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Abstract

Solar sailing is a non-traditional propulsion system that is attracting growing interest due to its
various benefits compared with traditional chemical propulsion. A solar sail generates thrust
through the momentum exchange resulting from the interaction between the sail surface and
the incident solar radiation. This propulsion method provides continuous thrust without requir-
ing any propellant consumption. These characteristics make solar sailing a viable option for
long-duration missions. This thesis focuses on orbit optimization for an interplanetary mission
targeting an asteroid, carried out with a solar sail-propelled CubeSat. The study of asteroids is
a topic of interest in various fields. The ancient origin of these celestial bodies makes them an
essential source of information on the history and formation of our Solar System, the origin of
the Moon and the development of life on our planet. The various types of asteroids offer a great
reservoir of rare materials, making them an interesting location for space mining. Regarding
Near-Earth Asteroid (NEA), planetary defence is necessary against Potentially Hazardous As-
teroids (PHA). The compact size and low mass of a CubeSat make it a good candidate for solar
sail propulsion.

Trajectory optimization, for the heliocentric phase of the mission, is performed using an
indirect mathematical method. The motion equations of the sail are obtained from the two-body
problem, including the contribution of solar radiation pressure. The optimal control theory is
applied to formulate the problem and the Pontryagin’s Maximum Principle provides the optimal
sail orientation at each point of the trajectory. The formulation of the problem results in a
boundary value problem, which is solved using an indirect Newton-like mathematical method.

Numerical analyses are carried out for different asteroids demonstrating the feasibility of
the mission.
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Chapter 1

Introduction

The growing interest in deep space exploration is leading the space industry to explore and
research non-traditional propulsion systems. The limitations of traditional chemical propulsion,
which depends on fuel consumption, have led to the development of alternative technologies.
Among these, solar sailing represents an interesting option for long-duration missions.

Figure 1.1: Solar sail model [1].

A solar sail is a large reflective surface of thin material, supported by a suitable structure,
designed to interact with sunlight in order to generate thrust. Light is an electromagnetic radia-
tion and is composed of particles called photons. A photon is an elementary particle, a quantum
of the electromagnetic field, which has no mass and travels through space carrying momentum.
When photons encounter a solar sail they they strike and reflect off it, as the sail surface is
made of by a mirror-like material. The interaction between the sail and the particles results in
a momentum transfer that pushes the sail, producing thrust. This continuous thrust can propel
a spacecraft without the need for fuel, as illustrated in Figure 1.1. The resulting acceleration is
small, but continuous, enabling missions that would otherwise be impractical with traditional
propulsion. Assuming the sail is positioned directly facing the Sun, the sail will be pushed
away (x-axis in figure). A solar sail can move in other directions by changing its orientation
relative to the Sun. The physics underlying solar sail propulsion introduces new challenges in
the trajectory optimization process compared to traditional methods.

This thesis focuses on the development of a code for the optimization of solar sail trajectories
using an indirect method. Following a brief introduction to the concept of solar sail propulsion
and the mission case study, the mathematical formulation of the indirect optimization approach
is presented and the governing equations of motion for solar sail dynamics are derived. The
implementation of the optimization algorithm is then discussed, followed by a presentation and
analysis of the results.
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1.1 History of solar sailing and key missions
The idea of utilizing something similar to a boat sail for propulsion in space dates back to
1610, when the German astronomer Johannes Kepler, in a letter addressed to Galileo Galilei,
suggested to ”provide ships or sails adapted to the heavenly breezes”. This idea was inspired
by the observation of comet tails being displaced by what he thought was a solar ”breeze” [2].
More than two centuries later, in 1865, Kepler’s idea gained a theoretical foundation when
James Clerk Maxwell published his theory of electromagnetic fields and radiation. Maxwell
demonstrated that photons, the fundamental constituents of sunlight, can carry energy and mo-
mentum which could be transferred to other objects, exerting a measurable pressure. The
physics of this phenomenon was provided by Maxwell’s equations [3]. Subsequently, Kon-
stantin Tsiolkovsky proposed the application of solar radiation pressure for spacecraft propul-
sion. In 1924, Maxwell’s theory was practically applied when Tsiolkovsky and Tsander wrote
of ”using tremendous mirrors of very thin sheets” and ”using the pressure of sunlight to attain
cosmic velocities” [4]. Several years passed, until 1964, for this technology to be named ”solar
sailing”; the term was coined by Arthur C. Clarke, who proposed it in his science fiction story
Sunjammer (The Wind From the Sun) [5]. In 1960 and in 1964, during Echo missions, two
Mylar-coated balloons were launched into orbit by NASA to test how communications signals
could be bounced across the country. The large, lightweight balloons were moved, allowing
the measurement of the effects of solar pressure for the first time [3] [6].

Figure 1.2: A diagram of early Mariner
Mars spacecraft [7]. Figure 1.3: The Znamya 2 mirror-solar

sail, deployed [8].

The first practical applications came with the Mariner 4 and Mariner 10 missions. Mariner
4 was equipped with four solar vanes that used sunlight pressure to stabilize the spacecraft
Figure 1.2. In 1974, NASA used sailing techniques to manage the attitude control of Mariner
10. The orientation of the solar power panels relative to the Sun was controlled by ground
operators, who were able to correct the spacecraft’s orientation [1].
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Figure 1.4: Heliogyro configuration concept, approaching the Halley’s comet [3].

In 1975, NASA designed a solar sail that was supposed to rendezvous with the Halley’s
comet in 1986. The project, led by Dr. Louis Friedman and based on an idea by Jerome
Wright, was not completed in time to achieve the rendezvous, but demonstrated the feasibility
of the solar sailing technique for spacecraft propulsion. The sail was designed with a unique
configuration, called heliogyro [Figure 1.4]: two ceiling fans stacked on top of each other, each
equipped with six blades. As the fan spun, they provided the sail with increased stability [3]. In
1993, the first successful solar sail deployment was conducted by the Russian Space Agency.
The sail, a 20-meter-diameter spinning mirror called Znamya 2 [Figure 1.3], aimed to beam
solar power to the ground and was deployed from the end of the Russian Progress spacecraft .
The mission verified the possibility of deploying the sail under the action of centrifugal forces
and proved the feasibility of on-orbit deployment for large-scale flat structures. The project was
discontinued in 1999, when the sail of the subsequent mission, Znamya 2.5, failed to deploy
properly [6]. Between 2001 and 2005, NASA began working on solar sails and developed
two 20 m x 20 m solar sail systems at Glenn Research Center (GRC) Space Power Facility
[9]. The sails were the largest constructed by NASA and were tested on the ground in vacuum
conditions, Figure 1.5.

Figure 1.5: Solar sails tested at NASA’s
Plumbrook Station, deployed using rigid
mechanical booms [10].

Figure 1.6: The deployment of clover type
film taken by a camera onboard S-310
rocket [11].

In 2004, the Japanese Institute of Space and Astronautical Science (ISAS) successfully de-
ployed two solar sail prototypes from a sounding rocket Figure 1.6. The objective of the exper-
iment was to test the deployment mechanism, but not the propulsion capability [12].
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Figure 1.7: Cosmos 1 spacecraft [13]. Figure 1.8: Cosmos 1 deployed sail [14].

Meanwhile the Planetary Society, founded in 1980 by Carl Sagan, Bruce Murray and Louis
Friedman, began working with the Russian Academy of Science on the mission Cosmos 1, hop-
ing to conduct the first solar sail flight. ”Cosmos 1 was a fully developed solar sail spacecraft
intended to fly only under the influence of solar pressure for control of the spacecraft’s orbit”
said Friedman, director of the Planet Society [12]. The design consisted in eight triangular
solar sails deployed and held rigid by inflatable booms. The launch took place in 2005, on a
Russian Volna Rocket, but failed to reach orbit.

Figure 1.9: IKAROS solar sail deployment. Credit: JAXA

In 2010, JAXA (Japanese Aerospace Exploration Agency) launched IKAROS (Interplane-
tary Kite-craft Accelerated by Radiation of the Sun), which became the world’s first solar sail
spacecraft fully propelled by sunlight and the first to succeed in solar sail flight [15]. The mis-
sion’s goal was to deploy and control the sail, determining minute orbit perturbations caused
by light pressure; measurements were made by the AKATSUKI probe. The sail was a 192 m2

square surface of polyimide sheet, 0.0075 mm thick, weighing 10 g/m2, Figure 1.9. IKAROS
travelled to Venus for six months, before embarking a three-year journey to the far side of the
Sun. That same year, the NanoSail-D2 ( following the failure of the fist NanoSail-D launch)
was launched, the first solar sail deployed by NASA. The mission aimed to test the solar sail
deployment technology and successfully demonstrated that the drag produced by a sail could
be a viable means for deorbiting dead satellites and space debris. The sail was a 10 m2 sheet
made of aluminum and plastic and weighed 4.5 kg [16]. Meanwhile, in 2009, the Planetary
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Society began developing the Light Sail, which was successfully launched in 2015 on Atlas
V. The design featured a 32 m2 mylar sail deployed in four triangular segments, carrying a
3U CubeSat. The purpose of the test was to allow a full checkout of the satellite’s systems in
advance of LightSail-2. LightSail-2 was launched in 2019 on the Falcon Heavy rocket, the mis-
sion lasted nearly three-and-a-half years demonstrating that small spacecraft can carry, deploy,
and utilize relatively large solar sails for propulsion [14].

Figure 1.10: NEA Scout is composed of a small CubeSat (top left) and a thin, aluminum-coated
solar sail (bottom left). The sail will use sunlight to propel the CubeSat to a small asteroid (as
depicted in an illustration, right) [17].

In 2022, the mission NEA Scout developed by NASA’s Marshall Space Flight Center (MSFC)
and the Jet Propulsion Laboratory (Jet Propulsion Laboratory (JPL)) was launched. The mis-
sion was supposed to take a small CubeSat propelled by a solar sail to a near Earth asteroid.
The 83 m2 aluminized polyimide solar sail, launched to the Moon on Artemis I, was to deploy
upon reaching the moon, spiral out of lunar orbit and travel to a near-Earth asteroid to perform a
slow flyby, capturing images of the surface. Unfortunately, NASA lost contact with NEA Scout
after the separation from Space Launch System (SLS) [18]. In 2024, the Advanced Composite
Solar Sail System (ACS3) mission was launched. The mission featured a 12U CubeSat pro-
pelled by a quadratic 80 m2 solar sail of polyethylene naphthalate film coated on one side with
aluminum for reflectivity and on the other side with chromium to increase thermal emissivity,
held by a carbon fibre reinforced polymer boom system. The mission served as a technology
demonstration of NASA’s deployable composite boom technology in a solar sailing application
[19]. The spacecraft confirmed to be successfully operational after launch.
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Figure 1.11: ACS3 solar sail during deployment [20].

1.2 Solar sails shapes
Solar sails are usually categorised by their shape and support structures. The first differentiation
that can be made is between rigid and non-rigid sails. Rigid sails require a supporting structure
to maintain their deployment, non-rigid sails only rely on centrifugal force-induced tensions.
In the rigid solar design, the shape is maintained by connecting all edges to rigid structural
support spars. There are three proposed designs for rigid solar sails, which are the clipper type,
quad sailer type, and butterfly type. The structure support helps to reduce membrane flexibility,
scales well and is suitable for a broad spectrum of attitude control strategies.

Figure 1.12: Clipper or
square design [21]. Figure 1.13: Heliogyro de-

sign [21].

Figure 1.14: Spinning disk
design [21].

The most popular design is the clipper or square sail, as it necessitates a lower number of
structural elements (four instead of eight) compared with the quad sailer design and a larger
surface area compared with the butterfly type. It consists of four sections attached to four
structural elements as seen in Figure 1.12 [22]. Another advantage of this configuration is that
there are no hot spots on the spacecraft because the sail protects the spacecraft from the sun’s
thermal heat. Non-rigid sails are also referred to as spin sails, as they rely on centrifugal force to
maintain their shape. The heliogyro design was proposed by JPL in 1970s for the rendezvous
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mission with the Halley’s comet, see section 1.1. The shape resembles the rotor blades of a
helicopter, with symmetrical strips arranged around a central hub Figure 1.13. Each blade can
be rotated to manage attitude control. This design is advantageous as it is easy to store and
deploy, but in order to have comparable surface area to the other configurations it needs to
have very long blades. The spinning disk sail, also developed by JPL, consists of a hub from
which a large sheet of sail membrane is deployed, Figure 1.14. A spinning disk solar sail was
successfully deployed during the IKAROS mission, see section 1.1. The small gaps between
sail masks helps maximize the amount of surface area similar to the square sail design [22][23].

1.3 Materials
Solar sails need to have a large surface area, with dimensions ranging from tens of metres to
kilometres, therefore the candidate materials should be strong and exhibit minimal sagging or
stretching. In order to provide a good thrust to mass ratio the sail material needs to be ultra-
lightweight, with a density of a few g/m2. The sail will be deployed in space, so the material
should be capable of being folded or compressed until deployed and should be resistant to
ionizing radiation, as it will operate in a harsh radiative environment, encountering galactic
and solar particles (electrons and protons), x-rays, ultraviolet light, and magnetically trapped
charged particles [1]. A selection of suitable materials chosen for their relevance, availability,
and manufacturability is reported on Table 1.1, with their physical characteristics:

Table 1.1: Summary of different samples, including base polymer, thickness, and coating de-
tails.

Sample
Description

Base
Polymer

Base
Thickness
[µm]

Front
Coating

Thickness
[nm]

Front
Coating
Element

Back
Coating

Thickness
[nm]

Back
Coating
Element

Aluminized
Mylar Mylar 3.0 50 Al 50 Al

Aluminized
Mylar
With
Chromium

Mylar 0.9 50 Al 20 Cr

Aluminized
Kapton Kapton 8.0 30 Al 30 Al

Aluminized
CP1 CP1 3.0 50 Al None None

1.4 Advantages and disadvantages of solar sailing
Solar sailing is a propulsion system that relies on the momentum exchange, generated by the
interaction between sunlight and sail material, to produce thrust. Unlike chemical propulsion
systems, which rely on fuel, sunlight is an inexhaustible source of energy. Using light as the
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source of energy enables the generation of continuous small thrust and infinite specific impulse,
as the spacecraft is able to accelerate as long as sunlight is available, ultimately achieving veloc-
ities that are unattainable with rocket-propelled spacecrafts [24]. Beyond enabling continuous
propulsion, the elimination of fuel dependency makes long-duration missions, where carrying
sufficient fuel would be impractical, more feasible. One of the problem of chemical propul-
sion is the limitation of maximum payload capacity due to fuel weight and fuel management
and storage system. Eliminating these aspects significantly reduces the spacecraft’s weight
and complexity. This translates into economic advantages, as the absence of a propulsion sys-
tem lowers mission costs in terms of launch, operations, manufacturing, and maintenance [24].
Despite its advantages, in many cases solar sailing is not a suitable option. These spacecraft
exhibit very low initial acceleration, which makes this method unsuitable for missions with
time constraints or that require rapid departure. Solar sailing is heavily dependent on sunlight
availability; therefore, its effectiveness diminishes as the spacecraft moves away from the sun.
While in some mission it is possible to acquire the necessary thrust before moving moving
beyond effective solar range, in other cases different propulsion systems are a better option.
Moreover, although the absence of conventional propulsion systems offers several benefit, the
design of solar sail introduces structural challenges. To ensure sufficient thrust, the sail needs
to have a large surface area, as the force exerted by solar radiation on 1 m2 sail is on the order
of millinewtons. Deploying and maintaining a sail of this size requires accurate planning of
the supporting structure and deployment mechanisms. In addition, the thin materials the sail
is made of are vulnerable to damage from micrometeoroids and space debris. Regarding ma-
noeuvrability, the spacecraft’s ability to change direction is strictly limited by the direction of
incoming sunlight and, while the solar sail thrust can be oriented changing the control angles,
solar sails are less precise and have slower response times compared to fuel-based systems.
Finally, in terms of sustainability, solar sailing represents an environmentally friendly solu-
tion, as it does not produce harmful byproducts and does not necessitate resource-intensive fuel
production.

1.5 Applications of Solar Sail Propulsion
As stated in the previous paragraph, the solar sailing technique allows for missions that would
be difficult for traditional propulsion systems. Solar sail-propelled spacecraft would be able to
maintain highly non-Keplerian orbits, which are extensions of the classic two-body and three-
body problems of orbital mechanics [25]. These orbits have a wide application range including
Earth observation, planetary science, and space-based geoengineering [24]. An example would
be the Geostorm mission, which aims to use a non-Keplerian orbit, near the L1 Lagrangian
point, for Solar observations and early warning for impending coronal mass ejections [26].
Solar sailing is also a suitable method for active space debris removal. By leveraging the
drag produced by a solar sail, it is possible to deorbit small spacecraft flying in low orbits, as
demonstrated during the Nanosail-D mission [16] and the RemoveDEBRIS mission [27]. In the
case of high orbits, solar radiation pressure can be used to transfer space debris into cemetery
orbits [28]. Additionally, by employing the sail acceleration as a balancing force, it is possible
to perform pole sitter missions, where the spacecraft will be balanced on top of the Earth’s pole,
with interesting applications for scientific observation missions and communication purposes
[29]. Another promising field of application, which has recently been researched, is solar sail
formation flight, especially for deep space [24]. The continuous thrust capability of solar sails
makes them a valuable option for missions of flybys and rendezvous of small celestial bodies.
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NASA Marshall Space Flight Center performed an assessment of the feasibility of using a near-
term solar sail propulsion system to visit six NEA with a single solar sail-propelled spacecraft
[30]. In 1986 a rendezvous mission with the Halley’s comet was proposed by NASA [3]. A
solar sail-based comet chaser has also been proposed, where the solar sail would be placed
in a co-orbit with a comet [31].Solar sailing also holds significant potential for interplanetary
missions. For example, a solar sail with a large payload mass fraction and a characteristic
acceleration of 0.25 mm/s2 could deliver the payload to Mercury in 3.5 years, while a solar
sail with doubled performance would take only 1.5 years [32]. In 1999, NASA proposed the
concept of an interstellar probe mission. The mission would require a 500-800 m diameter sail,
with a 1 g/m2 areal density [31]. Using a 100-km-class sail, unfurled at less than 0.2 AU, it
could be possible to complete a trip to the nearest star in under a thousand years [31]. Solar
sailing techniques are also suitable for attitude control, as demonstrated during the Mariner 4
and Mariner 10 missions 1.1.

1.6 CubeSat

Figure 1.15: Standard sizes of CubeSats [33].

CubeSats are a class of nanosatellites weighing between 1 and 10 kilograms, which conform
to a specific standard for size and form. By stacking multiple CubeSat units, different sizes are
obtained. A CubeSat unit (1U) is a cube of 10 cm per side that weighs less than 2 kg. The
different sizes, ranging from 1U to 12U, are illustrated in Figure 1.15. They are usually built
using Commercial Off The Shelf (COTS) components for electronics and structural elements.
The reduced dimensions and the use of standard components make this type of satellite more
cost-effective than traditional satellites. The idea was originally proposed at California Poly-
technic State University at San Luis Obispo (Cal Poly) and Stanford University as a practical
way to learn satellite design without having to incur the substantial cost of a traditional satel-
lite. This solution is now used outside the educational context, enabling cost-effective missions
[33].

For the mission studied in this thesis, the satellite selected for attachment to the solar sail is
a CubeSat. CubeSats are excellent candidates for solar sail missions due to their compact size,
modularity, and low cost.
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Chapter 2

Science Objective

Asteroids are minor celestial bodies, made up of rocky, icy, or metallic materials, originated
during the early formation of the Solar System, approximately 4.6 billion years ago [34].

The first asteroid discovery is dated 1801 by the astronomer Giuseppe Piazzi. The asteroid
was named Ceres, after the ancient Roman grain goddess and patron goddess of Sicily. The
term ’asteroid’, which comes from the Greek word “starlike”, was later suggested by Charles
Burney Jr. to Herschel, who proposed it to the Royal Society.

Asteroids have a composition similar to that of terrestrial planets; however, they are too
small to be classified as such. Their size varies significantly, ranging from 1-metre rocks to
bodies of thousands of kilometres in diameter, which can be classified as dwarf planets. All
asteroids orbit the Sun in elliptical orbits and move in the same direction as the major planets.
The majority of asteroids is characterized by an irregular shape. This is due to their small
size, as these bodies experience the domination of the rock’s compressive strength over the
gravitational pressure. On the other hand, the largest asteroids experience gravity domination
over material strength and their external forms are relatively close to a spherical shape.

As the population of asteroids is extremely extensive, asteroids are assigned numbers as
well as names. The numbers are assigned consecutively after accurate orbital elements have
been determined. The names can be selected by asteroid discoverers and are submitted to the
International Astronomical Union (IAU) for approval.
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2.1 Asteroid Locations

2.1.1 The Main Belt

Figure 2.1: Asteroids position [35].

The Main Asteroid Belt is the region of the inner Solar system, where the majority of asteroids
is located. This area is situated between the orbits of Mars and Jupiter, at a distance of 2.1-3.3
AU from the Sun, as can be observed in Figure 2.1.

The great density of bodies in this area is justified by the hypothesis that, during the for-
mation of the Solar System, the gravitational influence of Jupiter prevented the formation of
planetary bodies, causing the collision and fragmentation of the material [36].
The mass of the material in this area is estimated to be around 3% of the mass of the Moon.
The Main Belt contains tens of thousands of objects of various sizes and compositions. The
largest bodies located in this region are Ceres, Vesta, Pallas e Igea.

The Main Belt can be divided into two regions: the inner and outer belt. The inner belt,
centred at 2.8 AU from the Sun, contains silicate-rich or S-type asteroids. The outer belt,
centred at 3.2 AU, contains asteroids rich in carbon or C-type asteroids.

Asteroids can also be grouped into ‘families’. Families of asteroids are clusters of bodies
that share a similar orbit. Each family is named after the asteroid with the lower number, which
was the fist discovered of the group. The three largest families in the Main Asteroid Belt are
named Eos, Koronis, and Themis.

2.1.2 Kirkwood Gaps
The asteroids located between Mars and Jupiter are not distributed uniformly, but there are
relatively empty areas called the Kirkwood gaps. The Kirkwood gaps are due to mean-motion
resonances with Jupiter’s orbital period. Such a gravitational resonance causes the asteroid to
experience a gravitational force in a fixed direction whenever it is in the same relative position
with respect to Jupiter. Repeated applications of that force eventually change the mean distance
of that asteroid—and others in similar orbits—thus creating a gap in the distribution. Between
the Kirkwood gaps, there are some mean-motion resonances areas, that, instead of dispersing
asteroids, tend to collect them. These areas are the location of some asteroid clusters, listed in
Table 2.1.
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Table 2.1: Cluster of Asteroids in orbital resonances with Jupiter.

Asteroid Cluster Distance [AU] Resonance

Hungarians 1.78 5:1

Cybeles 3.58 7:4

Hildas 3.97 3:2

Thule 4.29 4:3

Trojans 5.20 1:1

2.1.3 Trojan Asteroids

Figure 2.2: Trojans asteroids location [37].

Beyond the clusters of asteroids in orbital resonance with Jupiter, the Trojans cluster is the
second largest reservoir in the inner solar system. The Trojans are located near Jupiter’s L4
and L5 Lagrange points, which can be found at 60 degrees ahead and 60 degrees behind Jupiter
in its solar orbit, as illustrated in Figure 2.2. However, the gravitational influence of bodies,
primarily Saturn, perturbs the system and leads to a destabilization of those equilibrium points.
As a consequence of these perturbations, the Trojan asteroids are observed 40◦ ahead of Jupiter
and 70◦ behind it in its orbit. Orbiting in these equilibrium points ensures that these bodies do
not collide with the planet.

2.1.4 Near Earth Asteroids
The small fraction of the asteroid population, whose orbits come into proximity with Earth are
classified as NEA. NEA have a perihelion distance q less than 1.3 AU and can be classified
based on their orbital characteristics. The farthest class is the Amor asteroids, named after
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asteroid Amor, these are Earth-approaching NEAs with orbits exterior to Earth’s but interior
to Mars’. Because of strong gravitational perturbations produced by their close approaches to
Earth, the orbital elements of all Earth-approaching asteroids change appreciably on timescales
as short as years or decades. Asteroids that actually cross Earth’s orbital path are known as
Earth-crossers. This body represents a hazard for Earth’s security, as they could impact on
the planet, among this there are the Apollos and Atens. The Apollos have a semi-major axis
larger than Earth’s, they cross Earth’s orbit when near the closest points to the Sun in their own
orbits. The Apollos are named after asteroid Apollo. The Atens asteroids cross Earth’s orbit
when near the farthest points from the Sun of their orbits, as they are characterized by semi-
major axes smaller than Earth’s.They are named after asteroid Apollo. The Atiras asteroid,
named after asteroid Atira, have an orbit entirely inside that of Earth, thus do not cross Earth’s
orbit [38]. NEAs categories are listed in Table 2.3, where q is the perihelion distance, Q the
aphelion distance, and a the semi-major axis [39]. Finally, the PHA are asteroids with an Earth

Figure 2.3: Amors
[39].

Figure 2.4: Apollos
[39].

Figure 2.5: Atens [39]. Figure 2.6: Atiras
[39].

Table 2.2: Classification of NEAs based on orbital characteristics.

Name Semi-Major Axis Perihelion/aphelion distance

Atens a < 1.0 AU Q > 0.983 AU

Apollos a > 1.0 AU q < 1.017 AU

Amors a > 1.0 AU q = 1.017–1.3 AU

Atiras a < 1.0 AU —

Minimum Orbit Intersection Distance (MOID) of 0.05 AU or less and an absolute magnitude
(H) of 22.0 or less.

2.1.5 Centaurs
The Centaurs are a group of asteroids located between Jupiter and Neptune. Their orbits are
quite elliptic, as their perihelion is located near the orbit of Jupiter and the aphelion near the
orbit of Neptune.

The largest body of this cluster, Chiron, was discovered in 1977 and it measures approx-
imately 100 km in diameter. The origin of the Centaurs is attributed to the perturbation of
cometary nuclei that migrated into this region from the Kuiper Belt.
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2.1.6 Trans-Neptunian Objects
Objects situated beyond Neptune’s orbit are called Trans Neptunian Objects (TNO)s. They are
situated in the Kuiper Belt and the Oort Cloud, as illustrated in Figure 2.1.

The Kuiper Belt is located between 30 and 50 AU from the Sun. The objects within this
area are considered to be cometary nuclei. The largest bodies discovered in the Kuiper Belt are
Eris and Pluto, with estimated diameters of approximately 2400 km and 1800 km, respectively.
Both are classified as dwarf planets. This region is considered the source of the majority of
comets that enter the inner Solar System.

The Oort Cloud is a shell of icy objects believed to surround the entire Solar System.
This region can be further divided into a spherical outer Oort Cloud with a radius of some
20000–200000 AU and a doughnut-shaped inner Oort Cloud with a radius of 2000–20000 AU.
The Oort Cloud is thought to contain billions of comets and is considered a major reservoir of
long-period comets.

2.2 Composition

Figure 2.7: Asteroid Bennu,
C-type [40].

Figure 2.8: Asteroid 433 Eros,
S-type [41].

Figure 2.9: Asteroid Psyche
concept, M-type [42].

Asteroids can be classified according to their chemical composition, based on observed
colour, spectral reflectance, and albedo (i.e., surface reflectivity) [43]. Although there are
multiple types of asteroids, the most common compositions can be grouped into three main
taxonomic classes: C-type, S-type, and M-type. The chemical composition of an asteroid is
typically correlated with its position in the Solar System.

C-type asteroids, or carbonaceous asteroids, are the most abundant, accounting for nearly
80% of asteroids located on the outer edge of the Main Asteroid Belt. They are rich in carbon
molecules and are composed of clay and silicate rocks. Their composition is very similar to
that of the carbonaceous chondrite meteorites. C-type asteroids appear of a dark reddish colour,
as can be seen by observing the asteroid Bennu [Figure 2.7], which belongs to this class.

S-type, or ”stony” asteroids, make up about 17% of the total asteroid population. They
consist of nickel-iron mixed with iron- and magnesium-silicates, and are typically found in the
inner regions of the asteroid belt. A notable siliceous asteroid is Eros [Figure 2.8], the first
discovered and second-largest near-Earth asteroid.

M-type asteroids, or metallic asteroids, are mostly made up of nickel-iron [36]. Their com-
position varies depending on how far from the Sun they formed. In some cases, they possess
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an iron core, formed as a result of exposure to high temperatures. The heat causes the iron to
melt and subsequently to sink to the centre. Among metallic asteroids, Psyche [Figure 2.9] can
be mentioned [44].
The characteristics of the taxonomic classes are summarized in Table 2.3.

Table 2.3: Classification of asteroids by spectral type, albedo, frequency, and composition.

Type Description Albedo Percentage Composition

C-type Dark, reddish asteroids; the
most common spectral class

< 0.10 > 75% Similar to carbona-
ceous chondrites;
chemically similar to
the Sun minus volatiles

S-type Brighter asteroids; second
most common type

0.10–0.22 ∼ 17% Nickel-iron mixed with
iron- and magnesium-
silicates

M-type Moderately bright asteroids;
less abundant

0.10–0.18 Primarily composed of
pure nickel-iron

2.3 Reasons for visiting asteroids
Mission towards asteroids are justified by the numerous benefits that the study of these bodies
can offer.
Asteroids originated during the early formation of the Solar system, approximately 4.6 billion
years ago. Their ancient origin makes them a valuable source of information for the investiga-
tion of the Solar system. In fact, studying the location and the distribution of the different types
of asteroids guarantees an important insight into the formation and development of the Solar
System. The origin of the Moon itself is believed to have been caused by an asteroid impact
on our planet. The giant-impact hypotheses is, in fact, one of the most plausible hypothesis
advanced on the Moon’s formation. The giant-impact hypothesis theorizes that the formation
of the satellite is the consequence of the collision between a planetary body named Theia and
Earth, dated approximately 4.5 billion years ago. The debris generated by the impact is thought
to have coalesced to form Earth’s natural satellite. Various theories also suggest that asteroid
impacts on Earth played a crucial role in delivering chemical components necessary for the
development of life forms. These impacts also delivered greenhouse gases, such as nitrogen,
carbon dioxide, and others, enhancing Earth’s overall habitability. For this reason, the investi-
gation of asteroids is considered a fundamental step to understand the origin of life on Earth.
Evidence also suggests that water may have been delivered to Earth by icy asteroid-like im-
pacts. Considering this theory, the study of the origin of water on Earth is closely linked to the
study of asteroids.
Besides the scientific research mentioned before, visiting asteroids has a great value for human
colonization. Asteroids represent potential sites for human colonization, particularly those lo-
cated within the Main Asteroid Belt. They are also great reservoirs of valuable resources and
chemical components that are rare on Earth, making them of interest for future space mining
initiatives.
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Visiting asteroids it is also important from a planetary defense perspective. A small number
of NEA is classified as potentially hazardous objects, the trajectory of these bodies comes at
a small distance from Earth and could impact our planet, creating substantial damage. Moni-
toring their trajectories and developing effective mitigation strategies is essential to reduce the
risk of catastrophic impacts. [45]

2.4 Missions
The first mission to traverse the asteroid belt was Pioneer 10, launched in 1972. Although the
mission performed only a transfer through the region, the successful passage opened the way
for future exploration missions within the asteroid belt [46]. The first asteroid study was con-
ducted by the Galileo probe, which succeeded in capturing images of the asteroids Gaspra [47]
and Ida [48], during its flybys of these two bodies on its way to Jupiter. The first rendezvous
with a NEA was achieved by the Near-Earth Asteroid Rendezvous (NEAR) Shoemaker mission
in 1997. The spacecraft performed close flybys of several asteroids, including 253-Mathilde,
which became the first carbonaceous Main Belt asteroid to be approached [49]. Following this
phase, it targeted asteroid 433-Eros, a Mars-crosser and the largest near-Earth celestial body
[50]. In 1999, NASA’s Deep Space I performed a partially successful flyby of asteroid 9969-
Braille at a distance of 26 km. Although the mission failed to capture detailed images, it re-
trieved valuable information about the asteroid [51]. One year later, the probe Cassini–Huygens
successfully performed a distant flyby of the Main Belt asteroid 2685-Masursky [52]. Later in
that same year, NASA’s mission Stardust, on its way to collect dust samples from the comet
Wild2’s coma, travelled close to the asteroid 5535-Annefrank [53]. The Hayabusa mission rep-
resented the first attempt to return a sample from an asteroid to Earth. The target of the mission
was asteroid 25143-Itokawa, a member of the Apollo group of near-Earth asteroids [54]. In
2006, an image of 132524-APL, a small S-type asteroid located in the Main Asteroid Belt, was
taken by NASA’s New Horizons probe [55]. In 2004, the European space probe Rosetta was
launched. The probe, during its voyage towards Comet Churyumov-Gerasimenko, performed
flybys of two asteroids, 21-Lutetia, an M-class asteroid, and 2867-Steins [56]. Steins was the
first E-class asteroid to be visited by a spacecraft. Rosetta became the first spacecraft to orbit
the nucleus of a comet. Launched in 2007, NASA’s Dawn mission had the ambitious goal
of exploring two of the largest bodies in the main asteroid belt, Ceres and Vesta [57]. The
mission aimed both to test the capabilities of ion propulsion systems and to gain insights into
the early processes of Solar System formation. Vesta, a rocky object, was confirmed to be a
protoplanet with an iron core. Ceres, an icy body, revealed bright patches of salt on its surface
and evidence of a subsurface frozen ocean. Following the first Hayabusa mission, a second as-
teroid rock sample-return mission, Hayabusa2, was launched in 2014. The spacecraft targeted
asteroid 162173 Ryugu, a C-type carbon-rich asteroid, and was equipped with a suite of instru-
ments for remote sensing and sample collection. The mission provided valuable insights into
the composition and structure of carbon rich asteroids [58]. In 2016, NASA’s Origins, Spectral
Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) mission was
launched toward the asteroid 101955 Bennu, a carbonaceous body with a diameter of approx-
imately 490 m. The mission successfully collected around 60 g of surface material [59]. In
2021, NASA launched the Lucy mission, a twelve-year journey aimed at visiting ten different
asteroids.To date, the spacecraft has completed a flyby of asteroid 152830 Dinkinesh. In 2025,
it is scheduled to encounter asteroid 52246 Donaldjohanson, followed by a series of flybys
through the Trojan asteroid population. These include 3548 Eurybates and its satellite, 15094
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Polymele, 11351 Leucus, and 21900 Orus. The mission will then continue toward the L5 Tro-
jan cloud, where in 2033 it will explore the binary system composed of asteroid 617 Patroclus
and its natural satellite, Menoetius [60]. The spacecraft of the Double Asteroid Redirection
Test (DART) program, a collaboration between NASA and Johns Hopkins Applied Physics
Laboratory, was launched in 2021. The primary objective of the program was to test a defense
strategy against near-Earth object threats by evaluating the capability of a spacecraft impact to
alter an asteroid’s trajectory. The target was Dimorphos, a small natural satellite orbiting the
asteroid Didymos. The spacecraft successfully collided with Dimorphos in 2022, reducing its
orbital period by 32 minutes [61]. As part of the mission, the Italian Space Agency contributed
LICIACube, a CubeSat that separated from the main spacecraft prior to impact and was able to
capture images of the collision and its aftermath [62].

2.5 Target asteroids
For the purpose of this thesis, three Near-Earth asteroids have been selected as the target bodies
for the mission.

2.5.1 2000 SG344

Figure 2.10: 2000 SG344 orbit [63].

2000 SG344 is a small asteroid, with an estimated diameter of 0.055 km, first observed in 2000.
It has been classified as a NEA by NASA JPL, but it is not considered potentially hazardous.
Based on its orbital parameters, it belongs to the Atens. Its orbit is shown in Figure 2.10 and
its orbital elements are displayed in Table 2.4.
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Table 2.4: Orbital elements of 2000 SG344

2000 SG344

Orbital Element Value

Semi-major axis a [AU] 0.9774397

Eccentricity e 0.06695788

Inclination i [deg] 0.11220

Argument of periapsis ω [deg] 275.34682

Right Ascension of Ascending Node Ω [deg] 191.91229

Mean anomaly M [deg] 35.6801073

2.5.2 2014 QN266

Figure 2.11: 2014 QN266 orbit [63].

2014 QN266 is an Apollo-class Asteroid classified as a NEA by NASA JPL and it is not consid-
ered a potentially hazardous object. Its dimension is very small, as it measures between 0.010
and 0.043 kilometres in diameter. Its orbit is shown in Figure 2.11 and its orbital elements are
displayed in Table 2.5.
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Table 2.5: Orbital elements of 2014 QN266

2014 QN266

Orbital Element Value

Semi-major axis a [AU] 1.0526284

Eccentricity e 0.09231390

Inclination i [deg] 0.48842

Argument of periapsis ω [deg] 61.61526

Right Ascension of Ascending Node Ω [deg] 171.11193

Mean anomaly M [deg] 211.2672992

2.5.3 2020 PJ6

Figure 2.12: 2020 PJ6 orbit [63].

The third target asteroid is 2020 PJ6. This asteroid belongs to the Aten group. Its size ranges
from 0.013 to 0.059 kilometres in diameter, which classifies it as a small asteroid. As the other
target asteroid aforementioned, it is a NEA, but not a hazardous object. Its orbit is shown in
Figure 2.12 and its orbital elements are listed in Table 2.6.
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Table 2.6: Orbital elements of 2020 PJ6

2020 PJ6

Orbital Element Value

Semi-major axis a [AU] 0.9651751

Eccentricity e 0.09786949

Inclination i [deg] 0.81270

Argument of periapsis ω [deg] 312.41663

Right Ascension of Ascending Node Ω [deg] 141.66163

Mean anomaly M [deg] 160.5638083
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Chapter 3

Trajectory Optimization

Orbit optimization is a fundamental topic in aerospace engineering, with applications rang-
ing from interplanetary mission design to Earth observation and satellite station-keeping. An
optimization problem consists of finding the control law that maximizes or minimizes a cer-
tain performance index, while satisfying physical and operational constraints. Considering the
significant impact factors such as fuel consumption, payload mass, and transfer time have on
both the design and cost of the mission, the performance index is often related to one of these
factors. The mass of a solar sail-propelled spacecraft does not depend on the embarked fuel,
which means minimizing the transfer period is usually the primary goal of trajectory optimiza-
tion for this specific case. The resolution of an optimization problem cannot be achieved with
an analytical method, as an explicit solution can be found for a limited number of simplified
cases, which are not generally of practical interest. In most situations, it is necessary to employ
a numerical method or an approximate solution.

3.1 Direct and Indirect Optimization Methods
Numerical optimization methods can be classified as direct or indirect. Direct optimization
methods are based on discretization of the trajectory and the control parameters are described
by an elevated number of variables. Optimization is performed using Non Linear Programming
(NLP) techniques.

Direct methods are typically simpler to implement, compared to indirect methods. However,
the solutions they produce tend to be less accurate. Indirect methods are based on the theoretical
foundation of variational calculus and determine the control variables of the problem by solving
a Boundary Value Problem (BVP). These methods have a good theoretical content, meaning the
method is mathematically well-founded and offers desirable properties, such as high numerical
precision. Additionally, they require a lower number of parameters, which guarantees a lower
calculation time. Despite their advantages, indirect methods are characterised by convergence
difficulty and lower robustness, compared with direct methods. For the optimization problem
addressed in this thesis the most appropriate approach is the application of optimal control
theory, which is an indirect numerical method.

3.2 Variational Calculus
In order to present the numerical approach of optimal control theory, a brief introduction to
variational calculus is provided. Variational calculus is a branch of mathematical analysis that
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deals with finding functions or curves that optimize a certain value J , finding its maximum
or minimum, usually expressed as a functional integral. The function needs to satisfy the
differential equations that describe the problem and the boundary conditions. The differential
equations that describe the evolution of the system between the initial and final point, for a
general system, are, usually, in the form:

ẋ =
dx
dt

= f(x,u, t) (3.1)

Where x is the state variable vector, the time t is the independent variable, and u is the control
variable. The boundary conditions can be expressed as:

χ(x(t0),x(tf ), t0, tf ) = 0 (3.2)

The functional J can be defined according to Mayer’s or Lagrange’s formulation. The Mayer’s
formulation depends on the values of the variables at the endpoints of the curve and can be
written in the form:

J = φ(x(t0),x(tf ), t0, tf ) (3.3)

Lagrange’s formulation is defined as an integral between the endpoints of the curve:

J =

∫ tf

t0

φ(x, ẋ, t)dt (3.4)

The solution of the problem is found using the Euler-Lagrange equation, which is a necessary
condition for J(y) to be a maximum or minimum:

∂

∂t

(
∂φ

∂ẋ

)
− ∂φ

∂x
= 0 (3.5)

3.3 Optimal Control Theory for Orbit Optimization
In the context of orbit optimization, the problem is formulated by dividing the entire trajectory
into distinct phases or arcs, within which variables remain continuous. Each j-th arc is defined
by its initial time (t(j−1)+) and final time (tj−), where + denotes the value assumed by the
time immediately after the point, and - immediately before it. The phase is described by its
corresponding differential equation, expressed in the same form as in Equation 3.1. The values
assumed by the state variable at the endpoints are indicated as x(j−1)+ and xj− , following
the same notation used for time. Each arc is governed by a homogeneous control law. The
boundary conditions are imposed at the endpoints of each phase, allowing for the consideration
of flybys or constraints on the dynamic and thermal loads. The conditions are of mixed type, as
they are applied to both dependent and independent variables. Boundary conditions are usually
non-linear and are defined at the endpoint of each arc, formulated as in Equation 3.2:

χ(x(j−1)+ ,xj− , t(j−1)+ , tj−) = 0 j = 1, ..., n (3.6)

This method enables the consideration of variable discontinuities, which can be ascribed to
impulsive manoeuvres, flybys, or the detachment of depleted rocket stages. It is important to
note that boundary conditions can also be applied to the control variables contained in vector u.
The functional is written in its most general form, encompassing both the Mayer and Lagrange
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formulations; when φ = 0, the pure Mayer formulation is obtained, when Φ = 0 the pure
Lagrange formulation is found:

J = φ(x(j−1)+ ,xj− , t(j−1)+ , tj−) +
∑
j

∫ tj−

t(j−1)+

Φ(x(t),u(t), t)dt j = 1, ..., n (3.7)

J depends on the values taken by the variables and time at the endpoints of each phase, ac-
counting for both internal and external boundaries, this represents the contribution of the Mayer
formulation. The second term, representing the contribution of the Lagrange formulation, is the
integral over the entire trajectory, which is a function of time and values assumed by the state
and control variables at each point. Equation 3.7 is then rewritten using Lagrange multipliers
to incorporate the differential equations and boundary conditions, resulting in the implemented
functional:

J∗ = φ+ µTχ+
∑
j

∫ tj−

t(j−1)+

λT (f − ẋ)dt j = 1, ..., n (3.8)

Where λ represents the adjoint variables, associated with the state equations, and µ corre-
sponds to the auxiliary constants associated with the boundary conditions. It is observed that
when the boundary conditions and the differential equations are satisfied, the functional J and
the implemented functional J∗ are equal. Equation 3.8 is integrated by parts to eliminate the
dependence on ẋ:

J∗ = φ+ µTχ+
∑
j

(
λT

(j−1)+
x(j−1)+ − λT

j−xj−

)
+
∑
j

∫ tj−

t(j−1)+

(
Φ + λTf − λ̇

T
x
)

dt

j = 1, . . . , n (3.9)

To determine the optimal value, J∗ is differentiated as follows:

δJ∗ =

(
−H(j−1)+ +

∂φ

∂t(j−1)+

+ µT ∂χ

∂t(j−1)+

)
δt(j−1)++

+

(
Hj− +

∂φ

∂tj−
+ µT ∂χ

∂tj−

)
δtj−+

+

(
λT

(j−1)+

∂φ

∂x(j−1)+

+ µT ∂χ

∂x(j−1)+

)
δx(j−1)++

+

(
−λT

j− +
∂φ

∂xj−

+ µT ∂χ

∂xj−

)
δxj−+

+
∑
j

∫ tj−

t(j−1)+

((
∂H

∂x
+ λ̇

T
)
δx+

∂H

∂u
δu

)
dt j = 1, . . . , n (3.10)

Where δx, δu, δx(j−1)+ , δxj− , δt(j−1)+ , δtj− are arbitrary variations and H is the system’s
Hamiltonian and is defined as:

H = Φ+ λTf (3.11)

The necessary condition to guarantee the optimal value, a maximum or minimum, of J∗ is
that the functional is stationary. This condition is satisfied when its first variation vanishes
identically for all permissible arbitrary variations, while fulfilling the boundary conditions and
the governing differential equations. This is accomplished through the adjoint variables (λ)
and constants (µ) previously introduced, which, when properly chosen, enable the nullification
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of each coefficient of the arbitrary variations in Equation 3.10. This results in the first variation
of the functional being equal to zero δJ∗ = 0, ensuring the stationary property of the functional
J∗. Consequently, by equating, in the integral, the coefficient of δx to zero at each point of the
trajectory, the differential equations for the Euler-Lagrange adjoint variable are obtained:

dλ
dt

= −
(
∂H

∂x

)T

(3.12)

By repeating this process for the coefficient of δu, the algebraic control equations are obtained:(
∂H

∂u

)T

= 0 (3.13)

It is worth noting that the control laws and boundary conditions remain unchanged whether the
objective is to find a maximum or minimum of J .

When deriving the control law, particular attention must be given to the constraints imposed
on the control variables, which must belong to a certain admissibility domain, defined by the
given constraints. In this case the optimal value must be determined in accordance with Pon-
tryagin’s Maximum Principle, which states that the control value that optimizes the trajectory in
each point is the one that, while being in the admissibility domain, maximizes the Hamiltonian
H , when seeking the maximum of J , or minimizes it, when searching for the minimum. After
solving Equation 3.13 two cases may arise: either the obtained value belongs to the admissibil-
ity domain or it does not. In the first scenario, the control is said to be locally unconstrained,
as the constraint does not affect that point, and the solution corresponds to the value obtained
from Equation 3.13. In the second scenario, the optimal value falls outside the admissibility
domain, and the maximum or minimum permissible value is attained at the boundaries of the
domain.
Another consideration must be made in the particular case where the Hamiltonian is linear with
respect to one of the constrained controls. In this situation, the control does not appear explic-
itly in Equation 3.13 and thus cannot be determined. If the control coefficient in Equation 3.11
is non-zero, H is maximised when the control value is maximum, if the coefficient is positive
and when the control value is minimum, if the coefficient is negative, assuming we are seeking
to maximize J . The values are reversed when searching for the minimum of J . In the oppo-
site case, if the control coefficient is zero over a defined time interval, it becomes necessary to
impose the vanishing of all successive derivatives of the coefficient with respect to time, until
the control explicitly appears in one of them. The optimal control is then determined by setting
this last derivative equal to zero. It has been proven that the required order of differentiation
is always even [64] and half of this order is used to denote the order of the singular arc. The
remaining boundary conditions are the optimal conditions. They are expressed in terms of the
j-th boundary, referring either to the upper bound of the (j− 1)− th subinterval or to the lower
bound of the j− th subinterval. By setting to zero in order the variations δxj− , δxj+ , δtj− , δtj+
of Equation 3.10, the following conditions are obtained:

−λT
j− +

∂φ

∂xj−

+ µT

[
∂χ

∂xj−

]
= 0 j = 1, ..., n (3.14)

λT
j+

+
∂φ

∂xj+

+ µT

[
∂χ

∂xj+

]
= 0 j = 0, ..., n− 1 (3.15)

Hj− +
∂φ

∂tj−
+ µT

[
∂χ

∂tj−

]
= 0 j = 1, ..., n (3.16)
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−Hj+ +
∂φ

∂tj+
+ µT

[
∂χ

∂tj+

]
= 0 j = 0, ..., n− 1 (3.17)

Equations 3.14 and 3.16 are not defined at the beginning of the trajectory where j = 0, while
Equations 3.15 and 3.17 are not valid at the end of the trajectory where j = n. By eliminating
the auxiliary constants µ from Equations 3.14 to 3.17 the optimal boundary conditions can be
written as:

σ(x(j−1)+ ,xj− ,λ(j−1)+ ,λj− , t(j−1)+ , tj−) = 0 (3.18)

Equation 3.18 together with the assigned boundary conditions in Equation 3.6 completes the
differential system, given by Equations 3.1 and 3.12. Equations 3.14 and 3.15 provide the
optimal conditions imposed on the adjoint variable λx, when its corresponding state variable
x is subject to specific boundary conditions. Different cases are possible. If the state variable
x is explicitly prescribed at the initial time, the vector χ of the assigned boundary conditions
will include the equation x0 − a = 0, where a is a known constant. In this case, on the
corresponding adjoint variable λx0 no specific optimal condition will be imposed. If the initial
value of the state variable x0 is neither specified in the function φ nor in the assigned boundary
conditions χ, its corresponding adjoint variable will be equal to zero λx0 = 0. The same
principle applies when x is assigned at the final time or if it is not defined. If the state variable is
continuous and not assigned at an internal point, χ will include the equation xj+ = xj−, and the
corresponding adjoint variable will also be continuous λxj+

= λxj− . Finally, if the state variable
is continuous and assigned to an internal point, χ will include the equation xj+ = xj− = a.
In this case the corresponding adjoint variable will exhibit a ”free” discontinuity, meaning
that the value of λxj+

is independent of the value of λxj− and will be determined through
the optimization process. Regarding Equations 3.16 and 3.17, if the Hamiltonian H is not
an explicit function of time, they can, in some cases, introduce additional optimal boundary
conditions. The possible situations are explained. When the initial time t0 does not appear
explicitly either in the boundary conditions χ or in the function φ, the Hamiltonian at the
initial time is zero, H0 = 0. The same holds for the final time. When an intermediate time
instant tj does not explicitly appear in the function φ, the only boundary condition involving
that time instant in χ is the requirement of temporal continuity, in other words tj+ = tj− . This
implies that the Hamiltonian H remains continuous in j Hj+ = Hj− . Instead, when the time tj
is explicitly assigned in χ, the equations tj+ = tj− = a will appear, and the Hamiltonian will
exhibit a free discontinuity.

3.4 Boundary Value Problem
After the problem formulation has been addressed, the indirect optimization method used to
solve it is described in this paragraph. In the previous section, the problem was formulated
as follows: the problem is described by the differential Equations 3.2 and 3.12, the control
variables are determined by Equation 3.13, the imposed boundary conditions are given by (3.6)
and Equations 3.18 determine the optimal boundary condition. Both the differential equations
and the boundary conditions are strictly dependent on the type of orbits involved in the trans-
fer. Since not all initial values of the variables are known, the problem is classified as a BVP
and must be solved using a numerical method. The indirect optimization method consists in
applying optimal control theory to the system of differential equations. Optimal control theory
formulates the optimization problem as a mathematical problem subject to differential and al-
gebraic boundary conditions. The solution is obtained by determining appropriate initial values
for the unknown variables, such that, when integrating the system of differential equations, all

25



Trajectory Optimization

imposed and optimal boundary conditions are satisfied. The problem exhibits specific char-
acteristics. The integration interval is divided into subintervals, within which the differential
equations may have different expressions. The duration of each subinterval is generally un-
known. The boundary conditions can be non-linear and can be referred to both internal and
external boundaries of the intervals. The variables can be discontinuous at internal boundaries
and their value after a discontinuity point can be unknown. Given the characteristics of the
problem, the main challenge in applying an indirect optimization technique lies in solving the
BVP. The solution techniques must have the same characteristics as the problem itself. In
this case, the solution is obtained by reducing the BVP to a sequence of initial value problems,
which are brought to convergence using Newton’s method. One of the listed peculiarities of the
problem is the unknown duration of each interval. To address this issue, the time variable t is
replaced, for the purpose of integration, with a new variable ε, defined in the j− th subinterval:

ε = j − 1 +
t− tj−1

tj − tj−1

= j − 1 +
t− tj−1

τj
(3.19)

Where τj is the duration of the subinterval. Using this approach, the internal and external
boundaries become fixed and correspond to consecutive integer values of the new variable ε.
By referring to Equations 3.1, and 3.12 and rewriting the control variable using Equation 3.13,
a differential problem in state and adjoint variables is obtained. The variables are no longer
distinguished, and are represented as y = (x,λ):

dy
dt

= f ∗(y, t) (3.20)

It is noted that the problem also includes constant parameters, such as the duration of the
subintervals or the values of variables defined after a discontinuity point. To account for these
constant parameters, a new vector z is defined. The vector containing both the state and adjoint
variables, along with the constant parameters c, is defined as z = (y, c). By changing the
independent variable, the system of differential equations becomes:

dz
dε

= f(z, ε) (3.21)

By explicitly expressing the right-hand side of Equations 3.21, for the state and adjoint variables
the equation results:

dy
dε

= τj
dy
dt

(3.22)

For the constant parameters stand:
dc
dε

= 0 (3.23)

The boundary conditions are defined without distinguishing between imposed and optimal con-
ditions, using the vector:

Ψ(s) = 0 (3.24)

Where s is a vector that contains the values assumed by the variable at each endpoint of the
subintervals, indicated by ε = 0, 1, ..., n, and the unknown parameters:

s = (y0,y1, ...,yn, c) (3.25)

As previously mentioned, some of the initial values of the variables are unknown, and the
solution of the problem consists of determining, through an iterative process, the values they
must take to satisfy Equation 3.24.
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3.5 Iterative Process

Figure 3.1: Flow diagram of the iterative process

The following section describes the iterative process, briefly illustrated in the flow diagram in
Figure 3.1, under the assumption that none of the initial values are known. The r− th iteration
consists of integrating Equations 3.21 using as initial values those obtained from the (r−1)−th
iteration, i.e. by solving the equation:

z(0) = pr (3.26)

The same process is repeated along the entire trajectory, accounting for any discontinuities at
the internal endpoints. Obviously, since the results from the previous iteration are not yet avail-
able during the first iteration, the values of p1 are arbitrarily chosen. After each iteration, the
values of the state variables at each internal endpoint are determined and, after the integration,
the errors in the boundary conditions Ψr are calculated. At each iteration, the variation ∆p
causes the error in the boundary conditions to vary by an amount that, accounting only for the
first-order terms, is:

∆Ψ =

[
∂Ψ

∂p

]
∆p (3.27)

The objective is to nullify the error in the boundary conditions, meaning that the desired vari-
ation of the error should be ∆Ψ = −Ψr. This is achieved by correcting the initial values of a
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quantity:

∆p = pr+1 − pr = −
[
∂Ψ

∂p

]−1

Ψr (3.28)

This process is repeated until the boundary conditions of Equation 3.24 are satisfied within the
desired precision. The matrix [∂Ψ/∂p] is calculated as a matrix product:[

∂Ψ

∂p

]
=

[
∂Ψ

∂s

] [
∂s

∂p

]
(3.29)

Where the first matrix [∂Ψ/∂s] is obtained by differentiating the boundary conditions with re-
spect to the quantities that appear in them. The second matrix [∂s/∂p] contains the derivatives
of the variable values at the boundaries with respect to the initial values, i.e. the values assumed
at the endpoints by the matrix: [

∂z

∂p

]
= [g(ε)] (3.30)

The second matrix [∂s/∂p] is obtained by integrating the system of differential equations de-
rived from differentiating the principal system of Equation (3.21), with respect to the initial
values:

[ġ] =
d
dε

[
∂z

∂p

]
=

[
∂

∂p

(
∂z

∂ε

)]
=

[
∂f

∂p

]
(3.31)

Where the dot ˙ now indicates the differentiation with respect to the new independent variable
ε. By explicitly calculating the Jacobian of the main system of Equation 3.21, the equation is
rewritten as:

[ġ] =

[
∂f

∂z

] [
∂z

∂p

]
=

[
∂f

∂z

]
[g] (3.32)

The initial values for the homogeneous system in Equation 3.32 are obtained by differentiating
Equation 3.26, resulting in the identity matrix:

[g(0)] =

[
∂z(0)

∂p

]
= [I] (3.33)

It is worth noting that this method is capable of managing variable discontinuities. In fact,
assuming there is a discontinuity at point i, it is sufficient to update the vectors z and g using
the relation h, which links the values of the variables before and after the discontinuity. The
new values are written as:

zi+ = h(zi−) (3.34)

[gi+] =

[
∂h

∂z

]
[gi−] (3.35)

The definition of the function h is the reason why it is not necessary to distinguish between the
vectors yi+ and yi− when defining the vector s, since each is a function of the other, through
h, and of c. The problem has been presented in its most general form, assuming all the initial
values of the variables are unknown. However, in most cases, some initial values are known.
In this case, the problem is simplified, as the vector p is reduced to include only the unknown
components of the vector z(0), and the vector Ψ is restricted to only the boundary conditions
that are not explicitly defined at the initial time.

In the previous part the matrix [∂Ψ/∂p] was calculated as a product of two matrices, how-
ever it can also be calculated numerically. The i − th row is obtained by varying the i − th
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component of the vector p by a small quantity ∆p, typically on the order of 10−6 ÷ 10−7,
while keeping the others fixed. Then, Equations 3.21 are integrated. Through this process, the
variations of the boundary conditions ∆Ψ(∆p) are obtained and, by linearizing the equations,
the corresponding row is calculated as ∆ΨT/∆p. This approach, in some cases, allows for a
simpler and faster resolution of the BVP, but it does not always guarantee convergence. The
reason is that determining the matrix [∂Ψ/∂p] using this approach yields a less accurate solu-
tion, compared to the first method, and, given the high numerical sensitivity of the problem, the
numerical approximations introduced by the second approach can compromise convergence. A
similar procedure could also be used to compute the Jacobian and the matrix [∂Ψ/∂s], but the
analytical formulation is preferred. The integrations of the differential equations, both for the
main system of Equations 3.21 and the homogeneous system of Equations 3.32, are performed
using a step-by-step numerical method with variable order, based on Adams formulas, as de-
scribed by Shampine and Gordon [65]. The linearization introduced for the computation of
the correction ∆p in Equation 3.28 could introduce errors that could compromise convergence,
causing the error in the boundary conditions to increase with each iteration, instead of decreas-
ing. To avoid this phenomenon, some improvements can be introduced in the procedure. To
prevent the correction from causing the iteration to diverge from the correct solution, the step
∆p is modified such that the actual step is a fraction of ∆p:

pr+1 = pr +K1∆p (3.36)

Where K1 = 0.1 ÷ 1, the values are empirically determined during code testing, based on
the distance between the initial solution and the searched solution. After computing the new
vector of initial values pr+1 using Equation 3.36, the equations of motion are integrated and
the maximum error in the boundary conditions is evaluated. The maximum error in the current
iteration Er+1

max is compared with the one of the previous iteration Er
max. If the current error

is smaller than a multiple of the previous error, i.e. Er+1
max < K2E

r
max, the iterative process

continues. A suitable choice for the coefficient K2 is within the range 2÷3. This value must be
greater than 1, as the error in the boundary conditions may increase during the first iterations.
In the other case, if the current error exceeds a multiple of the previous error, the next iteration
is performed by bisecting the correction ∆p:

pr+1 = pr +K1∆p/2 (3.37)

When the iteration is completed, the current error is evaluated once again and, if necessary, the
bisection process is repeated. In the implemented code, the maximum number of iterations has
been set to 5. If the code does not converge before this limit is exceeded, then the chosen trial
solution is not capable of achieving convergence [66].
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Chapter 4

Theoretical Background: Flight
Mechanics

The following chapter introduces some space flight concepts, which will be referenced in the
next chapter, chapter 5, where the sail motion equations will be derived. Special emphasis
is given to the reference frames, both spatial and temporal, to the two-body problem, which
provides the theoretical basis on which the motion equations are formulated, and to the orbital
parameters.

4.1 Reference frames
In order to properly describe the various problem vectors, it is necessary to define the reference
frames in which they are represented. A reference frame is defined as an ordered set of three
mutually orthogonal unit vectors. It is defined by specifying its origin, fundamental plane,
which contains the x- and y-axes, and the direction and orientation of its axes. Within the
reference frame, a coordinate system is employed to locate points in space.

Reference frames can be classified as inertial or non-inertial frames. Inertial reference
frames do not rotate with respect to the stars and have a non-accelerating origin. Non-inertial
reference frames experience a certain acceleration, resulting in relative accelerations between
the bodies within the system.

This section provides a description of the different reference frames employed.
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4.1.1 The Heliocentric-Ecliptic Reference frame

Figure 4.1: Heliocentric-Ecliptic Reference frame

The Heliocentric-Ecliptic reference frame [Figure 4.1] is centred on the Sun and based on the
Ecliptic Plane, which is the orbital plane of the Earth. The frame is defined by three axes. The
x-axis and y-axis are located on the fundamental Plane of the Ecliptic. The x-axis is defined
by the intersection of the Ecliptic and Equatorial planes during the vernal equinox. The z-axis
is normal to the Ecliptic Plane and is oriented toward the hemisphere in which the Pole Star is
located. The y-axis completes the right-handed triad. The Heliocentric-Ecliptic reference frame
is quasi-inertial, because it is fixed with respect to the fixed stars except for the precession of the
equinoxes. The precession of the equinoxes is a perturbation that causes the line of equinoxes to
be slightly non-aligned with the line of the apsides. This perturbation causes the line of apsides
to rotate, describing a cone, with a period of approximately 26000 years and pointing from the
Pole Star to the star Vega. This phenomenon is caused by the gravitation influence exerted on
Earth by other celestial bodies, in particular the effect of the luni-solar attraction and planetary
attraction. The rotation of the line of apsides causes the sidereal year to be longer than the
solar year. The sidereal and solar years are respectively the time required for Earth to return to
the same position relative to the fixed stars and the Sun. The sidereal year is completed with a
360-degree rotation around the Sun and it lasts 365 days, 6 hours, 9 minutes and 9 seconds. The
solar year is completed with a rotation of 359.986 degrees and its duration is 365 days, 5 hours,
48 minutes and 46 seconds. For the purposes of this thesis, that takes into account a mission
lasting a few years, the perturbation period results sufficiently long, that Heliocentric-Ecliptic
reference frame can be approximated as inertial.
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Figure 4.2: Spherical coordinates for the Heliocentric-Ecliptic Reference frame

Within the Heliocentric-Ecliptic reference frame, the position of the spacecraft can be de-
scribed using a system of spherical coordinates, as illustrated in Figure 4.2. Spherical coordi-
nates define the position of a given point in three-dimensional space by using one distance and
two angles, which in this case are the heliocentric distance r, the heliocentric ecliptic longitude
ϑ and latitude φ. The position coordinate vector is then expressed as:

r =

r
ϑ
φ

 (4.1)

This reference frame proves to be the most suitable option when formulating the motion equa-
tions. Within an inertial frame, drag and Coriolis accelerations are absent, which significantly
simplifies the definition of the Jacobian when solving the BVP. Furthermore, this reference
frame guarantees a direct correspondence between the auxiliary variables associated with the
velocity components and the elements of the primer vector.
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4.1.2 The Perifocal-Heliocentric Reference Frame

Figure 4.3: Perifocal Reference Frame

The Perifocal-Heliocentric Reference Frame is a Sun-centred system defined with respect to
the orbital plane of the satellite. The orbital plane is defined by two vectors p and q. p is the
axis pointing toward the periapsis and q is the axis 90 ahead of p in the direction of satellite
motion. The right-handed triad is completed by the w axis, which is normal to the orbital plane
and aligned with the orbital angular momentum vector. The system is illustrated in Figure 4.3.
This reference frame is used to define the orbital elements.

4.1.3 Local Reference Frame

Figure 4.4: Local reference frame
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The velocity components are defined in a local reference system, centred on the spacecraft and
based on the local horizontal plane, as illustrated in Figure 4.4. The velocity coordinates are
given by the vector:

V =

u
v
w

 (4.2)

Where u is the coordinate in the radial direction, v in the eastward direction and w in the
northern direction. The choice of this reference frame for the velocity coordinates is motivated
by the simpler relationship it provides between relative and absolute velocities.

4.2 Time System
In order to express the position of celestial bodies as a function of time, a temporal reference
system must also be defined. The most commonly used time system for astronomical appli-
cations is the Julian Day (JD). The JD is a continuous date-counting system that facilitates
conversions between different calendar systems used across various historical epochs. Its for-
mulation is based on the Julian Period, which is the least common multiple of three traditional
cycles:

• 15 years of the Indiction cycle, a Roman fiscal period used for tax assessment;

• 19 years of the Metonic cycle, after which the phases of the Moon recur on the same days
of the solar year;

• 28 years of the solar cycle, the period after which the days of the week repeat on the same
calendar dates in the Julian calendar.

The Julian Period, thus, is equal to:

Julian Period = 15 · 19 · 28 = 7980 years (4.3)

The JD count begins on January 1, 4713 Before Common Era (BCE), at 12:00 Coordinated
Universal Time (UTC). It can be calculated from a date expressed in day/month/year (D/M/Y)
format of the Gregorian Calendar, using the following formula:

a = fl

[
14−M

12

]
(4.4)

y = Y + 4800− a (4.5)

m = M + 12 · a− 3 (4.6)

JD = D + fl

[
153 ·m+ 2

5

]
+ 365 · y + fl

[y
4

]
− fl

[ y

100

]
+ fl

[ y

400

]
− 32045 (4.7)

Where fl is a function that rounds the value to the nearest integer. For the Julian Calendar the
formula is:

JD = D + fl

[
153 ·m+ 2

5

]
+ 365 · y + fl

[y
4

]
− 32083 (4.8)

An alternative time system is the Modified Julian Day (MJD), in this case the days count starts
from November 16, 1858 CE, at 00:00 UTC. The MJD is obtained by subtracting 2,400,000.5
days from the corresponding JD value:

MJD = JD − 2400000.5 (4.9)
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It is also possible to account for the time of day by adding the fractional part of the day, to
obtain the Julian Date. The time of the day can be calculated by knowing the angle between
the Earth-Sun direction and the Greenwich Meridian. The angle is given by:

t =
day

365.2425 · 100
(4.10)

α = αG0 + ω⊕ · day + 0, 0003875 · t2 (4.11)

Where αG0 = 280.40601837 is the angle at J2000, corresponding to January 1, 2000 CE, at
00:00 UTC, ω⊕ = 7.29 · 10−5 rad/s = 360.9856473/s is Earth’s angular velocity and day
represents the number of JD since J2000. For this thesis, the time is evaluated by counting the
JD starting from J2000 and is non-dimensionalised as explained in section 5.4.

4.3 Two Body problem
The equations of motion, in their general form, are derived from the two-body problem. The
two-body problem describes the motion of the spacecraft in space, simplifying the N-body
problem through three assumptions:

• Two celestial bodies are considered to influence the motion, with one body, in this case
the Sun, having a significantly greater mass than the other, which is the spacecraft. This
assumption implies that M1 >> m2.

• The bodies are considered to be spherically symmetric, allowing them to be modelled as
point masses.

• The system is assumed to be isolated, with no external forces acting upon it other than
the gravitational forces exerted by the two bodies under consideration.

Figure 4.5: Two body problem

Under these assumptions, and by applying Newton’s law of dynamics, it is possible to derive
the expression for the acceleration of the second body relative to the first body, given by:

r̈ +
µ

r3
r = 0 (4.12)
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Where r̈ is the acceleration vector, µ is the gravitational parameter of the central body, r
represents the position vector of the second body relative to the first and r is the magnitude
of r. The vectors can be observed in Figure 4.5. The gravitational parameter is given by the
product of the gravitational constant G = 6, 67430 · 10−11Nm2

kg2
and the mass of the body. For

the Sun the gravitational parameter equals µ⊙ = GM⊙ = 1, 32712440018 · 1011km3s−2. It
is important to emphasize that, when using the two body problem to formulate the equations
of motion, the model does not account for perturbations due to the presence of other celestial
bodies or the deviations of the bodies from perfect spherical symmetry. Starting from the two-
body problem formulation (Equation 4.12), the equation for the specific mechanical energy can
be derived:

E =
V 2

2
− µ

r
(4.13)

The specific mechanical energy is the sum of the kinetic energy (first term) and the potential
energy (second term). The gravitational field is conservative and the specific mechanical energy
is a constant of motion, thus its value remains constant throughout the orbit. Another constant
of motion that can be derived from the two-body problem is the angular momentum, which is
given by:

h = r × V (4.14)

This implies that the motion of the body is confined to a plane, known as the orbital plane. The
solution to the two-body problem results in the equation:

r =
h2/µ

1 +
(

B
µ

)
cos ν

(4.15)

Where B is an integration constant. This equation represents a conic section centred on the
primary body, which is located at one of the two foci. The conic equation is:

r =
p

1 + e cos ν
(4.16)

Figure 4.6: Conic section representation

Where r is the distance from the focus, p is the semilatus rectum, e is the eccentricity and
ν is the true anomaly. The true anomaly is the angle between the direction of periapsis and the
point considered. The eccentricity is the measure of the orbit’s deviation from a perfect circle
(e = 0 for circular orbits). Four types of conic sections can be identified. Their characteristics
are listed in Table 4.1.
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Figure 4.7: Enter Caption

Table 4.1: Classification of conic orbits based on eccentricity and energy

Orbit Type Eccentricity e Specific Mechanical Energy E

Circular e = 0 E < 0

Elliptical 0 < e < 1 E < 0

Parabolic e = 1 E = 0

Hyperbolic e > 1 E > 0

A conic section is defined as the locus of points for which the distance from the focus is
proportional to the perpendicular distance from the directrix. This proportionality is expressed
by the eccentricity, which can be written as:

e =
c

a
=

ra − rp
ra + rp

(4.17)

Where c is the distance between the focus and the centre of the conic section, ra is the distance
between the focus and the apoapsis, and rp is the distance between the focus and the periapsis.
The semi-major axis is given by:

a =
rp + ra

2
(4.18)

The semilatus rectum can be expressed as:

p = a(1− e2) (4.19)

By comparing Equation 4.16 and Equation 4.15, the specific mechanical energy can also be
expressed as:

E = − µ

2a
(4.20)

4.4 Cosmic velocities
The characteristic velocities can be derived from the conservation of mechanical energy, which
is defined in Equation 4.13 and Equation 4.20.
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Circular velocity

The circular velocity is the value that allows a satellite to orbit the central body in a circular
orbit. In a circular orbit, the distance of the satellite from the focus is constant and equals to
the radius of the circumference, thus r = a. Under these conditions, the circular velocity can
be derived as:

v2c
2

− µ

r
= − µ

2r
→ vc =

√
µ

r
(4.21)

Escape velocity

The escape velocity is defined as the minimum velocity required for a satellite to escape the
gravitational influence of the central body it is orbiting. That is the velocity necessary to tran-
sition the satellite from a bound orbit to an open trajectory (a → ∞, v∞ → 0). Under these
conditions, the escape velocity is given by:

v2e
2

− µ

r
=

v2∞
2

− µ

r∞
= 0 → ve =

√
2µ

r
=

√
2vc (4.22)

Hyperbolic excess velocity

The hyperbolic excess velocity is the residual velocity that a satellite retains after performing
an escape maneuver and following a hyperbolic trajectory (r → ∞). It represents the satellite’s
velocity relative to the central body when it is at an infinite distance, where the gravitational
influence of the body becomes negligible. It can be derived as:

− µ

2a
=

v2∞
2

− µ

r
=

v2∞
2

→ v∞ =

√
−µ

a
(4.23)

4.5 Equations of Dynamic
The equations of motion are derived from the two-body problem and are given by:

dr
dt

= V (4.24)

dV
dt

= g +
T

m
+

D

m
+

L

m
(4.25)

dm
dt

= −T

c
(4.26)

Where V is the velocity, T is the thrust, D and L are the aerodynamic forces, and m is the
mass. The aerodynamic forces are considered only in cases where an atmosphere is present.
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4.6 Orbital Parameters

Figure 4.8: Orbital elements

Table 4.2: Classical orbital elements

Symbol Name Definition

a Semi-major axis Half of the longest diameter of the ellipse; determines
the size of the orbit

e Eccentricity Measure of the orbit’s deviation from a perfect circle
(e = 0 for circular orbits)

i Inclination Angle between the orbital plane and the reference
plane

Ω

Right Ascension of the As-
cending Node (RAAN)

Angle from the reference direction (usually the vernal
equinox) to the ascending node

ω Argument of periapsis Angle between the ascending node and the periapsis,
measured in the orbital plane

ν True anomaly Angle between the direction of periapsis and the cur-
rent position of the body along its orbit

Orbital elements, or Keplerian orbital parameters, are a set of values that determine the position
of a body in space as it moves along a specific orbit. A minimum of six elements is required to
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uniquely define the position in time. These parameters are defined with respect to the perifocal
reference frame, as introduced in subsection 4.1.2. The classical orbital elements are listed in
Table 4.2 and illustrated in Figure 4.8.

The semi-major axis a and the eccentricity e define the size and shape of the orbit. The
inclination i, the RAAN Ω, and the argument of periapsis ω define the orientation of the or-
bit with respect to the reference frame. The true anomaly ν specifies the position of the body
along the orbit. Under the assumptions of the two-body problem, where orbital perturbations
are neglected, all the elements, except for the true anomaly, remain constant over time.
Although classical orbital elements are widely used, they may exhibit singularities when ap-
plied to certain types of orbits. In particular, singularities occur in the following cases:

• When the orbit lies on the fundamental plane the line of nodes cannot be defined, conse-
quently the RAAN becomes undefined;

• When the orbit is circular, i.e., the eccentricity is zero e = 0, the line of apsides is not
defined; the argument of periapsis becomes undefined;

• When both i = 0 and e = 0, the Ω, ω and ν are not distinguishable. In this case they can
be combined to obtain the true longitude.

For this thesis the set or orbital elements employed in the code is:

• semi-major axis a;

• eccentricity e;

• argument of periapsis plus RAAN Ω + ω;

• time of passage from the periapsis tp;

• inclination i;

• RAAN Ω.

While the asteroids are presented with a set of orbital parameters which are:

• semi-major axis a;

• eccentricity e;

• inclination i;

• argument of periapsis ω;

• RAAN Ω;

• mean anomaly M .

The mean anomaly M is defined as the angle measured between the direction of the periapsis
and the position of a fictitious body moving along a circular orbit (with the same semi-major
axis as the true orbit) reached in the same time as the body on the true elliptical orbit. The mean
anomaly can be calculated as:

M = n(t− τ) = E − e · sinE (4.27)

Where E is the eccentric anomaly, n =
√
µ/a3 is the mean motion, t is the time, and τ is time

of periapsis passage.
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4.7 Interplanetary Missions: Patch Conics

Figure 4.9: Patch conics diagram

An interplanetary mission is a transfer between two celestial bodies. The analysis of this prob-
lem requires accounting for gravitational influence of the three bodies involved: the departure
body, the arrival body, and the spacecraft. This configuration makes the analysis of this type of
problem complex. In order to simplify the study, it is possible to utilize the patch conics method
to obtain a preliminary solution. This approach allows to divide the trajectory into three phases
according to the sphere in which the spacecraft is located. A gravitational sphere of influence
is a region of space where the error committed by neglecting the gravitational force of the Sun
is smaller compared with neglecting the gravitational force exerted by the local body. This
implies that inside a sphere of influence it is possible to neglect the gravitational forces exert by
external celestial bodies. Following this reasoning, the interplanetary trajectory can be divided
into three phases, illustrated in Figure 4.9:

• Escape from the departure body: the spacecraft follows a hyperbolic escape trajectory;

• Heliocentric phase: the spacecraft follows a interplanetary transfer trajectory between
the departure and arrival bodies;

• Arrival at the arrival planet: the spacecraft approaches the arrival body on a hyperbolic
trajectory.

This thesis focuses on the study of the trajectory during the heliocentric phase, considering
the two-body problem of the spacecraft orbiting the Sun. The spacecraft departs from Earth
and arrives at the designated asteroid.
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Chapter 5

Solar Sail Equations

In this chapter, the equations of motion previously introduced in their general form will be
derived for the specific case of a solar sail propelled spacecraft.

5.1 Motion Equations of the Sail
The equations of motion for the solar sail are derived by substituting the solar sail acceleration
terms into the dynamic equations formulated for the two-body problem (Equation 4.24 ÷ 4.26)
in the previous chapter. When using solar sailing, the thrust is entirely generated by the interac-
tion of the solar radiation pressure with the sail surface. As a result, the thrust term T , typically
associated with chemical or electric propulsion systems, is equal to zero. Additionally, since
no propellant is consumed, the time variation of the spacecraft’s mass is also equal to zero.
Finally, as the considered mission is an interplanetary trajectory, aerodynamic forces can be
neglected due to the absence of a significant atmosphere.
As introduced in chapter 1, solar sailing is a propulsion method that exploits the momentum
transfer from solar radiation to produce thrust. When considering the two-body problem dy-
namic, solar radiation pressure is, usually, treated as a perturbing force. To model the motion of
a solar sail propelled spacecraft, the acceleration produced by this force must be incorporated
into the general two-body problem equation 4.12. The resulting formula is:

r̈ = − µ

r3
r + ap (5.1)

Where ap is the acceleration exerted by solar pressure, and it is given by:

ap = p
S

m
(5.2)

Where p is the solar radiation pressure at a distance of 1 AU from the Sun, which is equal to
p1 = 4.55682N/km2, S is the surface area exposed to the radiation, and m is the mass of the
spacecraft. The new set of motion equations is given by:

dr
dt

= V (5.3)

dV
dt

= g + ap (5.4)

dm
dt

= 0 (5.5)
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5.2 Solar sail orientation angles
In order to analyze how the acceleration induced by the solar radiation pressure contributes
to the thrust in the three-dimensional space, it is necessary to define the orientation angles of
the sail. The sail under consideration is assumed to be flat and its position can be described
with two angles. These angle are defined with respect to the Ecliptic Plane, as illustrated in
Figure 5.1:

Figure 5.1: Solar sail orientation angles

• The cone angle α is defined as the angle between the normal to the sail and the direction
of the Sun.

• The clock angle δ is the angle between the plane defined by the position vector and the
normal to the sail and the reference plane of the Ecliptic.

The angles are considered positive when rotated in accordance with the Earth’s motion on the
Ecliptic Plane, which is counterclockwise. The admissible values of α and δ range from −π/2
to π/2.

5.3 Optical properties of the sail
A solar sail consists of a large reflective surface of light material. When solar radiation interacts
with the sail, it generates thrust as a result of momentum transfer. The magnitude and direction
of the generated thrust strongly depend on the sail’s optical properties and the characteristics
of the incident radiation flux. The incident momentum flux, associated with the radiation, is
defined as the power flux divided by the speed of light, and is usually referred to as solar
radiation pressure. When the incident radiation encounters the sail surface, the energy carried
by the radiation is conserved and distributed among three components: a portion is transmitted
through the sail, another is absorbed and re-emitted from both sides and the remaining part is
reflected.
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Figure 5.2: Radiation components on the sail

The distribution of the energy of the incident radiation among the transmitted, absorbed,
and reflected components is defined by three optical properties of the sail material: transmit-
tance τ , absorptance αrad and reflectance ρ. Assuming energy conservation, the sum of these
coefficients must equal 1:

τ + αrad + ρ = 1 (5.6)

The reflected radiation can be further divided into three components: specular reflection, back-
ward reflection, and diffuse reflection. Each component is reflected according to a coefficient:
ρs for specular reflectance, ρb for backward reflectance and ρd for diffuse reflectance, such that
ρs + ρb + ρd = ρ. The portion of energy flux absorbed by the sail, αp, is re-emitted in accor-
dance with the emittance coefficients on the front (εf ) and back (εb) surfaces of the sail. The
thrust acting on the sail is generated by the variation in momentum caused by the radiation.
The momentum transfer responsible for the thrust generation is calculated as the vector dif-
ference between the incident and emitted momentum fluxes. The transmitted portion of the
incident flux, which is τp, results in zero net contribution to the force, as the momentum car-
ried by the incoming and outgoing fluxes is equal. The remaining portion of the incident flux,
composed of the absorbed and reflected components, is intercepted by the sail and exerts a
radiation pressure equal to (αrad + ρ)p in the direction of the incident light. The energy col-
lected by the sail, as previously discussed, is either reflected or absorbed and then re-emitted by
the sail, resulting in an additional contribution to the thrust, directed in the opposite direction.
The back-reflected radiation produces a pressure force of magnitude ρbp in the direction of the
incident radiation. The specular reflection is rotated by an angle of 2α with respect to the sail-
sun direction and the corresponding pressure on the sail ρsp is rotated by the same angle away
from the Sun-sail direction. For the diffuse component, the radiation pattern is assumed to be
Lambertian, meaning the emitted flux is proportional to the cosine of the angle away from the
surface normal. The resulting net radiation pressure force is equal to two-thirds ([67]) of the
total diffuse reflected flux, i.e., ρdp, and it is directed along the sail normal. The same reason-
ing applies to the emitted component. In the most general case, the energy re-emitted from the
front and rear sides of the sail is not equal. Assuming a Lambertian emission pattern, the net
force along the normal to the front side of the sail is given by 2

3
εαp, where ε is defined as:

ε =
εb − εf
εb + εf

(5.7)
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The different contributes are represented in Figure 5.2. The net pressure exerted by the solar
radiation on the sail can be divided into a component normal to the sail, given by:

pn = p[(ρ+ αrad + ρb + ρs) cos(α) +
2

3
(ρd − εαrad)] (5.8)

and a component tangential to the sail surface, given by:

pt = p(ρ+ αrad + ρb + ρs) sin(α) (5.9)

As illustrated in Figure 5.2. With the aim of simplifying Equations 5.8 and 5.9, three new
coefficients are introduced:

ω = ρ+ αrad + ρb η =
ρs
ω

δrad =
2

3

ρd − ϵαrad

ω
(5.10)

These terms allow the equations to be rewritten in the form:

pn = ωp [(1 + η) cos(α) + δrad] (5.11)
pt = ωp(1− η) sin(α) (5.12)

The forces exerted on the sail by the solar pressure are defined in the local reference frame as:

Fu = Fn (5.13)
Fv = Ft cos(δ) (5.14)
Fw = Ft sin(δ) (5.15)

Where Fr and Ft represent the forces acting in the normal and tangential directions. When the
normal to the sail is rotated by an angle α with respect to the Sun-sail direction, the surface area
of the sail exposed to the radiation is reduced and becomes equal to A cosα. Thus, the forces
are expressed as:

Fn = A cos(α)pn Fn = A cos(α)pt (5.16)

By applying the fundamental law of dynamics, F = ma, the accelerations in the local frame
are given by:

au =
A

m
cos(α) (pn cos(α) + pt sin(α)) (5.17)

av =
A

m
cos(α) cos(δ) (pn sin(α)− pt cos(α)) (5.18)

aw =
A

m
cos(α) sin(δ) (pn sin(α)− pt cos(α)) (5.19)

Where m is the total mass of the spacecraft.
The characteristic acceleration of the sail is defined as the acceleration produced when a per-
fectly reflective sail is oriented normal to the direction of sunlight, i.e., α = 0, at a distance of 1
AU from the Sun. A perfectly reflective sail is characterized by the following optical properties:
αrad = τ = 0, ρs = ρ = 1. The characteristic acceleration is expressed as:

ac =
2p1A

m
(5.20)

By rearranging the terms and by substituting the definition of characteristic acceleration, the
sail accelerations in their adimensional form are given by:

au = ω
ac
2r2

cos(α) (1 + η cos(2α) + δrad cos(α)) (5.21)

av = ω
ac
2r2

cos(α) cos(δ) (η sin(2α) + δrad sin(α)) (5.22)

aw = ω
ac
2r2

cos(α) sin(δ) (η sin(2α) + δrad sin(α)) (5.23)
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5.4 Non-dimensionalization Parameters
The problem variables are non-dimensionalised using reference values based on Earth’s char-
acteristics. Distances are scaled with respect to the Earth’s average distance from the Sun, i.e.,
the astronomical unit (AU):

rconv = r⊕ = 1.49597870691 · 108 km (5.24)

Velocities are scaled with respect to the Earth’s mean orbital velocity, or circular velocity,
around the Sun:

vconv = v⊕ =

√
µ⊙

r⊕
=

√
1.32712440018 · 1011 km3/s2

1.49597870691 · 108km
= 29.58 km/s (5.25)

Accelerations are scaled with respect to the Sun’s gravitational acceleration at 1 AU, which is
the centripetal acceleration corresponding to Earth’s circular motion:

aconv = a⊕ =
µ⊙

r2⊕
=

1.32712440018 · 1011 km3/s2

(1.49597870691 · 108 km)2
= 5.93 · 10−6 km/s2 (5.26)

Finally, time is non-dimensionalized with respect to the sidereal year, defined as the time re-
quired for Earth to complete a full orbit around the Sun relative to the fixed stars:

tconv =
vconv

aconv · 86400
=

365 days

2π
= 58.13244088 days (5.27)

The time is measured starting from J2000.

5.5 Dimensionless form of the motion equations
The motion equations in dimensionless and extended form are:

dr

dt
= u (5.28)

dϑ

dt
=

v

r

1

cosφ
(5.29)

dφ

dt
=

w

r
(5.30)

du

dt
= − 1

r2
+

v2

r
+

w2

r
+ au (5.31)

dv

dt
= −uv

r
+

vw

r
tanφ+ av (5.32)

dw

dt
= −uw

r
− v2

r
tanφ+ aw (5.33)

dm

dt
= 0 (5.34)

The dimensionless form of the sail accelerations, previously presented in Equations (5.21),
(5.22), and (5.23), is derived by applying the non-dimensional definition of the characteris-
tic acceleration and by substituting the normal (Equation 5.8) and tangential (Equation 5.9)
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components of the radiation pressure, as explained in Appendix A:

au = ω
ac
2r2

cos(α) (1 + η cos(2α) + δrad cos(α)) (5.35)

av = ω
ac
2r2

cos(α) cos(δ) (η sin(2α) + δrad sin(α)) (5.36)

aw = ω
ac
2r2

cos(α) sin(δ) (η sin(2α) + δrad sin(α)) (5.37)

By substituting the dimensionless form of the accelerations into the equations of motion, the
following expressions are obtained:

dr

dt
= u (5.38)

dϑ

dt
=

v

r

1

cosφ
(5.39)

dφ

dt
=

w

r
(5.40)

du

dt
=

ac
2r2

cos(α)(1 + η cos(2α) + δrad cos(α))−
1

r2
+

v2

r
+

w2

r
(5.41)

dv

dt
=

ac
2r2

cos(α) cos(δ)(η sin(2α) + δrad sin(α))−
uv

r
+

vw

r
tanφ (5.42)

dw

dt
=

ac
2r2

cos(α) sin(δ)(η sin(2α) + δrad sin(α))−
uw

r
− v2

r
tanφ (5.43)

dm

dt
= 0 (5.44)

The analysis is carried out by considering the simplified case with ω = 1 and δrad = 0. The
simplified motion equations are given by:

dr

dt
= u (5.45)

dϑ

dt
=

v

r

1

cosφ
(5.46)

dφ

dt
=

w

r
(5.47)

du

dt
=

ac
2r2

cos(α)(1 + η cos(2α))− 1

r2
+

v2

r
+

w2

r
(5.48)

dv

dt
=

ac
2r2

cos(α) cos(δ)(η sin(2α))− uv

r
+

vw

r
tanφ (5.49)

dw

dt
=

ac
2r2

cos(α) sin(δ)(η sin(2α))− uw

r
− v2

r
tanφ (5.50)

dm

dt
= 0 (5.51)

5.6 Trajectory Optimization
Trajectory optimization is performed using optimal control theory, as described in chapter 3. In
this case, the objective of the optimization procedure is to minimize the trip time of the mission.
The problem is reformulated as a maximization problem by introducing a new time-related
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performance index ϕ = −tf . According to Pontryagin’s Maximum Principle, the control value
that optimizes the trajectory at each point is the one that maximizes the Hamiltonian H . The
Hamiltonian was previously defined in Equation 3.11. An adjoint variable is associated with
each state variable and the Hamiltonian is rewritten for the problem as:

H = λru+ λφ
w

r
+

λu

r
(−1

r
+ v2 + w2) +

λv

r
(−uv + vw tan(φ))+

+
λw

r
(−uw − v2 tan(φ)) + λϑ

v

r cos(φ)
+ λuau + λvav + λwaw (5.52)

The acceleration terms are the ones that include the control variables α and δ. The terms λu,
λv and λw are the adjoint variables to the velocity components in the radial direction, eastward,
and northern direction, respectively. These are the components of the primer vector λV , which
is the adjoint variable associated with the spacecraft’s velocity vector V . Finding the maximum
value of Equation 5.52 with respect to the control variables is equivalent to maximizing the dot
product λV · a between the primer vector and the sail acceleration. The differential equations
for the adjoint variables, in the simplified case ω = 1 and δrad = 0, are obtained from the
Euler-Lagrange Equation (3.12), defined in chapter 3:

dλr

dt
= −∂H

∂r
=

(
λϑv

r cosφ
+ λφ

w

r
− λu

(
2

r2
− v2

r
− w2

r

)
− λv

(uv
r

− vw

r
tanφ

)
(5.53)

−λw

(
uw

r
+

v2

r
tanφ

))
1

r
+ 2

λuau + λvav + λwaw
r

dλϑ

dt
= −∂H

∂ϑ
= 0 (5.54)

dλφ

dt
= −∂H

∂φ
=

v

(cosφ)2

(
λw

v

r
− λv

w

r
− λϑ

r
sinφ

)
(5.55)

dλu

dt
= −∂H

∂u
= λu

v

r
+ λv

w

r
− λr (5.56)

dλv

dt
= −∂H

∂v
= λv

(u
r
− w

r
tanφ

)
− 2v

r
(λu − λw tanφ)− λϑ

r cosφ
(5.57)

dλw

dt
= −∂H

∂w
= λw

u

r
− λφ

r
− 2λu

w

r
− λv

v

r
tanφ (5.58)

dλm

dt
= −∂H

∂m
= 0 (5.59)

The application of optimal control theory leads to a BVP involving the state and adjoint vari-
ables. As previously discussed in chapter 3, this BVP is solved using a numerical approach
based on Newton’s method.
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5.7 Optimal Control Law

Figure 5.3: Definition of γ and β angles

In order to characterize the orientation of the adjoint variables to the velocity vector, two angles
are introduced, as illustrated in Figure 5.3. The angle γ is defined as the angle between the
vectors λw and λv and is given by:

γ = atan2(λw, λv) (5.60)

The angle β is defined as the angle between the primer vector λV and the normal direction to
the sail n and is given by:

β = atan2(
√

λ2
v + λ2

w, λu) (5.61)

The admissible values of β range from −π to π. Both angles are considered positive when
measured counterclockwise, in accordance with the direction of Earth’s motion on the Ecliptic
Plane. This convention is consistent with that adopted for the definition of the control angles
of the sail α and δ. The angles are defined such that the components of the primer vector can
be expressed as follows:

λu = λV cos(β) (5.62)
λv = λV sin(β) cos(γ) (5.63)
λw = λV sin(β) sin(γ) (5.64)

By adopting the new definition for the components of the primer vector, given in Equations
5.62, 5.63 and 5.64, and by considering the simplified case with ω = 1 and δrad = 0, the
Hamiltonian can be reformulated as:

H = λru+ λφ
w

r
+ λϑ

v

r cos(φ)
+

λu

r
(−1

r
+ v2 + w2) +

λv

r
(−uv + vw tan(φ))+

+
λw

r
(−uw − v2 tan(φ)) + λV

ac
2r2

H ′ (5.65)

Where H ′ is defined as:

H ′ = cos(α)[cos(β)(1 + η cos(2α)) + cos(δ) sin(β) cos(γ)η sin(2α)+

+ sin(δ) sin(β) sin(γ)η sin(2α)] (5.66)
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It is important to note that H ′(α, δ, β, γ) = H ′(−α,−δ,−β,−γ), therefore the analysis is car-
ried out assuming positive values of β, but the extension to negative angles is straightforward.
Since H ′ contains all the terms involving the control variables, the maximization of the Hamil-
tonian H with respect to these variables is equivalent to maximizing the simpler function H ′.
The local maxima of H ′ are found by setting its partial derivatives with respect to the con-
trol angles, α and δ, equal to zero. This procedure is detailed in Appendix B and leads to the
following expression:

sin(β − 2α) =

1−η
η

cos(β) tan(α) + sin(β)

3
(5.67)

By isolating α in Equation 5.67, the expression for α can be derived:

α =
1

2
[β − sin−1((

1− η

3η
) cos(β) tan(α)) +

sin(β)

3
)] (5.68)

In the simplified case of unit reflectivity (i.e. η = 1, δrad = 0), the expression assumes a
significant form:

α =
1

2
[β − sin−1(

sin(β)

3
)] (5.69)

This corresponds to the global maximum of the Hamiltonian. In the other cases. Equation 5.67
can be numerically solved using Newton’s method, as described in chapter 3, using the value
of Equation 5.69 as the starting point.

5.8 Boundary Conditions
The boundary conditions complete the BVP definition. The total number of boundary condi-
tions must be equal to the dimension of the problem, which is 17 [section 6.1] for a single-phase
mission. As introduced in chapter 3, these conditions can be either explicit or implicit. Explicit
boundary conditions are directly specified, while implicit boundary conditions are evaluated
through associated error functions. A solution is considered valid when all errors associated
with the implicit boundary conditions are below a tolerance value, set to 10−6.
The explicit boundary conditions are related to the mass. The first condition is imposed on the
adjoint variable associated with the mass, which is set to one:

λm0 = 1 (5.70)

The second one on the initial mass:
m0 = minital (5.71)

At the departure (t0) and arrival (tf ) times, boundary conditions are imposed on the position
vector r = [r, ϑ, φ] and the velocity vector V = [u, v, w], requiring that these variables match
the corresponding values of the departure and arrival bodies, respectively:

r(t0) = r⊕(t0) (5.72)
V (t0) = V ⊕(t0) (5.73)
r(tf ) = rAsteroid(tf ) (5.74)
V (tf ) = V Asteroid(tf ) (5.75)

(5.76)
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The corresponding errors associated with these boundary conditions are defined as follows:

err1 = r0 − r⊕ (5.77)
err2 = ϑ0 − ϑ⊕ (5.78)
err3 = φ0 − φ⊕ (5.79)

err4 = u0 − u⊕ − λu

λV

V∞ (5.80)

err5 = v0 − v⊕ − λv

λV

V∞ (5.81)

err6 = w0 − w⊕ − λw

λV

V∞ (5.82)

err7 = rf − r⊕ (5.83)
err8 = ϑf − ϑ⊕ (5.84)
err9 = φf − φ⊕ (5.85)
err10 = uf − u⊕ (5.86)
err11 = vf − v⊕ (5.87)
err12 = wf − w⊕ (5.88)

(5.89)

A boundary condition is also imposed on the initial time, which must be equal to the assigned
departure time:

err13 = t0assigned − t0 (5.90)

(5.91)

The spacecraft leaves the Earth with zero hyperbolic excess velocity (v∞ = 0). Therefore a
condition is set for this quantity:

err15 =
V∞

Vconv
− V∞ (5.92)

Finally, the transversality condition, Hf = 1, defines an additional relation between the state
variables, the adjoint variables, and the time. This condition arises from the application of the
Pontryagin Maximum Principle and is necessary to fully specify the system of equations. The
corresponding error is given by:

err14 = 1−Hf (5.93)
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Chapter 6

Implementation of the Indirect Iterative
Method

The indirect iterative method used for trajectory optimization is implemented in a FORTRAN
code that will be briefly presented in this chapter. The code takes as inputs various data, includ-
ing iteration settings, sail characteristics, the orbital elements of the departure and arrival bodies
and the initial trial solution. The output consists of the errors on the boundary conditions, the
arrival time and the final values of the parameters.

6.1 Vectors
The code employs different vectors to manage the variables involved in the optimization prob-
lem. The dimension of the problem, given by N=17 , can be determined in two equivalent ways:
by summing the number of unknown terms K and the known variable λm, or by summing the
number of problem variables NY =13 and the number of constant parameters KP=4:

N = K + 1 = NY +KP (6.1)

The values of these terms are contained in two vectors:

• S, which contains the problem variables;

• KP , which contains the problem constants.

These vectors are defined as follows:

S = [r, ϑ, φ, u, v, w, λr, λφ, λu, λv, λw,m, λm] (6.2)

KP = [t0, tf , λϑ, V∞0 ] (6.3)

6.2 Code
This section briefly describes the functioning of the code that implements the indirect method
for trajectory optimization.
The user is prompted to enter the values of three parameters required to perform the iteration:
rmin, pbis and jmax. These values were defined in chapter 3, during the explanation of
the numerical method used to solve the problem. The variable rmin represents the iteration
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step ∆p; pbis is the multiplier K2 introduced to prevent the iteration from diverging; and
jmax defines the maximum number of iterations allowed. The values for rmin typically
range between 0.0001 and 0.1. This parameter is initially set to 0.1; if convergence is not
achieved, the value can be reduced accordingly. The value of pbis is set to 2, in accordance
with the value assigned in chapter 3. The maximum number of iterations is set in the range of
2000 to 5000, ensuring a sufficient number of steps to reach convergence, without increasing
the computational time. After defining the iteration parameters, the user must select the initial
time t0, and the sail parameters: characteristic acceleration acc and η eta. The values are
automatically set to t0=169, acc=0.5 and eta=1, and can be modified manually. The trial
solution is stored in an external file, which can be manually edited. This document contains:

• The number of phases considered for the mission, in this case only one;

• The values of the constant parameters: initial time t0, final time tf, and λϑ;

• The unknown problem variables: [v∞0 , r0, ϑ0, φ0, u0, v0, w0, λr0 , λφ0 , λu0 , λv0 , λw0 ,m0].

After the trial solution is read, the user selects the departure and arrival bodies and their orbital
parameters are retrieved. The orbital parameters for Earth are in the format: semi-major axis
a, eccentricity e, inclination i, argument of periapsis ω, RAAN Ω and mean anomaly M . The
angles are given in degrees. Since the orbital elements provided for asteroids are in a different
format, they must be reprocessed to be consistent with the others. The boundary conditions are
declared according to the formulas given in section 5.8. Once all the information are inserted,
the numerical computation begins. The output consists of a number that indicates the result of
the process (-4 when convergence is reached), the duration in non-dimensional time, the dura-
tion in days and the dates in the format day/month/year of the departure and arrival time. Data
on the trajectory are provided in external files, which contain the time evolution of the problem
variables, the control angles, α and β, and the orbital parameters. A flow chart of the process
is illustrated in Figure 6.1.
The numerical solution is explored for different scenarios by progressively updating the bound-
ary conditions as needed.
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Figure 6.1: Flow Chart
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Chapter 7

Results

In this chapter, the numerical results obtained with the indirect mathematical method are dis-
cussed. As anticipated in chapter 5, the trajectory optimization problem for a solar sail pro-
pelled spacecraft consists of minimizing the trip time of the mission.

The analysis is influenced by the three input parameters: departure time, characteristic ac-
celeration, and η. The impact of each parameter on the mission duration is investigated. The
analysis is repeated for the different asteroids presented in section 2.5.

7.1 2000 SG344

7.1.1 Effect of the variation of departure time on the solution

Table 7.1: Numerical results for departure times spaced one year apart, with fixed ac and η

Departure
time [adim]

acc
[mm/s2]

η
Trip

time [adim]
Trip

time [days]
θ0

[rad]
∆θ
[rad]

169 0.05 1 22.8071970260806 1325.83803246170 1.0766 16.8642

175 0.05 1 22.3097187815600 1296.91840782947 0.7871 16.6362

181 0.05 1 21.7962797288754 1267.07094246044 0.4999 16.3850

187 0.05 1 21.2810852201463 1237.12142814672 0.2153 16.1025

193 0.05 1 20.7884535311409 1208.48354561639 6.2165 15.7979

199 0.05 1 20.3303568829652 1181.85326930492 5.9371 15.4849

205 0.05 1 19.8967432817405 1156.64625227257 5.6599 15.1701

211 0.05 1 19.4601612635067 1131.26667391398 5.3843 14.8453

217 0.05 1 18.9796227172887 1103.33179529163 5.1099 14.4908

223 0.05 1 18.4075054487068 1070.07322200678 4.8359 14.0847

229 0.05 1 17.7303327079503 1030.70751769797 4.5610 13.6356

235 0.05 1 17.0566791840664 991.546394055919 4.2865 13.2286
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To investigate the relationship between departure time and transfer duration, the solution is
searched starting from departure time 169, which corresponds to the 24/11/2026, while main-
taining characteristic acceleration and η constant (ac = 0.05 mm/s2, η = 1). From this
starting point, the transfer duration is searched multiple times by increasing the departure date
by one year each time. Numerical results are displayed in Table 7.1.

The numerical results show a progressive decrease in the transfer duration. Upon further
analysis, the minimum trip time is reached for a departure time of 352, corresponding to 7
March 2056. However, this date is considered too far in the future for the current mission
scenario. Therefore, the analysis focuses on departure times between 199 (3 September 2031)
and 229 (12 June 2036). To complete the study, additional results are computed at shorter
intervals within this range. Numerical results are presented in Table 7.2, with the shortest trip
times for each year emphasized in bold for clarity.

Results from Table 7.2 are summarized in Figure 7.1. The graph shows a sinusoidal trend
in transfer duration, which tends to decrease over time. This behaviour can be attributed to the
variation in the phase angle between the departure body (Earth) and the arrival body (asteroid).
The phase angle is defined as the angle between the arrival and the departure bodies at the
moment of launch. This angle governs the relative positioning of the celestial bodies and is di-
rectly related to the trajectory length and, consequently, to the transfer duration. Evaluating the
effects of this parameter is of fundamental importance to properly program an interplanetary
mission. Anticipating the departure makes it necessary for the spacecraft to rotate slower in
order to achieve the correct phasing for the rendezvous. This is accomplished by increasing the
semi-major axis, placing the spacecraft on a higher trajectory where its orbital speed is lower.
The more the semi-major axis needs to be increased, the more orbits are required to insert the
spacecraft into the correct trajectory, early departure times require a higher ∆θ, progressively
increasing the mission duration. This phenomenon can be also observed in the trajectory plots
of the missions presented for asteroid 2000 SG344. The sinusoidal trend is also a consequence
of the variation of the phase angle, each year it can be observed a maximum value and a mini-
mum value for the trip time, where the conditions for beginning of the mission are respectively
the worst and the best.

Figure 7.1: Numerical results for mission from 199 to 299
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Table 7.2: Detailed mission data from day 199 to 229 with fixed acceleration and η

Departure
time [adim]

acc
[mm/s2]

η
Trip

time [adim]
Trip

time [days]
θ0

[rad]
∆θ
[rad]

199 0.05 1 20.3303568829652 1181.85326930492 5.9371 15.4849

200 0.05 1 20.0417320614891 1165.07480393769 0.7871 16.6362

201 0.05 1 19.8811932776096 1155.74229257695 0.4999 16.3850

202 0.05 1 19.9505390870986 1159.77353374645 0.2153 16.1025

203 0.05 1 20.2675163508686 1178.20019578876 6.2165 15.7979

204 0.05 1 20.2017315125360 1174.37596256444 5.9371 15.4849

205 0.05 1 19.8967425508128 1156.64620978197 5.6599 15.1701

206 0.05 1 19.5587358614379 1136.99705589921 1.6784 15.0836

207 0.05 1 19.3235148744581 1123.32308578292 2.7084 15.0360

208 0.05 1 19.2515641086020 1119.14041214145 3.7137 15.2833

209 0.05 1 19.5192441856680 1134.70130839278 4.6904 15.3227

210 0.05 1 19.6805623225524 1144.07912544599 5.6599 15.1701

211 0.05 1 19.4601611277152 1131.26666602009 5.3843 14.8453

212 0.05 1 19.1121183018841 1111.03408702827 1.3858 14.7572

213 0.05 1 18.8146590875785 1093.74205684229 2.4182 14.6234

214 0.05 1 18.6694238151141 1085.29917595394 3.4323 14.7682

215 0.05 1 18.7156317355361 1087.98535515546 4.4157 14.9379

216 0.05 1 19.0302842353931 1106.27687299707 5.3843 14.8453

217 0.05 1 18.9796208785654 1103.33168840216 5.1099 14.4908

218 0.05 1 18.6767007838427 1085.72220390825 1.0944 14.4299

219 0.05 1 18.3494184030204 1066.69648025827 2.1265 14.2919

220 0.05 1 18.1415276091142 1054.61128097471 3.1483 14.2526

221 0.05 1 18.0890826254074 1051.56252606061 4.1398 14.4781

223 0.05 1 18.4075031177109 1070.07308650030 4.8359 14.0847

224 0.05 1 18.2164794208666 1058.96841273929 6.0851 14.3145

225 0.05 1 17.9064283279826 1040.94438591645 0.8048 14.1065

226 0.05 1 17.6557249370665 1026.37038586885 1.8338 13.9680

227 0.05 1 17.5511532808677 1020.29138024850 2.8616 13.8934

228 0.05 1 17.5720441008606 1021.50581460641 4.8359 14.0847

229 0.05 1 17.7303421715814 1030.70806784195 4.5610 13.6356
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In the considered time interval for the departure of the mission the best option is to start
the mission on 17 February 2036, which corresponds to 277. In this case, the trip time wold
be around 1020 days, guaranteeing the arrival on the asteroid for the 3 December 2038. This
mission would last almost 3 years. The same condition will occur again after a synodic period
has passed. A synodic period is the time interval it passes before the departure and arrival
bodies find each other in the same relative position. It can be calculated as:

τ =
2π

|ω⊕ − ωasteroid|
ω =

√
1

a3
(7.1)

For Earth and asteroid 2000 SG344 τ = 180.4113, measured in non-dimensional time.

7.2 Effect of the variation of the parameter η on the solution
The parameter η is defined in chapter 5 as a function of various optical properties of the sail:

η = f(ρs, ρ, αrad, ρb) (7.2)

In the simplified case considered for the formulation of the equations (i.e., ω = 1, δrad = 0), η
is equal to the specular reflectance coefficient ρs. This index can therefore be interpreted as an
efficiency parameter for the reflectivity of the sail. To assess the influence of η on the solution, a
set of simulations is carried out by varying η, while keeping the characteristic acceleration and
the departure time constant. The chosen departure time is the one that guarantees the minimum
trip time among the cases presented in the previous paragraph, i.e., 227. The characteristic
acceleration is kept equal to the trial value of 0.05. Numerical results for cases with η ranging
from 1 to 0.5 are presented in Table 7.3. For improved visualization, the non-dimensional trip
time is plotted as a function of η in Figure 7.2.
From the numerical results, it is clear that a decrease in the parameter η, representing the spec-
ular reflectance coefficient of the sail, leads to an increase in the trip duration. This outcome is
intuitive, as a lower reflectivity results in a reduced momentum variation and, consequently, a
lower thrust magnitude.

Figure 7.2: Effect of η on trip time
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Table 7.3: Numerical results for varying η with fixed departure time T0 = 227 and characteristic
acceleration a = 0.05

Departure
time [adim]

acc
[mm/s2]

η
Trip

time [adim]
Trip

time [days]
θ0

[rad]
∆θ
[rad]

227 0.05 1.00 17.5511532808677 1020.29138024850 2.5725 13.9531

227 0.05 0.95 17.9221872521943 1041.86049064631 2.5725 14.3728

227 0.05 0.90 18.3632406072880 1067.49999873051 2.5725 14.8758

227 0.05 0.85 18.9113339411759 1099.36200205237 2.5725 15.4841

227 0.05 0.80 19.5791779306165 1138.18540327694 2.5725 16.1252

227 0.05 0.75 20.2554504585470 1177.49877601686 2.5725 16.7506

227 0.05 0.70 20.8672551622712 1213.06447677829 2.5725 17.1224

227 0.05 0.67 21.2081008520473 1232.87866868399 2.5725 17.2471

227 0.05 0.66 21.3191019826440 1239.33143534458 4.6807 134.0930

A similar same trend is obtained observed when repeating the analysis for a departure time
of 169; the results are presented in section C.1.

7.3 Effect of the variation of the characteristic acceleration
on the solution

Table 7.4: Numerical results for varying characteristic acceleration with fixed departure time
t0 = 227 and η = 1

Departure
time [adim]

acc
[mm/s2]

η
Trip

time [adim]
Trip

time [days]
θ0

[rad]
∆θ
[rad]

227 0.070 1.00 15.2335506989224 885.563485200255 2.5725 10.9483

227 0.065 1.00 15.7325384740450 914.570862530950 2.5725 11.5251

227 0.060 1.00 16.2452113301237 944.373787021084 2.5725 12.1319

227 0.055 1.00 16.8244952207826 978.048973540042 2.5725 12.8025

227 0.050 1.00 17.5511532808677 1020.29138024850 2.5725 13.5831

227 0.045 1.00 18.5547523318785 1078.63304273561 2.5725 14.5502

227 0.040 1.00 20.0469031267203 1165.37541058147 2.5725 15.9229

227 0.035 1.00 21.4671057360376 1247.93525478683 2.5725 17.4157

227 0.030 1.00 22.8636829626912 1329.12169783154 2.5725 19.0489
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The same process is repeated for the characteristic acceleration. This parameter is defined in
chapter 5 by Equation 5.20 as a function of the sail area-to-mass ratio. In this case, the non-
dimensional departure time and η values are kept constant, while the characteristic acceleration
is varied. Numerical results are displayed in Table 7.4. The results displayed in the table are
summed in a graph for a better visualization, Figure 7.3.

Figure 7.3: Effect of ac on trip time

From the numerical results, it can be observed that the trip time decreases as the charac-
teristic acceleration increases. This behaviour is consistent with the definition of characteristic
acceleration, which depends on the area-to-mass ratio. A larger area enables the capture of
more light, providing a greater thrust magnitude. Conversely, a larger mass requires a propor-
tionally greater thrust to achieve the same characteristic acceleration.
The analysis is repeated for a departure time of 169. The numerical results are presented in sec-
tion C.2. This second analysis reveals the same trend in the results as observed for departure
time 227.

7.3.1 Trajectory Plots
In this section, the graphs for the trajectory are presented, along with the orbital parameters and
the angles of the missions of minimum trip time for each year, emphasized in Table 7.2.
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Mission departure time 201

Figure 7.4: Mission trajectory for departure time 201

Figure 7.5: Control angles for departure time
201

Figure 7.6: Semi-major axis, periapsis, apoap-
sis and δ variation in time for departure time
201
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Figure 7.7: Inclination variation in time for de-
parture time 201

Figure 7.8: Eccentricity variation in time for
departure time 201

Mission departure time 208

Figure 7.9: Mission trajectory for departure time 208
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Figure 7.10: Control angles for departure time
208

Figure 7.11: Semi-major axis, periapsis,
apoapsis and δ variation in time for departure
time 208

Figure 7.12: Inclination variation in time for
departure time 208

Figure 7.13: Eccentricity variation in time for
departure time 208
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Mission departure time 214

Figure 7.14: Mission trajectory for departure time 214

Figure 7.15: Control angles for departure time
214

Figure 7.16: Semi-major axis, periapsis,
apoapsis and δ variation in time for departure
time 214
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Figure 7.17: Inclination variation in time for
departure time 214

Figure 7.18: Eccentricity variation in time for
departure time 214

Mission departure time 221

Figure 7.19: Mission trajectory for departure time 221
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Figure 7.20: Control angles for departure time
221

Figure 7.21: Semi-major axis, periapsis,
apoapsis and δ variation in time for departure
time 221

Figure 7.22: Inclination variation in time for
departure time 221

Figure 7.23: Eccentricity variation in time for
departure time 221
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Mission departure time 227

Figure 7.24: Mission trajectory for departure time 227

Figure 7.25: Control angles for departure time
227

Figure 7.26: Semi-major axis, periapsis,
apoapsis and δ variation in time for departure
time 227
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Figure 7.27: Inclination variation in time for
departure time 227

Figure 7.28: Eccentricity variation in time for
departure time 227

Comment on the plots

The spacecraft departs from Earth and is directed toward the designated asteroid. To ren-
dezvous with the asteroid, the spacecraft needs to lower the periapsis rp and increase the
apoapsis ra. The Earth’s perihelion is rp⊕ = 0, 98329134AU and the asteroid perihelion is
rpa = 0.91199AU, while Earth’s aphelion is ra⊕ = 1, 01671388AU and the asteroid’s aphelion
is raa = 1.0429AU. The increase of the apoapsis is achieved by accelerating the sail. The
cone angle α shows a decreasing trend, approaching zero, which corresponds to the inclina-
tion that provides the maximum thrust. This allows an increase of the semi-major axis. An
increased semi-major axis allows the spacecraft to slow down the spacecraft and achieve the
correct phase angle for the rendezvous with the asteroid, as previously explained. In this phase
the clock angle δ is equal to zero. When the spacecraft reaches the appropriate position to com-
plete the rendezvous, the sail begins to decelerate, and the cone angle starts to increase again.
This manoeuvre allows decreasing the periapsis to the desired value. The semi-major axis de-
creases until it reaches the same value of the semi-major axis of the asteroid. The clock angle
δ, which remains at zero during the first phase, in the second phase becomes equal to ±180◦

indicating that the spacecraft is decelerating. Depending on whether the spacecraft is near the
ascending or descending node, the sign of δ changes to either +180◦ or −180◦, indicating a
change in the component of the thrust outside the ecliptic plane which is directed northward in
the first case and southward in the second. The behaviour of the periapsis and apoapsis shows
a general increase during the first part of the mission and a general decrease during the sec-
ond part, in line with the trend of the semi-major axis. However, neither the periapsis nor the
apoapsis increases or decreases consistently. This is due to changes in the shape of the orbit.
This variation can be observed in the eccentricity graph, which follows the same trend as the
apoapsis and the opposite trend of the periapsis. Regarding the inclination, an increasing trend
can be observed. This is justified by the difference between the inclination of the Earth’s and
asteroid’s orbits. Earth’s inclination is i⊕ = 0.001748◦ and asteroid’s is ia = 0.11220◦. The
plane change manoeuvre is performed around δ = ±90◦, which corresponds to the spacecraft
passing through the apoapsis, the point along the trajectory where the cost of the plane change
is minimized.
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7.4 2014 QN266
In this section numerical results for asteroid 2014 QN266 are presented. The same procedure
as the one adopted for asteroid 2000 SG344 is used. Different departure times are considered
beginning on 10 December 2025 and delaying the departure by one year each time. Numerical
results are presented in Table 7.5:

Table 7.5: Numerical results for departure times spaced one year apart, with fixed ac and η

Departure
time [adim]

acc
[mm/s2]

η
Trip

time [adim]
Trip

time [days]
θ0

[rad]
∆θ
[rad]

163 0.05 1 24.4623180803485 1422.05425927673 1.3679 17.3815

169 0.05 1 25.6988795875237 1493.93859797106 1.0766 18.0451

175 0.05 1 26.8506021934836 1560.89104425726 0.7871 18.6248

181 0.05 1 27.9398696773959 1624.21282185419 0.4999 19.1480

187 0.05 1 28.9846378079953 1684.94774342604 0.2153 19.6330

193 0.05 1 29.9975420919856 1743.83034181908 6.2166 20.0908

199 0.05 1 30.9873162540921 1801.36832976947 5.9371 20.5300

205 0.05 1 31.9599606976745 1857.91052537068 5.6599 20.9552

211 0.05 1 32.9194169744208 1913.68606064315 5.3844 21.3703

217 0.05 1 33.8680674794849 1968.83343003229 5.1099 21.7781

223 0.05 1 34.8071689060739 2023.42568818163 4.8359 22.1800

229 0.05 1 35.7372966064537 2077.49628172276 4.5617 22.5770

It is observed in Figure 7.29, that in this case the mission duration tends to increase over
time. For this reason it was decided to analyse in detail the time period from 10 December
2025 to 19 September 2030. Numerical results are presented in Table 7.6.

The minimum mission duration is achieved by departing on 5 May 2026 (165) and it cor-
responds to a trip time of 1418.20992005544 days or approximately 3.88 years. The same
condition will occur again after a synodic period, which is equal to τ = 84.8576 for asteroid
2014 QN266.
In the following section, the trajectories and the graphs of the parameters of the missions with
the shortest duration, highlighted in bold in the table, are presented.
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Table 7.6: Numerical results for mission departing between 163 and 193

Departure
time [adim]

acc
[mm/s2]

η
Trip

time [adim]
Trip

time [days]
θ0

[rad]
∆θ
[rad]

163 0.05 1 24.4623180803485 1422.05425927673 1.3679 17.3815

164 0.05 1 24.3982384368953 1418.32915319291 2.4004 17.1043

165 0.05 1 24.3961873766665 1418.20992005544 3.4149 16.8660

166 0.05 1 25.1174159555607 1460.13669776963 4.3989 17.4125

167 0.05 1 25.4067072490599 1476.95390678233 5.3675 17.8491

168 0.05 1 25.5890061038738 1487.55138417992 0.0653 18.0946

169 0.05 1 25.6988795875237 1493.93859797106 1.0766 18.0451

170 0.05 1 25.6378729173158 1490.39213132270 2.1085 17.7477

171 0.05 1 25.5838360985879 1487.25083915336 3.1307 17.4750

172 0.05 1 26.1454510622247 1519.89888781702 4.1228 17.9400

173 0.05 1 26.4289955339514 1536.38202005285 5.0931 18.3840

174 0.05 1 26.6820740105804 1551.09408963021 6.0679 18.6580

175 0.05 1 26.8506021934836 1560.89104425726 0.7871 18.6248

176 0.05 1 26.7814811443091 1556.87286895346 1.8158 18.3185

177 0.05 1 26.6635977737157 1550.02002088323 2.8439 18.0092

178 0.05 1 27.1202602869577 1576.56692743047 3.8449 18.4201

179 0.05 1 27.4121045462979 1593.53254657895 4.8190 18.8709

180 0.05 1 27.7278359481524 1611.84678362713 5.7897 19.1646

181 0.05 1 27.9398696773959 1624.21282185419 0.4999 19.1480

182 0.05 1 27.8590830216970 1619.51649636893 1.5230 18.8423

183 0.05 1 27.6780932035850 1608.99511646999 2.5546 18.4984

184 0.05 1 28.0622499591095 1631.32708634420 3.5647 18.8707

185 0.05 1 28.3700677194850 1649.22128409706 4.5447 19.3266

186 0.05 1 28.7408437731461 1670.77540111142 5.5134 19.6335

187 0.05 1 28.9846378079953 1684.94774342604 0.2153 19.6330

188 0.05 1 28.8935076985389 1679.65012772685 1.2310 19.3357

189 0.05 1 28.6566532483403 1665.88120040659 2.2635 18.9638

190 0.05 1 28.9872559863323 1685.09994452339 3.2819 19.3073

191 0.05 1 29.3141713605359 1704.10433318281 4.2695 19.7645

192 0.05 1 29.7316513046833 1728.37346134914 5.2385 20.0774

193 0.05 1 29.9975420919856 1743.83034181908 6.2166 20.0908
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Figure 7.29: Numerical results for mission from 163 to 193

Mission departure time 165

Figure 7.30: Mission trajectory for departure time 165
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Figure 7.31: Control angles for departure time
165

Figure 7.32: Semi-major axis, periapsis,
apoapsis and δ variation in time for departure
time 165

Figure 7.33: Inclination variation in time for
departure time 165

Figure 7.34: Eccentricity variation in time for
departure time 165
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Mission departure time 171

Figure 7.35: Mission trajectory for departure time 171

Figure 7.36: Control angles for departure time
171

Figure 7.37: Semi-major axis, periapsis,
apoapsis and δ variation in time for departure
time 171
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Figure 7.38: Inclination variation in time for
departure time 171

Figure 7.39: Eccentricity variation in time for
departure time 171

Mission departure time 177

Figure 7.40: Mission trajectory for departure time 177
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Figure 7.41: Control angles for departure time
177

Figure 7.42: Semi-major axis, periapsis,
apoapsis and δ variation in time for departure
time 177

Figure 7.43: Inclination variation in time for
departure time 177

Figure 7.44: Eccentricity variation in time for
departure time 177
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Mission departure time 183

Figure 7.45: Mission trajectory for departure time 183

Figure 7.46: Control angles for departure time
183

Figure 7.47: Semi-major axis, periapsis,
apoapsis and δ variation in time for departure
time 183
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Figure 7.48: Inclination variation in time for
departure time 183

Figure 7.49: Eccentricity variation in time for
departure time 183

Mission departure time 189

Figure 7.50: Mission trajectory for departure time 189
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Figure 7.51: Control angles for departure time
189

Figure 7.52: Semi-major axis, periapsis,
apoapsis and δ variation in time for departure
time 189

Figure 7.53: Inclination variation in time for
departure time 189

Figure 7.54: Eccentricity variation in time for
departure time 189

Comment on the plots

The behaviour of the different parameters, as shown in the graphs for asteroid 2014 QN266, is
consistent with what was observed for asteroid 2000 SG344. The objective of the first part is to
increase the aphelion from ra⊕ = 1, 01671388AU to raasteroid = 1.149800632AU. During the
second part of the mission the objective is to lower the periapsis from rp⊕ = 0, 98329134AU,
which is the perihelion of Earth’s orbit, to rpasteroid = 0.955456167AU. The inclination varies
from i⊕ = 0.001748◦ to iasteroid = 0.48842◦.

7.5 2020 PJ6
In this section, numerical results are presented for asteroid 2020 PJ6. The procedure used to
obtain these results is the same as that described for the previous asteroids. Numerical results
are displayed in Table 7.7:
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Table 7.7: Numerical results for departure times spaced one year apart, with fixed ac and η

Departure
time [adim]

acc
[mm/s2]

η
Trip

time [adim]
Trip

time [days]
θ0

[rad]
∆θ
[rad]

169 0.05 1 28.5697708938022 1660.83051706901 1.0766 20.0198

175 0.05 1 27.9949938584577 1627.41732505011 0.7871 19.6290

181 0.05 1 27.4628720336366 1596.48378453463 0.4999 19.2943

187 0.05 1 26.9775322577617 1568.26979871316 0.2153 19.0509

193 0.05 1 26.5348436387290 1542.53522874473 6.2165 18.8940

199 0.05 1 26.0850269979724 1516.38628947493 5.9371 18.7620

205 0.05 1 25.5843280810195 1487.27943929297 5.6599 18.6096

211 0.05 1 25.0049660795741 1453.59971200334 5.3843 18.4086

217 0.05 1 24.3401799342609 1414.95407072168 5.1099 18.1387

223 0.05 1 23.6215686291337 1373.17944151999 4.8359 17.7922

229 0.05 1 22.9086850065380 1331.73777648436 4.5617 17.3796

235 0.05 1 22.2407058360014 1292.90651685272 4.2865 16.9247

It can be observed that the trip time tends to decrease over time. The solution is therefore
examined in detail for the time period between 3 September 2031 (199) and 12 June 2036
(299). Numerical results are displayed in Table 7.8, where the solutions of minimum trip time
are highlighted in bold. Numerical results are summarised in Figure 7.55:

Figure 7.55: Numerical results for mission from 199 to 299
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Table 7.8: Numerical results for mission departing between 199 and 299

Departure
time [adim]

acc
[mm/s2]

η
Trip

time [adim]
Trip

time [days]
θ0

[rad]
∆θ
[rad]

199 0.05 1 26.0850269979724 1516.38628947493 1.0766 20.0198

200 0.05 1 25.7141807637178 1494.82809269136 0.7871 19.6290

201 0.05 1 25.6589808413385 1491.61918646778 0.4999 19.2943

202 0.05 1 25.7095616568535 1494.55957273471 0.2153 19.0509

203 0.05 1 25.8482804857845 1502.62363685469 6.2165 18.8940

204 0.05 1 25.8540199805019 1502.95728769196 5.9371 18.7620

205 0.05 1 25.5843280810195 1487.27943929297 0.6520 18.4134

206 0.05 1 25.1908621636740 1464.40630511969 1.6784 18.5225

207 0.05 1 25.0469215248089 1456.03868444250 2.7084 18.8144

208 0.05 1 25.0694364363355 1457.34753120544 3.7137 19.0100

209 0.05 1 25.1211848750530 1460.35579425915 4.6904 18.9342

210 0.05 1 25.1605314961705 1462.64310938458 5.6599 18.6096

211 0.05 1 25.0049660795741 1453.59971200334 0.3660 18.1956

212 0.05 1 24.6643356132201 1433.79803156049 1.3859 18.1084

213 0.05 1 24.4083778060308 1418.91857946961 2.4183 18.3649

214 0.05 1 24.4438018665559 1420.97786657335 3.4323 18.6024

215 0.05 1 24.4460766795611 1421.11010700586 4.4158 18.6347

216 0.05 1 24.4365912605770 1420.55869644767 5.3843 18.4086

217 0.05 1 24.3401799342609 1414.95407072168 0.0826 18.0154

218 0.05 1 24.0830717035317 1400.00774170239 1.0944 17.7329

219 0.05 1 23.7712355466659 1381.87994475318 2.1265 17.9077

220 0.05 1 23.7694433575347 1381.77576042449 3.1483 18.1596

221 0.05 1 23.8086066093479 1384.05241584468 4.1398 18.2657

222 0.05 1 23.7394972913306 1380.03492250168 5.1099 18.1387

223 0.05 1 23.6215686291337 1373.17944151999 6.0851 17.8131

224 0.05 1 23.4182920438956 1361.36247744898 0.8048 17.4321

225 0.05 1 23.1307696675633 1344.64809990889 1.8338 17.4355

226 0.05 1 23.0015766513343 1337.13779453252 2.8616 17.6947

227 0.05 1 23.1496948472660 1345.74826679885 3.8621 17.8425

228 0.05 1 23.0866792704510 1342.08501750595 4.8359 17.7922

229 0.05 1 22.9086850065380 1331.73777648436 5.8068 17.5478
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The graph shows a sinusoidal trend, similar to that observed for the other asteroids, which is
due to the variation of the phase angle between Earth and 2020 PJ6. In this case the duration of
the mission is minimized by departing on 20 December 2035 and is equal to 1337.13779453252
days. The synodic period required before the same conditions are met again is equal to τ =
115.0473. The decreasing trend of trip time suggests that a later departure could further reduce
the mission duration. However, as was done for asteroid 2000 SG344, it was chosen to consider
a departure date not too far in the future.

Graphs showing the trajectories and the variation of the parameters are presented in the
following section for the missions with the minimum trip time.

Mission departure time 201

Figure 7.56: Mission trajectory for departure time 201
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Figure 7.57: Control angles for departure time
201

Figure 7.58: Semi-major axis, periapsis,
apoapsis and δ variation in time for departure
time 201

Figure 7.59: Inclination variation in time for
departure time 201

Figure 7.60: Eccentricity variation in time for
departure time 201

82



Results

Mission departure time 207

Figure 7.61: Mission trajectory for departure time 207

Figure 7.62: Control angles for departure time
207

Figure 7.63: Semi-major axis, periapsis,
apoapsis and δ variation in time for departure
time 207
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Figure 7.64: Inclination variation in time for
departure time 207

Figure 7.65: Eccentricity variation in time for
departure time 207

Mission departure time 213

Figure 7.66: Mission trajectory for departure time 213
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Figure 7.67: Control angles for departure time
213

Figure 7.68: Semi-major axis, periapsis,
apoapsis and δ variation in time for departure
time 213

Figure 7.69: Inclination variation in time for
departure time 213

Figure 7.70: Eccentricity variation in time for
departure time 213
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Mission departure time 220

Figure 7.71: Mission trajectory for departure time 220

Figure 7.72: Control angles for departure time
220

Figure 7.73: Semi-major axis, periapsis,
apoapsis and δ variation in time for departure
time 220
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Figure 7.74: Inclination variation in time for
departure time 220

Figure 7.75: Eccentricity variation in time for
departure time 220

Mission departure time 226

Figure 7.76: Mission trajectory for departure time 226
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Figure 7.77: Control angles for departure time
226

Figure 7.78: Semi-major axis, periapsis,
apoapsis and δ variation in time for departure
time 226

Figure 7.79: Inclination variation in time for
departure time 226

Figure 7.80: Eccentricity variation in time for
departure time 226

Comment on the plots

The behaviour of the different parameters is consistent with what was observed for the other as-
teroids. In this case, perihelion decreases from rp⊕ = 0, 98329134AU to rpasteroid = 0.8707139AU
and the aphelion increases from ra⊕ = 1, 01671388AU to raasteroid = 1.0596362948AU. The
inclination increases from i⊕ = 0.001748◦ to iasteroid = 0.81270◦.

88



Chapter 8

Conclusions

This thesis focuses on optimizing the orbit of a solar sail-propelled spacecraft.This was achieved
by applying the optimal control theory to the problem and by solving the boundary value prob-
lem, through the implementation of an indirect mathematical method. The analysis concen-
trated on three near-Earth asteroids 2000 SG344, 2014 QN266, and 2020 JPG. The objective of
the project was to find viable trajectories for missions towards the aforementioned asteroids,that
would allow for each asteroid to be reached in the minimum time. In order to accomplish this
objective, a comprehensive search was conducted for each asteroid, encompassing a one-year
time span between 24 November 2026 and 12 December 2036 for asteroids 2000 SG344 and
2020 PJ6, and between 10 December 2025 and 12 December 2036 for asteroid 2014 QN266.
The results shown a decreasing trend in the mission duration of asteroids 2000 SG344 and 2020
PJ6, and an increasing trend for asteroid 2014 QN266. an investigation was conducted into the
behaviour of the various parameters within each year, to acquire detailed information on the
mission. From the considerations made on the transfer duration associated with the study-year
missions, it was decided that the search for missions should be conducted over shorter inter-
vals of time each year in the period between 3 September 2031 (199) and 12 June 2036 (299)
for asteroids displaying an increasing trend, specifically 2000 SG344 and 2020 PJ6. And be-
tween 20 December 2025 and 19 September 2030 for asteroid 2014 QN266, which exhibited
an increasing trend. The results of the study are as follows:

• Asteroid 2000 SG344: the minimum duration mission is found on departure date 17
February 2036 and the estimated trip duration is of approximately 1020 days, equivalent
to almost three years;

• Asteroid 2014 QN266: the minimum duration is achieved by departing on 5 May 2026.The
duration of the trip would be approximately 1418 or 3.88 years;

• Asteroid 2020 PJ6: the minimum trip time is calculated to be 1337 days, or approxi-
mately 3.66 years, with the mission scheduled to depart on 20 December 2035.

The results of the study reveal that the mission is divided into two phases in the three cases
under consideration. In the initial phase, the objective is to increase the apoapsis altitude.
During this phase, the clock angle is fixed at zero, and the cone angle decreases until it reaches
zero, accelerating the spacecraft. In the second phase, the objective is to lower the periapsis.
The clock angle would be equal to ±180◦ and the cone angle would increase, decelerating the
sail. The change of inclination manoeuvre is performed when the clock angle is approximately
equal to 90◦, near the point of periapsis, where the cost of the plane change in terms of thrust
required is minimised.
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Conclusions

The duration of the mission was found to be dependent on the phase angle between the de-
parture and arrival bodies. This angle would determine the rate at which the spacecraft should
orbit in order correct relative position with the asteroid to complete the rendezvous. This would
determine the length and duration of the transfer. The results obtained demonstrated a sinu-
soidal trend, indicating that for each year there is a minimum corresponding to the departure
date that guarantees the shortest trip time.

Achieving superior results with regard to mission durations is possible through the variation
of sail parameters. It has been demonstrated that an increase in the characteristic acceleration
of the sail results in a decrease in transfer duration. Conversely, a decrease in the parameter η
leads to an increase in transfer duration.
It is evident that the sail characteristics are significantly constrained by the design parameters.
Programming the mission’s departure time,with the objective of ensuring optimal phasing is
essential to perform a successful mission, in a convenient interval of time.

In consideration of the results obtained, it can be concluded that the objective of identifying
feasible trajectories for an interplanetary transfer departing from Earth and arriving at a near-
Earth asteroid, considering solar sailing as the propulsion system for the spacecraft, has been
accomplished.

Further development of the project would involve incorporating perturbations, such third
bodies gravitational influence, into the model. This will enable the attainment of a more precise
solution. Moreover, the analysis could be expanded to encompass other near-Earth asteroids.
This extension would result in the acquisition of a more precise and comprehensive depiction
of the dynamics of the transfer.
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Appendix A

Non-dimensionalisation of acceleration

By substituting the normal [Equation 5.8] and tangential [Equation 5.9] pressure expressions
into Equation 5.21, the following expression is obtained:

au =
A

m
cos(α)ωp[((1 + η) cos(α) + δrad) cos(α) + (1− η) sin2(α)] (A.1)

By expanding the terms and substituting the definition of the characteristic acceleration, pro-
vided in Equation 5.20, into its dimensionless form, the following equation is obtained:

au = ω
ac
2r2

cos(α)ω[cos2(α) + sin2(α) + δradcos(α) + η(cos2(α)− sin2(α))] (A.2)

By applying the fundamental trigonometric identity cos2(x)+sin2(x) = 1 and the double angle
formula cos2(x)− sin2(x) = cos(2x), Equation A.2 simplifies to:

au = ω
ac
2r2

cos(α)[1 + η cos(2α) + δradcos(α)] (A.3)

A similar procedure is applied to Equation A.2. By substituting the expressions for pn and pt,
a new expression for av is obtained:

av =
A

m
cos(α) cos(δ)ωp[((1 + η) cos(α) + δrad) sin(α)− (1− η) sin(α) cos(α)] (A.4)

After expanding the terms and substituting the definition of the characteristic acceleration, the
new expression is:

av = ω
ac
2r2

cos(α) cos(δ)[2η cos(α) sin(α) + δrad sin(α)] (A.5)

By using the he double-angle identity for sin 2 sin(x) cos(x) = sin(2x), the expression be-
comes:

av = ω
ac
2r2

cos(α) cos(δ)[η sin(2α) + δrad sin(α)] (A.6)

An analogous expression is obtained for aw, starting from Equation 5.23:

aw = ω
ac
2r2

cos(α) sin(δ)[η sin(2α) + δrad sin(α)] (A.7)
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Appendix B

Control law

To determine the maximum value of H ′ with respect to δ, its first derivative is computed and
set equal to zero:

∂H ′

∂δ
= cos(α)[− sin(δ) sin(β) cos(γ)η sin(2α) + cos(δ) sin(β) sin(γ)η sin(2α)] = 0 (B.1)

The result of this procedure is given by:

cos(δ) sin(γ)− sin(δ) cos(γ) = 0 (B.2)

By applying the sine difference identity, sin(x−y) = sin(x) cos(y)−sin(y) cos(x), the equation
can be rewritten in the following form:

cos(δ) sin(γ)− sin(δ) cos(γ) = sin(δ − γ) = 0 (B.3)

From Equation B.3, the following expression is obtained:

δ = γ (B.4)

By substituting the angle γ with δ, Equation 5.66 can be rewritten as:

H ′ = cos(α)[cos(β)(1 + η cos(2α)) + η cos2(δ) sin(β) sin(2α)+

+ η sin2(δ) sin(β) sin(2α)] (B.5)

By collecting and rearranging the terms, the following expression is obtained:

H ′ = cos(α)[cos(β) + η[cos(β) cos(2α) + sin(β)sin(2α)]] (B.6)

By applying the cosine difference identity, cos(x − y) = cos(x) cos(y) + sin(x) sin(y), the
equation can be rewritten as:

H ′ = cos(α)[cos(β) + η cos(β − 2α)] (B.7)

To find the local maximum with respect to α, the first derivative of H ′ is computed and set
equal to zero, as previously done for δ:

∂H ′

∂α
= − sin(α) cos(β) + η[− sin(α) cos(β − 2α) + 2 cos(α) sin(β − 2α)] = 0 (B.8)

92



Control law

By rearranging the terms, the following expression is obtained:

− sin(α) cos(β)− η sin(α) cos(β − 2α) + 2η cos(α) sin(β − 2α) = 0 (B.9)

With reference to Equation B.9, it is observed that:

sin(β − α) = sin[α + (β − 2α)] = cos(α) sin(β − 2α) + sin(α) cos(beta− 2α) (B.10)

Thus, the following expression is obtained:

− sin(α) cos(β − 2α) = cos(α) sin(β − 2α)− cos(α) sin(β) + sin(α) cos(β) (B.11)

By substituting Equation B.10 into Equation B.9, the following expression is obtained:

− sin(α) cos(β) + η cos(α) sin(β − 2α)− η cos(α) sin(β) + η sin(α) cos(β)+

+ 2η cos(α) sin(β − 2α) = 0 (B.12)

By rearranging the terms and isolating the term sin(β − 2α), the expression becomes:

sin(β − 2α) =

1−η
η

cos(β) sin(α) + sin(β) cos(α)

3 cos(α)
(B.13)

By removing cos(α), the term sin(β − 2α) is obtained:

sin(β − 2α) =

1−η
η

cos(β) tan(α) + sin(β)

3
(B.14)
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Appendix C

Additional Numerical results

C.1 Effect of the variation of the parameter η on the solution,
departure time 169

Figure C.1: Effect of η on trip time
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Additional Numerical results

Table C.1: Numerical result for η = 0.5÷ 1

Departure
time [adim] acc η

Trip
time [adim]

Trip
time [days]

θ0

[rad]
∆θ
[rad]

169 0.05 0.99 22.9017109743872 1331.33235897274 1.0766 16.9509

169 0.05 0.98 22.9950028097691 1336.75564107646 1.0766 17.0370

169 0.05 0.97 23.0870870182937 1342.10872088331 1.0766 17.1225

169 0.05 0.95 23.2677513713972 1352.61118070688 1.0766 17.2920

169 0.05 0.90 23.7018175941400 1377.84450973286 1.0766 17.7122

169 0.05 0.85 24.1200594997935 1402.15793258138 1.0766 18.1393

169 0.05 0.80 24.5387086335884 1426.49502859575 1.0766 18.5922

169 0.05 0.75 24.9812131587557 1452.21889673844 1.0766 19.0966

169 0.05 0.70 25.4844899409809 1481.47560452091 1.0766 19.6901

169 0.05 0.65 26.1113561823045 1517.91686922620 1.0766 20.4238

169 0.05 0.60 26.9574017322272 1567.09956212790 1.0766 21.3421

169 0.05 0.55 28.0771825906619 1632.19515666491 1.0766 22.4179

169 0.05 0.50 29.3398230044369 1705.59552585503 1.0766 23.5755

C.2 Effect of the variation of the parameter ac on the solu-
tion, departure time 169

Figure C.2: Effect of ac on trip time
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Additional Numerical results

Table C.2: Effect of varying characteristic acceleration on the solution, with fixed departure
time and η

Departure
time [adim] acc η

Trip
time [adim]

Trip
time [days]

θ0

[rad]
∆θ
[rad]

169 0.060 1 20.5517705332677 1194.72458523828 1.0766 14.7089

169 0.059 1 20.7478868651688 1206.12530630559 1.0766 14.9165

169 0.058 1 20.9562255138165 1218.23654047842 1.0766 15.1309

169 0.057 1 21.1757951763861 1231.00066090394 1.0766 15.3505

169 0.056 1 21.4046105024562 1244.30225431619 1.0766 15.5730

169 0.055 1 21.6398280818792 1257.97602634289 1.0766 15.7962

169 0.054 1 21.8781440836306 1271.82991722237 1.0766 16.0178

169 0.053 1 22.1163282724548 1285.67614549466 1.0766 16.2361

169 0.052 1 22.3516899257354 1299.35829288637 1.0766 16.4500

169 0.051 1 22.5823350905073 1312.76625928874 1.0766 16.6593

169 0.050 1 22.8071970260806 1325.83803246170 1.0766 16.8642

169 0.045 1 23.8494596700650 1386.42730398106 1.0766 17.8602

169 0.040 1 24.8557289169822 1444.92419147380 1.0766 18.9513

169 0.039 1 25.0730234661742 1457.55605400543 1.0766 19.2039

169 0.038 1 25.3025281359949 1470.89772065250 1.0766 19.4744

169 0.037 1 25.5484780420820 1485.19538902436 1.0766 19.7659

169 0.036 1 25.8160507526630 1500.75004379984 1.0766 20.0816

169 0.035 1 26.1114180945134 1517.92046833402 1.0766 20.4239
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