTool;

6. performs FFT analysis to estimate αout and ϕout;

7. computes the correction factors and updates the input for the next iteration;

8. stores diagnostic plots, log files, and numerical summaries for each run.
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Chapter 4

Numerical Model

Following the methodological framework outlined in the previous chapters, this
section introduces the numerical setup adopted for the SPH simulations of wave
generation in DualSPHysics. The domain configuration is defined based on the
characteristics of the target wave, ensuring that wave propagation is properly
handled within the numerical tank.

In parallel, a parametric study is carried out to explore how key numerical
parameters – such as particle spacing, smoothing length, and artificial speed of
sound – affect the performance of the SPH method. This analysis supports the
identification of efficient parameter settings to be used in the subsequent stages of the
work. In addition, the treatment of wave absorption at the downstream boundary
is also addressed, presenting a comparative study between passive absorption
methods.

4.1 Numerical Domain Setup
The geometry of the computational domain was defined parametrically through
XML files, and then generated via GenCase, the pre-processing utility integrated
within the DualSPHysics framework. The domain was constructed as a numerical
three-dimensional rectangular tank with a single particle layer in the transverse
direction (y), resulting in 2-D configuration. The principal dimensions of the
domain are defined as functions of the wavelength, λ, and the wave height, H, of
the input signal, as summarized in Table 4.1. Specifically:

• the initial water depth is fixed at h = λ;

• the wave paddle (piston) is positioned at x = 0;

• upstream, the bottom extends to x = −10H to maintain continuity when the
piston moves backward;
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• the active area ranges from x = 0 to x = 5λ, including both a propagation
and a damping zone.

Table 4.1: Parametric definition of the computational domain.

Label Expression Description

h λ Water depth
xmin −10H Left end of the bottom boundary
xpaddle 0 Paddle (wave generator) position
xdamping 3λ Start of the damping zone
xmax 5λ Right end of the domain

The domain length was chosen to include both the near field – where waves are
still influenced by the generator motion – and the far field, where wave properties
stabilize and reach a fully developed form suitable for quantitative evaluation. This
distinction is relevant for assessing the accuracy of wave propagation over space, as
already discussed in Chapter 3.

A depth of h = λ was selected to fully meet deep-water criteria, according to
which the water depth satisfies h/λ ≥ 0.5. Under these conditions, the seabed has
negligible influence on wave motion, and the velocity profile decays exponentially
with depth.

To reduce wave reflection at the downstream boundary, a one-way numerical
damping zone is implemented between x = 3λ and x = 5λ, in agreement with the
results from subsection 4.3.1. This region gradually reduces the particle velocity
along the x-axis; the damping intensity is governed by the redumax parameter,
here set to 5.

The domain, shown in Figure 4.1, was thus designed to provide a solid compro-
mise between physical accuracy, numerical robustness, and computational perfor-
mance, making it suitable for a systematic campaign of parametric simulations.

Waves are generated using a rigid piston whose motion is defined through an
external input file to produce regular waves under linear conditions, as discussed
in Chapter 3.

All numerical parameters and settings that were not analyzed in the parametric
study were kept constant throughout all simulations, as listed in Table 4.2. The
chosen configuration is consistent with those typically found in the literature for
similar simulations [38, 39].

This layout allows the effects of the key investigated parameters – wave steepness,
particle spacing dp, artificial speed of sound cs, kernel smoothing length h – to be
isolated and compared effectively.
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Table 4.2: Constant numerical parameters and settings used in all simulations

Parameter Value Description

Kernel Wendland [40] Interpolation kernel function
Boundary mDBC [31] Boundary method (no-slip)
ViscoTreatment Laminar [4] Viscosity treatment
Viscosity 1.0 · 10−6 m2/s Kinematic viscosity
Shifting Full (3) [32] Shifting mode applied to all particles
DensityDT Fourtakas [41] Density correction model
StepAlgorithm Symplectic [42] Time integration scheme
CFL 0.2 Courant number
Gamma 7.0 Exponent in the equation of state

Figure 4.1: Schematic of the numerical wave tank, dimension in terms of λ and
H.

4.2 Parametric Study
Once the computational domain and baseline numerical parameters are defined, a
parametric study is conducted to validate the numerical model and analyze the
behavior of the SPH method under such variations. This study is structured as
follows:

1. Steepness variation: six distinct configurations were simulated, keeping the
wave height constant while varying the wave period T from 0.80 s to 2.50
s. This setup resulted in wave steepness ranging approximately from 1:10 to
1:100, to analyze its impact on numerical accuracy and stability.

2. Spatial resolution analysis: for three of the previous cases (T = 0.80 s, 1.50
s, 2.50 s), the particle spacing dp was varied between 0.010 m, 0.015 m, and
0.020 m to assess its influence on the precision of the solution.
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3. Variation of SPH numerical parameters: focusing on the intermediate case
(T = 1.50 s, dp = 0.015 m), the effects of the following parameters were
analyzed separately, in order to determine the sensitivity of the method to
artificial compressibility and kernel support, respectively:

• coefsound: 20, 25, 30 (with coefh fixed at 1.3);
• coefh: 1.2, 1.3, 1.5 (with coefsound fixed at 20).

All tests were performed by varying only one parameter at a time, while keeping
all other conditions unchanged as specified in Table 4.2, to isolate the specific
influence of each variable.

For each configuration, the following aspects were evaluated: wave profile quality
(e.g., height and phase error relative to the target signal), computational efficiency
and agreement with theoretical expectations. The free surface elevation was ana-
lyzed using MeasureTool, the post-processing tool implemented in DualSPHysics.
Measurements were taken at multiple locations along the domain, ranging from 0.5
to 3λ from the wave paddle. This range spans both the near field and the far field,
to properly capture the wave reproduction.

4.2.1 Steepness Variation
Wave steepness is a dimensionless parameter that describes the sharpness of the
wave profile and is defined as the ratio between wave height H and wavelength λ:

S = H

λ
. (4.1)

Steep waves (S > 0.05) involve sharper gradients of velocity and pressure,
requiring increased numerical resolution, while long and flat waves (low steepness)
are less demanding in terms of numerical stability. In fact, at low steepness waves
tend to preserve a regular and predictable shape during propagation, with negligible
nonlinear effects and more stable energy distribution. As steepness increases,
nonlinear interactions between spectral components can lead to wave deformation,
including energy transfer to higher frequencies, harmonic phase coupling, and
eventually wave breaking [43, 44].

The goal of this analysis is to assess the model’s ability to accurately simulate
regular waves over a wide range of steepness values, while preserving physical
consistency and numerical quality. To isolate the effect of steepness, the wave
height was fixed at H = 0.10 m, while the wave period T was varied. In deep water,
the wavelength λ is related to the period via the dispersion relation 3.3 [35]. As
T increases, so does λ, resulting in a lower steepness. Six cases were analyzed, as
summarized in Table 4.3:
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Table 4.3: Test cases for steepness variation

Case Period T [s] Estimated steepness H/λ [-]

1 0.80 ∼ 1:10
2 1.00 ∼ 1:15
3 1.20 ∼ 1:25
4 1.50 ∼ 1:40
5 2.00 ∼ 1:75
6 2.50 ∼ 1:100

In all cases, the other numerical parameters were kept constant: dp = 0.015 m,
coefh = 1.3, coefsound = 20. Simulations were carried out in the domain described
in Section 4.1, without modifications to the geometry or boundary conditions. Each
simulation was run for at least 15 wave periods to ensure stabilization of the wave
train. The time step was automatically computed, based on the Symplectic time
integration scheme and the CFL condition 2.24.

The free surface elevation was analyzed at multiple locations along the domain;
at each location, the following quantities were assessed:

• simulated wave amplitude compared with the theoretical target value;

• phase shift relative to the theoretical wave profile.
Computational efficiency was not considered at this stage, as the domain length

varies with λ (as presented in Section 4.1), directly affecting the number of particles.
This aspect will be addressed later, under conditions of fixed domain size.

Results and Discussion The analysis of free surface elevation along the domain
shows consistent behavior with physical and numerical expectations. As the wave
period increases (and steepness decreases), wave height attenuation diminishes and
the waveform is better preserved, as shown in Figure 4.2. In high steepness cases
(e.g., H/λ ≈ 1 : 10), wave elevation drops significantly within the first wavelengths,
indicating stronger dissipation, likely due to insufficient spatial resolution to capture
steep gradients.

In all cases, a distinct oscillatory behavior in the free surface elevation is
observed near the piston, due to the presence of evanescent modes and initial wave
development. As stated before in Chapter 3, this transient region – known as the
near field – typically extends over the first wavelength and gradually stabilizes
at approximately 1–1.5 wavelengths from the wavemaker. For this reason, in the
present study, the far field is operationally defined to begin at x = 1.5λ.

The phase analysis shows a general mismatch between the simulated and the-
oretical wave profiles in all cases. However, the phase error behaves differently
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depending on steepness. In high steepness cases, the phase error initially decreases
along the domain, reaches zero, and subsequently increases again, indicating a
temporary wave front alignment that later diverges (Figure 4.3). In low steepness
cases, the phase shift remains approximately constant over time, even if slightly
oscillating in some cases. This behavior is likely due to the more regular and linear
nature of the wave, which reduces numerical distortion.

Overall, the results confirm that low to moderate steepness waves can be reliably
simulated using the parameter set adopted in this SPH configuration.
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(a) T = 0.80 s (b) T = 1.00 s

(c) T = 1.20 s (d) T = 1.50 s

(e) T = 2.00 s (f) T = 2.50 s

Figure 4.2: Wave elevation and phase error relative to the target solution.
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(a) x/λ = 1.0 (b) x/λ = 1.3

(c) x/λ = 1.6 (d) x/λ = 2.0

(e) x/λ = 2.5 (f) x/λ = 3.0

Figure 4.3: Detail of the phase shift for high steepness condition (T = 0.80 s)
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4.2.2 Spatial Resolution Variation
In the SPH method, spatial resolution is determined by the initial spacing between
fluid particles, denoted as dp. This parameter directly affects the model’s ability
to accurately represent continuous fields such as pressure, velocity, and surface
elevation. A finer resolution (smaller dp) improves the capacity to capture local
gradients and reduces physical distortions, especially for steeper waves, but at the
cost of a significantly higher particle count and computational effort [6].

In this study, three representative wave steepness conditions were selected:

• High steepness: T = 0.80 s, H/λ ≈ 1 : 10;

• Moderate steepness: T = 1.50 s, H/λ ≈ 1 : 40;

• Low steepness: T = 2.50 s, H/λ ≈ 1 : 100.

Since the wavelength, λ, varies across the selected cases, the computational
domain also scales accordingly, and so does the total particle count. Therefore, it
is important to assess the effect of dp not only in absolute terms, but also in terms
of its ratio to wave height and wavelength.

For each case, the particle spacing was varied among 0.010 m, 0.015 m, and
0.02 m, in order to meet at least 50-100 particles per wavelength, following the
recommended resolution range for regular wave propagation in SPH simulations
[25] . Moreover, since the input wave height remained fixed at H = 0.10 m, the
chosen dp values result in 10, 6.67, and 5 particles per wave height, respectively –
a key indicator of vertical resolution (Table 4.4).

Table 4.4: Resolution and number of particles per wave height (H = 0.10 m)

dp [m] Particles per wave height

0.010 10.00
0.015 6.67
0.020 5.00

All other numerical and geometrical parameters were kept constant (coefh =
1.3, coefsound = 20), and the domain geometry and boundary conditions were
left unchanged. Simulations were run for a duration of at least 15 wave cycles.
Free surface elevation was analyzed at different measurement points from the wave
paddle, covering both near and far field regions. The evaluation criteria included:

• Simulated wave height compared to the theoretical target value;

• Phase error as the temporal shift between theoretical and simulated peaks;
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• Total number of particles;

• Wall-clock simulation time.

Results and Discussion

Case T = 0.80 s – High Steepness This scenario, with steepness around 1:10,
showed strong sensitivity to resolution (Figure 4.4). The finest spacing (dp = 0.010
m) maintained wave amplitude close to theoretical expectations throughout the
domain. Coarser settings led to increased attenuation: at dp = 0.020 m, normalized
surface elevation dropped below 70% downstream, suggesting numerical dissipation
due to insufficient resolution. However, phase accuracy showed only minor variations
across resolutions, and all cases exhibited comparable phase shifts.

Computationally, higher resolution significantly increased particle count and
runtime, as shown in Table 4.5. Reducing the spacing from dp = 0.020 m to
dp = 0.010 m more than doubled the cost. The intermediate value (dp = 0.015 m)
provided a fair balance between accuracy and efficiency.

Table 4.5: Number of particles and simulation times for T = 0.80 s

dp [m] Particles Simulation Time [s] ∆ Time

0.010 54,020 515.6 –
0.015 25,001 256.2 -50%
0.020 14,520 188.0 -64%
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(a) dp = 0.010 m (b) dp = 0.015 m

(c) dp = 0.020 m

Figure 4.4: Comparison of different spacial resolution for high steepness
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Case T = 1.50 s – Moderate Steepness For moderate steepness, results
were less resolution-dependent. All cases yielded wave profiles close to theoretical
predictions (Figure 4.5), although the finest still performed best in amplitude
preservation. Phase errors remained stable across all resolutions as well, even at
dp = 0.020 m.

As expected, computational demand increased with resolution (as shown in
Table 4.6); yet, for this wave regime, dp = 0.015 m again proved optimal, ensuring
accurate results at substantially lower computational cost than dp = 0.010 m.

Table 4.6: Number of particles and simulation times for T = 1.50 s

dp [m] Particles Simulation Time [s] ∆ Time

0.010 629,021 2,058.3 –
0.015 282,225 1,057.6 -49%
0.020 160,698 647.4 -69%

Case T = 2.50 s - Low Steepness For the low steepness wave, the influence
of resolution variation was minimal (Figure 4.6). Wave propagation remained
coherent and stable across all the cases. Even the coarsest resolution proved
sufficient, making it possible to significantly reduce computational cost (Table 4.7)
without compromising result quality.

Table 4.7: Number of particles and simulation times for T = 2.50 s

dp [m] Particles Simulation Time [s] ∆ Time

0.010 4,794,828 28,840.5 –
0.015 2,139,660 9,305.4 -68%
0.020 1,207,194 4,466.9 -85%

This analysis confirms that spatial resolution has a significant impact on SPH
simulation quality. For steep waves, at least 7-10 particles per wave height are
required to maintain accuracy and stability. For longer and flatter waves, 5-7
particles are usually adequate to ensure correct propagation. The intermediate
value dp = 0.015 m, corresponding to 6.67 particles per wave height, proved to be
a suitable compromise between computational efficiency and numerical fidelity.
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(a) dp = 0.010 m (b) dp = 0.015 m

(c) dp = 0.020 m

Figure 4.5: Comparison of different spacial resolution for moderate steepness
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(a) dp = 0.010 m (b) dp = 0.015 m

(c) dp = 0.020 m

Figure 4.6: Comparison of different spacial resolution for low steepness
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4.2.3 Numerical Speed of Sound Variation
In the SPH method, fluid pressure is computed using an artificial equation of
state that relates pressure to density, assuming a pseudo-compressible behavior,
as mentioned in subsection 2.3.2. The typical relation adopted in DualSPHysics
is the equation of state (2.18), used in the WCSPH formulation. Here, cs is the
imposed numerical speed of sound, which governs the fluid’s pressure response to
density variations. The latter is computed as:

cs = coefsound · uref , (4.2)

where uref is a characteristic velocity, typically the dambreak velocity.
Higher values of coefsound lead to a less compressible response, improving the

fidelity of the pressure field and numerical stability. However, this comes at the
cost of reduced time step size, due to the CFL condition [1]; as a result, increasing
values of coefsound extends the total simulation time. Conversely, excessively low
values may lead to poor pressure representation, numerical instabilities, or spurious
oscillations.

In practice, coefsound is a key tuning parameter that balances physical accuracy
and computational cost. To ensure weak compressibility, in this study the artificial
speed of sound coefficient was set to satisfy the condition cs ≥ 10 · umax, as
recommended in the DualSPHysics formulation [30, 25].

All tests were performed with a wave period T = 1.50 s, selected for its numerical
stability; wave height H = 0.10 m, particle spacing dp = 0.015 m and smoothing
coefficient coefh = 1.3. The tested values for coefsound were:

coefsound = {20, 25, 30}

All simulations used the same parametric domain, with consistent setup and
duration (covering at least 15 wave cycles). Free surface elevation and phase error
were measured at multiple positions along the domain and wall-clock time was
recorded as well.

Results and Discussion The results in Figure 4.7 show that changing the
coefsound parameter under moderate steepness conditions has a limited impact
on simulation quality. Across all test cases, the simulated free surface elevation
remained in close agreement, with only minor differences observed. Even at the
lowest tested value (coefsound = 20), both amplitude and phase remained within
acceptable limits.

From a computational standpoint, higher coefsound values significantly in-
creased simulation time, as expected (Table 4.8).
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Table 4.8: Simulation time as a function of coefsound (case T = 1.50 s)

coefsound Simulation Time [s] Change vs. coefsound=20

20 1,057.6 –
25 1,305.8 +23%
30 1,568.9 +48%

Although higher coefsound values may offer marginal improvements in wave
accuracy, the increase in computational cost is considerable. Given the absence
of instabilities or significant errors, the default setting of coefsound = 20 used in
this study is considered appropriate.

(a) coefsound = 20 (b) coefsound = 25

(c) coefsound = 30

Figure 4.7: Comparison of different coefsound values for moderate steepness
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4.2.4 Smoothing Length Variation
The extent of the interpolation kernel support, that is the maximum distance
within which a particle influences its neighbors during smoothing operations, is
a crucial quantity in the SPH formulation, as stated in subsection 2.3.1. This
distance, known as the smoothing length h, is computed as:

h = coefh · dp, (4.3)

The value of coefh determines the number of neighboring particles involved
in the interpolation and directly affects the quality of the approximated physical
fields [6]. Higher values of coefh produce a wider kernel support, including more
neighbors and resulting in smoother and more stable fields. However, this may
lead to excessive diffusion, reduced resolution, and signal attenuation. Conversely,
very low values of coefh decrease the influence radius, increasing sensitivity to
noise and the risk of numerical instabilities [26, 6].

The goal of this analysis is to evaluate how coefh affects the propagation
of regular waves, to identify a value that ensures a good compromise between
numerical and physical accuracy and computational cost.

The coefh variation was tested using the case with T = 1.50 s, previously
selected as the reference. The numerical and geometric parameters were kept
constant: dp = 0.015 m, coefsound = 20, wave height H = 0.10 m.

The computational domain, initial conditions, and boundary conditions remained
unchanged. As in previous analyses, the simulation time was set to cover at least
15 wave cycles to ensure full stabilization of the wave train.

The tested values for the coefh parameter were chosen in order to guarantee
sufficient neighbour interaction [25]:

coefh = {1.2, 1.3, 1.5}

For each case, wave elevation, phase error (with respect to the theoretical signal),
and computational performance were evaluated.

Results and discussion The results in Figure 4.8 show that the kernel smoothing
length, controlled by coefh, moderately influences the numerical behavior of wave
propagation.

In all configurations, the wave elevation is reasonably well preserved along
the domain. The case with coefh = 1.5 shows slightly higher and more uniform
wave amplitudes both in near and far field areas, suggesting reduced numerical
dissipation. In contrast, lower values (coefh = 1.2 and 1.3) lead to wave elevations
that converge at slightly reduced levels, but still acceptable. The phase error
remains low and relatively constant in all cases, with minimal variations across
different values of coefh.
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From a computational perspective, increasing coefh leads to a higher number
of neighbors to process, thus raising the computational load. The simulation time
grows accordingly, as summarized in Table 4.9.

Table 4.9: Simulation time as a function of coefh (case T = 1.50 s)

coefh Simulation time [s] ∆ Time relative to 1.2

1.2 939.1 –
1.3 1,057.6 +13%
1.5 1,103.7 +17.5%

(a) coefh = 1.2 (b) coefh = 1.3

(c) coefh = 1.5

Figure 4.8: Comparison of different smoothing length values for moderate steep-
ness

49



Numerical Model

The default value coefh = 1.3 chosen for this work proves to be a well-balanced
choice, providing numerical stability without imposing excessive computational
cost.

4.3 Wave Absorption Strategy and Comparative
Evaluation

A critical aspect in the numerical generation of waves is the effective treatment of
their downstream propagation, particularly to prevent unphysical reflections at the
boundary. Reflected waves can interfere destructively or constructively with the
incident wave train, introducing errors in the solution, distorting the free surface
elevation in the far field, and compromising the accuracy of wave calibration and
validation [38].

4.3.1 Absorption Methods in DualSPHysics
The DualSPHysics framework provides different options to mitigate wave reflections,
which can be classified in three main categories:

1. Passive absorption: These methods rely on geometric or artificial damping
mechanisms to dissipate wave energy as it approaches the downstream bound-
ary.

• Sloped beach: A physical absorption technique that mimics natural
dissipation by introducing a sloped bed at the end of the tank. As waves
break on the slope, their energy is dissipated through bottom friction and
turbulence. While simple and effective for long waves in shallow water,
this approach is spatially expensive and less efficient for short waves or
deep water conditions [36].

• Damping zone: A numerically implemented region near the downstream
boundary, where particle velocities are gradually reduced in time. Dual-
SPHysics reduces particle velocities after each time step using a quadratic
decay function:

v = v0 ·
A

1 − β · ∆t ·
3

x − x0

x1 − x0

42
B

, (4.4)

where v is the particle velocity, v0 is the initial velocity at x0, β is a
damping coefficient (typically set to 10), ∆t is the time step, x0 and x1
define the start and end of the damping zone.
This method offers good efficiency in compact domains and can be tuned
to different wave conditions with minimal setup effort [39].
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2. Relaxation Zone: An increasingly adopted approach is the use of relaxation
zones, where the computed velocity and surface elevation are blended with a
predefined target state via a spatial weighting function C(x) [39].
The blended horizontal and vertical velocities are computed respectively as:

u = C ucl + (1 − C) upt, (4.5)
w = C wcl + (1 − C) wpt. (4.6)

where ucl and wcl are the theoretical velocities and upt and wpt are the ones
computed in the numerical model.
The relaxation zone offers high absorption efficiency with minimal reflected
energy, provided that the zone length and weighting function are tuned
correctly. It is also compatible with wave generation, allowing its use at both
ends of the domain [38, 39].

4.3.2 Evaluation of Sloped Beach and Damping Zone Per-
formance

In this study, only passive wave absorption strategies were adopted – namely, the
sloped beach and the numerical damping zone –, since these are among the most
commonly adopted techniques in DualSPHysics due to their geometric simplicity
and independence from real–time feedback mechanisms [38].

To assess their relative performance, a comparative test was carried out using a
regular wave case characterized by a wave height H = 0.1 m and period T = 1.50 s.
The SPH parameters were set with particle spacing dp = 0.015 m, coefsound= 20
and coefh= 1.3, while all other values were kept at their default settings as
defined in the reference Table 4.2. This wave profile corresponds to the standard
configuration identified in the parametric study.

Figure 4.9: Schematic of the numerical wave tank with a sloped beach

In both simulations, the main computational domain consisted of a flat–bottom
propagation zone of length 3λ, with a constant water depth equal to λ to ensure deep
water condition, in consistency with all test cases. The only variation concerned
the downstream absorption region, configured as follows:
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• Sloped beach: a 1:10 slope starting at the end of the flat region and extending
over a total length of approximately 10λ, gradually reaching the still water
level (Figure 4.9).

• Damping zone: a region of length 2λ, in which particle velocities were pro-
gressively reduced following the formulation (4.4) (Figure 4.1). A damping
coefficient β = 5 was adopted to account for the extended damping region, set
to twice the standard length (2λ instead of λ, for which β = 10 is typically
used [25]).

Performance evaluation focused on wave attenuation, evaluated by analyzing
the evolution of the wave along the domain, with particular attention to the decay
in the absorption region, and computational efficiency, measured by the total
simulation time and the number of fluid particles required.

(a) Damping zone

(b) Sloped beach

Figure 4.10: Wave height evolution along the domain.

Results and Discussion The results of the comparison are shown in Figure 4.10,
summarized in Table 4.10 and discussed below.
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Table 4.10: Comparison between sloped beach and damping zone in terms of
absorption efficiency and computational performance.

Parameter Sloped Beach Damping Zone

Implementation Geometric modeling Velocity scaling
Absorption effectiveness Moderate High
Propagation zone length 3λ 3λ
Absorption region length 10λ 2λ
Total domain length 13λ 5λ
Number of particles 569,097 282,225
Simulation runtime 2,117 s 1,058 s

The numerical damping zone led to a rapid and complete attenuation of wave
amplitude within the absorption region. The decay was smooth and progressive,
with the wave height reaching zero at the end of the damping zone. This behavior
indicates effective energy dissipation and a high absorption performance, minimizing
unwanted disturbances in the domain and preserving both the target wave height
and the waveform shape.

Conversely, the sloped beach exhibited a slower and less pronounced amplitude
decay. Although the wave height decreased significantly along the slope, it did not
vanish entirely, remaining at low but non negligible levels by the end of the domain.
This residual energy may potentially result in minor distortions of the waveform
within the propagation zone, especially in long term or multi-wave scenarios.

Beyond its physical performance, the damping zone offers clear advantages in
terms of computational efficiency. The simulation with the sloped beach required
more than twice the runtime and double the number of particles , primarily due to
the larger domain needed to accommodate the 10λ slope. By contrast, the damping
zone achieved better absorption results using a compact 2λ region attached to
the propagation zone, significantly reducing both computational cost and memory
usage.

The use of the damping coefficient β = 5, as previously defined, proved to be an
effective compromise between computational cost and wave absorption performance.
As a result, this damping strategy was adopted in all simulations.
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Results

The following sections outline the calibration process described in Chapter 3 and
present the results of the controlled wave generation approach based exclusively on
the linear components of a target wave. The procedure is first applied to regular
waves, used here as a reference to validate the method, and then is extended to
irregular wave groups with the necessary adaptations.

5.1 Regular Wave Calibration
As a preliminary verification case, the procedure was initially tested on a regular
monochromatic wave. In this simplified scenario, the calibration focused exclusively
on correcting the amplitude of the linear spectrum, neglecting both the phase and
the higher-order harmonic components. This verification will be addressed more
thoroughly in the context of irregular waves, where spectral phase coherence plays
a crucial role.

A regular target wave was selected by specifying its period and height, along
with a fixed point in the domain where the wave signal was to be accurately
reproduced. In this study, the control point is located at a distance of x = 1,5λ
from the generator, corresponding to the beginning of the far field, where the wave
is fully developed and no longer affected by transients or evanescent modes.

Starting from this target condition, the signal was prescribed to the piston-
type wavemaker using the Biesel transfer function (3.13). At the end of each
simulation, the free surface elevation signal was extracted at the control point
using the MeasureTool utility and analyzed in post-processing via FFT. To avoid
distortions due to the initial transient, the analysis was restricted to a stationary
time window. The FFT yielded the spectral amplitude a associated with the wave
period, from which the measured wave height is computed as Hout = 2a.

The comparison between Hout and the target value Htarget allowed updating the
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input Hin for the next iteration using:

H i+1
in = H i

in × Htarget

H i
out

.

This relation progressively reduces the discrepancy between the simulated and
target wave heights; the process is repeated until the relative error falls below a
predefined tolerance threshold: -----Htarget

H i
out

− 1
----- < ε.

In this study, a tolerance of ε = 5% was adopted, set with a maximum of 20
iterations.

5.1.1 Amplitude Calibration Convergence
The calibration procedure was tested on three cases characterized by different
steepness levels, obtained by varying the wave period while keeping the height
fixed at H = 0.10 m. The selected cases – T = 0.80 s, T = 1.50 s, and T = 2.50 s –
correspond to steepness values of approximately 1:10, 1:40, and 1:100, representative
of high, moderate, and low wave steepness as defined in earlier tests. All other
simulation parameters (such as, computational domain, boundary conditions, spatial
resolution, total simulation time) were kept constant and matched the standard
configuration defined in Chapter 4.

The results, presented in the three subplots of Figure 5.1, show that the case
with the highest steepness (T = 0.80 s) required three iterations to reach the target
wave height. In contrast, for the less steep cases (T = 1.50 s and T = 2.50 s),
convergence was achieved in only two iterations.

In all cases, the first attempt underestimated the target wave height; however,
the error was significantly larger in the steepest case and only minor for the less
steep conditions. The ratio Htarget/Hout quickly approached unity in the following
iterations, confirming the effectiveness of the method.

This behavior aligns with expectations: steeper waves are more sensitive to
numerical dissipation and nonlinear deformations, which reduce the predictability
of the system’s response and may require additional iterations to correctly calibrate
the input.

5.2 Irregular Wave Calibration
Following the successful validation of the calibration procedure on regular monochro-
matic waves, the methodology was extended to the case of irregular wave groups
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(a) High steepness (b) Moderate steepness

(c) Low steepness

Figure 5.1: Convergence of the amplitude calibration procedure for three steepness
levels.
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characterized by a predefined linear spectrum. This more complex scenario allows to
evaluate the robustness of the approach under realistic conditions and to investigate
the model’s ability to spontaneously reproduce nonlinear interactions.

The irregular wave signal used in this study was extracted from an experimental
campaign conducted at Oregon State University’s wave tank facility, as described
in [45]. The tests were part of the preliminary assessment of the SWINGO wave
energy converter and aimed to characterize the system’s response under realistic
sea-state conditions. The experiments were carried out in a rectangular wave tank
measuring 48.8 m in length, 26.5 m in width, and 2.1 m in depth. Waves were
generated by piston-type wavemakers; the surface elevation was recorded along the
flume to capture both near field and far field wave behavior.

The selected experimental signal corresponds to a wave group with a notable
steepness and a clear focusing behavior: an initial low-amplitude oscillation gradu-
ally builds up to a well-defined peak around t = 21 s (Figure 5.2).

Figure 5.2: Experimental free surface elevation signal, measured in the far field
of the domain under deep water conditions.

The full FFT spectrum of the signal (Figure 5.3a) shows that the energy is
predominantly concentrated in a narrow band around fp = 0.75 Hz, with minor
contributions from higher or lower frequencies. To filter the linear spectrum, the
range 0.60–0.90 Hz was selected, effectively capturing the first-order harmonics
while excluding second-ordercontributions, namely subharmonic and superharmonic
components (Figure 5.3b). However, the definition of an appropriate frequency
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window is not always trivial; in this case, the spectrum was sufficiently narrow-
banded to allow a clear separation between linear and higher-order components.

(a) Full FFT spectrum of the original sig-
nal.

(b) Filtered spectrum in the range
0.60–0.90 Hz.

Figure 5.3: Full FFT spectrum and the filtered band used for signal reconstruction.

5.2.1 Numerical Setup
In the DualSPHysics numerical model, the free surface elevation was evaluated at
a distance of 1.5 λp from the virtual wavemaker, where λp is the peak wavelength
associated with the target spectrum. This placement ensures that the observed
signal is not affected by transient components or near field disturbances. The
overall dimensions of the numerical wave tank were also defined as a function of
λp, following the setup described in Chapter 4.

The bidimensional numerical domain was modeled using a uniform particle
spacing of dp = 0.015 m, with a smoothing length ratio of coefh = h/dp = 1.3, and
an artificial speed of sound coefficient set to coefsound = 20, consistent with the
settings adopted in Chapter 4. The simulation duration was set to 50 s, exceeding
the original experimental window of 35 s, to ensure the complete development of
the wave group at the control point. At each iteration the free-surface elevation
was sampled using MeasureTool and analyzed via FFT to assess the convergence
of the input calibration and the emergence of nonlinear components.

5.2.2 Spectral Tuning Procedure
The filtered spectrum, described in the previous section, was used to reconstruct
the linear input signal by extracting the amplitudes and phases of the first-order
harmonics. These components were then propagated backward from the control
point to the wavemaker using the linear dispersion relation, and the piston motion
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was computed via the Biesel transfer function. The calibration procedure was then
carried out iteratively, following the strategy outlined in subsection 3.3.3.

Convergence was considered achieved once the relative amplitude error fell
below 5% and the phase error remained within π/18 radians for the dominant
spectral components in the target band. In the presented case, convergence was
reached within six iterations, confirming the robustness of the method even under
broadband and steep wave conditions.

The final calibrated output signal, along with the results of each iterations,
are analyzed in the next section to evaluate the effectiveness of the calibration
procedure, with an additional focus on the nonlinear spectral evolution and the
potential emergence of higher-order components: their presence in the simulation
would demonstrate the SPH model ability to naturally reproduce second-order
interactions.

5.2.3 Convergence Analysis and Spectral Validation
The final simulation outputs are shown in Figure 5.4a and Figure 5.4b, which
compare the time histories of the numerical and target signals at the first and
sixth iteration, respectively. The initial result shows noticeable deviations in both
phase and amplitude, especially near the focal region. These discrepancies are
progressively corrected through the iterative procedure, and by the sixth iteration,
the numerical signal closely matches the theoretical one, especially around the
main crest. The overall envelope of the wave group is well captured; minor residual
mismatches remain in the trailing portion of the signal, likely due to numerical
dispersion after the focusing point.

(a) First iteration (b) Sixth iteration

Figure 5.4: Comparison between theoretical and measured wave elevation at the
control point. The agreement improves significantly after six iterations.
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Figure 5.5: Amplitude and phase comparison between input, output, and target
at the last iteration for the main frequency components.

In the frequency domain, the calibration proves effective in reconstructing the
desired linear spectrum. As shown in Figure 5.5, the numerical and target spectra
agree well around the peak frequency (fp ≈ 0.75 Hz), confirming that the iterative
process successfully tuned both amplitude and phase of the first-order components.

Figure 5.6a and Figure 5.6b display the evolution of amplitude and phase
residuals during the iterative process. The amplitude error gradually decreases
over the iterations and falls below 3% for all relevant components by the sixth
iteration. Similarly, phase errors converge to near-zero values, confirming validity
of the spectral correction algorithm. A slightly slower convergence was observed
for higher-frequency components, likely due to the method greater sensitivity to
low amplitudes.

Beyond the linear spectrum, the SPH simulation also reproduced visible second-
order components. These include both superharmonic peaks near 1.5 Hz and
low-frequency subharmonics below 0.5 Hz. Their appearance is a strong evidence of
the SPH model ability to capture nonlinear energy transfers intrinsically, without
requiring them to be prescribed in the input signal.

The comparison in Figure 5.7 shows qualitative agreement with the experimental
signal, although some differences remain. In particular, the amplitudes in the
subharmonic region are slightly overestimated in the simulation. This may be
attributed to the high sensitivity of the model to components with very low
amplitude, which could lead to an overestimation of low-frequency energy. Similar
effects have been reported in previous studies [5], and could also be influenced by
the spatial resolution or the choice of smoothing length.

Overall, the results demonstrate that the SPH model, combined with the
proposed calibration strategy, can accurately reproduce both linear and nonlinear
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(a) Residual amplitude error. (b) Residual phase error.

Figure 5.6: Residual amplitude and phase errors over successive iterations of the
calibration process.

Figure 5.7: Comparison between target and simulated FFT spectra at the sixth
iteration.

wave characteristics. The method proved effective in reconstructing a focused
wave profile with high fidelity in both time and frequency domains. Moreover, the
spontaneous emergence of second-order components confirms the physical realism
of the numerical approach.
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Chapter 6

Conclusions

The present study aimed to model free-surface water waves in a numerical tank,
with a specific focus on reproducing a target wave with given characteristics at
a selected point within the domain, starting solely from its linearized spectrum
definition. As stated at the beginning of this work, wave amplitude decays between
the generation and control points, due to both physical and numerical dissipation [6,
7, 3]. The analysis therefore began by evaluating this phenomenon under baseline
conditions, conducting a parametric study on key SPH parameters in order to
achieve more accurate reproduction.

In particular, the results concerning spatial resolution dp and kernel smoothing
length h, which have been identified as key parameters influencing numerical
dissipation [6, 3], were consistent with recommendations reported in literature [25,
30, 6, 26]. The final choice of the parameters adopted in the subsequent simulations
– dp = 0.015 m, coefsound= cs

uref
= 20, coefh= h

dp
= 1.3, laminar viscosity

treatment – represented a trade–off between results fidelity and computational cost.
After tuning key parameters to manage numerical dissipation, the focus shifted

to adjusting the input signal for accurate wave generation. The implemented
calibration procedure, inspired by the work of [5], was first tested on regular
waves, using amplitude as the only control variable. This yielded promising results,
successfully reproducing the target surface elevation at the control point in no more
than two iterations, with a relative error of 5%, or even lower for less steep waves.

Given the successful application of the technique on regular waves, it was
then extended to irregular waves, including phase control as well. The test,
performed on a wave measured under experimental conditions [45], confirmed that
the model is capable of reproducing the full wave spectrum even when initialized
with only linear components, including second–order effects such as subharmonics
and superharmonics.

The calibration procedure enabled high accuracy reconstruction of the linearized
spectrum in both phase and amplitude, especially for the dominant components,
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which where reproduced with amplitude errors below 3% and phase errors within
π
18 radians in fewer that six iterations.

However, some limitations were observed, particularly in reproducing low-
frequency harmonic components and components with very low amplitudes. This
may be attributed to the model’s limited sensitivity to weak signals and could
potentially be improved by implementing active control of second-order effects – a
feature that is, in fact, available within the DualSPHysics framework [38].
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