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Abstract

Active debris removal (ADR) is recognized as one of the most effective strategies to address
the ever-increasing problem of space debris. This thesis highlights the potential of solar
sailing as a propellant-free propulsion method that offers an unlimited AV budget suitable
for multiple debris removal missions. Traditional proximity operations are considered and
their feasibility when using a solar sail is established for Low Earth Orbit (LEO) scenarios
where space debris density is higher. Given the unique dynamics of solar sails, the study
explores alternative trajectories such as Hold trajectories and Walking Safety Ellipses for
target inspection, which improve passive safety by maintaining a collision-free path even in
the event of sail failure. The transfer from a far-range phase point to an Inspection Loop is
then examined. GPOPS-II, a software based on direct collocation methods, is employed to
optimise these trajectories and to evaluate the effectiveness of these methods in addressing
optimisation challenges specific to close-proximity operations. The results demonstrate
that the proposed Hold and Inspection Loop Trajectories enable a safe approach to target
debris, potentially reducing overall ADR mission costs due to the sailcraft’s propellantless
nature.
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Symbol Definition
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Chapter 1

Introduction

Since the beginning of space exploration, the number of artificial objects in orbit—ranging
from decommissioned satellites to mission-related debris—has steadily increased, raising
serious concerns regarding space traffic and the risk of collisions. Low Earth Orbit (LEO)
[1] has become increasingly congested, populated by miniaturized space systems and large
constellations. The dominant sources of space debris are fragmentation and collision,
such as the 2009 collision between Cosmos and Iridium satellites [2] and accidental or
intentional fragmentations, like the 2007 destruction of the Chinese Fengyun satellite, or
more recently in 2023 the VESPA adapter, a target selected for the ClearSpace-1 debris
removal mission, which due to fragmentation had to be replaced [3].

Evolution in All Orbits

35000

30000

25000

20000

15000

Object Count [-]

10000

5000

Reference Epoch

Figure 1.1: Spatial and temporal distribution of space debris and orbital objects [1].

As of August 2024, ESA estimates over 54,000 objects larger than 10 cm are in orbit,
including 9,300 active payloads, along with 1.2 million objects between 1-10 ¢cm and 130
million between 1 mm—1 cm. Figure 1.1 clearly shows that the number of space debris
has grown quickly since the 1960s. Objects are classified as PL (active payloads), PF/RF
(fragmentation debris), RB (rocket bodies), and UI (unidentified).

Space debris mitigation guidelines have been identified to protect the space environment
from the "Kessler Syndrome", which predicted the formation of a debris belt in 1978 [4, 5.
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Introduction

A first mitigation measure was the reduction of post-mission lifetime limit from 25 down to
5 years [6]. However post-mission disposal alone may not be sufficient in highly congested
orbital regions, indicating a crucial role for active debris removal (ADR) strategies [7] as
shown in Fig. 1.2. Simulations conducted by NASA show that removing as few as 5 to 20
high-risk objects per year can significantly slow debris growth until stabilizing the space
environment for the next 200 years [8, 9]. These findings demonstrate how ADR must be
considered as an option to preserve near Earth space.

There are several Active Debris Removal (ADR) missions which have been launched
or are currently under development to validate key technologies. The RemoveDEBRIS
mission, led by the University of Surrey, demonstrated experimental capture techniques
such as a net and harpoon system for debris collection [10]. The ELSA-d mission, launched
by Astroscale and JAXA in April 2021, is operating in orbit to test technologies for
rendezvous, capture, and de-orbiting of defunct objects [11]. In parallel, ESA’s CleanSpace
initiative is advancing preparations for ClearSpace-1, a mission aimed at removing a
specific non-cooperative payload using robotic arms, while also serving as a platform for
validating proximity operations in orbit [12].

100000 No mitigation
90000 Extrapolation of our
£ current behaviour
8 80000 |
% 70000
2 60000 |
s
50000 | 100% Passivation
*E 40000
= 30000 | 100% Passivation +
20000 —~— === Q0% Post Mission Disposal
100% Passivation +
10000 90% Post Mission Disposal
2000 2050 2100 2150 2200 + ADR (5 objects per year)

Figure 1.2: Evolution of space debris environment and effectives of mitigation measures
[7].

Most ADR demonstration missions currently in flight or planned are based on conven-
tional propulsion systems, such as chemical or electric thrusters. These systems offer high
manoeuvrability, allowing the spacecraft to actively target and rendezvous with debris
objects. However, their effectiveness is limited by the constrained amount of propellant
that can be stored on board, which directly affects the mass of the spacecraft and the cost of
the mission. An alternative approach to conventional propulsion in ADR, missions involves
the use of propellant-free systems, such as solar sails, which leverage the momentum of
Sun-emitted photons to generate thrust. As outlined by McInnes in Fig. 1.3 [13], for
conventional propulsion systems, the specific impulse (/) characterizes performance, as
described by the Tsiolkovsky equation. Since a solar sail operates without propellant
consumption, its mass remains constant, resulting in an effectively infinite /;,. However,
this is not valid for finite-time missions if the sail is a low-performance one. In such cases,
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Introduction

solar sails are only competitive over long durations. While low-performance sails require
extended timescales to be effective, high-performance solar sails can quickly outperform
conventional propulsion systems.

A few examples of flown missions are: IKAROS, the first full solar-sailing demonstration,
NanoSail-D (2010) by NASA, LightSail-1 & 2[14], for Earth-bound missions and the more
recent ACS3 [15], currently in orbit. These missions have primarily focused on validating
sail deployment and flight capabilities.

100,000
50,000

10,000

5000

Specific impulse (s)

1000

500

Chemical propulsion

100

50 100 500 1000
Mission duration (days)

Figure 1.3: Solar sail effective I, as a function of mission duration at 1 au [13].

While solar sails have been extensively studied for interplanetary missions, their ap-
plication to Rendezvous and Proximity Operations (RPOs) remains almost unexplored.
Proximity operations that include far range operations, close proximity operations, final
approach and docking, have been studied for spacecraft employing conventional propulsion
systems [16] but they present significant challenges due to the dynamic constraints and
safety considerations, especially if the target is uncooperative like a space debris. The use
of a solar sail for debris removal around Earth, has been studied in [17, 18], demonstrating
a successful orbit transfer from a lower parking orbit to the target orbit in LEO. In this
context, the sailcraft serves as a chaser, moving between multiple non-cooperative debris
targets within a single ADR mission.

The SWEEP (Space Waste Elimination around Earth by Photon Propulsion) project
also follows this principle, exploiting solar-sailing technologies to "clean up space and
preserve the near-Earth environment'[19]. As part of the above-mentioned project, research
has been conducted on close-proximity operations in ADR missions using solar sails. It was
shown that far-range operations are feasible and the concept of hold trajectories (instead
of traditional hold points required in this mission phase) was introduced, accounting for
operational and dynamical constraints [20]. This leads to the need of filling the research
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gap on the next phase of RPOs: close-range rendezvous operations and their feasibility
using solar-sail propulsion.

1.1 Research Objective and Questions

This research aims to investigate the feasibility and performance of solar-sail-based ADR
missions, with a particular focus on the close-range phase of rendezvous operations.
Previous studies have primarily addressed the phasing and far-range rendezvous phases
— demonstrating successful orbit transfers from lower parking orbits to target orbits in
LEO, and showing the feasibility of hold trajectories under solar-sail constraints . Instead,
close-range operations remain largely unexplored [17, 20].

During proximity operations with solar sails, hold trajectories — time-flexible paths
where the chaser can remain indefinitely — are employed instead of fixed hold points.
This is because the unique dynamics and operational constraints of solar sails make it
infeasible to maintain a hold point, as the sail inevitably drifts over time. Building upon
the far-range research, this work explores whether similar strategies can be applied in the
close-range domain.

The objective of this thesis is to design optimal close-proximity trajectories toward a non-
cooperative target, while considering solar-sail dynamics and enforcing safety constraints.
RPOs with non-cooperative targets represent the most critical segment of ADR missions.
Given the collision risk with passive debris, a robust trajectory optimization is essential.
The optimal control problem is solved using direct collocation methods implemented
through GPOPS-II, aiming to produce feasible and safe trajectories for ADR missions
with solar sails.

The initial state vector for the relative motion is defined following standard RPO
strategies, with the chaser located behind the target along the negative V-bar direction.
The final position is defined at a relative distance of about 40-50 m, accounting for realistic
navigation uncertainties, including GPS and relative position estimation errors.

To connect the far-range rendezvous phase with close-proximity operations, an interme-
diate transfer segment is also investigated. During the trajectory design, Keep-Out Zones
(KOZs) are defined around the target to ensure safety. Within this framework, inclined
passive-safe trajectories are considered, using the safety ellipse concept as a dynamic
hold trajectory. A walking safety ellipse, also referred to in the literature as a spiralling
approach, is then employed for close-range inspection and target characterization [21].

Therefore the subject of this work is to answer the following research questions:

1. What does an optimal trajectory for close-range operations look like with solar-sail
propulsion?

2. Is direct collocation accurate, robust and suitable to obtain optimal close-range
trajectories incorporating the main constraints?

o Accurate: Does it compute trajectories that satisfy dynamics and constraints
with sufficient precision not only at the collocation nodes?

4
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o Robust: Can it consistently find feasible solutions even with uncertain inputs or
poor initial guesses?

o Suitable: Is it capable of handling complex constraints (e.g., keep-out zones)
efficiently?

By addressing these questions, this work contributes to the understanding of if and how
solar sails can be effectively utilized in constrained proximity operations and provides a
foundation for future investigation for RPOs using solar-sail propulsion.

1.2 Thesis Outline

This thesis has the following outline to address the research questions on close-proximity
operations using solar-sail propulsion previously presented.

The methodology employed is presented in Chapter 2 . It begins with a review of
solar-sail fundamentals and environmental models, followed by an overview of proximity-
operations phases, direct-collocation optimization problems and setup of the software
GPOPS-II.

The results are presented in two dedicated chapters: Chapter 3 analyses Hold Trajec-
tories (Safety Ellipse), presents the Inspection Loop, and proposes a transfer strategy;
Chapter 4 investigates, through a parametric analysis, different scenarios for the Safety
Ellipse case, exploring different: altitudes, orbit geometries, AA, characteristic acceleration
(a.) and initial true anomaly.

In Chapter 5 conclusions are drawn: first the key findings are summarised, then the
research questions are answered, and then recommendations are offered for future work.

Appendix provides (A) verification and validation details, Appendix (B) includes
GPOPS-II input configurations and sensitivity results, and Appendix (C) contains addi-
tional figures and tables.



Chapter 2

Methodology

This chapter presents the assumptions used for the environmental and dynamic model and
the setting of the optimisation problem used for the simulation of proximity operations
with a solar sail. First, the reference frames are defined, including the inertial, co-moving
(LVLH), and Sunlight frame. Then, the main phases of rendezvous and proximity operations
are described, including the assumptions made on the sensors and the safety constraints
(like the KOZs).

The dynamical model used for the sailcraft is then introduced. The model includes the
Clohessy-Wiltshire equations defined in the LVLH frame and the SRP acceleration using
an ideal flat sail.

Next, a brief overview of commonly used optimisation methods is presented. This work
employs direct collocation as its chosen solution method, implemented using the GPOPS-II
software.

Finally, the simulation and optimization setup is presented. This includes the initial
conditions, the sail parameters, the definition of the optimization problems for the hold
phase, the inspection loop, and the transfer trajectory.

2.1 Reference Frames

This study employs three primary reference frames to model spacecraft dynamics and
control: the Sunlight reference frame, the Earth-Centred Inertial (ECI) frame, and the
Local Vertical Local Horizontal (LVLH), also referred to as co-moving frame.

Sunlight Reference Frame The Sunlight reference frame (S), Og(Zs, ¥g, Z5), is centred
on the sailcraft and is used to model the orientation of the sail with respect to incident
sunlight. The Zg-axis is aligned with the sunlight direction & (from Sun to sail), the §¢-axis
is given by )¢ = Z; x 8, and 2¢ completes the right-handed set [17, 22].

6
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The transformation matrix from the Sunlight frame to the ECI (I) frame is:

—COSQn COS0p  sinag — — cosag sindg
Rs; = |—sinagcosd, —cosay —sinagsindg (2.1)
—sindg 0 cos 0o

where aq and dg are the right ascension and declination of the Sun, respectively.

Earth-Centred Inertial (ECI) Frame The ECI frame, Z(X,Y, Z), is a non-rotating
inertial frame with origin at Earth’s centre. The X-axis points toward the mean vernal
equinox (J2000 epoch), the Z-axis aligns with Earth’s mean rotation axis, and the Y-axis
completes the right-handed triad. This frame serves as the baseline for defining motion
and transformations of all other frames [23].

Local Vertical Local Horizontal (LVLH) Frame The LVLH, or co-moving frame, is
a rotating reference frame centred on the target spacecraft in orbit. It is defined by:

e 1 (R-bar): along the radial vector 74/|74|.

o k (H-bar): orbit angular momentum vector h A =Ta X Ug.

A

e j (V-bar): completes the triad, j = kxi.
This frame, shown in Fig. 2.1, is commonly used in relative motion analysis [16] to simplify
the equations for rendezvous dynamics.

The rotation matrix from ECI to LVLH is:

i )oK
[Q}I—)X == /Z\y 3@( ]fy (22)
2 ). ke

Utility in Proximity Operations

Using the LVLH frame allows to express conveniently the relative position 57 and velocity
v of the chaser spacecraft as the chaser approaches the target. This reference frame
simplifies equations of motion, such as the Clohessy-Wiltshire or Hill-Clohessy-Wiltshire
(HCW) equations, which describe linearized relative dynamics near circular orbits [23].
The LVLH frame is critical for onboard guidance, navigation, and control (GNC)
systems, especially when dealing with constraints such as line-of-sight limitations, sensor
fields of view, and approach direction preferences (e.g., V-bar or R-bar approaches).
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A's orbital plane
J
k *\1‘{1- 1
\\: .:'.I - f"f
A7
I
s-;
7l
Targel or
“refercnce” orbit

Inerial frame

Figure 2.1: Co-moving LVLH reference frame attached to A (target), from which the
body B (chaser) is observed.

2.2 Rendezvous and Proximity Operations

The purpose of this first section is to give an overview on the main phases of a rendezvous
approach, based on [16].

Main phases of a rendezvous mission

Rendezvous and proximity operations (RPO) are divided in: launch, phasing, far-range
rendezvous, close-range rendezvous and mating.

During the launch, a chaser spacecraft is injected into the orbital plane of the target!,
constrained by a specific launch window to minimize phase angle and plane change
requirements.

The first major phase, phasing, aims to reduce the phase angle between the chaser
and the target through a series of orbital manoeuvrers such as perigee/apogee raising or
Hohmann transfers. These manoeuvrers correct injection errors and gradually bring the
chaser to an initial aim point, also known as the entry gate. This gate is located near
the target’s orbit and is strategically chosen based on factors like sensor range, docking
axis orientation, and safety. The final phasing manoeuvrer must place the chaser within
the acquisition range of the far-range relative navigation sensors. The most convenient
solution to locate this point is behind (V-bar) and slightly below (R-bar) the target,
because the natural drift will move the chaser slowly toward the target without needing
propelled correction manoeuvres. During launch and phasing, navigation is based on
absolute measurements in an Earth-Centred inertial frame.

The far-range rendezvous phase or ’homing’ begins at distances on the order of 10

IThe chaser will be launched into a ‘virtual’ target plane, as the target orbit plane will drift with time.

8
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km and continues until the chaser closes in to a few kilometres from the target. In this
phase, the chaser trajectory, using a co-moving frame centred on the target, is guided
using relative navigation sensors. The major objectives of this phase are: the acquisition of
the target orbit, the reduction of approach velocity and the synchronisation of the mission
timeline. Hold points may be inserted in this phase, serving as time-flexible waiting zones
where the chaser can remain without active propulsion. These allow synchronization
of the mission timeline with external elements such as communication windows or Sun
illumination.

During the close-range rendezvous, safety-critical operations dominate. All out-of-plane
errors, such as inclination and right ascension of the ascending node (RAAN), must
be corrected to match the accuracy of in-plane errors. This phase includes closing—a
preparatory trajectory aligning the chaser with the final approach corridor—and the final
approach, where specific mating conditions in position, velocity, attitude, and angular rates
must be met. The approach can follow either a V-bar (velocity vector) or R-bar (radial
vector) trajectory Fig. 2.2. In V-bar approaches, closing and final approach phases often
merge due to the constant direction of motion. For R-bar strategies, transition trajectories
such as fly-around or radial transfers are employed to safely align the chaser with the
target corridor.

(b) approach on -V-bar side
example: closed loop controlled

(a) approach on +V-bar side  5rqet straight line trajectory
example: hopping trajectory, ., ' hold point
\ ‘ on =V-bar
3 2 Vo1 ; - km

V-bar g -

(c) 1I¥‘-around to
R-bar approach by
ial manoeuvr

hold point  (f) straight line
on +V-bar approachon ~

+R-bar side . (d) drift orbit to
. R-bar approach
(e) looping trajectory to
R-bar km \__R_-t_'bar approach

Figure 2.2: V-bar and R-bar final approach.

The final stage, mating, involves either docking or berthing. Docking is an active
procedure where the chaser controls the approach to align and engage with the docking
interface of the target. In contrast, berthing uses robotic arms or external grappling
mechanisms to capture and secure the chaser. In both cases, the process must ensure a
condition of no escape, attenuation of residual motion, alignment of capture interfaces,
and establishment of a rigid structural connection.

Keep-Out Zones (KOZs)

Safety is the primary design driver during RPOs (far and close operations). To minimize
the risk of collision with the target spacecraft or debris, the rendezvous trajectory must be
carefully planned to account for navigation uncertainties and the physical dimensions of
both the chaser and the target. The basic concept of safe relative trajectory design is to
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define a series of nested Keep-Out Zones (KOZ) around the target Fig. 2.3. These zones
are constructed based on the estimated navigation uncertainty at different stages of the
approach and become increasingly restrictive as the chaser approaches.

The sizing of the KOZs used in this work is based on the following references [12, 24,

25, 26]. The KOZs considered are:

« Keep-out Sphere (KOS): represents the inner keep-out volume, whose size is based
on the geometry of both the chaser and the target. It is defined as a sphere, centred
on the target, with a radius equal to the worst-case sum of the radii of the chaser
and target, plus the maximum position uncertainty (o) and a safety factor x (which
can be either 1.5 or 2). Entry in the KOS is permitted when the target has been
fully inspected and when the closing and mating phases start. If a target of 0.58
m hard-body radius is considered (as in the case of PROBA-1, the target of the
ClearSpace-1 Mission [27]), and a radius of 7 m is assumed for the solar sail (as in
ACS3 [15]), and a 1o uncertainty of 10 m per Cartesian component is assumed, the
resulting total positional 1o uncertainty is approximately 17.5 m. This leads to the
following radius of the KOS:

Tkos = K(rchaser + Ttaregt + 10) ~ 50m (23)

We can confirm that this value is accurate and that a similar value was used in the
ADRAS-J mission [28].

Keep-out Ellipsoid (KOE): defines the outer safety volume, also referred to as
the approach zone. The chaser enters the KOE after an in-flight inspection of the
target. It is determined by the sum of the maximum target error and the expected
navigation uncertainty (3c= 10 m) of the onboard navigation system (e.g., GPS),
multiplied by a safety factor x [24]. Considering a=c, the semi-minor axes of the
ellipsoid, and b the semi-major axis, the following values are obtained applying a k =
2. A value of 30yqcker Of 358 m is chosen for the daily target uncertainty along-track
(AT) direction [25]:

bKOE = /f<0-chaser + Utarget) ~ 740 m (24>

For the cross-track (CT) and radial direction (RA) the uncertainty 3o is evaluated
with the following proportion CT:AT ~ 0.4:1 found in [25].

AKkoE — CKOE = /f(o-chaser + Utarget) ~ 160 m (25>

Main navigation sensors for RPOs

During the final kilometres of an autonomous rendezvous, the chaser’s navigation per-
formance must transition from a coarse, hundred-of-meter accuracy to ten/few meters.
To support the whole phase of proximity-operations Active Debris Removal (ADR) and
On-Orbit-Servicing (OOS) servicers are equipped with a set of sensors, including the
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Figure 2.3: Keep-Out Zones: KOE in green and KOS in blue.

ones in Tab. 2.1 which ensure redundancy and robustness. Wide-Field-of-View (WFOV)
cameras maintain target vision up to a maximum distance of ~50 km, while Narrow-Field
cameras are used up to a maximum distance from the target of ~10 km, and relative
navigation sensors such as LIDAR provide information even at close ranges. An infrared
(IR) thermal camera will also be used to take measurements in poor lighting conditions.
The data of the navigation sensors used in the table are from the following references

[21],[29] and [28].

Table 2.1: ADR payload sensors employed for the proximity operations.

Sensor Tmax [Km]
VIS NFOV 50
VIS WFOV 10
Flash LiDAR 1
IR camera 3

11
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2.3 Dynamical Model

In this section the dynamical model used in the study is explained. First the environmental
model is described with particular focus on the ideal solar-sail model and finally the
equations (EoM) of motion are explained.

2.3.1 Environmental model

To focus on the primary dynamics of the sailcraft, a simplified environmental model is
adopted that intentionally excludes the complexity introduced by additional perturbing
forces such as gravitational harmonics, third-body effects, atmospheric drag, and magnetic
forces. This allows for a clearer analysis of the sail’s response to solar radiation pressure
(SRP), which is the dominant non-gravitational perturbation for a solar-sail mission. As
described in Mclnnes [13], solar sails are continuously accelerated by Solar Radiation
Pressure (SRP) so that their orbits are quite different from the usual ballistic arcs followed
by conventional spacecraft. SRP, which varies inversely with the square of the distance
between the spacecraft and the Sun, can be visualized as the momentum transferred to
the solar sail by photons. When photons are reflected, they exert a reaction impulse, in
addition to the momentum transferred upon incidence on the sail film. The sum of these
impulses leads to a force directed normal to the solar sail.

These assumptions, further explained in the following paragraphs, simplify the force
model and enables more direct insight into how sail orientation influences trajectory.

Sun position and illumination

What previously stated about photon reflection and reaction impulse is true only if the
sun is considered as a point source (at a large distance: > 10 solar radii) and therefore it
can be assumed that sunlight reaches Earth parallel. Moreover, the Sun is assumed to be
stationary at the location of the autumnal equinox in the inertial frame.

Ideal solar-sail model

To model the sail behaviour the ideal model is widely used in preliminary mission design
because it is simpler for an initial analysis. In contrast, more realistic models exist such as
the optical model, which accounts for the sail’s reflection, absorption, and re-radiation, and
the parametric model, which includes the effects of sail shape under load. These models
introduce additional complexity into trajectory analysis and optimization, therefore they
are discarded and the ideal force model is preferred. The Ideal solar-sail model chosen
follows the assumptions present in [18]:

1. The square is a flat, rigid surface;

2. The solar sail is perfectly reflective;

3. The local SRP is constant (Pg = 1360 W/m?);

4. The SRP effect on the spacecraft bus is negligible;
12
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5. The SRP acceleration is applied through the spacecraft’s center of mass (CoM);

6. The area-to-mass ratio of the system is constant;

The orientation of the sailcraft is uniquely determined by the normal direction of the
sail n: the force generated by an ideal and perfectly reflecting solar sail is normal to the
sail flat surface. To define 7, the sunlight reference frame is introduced 2.1. 7 is defined
by two attitude angles: the cone angle «, defined as the angle between the sail normal
and the incident radiation s, § defined to be the angle between the projection of the sail
normal and some reference direction onto a plane normal to 5. Only one side of the sail
can be exposed to direct sunlight hence the sail normal has no component towards the
sun. This leads to the following constraints: a € [~7, 7] and 6 € [—m, n]. The sail normal
expressed in the sunlight frame, ng, is then found as:

Ng = cosa g +sinasind §g + sinacosd Zg (2.6)

As can be deducted from the cone and clock angle limitation, unlike conventional propulsion
systems, solar sails cannot produce thrust in any arbitrary directions. The direction of the
solar radiation pressure (SRP) force is constrained to lie within a hemisphere oriented away
from the Sun. This geometric limitation, commonly illustrated as a Solar-Sail Acceleration
(SSA) bubble shown in Figure 2.4, has a central role in sailcraft control design [30].
Remembering that P = % ~ 4.56 x 107 N/ m? is the solar radiation pressure at 1 AU,

Rp

2
;. ) , the sail acceleration can

where W is the solar flux at distance r, given by W = Wy (
now be formulated as [13]:

a

2o (B

2
) cos? o fiy (2.7)
,

co

where:

o W, = 1368 W/m? is the solar constant;

¢ is the speed of light;

r is the s/c distance;

Rp is the Sun-Earth distance, one astronomical unit (1 AU);

e 0 =7 is the sail loading (mass per unit area);

« is the cone angle between the sail normal and the Sun direction;
e Ny = Ng is the unit normal vector of the sail in ECI frame;
This can be reformulated, defining the characteristic acceleration of the sail as:

2nP m
.= , ith = — 2.8
a ; wi 0= (2.8)

where 7 is the efficiency parameter accounting for imperfect reflectivity and sail billowing
(n =~ 0.85 —0.9). In this case given perfect reflectivity assumption n = 1.
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Figure 2.4: Schematic illustrations of the solar-sail normal vector n defined by cone angle
a (0°) clock angle ¢ (90°) and the SSA bubble.

The formulation used for acceleration experienced by the sail in this study is then:

a = 2a. cos® afiy (2.9)

The solar-sail characteristic acceleration can be derived from a sail performance param-
eter, the dimensionless lightness number 5. 3 is the ratio of the SRP acceleration to the

Sun’s gravitational acceleration:

* 12 x 1073
5=, 0= XD (2.10)

* ~ 1.53g/m?.
14
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Shadow model

To account for eclipse periods when SRP is not active, a simple cylindrical shadow model
is employed. This model only makes a distinction between either sunlit (shadow factor
n=1) and a shadow phase (shadow factor n=0). Although simplistic, this approach is
sufficient for capturing the on/off nature of SRP availability [17, 31].

Three angles are defined using the sail and Sun positions with respect to the Earth:
6 which is the angle between sun and satellite position vectors, 6. which is the angle
between the sun position vector and the radial to the point of tangency with the earth of
a line from the sun, f,; which is the angle between the satellite position vector and the
radial to the point of tangency with the earth of a line from the satellite. They can be

computed as:
o T
0 = arccos
ToT

o = arccos <R@> (2.11)
o
0.1 = arccos (R@)
r

With simple geometrical considerations, if 0 + 05, < 6, the sail is in eclipse condition and
thus n = 0. On the contrary, when 6.+ 6. > 6, n = 1 and the solar radiation pressure acts
on the sail. This shadow model, although simplified, provides an efficient representation
of eclipse conditions. The transition from sunlight to eclipse is a discontinuous function,
which poses difficulties for gradient-based optimization methods (like GPOPS-II) that
require differentiable functions. To overcome this a smoothed eclipse model is introduced
using a logistic function to represent the eclipse transition:

1

T+ exp (—¢s (Bror — ¢ - 0)) (2.12)

n(i)

Equation 2.12 is the logistic function, 6, is =0 + 0.4, cs and ¢; are, respectively, the
sharpness coefficient and the transition coefficient. The parameter ¢, determines the slope
of the curve at the transition point, while ¢; scales the total angle between the apparent
solar and body radii and thus effectively shifts the transition point [32]. The choice of these
coefficients may be driven by numerical behaviour, model accuracy, or mission-operations
considerations.
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2.3.2 Equation of motion

The following paragraph is based on [31] and [33]. In a rendezvous manoeuvrer, two
orbiting vehicles can be defined: a target (A) and a chaser (B) which actively performs
the rendezvous towards the target. In the inertial frame Z, the equation of motion (EoM)
is governed by Newton’s second law of gravitation.

r
= g 2.1
r /’L@Hr||3 ( 3)

where pg is the Earth gravitational constant and r is the position vector in the frame I.

In this work, the motion of orbiting objects is referenced to a moving reference systems
called LVLH, which is co-moving with the target. In this frame, the non-linear two-body
dynamics can be linearized under the assumptions:

o A circular reference orbit for the target,
« Small relative distances between the chaser and the target,

« Negligible perturbations beyond Earth’s point-mass gravity and user-defined accelera-
tions (ag, ay,a.).

Leading to a set of linear differential equations known as the Clohessy- Wiltshire (CW)
or Hill’s equations. These equations, were first found by G.W. Hill (1838-1914) around
1878 and are known in celestial mechanics as the Hill equations. They were re-discovered
in the era of spaceflight for the analysis of rendezvous missions by W.H. Clohessy and R.S.
Wiltshire around 1960 , and are therefore also known as the Clohessy-Wiltshire equations.

Let n denote the mean motion of the target, and let (a,, a,,a.) represent additional
non-gravitational accelerations acting on the chaser in the directions of the R-bar (z),
V-bar (y), and H-bar (z) axes, respectively. The relative motion equations in the LVLH
frame are given by:

i — 2ng — 3n’z = a, (2.14)
i+ 2ni = a, (2.15)
4nz = a, (2.16)

The acceleration components (a,,a,,a,) in the simulation’s frame (co-moving frame)
correspond solely to SRP-induced acceleration.

A key advantage of the CW equations is that they admit closed-form analytical
solutions for both position and velocity components of the chaser relative to the target.
This analytical nature provides significant computational efficiency and is especially useful
in preliminary mission analysis and optimization.
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: 0
x =x0 (4 — 3cosnt) + o Sinnt—k@(l — cosnt) (2.17a)
n n
+=(1- t)+2—fy(t—' t)
o cosn 7 (nt —sinn
Y=Yy — % (3nt — 4sinnt) — 6 xg (nt — sinnt) (2.17b)
i 2fz 2
~ 101 — cosnt) — 2o nt — sinnt) + 2y 2 — 3n%t* — 2cosnt
2 2 4
n n n
o 20 . fz
z = zgcosnt + — sinnt + == (1 — cosnt) (2.17¢)
n n
& = 3xgn sinnt + &y cosnt + 2y, sinnt (2.17d)
+ Ja sin nt + 2& (1 — cosnt)
n n
Y= —19, (3 —4cosnt) — 6xon (1 — cosnt) — 2i&q sinnt (2.17e)
2fs
_ e (1 — cosnt) — 2fy<3nt — 2sinnt>
n n
Z = — zon sinnt + %y cosnt + J2 sin nt (2.17f)

n

where the additional force f is solely the SRP force.

It is important to underline that the CW model is an approximation. Despite its
limitations, the CW model remains widely used in proximity operations due to its simplicity
and accuracy within its domain of validity.

Safe relative motions

This section has as reference [34], [35] and [36]. The analytical solution of the CW equations
can be used to design safe relative trajectories for spacecraft. These relative motions are
natural motions and exploit the geometry of orbits to inspect and circumnavigate the
target. The Hill-Clohessy-Wiltshire equations can be rewritten in a more intuitive form to
better highlight the key parameters governing natural relative motions:

Z(X) = Tmax - Sin(x) — 23?20 (2.18)
100 = 2 o500 + - (X2 (219
2(0) = Zmax - sin(0) (2.20)
Uz (X) = Tmax - 1 - cO8(X) (2.21)
Uy(X) = =20max -1 - sin(x) + 7, (2.22)
0,(0) = zZmax - 1 - sin(0) (2.23)

17



Methodology

R-bar

X - Target
@ - Chaser

Ye

A

2Xnax

) -

Figure 2.5: In-plane relative spacecraft motion in Hill’s frame [35]
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This equations can be used to obtain the initial state (¢ = 0) of the spacecraft if the
following initial parameters are known:

* Tmae Maximum radial offset.

Zmae Maximum cross-track offset.

Y. initial along V-bar (or in-track) separation (Fig. 2.5).

X initial in-plane phase angle (Fig. 2.6).

¢ initial cross-track phase angle (Fig. 2.6).

n mean motion of the target [rad/s|.

Varying these parameters two main configurations can be obtained, which are presented
in the following sections.

Safety Ellipse concept A widely adopted strategy for safe observation and hold
operations is the use of a safety ellipse (SE) , which defines an out-of-plane, elliptical
periodic relative motion around the target. The ellipse is designed such that:

o The trajectory does not intersect the target’s velocity vector (along V-bar direction).

o The orbital period of the chaser’s relative motion matches that of the target, resulting
in no net drift in the along-track direction: this is referred to as the period matching
condition. To avoid secular growth of the spacecraft relative range the secular term

18



Methodology

-Yz."l.'l. -Yx i1

2
A

A

Figure 2.6: Variables describing relative in-plane and out-of-plane phase [35].

in eq. (2.17b), —(6n:v0 + 3y0> t, is removed by enforcing the following constraint on
the radial position and V-bar velocity:

Uy = —2xon (2.24)

Rewriting (2.18) - (2.23), and imposing 7,.=0, leads the following simplification:

It can be relevant to observe that the centre of the safety ellipse can be offset with the
term y, from the target’s centre of mass along the in-track direction.

Walking Safety Ellipse concept An extension of the safety ellipse is the Walking
Safety Ellipse (WSE), which introduces controlled drift along the V-bar direction. It allows
for continuous circumnavigation of the target, while maintaining a predefined safe distance,
enabling observation and a safe approach of the target in close-proximity operations. This
trajectory is obtained when ¢, # 0, so the period matching constraint is no longer met.
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Figure 2.7: (a) Safety Ellipse. (b) Walking Safety Ellipse.

2.4 'Trajectory optimization using Direct Collocation
Methods — GPOPS-I11

This section will first expand on the main optimization solution methods with references
[37],[38] and [39]. Secondly will focus on direct collocation methods using GPOPS-II,
which is a commercial optimization software used in this work [40], [41].

2.4.1 Optimization solution methods

The optimization of low-thrust trajectories for solar-sail proximity operations has been
extensively studied and approached through various methods, each with distinct advantages
and limitations. The trajectory optimization problem is commonly formulated as an optimal
control problem (OCP), characterized by non-linear dynamics, multiple constraints, and
often multiple objectives. The principal solution approaches can be grouped into the
following categories:

1. Indirect Methods: These rely on Pontryagin’s Maximum Principle (PMP), trans-
lating the OCP into a multipoint boundary value problem (MPBVP). Though they
offer high precision and insight into the problem structure, they are sensitive to initial
guesses and challenging to implement due to the need for solving co-state functions.

2. Direct Methods: Widely used for their robustness and flexibility, direct methods
discretize the OCP into a non-linear programming problem (NLP) using transcription
techniques such as single or multiple shooting and collocation. They are especially
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suitable for problems with complex constraints, which can be directly enforced in the
dynamics.

3. Dynamic Programming (DP): DP techniques, including Differential Dynamic
Programming (DDP), solve the Hamilton-Jacobi-Bellman equation to derive optimal
feedback control policies. These methods are well-suited for large-scale problems but
may suffer from the curse of dimensionality.

4. Heuristic and Metaheuristic Algorithms: These global optimization techniques
do not require initial guesses and are effective for exploring large solution spaces. Key
examples include:

o Genetic Algorithms (GA): Suitable for generating diverse initial solutions; however,
they may struggle with constraint enforcement.

e Particle Swarm Optimization (PSO): Inspired by swarm behaviour, these algo-
rithms iteratively refine solutions based on local and global best positions.

o Neuroevolution (NE): Combines neural networks with evolutionary strategies to
learn control policies directly, as in the InTrance approach.

5. Convex Programming: An increasingly popular method in real-time and au-
tonomous applications. These techniques transform the original problem into a
convex form via linearization and convex relaxation.

6. Hybrid Approaches: To balance global search and precision, hybrid methods
integrate gradient-based techniques with heuristic algorithms. This dual-layer opti-
mization provides both robustness and accuracy, particularly valuable in complex,
constrained environments.

Trade-off Considerations: Each method presents a trade-off between accuracy,
robustness, and computational efficiency 2.8. For proximity operations, direct collocation,
convex programming, and evolutionary algorithms are particularly suitable. Direct methods
offer structured flexibility, while evolutionary algorithms provide adaptability in the absence
of reliable initial guesses and convex approaches guarantee convergence and efficiency and
do not require initial guess, however the convexification of non-convex constraint is often
challenging.

2.4.2 Direct collocation methods

Direct collocation methods are robust, flexible, and easy to initialize, variables have a clear
physical meaning, and complex control or state constraints are easily handled [39]. This
method belongs to the family of direct methods, where the continuous optimal control
problem is transcribed into a finite-dimensional non-linear programming (NLP) problem.

In direct collocation, both the state and control trajectories are approximated using
piecewise continuous polynomials over discrete segments of the time domain. The key idea
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Figure 2.8: Trade-off main numerical approaches and numerical solution methods[39]

is to impose the dynamic constraints not continuously, but at a finite set of strategically
chosen intermediate points, within each segment, known as collocation points.

These collocation points are where the differential equations describing the system’s
dynamics must be satisfied. Instead of solving the system dynamics through time-marching
integration (as in shooting methods), the system dynamics are enforced algebraically by
requiring that the derivative of the interpolating polynomial at each collocation point
matches the dynamics function:

&(1j) = f(x(7;),u(r;), ;) for all collocation points 7; (2.31)
where
« x(7;): state vector at collocation point 7;.
« &(7;) time derivative of the state at 7;.
« u(7;) control at collocation point 7;.
This approach provides several advantages:

o Accuracy: The use of higher-order polynomials allows for accurate trajectory repre-
sentation even over relatively coarse time grids.

o Efficiency: The NLP formulation enables the use of efficient sparse optimization
solvers.

o Flexibility: Constraints such as bounds on state and control, path constraints, and
terminal conditions can be easily incorporated.

e Robustness: Compared to indirect methods, direct collocation is less sensitive to
initial guesses and can handle complex, constrained problems more reliably.

Because the conditions for dynamic feasibility are only enforced at collocation points,
rather than across the entire continuous trajectory, the solution obtained is an approxima-
tion. However, with a sufficient number of collocation points and appropriate polynomial
degree, the resulting trajectory can achieve a high level of fidelity while maintaining
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computational manageability. Direct collocation is widely used in aerospace trajectory
optimization and is chosen in this work. It has been implemented in several state-of-the-art
software tools such as GPOPS-II.

2.4.3 GPOPS-11

General Purpose Optimal Control Software (GPOPS-II) is an advanced general purpose
solver, gradient-based, specifically designed to solve continuous-time optimal control
problems (OCPs). It employs an adaptive orthogonal collocation method based
on Legendre-Gauss-Radau (LGR) collocation points, combined with sparse non-linear
programming techniques.

Collocation method GPOPS-II uses an hp-adaptive Gaussian quadrature col-
location approach. The time domain of each phase is divided into mesh intervals, and
within each interval, the state and control variables are approximated using polynomials
whose degrees can vary across intervals (ph-adaptation), and the length of each interval
can also change (hp-adaptation). The collocation points are chosen as the nodes of the
LGR quadrature.

Problem transcription The continuous-time OCP is transcribed into a finite-dimensional
non-linear programming problem (NLP). This is achieved by enforcing the system dynamics
and path constraints at the LGR collocation points, effectively discretizing the control
and state trajectories. The transcription leverages polynomial interpolation and Gaussian
quadrature integration to approximate the cost functional and defect constraints.

Mesh refinement and error estimation A distinctive feature of GPOPS-II is its
automated mesh refinement algorithm, as it employs hybrid methods (hp-methods
and ph-methods). The solver evaluates the local discretization error based on the collocation
defect and determines whether the solution satisfies a user-defined error tolerance. If not,
the mesh is refined - by either increasing the polynomial order (ph-refinement), subdividing
the time intervals (hp-refinement), or both - and the solution process is repeated using the
previously obtained solution as an initial guess.

Solver integration GPOPS-II interfaces with state-of-the-art NLP solvers such as
SNOPT and TPOPT. These solvers efficiently handle the large, sparse constraint Jacobians
that arise from collocation-based transcriptions, ensuring fast convergence even in complex
multi-phase OCPs.

Scaling and derivatives As stated in [42], to ensure convergence of direct colloca-
tion methods the NLP problem should be properly scaled, so that variables are close
to unity; GPOPS-II then scales the constraints and objectives based on the scaling
parameters. GPOPS-II offers multiple automatic scaling strategies (e.g., automatic-bounds,
automatic-guess update) to improve problem conditioning. However in this work a
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user-defined scaling is used because using automatic scaling the problem is struggling to
converge. Derivatives can be provided via sparse finite-differencing method, by providing
user-supplied (analytic) derivatives or automatic differentiation using ADiGator.

Algorithmic flow The computational procedure in GPOPS-II consists of:
1. Input Setup: User defines the structure and components of the OCP.
2. Preprocessing: Dependency and scaling analysis are performed.
3. Transcription: The OCP is converted into an NLP using the current mesh.

4. Error Estimation and Refinement: Mesh is adapted if error tolerances are not
met.

5. Solution Output: The final optimal solution and mesh history are returned.

INPUT: Find Properties of
Initial Setup for Optimal Optimal Control Problem
Control Problem from the User-Provided Setup
Find Optimal Control Find Derivative Dependencies
Problem Variable and < of the Optimal Control
Function Scaling Problem Functions

r

o<
<«

Y

Optimal Control Problem
Transcribed to Nonlinear
Programming Problem
on Current Mesh

|

Estimate the Error
of the Optimal Control
Problem Solution

Set Initial Guess of the
Optimal Control Problem
to the Current Solution
F

Determine New Mesh for the
Optimal Contol Problem

A

|

Is Estimated Error < False

Desired Error Tolerance?

j OUTPUT:
Solution to Optimal

/ Control Problem

Figure 2.9: Flowchart of the GPOPS - II algorithm [40]
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2.5 Simulation and Optimization Setup

2.5.1 GPOPS-II setup

Users must define the OCP using a structured input in MATLAB, including the following
functions:

o Continuous function: Describes the system dynamics in any phase of the problem,
the integrands that are required to compute any integrals and the path constraints in
any phase of the problem.

« Endpoint function: Specifies the cost to be minimized and how the start and/or
end in any of the phases, the integrals in any phase of the problem and the static
parameters are related to one another.

« Bounds and guesses: Include initial and final states, control limits, and initial
guesses.

Next the user must specify the lower and the upper limits on:

o the time at the start and end of a phase.

« the state at the start of a phase, during a phase, and at the end of a phase.
» the control during a phase.

o the path constraints.

e the event constraints.

the static parameters.

In Table 2.2 a summary of the setting of the optimizer is shown. Values for each parameters
are found by trial and error and by comparison with solved optimization problems with the
example provided in the GPOPS-II software and partially illustrated in [40]. In Appendix
B.1 a sensitivity analysis has been carried to try to find tuning criteria for the collocation
point number, the number of mesh intervals and mesh tolerance.
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GPOPS-II setup User Input
Mesh method ‘hp-LiuRao-Legendre’
Mesh tolerance 107°

Mesh maximum iterations 10

Mesh maximum collocation points 20

Mesh mimimum collocation points 10

Mesh collocation point per phase 10

Number of mesh intervals 100

NLP solver “ipopt’
IPOPT linear solver ‘mas7’
IPOPT tolerance 1077

[POPT maximum iterations 2000
Derivative supplier ‘Foward differences’
Derivative level ‘second’
Derivative dependencies ‘sparseFD’
Method ‘Differentiation’

Table 2.2: General overview of the GPOPS-II settings to solve the optimal control
problem.

2.5.2 Close-Proximity scenario definition and optimization

In this section the close-proximity scenario is characterized. First the design parameters
(sail and target parameters) are defined and then main optimization problems covered in
this study are formulated.

Design parameters

Regarding the target (i.e., the debris), its initial state at ¢ = 0 s is assumed to be on a
circular orbit at 1000 km altitude, with zero eccentricity (e = 0°) and zero inclination
(1 = 0°), resulting in an equatorial orbit. The simulation begins when the target is located
at the vernal equinox, at a true anomaly of v = 0° and a right ascension of the ascending
node (RAAN) of 0°. At this position the target is initially fully eclipsed by Earth. As for
the chaser (i.e., the solar sail), it is considered to be in relative motion around the target,
since in close-proximity conditions and it is assumed that the sail has already reached the
orbital plane of the target. To conduct the study with a lightness number achievable by
current state-of-art technology, the lightness number of the ACS3 [15] mission is chosen.
Unless otherwise specified, the sail parameters adopted in this study correspond to a
lightness number of 8 = 7.7 x 1073, yielding a characteristic acceleration of a, = 4.6 x 107°
m/s?. The control angles are constrained such that the cone angle o € [—7/2, 7/2] and
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the clock angle 6 € [, 7].
All simulation are carried out propagating the CW equations with an initial step size
of dt = 10 s, see Appendix for further details on this choice A.1.3.

Optimization problem formulation

Two types of close-proximity trajectories are explored: inclined Hold Trajectories (addressed
in this thesis also as SE) and Inspection Loop Trajectories (addressed in this thesis also as
WSE). Lastly a Transfer is found from a hold trajectory located behind the target and
outside the outer KOE volume to the Inspection Loop.

Each problem has different objectives and constraints, necessitating of different formu-
lations. The results of these optimization problems are discussed in Chapter 3, while more
details on the optimization can be found in Appendix B.2 .

Hold Trajectory optimization

The optimal control problem is maximizing the time the Hold Trajectory (SE) stays within
the KOZs. Maximizing the time ¢; is mathematically equivalent to minimizing —t;. t;
is bounded between 0 and a maximum of ¢; . The problem is formulated to include
geometric path constraints that require the sail to remain outside a safety sphere of radius
R (the KOS constraint) while remaining inside a ellipsoid defined by the semi-axes (a, b, ¢)
(KOE constraint). The dynamics of the system uses the Clohessy-Wiltshire equations with
the sail normal vector as control (). Sail normal vector and so thrusting is constrained
so that the normal is never directed towards the sun.

In this section, we present a general formulation of the problem, with o € [—g, g] and
d € [—m, m]. However, in this study further constraints are imposed on the cone angle; see
Section 3.1 and Appendix B.3 for the numerical values used.

Having defined the following variables:

T

o x(t) =z, y, 2, , ¥, 2]": state vector (position and velocity).

o u(t) = [as, ay, a.]": control acceleration vector (non-gravitational).
e a, ay, a,: non-gravitational accelerations along the z, y, and z axes.

e n: orbital mean motion.

min max.

o vi,f 7Ui,f .
{z,y,z}.

minimum and maximum allowable terminal velocity along axis i €

The general Hold Trajectory problem formulation is the following;:
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min —ty

a(t), u(t)
& —2ny — 3n*c = a,
subject to: U+ 2nt = a, (State dynamics)

é+nzz=az

Z0 Jower = |—@, —b, —c, —vgj}n, —vgf}n, —vznf}n] (State initial condition)

T upper = @, 0, ¢, Vpf s Vgt vf}?x]

Tlower = |—a, —b, —c, —vgj}n, —v;‘}n, —vznj}n (State bounds)

Tupper = [@; b, ¢, —v,' ¥, —v)'F, —vF]

T, lower = Tlower (State final condition)

Lt ,upper — Lupper

o 4+ y? + 22 > R? (KOS path constraint)
2\ 2 s\ 2 2\ 2 .

<a> + (b> + <c) <1 (KOE path constraint)

|a(t)] € [0,1] (Control path constraint)

0, -1, —1)7 <a@t) <[, 1, 1]° (Control bounds)

tr € [to, tfmasl (Time bounds)

Inspection Loop

This is the optimization setup for the Inspection Loop (IL) problem, a tubular motion around the
target, which maintain the spacecraft near the observation zone for as long as possible, allowing
drifting along the V-bar and thereby ensuring view of the target from a broad range of angles.
The primary objective is to observe the target for a minimum and a maximum of observation
time %45, maximizing the time spent outside the KOE satisfying state, control, time and integral
bounds and eventgroup and path constraints.

For what concern eventgroup constraints they are used to constrain the final position on a
certain state, which is a target point on the Hold Trajectory (SE). A small tolerance is set on
the position, tol, and the velocity, tol,, and lowered throughout the optimization so that the
final state of the IL is as close as possible to the target point on the Hold trajectory . The logic
followed is explained in the flowchart 2.10a.

The final time of flight (ToF) is fixed and set to a value greater than the maximum observation
duration. This guarantees that the spacecraft can both maximize its observation window outside
the keep-out ellipsoid (KOE) and then reach the target point inside the ellipsoid. If t; were
set equal to or below tohs max, the sail would be forced to shorten its loiter time outside the
KOE to satisfy the transfer requirement. By decoupling t; from %,ps max, the initial portion of
the trajectory is allocated to maximizing the actual observation time ¢, within its prescribed
bounds, and then the remaining interval is used to intercept the target point inside the ellipsoid.

Compared to the Hold Trajectory case, the KOE constraint is relaxed from < 1 to < 4. This
additional margin allows the optimizer to maintain the trajectory just outside the ellipsoid,
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maximizing observation opportunities while keeping it close to the target region.

The objective function is formulated as a weighted sum of two objectives: maximizing the total
duration of the trajectory and encouraging the system to spend more time outside a predefined
ellipsoidal region. Specifically, the time outside the KOE is slightly favoured and the integral is
formulated with a smoothed function that reflects whether the state lies outside the ellipsoid.

To achieve differentiability in GPOPS-II, indeed, the binary indicator function is replaced
with a smooth function defined by a hyperbolic tangent as in [43]:

¢(x’y’ Z) _ % (1 + tanh ((i) + (%) + (%) - 1)) (2.32)

p

Here, p is a smoothing parameter that controls the sharpness of the transition from inside to
outside the ellipsoid. A smaller value of p produces a steeper approximation, approaching the
original indicator function. In our implementation, p = 0.3 is selected, following the approach
discussed in [43] and for empirical attempts made with the problem in question.

The overall cost function is thus expressed as:

¢
min —wty —wg/ ' o(x(t),y(t), z(t)) dt (2.33)
u(t) tobs

A weighted sum approach is adopted [44], where w; and w9 are scalar weights used to balance
the contribution of each term. This formulation allows to explore different trade-off between
maximizing ToF and the time spent outside the ellipsoid. Prior to summing them up, each of the
two variables is normalised with respect to its own reference interval (e.g. for time of flight we
use iy /t f,max). In this way, each term is dimensionless and comparable. The specific values of the
weights chosen are discussed in section 3.2, and the numerical values used in the optimization
setup can be found in section B.4. In Section 2.5.2 the Inspection Loop (IL) optimization problem
is formulated as follows:
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tmax,obs
min —w ty — wz/ gi)(x(t),y(t), Z(t)) dt

z(t), u(t) tobs

where ¢(x,y,2) = %(1 + tanh(

(@) +(FrP+(E)r-1
)
& —2ny — 3n’x = a,,

U+ 2nk = ay, (State dynamics)

24+ n’z = a,,

Lo, lower = [xmina Ymins fmin; — :rtn}n, _U;I,l}n, _vg}n] (State initial CODditiOH)
Zo,upper = [l'ma)m O, Zmaxy Uy fX, ’U;njjx, ,Um?x]

Tlower = | Tmin, Ymins Zminy — ;n}“, —v;n}“, —v“}}n] (State bounds)

Lupper = [mmaxa Ymaxy fmax; — ;n?xy _,U;n?x7 _UH}?X]

Lty lower = Llower (State final COIlditiOIl)

xtf,upper = Zupper

ty
tobs < / I[outside dt < tmax,obs
to

”7"(tf) - rtarget” < [tOl,tOl,tOl]
”v(tf) - Utarget” < [tOlthOZU,tOlU]
z + y2 + 22> R?
z)2 2 2\2
)+ @) +() <4
[u(t)] € [0,1]
0, -1, -7 <wu(t) <[1,1,1)"
tf € [tmax,obsa tfmax]

Integral constraint)

Eventgroup on position)
Eventgroup on velocity)
KOS)

KOE)

Control path constraint)
Control bounds)

Time bounds)

(
(
(
(
(
(
(
(

Transfer

This optimization setup defines the Transfer trajectory from a starting point on the Hold
trajectory, positioned outside the KOE behind the target, to a designated interception point on
the Inspection Loop (IL) trajectory. The quantities z¢, v; denote the spacecraft’s final state
(position and velocity) at the end of the transfer, whereas z;, v; represent the target state on the
IL trajectory. The objective is to minimize the mismatch between these two states. Defining:

Ax = xXp — Xy, Av =vy— vy,

the objective function is written as a weighted combination of the relative errors of position and

velocity:

lAx|® AV

T v
¢ [[ve[?

J = (2.34)

In addition to the primary optimization objective, a bound constraint is enforced to ensure
that the transfer’s final state remains within a prescribed tolerance tol of the desired target state.
The same logic is followed to bound the initial state so that it deviates by a set tolerance tol
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from the wanted initial state on the SE. Since bounding immediately with tight tolerances the
initial state do not allow convergence to an optimal solution, these tolerances are then decreased
iteratively in a loop (see flowchart 2.10b) until the minimum feasible tolerances are found.

More details on numerical values used in the corresponding section 3.3 of the transfer results
and in Appendix B.5.

The general optimization problem is formulated as follows:

|Ax]* |Av]®

MTE

min J=w
#(0) ult) "l
& — 2ng — 3n’x = a,,
subject to: U+ 2nt = ay, (State dynamics)

34 nz = a,,

min min min
Llower — [xminu Ymin;, Zminy Vg s —Uy fy —VUy ¢ ] (State bounds)
max max max
Zupper = [xma)h Ymax; fmax, ~Ug f 5 Uy ¢ s —U,f ]

Zolower = ||XSE target|| — tol (Initial state bound)
Zo,upper = ||XSE7targctH + tol
T, lower = |X1r, target|| — tol  (Final state bound)

Lt upper = HXIL_targetH + tol

2\ 2 v\ 2 2\ 2
() + (b) + <> >1 (KOE path constraint)
a c

|li(t)]] € [0,1] (Control path constraint)
[0, -1, —1]" <i(t) < [1,1, 1]7  (Control bounds)
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Chapter 3

Close-Proximity Operations
Study

The chapter follows the actual research flow: it begins with the exploration of Hold Trajectories
(SE), proceeds to the development of the Inspection Loop, and concludes with the transfer that
links with an earlier far-range rendezvous phase, adopting a backward-design approach.

3.1 Hold Trajectory Analysis

In traditional close-proximity and rendezvous operations, hold points serve as time-flexible
elements from which the next mission phase is planned and by which the mission is calibrated
against external events. However, when a solar sail is employed as the primary propulsion
system, its large surface area and the continuous forces from atmospheric drag and solar radiation
pressure make conventional hold points infeasible. To address this, Reichel in [20] introduced the
concept of planar hold trajectories: paths that allow the sailcraft to remain near the target for
extended periods, enabling detailed observations, system checks and preparation for subsequent
rendezvous manoeuvres.

In the following section, we extend this idea to inclined hold trajectories, using as reference
the concept of Safety-Ellipse natural relative motion. Inclined hold trajectories provide a clear
safety advantage: the chaser’s velocity vector never intersects that of the target, yielding a
target-centred trajectory that significantly reduces collision risk compared to a planar encircling
orbit. The scenario considered in the three optimisation problems is described in detail in the
Design parameters paragraph of section 2.5.2 and is referred to unless otherwise indicated.

3.1.1 Test case

The chaser spacecraft approaches the target from a distance of several hundred metres in the
negative V-bar direction. To define safe approach regions, two nested Keep-Out Zones (KOZs) are
introduced: an outer ellipsoidal boundary and an inner spherical exclusion zone. The sailcraft’s
Hold Trajectory must remain inside the outer ellipsoid and outside the inner sphere, maintaining
a stable orbit around the target throughout the proximity operations.

GPOPS-II requires an initial guess for the state and control. The sailcraft is initialized on a
Keplerian elliptical orbit with its period matching that of the target orbit. The ellipse is sized
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and oriented according to the KOZs definitions and the Safety-Ellipse formulation, ensuring the
orbit lies entirely inside the prescribed hold volumes. The initial elliptical orbit is positioned
midway between the outer ellipsoid and the inner sphere. The geometric parameters used in the
analysis are listed in Table 3.1.

Outer Ellipsoid Inner Sphere Safety Ellipse
Semi-major Semi-minor Radius Tmax = Zmax  AY X 0
740 160 50 105 0 0° -90°

Table 3.1: Geometric parameters.

The initial attitude is edge-wise to the Sun (cone angle @ = 90° and clock angle § of 0°
constant). The initial state guess used in this analysis is listed in Table 3.2.

Qo 1) Initial State vector

90° 0° [0; —210; —105; —0.1047; 0; 0]

Table 3.2: Control settings and initial state vector.

The optimization formulation is detailed in Section 2.5.2 and Appendix B.3, including the
objective function, boundary conditions, and path constraints. The simulations final time is set
to ten orbital revolutions of the target: approximately 17.5 hours using a initial fixed time step
of dt =10 s.

Since a cone angle of 90° results in zero acceleration of the sail, the sail would simply follow
its initial Keplerian orbit. However for solar-sail missions typically a constrain on cone angle is
considered: for example, the NEA Scout mission limited the cone angle to amax = 70° [45]. To
assess the impact of cone angle restrictions on inclined hold trajectories, six different cone angle
constraints are analysed as in Table 3.3.

Table 3.3: Six maximum cone angles oy, considered in the analysis.

Omax [°]

60 65 70 75 80 &5

3.1.2 Cone angle limitations

The safety ellipse is a natural relative motion that, assuming no perturbations and if the sail is
oriented edge-wise, does not require any intervention of the propulsion system, making it a perfect
safe relative motion of the sailcraft to the target. However, the solar sail follows non-Keplerian
orbits since the SRP is constantly acting on the sail and because of sailcraft dynamics, the thrust
direction is limited, and that is reflected in cone and cone angle constraints. The objective of the
simulation is to maximize the time that the sail remains within the Keep Out Zones (KOZs). It
is found that an optimal trajectory can be established, allowing the sail to remain within the
volume between the KOZs for the maximum allowable time of 10 target period revolutions when
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Qimax 18 further constrained. This analysis applies to all six constraints on the maximum cone
angle, which are: 85°, 80°, 75°, 70°, 65°, and 60°.

200 . KOE
! I kos
‘€ i Hold traj (SE)
=0
[
2
T
-200
800

0
-200

-400
V-bar [m] -600

200

-800  -200

R-bar [m]
(a) SE trajectory

Figure 3.1: Hold trajectory (SE) with a maximum cone angle of 85°: (a) trajectory.

In Fig. 3.1 it can be seen that with a constrained cone angle of 85° the sailcraft stays within
the designated hold volumes. The increase/decrease of the semi-major axis of the chaser orbit is
controlled as there is almost no drift along the V-bar direction as show in Fig. 3.2. Indeed the
general movement along the V-bar can be explained as a change of the semi-major axis.

200
0 1 2 3 5
Revolution (Rev)

(b) Control inputs

Figure 3.1: (continued) (b) Controls resulting from the optimization (the control line is
continuous when the trajectory is not eclipsed).

In the specific cases with a.x = 85° and 80° in Fig. 3.3, the optimal control found has the
cone angle a immediately to its upper limit for the entire flight time (ToF). During the sunlit
portions of the orbit the maximisation of the cone angle is effective because it reduces drift and
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Semi-major Axis [m]

150

Figure 3.2: Change of semi-major of the optimised trajectory of test case for hold
trajectory with e, 85°.

perturbations.

The clock angle §, while not affecting the thrust magnitude, governs the thrust direction
and exhibits frequent switching behaviour in both cases. In both scenarios, § oscillates between
+180° and —180°, but not with a perfectly regular periodic behaviour.

In the apax = 85° case, during the illuminated portion of the first revolution, J remains at
—180°. Starting from the second revolution, as the spacecraft exits eclipse, § begins switching,
first jumping to +180° and then immediately back to —180°. As the number of revolutions
increases, the duration of the control staying at 4+180° progressively increases, forming an
asymmetric pattern in the switching.

In the amax = 80° case, § switches to +180° already during the first sunlit segment. However,
unlike the 85° case, the portion of time where § stays at +180° gradually decreases over the
course of the revolutions. By the time the spacecraft completes ten revolutions, § remains almost
entirely at —180° during the illuminated arcs. When ayax is reduced to 70°, as shown in Fig. 3.5b,
the first period of the control profile indicates that, after re-entering sunlight, o starts slightly
below its upper limit and gradually increases as the available thrust grows. In this case, the
behaviour of § differs from the previous control profiles observed: while it still exhibits switching,
the pattern becomes more irregular and less clearly periodic compared to higher a., cases. Any
constant control profiles or oscillations during eclipse, when no solar radiation pressure is present,
have no impact on the trajectory. These control behaviours during the shadow phases are most
likely the result of numerical effects introduced by the discretization and the collocation method
used in GPOPS-II.

Regarding the trajectory profile, trajectories with tighter cone angles experience a faster
increase or decrease of the semi-major axis along the V-bar directions can be seen in Fig. 3.4.
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Figure 3.3: Hold trajectories (SE) with maximum cone angles of 80° (a) and first
revolution relative interval control(b).
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Semi-major Axis [m]
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Figure 3.4: Change of semi-major of the optimised trajectory of test case for hold
trajectory with e, 70°.

Indeed, it can be seen in Fig. 3.5a that with a maximum « of 70°, the sail no longer exhibits
a Safety Ellipse behaviour; a noticeable drift along the V-bar is present.

S
R-bar [m]

(a) (a) Hold trajectory (a = 70°)

Figure 3.5: Hold trajectory (SE) with a maximum cone angle of 70°.
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Figure 3.5: (continued) First revolution relative interval control.

3.1.3 Safety assessment

Ensuring mission safety is one of the most important requirements in close-proximity operations
in order not to collide with the target. A passive safety orbit design is incorporated in the
trajectory optimization, aiming to guarantee that the spacecraft naturally avoids the Keep-Out
Zone (KOZ) even in the event of control system failure. Therefore, a safety assessment is
performed, two representative points are selected from the first revolution of each optimized
trajectory for amax = 85°, 75°, and 65°. These points correspond to one-quarter (7;/4) and
one-half (7;/2) of the target orbital period, where T; denotes the period of the target. The
associated state vectors and corresponding control inputs (cone and clock angles) are reported in
Table 3.4. Each case is forward-propagated for 15 target revolutions (approximately 26 hours),
assuming constant attitude — i.e., fixed a and  values derived from the selected points —
simulating a scenario in which the sail becomes stuck in a specific orientation.

Case T y z z Y z «a 6
—97.3164 —2.2008 —4.8314 —0.0013 0.1942  0.1033 84.4810 —180.0000
Qmax = 85° —1.1486 195.0933 103.1693 0.0972 0.0023 0.0042 84.4811 —179.9999

51.6206 —251.5464 —89.2576 —0.0374 —0.1351 0.0189 59.2469 —176.6665
Qmax = 75°  —83.5142  —252.3476 17.3832  —0.0785 0.1580 0.0880 62.0138 160.5921

67.9072 —185.2307 —63.5310 0.0076  —0.1767 0.0557  58.5429 169.0790
Omax = 65° —51.0193  —299.6024 55.2871  —0.1020 0.0911  0.0631  60.8862 136.8569

Table 3.4: State vectors and corresponding controls for the safety assessment. The first
row corresponds to the first target state T;/2 and the second row to the second target
state T;/4.

In total 6 cases where analysed. Resulting in Fig. 3.6 for the first point at T't/4 state and in
Fig. 3.7 for the second target state at T't/2.

The safety assessment shows that if the sailcraft gets stuck in a certain attitude on the Hold
Trajectory it will not collide with the target.

For both points selected from the optimized trajectory with am., = 85°, if the sailcraft
becomes stuck in a fixed attitude it continues to follow the Hold Trajectory. This is because the
optimal control found for the cone angle in this case is almost constant over time.
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Figure 3.6: Safety assessment Hold trajectory (SE) from target point 1 with maximum
Qmaz 85°,75° and 65°.
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Figure 3.7: Safety assessment Hold trajectory (SE) from target point 2 with maximum
Qmaz 85°,75° and 65°.

The more the cone angle is constrained (75°,65°), the greater the drift in the event of a failure
along the V-bar direction. For the first point chosen along the trajectory, the propagation shows
motion of the chaser in the positive V-bar direction, and the trajectory never enters the KOS.
For the second point chosen, the drift is along the negative V-bar direction. However, since the
trajectory is inclined, it passes above or below the KOS without ever crossing the target.

3.2 Inspection Loop Analysis

The inspection of the target is required in the close-approach and it must be carried out at short
range, using relative trajectories that permit observations from multiple viewing angles while
preserving passive safety.
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In this section, a WSE trajectory - already introduced in 2.3.2 and hereafter referred to as
the Inspection Loop (IL) — is optimized. The IL stating range considered is between -1 km
and -740 m (where the ellipsoid starts), behind the target’s orbit and terminates on the Hold
Trajectory (SE).

Time of inspection

The duration of the Inspection Loop is not predetermined; it is governed by the specific mission
objectives and operational constraints. Drawing on the mission scenarios discussed in [21] and
[46], together with the sensor capabilities outlined in paragraph 2.2, the sailcraft time-of-flight
(ToF) for inspection is bounded between a minimum of five target revolutions, approximately
nine hours, and a maximum of 24 hours. The upper limit is chosen both in line with the cited
references and for computational efficiency, although longer inspection times remain feasible if
required.

With regard to the observation distance, the maximum operating range of the LiDAR sensor,
specifically used in the context of Active Debris Removal (ADR), is 1 km. Consequently, the
maximum extension range of the IL is £1000 m.

3.2.1 Test Case

Initial guesses for the state and control variables required by GPOPS-II are generated by starting
from the desired final point on the safety ellipse (SE). Four points on the optimized safety ellipse
(Fig. 3.8), evenly spaced along the first revolution of the chaser orbit, are selected to limit the
scope of analysis. These target points, listed in Table 3.5, define the desired final states for the
WSE trajectory.

The hold trajectory corresponding to a maximum cone angle of 85° is chosen since this
configuration, as described in Section 3.1, produces the most stable hold trajectory, exhibits
minimal drift along the V-bar and most closely approximates an ideal SE. The same maximum
allowable « value is applied in the subsequent IL discussion. For further details on the optimization
formulation, refer to Section 2.5.2 and Appendix B.4.

Target Qo ) State vector [3:, Yy, 2, T, Y, 2}
1 84.481° —180° [1.4195, —194.2959, —103.8081, —0.0971, —0.0028, —0.0049 ]
2 84.481° —180° [—97.4207, —1.8025, —4.6959, —0.0012, 0.1944, 0.1034]
3 84.481° —180° [—1.4618, 195.3918, 103.1717, 0.0973, 0.0029, 0.0046 |
4 84.481° —180° [97.5469, 2.6670, 3.8516, 0.0012, —0.1947, —0.1034 ]

Table 3.5: Control and state vectors of target points on the Hold Trajectory (SE).
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Figure 3.8: Illustration of the 4 equally spaced target points on the Hold trajectory(SE).

For each terminal point, an initial-state guess is produced by propagating the dynamics
backward for 14 target revolutions (/ 24 hours). Every component of the resulting state vector
is then scaled by a uniform factor of 1.5, ensuring that the starting point lies outside the outer
ellipsoid. The corresponding control guess employs a constant cone angle of 85°. Since as can
be seen in the safety assessment 3.1.3 by propagating a point along the Hold Trajectory with
a constant cone angle 85°, the trajectory remains with almost zero V-drift, an artificial drift
is introduced by subtracting a value of € = —0.001m/s from along-track velocity component,
introducing the required drift along the V-bar direction and obtaining an initial guess that has a
Walking-Safety Ellipse behaviour.

The initial guesses results in the state guesses in Table 3.6:

Case «a 4 State vector [x; y; z; &; ¥; Z]

1 85° 0° [1.9366; —715.2710; —155.6077; —0.1485; —0.0054; —0.0155 |
2 85° 0° [—146.0923; —404.5742; —6.7093; —0.0044; 0.2900; 0.1467 |
3 85° 0° [—146.0923; —404.5742; —6.7093; —0.0044; 0.2900; 0.1467 |
4 85° 0° [146.3576; —430.9976; 5.6721; —0.0012; —0.2936; —0.1634 ]

Table 3.6: Controls and initial state vectors IL.

Optimized IL trajectories are obtained for all four target points. However only case 1 and
4 give in output a optimized trajectory which resembles more a WSE and loops around the
Ellipsoid. These two "best" trajectory have their respective target points along the R-bar, so on
the right and left with respect of the target.

Therefore, only results for cases 1 and 4 are discussed here, while the plots and control profiles
for cases 2 and 3 are provided in the Appendix C.

Illumination conditions Since during the inspection the illumination of the sensor is
fundamental especially for cameras, the percentage of the optimized trajectory illuminated is
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compared to the eclipsed one. Case 1 and Case 4 result in 62.7 % of the IL illuminated on the
total ToF, meaning a total of 15.87 hours of illuminated trajectory.

R-bar [m]

(a) IL Case 1

Figure 3.9: IL with eclipsed and illuminated trajectory segments highlighted. (a) Case 1.

V-bar [m] - 200

-200

-1200 R-bar [m]

(b) IL Case 4

Figure 3.9: (continued) (b) Case 4.

The controls relative to the previously described IL are in Fig. 3.10.

In both Case 1 and Case 4, the cone angle, «, initially decreases slightly during the first
revolution, resulting in increased SRP-induced acceleration (aggrp). It then gradually increases
toward the maximum allowable value of 85°, which reduces the acceleration. After this initial
phase, o remains close to the upper limit with small oscillations during sunlit periods. In Case 1,
the clock angle, d, begins at —180° and rises to approximately 100° during the first illuminated
arc. It then resets to —180° upon re-entering eclipse. In the following revolutions, § evolves across
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Figure 3.10: Control of IL for Case 1 and 4.

the full range between —180° and +180°. The abrupt changes observed at the eclipse transitions
are numerical artifacts resulting from the direct collocation method used in GPOPS-II; since
SRP is zero during eclipse, the control has no physical effect in that phase, and the solver is free
to adjust the control arbitrarily.

In Case 4, the clock angle, §, starts at 0° upon eclipse exit and increases toward +180° during
the first revolution. Over time, it also exhibits full-range variation between —180° and +180°.
However, the transitions in this case appear smoother and less abrupt than in Case 1, likely due
to different initial guesses imposed for this trajectory.

3.2.2 Safety assessment

The IL is optimized to stay out of KOE ensuring mission safety and passively avoiding the
risk of collision with the target. However the possibility that the sail gets stuck in a certain
attitude persists; therefore a safety assessment is performed through a Montecarlo analysis.
This study is carried out to quantify the minimum separation that would be maintained in the
event of an attitude-hold failure. The safety study is performed by randomly sampling points
along the optimised IL trajectory (Case 1), freezing both the cone angle a and clock angle §
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at their commanded values at each sampling instant, and then propagating the resulting state
with constant attitude for 50 revolutions of the target. For each of the 1,000 Monte Carlo
simulations,the minimum separation between the chaser and the target is recorded and these
values are used to construct the histogram in Fig. 3.11. The average of these minima is 169.7 m,
while the closest recorded approach is around 4 m and occurred only once in the Monte Carlo
analysis.

Section 2.2 describes how the 50 m radius of the keep-out sphere already includes a safety
margin of two plus a olo uncertainty allowance. Without these margins, the combined hard-body
radii of the chaser and target sum to just 8 m. Accordingly, although separation distances below
50 m (i.e., below the red threshold line in the histogram) carry a non-negligible collision risk,
any approach within 8 m would inevitably result in impact.

250 [—

Frequency

1 I L | L
0

0410 20 30 40 50 100 150 200 377
Minimum approach distance [m]

Figure 3.11: Monte Carlo Safety Assessment. A red threshold line indicate the limit
(0-50 m)where the KOS, so the inner safety volume starts.

Plotting the forward propagation of the optimized IL initial state that produced the lowest
minimum distance in the Monte Carlo analysis reveals that the smallest separations occur
immediately after propagation begins. Figure 3.12 illustrates the propagated trajectory of this
initial state over 50 revolutions, with a minimum separation of 4 m from the target, and depicts
how the chaser subsequently drifts away along the V-bar direction.
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Figure 3.12: Forward propagation with fixed controls over 50 orbital revolutions of the
state on the optimized IL that results in a minimum separation of 4 m.
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3.3 Transfer Trajectory Analysis

The transfer begins on a target point of a Hold Trajectory (SE) placed behind the target at -1 km
and end on aselected target point on the IL. The Hold Trajectory (SE) considered is optimized
to stay in its Hold Volume for a max of 10 revolution.

KOs
—Hold traj (SE)

V-bar[m] 600 R-bar [m]

Figure 3.13: SE with 4 selected target points.

In Tab. 3.7, the initial guess used to obtain the SE is presented. From the SE, four points on
the first optimized orbital revolution are selected just below and just above the 0 H-bar plane
3.13.

g Yo 20 o Yo 20 « 6 KOS radius KOE
0 —-750 -—-375 -—-0.3741 0 0 90° ©0° 50 m 600x1000 m

Table 3.7: SE/Hold trajectory setup: initial state, constant control angles, and keep-out
geometry.

Regarding the final target points, four locations are selected on the IL for Case 1 (see Sec. 3.2).
The target points on the IL and SE are listed in Tab. 3.8 and Tab. 3.9, respectively.

IL « ) State vector [x; y; z; @ U; 2]

1 53.49° 59.49° [258.0375; —455.3224; 7.4890; 0.0213; —0.5487; —0.1869 |
2  53.26° 59.77° [258.5977; —475.3433; 0.6735; 0.0093; —0.5494; —0.1869 ]
3 53.17° 59.88° [258.7193; —495.3753; —6.1390; —0.0027; —0.5493; —0.1867 |
4 79.81° 113.99° [—297.1771; —282.3618; 12.8284; 0.0474; 0.5869; 0.1838]

Table 3.8: Final target states on the IL.
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SE @ ) State vector [z; y; z; @3 U; Z]

1 81.9652° —179.9361° [376.5301; —989.4622902; 5.6121; 0.0071; —0.7512; —0.3727]
2 81.6607° —179.9461° [376.5895; —998.9733921; 0.8933; 0.0023; —0.7514; —0.3728]
3 80.7967° —179.9635° [376.5660; —1013.241004; —6.1853; —0.0048; —0.7513; —0.3727]
4 79.1014° —179.7493° [—374.7901; —975.1253975; 12.2216; 0.0124; 0.7480; 0.3731]

Table 3.9: Initial target states on the SE.

The optimization problem and logic is formulated in Section 2.5.2 and has two simultaneous
goals: (i) to minimize the error between the velocity offset Av and (ii) terminal-position mismatch
small Ar, both between the transfer end-state and its corresponding target IL point, and the
transfer initial-state and between its counterpart on the Hold Trajectory (SE).

Four transfers are analysed, each pairing a target state on the IL with its corresponding state
on the SE (e.g., IL 1 with SE 1, and so on). The target points along the Hold Trajectory for the
WSE are shown in Fig. 3.13, while those selected behind the target on the SE are displayed in
Fig. 3.14.

Figure 3.14: 1L with 4 selected target points.

For combination from 1 to 3, to generate the initial guess state the following strategy is
adopted: the final target state on the IL are propagated back in time for 1 orbital revolution
of the target, then the final state of this propagation is used as initial guess and propagated
forward for 1 revolution of the target.

For the fourth transfer a different propagation time is used, since using the previous described
strategy the final state obtained is too far from the wanted initial state (at ~ —1 km along
the V-bar). Therefore the target state 4 on the IL is propagated back in time for 10 orbital
revolution and the found final state is used as initial state and propagated again forward for the
same time interval. For the control initial guess, a constant control with clock angle o = 85°
and cone angle § = —90° is used. A summary of the strategy discussed previously is given in
Table 3.10. That table summarizes the initial guesses used for the propagation: “Revs” is the
number of target revolutions propagated backward/forward, and “IN” and “FIN” report the
position/velocity mismatches at the start and end of the optimized transfer, respectively.
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Case Revs Initial-guess state IN error FIN error
Ar[m] Av[m/s] Ar[m] Awv[m/s]

1 1 261.4536; —1092.5173; 5.9992; 0.0189; —0.5549; —0.1870] 14.17 0.10 10.11 0.08
2 1 261.9182; —1104.6497; —0.8161; 0.0069; —0.5554; —0.1869] 14.17 0.10 6.80 0.06
3 1 261.9441; —1118.2066; —7.6268; —0.0051; —0.5551; —0.1866] 13.02 0.10 10.05 0.08
4 10 —264.6399; —849.8129; 12.7735; 0.0493; 0.5280; 0.1838] 7.14 0.06 4.80 0.004

Table 3.10: Initial-guess propagation: “Revs” is the number of revolutions propagated;
“IN” and “FIN” denote the position/velocity mismatches at the transfer start and end.

Test cases

Four optimal transfers are found; however, Transfers 1, 2, and 3 show a mismatch with their
respective desired initial states (on the SE), with an initial position error (6r) ranging from
approximately 13m to 14 m. For the final position, the error with respect to the target state on
the IL ranges from approximately 7m to 10 m. Velocity differences on the final an initial state
are too large to make to make the transition from the Transfer to the IL and from the Hold
Trajectory (SE) to the Transfer flyable by a solar sail, which has not impulsive but continuous
thrusting. If lower § are searched by enforcing lower tolerances the optimizer does not converge.
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(a) Case 2 Transfer.

Figure 3.15: Trajectory and control of Case 2 Transfer.

Figure 3.15b shows the control angles for Case 2 Transfer. When the sailcraft trajectory is
illuminated, the cone angle a starts just under 80°, then gradually decreases to just below 60°
before slightly increasing again toward the end of the revolution. The clock angle § begins just
below 20°, then progressively decreases toward —180° during the sunlit phase. Shortly before
the spacecraft enters eclipse, 0 rises slightly to around —160°.

Transfer 4 has lower §, especially d, on the final target velocity which is 0.004 m/s and 0,
is 4.8 m. The ¢, and é, on the initial state are greater but sill lower if compared to the other
transfers. Transfer 4 achieves the lowest overall misalignment, with a velocity error at the final
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Figure 3.15: (continued) Trajectory and control of Case 2 Transfer.

state of only ¢, ~0.004 m/s and a position error of A, ~4.8 m. While the initial state errors in
position and velocity are greater than those at the final state, they remain smaller than those
observed in the other three transfers.

This outcome reflects the flow of the optimization process, which aims to minimize mismatches
at both the initial and final states within the defined tolerance settings. Depending on the
specific combination of tolerances chosen in the setup, the optimizer may favour a lower error at
either the initial or final state. Consequently, the final optimized solution represents a trade-off
between minimizing errors at both ends of the transfer.
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(a) Case 4 Transfer.
Figure 3.16: Trajectory and control of Case 4 Transfer.
Figure 3.16b shows the control angles for Case 4 over ten orbital revolutions. The cone angle

a begins at approximately 80° and exhibits a smooth oscillation throughout the illuminated arcs.
Its amplitude remains bounded between an upper limit close to 80° and a lower limit slightly
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Figure 3.16: (continued) Trajectory and control of Case 4 Transfer.

below 60° across all revolutions.

The clock angle § starts near 20°, decreases to approximately —30°, then rises sharply to
around 170°, and finally drops to —180° just before entering eclipse. In the following revolutions,
the control follows a similar overall shape, but the maximum and minimum values are not strictly
periodic. Specifically, the maximum values reached vary between approximately 160° and 180°,
while the minimum values range between —160° and —180°. This indicates a recurrent but not
fully periodic control profile.

3.4 Discussion

The analyses presented in this chapter demonstrate that inclined hold trajectories (SE) and
inspection loops (IL) are feasible using solar-sail propulsion. More importantly, they are safe
relative motions, as shown in the safety assessment study. The transfer from a Hold Trajectory in
the far-range rendezvous phase to the IL remains challenging under the current design scenario.

Hold Trajectory When the maximum cone angle is constrained to amax = 85° or 80°), the
solver naturally drives the sailcraft to its upper limit throughout the orbit, minimizing drift
and keeping the chaser well within the nested KOZs for ten target revolutions. Even if the sail
becomes “stuck” at a fixed attitude, the almost constant control profile preserves the nominal
hold path and avoids collision. As the cone-angle constraint tightens (down to 70° and below),
drift in the V-bar direction becomes more significant, and the trajectory does not resemble the
classical safety ellipse; nevertheless, it remains inclined above or below the KOS, preserving
passive safety.

Inspection Loop Among four equally spaced terminal points on the SE, two produced IL
solutions (Cases 1 and 4) that loop around the ellipsoid and maximize illumination (= 62.7 % of
the ToF). These “best” loops maintain good sensor visibility while satisfying KOZ constraints.
A safety assessment, with a 1000-samples Monte Carlo analysis, confirms minimum separations
with no trials resulting in collision. The other two cases (Cases 2 and 3), presented in Appendix
C, do not exhibit the desired looping behaviour. Although the optimization reaches the target
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state points, the trajectories remain outside the KOE along the negative V-bar throughout the
ToF and do not drift over the KOE. As these results do not resemble the intended IL behaviour,
they are not discussed in detail here.

Transfer Trajectories Linking SE and IL via optimal transfers proved the most challenging
task, especially matching position and velocity to within a few meters and millimetres per second
of accuracy. Case 4 achieved the best performance (Ar= 4.8 m, Av=0.004 m/s at the IL), but
other design scenarios without the Sun in the orbital plane could provide better results. The
transfer studied is complex because it requires a change in the eccentricity of the orbit. One of
the main difficulties with the transfer is that the Sun is in the orbital plane, which makes it very
difficult to change the eccentricity of the orbit. In reference [47] it has been proven that changing
from a circular or elliptical orbit, when the Sun is in the orbital plane, is very challenging; if the
problem were changed to one where the chaser and target are perpendicular to the direction of
the Sun, i.e. in a polar orbit (AA=0°), this could be an easier scenario and could improve the
results. In addition, the transfer time in this problem is not optimized but rather assumed based
on a guessed value, with a narrow allowed range (e.g., between 10 and 12 target revolutions).
This constraint could, in general, prevent the optimizer from finding better solutions that require
shorter times of flight. For instance, if the true optimal ToF were closer to 9 revolutions, such a
solution would be excluded. In this specific case, preliminary tests showed that, with the chosen
initial guess for Case 4 Transfer, a time of flight shorter than 10 revolutions was not sufficient to
complete the transfer, confirming that a minimum ToF > 10,7; is justified. In this regard, a
future optimization could explore not only progressively tightening the tolerances on the initial
and final state mismatches, but also relaxing the constraints on the transfer time, as this may
lead to even better alignment with the desired target states.

Verification and Validation of the results To ensure the physical consistency of the
optimized trajectories, a forward propagation of the state using the control profiles obtained
from GPOPS-II is performed. This validation process is detailed in Appendix A.5 and includes
the SE, IL, and Transfer trajectories. Forward integration is used to verify that the optimized
solutions are not only valid at the collocation nodes but also satisfy the constraints and system
dynamics between them. This validation confirms the accuracy of the optimizer and the resulting
control profiles, as the forward-propagated trajectories closely follow the optimal state vectors in
output from GPOPS-II in all three cases. This consistency is particularly evident when a finer
initial mesh and strict mesh error tolerance are used.
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Parametric Analysis

MASTER reference population: 01/08/2024
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Figure 4.1: Spatial and temporal distribution of space debris and orbital objects [1].

As shown in Fig. 4.1 from [1], the density of debris > 10 cm (red line) in Low Earth orbit (LEO)
shows an increasing trend starting from 250 km, with a peak around 850 km, then decreasing
with secondary peaks at approximately 1400 km and 1700 km.

In order to consider additional scenarios beyond the one analysed in Chapter 3 and to conduct
a comprehensive analysis, a parametric study is carried out. The optimization setup is the
same as that used for the Hold Trajectory discussed in Section 2.5.2. Regarding the control, all
parametric analyses are conducted by constraining am., to 85°. As previously stated, a cone
angle of 90° would result in zero acceleration, causing the sailcraft to follow a purely Keplerian
trajectory in the absence of other perturbations. Moreover, solar sail missions typically impose
an upper bound on the cone angle.

The following parameters are varied:

o Orbit altitude (km);

o Initial true anomaly (v°);
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o Characteristic acceleration a. (by adjusting the sail parameter f3);
o Aspect angle (AA);
o KOZs size;

The three selected altitudes (850 km, 1000 km, and 1400 km) correspond to the main peaks
in spatial density of space debris in Fig. 4.1: 850 km to the first peak, 1400 km to the second
major peak following 1000 km, which is the altitude at which the analysis in Chapter 3 has been
conducted.

Four values of true anomaly (TA) (0°, 90°, 180°, and 270°) are considered to represent equally
spaced positions along the orbit, thus capturing four distinct starting illumination conditions.

For the characteristic acceleration, three values are analysed: 0.000046 m/s? as the one of the
sail of the ACS3 mission [15], while 0.0001 m/s? and 0.000023 m/s? correspond to approximately
twice and half that value, respectively.

The “Aspect Angles” (AA) is defined as the angle between the line of the Sun and the orbital
angular momentum vector. Variations in AA take into account different orbital inclinations and
the right ascension of the ascending node (RAAN). For example: equatorial orbits have AA =
90° and inclination ¢ = 0°, while polar orbits can have AA = 90° or 0° with ¢ = 90°:

e When AA = 90°, the RAAN is 0°;
e When AA = 0°, the RAAN is 90°;

Two configurations are also considered for the keep-out sphere (KOS): a 50 m radius, obtained
using the strategy described in Section 2.2 with a safety factor of 2, and a 40 m radius,
corresponding to a reduced safety factor of 1.5. Similarly, two sets of dimensions are evaluated for
the keep-out ellipsoid (KOE): 160x740x 160 m (safety factor of 2) and 122x552x122 m (safety
factor of 1.5), both derived using the same methodology described in Section 2.2.

The specific values of the parameters used in the analysis are listed in Table 4.1.

Table 4.1: Parameters used in the parametric analysis.

Parameters Value 1 Value 2 Value 3 Value 4
True anomaly (°) 0 90 180 270
Altitude (km) 850 1000 1400 -
AA (°) iand ©2) 90 (equatorial) 0 (polar) 90 (polar) -

ac (B) (m/s?) 0.0001 0.000023 0.000046 -
KOS - KOF (m) 50 50 40 40

160x740x160 122x552x122 160x740x160 122x552x122

All combinations in the parametric analysis result in a total of 432 cases. These are divided
equally among the four KOS-KOE configurations, with 108 cases corresponding to each configura-
tion. For each group of 108 cases, the same initial guess (reported in Table 4.2) is used, resulting
in a total of four distinct initial guesses. For all 432 cases, an optimal solution is successfully
found. This confirms that a Hold trajectory, remaining inside the outer KOE and outside the
inner KOS, is always feasible, regardless of the orbital configuration.

Examining the resulting optimal trajectories, it becomes clear that the orbit does not always
resemble a typical safety ellipse. In many cases, a significant drift along the V-bar direction is
observed, despite the drift being limited by an additional constraint on the state, ensuring that
the maximum value of y did not exceed 2z .
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Value KOS KOE a 0 State vector [z; y; z; &; U; Z]

1 50m 160x740 m 90° 0° [0; —210; —105; 0; 0; O]

2 50m  122x552m  90° 0° [0; —172; —86; —0.0857981102033735; 0; 0]
3 40m  160x740m  90° 0° [0; —200; —100; —0.0997652444225273; 0; 0]
4 40m  122x552m  90° 0° [0; —162; —81; —0.0808098479822471; 0; 0]

Table 4.2: Initial guesses for both the state vectors and control angles in each hold
trajectory scenario considered in the parametric analysis. The corresponding KOZ sizes
are also provided.

Evaluation of V-bar Drift

The secular drift along the V-bar direction, denoted as Vi, is evaluated by analysing the
oscillatory motion of the relative trajectory over time and studying its deviation from the desired
SE trajectory, which is inherently periodic. For each optimal solution trajectory, we compute the
sets {Vinax,i} and {Viin,i} in meters. The drift along V-bar for each trajectory is calculated as:

_ max min

Amax - Vmax - Vmax7 (41)
_ max min

Amin — Ymin — Vmin :

The final value of the maximum absolute secular drift along the V-bar axis is defined as:

DriftV—bar = maX(Ama)u Amin)-

In Fig.4.6 maximum drift along the V-bar per altitude is compared for all the scenarios.

~®— KOS-KOE 40-122x552x122

KOS-KOE 40-160x740x140
~#— KOS-KOE 50-122x552x122
—8— KOS5-KOE 50-160x740x160

300

200 1000 1100 1200 1300 1400
Altitude [km]

Figure 4.2: Maximum Absolute V-bar Drift vs Altitude by KOZs configuration.

It can be noticed that at the same altitude the drift in the V-bar direction increases as the
volume between the KOZs used to design delimit the allowable zones grows. So more stable
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trajectories are found with the narrowest combination of KOZ: 50 m of radius for KOS and
122X522X122 for KOE.

The orbits that experience the highest drift are the polar ones with AA=90° as can be seen
in Fig. 4.3.

Orbit Type
2504 E3 polar (Aa=0°)
B Equatorial
B Polar (AA=90°)

True Anomaly (°)

(a) V-bar drift for KOZ value 1

175 Orbit Type
3 Polar (AA=07)
B Equatorial

B Polar (AA=90°)

90 180 270
True Anomaly (°)

(b) V-bar drift for KOZ value 2

Figure 4.3: Comparison of V-bar drift by True Anomaly and Orbit Type for different
Keep-Out Zone (KOZ) values: (a) KOZ value 1 and (b) KOZ value 2.

A peculiar behaviour is observed with the same Aspect Angle (AA) of 90° for equatorial and
polar orbits. At the same orbital parameters (except inclination) the polar trajectories have a
higher drift than the equatorial orbits. As can be seen in Fig. 4.4 when plotting the acceleration,
a different behaviour is particularly evident in the z-direction. The z-acceleration is higher for the
equatorial orbit, suggesting that the gravitational acceleration is more effectively compensated in
this configuration. In contrast, for the polar orbit, the z-acceleration is lower, indicating that the
out-of-plane component is less compensated. This leads to an increased out-of-plane drift in the
relative trajectory, as also observed in the plots.
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Figure 4.4: Acceleration (SRP) for equatorial orbit. Both orbits have the same orbital
parameters with AA = 90°, v = 270°, a, = 1 x 107*m/s?, and h = 1000 km.
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Figure 4.4: (continued) Acceleration (SRP) for polar orbit.

In conclusion a similar trend can be observed that suggest the use of equatorial orbits for more
stable trajectories for larger and smaller KOZs, instead for polar orbits narrower KOZs would
be necessary to maintain the desired Safety Ellipse behaviour. For what concerns the property
of the sail, it is observed that varying the lightness number and therefore the characteristic
accelerations: smaller accelerations tend to a better performance since the sail tends to follow a
point mass behaviour and the effect of the SRP is reduced. In Fig. 4.5 it can be seen that, by
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decreasing the characteristic acceleration, the trajectory approaches a Keplerian orbit; however,
since SRP is still present, the motion is not truly Keplerian. As a result, in some cases, having
less SRP leads to better performance because the trajectory requires less control effort, while in
other configurations, higher SRP would be beneficial to increase manoeuvrability.

Analysing both heatmaps from an altitude point of view, it is apparent that, in general,
a lower characteristic acceleration a. is favourable, since the optimized trajectories have the
smallest V-bar drift. However, higher values of a. become more effective at reducing drift as
altitude increases. In Figure 4.5a, for instance, the drift at 850 km for a, = 1.0 x 10™*ms~2 is
138 m, whereas increasing the altitude to 1400 km reduces the drift to 119 m under the same a..

Altitude [km]
1000
2
o

£
1088 S
K3

23e05 4.60-05 1.0e-04
cteristic acceleration [m/s?]

()

Figure 4.5: (Continued) Heatmap: V-bar drift by altitude and characteristic acceleration
— Case 4 of KOZs.

A similar trend is observed in Figure 4.5b: for a. = 4.6 x 107°ms™? and a. = 1.0 x
104 ms~2, where the minimum drift occurs at 1400 km.

1000 850

Altitude (km]

1400

(b)

Figure 4.5: Heatmap: V-bar drift by altitude and characteristic acceleration — Case 3 of
KOZs.
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Reduction of V-bar Drift

In Fig. 4.6, the maximum absolute V-bar drift is identified for each KOZ configuration as a
function of orbital altitude. To determine whether these drifts resulted from a bad initial guess,
the optimization is re-run for each case using, as the initial guess, the locally optimal solution
whose V-bar drift is already near zero. The resulting improvements in V-bar drift are presented
in Tables 4.3—4.6.

To facilitate a comparison, for each Value of KOZ, a parameter configuration is chosen that
optimized resulted in a locally optimal solution with more drift along the V-bar direction. Only
the altitude is varied between 850 km, 1000 km, and 1400 km.

Value 1: KOS = 50m, KOE = 160x740 m

Case TA [°] Altitude km] AC [m/s?] AA [°] Orbit Type Original Drift [m] Optimized Drift [m]

1 270 850 1.0 x 107 90 Polar 306.01 61.42
2 270 1000 1.0 x 104 90 Polar 420.91 85.04
3 270 1400 1.0 x 1074 90 Polar 391.30 46.69

Table 4.3: V-bar drift improvement using initial guess from previous optimization (Value

1)

Value 2: KOS = 50m, KOE = 122x552m

Case TA [°] Altitude [km] AC [m/s?] AA [°] Orbit Type Original Drift [m] Optimized Drift [m]

1 180 850 1.0 x 1074 90 Polar 312.94 52.09
2 180 1000 1.0x 1074 90 Polar 318.42 69.52
3 180 1400 1.0 x 1074 90 Polar 342.89 64.94

Table 4.4: V-bar drift improvement using initial guess from previous optimization (Value
2)

Value 3: KOS = 40m, KOE = 160x740 m

Case TA [°] Altitude [km] AC [m/s?] AA [°] Orbit Type Original Drift [m] Optimized Drift [m]

1 180 850 1.0 x 1074 90 Polar 384.90 165.97
2 180 1000 1.0 x 1074 90 Polar 384.33 81.84
3 180 1400 1.0 x 1074 90 Polar 468.76 92.73

Table 4.5: V-bar drift improvement using initial guess from previous optimization (Value

3)
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Value 4: KOS = 40m, KOE = 122x552m

Case TA [°] Altitude [km] AC [m/s?] AA [°] Orbit Type Original Drift [m] Optimized Drift [m]

1 90 850 1.0 x 1074 90 Polar 292.98 63.05
2 90 1000 1.0 x 1074 90 Polar 348.44 53.82
3 90 1400 1.0 x 1074 90 Polar 359.16 49.45

Table 4.6: V-bar drift improvement using initial guess from previous optimization (Value
4).

The table illustrates how orbital drift is influenced by varying altitudes, keep-out zone constraints
(KOS and KOE), true anomaly (TA), aspect angle (AA), and characteristic acceleration (AC),
considering only gravitational and solar radiation pressure (SRP) effects. A first optimal solution
is obtained using constant control inputs, and a successive optimization — starting from the
previous optimal solution as initial guess — results in a significantly reduced orbital drift,
especially at higher altitudes where SRP-induced perturbations dominate due to the lower
gravitational acceleration. An example of V-drift reduction by successive optimization is shown
in Fig. 4.7.

Configurations with smaller KOS and more compact KOE dimensions allow for more effective
optimization, likely because tighter constraints help focus the control effort and reduce unnecessary
deviations. The true anomaly, which in this context refers to the target satellite, influences the
initial relative geometry of the chaser-target system with respect to the Sun. Since the chaser’s
trajectory is defined relative to the target, variations in TA shift the entire configuration along
the orbit, changing both the timing and starting of eclipse conditions.

500

—o— Before

After
400 /

300

V-bar drift (m)

200

100

900 1000 1100 1200 1300 1400
Altitude (km)

Figure 4.6: Maximum Absolute V-bar Drift vs Altitude by KOZ configuration (Value 3)
using a locally optimal solution, with minimum drift in the V-bar direction, as the initial
guess.
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Figure 4.7: Comparison of V-bar drift for case 2 of value 3 of KOZs prior (a) and after
(b) the successive optimization using as initial guess a previously found optimal solution.

Discussion

The parametric study confirms that Hold Trajectories (SE) remain feasible across a wide
range of orbital altitudes, true anomalies, characteristic accelerations, aspect angles, and KOZ
configurations: all 432 test cases converge in optimal solutions that respect the inner spherical
and outer ellipsoidal keep-out volumes. However, the secular drift along the V-bar direction
varies strongly with these parameters. In particular, higher altitudes and larger KOZ volumes
produce larger drifts, since solar radiation pressure (SRP) perturbations dominate as gravitational
acceleration decreases. Polar orbits (AA = 90°) consistently exhibit greater out-of-plane drift
than equatorial orbits at the same altitudes, due to less effective SRP compensation in the

61



Parametric Analysis

z—direction. Tighter KOZs (e.g. 50 m radius with 122 x 552 x 122 m ellipsoid) help constrain
the drift. Finally, lower characteristic accelerations (smaller ) tend toward Keplerian-like
behaviour and can reduce control effort, though excessively low SRP limits manoeuvrability
and may increase drift in some configurations. Moreover, considering the optimal solutions
obtained from successive re-optimization using optimal low-drift initial guesses (Tables 4.3-4.6),
over 79.62% drift reduction is achieved in each of the three worst-case scenarios. This confirms
that even the most adverse KOZ configurations admit feasible Hold—Trajectory solutions when
initialized with a suitable guess — specifically, one exhibiting low V-bar drift. The largest
absolute improvement occurs at 850 km. These findings not only validate the robustness of the
Hold trajectory framework but also provide practical guidelines for mission design: favour lower
altitudes with lower characteristic accelerations, and at higher altitudes employ higher a. values
and tighter KOZs.
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Chapter 5

Conclusions and
Recommendations

This thesis aims to contribute to the research gap in close-proximity operations using solar sail
propulsion, building on previous research on phasing and far-range rendezvous operations with
solar sails. The first section of this chapter contains the conclusions and evaluates the results
obtained and puts them in relation to the research questions in Chapter 1, in order to assess
whether and how far they have been answered. In the second section, recommendations for
future work are proposed.

5.1 Conclusions

To answer the first research question,

What does an optimal trajectory for close-range operations look like with solar-sail
propulsion?

this thesis explored Hold-Trajectories like Safety Ellipse and Inspection Loop, similar to the
so-called Walking Safety Ellipse, to see whether inclined hold trajectories are feasible. These
relative motions guarantee safety in close-proximity operations: the trajectory never crosses the
velocity vector of the target, and the chaser never enters the inner keep-out volume, even when
flying around it. This trajectory design approach answers the first research question.

This study has demonstrated that inclined Hold Trajectories can stay for an extended time
interval (at least 10 target revolutions ~ 17.5 hours) in defined Hold Volumes without colliding
or exiting/entering the safety regions. It has been observed that constraining the cone angle
leads to increased drift along the V-bar, while values closer to the upper bound (e.g., 90°) reduce
drift by enabling more effective control.

The validity of these trajectories is assessed for multiple scenarios through a parametric
analysis where various combinations of altitude (850, 1000 and 1400 km), KOZs, initial true
anomaly, sail lightness number, AA and therefore orbit type (equatorial and polar) are tested.

A Walking Safety Ellipse-like relative trajectory of the chaser around the target is tested
and optimized. Results show that Inspection Loop trajectories allow the sailcraft to approach
the target while enabling its observation for an extended period of time. Furthermore, a useful
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consideration for cameras and sensors used in ADR is that the optimal trajectories are illuminated
for more than 62% of the total time of flight.

More optimal transfers are found; however, the Av and Ar at the insertion point are not
exactly zero, so further investigation is needed. Indeed, it won’t be flyable by a solar sail since
thrusting is continuous and not impulsive; therefore, more time for manoeuvring and transfer
from the Transfer to the optimized IL is needed, since it is observed that better transfer has a
longer ToF.

To find optimal trajectories and implement direct collocation methods, GPOPS-II is used.
By answering the following research question,

Is direct collocation accurate, robust and suitable to obtain optimal close-range
trajectories incorporating the main constraints?

it can be assessed whether this solution method is applicable to the problem scenarios under
study. Indeed, optimal solutions are found for all the problems investigated, so the method is
suitable and allows the incorporation of KOZs, control, state, and time constraints and bounds.

With regard to accuracy, answering the following subquestions provides a more detailed
evaluation.

o Accurate: Does it compute trajectories that satisfy dynamics and constraints with sufficient
precision not only at the collocation nodes? In Appendix A.5, forward propagation of the
found optimal solution and control is performed to assess it. What can be seen is that, in
general, the forward-propagated trajectories follow the optimal state vector of GPOPS-II.
Thus, even between the collocation nodes, the constraints and the dynamics are satisfied,
making them physically realistic trajectories. However, it has been noted that this is true
only if a fine mesh with a high number of collocation points and a strict tolerance on the
mesh error are used. A coarse mesh will more likely generate a less accurate trajectory.

e Robust: Can it consistently find feasible solutions even with uncertain inputs or poor initial
guesses? Concerning this subquestion, it is found that the better the initial guess, the more
physically feasible the solution is; hence, direct collocation highly depends on a good initial
guess. This is true especially for highly constrained problems such as the Inspection Loop
(IL) and Transfer problems where the initial guess did not exactly match the desired initial
or final state bounds. Although initial guesses that closely satisfy the boundary constraints
tend to produce better convergence, it is still possible to obtain feasible solutions even when
the initial and final states did not match exactly. For the more challenging cases, in practice,
techniques such as mesh refinement or intermediate solutions with relaxed constraints are
used to guide the solver. This demonstrates that, although the method benefits from a
good initial guess, it remains capable of converging towards optimal solutions under tight
bounds.

GPOPS-II, as the software used where direct collocation is implemented, reflects this
behaviour. Moreover its adaptive mesh strategy adjusts the number of collocation points
based on the user-defined allowable range. In some cases, this led to coarser meshes and
slightly less accurate forward-propagated trajectories. Nevertheless, the method as a whole
proved capable of converging to optimal and constraint-compliant solutions, even under
tight bounds.

o Suitable: Is it capable of handling complex constraints (e.g., keep-out zones) efficiently 7 It is
possible to conclude from this study that Direct collocation is suitable for solving the types
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of constrained trajectory optimization problems investigated in this work. The method
successfully handled both single- and multi-objective formulations while incorporating
complex constraints, including KOZs, control, state, and time bounds and constraints.
GPOPS-II provided an effective implementation of the method across all test cases.

5.2 Recommendations

While this thesis has demonstrated the applicability of solar sails for close-proximity operations
in ADR mission, several research gap still need to be filled and several problem addressed in
this thesis require further investigation to ensure mission effectiveness. This section outlines the
main recommendations for future work.

5.2.1 Simulation model

In this work the close-proximity operations study has been conducted considering mainly one
scenario: the target is on a circular equatorial LEO orbit at 1000 km.

e Sun Location: The Sun is located at the autumnal equinox and its position is fixed along
the negative X-axis, so it is assumed to be stationary. Consequently, the Sun lies in the
orbital plane of both the target and the sailcraft, which increases the complexity of the
optimization problem. One scenario to explore is a polar orbit with AA = 0°, which is
investigated only for the Hold trajectory scenario but not for the Inspection Loop and
Transfer. Exploring this scenario could potentially yield improved optimization results.

e Eclipse model: In this work, a simple cylindrical shadow model is adopted, and a
logistic function is used to smooth its discontinuities. It may be interesting to consider
the conical shadow model, as described in [23], which accounts for the penumbra and
returns a continuous illumination function-provided that the numerical integrator samples
the penumbral region adequately (otherwise the benefit over the cylindrical model would
be negligible).

e Perturbations: The spacecraft is affected by various perturbations such as atmospheric
drag, albedo radiation, third-body perturbations, and Earth’s oblateness (J; effect). In-
cluding all of these simultaneously would significantly increase model complexity and could
obscure the impact of each individual factor. Therefore, it is recommended adding perturba-
tions incrementally, beginning with those of greatest influence. Since there is a high debris
density in the 600-850 km altitude band [1], atmospheric drag has a considerable effect,
as stated in [33], and should be included first. In particular, it significantly impacts solar
sails, which present a large frontal area. Even if the sail is oriented edge-wise to the Sun to
minimize solar radiation pressure, it remains exposed to drag. Because drag always opposes
the velocity vector, it causes a reduction in semi-major axis and may help counteract the
positive V-bar drift, though this effect must be verified.

e Sail Model: In this thesis the ideal solar-sail model is used because it is simpler and
reduces complexity in the initial analysis phase. However, more complex models exist, such
as the optical model, which accounts for the sail’s reflection, absorption, and re-radiation,
and the parametric model, which includes the effects of sail shape under load. Both models
introduce additional complexity into trajectory analysis and optimization. Nevertheless,
analysing perturbation effects like atmospheric drag should be prioritized over adopting a
more complex sail model.
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5.2.2 Optimization method

In this thesis work, direct collocation methods are used to solve the optimal control problem.
Despite direct collocation’s need for an initial guess, its selection is justified by its robust capability
to handle complex trajectory-planning problems — especially those with non-linear and non-
convex constraints such as keep-out regions and thrust limitations. This method discretizes the
continuous trajectory into state and control variables at discrete time steps, representing the
intervals between nodes with polynomial splines. By imposing constraints directly at collocation
points, the algorithm ensures adherence across the entire trajectory, with accuracy improved by
increasing the number of collocation points.

For future work, other optimization methods could be explored. Evolutionary algorithms and
neurocontrollers like InTrance have been studied in [20]: they offer significant advantages by
not requiring an initial guess and by being more likely to locate a global optimum; however, as
Betts [38] points out, they are highly problem-dependent, employ randomized search heuristics
without theoretical convergence proofs, and demand substantially more computational resources
than direct collocation methods. Moreover, GPOPS-II proved capable of obtaining improved
optimal solutions, as shown in Appendix A.4.2. In the appendix, the same optimization problem
implemented in InTrance is reproduced using GPOPS-II, and the results are compared.

That is why convex programming [48] could be a promising option due to its deterministic
convergence properties and its lack of requirement for an initial guess, making it highly suitable for
real-time, autonomous on-board applications. It can efficiently achieve global optimal solutions
and has been proven to offer robust performance. However, a significant challenge lies in the
difficulty of convexifying non-convex constraints, such as those associated with KOZs.

5.2.3 Close-proximity operation study

To enhance the close-proximity study some recommendations for future work are:

e Incorporate a angular-rate constraint on the chaser’s control, to ensure that the
optimal controls obtained ensure a transition between successive attitude or orientations
that adheres to a predefined maximum turning rate.

o Constrain the resolution angle Volpe et al. [49] define the resolution angle (¥) as the
angle between the chaser’s camera line of sight and the sunlight rays on the target, serving
as a crucial index for relative illumination conditions and passive camera image quality.
This angle is highly useful for optimization because, unlike the uncontrollable illumination
angle, the resolution angle can be directly influenced by varying the chaser’s trajectory.
Minimizing its mean value (V) directly enhances state-estimation accuracy, produces clearer
images, and improves target-pose reconstruction — fundamental requirements for designing
optimal docking trajectories with uncooperative satellites.

o Explore transfer scenarios in orbital configurations where the Sun does not lie in the
orbital plane, such as a polar orbit (AA=0°), to test whether transfer trajectories flyable by
a solar sail can be found that minimize both the dv and the relative position error 7.

5.2.4 Investigation of the next proximity phases

Future work should extend the analysis to the final rendezvous phase, i.e. study the trajectory to
close and dock a dedicated target using a chaser module (separate from the solar sail) equipped
with impulsive or low-thrust propulsion. In particular, the design and optimisation of this docking
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trajectory should ensure the safe capture of an uncooperative space debris. To this end, the
study should incorporate scenario-specific constraints such as line-of-sight requirements, KOZs,
and attitude constraints to ensure both navigation accuracy and sensor visibility during the final
approach.

Answering these questions will fill the remaining research gap of close-proximity operations
and rendezvous of space debris using a solar sail.
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Appendix A

Verification and Validation

This Appendix includes the verification and validation of the models used in this thesis work.

A.1 Clohessy-Wiltshire Frame

The reference frame and the equation of motion used in this study where validated through the
following examples.

A.1.1 Coordinate transformation

To verify the coordinate transformation from the inertial frame to the co-moving/LVLH frame,
example 7.2 from [31] is replicated.

In the example a space station (target) and a spacecraft have their initial states in the ECI frame
(presented in Tab.A.1). The transformation matrix presented in Table A.2 is taken from Curtis.

Table A.1l: Initial States in the Inertial ECI Frame

X; [km] Y7 km] Z; [km] X; [km/s| Y, [km/s] Z; [km/s]

Space station 1622.39 5305.10 3717.44  -7.2997 0.49236 2.48318
Spacecraft 1612.75 5310.19 3750.33  -7.3532 0.46386 2.46920

These results are compared with those obtained using the setup implemented in this study, and
the percentage error between the two is reported.
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Table A.2: Comparison between transformation matrices.

Element Curtis Own result Error %
Qn 0.242,945 0.242,946  4.12 x 104
Q12 0.794,415  0.794,415 0.00
Q13 0.556,670 0.556,670 0.00
Qa1 —0.944,799  —0.944,798  1.06 x 1074
Q22 0.063,725 0.063,725 0.00
Q23 0.321,394 0.321,395  3.11 x 1074
Q3 0.219,846 0.219.847  4.55 x 104
Q32 —0.604,023  —0.604,023 0.00
(33 0.766,044 0.766,044 0.00

A.1.2 DMotion of the chaser relative to the target in LVLH frame

Clohessy Wiltshire equations are used to propagate a spacecraft within the co-moving frame/LVLH
frame. The CW equations are implemented in MATLAB and verified using various examples
from [31]. An example is shown in A.12, where example 7.3 has been replicated. It can be seen
that the results obtained are the same as the reference.

X
\ P T T
0.4 Clohessy—Wiltshire frame
0.2
Target Chaser
Y <0 i E.
~0,5 f =1 =15 =2 5
g 8 Sl - '
Continuation Circular orbit of target / -06
if no rendezvous_ 4 ] | | L__L ] -08
| Perigee of chaser's transfer orbit ,
1 - 2 km 1 0 05 4 415 2
Y e k]
(a) (b)

Figure A.1: Comparing the propagation of an initial condition for results originating
from (a) [31] and (b) this thesis work.

A.1.3 Accuracy assessment and step size selection for CW equa-
tions

The Clohessy—Wiltshire (CW) equations describe a simplified model of orbital relative motion,
where the target is assumed to be in a circular orbit. These equations are a linearization of the
two-body dynamics and therefore offer only an approximate solution [31]. This approximation
introduces errors that become more significant as the spacecraft moves farther from the origin.

To evaluate the accuracy of the CW model, a baseline trajectory is computed using the RK45
ODE solver with a small time step of h = 0.05 s, propagating the state for four target revolutions.
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The differences in position between the RK45 solution and the CW solution are then assessed for
various step sizes of the CW propagator. The results are presented in Figure A.2.
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Figure A.2: Position difference between the 2-body and Clohessy-Wiltshire propagations
over four orbital revolutions for different step sizes

As shown, increasing the step size leads to greater inaccuracies in the simulation. However,
since high precision is not essential for the goals of this analysis, a step size of h= 10 s is chosen
for all simulations. This choice balances computational efficiency with acceptable accuracy.

A.2 Shadow model

In this thesis, a cylindrical shadow model approximated using a smoothed logistic function is
employed. To validate the model, several Keplerian orbits have been propagated with particular
attention given to assessing whether the chosen coefficients (¢s and ¢;) provided an accurate
representation of the eclipse function.

Figure A.3 shows the resulting ECI trajectory, where the red segment represents the eclipsed
portion. It can be observed that only the segments within Earth’s cylindrical shadow are marked
as eclipsed, demonstrating that the model correctly identifies shadow regions and has been
implemented properly.

A direct comparison between the ideal eclipse model and the smoothed (logistic) version is
shown in Figure A.4.

In the top figure of Fig. A.4, the two functions overlaps, while the bottom Figure A.4
illustrates the error between them. As expected, the greatest error occurs during the transitions
in and out of eclipse, where the logistic function smooths the step change. Despite this, the
overall deviation is small, and the approximation using c¢; = 298.78 and ¢; = 1 provides a reliable
and accurate estimation of the eclipse status. A ¢; = 1 is chosen to avoid any shift in the eclipse
transition, while a ¢; = 298.78 is selected, as computed in [32], to minimize the error the error
between the logistic sunlight fraction and the discontinuous eclipse model for a circular LEO
orbit.
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Figure A.3: Shadow model for a Keplerian Orbit

Figure A.4: In the top figure the eclipse factor using a ideal cylindrical shadow model
and the smoothed is compared. In the bottom figure the error between the smoothed
shadow model and the ideal one is shown.

The root-mean-square error (RMSE) between the two models is found to be approximately
0.022, confirming the validity of the smoothed approach for use in solar-sail dynamics and mission
planning.

A.3 Dynamical model

To validate and verify the correct implementation of the solar-sail relative motion a test case is
introduced. This test case is taken from reference [20] and the aim of this validation is to see if
the CW equations are correctly implemented and allow to obtain the same propagation of the
dynamics. It analyses the relative motion of a solar sail in proximity to a target object.

Based on the altitude where most debris are located [50] and the altitude at which ACS3
operate [15] the target is assumed to be in a circular, equatorial orbit with an altitude of 1000
km. At the start of the simulation, the sail and the target have identical initial state vectors,
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placing the sail on the same orbit as the target at a true anomaly 6y = 0°. A lightness number
B = 7.7e — 3 is used for the sail, consistent with the parameters of the ACS3 mission. The
sail maintains a constant attitude throughout the simulation, which simplifies the analysis and
isolates the effects of the parameters under study. The cone angle is set constant to o = 0°. The
sail’s movement is simulated over ten revolutions of the target (17.5 hrs), with a time step of 10
S.

¥ [km]
o

I I I I
5000 5000 10000 15000
X [km)

3
Earth lluminated Eclipsed —_—
shadow Traj Traj Sunlight Sail Acc.

Figure A.5: Trajectory of the chaser for the test case in the ECI frame.

The solar sail, with its movement towards the Sun, causes the force of solar radiation pressure
(SRP) to act in the opposite direction to its velocity. This initially reduces the sail’s orbital
velocity and energy relative to a target spacecraft, causing the sail to fall behind and descend
into a more eccentric orbit with a lower periapsis. As the sail approaches periapsis, its orbital
velocity increases again, allowing it to catch up with and overtake the target along the direction
of the V-bar (i.e., in-track).

x (R-bar) [km]
x (R-bar) [m]

12 10 8 6 4 2 0
y (V-bar) [km]

(a) (b)

Figure A.6: Comparing the propagation of the same initial state using CW equation
from the test case shown in (a) [20] and (b) with the dynamical model used in this study.

Once the sail passes the perihelion, it has reached its maximum relative velocity. Moving
away from the Sun, the SRP now has a component along its velocity vector, which increases the
sail’s orbital energy (see Fig.A.7) and pushes its aphelion above the target’s altitude. As the
sail climbs towards this higher apoapsis, its velocity drops below that of the target, causing a
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relative drift in the positive direction of the R-bar and a slowdown in the positive movement of
the V-bar. Just before crossing the target’s orbit, the sail enters the Earth’s shadow and enters
the Earth’s shadow and proceeds without SRP. At the moment of crossing its relative speed in
the track (V-bar) is essentially zero, placing it directly in front of the target along the V-bar axis.

RRRRRRRRRRR

Figure A.7: Orbital energy of the chaser and the target.

During the first revolution, the sail remains at a lower radius than the target. After crossing
the second revolution (now above the target), it moves slower than the target, causing a drift in
the negative direction of the V-bar until it reaches its new apoapsis, where the relative velocity
is at a minimum. Once past the apoapsis, the sail’s speed increases again as it falls towards
the periapsis, reducing its backward drift until it passes the target again (positive movement of
the V-bar). During subsequent revolutions, the periapsis continues to descend and the apoapsis
continues to rise, so the sail’s orbit becomes increasingly eccentric.

73



Verification and Validation

A.4 Trajectory Optimization - GPOPS-1I

This section presents the validation of GPOPS-II optimizer, used in this work. In order to verify
and validate the optimizer two optimal control problems are considered. The first optimal control
problem regards non-Keplerian orbit using a solar sail, the second problem is from ref. [20] about
Encircling Hold Trajectories.

A.4.1 Non-Keplerian orbits

C-] BN o B2

Figure A.8: Chaser and target orbits in ECI frame.

The objective of this study is maximize the time the sail orbit can keep a minimum deviation
from a optimal non-Keplerian orbit. This non-Keplerian orbit maintains a constant offset, in
the anti-sun direction (along +X axis), relative to a target debris in a circular polar orbit
around Earth. The primary dynamic force considered is solar radiation pressure, with additional
adjustments for eclipse effects impacting the sail’s operation. The target is at an altitude of
r=20,539.66 km. The chaser (solar-sail) orbit is on a non-Keplerian polar orbit with radius p
(p = Vr? — 22) with an off-set of 1 km from the target orbit.

To obtain the non- Keplerian orbit displaced in the anti-sun direction the two gravity
components need to be considered are:

o —(u/r?) - z along z direction: it is cancelled with the solar radiation pressure

1
Qg, = _ﬁ 2 = Qgr = A5RP,2

ASRpP: = 4.6 x 1075 m/82 —
r = 20539663.04 m

The chosen displacement is of z = 1000 m. The value is "small" since CW equations are
used as dynamical model and require a small relative distance between the chaser and the
target to be accurate.

w = @ results from selecting the first family of non-Keplerian orbits so that the chaser’s
period w is synchronous with a Keplerian target orbit with @, radius r and z=0. Under this
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condition, the required pitch (cone) angle is obtained as:

tana = g ll — (w)Q] = a=0° (A.1)

w

e —(u/r3) -y along y direction: this component is responsible for the circular motion of the
chaser orbit (radius p) but with angular velocity /(u/73).

The optimization leverages GPOPS-II to refine an initial trajectory that slightly deviates from
the non-Keplerian path. The problem is set to direct the optimization from this initial guess
towards the predefined trajectory, utilizing known control profiles essential for maintaining the
required orbit offset.

Therefore, imposing the following initial relative position of the solar sail:

Xo = [0;=(r = p); 2, 0;0; 0]

LVLH

V-bar
R-bar

= E3

Figure A.9: Chaser trajectory in the co-moving (LVLH) frame.

Optimization problem

The optimization setup on GPOPS-II is the following. The objective of this formulation is
to maximize the duration ¢; during which the solar sail (chaser) remains within a prescribed
tolerance of the non-Keplerian orbit. Control is achieved using the sail’s cone and clock angles
a(t) and §(t). The dynamic is modelled by the linearized Hill-Clohessy—Wiltshire equations with
SRP. Large bounds are placed on the state variables (position and velocity) to allow freedom of
motion, while tight path constraints enforce that the state may only deviate by a small tolerance
tol from the desired state throughout the interval [to, ¢f].
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min J(a,0) = —t
DRy (@m0 = s

controls: a(t), 6(t) (cone & clock angles)

Dynamics
i — 2ny — 3n*r = u, (HCW with SRP)
i+ 2nt = uy

24 n’z=u,

to = 07 tf € [tf,mina tf,max] (Tlme bounds)
State bounds

z,y, 2 € [~10°% 105 m

Vg, Uy, v, € [—10%,10°] m/s

aft) €[5, 5], () € [-m, 7] (Control bounds)

Path constraint

z(t) =04/ —tol

y(t) = *(Rtarget* p), z(t) =2

V() = vy(t) = v.(t) =0+ / — tol

Initial and final state

xo = [0, —573159.09, 10%, 12925.59, 0, 0]

For the initial guess of controls, control angles are set to produce no thrust, i.e., « = 90°, § = 0.
The initial state guess is generated by forward propagating for 1 period of the target orbit, with
constant controls. The initial state is evaluated as: Xy = [0; —(r — p); 2; 0; 0; 0].

The final time ¢y is set to 10 target revolutions. This complete setup is used as input for
GPOPS-II, enabling high-fidelity time-optimal trajectory optimization under solar-sail propulsion
in a non-Keplerian configuration.

Results

From Figures A.10 and A.11 in output from optimization it results that GPOPS-II "finds" the
optimal required pitch angle to have a non-Keplerian displaced orbit: o = 0°. The resulting
trajectory of the solar sail relative to the target is a "dot".

We conclude that the GPOPS-II optimization is successfully verified and validated for the
presented user configuration. To further validate this analysis (see Fig. A.12), control history
plots are generated for initial cone angles other than o = 90°, specifically examining cases
with o = 70° and o = 45°. In all scenarios, the optimizer consistently converges to a = 0°,
the expected optimal cone angle. This demonstrates robust performance across varied initial
conditions.
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Figure A.10: Non-Keplerian trajectory result output from GPOPS-II.
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Figure A.11: Cone angle (a) and clock angle (b) from GPOPS-II output.
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Figure A.12: Non-Keplerian results with initial guessed cone angles of 70° (a) and 45°

(b).

A.4.2 Hold Trajectories (Encircling case)

To further verify and validate GPOPS-II user setup the Encircling Hold Trajectories analysis
done by [20] is replicated. The analysis of the hold trajectory investigates the impact of the sail’s
operational constraints, specifically cone angle limitations. A parametric analysis is conducted
varying the size of the hold volumes (KOZ) and the maximum allowable cone angle constraint.
Four sizes of hold volumes are used for the analysis. The dimensions of the outer and inner
ellipsoids defining each holding area, along with the initial conditions of the sail, are provided
in Table A.3. The semi-major and minor axes of the inner ellipsoid are set to 97% of those of
the outer ellipsoid. This ratio has been empirically chosen to allow easy comparison of hold
trajectories under different operational constraints. The initial Keplerian elliptical orbit, which
lies within the hold volume, is positioned midway between the two ellipsoids.

Outer Ellipsoid Inner Ellipsoid sail
Case Semi-Major Semi-Minor Semi-Major Semi-Minor Z Vyo
1 4000 2000 3880 1940 —1968.794  3.929
2 2000 1000 1940 970 —984.766  1.965
3 1500 750 1455 727.5 —738.574 1.474
4 1000 500 970 485 —495.331  0.988

Table A.3: Geometric parameters and sail settings for each case.

78



Verification and Validation

The optimization problem aims to maximize the time the trajectory remains within the
defined hold volumes, namely the outer and inner ellipsoids. The maximum hold time is set to
10 target revolutions, corresponding to approximately 17.5 hours. The optimization setup is
formulated as follows:

min —¢
u(lt) f

with a;, b;, ¢; semi-axes of the inner ellipsoid.

Qo, by, €, semi-axes of the outer ellipsoid.

subject to:

i — 2nj) — 3n’s = u, (State dynamics)
U+ 2nt = uy

24n’z=u,

2(0) € [Zmins Tmax] (Initial state)
Tmin = [—10%, —10%, —10%, =100, —100, —100] (State lower bounds)
Tmax = [10%,10%,10%, 100, 100, 100] (State upper bounds)

2 2 2
(x) + (y> + <Z> <1 (Outer KOE)
Qo b Co

() + () () = fer K08
[u(t)|| € [0,1] (Control path constraint)
[0,-1,-1" <u(t) <[1,1,1" (Control bounds)
tr € [t0; T o) (Time bounds)

Results

The results obtained using GPOPS-II are more favourable compared to those reported in [20],
which were obtained using InTrance, especially for lower maximum cone angle values (65° and
60°). As shown in Table A.4 (where the results from [20] are reported in brackets), for lower
cone angle constraints (amax = 60° and 65°), the number of revolutions during which the sail
remains within the hold volume reaches the maximum allowed, that is 10 target revolutions. For
example, in Case 1 with apax = 60°, the hold trajectory remains within the hold volume for 10
target revolutions, whereas [20] reports 8.79 revolutions.

Case Omax [°]
60 65 70 75 80 85
1 10879 10 10 10 10 10
2 10 (4.87) 10(843) 10 10 10 10
3 10(3.99) 10(7.12) 10 10 10 10
4 10 (2.64) 10(5.95) 10 10 10 10

Table A.4: Maximum allowable cone angle ay,,, for each case.
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A likely reason for this discrepancy lies in the different optimization strategies. The results
in [20] were obtained using InTrance, an optimizer that does not require an initial guess for
the steering strategy, but only the sail’s initial state. In contrast, in GPOPS-II, the optimal
solution for each case is found progressively: starting from a relaxed constraint of ., = 85°,
the resulting solution is then used as the initial guess for the next tighter constraint (e.g., 80°),
and so on, down to 60°.

Figure A.13 shows the optimized trajectory for Case 4 with . = 60°. The plot also includes
the forward propagation of the trajectory using the computed optimal control, showing that the
propagated trajectory perfectly matches the state profile found by GPOPS-II.

It is also clear that the trajectory is not planar but has an offset in the H-bar direction.

(a) (b)

Figure A.13: Optimal trajectory for Case 4 with a.x = 60°: planar (a) and 3D (b)
views.

Control Angles (*)

200

Figure A.14: Control profile of Case 4 with ., = 60 °.
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A.5 Output Solution of Optimization

In this section, the results obtained from the optimisation problems discussed in Section 3 are
validated by forward propagation. The initial state obtained through the optimisation process
is then propagated using the control obtained from GPOPS-II output. Only a subset of the
forward-propagated solutions from Chapter 3 is shown, since a similar trend is observed for
the other cases. It is essential to ensure the physical validity of the results obtained. Direct
collocation methods require that the optimal solution satisfies the optimality condition only at
the intermediate points (collocation points), where the constraint on dynamics is imposed. In
the interval between these points, it is necessary to further assess by forward propagation that
the results obtained do not violate the constraints.

Hold Trajectory propagation

To validate the results obtained in Section 3.1, the initial state from the optimization is forward
propagated in time using the optimal computed control. Figure A.15a shows that the forward
propagation of the initial state from case am., = 85° with its optimal control exactly overlaps
the state trajectory returned by GPOPS-II.

KOE
[ KOs

H-bar [m]

800

0

-800 -
200 R-bar [m]

(a) 3D trajectory: GPOPS-II (dashed blue) vs. propagated (solid red).

Figure A.15: Hold Trajectory case (a): GPOPS-II output state vector compared with the
analytical solution obtained by forward propagation. Components continued in Fig. A.16.
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Figure A.16: Hold Trajectory case (b-d): Cartesian components of the GPOPS-IT state
vector compared with the propagated trajectory. Continuation of Fig. A.15.

Inspection Loop propagation

Figure A.17a shows the forward propagation of the initial state for IL. Case 1 using the optimal
control from GPOPS-II. A complete discussion of this results can be found in Section 3.2. In Fig.
A.18a-A.18c the plots of the three state components x, y, and z are displayed. The propagated
trajectory overlaps the GPOPS-II solution almost exactly for up to ten revolutions; however,
the final propagated state does not exactly match the GPOPS-II trajectory (dashed blue line).
This discrepancy is likely due to the interpolation of the control profile output by GPOPS-II.
Employing a finer interpolation scheme should improve the accuracy of the forward propagation.
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(a) 3D trajectory: GPOPS-II (dashed blue) vs. propagated (solid red).

Figure A.17: Inspection-loop case (a): GPOPS-II output state vector compared with the
analytical solution obtained by forward propagation. Components continued in Fig. A.18.
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Figure A.18: Inspection-loop case (b-d): Cartesian components of the GPOPS-II state
vector compared with the propagated trajectory. Continuation of Fig. A.17.
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Transfer propagation

Figure A.19a shows Transfer 4 from Section 3.3, forward propagated to verify whether the
resulting state coincides with the GPOPS-II output. It can be seen that the propagated state
almost exactly matches the GPOPS-II trajectory, confirming the accuracy of the optimal control.

T
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(a) 3D trajectory: GPOPS-II (dashed blue) vs. propagated (solid red).
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Figure A.19: Transfer case: GPOPS-II output state vector compared with the analytical
solution obtained by forward propagation.
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GPOPS-11

This appendix provides a sensitivity analysis conducted on the problem discussed in A.4.2 and
the configuration used in GPOPS-II for the result section.

B.1 Sensitivity Analysis

This sensitivity analysis is performed on A.4.2 to tune mesh fraction, tolerance and collocation
points range. The selection of values for mesh fraction, collocation points, and tolerance in the
sensitivity analysis is based both on prior examples provided in the GPOPS-II User Guide [41]
and on practical experience gained from the optimization problems discussed in Chapters 3 and 4.

A total of 324 cases are analysed.
12.0
0.013 103 103
115
11.0
0.010 106 ms?:
10.0
9.5
0.005
9.0
4 6 10

Number of collocation points

Mesh fraction

Figure B.1: Sensitivity analysis on problem Hold trajectory (Encircling) with maximum
cone angles of 85°, 80°, and 70°. In the Heatmap NLP iterations, mesh fraction and
collocation points number are compared.

The mesh fraction value of 0.013 corresponds to 80 mesh segments into which the initial guess
state is divided, so 0.010 corresponds to 100 mesh segments and 0.005 to 200 mesh segments. A
fine mesh fraction is used, which helps reduce the number of iterations needed for convergence.
This statement is true because the problem is given a good initial guesses.
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Figure B.2: Sensitivity analysis on problem Hold trajectory (Encircling) with maximum
cone angles of 85° (a), 80° (b), and 70° (c). In the Heatmaps tolerance, mesh fraction and
collocation points number are compared.

A number of collocation point of 6 and mesh fraction of 0.05 has the lower NLP iteration
before convergence. Figure B.2c illustrates how the tolerance (or error) of the output varies as a
function of the mesh fraction and the number of collocation points, for a Hold-Trajectory case
with cone angle constrained to 70°. As the mesh fraction decreases from 0.013 to 0.005, the
error decreases steadily, indicating that finer meshes significantly improve accuracy. Similarly,
increasing the number of collocation points from 4 to 6 and then to 10 results in progressively
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lower errors, although the rate of improvement decreases, especially with lower mesh fractions.
For example, with a mesh fraction of 0.005, the error improves from approximately 3.3e-08 to
1.2e-08 across the collocation range. Overall, the graph confirms that finer meshes and a greater
number of positioning points improve the accuracy of the solution.

B.2 GPOPS-II Setup and Numerical Values
B.3 Hold Trajectory

To compute the hold-trajectory problem in GPOPS-II, the mesh and solver options are selected
to balance accuracy and computational effort. Table B.1 summarizes the mesh settings (e.g.,
collocation method, number and length of mesh intervals, tolerance) and IPOPT solver parameters
(linear solver, convergence tolerances, maximum iterations, derivative settings). The tolerance
values are based on the sensitivity analysis in Section B.1 and examples from the GPOPS-II user
guide.

Table B.2 then lists the numerical bounds on the state and control variables. The “Initial
state” block constrains the starting position and velocity; “State” applies across the trajectory;
“Final state” fixes the terminal limits; and “Control bounds” enforce actuator limits. All values
are given in unscaled units and must be adjusted according to the user-defined scaling.

Mesh settings

mesh.method hp-LiuRao-Legendre
mesh.tolerance 1x 1076
mesh.maxiterations 4

mesh.colpointsmax 20
mesh.colpointsmin 10
N =length(guess.fraction) M(mesh intervals)=200"
mesh.phase.colpoints 10

mesh.phase.fraction guess.fraction

Solver settings

setup.displaylevel 2
setup.nlp.solver >ipopt’
setup.nlp.ipoptoptions.linear_solver ’mab7’
setup.nlp.ipoptoptions.tolerance 1x1077
setup.nlp.ipoptoptions.maxiterations 1000
setup.auxdata auxdata
setup.bounds bounds
setup.guess guess
setup.derivatives.supplier ’sparseFD’
setup.derivatives.derivativelevel ’second’
setup.mesh mesh

Table B.1: GPOPS-II optimizer setup (IPOPT options setup)
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Variabile Lower bound Upper bound

Initial state

T —160 160
Yo —2xq 0
20 —160 160
Vg0 —100 100
Uy.0 —100 100
V20 —100 100
State

x —160 160
Y —2x 2x0
z —160 160
Vg —100 100
Uy —100 100
v, —100 100
Final state

Ty —160 160
Yy —2xg 2x0
2 —160 160
Vg, f —100 100
Uy f —100 100
Vs f —100 100
ty 0 107,
Control bounds

Uy 0.08716 1
U2 —1 1
us -1 1

Table B.2: GPOPS-II Set up. Numerical values here listed have to be scaled, according
to user defined scaling.

B.4 Inspection Loop

Table B.5 summarizes the mesh configuration for the Inspection Loop scenario. The mesh settings
differ from those used in the Hold Trajectory case, while the IPOPT options remain the same to
enable GPOPS-II to iteratively refine the discretization. In this setup, the number of collocation
points per interval is allowed to vary between 6 and 20, ensuring that the solver adapts the mesh

In GPOPS-II the initial guess is provided via a user-defined function: this function propagates the
system dynamics from the initial time ¢o to ¢y over M segments, then constructs: guess.time (a strictly
increasing time vector), guess.state, guess.control, and finally computes guess.phase.fraction.
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until the optimal solution is reached (see Section 2.5.2 for the optimization problem formulation).

Table B.4 defines the bounds for this problem. The “Objective weights” block sets the
trade-off parameters in the cost function, which in principle describe a full Pareto front; however,
since the primary goals are to maximize observation time and loop duration, only those weight
combinations emphasizing these objectives are analysed, as shown in Fig. B.3.

Total Cost J = w;f; + waf;

24.70

24.65
08 @=2034
@-2461 24.60

Q=246

0.6 2455

Q=1

w2
Total Cost J

0.4

0.2

0.0

Figure B.3: Total cost J = wy fi + wyfy evaluated at selected weight pairs (wq,ws),
illustrating how J varies along the sampled Pareto front.

The “Final time” block constrains the IL duration; “Initial state,” “State,” and “Final state”
enforce position and velocity bounds; “Control bounds” restrict the inputs; and the “Event-group
constraints” impose tightening tolerances on relative position and velocity so that the final
Inspection Loop state matches the target SE state.

2t0l_pairs = [10,0.10]; [10,0.05]; [10,0.02]; [10,0.01]; [5,0.02]; [1,0.02]; [5,0.01]; [1,0.01]
1) tighten both (Ar =10, Av = 0.10); 2) tighten Av only (Ar =10, Av =0.05); ... 8) (Ar=1,Av =
0.01).
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Mesh settings

mesh.method
mesh.tolerance
mesh.maxiterations
mesh.colpointsmax
mesh.colpointsmin

N =length(guess.fraction)
mesh.phase.colpoints
mesh.phase.fraction

hp-LiuRao-Legendre
1x107°

4

20

6

M(mesh intervals)=100
6

guess.fraction

Solver settings

setup.displaylevel

setup.nlp.solver
setup.nlp.ipoptoptions.linear_solver
setup.nlp.ipoptoptions.tolerance
setup.nlp.ipoptoptions.maxiterations
setup.auxdata

setup.bounds

setup.guess
setup.derivatives.supplier
setup.derivatives.derivativelevel
setup.mesh

2
>ipopt’
‘mab7’
1x1077
1000
auxdata
bounds
guess
’sparseFD’
’second’
mesh

Table B.3: GPOPS-II optimizer setup (IPOPT options setup)
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Variabile Lower bound Upper bound
Objective weights
1
s ! -
3
Final time
17 5T, 20T}
Initial state
o —400 400
Yo —1000 0
20 —400 400
Vg0 —100 100
Uy.0 —100 100
V20 —100 100
State
x —106 10°
Y —106 106
z —106 10°
Vg —100 100
Uy —100 100
v, —100 100
Final state
Xy Lmin Tmax
Ys Ymin Ymax
Zf Zmin Zmax
Vg, f —100 100
(O —100 100
Vs f —100 100
Control bounds
« 0.0872 1
01 —1 1
0o —1 1
Event-group constraints®
Arg, Ary,, Ar, — tol, tol,
Avg, Av,, Av, — tol, tol,

Table B.4: GPOPS-II Set up. Numerical values here listed have to be scaled, according
to user defined scaling.
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GPOPS-II

B.5

Transfer

For the transfer problem, a mesh settings similar to those used in the Inspection Loop (Table
B.5) is employed, with four collocation points per interval and the same solver tolerances.
Table B.6 summarizes the bounds and constraints for the transfer scenario, including objective-

weight parameters, control limits, time windows, state bounds during transfer, final-state toler-
ances (which vary by tolerance set), and initial-guess bounds. All values are given in scaled units
and must be adjusted according to the user’s scaling definitions.

Mesh settings

mesh.method hp-LiuRao-Legendre
mesh.tolerance 1x107°
mesh.maxiterations 4

mesh.colpointsmax 20
mesh.colpointsmin 4

N =length(guess.fraction) M(mesh intervals)=100
mesh.phase.colpoints 4

mesh.

phase.fraction

guess.fraction

Solver settings

setup.

setup
setup
setup
setup

setup.
setup.
setup.
setup.
setup.

setup

displaylevel

.nlp.solver
.nlp.ipoptoptions.linear_solver
.nlp.ipoptoptions.tolerance
.nlp.ipoptoptions.maxiterations
auxdata

bounds

guess

derivatives.supplier
derivatives.derivativelevel
.mesh

2
’ipopt’
‘mab7’
1x1077
1000
auxdata
bounds
guess
’sparseFD’
’second’
mesh

Table B.5: GPOPS-II optimizer setup (IPOPT options setup)

3Tolerance sets are used depending on the target’s velocity magnitude: Position tolerances tolg,, = 5 or
10m, tol, = 1 or 0.5 m; Velocity tolerances tol,, = 0.01 or 0.001 m/s, tolyy, tol,, = 0.1 or 0.05m/s.These
tolerance are not varied trough the optimization, since the minimization of the tolerance is done in the

objective function.

4tol_sets rows are [tol,toly, tol,, tolyy, tol,,, tol,,]: 1) [10,10,1,1,1,1]; 2) [10,10,1,0.1,0.1,0.1]; 3)
[10,10,1,0.05,0.1,0.1]; 4) [10,10,1,0.01,0.1,0.1]; 5) [10,10,1,0.01,0.05,0.05]; 6) [5,5,1,0.01,0.05,0.05]; 7)

[5,5,1,0.01,0.01,0.01];

8) [5,5,1,0.005,0.01,0.01].
92



GPOPS-II

Variable Lower bound Upper bound
Objective weights

w1 % —

wo 3 —
Control bounds

Ul 0 1

u2 —1 1

us -1 1
Time bounds (Cases 1-3)

to to to

tr 0.8T; 1.57T;
Time bounds (Case 4)

Lo to to

ty 107T; 127T;
State bounds

x —106 106

y —10° 108

2 —106 106

Vg —100 100

Uy —100 100

v, —100 100
Final-state bounds®

Ty xr — tol, xT + tol,
Yr yr — tol, yr + tol,
zf zr — tol, zr + tol,
Vg, f Vg7 — tolyy Vg, + tolyy
Uy, f vy 7 — tolyy Uy + tolyy
U f v, 7 — tol,, v, 7 + toly,
Initial-state guess bounds?

To o — tol, To + tol,
i Yo — toly Yo + toly
20 Zp — tol, 2o + tol,
Vz,0 Vg0 — tOlvz Vz,0 + tOlva:
Uy 0 Vy,0 — tolyy Vy,0 + tolyy
V2,0 Vz,0 — t01vz V2,0 + tOlvz

Table B.6: Transfer problem: bounds and initial-guess numerical values. All the variables
are scaled with a user-setup scaling.
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Appendix C

Additional Figures and Tables

Hold Trajectory

In this section, the optimal trajectories and control outputs for the SE, with o constrained to
75° (a), 65° (b), and 60° (c), are presented in Figures C.1, 7?7 and C.3. These additional figures
support the discussion of cone-angle limitations in Section 3.1.2.

(a)
Figure C.1: Hold trajectory (SE) with maximum cone angle of 75° (a).
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@)

o
V-bar [m]

(a)

Rebar [m]

V-bar [m]

(b)
Figure C.2: Hold trajectories (SE) with maximum cone angles of 65° (b) and 60° (c).
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Control Angle ()

besissssssonssaansagl

Control Angle ()

besissssssonssaansagl

B
Revoluton (Rev)

(b)

Control Angle ()

besisissssonssasnsagl

Figure C.3: Controls of Hold trajectory (SE) with maximum cone angles of 75° (a), 65°
(b), and 60° (c).
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Additional Figures and Tables

Inspection Loop

In this section, we present the optimal trajectories and control outputs for the Inspection Loop
(IL) in Cases 2 and 3 (Figures C.4 and C.5). These figures are not included in Section 3.2 because
the resulting trajectories did not exhibit the desired walking-safety—ellipse behaviour. Although
the optimization reached the target state points, the trajectories remained behind the KOE
along the negative V-bar throughout the time-of-flight and never drifted over it, thus failing to
produce the intended IL behaviour.

Con

LN LW 9 L LY

o
ol
pal
ol
i
ol
ol ™ T i 1 1
oA HH HH Y
< wf
§ =f
< o
£ ol
“ —a0)
P
0] U
™
o
Revoluon (Rev)

(b)
Figure C.4: IL trajectory Case 2 (a) and relative control (b).
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KOE

100 oS
—— IL traj (WSE),
© Target

2[m]
°

x[m]

Control Angles (°)

Revolution (Rev)

(b)
Figure C.5: IL trajectory Case 3 (a) and relative control (b).
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