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Abstract 

The environment surrounding us has always been a source of curiosity: humankind seeks 

a form of global knowledge capable of answering the doubts and questions it poses in 

order to explain various physical phenomena. For example, by observing the sky, it has 

been possible to measure the passage of time. 

The desire to physically verify what has been hypothesised gave a decisive push to the 

space age. However, this did not only bring advantages but also caused the release of 

objects and pollutants into the atmosphere. 

Today, we have reached a point where it is no longer possible to ignore the issue: active 

intervention is necessary to contain and, if possible, solve the problem. 

Accidental collisions, unfortunately, only increase the presence of debris in space: this is 

the phenomenon known as the Kessler syndrome. Every time a collision occurs between 

two objects – travelling at speeds on the order of km/s – it is as if a bomb explodes, 

generating thousands of fragments, which behave like projectiles, drifting through space 

and ready to collide with other objects, thus amplifying the problem. 

In this context, the aim of this research is to develop a tool that uses indirect optimisation 

to identify efficient trajectories that minimise fuel consumption for a satellite equipped 

with electric thrusters, designed to collect space debris or to reach other satellites for 

in-orbit servicing. 

The desired trajectory is computed using a single shooting method based on the 

Pontryagin minimum Principle (PmP). In this way, fuel usage is limited, and the thruster 

operates more efficiently thanks to an autonomous switching function based on bang-

bang control, which regulates thrust without having to predefine the thrusting and 

coasting arcs.
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First Chapter  

Introduction 

Preface 

We are committed to the safe and sustainable use of space to support humanity’s 

ambition now and in the future. We recognise the importance of developing common 

standards, best practices and guidelines related to sustainable space operations 

alongside the need for a collaborative approach for space traffic management and 

coordination. We call on all nations to work together, through groups like the United 

Nations Committee on the Peaceful Uses of Outer Space, the International Organization 

for Standardization and the Inter-Agency Space Debris Coordination Committee, to 

preserve the space environment for future generations. [12] 

This concern was explicitly raised during the G7 Leaders’ Summit held in Cornwall in June 

2021, where the long-term sustainability of outer space was highlighted as a global 

priority. 

Since the launch of Sputnik in 1957, the modern space age has seen a rapid expansion 

of orbital activity. Today, Earth is enveloped by a dense and growing cloud of artificial 

objects. While many of these satellites perform essential functions – ranging from 

climate monitoring and natural disaster detection to global navigation and 

communication services – once their operational life ends or they suffer a malfunction, 

they often remain in orbit as inactive and unserviceable debris. 

In the early years of the space era, this condition posed little concern due to the limited 

number of satellites in orbit. However, the situation has changed dramatically. Each year, 

hundreds of launches add thousands of new satellites to the existing population and the 

accumulation of useless objects is becoming increasingly problematic. 

Beyond the risk of direct collisions with active satellites, these objects contribute to light 

pollution, interfere with astronomical observations, and leave residual pollutants in the 

upper atmosphere – even when de-orbiting solutions are employed. 

This context compels a shift in how space is perceived: it must be considered a res 

communis, a global common accessible and beneficial to all humankind. As stated in the 



Introduction 

 2 

1979 Moon Agreement – which expands upon principles set out in the Outer Space 

Treaty of 1967 – states are prohibited from altering the environmental balance of 

celestial bodies, a term which, in extended interpretation, includes Earth’s orbital 

environment. For further information on the subject, please refer to [1]. 

 

Debris problem 
Why should we concern ourselves with what happens in space, given the multitude of 

issues we already face on Earth? 

Thousands of objects currently orbit the Earth, and countless more are either awaiting 

launch or already scheduled for deployment in the coming years. Alongside these, an 

ever-growing number of non-functional fragments – commonly referred to as space 

debris – occupy the same orbital regions. Their tracking has become a shared 

responsibility among international space agencies, research institutions, and specialised 

private operators. 

But if this debris is, essentially, just discarded material, what’s the real issue? Space is, 

after all, vast – so why worry about fragments drifting around our planet? 

Indeed, the universe is unimaginably large, and in theory, there should be enough room 

for everyone. Yet a more pressing question arises: what if Earth’s orbits became so 

overcrowded that they turned into high-risk zones for collisions between fast-moving 

objects? This scenario, once theoretical, was first outlined by NASA scientist Donald J. 

Kessler, giving rise to what is now known as the Kessler Syndrome. Although it may sound 

like science fiction, recent history suggests otherwise. 

In 2009, the collision between two satellites – Iridium 33 and Cosmos 2251 – above 

Siberia offered the first real-world confirmation of the cascading effect predicted by 

Kessler, generating thousands of debris fragments. [20] 

In some cases, human actions have deliberately contributed to the problem. This is 

particularly evident in military demonstrations involving Direct-Ascent Anti-Satellite (DA-

ASAT) technologies, in which missiles are launched from Earth to destroy satellites in 

orbit. Notable cases include tests carried out by China (2007), the United States (2008), 

India (2019), and Russia (2021). China’s test remains the most destructive in terms of 
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debris creation. While the US and Indian tests were conducted at lower altitudes – where 

atmospheric drag could facilitate self-cleaning over time – Russia’s operation took place 

at an altitude dangerously close to that of the International Space Station (ISS), triggering 

a significant safety alert on board. [19] 

 

figure 1. debris distribution (credit: SCIENCE SOURCE/SCIENCE PHOTO LIBRARY) 

Each object in orbit, whether operational or inactive, represents a potential ignition 

point in this fragile system. 

Yet one might argue: if these objects ultimately burn up in the atmosphere, isn’t the 

issue self-resolving? Won’t time take care of the problem? 

This is only partially true. A striking counterexample is Vanguard 1, one of the earliest 

artificial satellites, launched by the United States in 1958. Unlike many other spacecrafts 

from that era, which have since re-entered and disintegrated in the atmosphere, 

Vanguard 1 remains in a high Earth orbit, where atmospheric resistance is insufficient to 

trigger re-entry for several centuries. 

Nevertheless, it is important to acknowledge the satellite’s scientific legacy. Vanguard 1 

contributed critical data on the shape of the Earth and the properties of the upper 

atmosphere. This duality highlights a broader truth: while artificial satellites are 

indispensable for observing both distant phenomena and Earth-bound dynamics, once 
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their mission ends, they must not be allowed to become hazardous remnants that 

threaten other active spacecraft – or worse, human life in orbit. 

The number of objects in orbit is increasing exponentially, a trend clearly illustrated in 

the European Space Agency’s Annual Space Environment Report (ESA, 2024) [11]. The 

urgency of implementing sustainable practices in orbital management is no longer a 

topic for future discussion, but a necessity for present and long-term stewardship of 

near-Earth space: 

 

figure 2. evolution of number of objects in geocentric orbit by object class (credit: ESA) 

Where: 

PL Payload 

PF Payload Fragmentation Debris 

PD Payload Debris 

PM 
Payload Mission Related 

Object 

RB Rocket Body 

RF Rocket Fragmentation Debris 

RD Rocket Debris 

RM Rocket Mission Related Object 

UI Unidentified 

table 1. object classification 
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figure 3. distribution of active payloads with altitude (credit: ESA) 

As shown in the figure, the distribution of active payloads with respect to altitude peaks 

between 500 km and 600 km. 

 

figure 4. density profiles in LEOIADC for different space object size ranges from the 01/08/2024 MASTER reference 
population (credit: ESA) 

Similarly, the distribution of objects of varying sizes reaches its peak within a slightly 

broader altitude range, approximately between 500 km and 1000 km. 

It is evident that nano- and microsatellites are increasingly prevalent, occupying the 

same orbital bands where debris concentrations are also higher. This reflects a growing 

trend in the deployment of small-scale platforms for commercial and scientific 

applications – often in low Earth orbits that are already congested. 

On average, 10.5 non-deliberate fragmentation events have occurred annually over the 

past two decades, further contributing to the accumulation of space debris. 
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Nevertheless, even if all launches were to cease entirely, collisions among existing debris 

would continue to generate new fragments, further exacerbating the situation – as 

illustrated in the following figure. 

 

figure 5. number of cumulative collisions in LEOIADC in the simulated scenarios of long-term evolution of the 
environment (credit: ESA) 

If further investigation is required, please go to Space debris and refer to: [13], [14], [15], 

[18]. 

 

Optimization methods 
A satellite does not possess an infinite fuel supply: every manoeuvre entails an energy 

cost. One way to mitigate this constraint is using optimisation techniques that determine 

the most efficient trajectory for collecting debris, thereby minimising propellant 

consumption. These methods allow for more efficient on-board fuel management, 

extending mission lifetime and operational flexibility. 

Such techniques are designed to adapt both temporally and spatially to the evolving 

characteristics of the problem. In this sense, optimised algorithms act like a real-time 

space navigation system, dynamically recalculating optimal paths in response to 

changing mission conditions. 

To optimise means to find the best possible solution by varying a set of control variables 

– often subject to physical or operational constraints. 
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Most optimisation strategies employed for space trajectory design fall into three main 

categories: direct methods, indirect methods, and evolutionary algorithms. 

The fundamental distinction between direct and indirect methods lies in how the 

optimal control problem is reformulated for numerical resolution. 

Direct methods transform the problem into a constrained nonlinear optimisation by 

discretising the trajectory in both time and space. This approach requires a high number 

of variables to accurately capture the system dynamics. While inherently robust, direct 

methods often trade off precision. The strategy is primarily numerical: the trajectory and 

control inputs are discretised at several points, and then the algorithm searches for a set 

of values that minimises the objective function while satisfying all system dynamics and 

constraints. 

Indirect methods, by contrast, are based on Pontryagin’s minimum Principle (PmP). They 

derive the necessary conditions for optimality by solving a boundary value problem 

involving differential equations. The solution seeks the system’s optimal behaviour and 

associated costates – mathematical quantities linked to the system's optimal equilibrium 

– by ensuring that these conditions are satisfied. Indirect methods are generally faster 

due to fewer variables and offer high accuracy and theoretical elegance. However, they 

are highly sensitive to initial guesses, which are problem-specific, and they tend to be 

less robust. 

Finally, evolutionary algorithms are nature-inspired methods that do not rely on solving 

equations directly. Instead, they generate, evaluate, and evolve populations of candidate 

solutions, gradually converging towards optimality. These algorithms are particularly 

useful when the problem lacks explicit mathematical formulations. However, they are 

computationally intensive and offer no guaranteed convergence, making them less 

predictable than analytical approaches. 
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Dissertation overview 
This paragraph contains a description and breakdown of the subsequent chapters: 

• Space debris provides an in-depth analysis of space debris. The problems and 

causes behind its accumulation are presented, and the reasons why the current 

situation can no longer remain unchanged are explored. Techniques for debris 

removal are then proposed, along with other solutions involving the 

implementation of a circular economy-based model to optimise resource 

utilisation. 

• Trajectory optimization offers an explanation of trajectory optimisation. 

Although treated in a preliminary and non-exhaustive manner, it provides a tool 

for understanding the mathematics behind the results obtained, taking into 

account the starting point, the destination, and everything in between. 

• Dynamic model revisits essential concepts of orbital flight mechanics, including 

the parameters used to describe orbits, reference systems, orbital manoeuvres, 

and perturbations that shift the scenario from the ideal to the real case. 

Additionally, the dynamic models in which the satellite operates and moves over 

time are presented. 

• The implemented OCP examines the case study in detail, dissecting it to clarify 

the work carried out. The results obtained are shown, and conclusions are drawn 

from this work, including the issues encountered, the shortcomings identified, 

and potential future improvements. 
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Second Chapter  

Space debris 

Introduction 
Space debris refers to the collection of artificial objects orbiting the Earth that no longer 

serve any practical purpose. 

Among this space junk are items that have been discarded or lost by those living and 

working in space stations, as well as fragments resulting from the breakup of rockets or 

satellites. 

On the night of 7 August 2023, a beam of light tore through the sky above Melbourne, 

Australia: according to the Australian Space Agency, the glow most likely originated from 

the fiery remains of a Russian Soyuz-2 rocket re-entering the Earth's atmosphere. [1] 

Notably, in 2024, for the first time, controlled re-entries outnumbered uncontrolled ones 

– a potentially promising sign of improved mitigation strategies and more responsible 

end-of-life planning in satellite missions. [11] 

 



Space debris 

 10 

 

figure 6. controlled and uncontrolled re-entries for Rocket Bodies (credit: ESA) 

The exponential growth in the number of objects in orbit poses global risks, as accidental 

collisions – made more likely by the increasing number of satellites travelling along orbits 

at the same altitude – generate an indefinite quantity of debris. Regardless of their size, 

these fragments act as weapons, damaging other satellites and triggering an inexorable 

chain reaction. 

In addition to rendering satellites inoperable, this scenario presents an ever-growing risk 

for future human missions, which are forced to pass through these overcrowded orbital 

regions. 

 

Circular economy 
One of the greatest challenges of long-distance space travel and the establishment of 

bases beyond Earth orbit is the ability to provide food, water, and a breathable 

atmosphere in a stable, safe, and highly reliable manner over time. 

To enable such missions, it has become necessary to develop a highly efficient system 

capable of recovering nutrients from waste streams, thereby minimising the need for 

external consumable supplies: this involves the actual recovery of valuable minerals 

from waste products. 
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The circular economy outlines systems in which the use of resources – by their nature 

limited – is maximised, favouring circular models among the various possible 

approaches. 

The space sector could be considered an ideal environment in which to apply the 

principles of the circular economy, and what happens in space should be taken as a case 

study to develop ways of living that move as far as possible from the linear consumption 

model to which we are accustomed. 

The circular economy is a model of production and consumption that involves sharing, 

leasing, reusing, repairing, refurbishing, and recycling existing materials and products for 

as long as possible. 

The words of Antonio Massarutto are particularly resonant in this context: 

Every vital process produces waste. But there is a difference between producing waste 

and producing rubbish. 

The European Space Agency (ESA) has actively supported this cause, working to develop 

new systems capable of resupplying and servicing satellites in orbit, thereby extending 

their operational lifespan and reducing their environmental impact. 

The hope is to eventually be able to assemble, manufacture, and recycle directly in orbit. 

 

Removal techniques 
There are several possible approaches to mitigate the creation of new debris and to clean 

up the space environment. 

First of all, the number of new launches could be reduced, thus limiting the introduction 

of additional objects into space. Satellites could be made more resistant, or measures 

could be taken to shorten their time in orbit. Residual energy sources can also be 

eliminated to prevent the risk of explosions, or shielding can be added to prevent 

fragmentation. 

Unfortunately, only about half of end-of-life satellites currently comply with these 

measures, whereas achieving tangible results would require much higher levels of 

adherence – around 90%. 

Traditional satellites, burning up upon atmospheric re-entry, release aluminium particles 

and other metals that can persist for decades in the thermosphere, with effects on the 
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climate and ozone layer that are still poorly studied. The idea, therefore, was to construct 

a wooden satellite because this material burns up completely without releasing harmful 

residues, reducing orbital pollution. [21] 

In 2018, ClearSpace was founded out of the awareness that in-orbit servicing and the 

removal of space debris are essential services for the future of space exploration and 

operations. [17] 

Satellites of the future will increasingly need to be designed with their removal in mind. 

For example, the company Astroscale has developed a docking plate – a device to be 

installed on the satellite before launch, helping to reduce development costs and 

enabling the satellite to be captured at the end of its life. Through its Cosmic mission, 

the company is also implementing a new capture technology using a robotic arm. [22] 

Further information can be found at [16] and [19]. 
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Third Chapter  

Trajectory optimization 

Why discuss optimal control? 

When controlling a dynamic system – such as a rocket following an ascent trajectory or 

a rover performing tasks – the goal is to operate the system in the best possible way. This 

might involve, for instance, minimising energy consumption or reaching a destination in 

the shortest time possible. 

This, in essence, is the crux of optimal control: finding the control strategy that optimises 

system performance while adhering to any constraints. 

The first essential step is describing the system to be controlled. One must understand 

how it behaves over time, and to do so, a mathematical model is required – one that 

represents the relationship between the system’s current state and the control decisions 

being made. 

The system’s state changes based on control actions; without a model describing this 

relationship, it becomes impossible to predict how these actions will influence the 

system, rendering optimisation unattainable. The mathematical model thus provides the 

foundation for all subsequent reasoning. 

 

Optimal control problem 
Control systems are described by ordinary differential equations (ODEs) of the form: 

𝑥̇ = 𝑓(𝑡, 𝑥, 𝑢),      𝑥(𝑡0) = 𝑥0 (1) 

where: 

- 𝑥 is the state vector (𝑥 ∈ ℝ𝑛), 

- 𝑢 is the control input, taking values from the admissible set 𝒰 ∈ ℝ𝑚, 

- 𝑡 denotes time, 

- 𝑡0 is the initial time and 𝑥0 the initial state. 

Both 𝑥 and 𝑢 are functions of time 𝑡. 

Once the system’s dynamics are understood, the key question arises: what should be 

optimised? 
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This is where the cost function (or objective function) comes into play – it translates the 

goal into a mathematical form. Without a well-defined cost function, it would be 

impossible to compare control solutions or measure how close a strategy is to optimality. 

The cost function penalises undesirable behaviours, such as deviations from the desired 

state or excessive resource usage. 

For a given initial condition (𝑡0, 𝑥0), system behaviours are parametrised by control 

functions 𝑢. Thus, a cost functional 𝒥 assigns a value to each admissible control: 

𝒥(𝑢) = 𝜑(𝑥0, 𝑥𝑓, 𝑡0, 𝑡𝑓) + ∫ [Φ(𝑥(𝑡), 𝑢(𝑡), 𝑡)]𝑑𝑡
𝑡𝑓

𝑡0

 (2) 

where: 

- Φ is the running cost (quantifying trajectory performance), 

- 𝜑 is the terminal cost (quantifying final-state achievement), 

- 𝑡𝑓  is the final time (free or fixed), 

- 𝑥𝑓 = 𝑥(𝑡𝑓) is the final state (free, fixed, or from a target set). 

For brevity, we write 𝒥(𝑢), though 𝒥 technically depends on initial/final conditions and 

𝑢: 𝒥(𝑥0, 𝑥𝑓, 𝑡0, 𝑡𝑓 , 𝑢). 

The equation (2) can be rewritten in the Lagrange or Mayer formulations by nullifying 𝜑 

or Φ, respectively, and introducing suitable auxiliary variables. 

The optimal control problem reduces to: find the control 𝑢 that minimises 𝒥(𝑢) among 

all admissible controls (or at least locally). 

However, constraints must be introduced to ensure physical feasibility. Ignoring them 

risks yielding a theoretically optimal but practically unrealisable solution. Boundary 

conditions 𝑡0 and 𝑡𝑓   define a Two-Point Boundary Value Problem (TPBVP), which may 

include initial/terminal conditions: 𝑥(𝑡0) = 𝑥0, 𝑥(𝑡𝑓) = 𝑥𝑓. 

The constraint vector is: 

𝜒⃗(𝑥0, 𝑥𝑓, 𝑡0, 𝑡𝑓) = 0⃗⃗ (3) 

where 𝜒⃗: [ℝ𝑛 , ℝ𝑛, ℝ, ℝ] → ℝ𝑞. 

This general framework is termed the Bolza problem, solvable via analytical, numerical, 

or hybrid methods. 
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Necessary Conditions for Optimality 

A first-order necessary condition for constrained optimality requires the first variation of 

𝒥 to vanish for all admissible trajectory perturbations. To apply indirect methods, we 

reformulate (2) using Lagrange multipliers 𝜇 (for boundary constraints) and adjoint 

variables 𝜆 (for state dynamics): 

𝒥∗ = 𝜑 + 𝜇𝑇 χ⃗⃗ + ∫ [Φ + 𝜆𝑇(𝑓 − 𝑥̇)]𝑑𝑡
𝑡𝑓

𝑡0

 (4) 

The Lagrange multipliers are constants associated with the boundary conditions (BCs), 

providing a measure of how well the constraints are satisfied. 

The adjoint variables (also called costates), linked to the state variables, represent the 

influence of each state variable on the performance index. 

The augmented functional 𝒥∗ coincides with 𝒥 when χ⃗⃗ = 0 and (𝑓 − 𝑥̇) = 0. 

By manipulating the previous equation (4), we may simplify it through integration by 

parts to eliminate the state derivatives 𝑥̇: 

∫ (𝜆𝑇𝑥̇)𝑑𝑡
𝑡𝑓

𝑡0

= (−𝜆𝑓
𝑇𝑥̇𝑓) + (𝜆0

𝑇𝑥̇0) + ∫ (𝜆
̇𝑇𝑥) 𝑑𝑡

𝑡𝑓

𝑡0

 

The augmented functional thus becomes: 

𝒥∗ = 𝜑 + 𝜇𝑇 χ⃗⃗ + (𝜆0
𝑇𝑥̇0 − 𝜆𝑓

𝑇𝑥̇𝑓) + ∫ (Φ+ 𝜆𝑇𝑓 + 𝜆
̇𝑇𝑥) 𝑑𝑡

𝑡𝑓

𝑡0

 

We may consolidate the integrand by introducing the fundamental Hamiltonian 

function: 

ℋ ≜ Φ+ 𝜆𝑇𝑓 (5) 

Examining the first variation of 𝒥 yields: 

𝛿𝒥∗ = (
𝜕𝜑

𝜕𝑡0
+ 𝜇𝑇

𝜕𝜒⃗

𝜕𝑡0
−ℋ0)𝛿𝑡0 + 

+(
𝜕𝜑

𝜕𝑡𝑓
+ 𝜇𝑇

𝜕𝜒⃗

𝜕𝑡𝑓
+ℋ𝑓)𝛿𝑡𝑓 + 

+(
𝜕𝜑

𝜕𝑥0
+ 𝜇𝑇

𝜕𝜒⃗

𝜕𝑥0
+ 𝜆0

𝑇)𝛿𝑥0 + 

+(
𝜕𝜑

𝜕𝑥𝑓
+ 𝜇𝑇

𝜕𝜒⃗

𝜕𝑥𝑓
− 𝜆𝑓

𝑇) 𝛿𝑥𝑓 + 

(6) 
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+∫ [(
∂ℋ

𝜕𝑥
+ 𝜆

̇𝑇) 𝛿𝑥 +
𝜕ℋ

𝜕𝑢⃗⃗
𝛿𝑢⃗⃗] 𝑑𝑡

𝑡𝑓

𝑡0

 

The functional 𝒥 (2) attains its maximum when 𝛿𝒥∗ ≤ 0 ∀𝑑𝑥. 

To achieve this, one must define an appropriate set of Lagrange multipliers and adjoint 

variables. For the functional's first variation to vanish, the coefficients of the 

parenthetical terms must be nullified: 

𝜕𝜑

𝜕𝑡0
+ 𝜇𝑇

𝜕𝜒⃗

𝜕𝑡0
−ℋ0 = 0    →      ℋ0 =

𝜕𝜑

𝜕𝑡0
+ 𝜇𝑇

𝜕𝜒⃗

𝜕𝑡0
 

𝜕𝜑

𝜕𝑡𝑓
+ 𝜇𝑇

𝜕𝜒⃗

𝜕𝑡𝑓
+ℋ𝑓 = 0    →      ℋ𝑓 = −

𝜕𝜑

𝜕𝑡𝑓
− 𝜇𝑇

𝜕𝜒⃗

𝜕𝑡𝑓
 

𝜕𝜑

𝜕𝑥0
+ 𝜇𝑇

𝜕𝜒⃗

𝜕𝑥0
+ 𝜆0

𝑇 = 0    →      𝜆0
𝑇 = −

𝜕𝜑

𝜕𝑥0
− 𝜇𝑇

𝜕𝜒⃗

𝜕𝑥0
 

𝜕𝜑

𝜕𝑥𝑓
+ 𝜇𝑇

𝜕𝜒⃗

𝜕𝑥𝑓
− 𝜆𝑓

𝑇 = 0    →      𝜆𝑓
𝑇 =

𝜕𝜑

𝜕𝑥𝑓
+ 𝜇𝑇

𝜕𝜒⃗

𝜕𝑥𝑓
 

These yield the transversality conditions (time-governing ODEs) and optimality 

conditions (state-governing ODEs) at the trajectory boundaries (TPBVP). The final time 

𝑡𝑓  and final state 𝑥𝑓 may be either free, fixed, or constrained to a target set. 

Key Observations: 

- fixed time (𝑡 ∈ 𝜒⃗): 

time derivatives vanish 
𝜕𝜒⃗⃗⃗

𝜕𝑡0
,
𝜕𝜒⃗⃗⃗

𝜕𝑡𝑓
= 0. The Hamiltonian becomes free and subject 

to optimisation. 

- free time 𝑡 ∉ 𝜒⃗: 

when 𝜑 = 𝑚 (independent of time), the Hamiltonian vanishes and time becomes 

an optimisation variable. 

- constrained state 𝑥𝑖 ∈ 𝜒⃗: 

state derivatives vanish, leaving the corresponding adjoint variable free for 

optimisation. 

- free state 𝑥𝑖 ∉ 𝜒⃗: 

if 𝜑 = 𝑚 (independent of 𝑥𝑖), the adjoint variable becomes null. 
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Euler-Lagrange Equations and Control Law 

The remaining terms in the variation (6) yield: 

∫ [(
∂ℋ

𝜕𝑥
+ 𝜆

̇𝑇) 𝛿𝑥 +
𝜕ℋ

𝜕𝑢⃗⃗
𝛿𝑢⃗⃗] 𝑑𝑡

𝑡𝑓

𝑡0

 

Nullifying 𝛿𝑥 gives the Euler-Lagrange equations for adjoints: 

𝜕𝜆

𝜕𝑡
= −(

𝜕ℋ

𝜕𝑥
)
𝑇

 (7) 

Nullifying 𝛿𝑢⃗⃗ produces 𝑚 algebraic equations: 

(
𝜕ℋ

𝜕𝑢⃗⃗
)
𝑇

= 0⃗⃗ 
(8) 

The input control 𝑢 ∈ 𝒰 ⊆ ℝ𝑚 is constrained within bounds 𝒰min ≤ 𝑢 ≤ 𝒰𝑀𝐴𝑋. 

 

Pontryagin's Maximum Principle (PMP) 

These considerations – specifically that the control 𝑢 must maximise (or minimise) the 

Hamiltonian with respect to itself – constitute Pontryagin's Maximum Principle. The 

optimal control value 𝑢∗ must, at every point along the trajectory, maximise the 

Hamiltonian to ensure the functional 𝒥 is maximised. 

Therefore: 

- when the control is bounded within an admissible set 𝒰, the optimal control law 

is determined by (7); 

- for unbounded controls, the optimal value must coincide with either extremum 

of 𝒰 (maximum or minimum). 

The solution of these equations fundamentally depends on the functional relationship 

between the Hamiltonian and control vector: when this relationship is linear, the 

condition (8) becomes unsolvable, rendering the control mathematically indeterminate. 

For a control-affine Hamiltonian where: 

𝜕ℋ

𝜕𝑢
= 𝑘𝑢𝑖     (𝑘𝑢𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

Pontryagin's Maximum Principle (PMP) requires: 

𝑢𝑖
∗ = {

𝒰𝑚𝑖𝑛 𝑖𝑓 𝑘𝑢𝑖 < 0

𝒰𝑀𝐴𝑋 𝑖𝑓 𝑘𝑢𝑖 > 0
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This discontinuous switching behaviour characterises bang-bang control. 

To enhance code robustness and mitigate discontinuities in trajectory variables (which 

may arise from local constraints during transfer), we implement a temporal domain 

decomposition strategy. The integration interval is partitioned into 𝑛𝑝 subintervals 

(arcs), with discontinuities and constraints explicitly positioned at arc boundaries. 

Numerical Implementation: 

- arc partitioning 

The trajectory is divided into 𝑛𝑝 arcs, creating (𝑛𝑝) junction points. The j-th arc 

spans 𝑡(𝑗−1)+ to 𝑡(𝑗)−, with state variables transitioning from 𝑥(𝑗−1)+ to 𝑥(𝑗)+ 

(𝑗 = 1,… , 𝑓). 

- Multi-Point Boundary Value Problem (MPBVP) Formulation: 

𝜒⃗(𝑥(𝑗−1)+, 𝑥(𝑗)+, 𝑡(𝑗−1)+, 𝑡(𝑗)−) = 0⃗⃗,     𝑗 = 1,… , 𝑛𝑝 

- cost functional: 

𝒥 = 𝜑(𝑥0, 𝑥1±, … , 𝑥𝑓, 𝑡0, 𝑡1±, … , 𝑡𝑓) +∑∫ [Φ⃗⃗⃗⃗(𝑥(𝑡), 𝑢⃗⃗(𝑡), 𝑡)]𝑑𝑡
𝑡(𝑗)−

𝑡(𝑗−1)+

𝑛𝑝

𝑗=1

 

and the augmented cost functional: 

𝒥∗ = 𝜑 + 𝜇𝑇𝜒⃗ +∑∫ [λ⃗⃗𝑇(𝑓 − 𝑥̇)]𝑑𝑡
𝑡(𝑗)−

𝑡(𝑗−1)+

𝑛𝑝

𝑗=1

 

Through integration by parts, we derive the augmented functional: 

𝒥∗ = 𝜑 + 𝜇𝑇𝜒⃗ +∑(λ⃗⃗(𝑗−1)+
𝑇 𝑥⃗(𝑗−1)+ − λ⃗⃗(𝑗)−

𝑇 𝑥(𝑗)−)

𝑛𝑝

𝑗=1

+∑∫ (λ⃗⃗𝑇𝑓 + 𝜆
̇𝑇𝑥⃗⃗) 𝑑𝑡

𝑡(𝑗)−

𝑡(𝑗−1)+

𝑛𝑝

𝑗=1

 

Differential Form: 

𝛿𝒥∗ = (
𝜕𝜑⃗⃗

𝜕𝑡(𝑗−1)+
+ 𝜇𝑇

𝜕𝜒⃗

𝜕𝑡(𝑗−1)+
−ℋ(𝑗−1)+)𝛿𝑡(𝑗−1)+ + 

+(
𝜕𝜑⃗⃗

𝜕𝑡(𝑗)−
+ 𝜇𝑇

𝜕𝜒⃗

𝜕𝑡(𝑗)−
+ℋ(𝑗)−) 𝛿𝑡(𝑗)− + 

+(
𝜕𝜑⃗⃗

𝜕𝑥(𝑗−1)+
+ 𝜇𝑇

𝜕𝜒⃗

𝜕𝑥(𝑗−1)+
+ 𝜆𝑇(𝑗−1)+)𝛿𝑥(𝑗−1)+ + 

+(
𝜕𝜑⃗⃗

𝜕𝑥(𝑗)−
+ 𝜇𝑇

𝜕𝜒⃗

𝜕𝑥(𝑗)−
− 𝜆𝑇(𝑗)−) 𝛿𝑥(𝑗)− + 
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+∑∫ [(
∂ℋ

𝜕𝑥
+ 𝜆

̇𝑇) 𝛿𝑥 +
𝜕ℋ

𝜕𝑢⃗⃗
𝛿𝑢⃗⃗] 𝑑𝑡

𝑡(𝑗)−

𝑡(𝑗−1)+

𝑛𝑝

𝑗=1

 

The transversality and optimality conditions at generic junction point j become: 

𝜕𝜑⃗⃗

𝜕𝑡𝑗+
+ 𝜇𝑇

𝜕𝜒⃗

𝜕𝑡𝑗+
−ℋ𝑗+ = 0,     𝑗 = 1, … , 𝑛𝑝 − 1 

𝜕𝜑⃗⃗

𝜕𝑡𝑗−
+ 𝜇𝑇

𝜕𝜒⃗

𝜕𝑡𝑗−
+ℋ𝑗− = 0,     𝑗 = 1, … , 𝑛𝑝 

𝜕𝜑⃗⃗

𝜕𝑥𝑗+
+ 𝜇𝑇

𝜕𝜒⃗

𝜕𝑥𝑗+
+ 𝜆𝑇𝑗+ = 0,     𝑗 = 1,… , 𝑛𝑝 − 1 

𝜕𝜑⃗⃗

𝜕𝑥𝑗−
+ 𝜇𝑇

𝜕𝜒⃗

𝜕𝑥𝑗−
− 𝜆𝑇𝑗− = 0,     1,… , 𝑛𝑝 

For further details and explanations, please refer to: [2], [7]. 

 

 

Numerical methods 
A numerical method is a mathematical strategy employed to solve problems that prove 

challenging to address through precise analytical techniques, typically due to the 

complexity of the governing equations. The core objective is to decompose a complex 

problem into a series of smaller, more manageable sub-problems. 

The fundamental concept involves transforming sets of differential equations – which 

represent continuous phenomena in time or space – into discrete systems comprising a 

finite number of points (intervals) defined by a reduced set of variables. While the 

trajectory optimization problem under consideration is inherently continuous in time, 

numerical methods enable its reformulation from an infinite-dimensional problem into 

a series of finite-dimensional sub-problems. 

Given the inherent difficulty in solving Boundary Value Problems (BVPs) analytically, 

numerical methods are frequently employed to approximate solutions. Common 

techniques include: 

- Shooting Method 

The shooting method converts a BVP into an initial value problem by: 

- proposing trial initial conditions 

- forward-integrating the differential equations 
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- iteratively adjusting initial guesses until terminal conditions are satisfied 

Advantages: effective for both linear and nonlinear problems 

Limitations: potential instability for stiff systems and reduced efficacy for highly 

sensitive problems 

- Finite Difference Method 

This approach: 

- discretizes the time domain into a grid 

- approximates derivatives using finite differences 

- transforms the continuous problem into a solvable algebraic system 

 

- Collocation Methods 

These methods: 

- employ basis functions to approximate solutions 

- reformulate the problem as a function approximation task 

- particularly suited to nonlinear problems 

 

- Newton/Extended Newton-Raphson Method 

For nonlinear systems, this technique: 

- linearizes equations via Taylor expansions 

- iterates to convergence 

- offers enhanced efficacy for complex nonlinearities 

 

The Single Shooting Method is particularly useful when dealing with ODEs or systems of 

differential equations, where the initial or final conditions are not completely known and 

must be determined as part of the solution. 

The main approach is to reduce the boundary value problem to an Initial Value Problem 

(IVP); this is done through an iterative technique: 

1. initial values are hypothesized for the unknown variables; 

2. the system of differential equations is solved with these initial conditions; for 

example, using standard methods for solving IVPs, such as Runge-Kutta or Euler 

methods; 
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3. the solution obtained at the end of the interval is compared with the known final 

conditions. If the solution does not satisfy the final conditions (i.e., there is an 

error), optimization or correction techniques are used, for example Newton 

methods, to adjust the initial values and repeat the process until the error is 

sufficiently small. 

It works well when the problem is not too stiff or highly nonlinear. 

The method can be unstable for some problems, especially when the solution is very 

sensitive to initial conditions. 

It is not suitable for problems with many unknown parameters or very complex systems, 

where methods such as Multiple Shooting or collocation methods are preferable. 

Returning to the work of this thesis, it was chosen to implement a shooting procedure 

with bang-bang control by evaluating, at each iteration, the discrepancy between the 

obtained result 𝑥𝑗(𝑡𝑓) and the desired state 𝑥𝑓. 

This result is then used to correct the initial hypothesis, thus obtaining a new trial value 

that will be used in the next iteration, and so on until the predetermined error threshold 

is reached. 

If we consider the vector containing the initial hypotheses: 

𝑥0 = {𝑥1, 𝑥2, … , 𝑥𝑛}
𝑇 

and the vector of the final values we want to achieve: 

𝑥𝑓
∗ = {𝑥1

∗, 𝑥2
∗, … , 𝑥𝑛

∗ }𝑇 

Then, the discrepancy can be calculated as: 

𝜒⃗(𝑥𝑓
∗) = {

𝜒1
𝜒2
…
𝜒𝑛

= {

𝑥1 − 𝑥1
∗

𝑥2 − 𝑥2
∗

…
𝑥𝑛 − 𝑥𝑛

∗

 

In this way, the entire process is repeated, iteration by iteration, until the optimal initial 

guess is found that guarantees 𝜒⃗(𝑥𝑓
∗) = 0⃗⃗. 

To find this, it is necessary to apply the first-order Taylor expansion to the constraint 

vector: 

𝜒(𝑥) = 𝜒(𝑥0) +
𝜕𝜒(𝑥0)

𝜕𝑥
(𝑥 − 𝑥0) 
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In this case, the partial derivatives are calculated using the finite difference method 

(backward, centred, or forward in time) using the assigned initial values and perturbed 

values obtained by adding a constant to the initial state: 

𝑥0 = 𝑥0 + 𝛿 

Assuming 𝛿 = 10−6, we construct the Jacobian matrix by perturbing each state one at a 

time (𝛿 = 𝛿{1, 0, 0,… , 0}𝑇): 

𝜕𝜒(𝑥0)

𝜕𝑥
= 𝐽(𝜒(𝑥0), 𝑥) =

[
 
 
 
 
 
 
 
𝜕𝜒1
𝜕𝑥1

𝜕𝜒1
𝜕𝑥2

⋯
𝜕𝜒1
𝜕𝑥𝑛

𝜕𝜒2
𝜕𝑥1

𝜕𝜒2
𝜕𝑥2

⋯
𝜕𝜒2
𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝜒𝑚
𝜕𝑥1

𝜕𝜒𝑚
𝜕𝑥2

⋯
𝜕𝜒𝑚
𝜕𝑥𝑛 ]

 
 
 
 
 
 
 

 (9) 

Each term is calculated using the finite difference method: 

𝜕𝜒

𝜕𝑥𝑗
∗ =

𝜒 − 𝜒∗

𝛿
 

and the matrix 𝐽 ∈ ℝ𝑚×𝑛, where 𝑚 is the number of constrained quantities in the vector 

𝜒 and 𝑛 is the number of state variables. 

Applying this procedure at each iteration, we can find the initial state hypothesis to use 

in the next iteration as a correction of the previous one, following: 

𝜒(𝑥𝑗+1) = 𝜒(𝑥̃𝑗) +
𝜕𝜒(𝑥𝑗)

𝜕𝑥𝑗+1
(𝑥𝑗+1 − 𝑥𝑗) 

It is possible to derive the new initial state hypothesis. Assuming that the solution found 

at iteration (𝑗 + 1) exists, we obtain: 𝜒(𝑥𝑗) + 𝐽(𝑥𝑗+1 − 𝑥𝑗) = 0. Therefore, we have: 

𝑥𝑗+1 = 𝑥𝑗 − [𝐽(𝜒𝑗)]
−1
𝜒(𝑥̃𝑗) 
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Fourth Chapter  

Dynamic model 

n-body problem 
The n-body problem (nBP) consists of predicting and studying the motion of a system of 

n celestial bodies interacting with each other. Let us consider n bodies in an isolated 

system with comparable masses – for example, the various planets of the Solar System. 

We choose an inertial reference frame, that is, a reference frame at rest or in uniform 

rectilinear motion relative to the fixed stars (if the system were not inertial, we would 

need to add non-inertial contributions to the force scheme, such as fictitious forces like 

the Coriolis force and centripetal force). 

 

figure 7. n-body system (credit: lessons on orbital mechanics) 

On each body act: 

- the gravitational contributions from all other bodies 

- an additional force 𝐹⃗∗ accounting for all other possible contributions due to: 

o non-sphericity of the body 

o thrust generated if the body is a spacecraft 

o aerodynamic drag 

o solar pressure 

o other effects 
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From this scheme, we derive the following vector relation: 

𝑟𝑖𝑗 = 𝑟𝑖 − 𝑟𝑗 

Expressing the gravitational contribution according to Newton's law and applying the 

second law of dynamics, we obtain: 

𝐹⃗ = 𝐹⃗∗ + ∑ 𝐹𝑔⃗⃗⃗⃗ 𝑗

𝑛

𝑗=1,𝑗≠𝑖

= 𝐹⃗∗ − 𝐺𝑚𝑖 ∑
𝑚𝑗

𝑟𝑖𝑗
3 𝑟𝑖𝑗

𝑛

𝑗=1,𝑗≠𝑖

 

Since: 

𝐹⃗ =
𝑑

𝑑𝑡
(𝑚𝑣⃗𝑖)   →   −𝐺𝑚𝑖 ∑

𝑚𝑗

𝑟𝑖𝑗
3 𝑟𝑖𝑗

𝑛

𝑗=1,𝑗≠𝑖

= 𝑚𝑖𝑟̈𝑖 

Therefore: 

𝑟̈𝑖 = − ∑
𝐺𝑚𝑗

𝑟𝑖𝑗
3 𝑟𝑖𝑗

𝑛

𝑗=1,𝑗≠𝑖

= − ∑
𝜇𝑗

𝑟𝑖𝑗
3 𝑟𝑖𝑗

𝑛

𝑗=1,𝑗≠𝑖

 

Solving this equation means solving the nBP. In reality, this is a system of n coupled 

second-order vector differential equations (i.e., each single equation contains multiple 

unknowns), thus requiring a numerical solver for simultaneous solution. 

Once the unknowns (accelerations) are determined, they must be integrated twice to 

obtain the 𝑟𝑖, representing the relative positions of the bodies as functions of time. 

The solution provided by the solver is called orbital propagation, to which perturbative 

errors must be added for a more accurate solution. 

 

Two-body problem 
The nBP can be simplified to the two-body case, whose main advantage is the possibility 

of using an analytical approach rather than numerical solvers. 

The fundamental assumptions of this problem are: 

- the system consists of only two masses 𝑚1 and 𝑚2 with 𝑚1 ≫ 𝑚2 [e.g., Earth-

Moon (EM) or Earth-Sun (SE) systems] 

- no external forces act on the bodies (𝐹⃗∗ = 0⃗⃗ – only gravitational forces along the 

line connecting their centres) 

- perfect spherical symmetry (mass concentrated at the centre of mass) 

- constant masses (
𝑑𝑚1

𝑑𝑡
= 0,

𝑑𝑚2

𝑑𝑡
= 0) 
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figure 8. 2-body scheme (credit: lessons on orbital mechanics) 

Mathematical Formulation 

We define the relative position vector: 

𝑟 = 𝑟2 − 𝑟1 

Its derivatives give relative velocity and acceleration: 

𝑟̇ = 𝑟̇2 − 𝑟̇1 

𝑟̈ = 𝑟̈2 − 𝑟̈1 

By writing Newton's law of universal gravitation for both bodies and combining them, 

we can derive the equation governing the motion of the two-body system: 

{

𝑚2𝑟̈2 = −𝐺
𝑚1𝑚2

𝑟3
𝑟  (𝐼)

 

𝑚1𝑟̈1 = 𝐺
𝑚1𝑚2

𝑟3
𝑟  (𝐼𝐼)

 

Subtracting (𝐼) from (𝐼𝐼): 

(𝐼𝐼) − (𝐼):     𝑟̈2 − 𝑟̈1 = 𝑟̈ = −𝐺
𝑚1

𝑟3
𝑟 − 𝐺

𝑚2

𝑟3
𝑟 = −𝐺(𝑚1 +𝑚2)

𝑟

𝑟3
 

For 𝑚1 = 𝑀 (primary body) and 𝑚2 = 𝑚 (secondary body), with µ =  𝐺𝑀 (gravitational 

parameter), and since 𝑀+𝑚 ≃ 𝑀  →   𝐺(𝑀 +𝑚) ≃ 𝐺𝑀 = 𝜇: 

𝑟̈ = −𝐺
(𝑀 +𝑚)

𝑟3
𝑟    →    𝑟̈ +

𝜇

𝑟3
𝑟 = 0⃗⃗ (10) 

The resulting equation demonstrates that the acceleration of both bodies is purely 

radial, which is entirely consistent with the assumption that gravity is the sole force 

acting on them. 



Dynamic model  

 26 

This two-body equation is fundamentally a dynamical equation because the gravitational 

parameter 𝜇 inherently contains mass information. 

 

The gravitational field is conservative – the work done by gravitational forces between 

any two points A and B in space depends solely on their initial and final positions, not on 

the path taken. This property allows us to define a gravitational potential and confirms 

that mechanical energy (the sum of kinetic and potential energy) is conserved. Energy 

can only be converted between these two forms: 

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 =  𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦 +  𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 

In its general formulation: 

ℇ =
𝑣2

2
−
𝜇

𝑟
= 𝑐  ⟹   ℇ =

𝑣2

2
+ (𝑐 −

𝜇

𝑟
) (11) 

Here, 𝑐 is an arbitrary constant whose value depends on the zero potential energy 

reference. Specifically: 

- 𝑐 =  0 corresponds to setting the potential energy reference at infinity 

- The satellite's potential energy (−
𝜇

𝑟
) is consequently always negative 

 

Specific Mechanical Energy ℰ: 

For a satellite, this parameter represents the sum of its kinetic energy per unit mass and 

potential energy per unit mass. It remains constant throughout the orbit, neither 

increasing nor decreasing due to the satellite's motion. 

 

Angular Momentum Conservation: 

Beginning with the two-body equation: 

𝑟̈ = −
𝜇

𝑟3
𝑟 

Taking the cross product with 𝑟: 

𝑟 × 𝑟̈ = −𝑟 ×
𝜇

𝑟3
𝑟 = −

𝜇

𝑟3
(𝑟 × 𝑟) = 0 

From the definition of angular momentum: 

ℎ⃗⃗ ≜ 𝑟 × 𝑣⃗ = 𝑟 × 𝑟̇ (12) 

The time derivative of angular momentum is zero, proving its conservation: 
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𝑑

𝑑𝑡
(𝑟 × 𝑟̇) = 𝑟̇ × 𝑟̇ + 𝑟 × 𝑟̈ = 0  ⇒    𝑟 × 𝑟̇ = 𝑟 × 𝑣⃗ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

ℎ⃗⃗ ⊥ (𝑟 × 𝑣⃗)   ⟹   ℎ⃗⃗ is always perpendicular to the plane containing 𝑟 and 𝑣⃗ 

 

Reformulating the Two-Body Equation 

Starting again with: 

𝑟̈ = −
𝜇

𝑟3
𝑟 

Taking the cross product with ℎ⃗⃗: 

𝑟̈ × ℎ⃗⃗ =
𝜇

𝑟3
(ℎ⃗⃗ × 𝑟) 

The left-hand side can be rewritten as: 

𝑟̈ × ℎ⃗⃗ =
𝑑

𝑑𝑡
(𝑟̇ × ℎ⃗⃗) 

The right-hand side becomes: 

𝜇

𝑟3
(ℎ⃗⃗ × 𝑟) =

𝜇

𝑟3
[(𝑟 × 𝑟̇) × 𝑟] =

𝜇

𝑟3
[(𝑟 ⋅ 𝑟)𝑟̇ − (𝑟 ⋅ 𝑟̇)𝑟] = 

=
𝜇

𝑟3
(𝑟2 𝑟̇⃗ − 𝑟𝑟̇𝑟) =

𝜇

𝑟
𝑟̇ −

𝜇

𝑟2
𝑟̇𝑟 

Noting that: 
𝜇

𝑟
𝑟̇ −

𝜇

𝑟2
𝑟̇𝑟 = 𝜇

𝑑

𝑑𝑡
(
𝑟⃗

𝑟
) 

Combining both sides: 

𝑑

𝑑𝑡
(𝑟̇ × ℎ⃗⃗) = 𝜇

𝑑

𝑑𝑡
(
𝑟

𝑟
) 

Integrating yields: 

𝑟̇ × ℎ⃗⃗ = 𝜇 (
𝑟

𝑟
) + 𝐵⃗⃗ 

where 𝐵⃗⃗ is an integration constant. 

Taking the dot product with 𝑟: 

𝑟 ⋅ 𝑟̇ × ℎ⃗⃗ = 𝑟 ⋅ 𝜇 (
𝑟

𝑟
) + 𝑟 ⋅ 𝐵⃗⃗ 

The left-hand side (LHS) simplifies to: 𝑟 ⋅ 𝑟̇ × ℎ⃗⃗ = 𝑟 × 𝑟̇ ⋅ ℎ⃗⃗ = ℎ⃗⃗ ⋅ ℎ⃗⃗ = ℎ2 

The right-hand side (RHS) becomes: 𝑟 ⋅ 𝜇 (
𝑟⃗

𝑟
) + 𝑟 ⋅ 𝐵⃗⃗ = 𝜇 (

𝑟2

𝑟
) + 𝑟𝐵 cos 𝜈 

where 𝜈 is the angle between 𝐵⃗⃗ and 𝑟. 
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Solving for 𝑟 gives the polar equation of the orbit: 

𝑟 =

ℎ2

𝜇

1 + (
𝐵
𝜇) cos 𝜈

 (13) 

This represents the fundamental orbital equation in terms of angular momentum and 

integration constants. 

 

Equation of the orbit 
To identify the trajectory represented by the fundamental orbital equation, we can 

compare the polar trajectory equation (13) with the general equation of a conic section: 

𝑟 =
𝑝

1 + 𝑒 cos 𝜈
 (14) 

where: 

- 𝜈, the true anomaly, represents the time-dependent polar angle between vectors 

𝐵⃗⃗  and 𝑟 , or equivalently, the angle between 𝑟 and the conic's closest point to 

the focus (periapsis) 

- 𝑝 is the semi-latus rectum (a geometric constant of the orbit) 

- 𝑒 is the eccentricity, determining the conic section type 

This mathematical equivalence validates Kepler's First Law while extending it to all conic 

sections and establishes that: 

- conic sections are the only possible two-body problem solutions 

- the orbital focus coincides with the central body's centre of mass 

- specific mechanical energy (ℇ) remains constant 

- specific angular momentum (ℎ) is conserved 

- the orbital plane is fixed in inertial space 

In our solar system, Earth and Venus exhibit nearly circular orbits (𝑒 ≈ 0) but most 

celestial bodies follow elliptical orbits (0 < 𝑒 < 1). All orbiting bodies rotate around a 

common barycentre. 
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Key Relationships 

Semi-latus Rectum: 

𝑝 =
ℎ2

𝜇
 

shows the direct dependence on the satellite's specific angular momentum. 

Energy Equation (specialized for periapsis): 

ℰ =
𝑣2

2
−
𝜇

𝑟
=
ℎ2

2𝑟𝑝2
−
𝜇

𝑟𝑝
 

where: {
𝑟𝑝 = 𝑎(1 − 𝑒)

ℎ2 = 𝑝𝜇 = 𝜇𝑎(1 − 𝑒2)
 

so: 

ℰ =
𝜇𝑎(1 − 𝑒2)

2𝑎2(1 − 𝑒)2
−

𝜇

𝑎(1 − 𝑒)
= −

𝜇

2𝑎
 (15) 

This demonstrates that the specific mechanical energy depends solely on the orbit's 

semi-major axis 𝑎. 

 

Conic Section Classification 

The eccentricity 𝑒 determines the orbit type: 

 

figure 9. orbit classification (credit: 6) 

 

Characteristic velocities 
Circular velocity 

Represents the velocity required to maintain a satellite in a circular orbit. The satellite 

must be launched horizontally at the desired altitude to achieve this orbit. Using the 

energy equation: 
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ℇ =
𝑣2

2
−
𝜇

𝑎
       

 
 

[𝑣 =  𝑣𝑐  &  𝑎 = 𝑟]
        

𝑣𝑐
2

2
−
𝜇

𝑟
= −

𝜇

2𝑟
     →      𝑣𝑐 = √

𝜇

𝑟
 

Note: Larger orbital radii require lower circular velocities. Elliptical orbits have variable 

velocity. 

 

Escape velocity 

While gravitational fields extend infinitely, their strength diminishes rapidly. The 

minimum velocity needed to overcome gravity and reach infinite distance is: 

ℇ =
𝑣𝑒
2

2
−
𝜇

𝑟
=
𝑣∞
2

2
−
𝜇

𝑟∞
= 0     ⟹     𝑣𝑒 = √

2𝜇

𝑟
= √2𝑣𝑐 

This parabolic trajectory allows exiting the planet's sphere of influence with zero relative 

velocity but maintaining Earth's orbital speed around the Sun. 

 

Hyperbolic excess velocity 

When exceeding escape velocity, a spacecraft retains residual velocity at infinity: 

ℇ = −
𝜇

2𝑎
=
𝑣2

2
−
𝜇

𝑟
=
𝑣∞
2

2
−
𝜇

𝑟∞
= 0    →     

𝑣∞
2

2
= −

𝜇

2𝑎
    ⟹     𝑣∞ = √−

𝜇

𝑎
   (𝑎 < 0) 

Expressed as the characteristic energy 𝑣2 − 𝑣𝑒
2 = 𝑣∞

2 ≜ 𝐶3, crucial for interplanetary 

mission design. 

 

Reference systems 
To determine both the position and velocity of a spacecraft at a given time, it is necessary 

to adopt a reference system with: 

- a defined coordinate set 

- a time measurement system 

The first requirement for orbit description is an appropriate inertial reference frame (RF). 

For solar orbits (planets, asteroids, comets, deep-space probes), the heliocentric-ecliptic 

coordinate system is typically used. For Earth satellites, the geocentric-equatorial system 

is more convenient. 
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A coordinate system requires specification of: 

1. origin position 

2. fundamental plane orientation 

3. primary axis direction (𝑋-axis) 

4. 𝑍-axis direction (perpendicular to the fundamental plane; 𝑌-axis completes the 

right-handed triad) 

 

Coordinate system types 

- Sun-centred systems 

o heliocentric 

o barycentric  

- Earth-centred systems 

o geocentric 

o topocentric 

- Satellite orbit-based systems 

o perifocal 

o radial/normal 

o equinoctial 

- Satellite body systems 

o attitude frame 

 

Geocentric-Equatorial Coordinate System 

table 2. geocentric-equatorial coordinate system 

origin Earth’s centre 

fundamental plane equatorial plane (defined by Î and Ĵ) 

primary axes 

Î parallel to vernal equinox direction (Xe) 

K̂ perpendicular to equatorial plane (points toward Polaris) 

Ĵ completes right-handed triad 

application 
Earth satellite orbital definition (Earth-Centred Inertial – 

ECI system) 

notes 
non-rotating relative to stars, except for equinox 

precession. Earth rotates within it 
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The Earth-Centred Earth-Fixed (ECEF) system rotates with Earth (angular velocity 𝜔ₑ ≈

 7.292 × 10⁻⁵ 𝑟𝑎𝑑/𝑠) and aligns its primary axis with the Greenwich meridian. It 

requires an epoch definition (e.g., J2000). 

 

Position representation methods 

1. Cartesian coordinates: (𝑥, 𝑦, 𝑧) 

2. Right Ascension/Declination/Distance: (𝛼, 𝛿, 𝑟) 

- right ascension (𝛼 ∈ [0°, 360°]): longitudinal angle from vernal equinox 

(positive eastward) 

- declination (𝛿 ∈  [−90°, 90°]): latitudinal angle (positive northward) 

- distance (𝑟): magnitude from Earth’s centre 

Conversion: 

{
𝑥 = 𝑟 cos 𝛿 cos 𝛼
𝑦 = 𝑟 cos 𝛿 sin 𝛼
𝑧 = 𝑟 sin 𝛿

 

 

figure 10. interstellar coordination (credit: Tom Ruen / CC BY-SA 3.0) 

3. Geodetic coordinates: longitude (𝜆), latitude (𝜙), height (ℎ) 
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ZEN (Radial-Tangential-Normal) Coordinate System 

 

Euler’s elementary rotations 

Coordinate transformations often require rotation matrices. Euler’s theorem states that 

any rotation can be expressed as a single rotation about an axis. The elementary 

rotations (about 𝑥 − 𝑦 − 𝑧 axes) form a basis for all transformations: 

𝑅(𝑥, 𝛼) = 𝑅(𝑖,̂ 𝛼) = [
1 0 0
0 cos 𝛼 sin𝛼
0 − sin 𝛼 cos 𝛼

] (16) 

 

𝑅(𝑦, 𝛽) = 𝑅(𝑗,̂ 𝛽) = [
cos 𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽
] (17) 

 

𝑅(𝑧, 𝛾) = 𝑅(𝑘̂, 𝛼) = [
cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

] (18) 

The key steps for composite rotations are: 

1. select elementary rotation axis 

2. define rotation angle 

3. specify if rotation is applied to fixed or moving axes: 

- fixed axes: pre-multiply by rotation matrix 

- moving axes: post-multiply by rotation matrix 

origin satellite’s centre of mass 

fundamental plane equatorial plane (defined by 𝑢̂ and 𝑣̂ for zero inclination) 

primary axes 

𝑢̂ radial: aligned with position vector (local zenith) 

𝑣̂ tangential: eastward velocity component (along orbital 

path) 

𝑤̂ northward direction (orthogonal to orbital plane) 

application 
velocity component analysis, autonomous navigation, 

attitude control 

table 3. ZEN coordinate system 
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Throughout this dissertation, the predominant coordinate transformation involves 

conversion from the IJK inertial frame to the ZEN orbital frame, accomplished via the 

following Euler rotations (16), (17), (18): 

- 𝜗 about 𝐾: 

[
𝐼′
𝐽′

𝐾

] = 𝑅3(𝜗) [
𝐼
𝐽

𝐾

] 

- 𝜑 about 𝐽′: 

[
𝑢̂
𝑣̂
𝑤̂
] = 𝑅2(𝜑) [

𝐼′
𝐽′

𝐾

] 

The composite transformation can be expressed by a single composite matrix: 

𝑅32(𝜗, 𝜑) = 𝑅2(𝜑) ∙ 𝑅3(𝜗)  

Final transformation: 

[
𝑢̂
𝑣̂
𝑤̂
] = 𝑅32(𝜗, 𝜑) [

𝐼
𝐽

𝐾

] 

 

 

figure 11. IJK inertial frame to the ZEN orbital frame 
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Classical orbital elements 

 

figure 12. classical orbital elements 

A Keplerian trajectory is uniquely defined by six parameters known as the classical orbital 

elements, which provide a complete description of an orbit/trajectory: 

 

figure 13. elliptical orbit parameters (credit: Shkelzen Cakaj) 

• Orbital shape definition 

- semi-major axis 𝑎 

𝑎 =
𝑟𝑝 + 𝑟𝑎
2

= −
𝜇

2ℇ
 

- eccentricity 𝑒 

𝑒 = √1 + 2ℇ(
ℎ

𝜇
)
2
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Alternative definition: eccentricity vector 𝑒 points toward periapsis. 

     Governs orbital shape: 

o 𝑒 = 0  →   circle 

o 0 < 𝑒 < 1  →   ellipse 

o 𝑒 = 1  →   parabola 

o 𝑒 > 1  →   hyperbola 

 

• Orbital plane orientation 

- inclination 𝑖 

Angle between the orbital plane and reference plane (typically Earth's 

equatorial plane or ecliptic) 

- Right Ascension of Ascending Node – RAAN Ω 

Angle between reference direction 𝐼 (e.g., vernal equinox) and the 

ascending node (where spacecraft crosses reference plane northward) 

 

• Periapsis orientation 

- argument of periapsis 𝜔 

Angle from ascending node to periapsis, measured in orbital motion 

direction 

 

• Satellite position 

- true anomaly at epoch 𝜈 

Angle between periapsis direction and current spacecraft position 

(changes sign when 𝑟 ∙ 𝑉⃗⃗ < 0)   

Alternative: mean anomaly (time-based equivalent for circular orbits) 
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Summarising: 

ellipse 

definition 

e eccentricity determines orbital shape 

a semi-major axis determines orbital size 

orbital plane 

definition 

i inclination 
refers to the inclination of the 

orbital plane 

 

Right Ascension of 

Ascending Node 

(RAAN) 

angle in reference plane from Î to 

ascending node 

ellipse 

orientation 
 argument of periapsis 

angle in orbital plane from 

ascending node to periapsis 

satellite 

position 
 true anomaly at epoch 

angle in orbital plane from periapsis 

to current position at specific time 

t0 

table 4. element definition matrix 

 

 

Perturbations 
A perturbation represents a deviation from normal or expected motion. While the 

universe appears macroscopically as a highly regular and predictable system of motion, 

precise observational data reveal distinct – and sometimes inexplicable – irregularities 

superimposed on the mean motion of celestial bodies. The actual trajectory of an 

orbiting object will differ from the theoretical two-body solution due to perturbations 

caused by: 

- additional massive bodies 

- forces not accounted for in Keplerian motion 

Critically, perturbations are not always negligible. Their magnitude can rival or even 

exceed that of the primary gravitational attraction. For instance, most interplanetary 
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missions would fail to reach their targets without compensation for perturbing 

gravitational effects. 

Classification of orbital perturbations 

1. By physical origin 

o gravitational perturbations: 

- third-body interactions (e.g., Moon, Sun) 

- non-spherical Earth effects (oblateness, zonal harmonics) 

o non-gravitational perturbations: 

- atmospheric drag (for LEO satellites) 

- solar radiation pressure 

- tidal friction 

2. By temporal effects on Keplerian elements 

type mathematical behaviour example causes 

secular variations linear change over time 
Earth’s oblateness (𝐽2 

effect) 

long-period 
oscillations with period > 

orbital period 

lunar/solar gravitational 

tides 

short-period 
oscillations with period < 

orbital period 

atmospheric drag 

fluctuations 

table 5. orbital perturbations classification by temporal effects 

 

Mathematical formulation 

The two-body equation of motion: 

𝑟̈ = −
𝜇

𝑟2
𝑟

𝑟
 

becomes perturbed when accounting for additional accelerations 𝑎⃗𝑝: 

𝑟̈ = −
𝜇

𝑟2
𝑟

𝑟
+ 𝑎⃗𝑝 

This transforms the problem into a nonlinear second-order differential equation, 

requiring numerical methods (e.g., Encke’s method, Cowell’s method) for precise 

trajectory propagation. 
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Key implications for space missions 

1. Orbit maintenance: 

- GEO satellites require station-keeping to counter secular drifts from 𝐽₂ 

effects 

- LEO satellites must compensate for atmospheric decay 

2. Interplanetary trajectories: 

- gravity assists leverage third-body perturbations 

- precision navigation requires modelling > 100 perturbing accelerations 

3. Orbit determination: 

- extended Kalman filters incorporate perturbation models to refine state 

estimates 

The four primary perturbative effects considered in this analysis are: 

• atmospheric drag 

• Earth asphericity 

• luni-solar gravitational attraction 

• solar radiation pressure 

Thus, the total perturbative acceleration can be expressed as the sum of these 

contributions: 

𝑎⃗𝑝 = 𝑎⃗𝑑𝑟𝑎𝑔 + 𝑎⃗𝐽2 + 𝑎⃗3𝑏 + 𝑎⃗𝑠𝑟𝑝 (19) 

 

Atmospheric drag 

Atmospheric drag represents a significant external perturbation that modifies a 

satellite's momentum and consequently its velocity. This effect is particularly 

pronounced in Low Earth Orbits (LEOs) between approximately 200 𝑘𝑚 and 1000 𝑘𝑚 

altitude. Within this altitude range, although the atmosphere is highly rarefied, sufficient 

atmospheric molecules remain to collide with orbiting spacecraft, generating non-

negligible aerodynamic drag forces. 

This perturbation results in orbital decay (𝑎̇ ≠ 0), causing a continuous reduction in 

orbital altitude. 

The drag acceleration 𝑎⃗𝑑  can be expressed as: 
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𝑎⃗𝑑 = −
1

2

𝐶𝐷𝐴

𝑚
𝜌𝑣𝑟𝑒𝑙

2 𝑣⃗𝑟𝑒𝑙
|𝑣⃗𝑟𝑒𝑙|

= −
1

2
𝐵𝐶𝜌𝑣𝑟𝑒𝑙

2 𝑣⃗𝑟𝑒𝑙
|𝑣⃗𝑟𝑒𝑙|

  

Where: 

- 𝐶𝐷: drag coefficient (typically ≈ 2.2 for satellites in upper atmosphere – flat plate 

approximation; 2.0 − 2.1 for spherical objects) 

- 𝐴: exposed cross-sectional area (dependent on satellite attitude) 

- 𝑚: satellite mass 

- 𝜌: atmospheric density (varies with altitude and is influenced by Earth's magnetic 

field and solar activity) 

- 𝑣𝑟𝑒𝑙: Relative velocity between satellite and atmosphere 

𝑣⃗𝑟𝑒𝑙𝑖𝑗𝑘 = 𝑣⃗𝑠𝑐𝑖𝑗𝑘 − 𝜔⃗⃗⃗⊕ × 𝑟𝑖𝑗𝑘 

(relative velocity calculation in 𝐼𝐽𝐾 frame) 

- 𝐵𝐶: ballistic coefficient (𝐵𝐶 =
𝐶𝐷𝐴

𝑚
), which characterizes a vehicle's ability to 

overcome air resistance during flight 

 

Earth asphericity 

The Earth's shape deviates significantly from a perfect sphere, being better 

approximated by a geoid – an equipotential surface of the gravitational field that 

optimally fits (in a least-squares sense) the global mean sea level. This irregular shape 

primarily results from: 

- centrifugal forces due to Earth's rotation, causing an equatorial bulge (oblate 

spheroid shape) 

- mass concentration variations (e.g., mountain ranges vs. ocean basins) creating 

localized gravitational anomalies 

These asymmetries perturb satellite orbits through complex gravitational field 

variations, mathematically described by expanding the potential energy function: 

℧ =
𝜇

𝑟
[1 −∑𝐽𝑙 (

𝑅⊕
𝑟
)
𝑙

𝑃𝑙 sin𝜑

∞

𝑙=2

+∑∑ 𝐽𝑙 (
𝑅⊕
𝑟
)
𝑙

𝑃𝑙,𝑚 sin𝜑 (𝐶𝑙,𝑚 cos(𝑚𝜗) + 𝑆𝑙,𝑚 sin(𝑚𝜗))

𝑙

𝑚=1

∞

𝑙=2

] 

where: 

- 𝐽𝑙  are the zonal harmonic coefficients 

- 𝑃𝑙 are the Legendre of degree 𝑙 and order 𝑚 
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- 𝐶𝑙,𝑚 are the tesseral harmonic coefficients for 𝑙 ≠ 𝑚 

- 𝑆𝑙,𝑚 are the sectoral harmonic coefficients 

- 𝑃𝑙,𝑚 are the associated polynomials of degree 𝑙 and order 𝑚 

 

Key components: 

- zonal harmonics (𝑚 = 0): represent latitude-dependent variations (axial 

symmetry) 

℧ =
𝜇

𝑟
[1 −∑𝐽𝑙 (

𝑅⊕
𝑟
)
𝑙

𝑃𝑙 sin𝜑

∞

𝑙=2

] 

- tesseral harmonics (𝑙 ≠ 𝑚 ≠ 0): model longitudinal variations 

- sectoral harmonics (𝑙 = 𝑚): represent pure longitudinal bands 

 

Perturbative accelerations 

The gravitational accelerations are obtained by taking the gradient of the potential 

function Φ = ℧+
𝜇

𝑟
 in the ZEN (Radial-Tangential-Normal) frame: 

(𝑎𝐽)𝑢 =
𝜕Φ

𝜕𝑟
 

(𝑎𝐽)𝑣 =
𝜕Φ

𝜕𝜗

1

𝑟𝑐𝑜𝑠 𝜑
 

(𝑎𝐽)𝑤 =
𝜕Φ

𝜕𝜑

1

𝑟
 

We can evaluate the 𝐽𝑛 coefficients: even-numbered terms indicate symmetry about the 

equatorial plane, while odd-numbered terms denote asymmetry. 

The 𝐽2 coefficient demonstrates Earth's oblate spheroid shape with polar flattening. 

𝐽3 reveals a north-south mass asymmetry, showing greater mass concentration in the 

northern hemisphere. 

From 𝐽4 onwards, the numerical values progressively diminish, resulting in increasingly 

negligible effects. 

𝐽12 indicates that the equator is not perfectly circular but rather elliptical. 
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For preliminary analysis, satisfactory propagation accuracy can be achieved by 

considering only the 𝐽2 perturbation. This case involves a single associated Legendre 

function: 

𝑃2,0 =
1

2
(3 sin2 𝜑 − 1) 

The perturbative accelerations may be readily derived as: 

(𝑎𝐽)𝑢 =
μ

𝑟2
[𝐽2 (

𝑅⊕
𝑟
)
2 1

2
(3 sin2𝜑 − 1)] +

μ

𝑟
[𝐽2 (

𝑅⊕
2

𝑟3
)(3 sin2𝜑 − 1)] 

(𝑎𝐽)𝑣 = 0 

(𝑎𝐽)𝑤
= −

μ

𝑟2
[𝐽2 (

𝑅⊕
𝑟
)
2

3 sin 𝜑 cos 𝜑] 

 

Solar radiation pressure (SRP) 

SRP represents the momentum transfer exerted on any surface exposed to sunlight, 

resulting from photon impacts. This phenomenon comprises two components: 

- solar wind: stream of charged particles (primarily ionised nuclei and electrons) 

emitted by the Sun 

- solar irradiance: electromagnetic power per unit area (surface power density) 

across the entire electromagnetic spectrum 

Maxwell's electromagnetic theory establishes that electromagnetic waves carry 

momentum, which transfers to illuminated surfaces. The solar radiation pressure is 

quantified as: 

𝑝𝑠𝑟 =
𝐼𝑠𝑟
𝑐
= 4.5 × 10−6

𝑁

𝑚2
= 4.5 × 10−6𝑃𝑎 

where 𝐼𝑠𝑟  is the solar constant and 𝑐 is light speed. 

The solar radiation force depends on: 

- 𝐶𝑅: Reflectivity coefficient (0.0 − 2.0), characterising surface reflectivity 

properties 

- 𝐴⊙: Sun-exposed surface area 

- 𝑟𝑠𝑐⊙: Sun-to-spacecraft position vector in J2000 frame 



Dynamic model  

 43 

𝐹⃗𝑠𝑟𝑝 = −𝑝𝑠𝑟𝐶𝑅𝐴⊙
𝑟𝑠𝑐⊙

|𝑟𝑠𝑐⊙ |
 

Applying Newton's second law yields the spacecraft acceleration: 

𝑎⃗𝑠𝑟𝑝 =
𝐹⃗𝑠𝑟𝑝
𝑚

= −
𝑝𝑠𝑟𝐶𝑅𝐴⊙

𝑚

𝑟𝑠𝑐⊙

|𝑟𝑠𝑐⊙ |
 

This requires coordinate transformation to the ZEN frame for practical implementation. 

Eclipse Conditions 

During its orbital motion, the spacecraft will experience periods of partial or total 

eclipses when the solar radiation pressure acceleration becomes null. 

To evaluate these occurrences, it is necessary to compute: 

- the apparent angular sizes of relevant celestial bodies as viewed from the 

spacecraft (𝜗⊙, 𝜗⊕) 

- Their angular separation 𝛾 

𝜗⊙ = arcsin (
𝑅⊙
𝑟𝑠𝑐⊙

) 

𝜗⊕ = arcsin (
𝑅⊕
𝑟𝑠𝑐⊕

) 

𝛾 = arccos (
𝑟𝑠𝑐⊙𝑟𝑠𝑐⊕
𝑟𝑠𝑐⊙𝑟𝑠𝑐⊕

) 

The illumination function 𝐿 accounts for orbital eclipses: 

𝐿 =

{
  
 

  
 

1 𝑖𝑓 𝛾 − 𝜗⊙ > 𝜗⊕ 𝑓𝑢𝑙𝑙 𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

0 𝑖𝑓 𝜗⊕ > 𝛾 + 𝜗⊙ 𝑓𝑢𝑙𝑙 𝑒𝑐𝑙𝑖𝑝𝑠𝑒

1 −
𝜗⊕
2

𝜗⊙
2 𝑖𝑓 𝜗⊙ − 𝜗⊕ ≥ 𝛾 𝑜𝑟 𝛾 ≥ 𝜗⊙ + 𝜗⊕ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑒𝑐𝑙𝑖𝑝𝑠𝑒

1 −
𝐴 + 𝐵 − 𝐶

𝜋𝜗⊙
2 𝑖𝑓 𝑒𝑙𝑠𝑒 𝑝𝑒𝑛𝑢𝑚𝑏𝑟𝑎𝑙 𝑟𝑒𝑔𝑖𝑜𝑛

   

 

with auxiliary terms: 

𝐴 = 𝜗⊕
2 arccos (

𝛾2 + 𝜗⊕
2 − 𝜗⊙

2

2𝛾𝜗⊕
) 
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𝐵 = 𝜗⊙
2 arccos (

𝛾2 + 𝜗⊙
2 − 𝜗⊕

2

2𝛾𝜗⊕
) 

𝐶 =
1

2
√(−𝛾 + 𝜗⊕ + 𝜗⊙)(𝛾 + 𝜗⊕ − 𝜗⊙)(𝛾 − 𝜗⊕ + 𝜗⊙)(𝛾 + 𝜗⊕ + 𝜗⊙) 

The complete acceleration model becomes: 

𝑎⃗𝑠𝑟𝑝 = 𝐿
𝐹⃗𝑠𝑟𝑝
𝑚

= −𝐿
𝑝𝑠𝑟𝐶𝑅𝐴⊙

𝑚

𝑟𝑠𝑐⊙

|𝑟𝑠𝑐⊙ |
 

 

Lunisolar effect 

The combined gravitational influence of the Sun and Moon on Earth drives the 

precession of the equinoxes – a slow gyration of Earth's rotational axis with a period of 

approximately 25.772 𝑦𝑒𝑎𝑟𝑠. This phenomenon alters the alignment of Earth's axis 

relative to the celestial sphere. 

The perturbative acceleration due to the i-th celestial body (Sun or Moon) is given by: 

𝑎⃗3𝑏𝑖 = 𝜇𝑖 (
𝑟𝑠𝑐𝑖
𝑟𝑠𝑐𝑖
3 −

𝑟𝑖
𝑟𝑖
3) 

where: 

- 𝜇𝑖 is the gravitational parameter of the i-th body 

- 𝑟𝑠𝑐𝑖  is the position vector of the satellite relative to the i-th body 

- 𝑟𝑖 is the position vector of the i-th body relative to Earth 

Physical interpretation 

- direct effect (first term): acceleration induced on the satellite by the third body's 

gravity 

- indirect effect (second term): acceleration exerted on Earth by the third body, 

which indirectly perturbs the satellite's orbit through Earth's resultant motion 
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Fifth Chapter  
 

The implemented OCP 

In this paragraph, what has been seen in the theory of the previous chapters is adapted 

to the case under consideration. 

The state vector is composed of: 

𝑥 = {𝑟, 𝜗, 𝜑, 𝑢, 𝑣, 𝑤,𝑚} (20) 

Starting from this, it is possible to associate each variable with a costate or adjoint 

variable. 

The augmented state vector is defined as: 

𝑦⃗ = {𝑟, 𝜗, 𝜑, 𝑢, 𝑣, 𝑤,𝑚, 𝜆𝑟 , 𝜆𝜗 , 𝜆𝜑 , 𝜆𝑢, 𝜆𝑣, 𝜆𝑤 , 𝜆𝑚} (21) 

First, a two-body system in the presence of perturbative actions was considered, whose 

dynamics are described by the following equations: 

{
  
 

  
 

𝑑𝑟

𝑑𝑡
= 𝑣⃗

𝑑𝑣⃗

𝑑𝑡
= −

𝜇

𝑟3
𝑟 +

𝑇⃗⃗

𝑚

𝑑𝑚

𝑑𝑡
= −

𝑇⃗⃗

𝑐

 

The equations of motion (EoM) thus take the form: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑑𝑟

𝑑𝑡
= 𝑢

𝑑𝜗

𝑑𝑡
=

𝑣

𝑟𝑐𝑜𝑠𝜑
𝑑𝜑

𝑑𝑡
=
𝑤

𝑟
𝑑𝑢

𝑑𝑡
= −

𝜇

𝑟2
+
𝑣2

𝑟
+
𝑤2

𝑟
+
𝑇𝑢
𝑚
+ (𝑎𝑝)𝑢

𝑑𝑣

𝑑𝑡
= −

𝑢𝑣

𝑟
+
𝑣𝑤

𝑟
tan𝜑 +

𝑇𝑣
𝑚
+ (𝑎𝑝)𝑣

𝑑𝑤

𝑑𝑡
= −

𝑢𝑤

𝑟
−
𝑣2

𝑟
tan 𝜑 +

𝑇𝑤
𝑚
+ (𝑎𝑝)𝑤

𝑑𝑚

𝑑𝑡
= −

𝑇

𝑐
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where: 

𝑇: 

{
  
 

  
 𝑇𝑢 = 𝑇 sin 𝛼𝑇 = 𝑇

𝜆𝑢
𝜆𝑉

𝑇𝑣 = 𝑇 cos 𝛼𝑇 cos 𝛽𝑇 = 𝑇
𝜆𝑣
𝜆𝑉

𝑇𝑤 = 𝑇 cos 𝛼𝑇 sin 𝛽𝑇 = 𝑇
𝜆𝑤
𝜆𝑉

 

with 𝜆𝑉 = √𝜆𝑢2 + 𝜆𝑣2 + 𝜆𝑤2  primer vector. 

The Hamiltonian for the OCP under consideration takes the form: 

ℋ = 𝜆𝑇 ∙ 𝑓 =∑𝜆𝑖𝑓𝑖

2𝑛

𝑖=1

= 

= 𝜆𝑟𝑢 + 𝜆𝜗
𝑣

𝑟𝑐𝑜𝑠𝜑
+ 𝜆𝜑

𝑤

𝑟
+ 

+𝜆𝑢 [−
𝜇

𝑟2
+
𝑣2

𝑟
+
𝑤2

𝑟
+
𝑇𝑢
𝑚
+ (𝑎𝑝)𝑢] + 𝜆𝑣 [−

𝑢𝑣

𝑟
+
𝑣𝑤

𝑟
tan𝜑 +

𝑇𝑣
𝑚
+ (𝑎𝑝)𝑣] + 

+𝜆𝑤 [−
𝑢𝑤

𝑟
−
𝑣2

𝑟
tan 𝜑 +

𝑇𝑤
𝑚
+ (𝑎𝑝)𝑤] + 𝜆𝑚 (−

𝑇

𝑐
) (22) 

The terms containing thrust can be grouped: 

1

𝑚
(𝜆𝑢𝑇𝑢 + 𝜆𝑣𝑇𝑣 + 𝜆𝑤𝑇𝑤) + 𝜆𝑚 (−

𝑇

𝑐
) = 𝜆𝑉

𝑇
𝑇⃗⃗

𝑚
− 𝜆𝑚

𝑇

𝑐
=
𝑇

𝑚
(𝜆𝑉

𝑇
𝑇⃗⃗

𝑇
− 𝜆𝑚

𝑚

𝑐
) =

𝑇

𝑚
𝑆𝐹 

A new parameter has thus been derived, the switching function: 

𝑆𝐹 = 𝜆𝑉 − 𝜆𝑚
𝑚

𝑐
 (23) 

It works somewhat like an engine switch, in fact: 

𝑇 = {
0 𝑖𝑓 𝑆𝐹 < 0
  

𝑇𝑀𝐴𝑋 𝑖𝑓 𝑆𝐹 > 0
 

The Hamiltonian can therefore be rewritten as: 

ℋ = 𝜆𝑟𝑢 + 𝜆𝜗
𝑣

𝑟𝑐𝑜𝑠𝜑
+ 𝜆𝜑

𝑤

𝑟
+ 

+𝜆𝑢 [−
𝜇

𝑟2
+
𝑣2

𝑟
+
𝑤2

𝑟
+ (𝑎𝑝)𝑢] + 𝜆𝑣 [−

𝑢𝑣

𝑟
+
𝑣𝑤

𝑟
tan𝜑 + (𝑎𝑝)𝑣]

+ 𝜆𝑤 [−
𝑢𝑤

𝑟
−
𝑣2

𝑟
tan𝜑 + (𝑎𝑝)𝑤] +

𝑇

𝑚
𝑆𝐹 
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The optimal values for the thrust angles were obtained by differentiating the 

Hamiltonian with respect to the angles themselves [10]: 

𝜕ℋ

𝜕𝛼𝑇
= 𝜆𝑢 cos 𝛼𝑇 − (𝜆𝑣 cos 𝛽𝑇 + 𝜆𝑤 sin 𝛽𝑇) sin𝛼𝑇 = 0 

𝜕ℋ

𝜕𝛽𝑇
= −𝜆𝑣 sin𝛽𝑇 + 𝜆𝑤 cos 𝛽𝑇 = 0 

After various manipulations, the optimal thrust directions are obtained: 

sin 𝛼𝑇 =
𝜆𝑢
𝜆𝑉

 (24) 

cos 𝛼𝑇 cos 𝛽𝑇 =
𝜆𝑣
𝜆𝑉

 (25) 

cos 𝛼𝑇 sin 𝛽𝑇 =
𝜆𝑤
𝜆𝑉

 (26) 

which coincide with the direction cosines of the primer vector. 

The ODEs for the adjoint variables are obtained using the following relation: 

𝑑𝜆∙
𝑑𝑡

= −
𝜕ℋ

𝜕 ∙
 

(for simplicity of calculation, it was chosen to neglect the variations of thrust with 

respect to the other variables. Since the thruster does not appear to be a function of 

position, ergo the thrust is always constant if the engine is on, we are not simply 

'neglecting', but the variation itself is nil: 
𝑑𝑇

𝑑𝑟
,
𝑑𝑇

𝑑𝜗
,
𝑑𝑇

𝑑𝜑
= 0) 

Specifically: 

𝑑𝜆𝑟
𝑑𝑡

= −
𝜕ℋ

𝜕𝑟
=
1

𝑟2
[𝜆𝜗

𝑣

cos𝜑
+ 𝜆𝜑𝑤 + 𝜆𝑢 (−2

𝜇

𝑟
+ 𝑣2 + 𝑤2) + 𝜆𝑣(−𝑢𝑣 + 𝑣𝑤 tan𝜑)

+ 𝜆𝑤(−𝑢𝑤 − 𝑣
2 tan𝜑) − 𝜆𝑢

𝜕(𝑎𝑝)𝑢
𝜕𝑟

− 𝜆𝑣
𝜕(𝑎𝑝)𝑣
𝜕𝑟

− 𝜆𝑤
𝜕(𝑎𝑝)𝑤
𝜕𝑟

] 

 

𝑑𝜆𝜗
𝑑𝑡

= −
𝜕ℋ

𝜕𝜗
= −𝜆𝑢

𝜕(𝑎𝑝)𝑢
𝜕𝜗

− 𝜆𝑣
𝜕(𝑎𝑝)𝑣
𝜕𝜗

− 𝜆𝑤
𝜕(𝑎𝑝)𝑤
𝜕𝜗
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𝑑𝜆𝜑

𝑑𝑡
= −

𝜕ℋ

𝜕𝜑
=

1

𝑟 cos2 𝜑
(−𝜆𝜗𝑣 sin𝜑 − 𝜆𝑣𝑣𝑤 + 𝜆𝑤𝑣

2) − 𝜆𝑢
𝜕(𝑎𝑝)𝑢
𝜕𝜑

− 𝜆𝑣
𝜕(𝑎𝑝)𝑣
𝜕𝜑

− 𝜆𝑤
𝜕(𝑎𝑝)𝑤
𝜕𝜑

 

 

𝑑𝜆𝑢
𝑑𝑡

= −
𝜕ℋ

𝜕𝑢
= −𝜆𝑟 + 𝜆𝑣

𝑣

𝑟
+ 𝜆𝑤

𝑤

𝑟
 

 

𝑑𝜆𝑣
𝑑𝑡

= −
𝜕ℋ

𝜕𝑣
=
1

𝑟
[−𝜆𝜗

1

cos𝜑
− 𝜆𝑢2𝑣 + 𝜆𝑣(𝑢 − 𝑤 tan 𝜑) + 𝜆𝑤2𝑣 tan𝜑] 

 

𝑑𝜆𝑤
𝑑𝑡

= −
𝜕ℋ

𝜕𝑤
=
1

𝑟
(−𝜆𝜑 − 𝜆𝑢2𝑤 + 𝜆𝑣𝑣 tan𝜑 + 𝜆𝑤𝑢) 

 

𝑑𝜆𝑚
𝑑𝑡

= −
𝜕ℋ

𝜕𝑚
= −𝜆𝑢

𝜕(𝑎𝑝)𝑢
𝜕𝑚

− 𝜆𝑣
𝜕(𝑎𝑝)𝑣
𝜕𝑚

− 𝜆𝑤
𝜕(𝑎𝑝)𝑤
𝜕𝑚

+ 𝜆𝑉
𝑇

𝑚2 

 

Case study 

The objective of this thesis is to demonstrate the ability to reach the orbit of a generic 

debris object while reducing the cost of the manoeuvre. 

It is assumed that the launcher releases the satellite at an initial altitude of ℎ𝑖 = 500 𝑘𝑚, 

and that manoeuvres are performed to reach the chosen debris. To simulate a realistic 

scenario, the propulsion characteristics of the main spacecraft were based on the 

technical specifications of modern ion thrusters, suitable as primary propulsion systems 

for medium-sized satellites. 

The engine characteristics are summarised in the following table, which also includes 

the satellite's initial mass: 

thrust 𝑇 50 𝑚𝑁 

specific impulse 𝐼𝑠𝑝  ~3000 𝑠 

power 𝑃 0.5 ÷ 2.3 𝑘𝑊 

initial mass 𝑚0 500 𝑘𝑔 

table 6. engine characteristics 

The thrust and specific impulse are considered constant for the entire mission duration 

(assuming a complete absence of thrust regulation), as described in the bang-bang 

control. 
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The assumption of an initial mass of 500 𝑘𝑔 was made for potential future 

developments where multiple manoeuvres could be combined to retrieve a larger 

number of debris objects or to equip the satellite with instrumentation suitable for 

possible in-orbit repairs. 

An important observation must be made: in the current study, the use of a debris 

removal system is not assumed. However, this does not alter the present study, as it 

primarily focuses on the transfer to the debris and not on the actual de-orbiting 

operation. 

The case study is set in the intermediate region of the LEO environment, a typical 

operational domain for this type of spacecraft. It is assumed that the launcher leaves the 

satellite at an initial altitude of 500 𝑘𝑚, belonging to one of the most crowded bands, 

and that it must perform manoeuvres to capture a space debris object. 

For the selection of the debris, three Python scripts were created that work together to 

retrieve, filter, and analyse the orbital data of space debris present in the Space-Track.org 

database. 

In the main file, restrictive conditions are entered on the orbital parameters of interest; 

in this case, it was chosen to operate at an altitude of 520 km with a tolerance of 5 km, 

an inclination of 0°±10°, and nearly circular orbits (i.e., eccentricity less than 0.01). 

An example of output related to the debris is: 

 

figure 14. debris output example 

As can be seen, the name of the debris, its altitude, inclination, eccentricity, and the 

temporal moment to which the orbital data refer are returned in order. 

The more recent the data, the better the accuracy of the calculations; indeed, the orbital 

parameters remain more or less constant for a short period around the epoch, as the 

orbits are subject to atmospheric perturbations or other effects that cause alterations. 

Once the debris of interest are found, the file used to obtain the NORAD ID code of the 

debris from its name is used. 

This code is a unique numerical identifier assigned to each artificial object in orbit around 

the Earth by the North American Aerospace Defence Command. 
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For example, it might be: "The NORAD_CAT_ID of 'POEM' is: 52939." 

Using the website: [https://www.n2yo.com/satellite/?s=52939#results] (updated to 

16/07/2025), it is possible to see the satellite's ground track and its orbital parameters. 

 

figure 15. POEM's orbital parameters and ground track 

Finally, the debris orbit is simulated over time. 

Thus, the debris orbit is propagated, and all necessary parameters are derived using the 

Two-Line Elements (TLE) from Space-Track. 

TLEs are a standardised format of orbital data used to describe the trajectory of 

satellites, space debris, or other objects in orbit around the Earth. They consist of two 

lines of text and contain all the parameters needed to calculate an object's position and 

velocity at a given time using the SGP4/SDP4 mathematical model. 

 

figure 16. POEM TLE 

The second line includes: 

inclination 9.9521° 

Right Ascension of Ascending Node 97.1795° 

eccentricity 0.00276 

argument of periapsis 260.0409° 

mean anomaly 99.6690° 

mean motion 15.18737635 𝑟𝑒𝑣/𝑑𝑎𝑦 

revolutions number 16820 
table 7. POEM TLE 

 

 

 

https://www.n2yo.com/satellite/?s=52939#results
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Once all the data were obtained, it was possible to represent the debris orbit: 

 

figure 17. POEM orbit 

To better visualise the variation in longitude and latitude, it is useful to switch to a 2D 

graph as a function of normalised altitude: 

 

figure 18. latitude-longitude 2D graph 
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Returning to the initial problem, the necessary manoeuvres for the satellite to reach the 

target must be evaluated: 

 

figure 19. comparison between reference and POEM orbit 

Starting from an initial orbit of 500 𝑘𝑚, the debris POEM must be reached. 

First, the problem was analysed from the perspective of traditional orbital mechanics, 

i.e., through a Hohmann transfer. 

 

Recalls on orbital manoeuvres 

A generic transfer can take the following form: 

 

figure 20. generic transfer 
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How can we move from orbit 𝑟1 to orbit 𝑟2? 

If we start from orbit 𝑟1, the transfer orbit must pass through that radius. Therefore, the 

minimum radius of the transfer orbit must be less than or equal to 𝑟1: 𝑟𝑝 ≤ 𝑟1. 

Similarly, the transfer orbit must, at a minimum, reach the radius 𝑟2 to arrive at a circular 

orbit of that radius: 𝑟𝑎 ≥ 𝑟2. 

In contrast, the Hohmann transfer has the most extreme conditions, i.e.: 

𝑟𝑝 = 𝑟1  and  𝑟𝑎 = 𝑟2 

This way, the transfer orbit is tangent to both circular orbits: 

- at the periapsis, it touches the circle of radius 𝑟1 

- at the apoapsis, it touches the circle of radius 𝑟2 

 

figure 21. Hohmann transfer 

At both periapsis and apoapsis, the velocity is entirely tangential – there is no radial 

component. 

Velocity Analysis 

Let: 

- 𝑉𝑐1  = velocity on the circular orbit at point 1 

- 𝑉𝐻1 = velocity on the Hohmann transfer orbit at point 1 

Since 𝑉𝐻1 >  𝑉𝑐1, if we want to increase the orbital radius, the velocities will have the 

same direction. 

At point 2: 

- 𝑉𝐻2 = velocity on the Hohmann transfer orbit 

- 𝑉𝑐2  = velocity on the circular orbit at radius 𝑟2 

Here, 𝑉𝑐2 > 𝑉𝐻2. 
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figure 22. velocity scheme 

Cost of a Hohmann Transfer 

If we are in a circular orbit of radius 𝑟1, we can immediately calculate the corresponding 

velocity using the energy equation: 

ℰ = −
𝜇

2𝑎
 

Since it's a circular orbit, 𝑎 = 𝑟, so: 

ℇ1 = −
𝜇

2𝑟1
=
𝑉𝑐1
2

2
−
𝜇

𝑟1
   ⟹   𝑉𝑐1 = √

𝜇

𝑟1
 

Similarly, for the second orbit: 

ℇ2 = −
𝜇

2𝑟2
=
𝑉𝑐2
2

2
−
𝜇

𝑟2
   ⟹    𝑉𝑐2 = √

𝜇

𝑟2
 

The farther we are from the attracting body, the slower we orbit. 

For the Hohmann transfer, we can also use the energy equation, where the semi-major 

axis is: 

𝑎 =
𝑟1 + 𝑟2
2

 

Thus: 

ℇ𝐻 = −
𝜇

𝑟1 + 𝑟2
=
𝑉𝐻1
2

2
−
𝜇

𝑟1
=
𝑉𝐻2
2

2
−
𝜇

𝑟2
 

The Hohmann velocities are: 

𝑉𝐻1 = √2𝜇 (
1

𝑟1
−

1

𝑟1+𝑟2
)  and  𝑉𝐻2 = √2𝜇 (

1

𝑟2
−

1

𝑟1+𝑟2
) 

The total cost of the transfer is: 

Δ𝑉1 = |𝑉𝐻1 − 𝑉𝑐1|  and  Δ𝑉2 = |𝑉𝑐2 − 𝑉𝐻2| 
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(The absolute value is used because ΔV is "paid" for both braking and acceleration) 

 

Numerical Example 

Given the values: 

𝑉𝑐1  7.616556585247121
km

s
 

𝑉𝑐2  7.607703981255776
km

s
 

𝑉𝐻1 7.6209841726492495
km

s
 

𝑉𝐻2 7.603278967659793
km

s
 

Δ𝑉1 0.004427587402128452
km

s
 

Δ𝑉2 0.004425013595983351
km

s
 

Δ𝑉𝑡𝑜𝑡 0.008852600998111804
km

s
 

𝑇𝐻 2839.024822294727 s 
table 8. Hohmann transfer results 

During the work on this thesis, thanks to the invaluable assistance of supervisor Luigi 

Mascolo, it was possible to implement a GUI that allowed for ‘tweaking’ the parameters 

to achieve the desired solution: 

 

figure 23. GUI interface 
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Knowing that a manoeuvre causing an increase in the semi-major axis was required, 

priority was given to the costates related to radius and tangential velocity, namely 𝜆𝑟 

and 𝜆𝑣. 

Regarding the final simulation time, the reference chosen was the dimensionless 

Hohmann orbit time: 𝑇𝐻𝑎𝑑𝑖𝑚 = 2 × 3.5186837801108704. 

In general, to work with quantities that did not differ by too many orders of magnitude 

and avoid numerical instability issues, the following dimensionless units were adopted: 

length unit 6371 𝑘𝑚 

gravitational parameter 398600
𝑘𝑚3

𝑠2
 

velocity unit √
𝜇⊕
𝑅⊕

= 7.909766019
𝑘𝑚

𝑠
 

time unit 
𝑅⊕
𝑣𝑐

= 805.4577423 𝑠 

acceleration unit 
𝑣𝑐
2

𝑅⊕
= 0.009820239

𝑘𝑚

𝑠2
 

mass unit 500 𝑘𝑔 

thrust unit 𝑀 × 𝐴 = 4.910119801
𝑘𝑔 ∙ 𝑘𝑚

𝑠2
 

table 9. dimensionless units 

To achieve the required semi-major axis variation, the manoeuvre was subdivided into a 

series of sub-manoeuvres, each with a fixed increment of 250 𝑚. 

The switching function follows a [1 − 0 − 1] pattern, meaning an alternation between 

engine on (1) and engine off (0). 

Once a sub-manoeuvre is completed, orbital propagation is performed – i.e., the 

numerical integration of the equations of motion – to simulate the temporal evolution 

of the satellite’s orbit under various forces. 

The propagation time was set to two full orbital periods to: 

- verify the model’s consistency 

- isolate the effects of perturbations from those of propulsion 

- calculate the new initial conditions for the optimisation problem 

Additionally, this engine-off period helps prevent overheating and respects continuous 

burn-time limitations. 
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Case without perturbations 

 

figure 24. case without perturbations 

Subsequently, perturbations were introduced. Specifically, the following were 

considered: 

- atmospheric drag 

- lunisolar gravitational attraction 

- solar radiation pressure 

This section details specific modifications or implementations for the case under study. 

 

The density was calculated using the MSIS (Mass Spectrometer and Incoherent Scatter 

Radar) model for a specified time and altitude range. 

An example output is: 

time_sec_since_start altitude_km density_kg_m3 

0.0 100.000 5.410220 × 10−07 

1800.0 250.000 4.775276 × 10−11 

3600.0 500.000 3.138841 × 10−13 

21600.0 600.000 4.642457 × 10−14 
table 10. density grid output example 

From this table, bilinear interpolation was used to estimate density at a given 

altitude/time. 
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The drag acceleration was then computed in IJK coordinates and converted to ZEN 

coordinates. 

 

For simplicity, the Sun and Moon were assumed to follow circular orbits, as using precise 

ephemerides for exact relative positions (Earth-Sun or Earth-Moon) would have 

compromised computational speed and robustness. 

 

A similar approach was taken for solar radiation pressure. 

 

First full iteration with perturbations 

 

figure 25. case with perturbations 

As can be observed, there are no major variations in the costates. The parameter most 

affected is the one related to velocity, consistent with the fact that perturbations 

primarily influence accelerations. 

Subsequently, orbital propagation was performed, yielding the following output: 
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figure 26. propagation results 

Examining the new starting altitude, a decrease compared to the previous final altitude 

is noted. This reduction is consistent with the presence of perturbations. 

 

Results 
By utilising another Python script, it was possible to derive the orbital parameters from 

the results obtained in the last convergence: 

semi-major axis 6887.224673 km 

eccentricity 0.000002 

inclination 9.9° 

Right Ascension of Ascending Node 208.316911° 

argument of periapsis 82.999973° 

mean anomaly 82.719180° 

orbital period 94.803931 min 

mean motion 15.18924358 𝑟𝑒𝑣/𝑑𝑎𝑦 

revolutions number 16820 
table 11. spacecraft last parameters 

The final position to be reached by the spacecraft will correspond to the debris orbit, 

and the transfer phase will be considered complete once these final conditions are met. 

In this scenario, this will indicate that the spacecraft has completed insertion into the 

desired orbit and achieved rendezvous with the debris. 

It is specified that, of course, the capture of the debris will require a certain amount of 

time for completion. However, since studying the specifics of this operation is not the 

focus of this thesis, this detail is disregarded, assuming that by the time the spacecraft 

reaches the debris, this activity will be completed within a reasonably short timeframe. 

Using the results obtained, it was possible to plot the evolution of: 
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dimensionless radius 

 

figure 27. radius variation 

 

Regarding the propagated dimensionless radius, it was necessary to perform an analysis 

over multiple orbits to validate the consistency of the method used: 

 

figure 28. propagated dimensionless radius variation 
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By descending further in altitude and increasing the number of propagated orbits, it is 

possible to observe how the satellite progresses toward the deorbiting altitude: 

 

figure 29. descending radius 

 

Comparison between dimensionless radius and propagated dimensionless radius: 

 

figure 30. comparison between r_adim and r_p_adim 
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As can be observed, following an increase in radius, there is a subsequent decrease due 

to the effects of perturbations, consistent with the loss of the thrust-related term. 

The dimensionless velocity v exhibits a decreasing trend: 

 

figure 31. velocity v variation 

 

Similarly, the mass will follow an analogous trend since, in fact, propellant consumption 

occurs: 

 

figure 32. mass variation 



The implemented OCP  

 63 

By exploiting the Tsiolkovsky equation, it is possible to estimate a preliminary cost of the 

manoeuvre: 

𝑚𝑓
𝑚0

= 𝑒−
Δ𝑉
𝑐  (27) 

Deriving Δ𝑉: 

Δ𝑉 = 𝑐 ln(
𝑚0

𝑚𝑓
) 

Substituting the values obtained from the simulation yields: 

Δ𝑉 = 0.008728827
𝑘𝑚

𝑠
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Conclusions 
This thesis aims to be a small starting point from which to begin evaluating, in an optimal 

manner, the movement of a satellite performing the active removal of debris. 

Of particular interest may be considered the choices made regarding the operational 

scenario; indeed, the potential contribution of this study to the creation of a more 

sustainable space environment, with a consequent improvement in space access 

conditions, is key strength. 

The objective of developing an optimisation and propagation code in Python that was as 

understandable and automated as possible can be considered achieved. The ability to 

perform manoeuvres of varying magnitudes at will, along with the presence of a 

graphical component that allowed visualising the effects of modifying parameters one 

at a time, were crucial for achieving convergence. 

Considering future developments, there are numerous possibilities for improvement, as 

well as variations in the operational scenario. 

With greater computational resources and advanced numerical stability techniques, it 

would have been possible to simulate the entire trajectory without dividing it into 

phases, reducing the time required to find initial values. 

To increase the model’s fidelity, it would be advisable to find a way to integrate 

ephemerides to obtain the actual positions of the Earth, Sun, and Moon. 

Another operational case could involve reaching multiple debris pieces, with consequent 

optimisation of the path the satellite must follow during the various captures. 
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