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"Earth is the cradle of humanity,
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Abstract

The development of the space economy and the ever-growing interest toward space
has led to the progressive congestion of the most commercially viable Earth orbits.
More and more satellites are launched around our planet each year, increasing
the risk of collisions between space objects that have the potential of creating
millions of debris and an even more dangerous orbital environment. The necessity
to develop collision avoidance tools and techniques has never been more pressing, as
spacecraft have to perform avoidance maneuvers with increasing frequency. In this
scenario, trajectory optimization becomes of paramount importance, in order to
avert collisions in the most effective way. This research proposes an implementation
of a Deep Reinforcement Learning framework to optimize the path of a satellite
orbiting our planet in a low Earth orbit and confronted with multiple collision
warnings. The proposed approach addresses imperfect environmental modeling and
measurements by using a Partially Observable Markov Decision Process. To add
flexibility to the method, the states of a variable number of space debris are first
processed by a Long Short-Term Memory to create a fixed-sized summary of the
multiple space objects information, before being concatenated with the observation
of the spacecraft state. In this way, the hidden state information is replaced with a
belief vector derived from the observation time sequence (history), which is weighted
by a Transformer encoder to capture the non-linear dynamics of the signals. The
resulting semantic history guides an agent employing Proximal Policy Optimization,
an online policy estimation method, which relies on two neural networks: a critic
for value estimation and an actor for policy evaluation, implemented as Multi-Layer
Perceptrons. The model considers the motion of the satellite and multiple debris
in LEO, under the J2 gravitational perturbation and the effect of atmospheric
drag. The reward function has been designed to achieve the reduction of the
collision probabilities below a critical threshold and minimum fuel consumption. A
station-keeping requirement has also been introduced. Significant results obtained
from the simulations are presented, highlighting the trends of the most important
physical quantities and the progression of the learning of the neural networks. The
research concludes by analyzing the implications of the method and its potential
applications.
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Chapter 1

Introduction

1.1 The issue of space debris

Mankind has been driven to space for all kinds of reason. Initially, military
dominance was the primary motivation behind the advancement of space technology.
The Cold War ignited the Space Race, beginning with the launch of Sputnik 1
in 1957 and culminating in the Apollo missions and the first Moon landing in
1969. Later, scientists quickly recognized the potential of the space environment
for conducting scientific research, as habitable space stations provided the ideal
environment for the execution of experiments requiring microgravity. Meanwhile,
Earth observation satellites and space telescopes have significantly improved our
understanding of both our planet and the broader universe. Space has long been
regarded as the final frontier, driving the launch of numerous exploration probes
and rovers on interplanetary missions since the 1970s. However, perhaps the most
compelling reason behind humanity’s continued expansion into space is the vast
economic potential it offers. Communication satellites have revolutionized global
connectivity, supporting everything from television broadcasts to internet services
and GPS navigation, and today they represent the lion’s share of the space economy
[1]. Figures 1.1 and 1.2, included in the 2024 European Space Agency (ESA) Annual
Space Environment Report [2], show the change in both the type and mass of
spacecraft that have been launched to orbit since the beginning of the Space Age.
Heavier satellites, primarily for imaging, scientific and technological purposes, have
progressively, and especially in the last decade, given way to lighter and smaller
communication satellites.

The miniaturization of space systems and the rise of large satellite constellations
have transformed the landscape of satellite launches, particularly in low Earth orbit
(LEO). Traditional large, geostationary satellites are being complemented and, in
some cases, replaced by smaller, more cost-effective satellites, highlighting the shift

1



Introduction

Figure 1.1: Spacecraft by type

toward the New Space Economy, where private companies play an increasingly
dominant role in space activities. This transition is characterized by lower launch
costs, rapid innovation, and greater accessibility, allowing start-ups and commercial
entities to compete alongside traditional space agencies. The main consequence
of this transformation, which has been further accelerated by the emergence of
reusable rockets, mass satellite production, and flexible launch services, has been
the immense increase in the number of space objects. This exponential growth in
orbital traffic has brought renewed attention to the issue of space debris, raising
concerns about long-term sustainability and the safety of space operations. In this
context, the Inter-Agency Space Debris Coordination Committee (IADC) defines
space debris as: "all human made objects, including fragments and elements thereof,
in Earth orbit or re-entering the atmosphere, that are non-functional. During the
operational phases, a spacecraft or orbital stage can be considered as functional"
[3].

These objects include various types of debris such as payloads, payload frag-
mentation debris, rocket bodies and rocket fragmentation debris, predominantly
concentrated in two orbital regions: LEO and the geostationary orbit (GEO) ring.
Figure 1.3, a computer generated image by the National Aeronautics and Space
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Figure 1.2: Spacecraft by mass

Administration (NASA) Orbital Debris Program Office [4], shows the space objects
currently being tracked. LEO, which extends up to approximately 2,000 kilometers
above Earth’s surface, hosts the highest density of debris due to the large number
of active satellites, particularly from commercial constellations, as well as decades
of accumulated fragments from past missions and in-orbit breakups. GEO is a
vital orbital region due to its unique ability to host satellites that maintain a fixed
position relative to the Earth’s surface, which makes it ideal for telecommunications,
weather monitoring, and broadcasting. As a result of this strategic value, a high
concentration of satellites has accumulated in this orbit over the decades, leading
to a corresponding build-up of space debris.

This growing congestion paints a very different picture from how we used to
perceive space. The orbital environment that surrounds our planet has changed
profoundly. The idea that, beyond the atmosphere, empty space begins does not
hold true any longer, as more and more man-made objects are launched into orbit.
Although space debris has outnumbered operational satellites since the earliest
space missions, it is only in recent decades, thanks to continuous advancements in
space surveillance technologies, that we have come to fully grasp the scale of the
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Figure 1.3: Computer generated image of space objects orbiting the Earth

problem. As a result of these improvements, even smaller pieces of debris can now
be accurately tracked and recorded. As of March 2025, ESA’s Space Debris Office
provides updated statistics on the estimated number of debris objects currently
orbiting Earth [5]. The United States Space Surveillance Network (SSN), which will
be described in more detail in the following section, actively tracks approximately
40,000 objects larger than 10 cm in size. However, smaller debris, which are more
difficult to detect, can only be estimated statistically. According to the Space
Debris Office, over 1 million objects between 1 cm and 10 cm in size, and around
130 million objects smaller than 1 cm, are currently believed to be orbiting our
planet.

Figure 1.4, published in the NASA Orbital Debris Quarterly News from February
2025, illustrates the historical trend of the trackable space debris population in
Earth’s orbit. A close examination of the figure reveals that the most significant
increases in space debris are closely linked to fragmentation events, such as breakups,
explosions, collisions, and other anomalous incidents. The study by Braun [6]
provides an in-depth analysis of these fragmentation events and investigates the
origins of currently tracked debris. The findings confirm that the dominant source
of space debris is indeed breakup events, underscoring the critical impact of such
incidents on the growing debris population.

Furthermore, specific spikes in the debris trend shown in the figure can be
attributed to distinct catastrophic events. One notable example is the 2007 Chinese

4



1.1 – The issue of space debris

Figure 1.4: Total number of trackable space objects

anti-satellite (ASAT) missile test. On January 11 2007, China successfully carried
out a direct-ascent ASAT test targeting one of its own defunct polar-orbiting
weather satellites. This test resulted in the creation of at least 2,087 pieces of
debris large enough to be tracked by the U.S. SSN. According to the NASA Orbital
Debris Program Office, the event generated over 35,000 fragments larger than 1
centimeter in size. The destruction of the Fengyun-1C satellite in this single test
increased the population of trackable space objects by approximately 25 percent,
making it the largest debris-generating incident ever recorded [7].

Another significant spike observable in the figure, particularly relevant to the fo-
cus of this thesis, is the 2009 Iridium–Cosmos collision. Although previous collisions
between space objects had occurred, this event marked the first recorded accidental
collision between two intact satellites. On 10 February 2009, at 16:56 UTC, Iridium-
33, a privately owned American communications satellite, and Kosmos-2251, a
defunct Russian military satellite, collided at an altitude of approximately 790
km over Siberia. The satellites were traveling at a relative velocity of 11.6 km/s
and were both completely destroyed in the impact. The collision generated over
2,300 trackable fragments, forming two distinct debris clouds in LEO. Initially,
each debris cloud followed the orbital path of its respective satellite. In this case,
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the original orbits were nearly perpendicular, leading to a particularly complex
distribution of debris. Over time, the fragments began to disperse along these
orbits and eventually evolved into broader shells of debris concentrated around the
original collision altitude, posing a long-term global threat to all satellites operating
within or crossing that orbital band [8, 9].

A third major event was the 2012 breakup of a Russian Briz-M upper stage.
On 16 October 2012, following a failed orbital insertion in August, the fuel-laden
stage exploded while stranded in a highly elliptical orbit with a low perigee of
around 290 km. The explosion generated a substantial cloud of debris, with over
700 large fragments detected, many of which had perigees below the altitude of the
International Space Station (ISS). The low altitude of the breakup, combined with
the favorable orbital geometry, allowed for detailed radar observations of the debris,
including fragments smaller than those typically detectable by the U.S. SSN [10].

These events collectively highlight the critical importance of preventing catas-
trophic incidents that significantly increase the debris population in orbit. While
large, intact objects pose a manageable risk, the proliferation of smaller fragments
greatly complicates tracking and mitigation efforts. In addition to fragmentation
debris, several other sources contribute to the growing orbital debris environment.
One of the most significant non-fragmentation sources has been over 2400 solid
rocket motor firings, which have dispersed aluminum oxide (Al2O3) into space as
micrometer-sized dust and millimeter- to centimeter-sized slag particles. Further-
more, prolonged exposure to extreme ultraviolet radiation, atomic oxygen, and
micrometeoroid impacts gradually erodes spacecraft surfaces. This degradation
results in the loss of surface coatings and the release of paint flakes ranging in size
from a few micrometers to several millimeters.

It is also worth noting that, as illustrated in Figure 1.4, there are periods
during which the total number of tracked debris decreases. This reduction is
primarily due to the natural decay of orbital debris, which eventually reenters
Earth’s atmosphere and burns up. The rate of this decay is influenced by the
solar cycle, as increased solar activity heats and expands the upper atmosphere,
thereby increasing atmospheric drag, particularly on objects in LEO. However,
debris located in higher regions of LEO experience significantly less drag and may
remain in orbit for decades or even centuries before reentry occurs.

The generation of debris through the aforementioned mechanisms, combined
with the mitigating effects of natural cleansing processes, results in a spatially
uneven distribution of debris, both in altitude and latitude. As illustrated in Figure
1.5, extracted from [2], the highest concentrations of debris are observed between
750 and 1000 km, with a secondary peak near 1400 km altitude. In contrast, spatial
debris densities in GEO and near the orbits of navigation satellite constellations are
two to three orders of magnitude lower. Although the ISS orbits at lower altitudes
than the regions of highest debris density, it is still at risk and must regularly
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perform collision avoidance maneuvers (CAMs) to ensure crew safety.

Figure 1.5: Debris density profile in LEO

Over the years, several technological solutions have been proposed and developed
to address the growing concern of space debris. These solutions can be broadly
classified into mitigation, remediation, and design-oriented strategies.

Mitigation refers to efforts aimed at preventing the creation of new debris and
minimizing the risk of collision or fragmentation during and after the operational
life of a spacecraft. A cornerstone of space debris mitigation is the implementation
of post-mission disposal (PMD) measures, which ensure that spacecraft and launch
vehicles are removed from critical orbital regions at the end of their operational lives.
As shown in Figure 1.6, taken from [11], PMD compliance significantly reduces the
long-term growth of debris. Complementary to PMD is the concept of passivation,
which involves depleting all onboard energy sources, such as residual propellants,
batteries, or pressurized systems, to prevent explosions or breakups. Effective
mitigation also relies on collision avoidance, which has become one of the most
important strategies in recent years. By equipping spacecraft with maneuvering
capabilities, they are able to perform CAMs upon receiving conjunction warnings,
thereby preventing potentially catastrophic collisions. Advancements in propulsion
systems further support these efforts, as more efficient engines not only consume
less fuel but also extend a satellite’s operative life, reducing the frequency of
replacements and launches. Solid rocket motors, which release aluminum oxide
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Figure 1.6: Mitigation effect of PMD

particles during burns, must be designed not to emit particles larger than 1 mm,
especially in densely populated orbits like LEO and GEO.

Beyond these operational measures, emerging design philosophies play a crucial
role in debris prevention. Design for Demise (D4D) involves engineering spacecraft
components to fully disintegrate during atmospheric reentry, reducing the chance
of debris surviving to the ground. Meanwhile, Design for Removal (D4R) supports
future cleanup efforts by allowing spacecraft to be easily captured and deorbited
by Active Debris Removal (ADR) systems. These concepts align with the broader
shift toward a space circular economy, which mirrors Earth-based sustainability
practices by promoting reuse, recycling, and long-term resource efficiency. A
successful example of this philosophy is the reusability model adopted by SpaceX
for their Falcon 9 boosters, which not only provides economic advantages but also
contributes to debris mitigation.

Nevertheless, studies have shown that addressing the existing population of
space debris will eventually require remediation technologies [11], which although
still in early stages, are essential for long-term sustainability. ADR missions have
begun to demonstrate feasibility; key initiatives include ELSA-d launched in 2021,
ADRAS-J in 2024, and the upcoming ClearSpace-1 mission, all of which aim to
capture and deorbit defunct objects. These missions face significant technical and
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economic hurdles but represent critical progress toward remediation. In parallel, in-
orbit servicing technologies are emerging as an alternative to satellite replacement.
A notable example is Northrop Grumman’s MEV-1, which in 2020 successfully
docked with Intelsat 901 to extend its operational life, demonstrating how existing
infrastructure can be maintained rather than discarded. A more experimental
avenue involves ground-based laser systems, which aim to nudge small debris into
lower orbits, accelerating their reentry.

In conclusion, while remediation technologies continue to evolve, mitigation
remains the only mature and widely applicable solution to the space debris problem
at present. The integration of robust disposal practices, active collision avoidance,
and responsible design choices represents the most practical path forward to ensure
long-term access to and safety within Earth’s orbital environment.

In addition to technological measures, addressing the space debris problem
requires a broad and coordinated legal and normative approach. The challenge
is inherently global and it affects all countries, making international cooperation
essential. The current unregulated and unrestricted access to outer space exacer-
bates the issue, as technological advancement alone is insufficient to address the
growing risks. Existing legal frameworks often fail to comprehensively incorporate
debris-related concerns, and only in recent years have global efforts begun to address
these shortcomings. The establishment of legal instruments, the development of
internationally accepted standards, and the implementation of binding regulations
are fundamental to ensuring the long-term sustainability of outer space.

Initiatives such as the creation of the IADC in 1993 have marked crucial
milestones in this process. Comprising 13 space agencies as of 2025, the IADC has
facilitated international collaboration by sharing research, coordinating efforts, and
developing mitigation strategies, most notably through its guidelines, first published
in 2002. In their 2025 version, a particular emphasis is put on the prevention
of on-orbit collisions, recognizing them as a major driver of future space debris
growth. Accordingly, mission planners are encouraged to estimate and minimize
the probability of such collisions throughout a spacecraft’s orbital lifetime [3].

These guidelines have laid the foundation for further regulatory efforts, such
as the United Nations space sustainability guidelines developed by the United
Nations Office for Outer Space Affairs (UNOOSA) and the Committee on the
Peaceful Uses of Outer Space (COPUOS), which, although non binding, have gained
broad international support. The guidelines recommend the registration of all
space objects, the sharing of monitoring data, and the performance of conjunction
assessments to minimize collision risks [12].

Building on the same principles, ISO began developing technical standards in
2003, leading to the release of ISO 24113 in 2010, with the most recent update issued
in 2023. This standard, closely aligned with IADC recommendations, introduces
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concrete, quantitative mitigation requirements [13].
The European Cooperation for Space Standardization (ECSS) has further refined

these efforts by adopting the ISO standard with several targeted modifications,
particularly strengthening provisions related to collision avoidance and maneuver-
ing capabilities. It also emphasizes a concept that will be particularly relevant
throughout the remainder of this work: the need to maintain the probability of
collision below a defined threshold. While some mitigation actions are difficult to
express in strictly quantitative terms and remain qualitative in nature, the standard
provides guidance for cases where spacecraft have the capability to actively manage
collision risks. Specifically, if the assessed collision probability with other space
objects exceeds a threshold established by an approving authority, the operator is
required to perform avoidance maneuvers to reduce the risk below that threshold
[14].

In parallel, ESA has developed a robust policy framework to implement these
standards across its missions. The Space Debris Mitigation Requirements [15] set
binding internal rules on design, operations, and end-of-life procedures, while its
Clean Space initiative introduces an integrated approach that merges environmental
responsibility with technological innovation.

Finally, it is important to note that various approaches can be adopted to
promote space sustainability. These include hard law measures, such as mandatory
regulations exemplified by French law no. 2008-518, and soft law mechanisms, as
seen in Japan, where compliance is voluntary and based on guidelines rather than
binding legislation.

1.2 Collision avoidance
As discussed in the previous section, one of the key mitigation strategies emphasized
by international organizations is the prevention of in-orbit collisions.

While research has shown that objects larger than 10 cm pose a major hazard,
capable of causing catastrophic damage upon impact, smaller debris can often be
tolerated without compromising spacecraft functionality. For example, Sentinel-1A
sustained an impact to one of its solar arrays from a millimeter-sized particle in
2016, yet continued operations without issue. Another notable case is the Hubble
Space Telescope, whose solar arrays, when brought back to Earth, were found to
have over 3,000 pits from micrometeoroid and debris impacts [16, 17]. Despite
this, the telescope remained fully operational while in orbit. Similarly, the Cupola
module on the International Space Station has shown surface pitting caused by
repeated exposure to small debris over time.

The main concern arises from the extremely high relative velocities in orbit,
which result in significant momentum and kinetic energy transfer during collisions.
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For particles smaller than a micrometer, the damage is typically superficial, leading
mainly to surface degradation, similar to a sandblasting effect.

To mitigate such threats, shielding systems have been shown to have the ability
to protect critical spacecraft components from impacts with smaller objects [18].
However, as debris size increases, the potential for catastrophic damage rises sharply.
Studies have also suggested that the severity of impact damage scales more directly
with the projectile’s momentum than with its kinetic energy alone, indicating that
mass may play a more significant role than previously assumed [19].

Figure 1.7: Estimated future trend of collisions in LEO

The most severe consequence of failing to address the growing issue of space
debris, particularly the threat of in-orbit collisions, is known as Kessler Syndrome.

This phenomenon refers to a self-sustaining cascade of collisions in space. As the
number of debris objects increases, so does the probability of catastrophic collisions.
Over time, these collisions generate additional fragments, which in turn lead to
further collisions. Eventually, collision fragments begin impacting other collision
fragments, perpetuating a runaway chain reaction. This positive feedback loop
is especially critical in the LEO region, where space traffic is densest. Without
effective mitigation, the environment could become so crowded with debris that
safe operations would become nearly impossible [20].

Figure 1.7, extracted from [2], suggests that, even in a hypothetical scenario
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where no new satellites are launched, the existing population of debris in LEO
would continue to grow due to ongoing collisions among objects already in orbit.
Under a "business-as-usual" scenario, where no significant mitigation measures are
implemented, the projected increase in collisions is alarming and aligns closely with
the conditions predicted by Kessler.

Figure 1.8, adapted from [21], illustrates the same trend when examining the
total number of trackable objects. Even in a scenario with no additional launches,
collisions are projected to surpass other types of in-orbit breakups as the dominant
source of new debris, leading to a continuous growth in the overall population.

Figure 1.8: Projection of the total number of trackable objects in LEO

Following the discussion about the risk of inaction, we now turn to the operational
side of space safety, and specifically how collision avoidance is performed. The
process begins with the detection and tracking of objects in orbit, primarily
conducted by the United States Space Surveillance Network.

The SSN is a global network composed of numerous ground-based sensors,
including radar installations and optical telescopes, distributed across various
locations (see Figure 1.9). These sensors continuously monitor the sky to detect,
track, and catalog space objects.

The ability to detect and track debris depends heavily on both the size and
altitude of the object. Radar systems, typically used for monitoring objects in LEO,
are effective at detecting smaller debris thanks to their active signal transmission
and their capacity to operate under all lighting conditions. In contrast, optical
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Figure 1.9: Types and locations of SSN sensors

telescopes rely on passive observation of sunlight reflected off objects. These systems
are particularly useful for tracking objects in higher orbits, such as GEO, but are
limited by weather conditions and the availability of sunlight.

While radar is more robust against environmental constraints, it tends to have
lower angular resolution at greater distances. Optical systems, although more
precise in angular tracking, are susceptible to atmospheric interference and cannot
operate during daylight or cloudy conditions.

In addition to these ground-based systems, active satellites equipped with
onboard GPS receivers can use positioning data to track their own location with
high accuracy. However, GPS-based tracking is only applicable to satellites that
carry such receivers, and it cannot be used to track uncooperative objects or debris.
For these non-cooperative targets, radar and optical telescopes remain the primary
tracking methods.

Currently, the US Space Surveillance Network tracks over 40,000 objects larger
than 10 cm in diameter. Depending on the type of sensor used, the collected
measurements may include parameters such as range, range rate, elevation and
azimuth angles, and angular rates. Once these observations are gathered, orbit
determination techniques are employed to estimate the trajectory of each object.
Two commonly used methods are batch least squares and Kalman filtering. Batch
least squares is a retrospective technique that processes a set of measurements
collected over a specific time window. It determines the orbit that best fits the
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data by minimizing the sum of the squared differences between observed and
predicted positions. Kalman filtering, on the other hand, is a recursive, real-time
estimation method. It continuously updates the object’s estimated state whenever
new measurements become available [22, 23].

In the United States, the 18th Space Defense Squadron (18 SDS) is responsible
for processing observational data from the SSN, performing orbit determination, and
propagating the state of resident space objects forward in time. Using automated
processes executed multiple times per day, 18 SDS accurately estimates each
object’s position and velocity. These calculations are then used to maintain and
continuously update the High Accuracy Catalog (HAC), a vital resource for tracking
and monitoring objects in Earth orbit.

The 19th Space Defense Squadron (19 SDS), meanwhile, is tasked with con-
ducting Conjunction Assessment (CA), a mission that includes both on-orbit and
launch-related collision avoidance. This involves identifying potential close ap-
proaches between space objects and recommending mitigation strategies to reduce
the risk of collision. To carry out this mission, the 19 SDS relies on the HAC
maintained by 18 SDS. Leveraging this high-accuracy orbital data, the 19 SDS CA
team systematically screens the trajectories of all resident space objects, including
active satellites, defunct payloads, rocket bodies, and other debris, to detect and
assess potential conjunctions [24].

An important point to understand in orbit determination is the presence of
uncertainties and how they are captured through covariance. Every sensor used to
track space objects introduces some level of measurement error, such as inaccuracies
in range or angle. These sensor-based uncertainties are expressed by the covariance
matrix at the time of observation, which quantifies the confidence in our knowledge
of the object’s state. This covariance is then propagated forward using dynamical
models to estimate the object’s future covariance, especially at the time of closest
approach (TCA). Because of these uncertainties, we cannot predict collisions
deterministically; instead, we rely on probabilistic assessments to quantify the risk.

This is where Conjunction Data Messages (CDMs) come into play. Issued by the
18th Squadron to satellite operators, CDMs alert them to potential collisions by
providing details about the predicted conjunction. Each CDM corresponds to a close
approach between two monitored space objects. The message contains an estimate
of the TCA, along with estimated positions and velocities of both objects at that
time, and the associated uncertainties represented by the propagated covariance
matrices. The closer in time the TCA is, the more accurate these propagated
estimates become, since the interval over which uncertainties grow is shorter. The
quality of the original sensor data, whether from radar, optical, or other sources,
has a direct impact on the initial covariance and, by extension, the final accuracy
of the collision risk assessment. All this information is ultimately used to calculate
the probability of collision, which forms the basis for deciding whether or not to
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perform an avoidance maneuver.
The 18th Space Defense Squadron serves as the hub for CDM distribution

to space agencies around the world. While this is the common starting point,
agencies do not rely solely on external data; instead, they enhance it with their own
tracking capabilities, such as on-board GPS data, and propagate orbital states using
internally developed high-fidelity orbit models, evaluating the resulting probability
of collision. If this probability exceeds a predefined threshold, collision avoidance
maneuvers are considered to reduce the risk.

Following the initial CDM, updates are typically issued several times a day, and
over the course of a week leading up to the conjunction, a time series of CDMs is
built up. As more data becomes available and the predicted encounter nears, the
uncertainty in the estimated positions decreases, refining the understanding of the
situation. The most recent CDM is considered the best available representation
of the event, and if the predicted collision probability approaches or exceeds the
agency’s operational threshold, often around 1 in 10,000, planning for a potential
avoidance maneuver begins. For many missions, especially in LEO, this threshold
has become something of a default, though the actual value selected can depend on
factors like mission criticality and acceptable risk. Additionally, a lower notification
threshold, usually about one order of magnitude below the reaction threshold,
is used to flag events early for monitoring. At ESA, the Space Debris Office,
responsible for collision avoidance for a number of missions, begins alerting control
teams and discussing maneuver options roughly two days before the expected
conjunction, with final decisions often made about a day before the event.

CDMs gathered by the Space Debris Office during operations from 2015 to
2019 were compiled into a database of conjunction events, which later served as
the foundation for the ESA Collision Avoidance Challenge [25]. The challenge
emphasized the critical role of CDMs in understanding conjunction scenarios and
illustrated the potential of machine learning (ML) methods to anticipate the
evolution of collision probabilities using CDM time series [26].

Finally, we focus more specifically on how collision avoidance is performed at the
European Space Agency. Thanks to a data-sharing agreement, ESA has access to
CDMs released by the 18th Space Defense Squadron. Once received, these messages
are automatically processed using ESA’s internal software suite, CORAM. This
includes two core tools: CORCOS, which evaluates the probability of collision using
several analytical methods, and CAMOS, which helps in planning and optimizing
possible avoidance maneuvers. The incoming data, along with results from risk
analyses, are stored in a central database, forming the backbone of the overall
system.

Another key part of ESA’s approach is the creation of a so-called "mini-catalogue",
a temporary local subset of orbiting objects that are in proximity to a given
spacecraft. This is derived by propagating the state vectors from the CDMs using
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physical data from ESA’s DISCOS object database. This mini-catalogue enables
risk assessments to be performed directly against the spacecraft’s actual trajectory,
including planned maneuvers, without requiring constant re-screening from external
sources.

Analysts then use a web-based user interface known as SCARF to monitor
conjunctions, review risk metrics and visualize the geometries involved. This tool
provides interactive dashboards, email templates for alerts, and 3D visualizations of
close approaches. For maneuver planning, CAMOS allows for scenario testing and
optimization, balancing objectives such as risk reduction, fuel economy, or required
separations. The whole workflow is highly integrated and partially automated,
allowing analysts to focus their attention only when truly needed [27].

1.3 Trajectory optimization
The number of active satellites is steadily increasing, and the deployment plans for
mega-constellations such as Starlink, Eutelsat OneWeb, Project Kuiper, and others
suggest that the satellite population will grow dramatically in the coming decades.

The impact of these mega-constellations is already evident in the number of
CDMs generated. As of September 2020, when fewer than 1,000 Starlink satellites
had been launched, Starlink alone accounted for 90% of the daily CDMs produced
by the 18th Space Defense Squadron, equating to around 180,000 messages per
day [28]. Since then, the situation has worsened significantly: as of April 2025,
Starlink has 7,247 satellites in orbit [29], with plans to expand to as many as 40,000
satellites in the coming years.

At ESA’s Space Debris Office, missions in LEO typically face several hundred
potential conjunction events annually. Thanks to successive orbit updates, most
of these cases are eventually downgraded and do not require action. Nevertheless,
a typical Earth observation mission still needs to conduct one to two collision
avoidance maneuvers each year [30].

SpaceX reports significantly higher numbers of CAMs, with the majority involv-
ing intra-constellation conjunctions between Starlink satellites themselves. In the
first half of 2024, satellites in the Starlink mega-constellation performed nearly
50,000 CAMs, approximately double the number recorded in the previous six-month
period. Notably, during the first four years following the initial Starlink launch,
the number of evasive maneuvers consistently doubled every six months [31].

Given the growing density of objects in Earth’s orbit, collision avoidance is poised
to become an increasingly critical aspect of satellite operations. As a result, the
development and continual improvement of collision avoidance systems, particularly
the push toward achieving full automation, will be essential priorities in the coming
decades. Alongside these efforts, advanced trajectory optimization techniques will
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be indispensable for ensuring that necessary maneuvers are performed efficiently.
One of the key challenges in this context is maintaining energy and fuel efficiency.

Optimal fuel usage is crucial in space missions, where propellant is limited. Carefully
planning CAMs helps prevent unnecessary fuel expenditure, thus extending the
operational lifetime of the spacecraft.

Time constraints introduce even more complexity. In the presence of fast-moving
debris or unexpected objects, there may be insufficient time to execute a low-cost,
fuel-efficient maneuver. Optimization strategies must therefore accommodate
urgent cases, shifting the focus from fuel savings to executing maneuvers within
very tight time windows. Real-time decision-making becomes critical in these
dynamic environments, requiring systems that can compute safe maneuvers rapidly.

Moreover, since science instruments are often turned off during avoidance ma-
neuvers, leading to data outages, restoring the spacecraft to its operational orbit
afterwards becomes a priority. Trajectory optimization algorithms must efficiently
plan the return to the original or a sufficiently close orbit to minimize mission
disruption and avoid excessive resource consumption.

Trajectory optimization clearly involves balancing multiple competing objectives.
Collision avoidance maneuvers must simultaneously minimize fuel usage, ensure a
rapid response, and restore the spacecraft’s orbit with minimal deviation, all while
respecting mission-specific constraints such as maximum allowable fuel expenditure
and safe distances from other objects. Handling these multiple goals and constraints
simultaneously results in an exceptionally complex optimal control problem.

The next part will review the strategies and approaches that have been explored
so far to address these challenges.

1.4 State of the art for collision avoidance
Both classical and modern AI-based methods have been developed to mitigate the
risk of collisions. Classical approaches rely on deterministic models and human
intervention, while AI methods, particularly Reinforcement Learning (RL), enable
real-time autonomous decision-making. This section presents a comprehensive
overview of classical methods and AI-driven techniques, with detailed sections on
Reinforcement Learning within the Markov Decision Process (MDP) and Partially
Observable Markov Decision Process (POMDP) frameworks.

1.4.1 Classical approaches
Traditional approaches in collision avoidance often rely on optimization-based
techniques that calculate avoidance trajectories using established mathematical
frameworks.
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Semi-analytical methods: Some authors have proposed gradient-based opti-
mization. For example, the direction of the avoidance maneuver can be determined
by finding the gradient of the collision probability with respect to the maneuver
direction. Once the direction is determined, its magnitude can be found using
numerical root-finding methods [32]. Such techniques, coupled with parametric
searches, have seen successful software applications, such as in the CORAM tool
of the ESA/ESOC Space Debris Office [33]. Other semi-analytical methods have
involved transforming the problem into the combination of an eigenvalue problem
and a non-linear equation [34]. Finally, researchers have tried to reduce the op-
timization problem to a Quadratically Constrained Quadratic Program, greatly
simplifying the task, as in the OCCAM tool [35].

Particle Swarm Optimization (PSO): PSO is a nature-inspired optimization
technique based on the collective behavior of groups. It is used to solve complex
optimization problems by simulating the movements of a population of particles
(potential solutions) within a defined search space. Multi-Objective Particle Swarm
Optimizer can provide a set of Pareto-optimal CAMs, enabling operators to select
the most appropriate maneuver based on constraints and goals [36].

Genetic Algorithms (GAs): GAs emulate the process of natural selection,
iteratively refining candidate solutions. This approach has been applied to both LEO
and GEO satellites, with the focus on maintaining satellite positioning within an
established operational boundary [37]. Another study tried to deal with the complex
scenario of multi-debris collision avoidance, addressing the competing objectives of
collision probability and fuel consumption minimization [38]. Additionally, a GA-
based optimization technique for the Brazilian Carcará-1 satellite was developed,
emphasizing fuel conservation in CAMs, with penalties applied within the GA’s
fitness function when miss distances between the satellite and debris fell below a
specified threshold [39].

Convex Optimization: The optimal control problem with obstacle avoidance
constraints is inherently a non-convex problem, given the nonlinearities in the
dynamics. A convexification of the optimization problem has been introduced,
allowing it to be solved more efficiently and reliably. One method deals with the
uncertainties in the knowledge of the positions of the objects, while introducing
a collision avoidance constraint [40]. Further work introduced a multi-resolution
approach for close-range trajectory planning, adaptively adjusting resolution based
on proximity to target or debris to enhance computational efficiency and accuracy
[41].

Model Predictive Control (MPC): MPC continuously updates control
actions for a satellite based on predicted states over a finite horizon, allowing
real-time obstacle avoidance adjustments. The optimization objective minimizes
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fuel consumption while reducing the arrival time to a target location. This approach
has been applied to complex orbital environments with multiple dynamic obstacles
[42].

1.4.2 Machine Learning approaches

ML techniques are increasingly pivotal in enhancing space debris avoidance systems
by automating detection and decision-making processes. This section explores some
ML methods, excluding Reinforcement Learning.

Bayesian Machine Learning: Bayesian ML techniques integrate uncertainty
into collision risk assessments, enhancing predictions in the unpredictable context
of space debris. Bayesian models, such as Bayesian Hidden Markov Models, can
estimate collision probabilities by tracking the sequence of the probabilities in the
CDMs over time [43]. An advantage of Bayesian methods is their adaptability. They
enable real-time updates as new data from tracking stations or onboard sensors
become available. By quantifying the likelihood of various collision scenarios,
Bayesian ML supports informed decision-making, helping operators determine
when avoidance maneuvers are necessary.

Neural networks: Neural networks, particularly deep learning (DL) models,
have become invaluable for collision avoidance due to their ability to process and
learn from vast and complex datasets. In collision avoidance, neural networks
handle tasks like trajectory prediction, risk assessment, and debris detection by
identifying patterns in historical and real-time data that might not be visible with
traditional methods. One effective application is in Bayesian neural networks, which
incorporate uncertainty estimation directly into their predictions. For example,
"Kessler," an ML library for space applications, uses Bayesian neural networks
to predict potential conjunction events. By quantifying the confidence in each
prediction, Bayesian neural networks help prioritize high-risk events, allowing
operators to make more informed, risk-based decisions [44]. Convolutional Neural
Networks (CNNs) and Long Short-Term Memory (LSTM) architectures are also
commonly applied. CNNs are used for processing spatial data, such as images
of debris fields captured by satellites, to detect and classify debris objects [45].
Meanwhile, LSTMs handle sequential data and are able to identify temporal
patterns, making them suitable for predicting future conjunction events [46]. A
recent hybrid approach combines Bi-LSTM and CNN architectures, optimized
through Bayesian Optimization. The Bi-LSTM component captures long-range
dependencies in sequential data, while CNN layers extract spatial features [47].

19



Introduction

1.4.3 Reinforcement Learning approaches
Reinforcement learning within the Markov Decision Process and Partially Ob-
servable Markov Decision Process frameworks offers some of the most promising
solutions for enabling spacecraft to detect and navigate collision threats. These
frameworks are especially valuable for real-time decision-making, even in environ-
ments with limited observability and high-dimensional state-action spaces. By
using MDP and POMDP models, RL can optimize both the safety and resource
efficiency of autonomous operations.

The MDP and POMDP approaches differ primarily in their treatment of envi-
ronmental observability. MDP-based models, which assume full observability, are
well suited to scenarios where sensors provide comprehensive coverage. Conversely,
POMDP-based models are designed for partially observable environments, where
spacecraft must operate with limited or uncertain information, as is often the case
in satellite navigation and guidance due to signal delays, sensor inaccuracies and
environmental disturbances.

1.4.3.1 MDP-based Reinforcement Learning

MDP frameworks are applied in space debris avoidance by modeling the environment
as fully observable, which allows RL agents to make deterministic, real-time
decisions based on comprehensive state data. Concretely, this results in the
assumption that the exact state of the spacecraft is known at every time step.
This approach is particularly effective in applications where good quality data is
available from sensors and tracking devices.

Proximal Policy Optimization (PPO): A PPO-based MDP approach has
been employed to enable real-time trajectory optimization in dense debris fields
[48]. Two key performance objectives are prioritized: minimizing the probability of
colliding with multiple debris and conserving fuel. The approach penalizes high
collision probabilities, with penalties that increase exponentially as the product of
the collision probabilities with the single space debris increases, effectively guiding
the spacecraft to maintain safe separation. Fuel use is also carefully managed, with
a cost assigned to each thruster activation proportional to the maneuver’s intensity.
This setup minimizes excessive fuel consumption, making it suited for long missions
where fuel must be conserved.

Deep Deterministic Policy Gradient (DDPG): A novel technique, called
exploration-adaptive DDPG, has been applied to spacecraft proximity maneuvers,
with the purpose of automating the computation of rendezvous trajectories, while
considering collision avoidance constraints [49]. The final goal was developing
a model for a unified controller, capable of guaranteeing autonomous spacecraft
rendezvous together with collision avoidance. Another application has leveraged
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DDPG to control a space manipulator for collision-free trajectory planning [50].
The goal was to enable a 3-DOF robotic arm mounted on a spacecraft to capture
space objects while avoiding collisions in both free-flying and free-floating scenarios.

Grid Search and Cross Entropy: RL has also been used with a combination
of Grid Search and Cross Entropy methods [51]. The system identifies optimal
maneuver timings and directions based on probabilistic models of collision risk, fuel
constraints, and mission requirements. Its architecture is designed to be adaptable,
accommodating various optimization criteria like minimizing collision probability,
fuel use, and trajectory deviation. This flexibility allows it to manage multiple
potential collision events simultaneously, which is critical in high-density orbital
regions.

1.4.3.2 POMDP-based Reinforcement Learning

In scenarios where partial observability is a factor, POMDP frameworks are em-
ployed to handle uncertainties by modeling the environment as belief states, proba-
bilistic representations of the system’s true state based on available observations.
This is crucial for scenarios in which sensor data is incomplete or inaccurate.

Safe Reinforcement Learning (SRL): SRL, which focuses on optimizing
the performance of an agent while ensuring that certain safety constraints are
satisfied, has been integrated with POMDP models to manage collision avoidance
in scenarios with a variable number of space debris [52]. In this approach, Penalized
Proximal Policy Optimization (P3O) is used alongside LSTM networks, which
enable the agent to process sequential data without changing the observation
vector size, efficiently transforming the variable-length input from multiple space
debris into a fixed-size vector representation. While the problem is not explicitly
modeled as a POMDP, the approach shares similarities by focusing on managing
partial observability using neural networks. The model incorporates constraints
such as collision probability and energy efficiency while enabling the spacecraft to
autonomously navigate dynamic and uncertain environments.

Deep Q-Network (DQN): Problem uncertainties and imperfect monitoring
information have been addressed, in the POMDP framework, using a variation of
DQN [53], relying on historical data rather than assuming perfect state observations.
An LSTM layer maintains a "belief" of the environment’s state by processing
sequences of past observations and actions. A multi-objective optimization is sought,
attempting to minimize collision probability, fuel consumption and trajectory
deviations.

21



22



Chapter 2

Fundamentals of orbital
mechanics and problem
statement

This chapter introduces the fundamental principles of orbital mechanics that form
the basis for the simulation framework and analyses developed in this thesis. It
begins by outlining the reference frames adopted, along with the orbital elements
and state vectors typically used to describe the position and velocity of a space
object.

The discussion then proceeds with the classical Keplerian two-body problem,
serving as a foundation for understanding orbital motion, before addressing the pri-
mary perturbations that influence satellite trajectories. These include gravitational
and non-gravitational forces, which are incorporated into the dynamical models
through a system of differential equations that govern orbital propagation.

The chapter concludes with a description of the modeling of the spacecraft’s
propulsion system and control actions, followed by the methodology for generating a
synthetic database of close approaches and estimating collision probabilities, critical
components in the Reinforcement Learning-based collision avoidance framework
explored in the subsequent chapters.

2.1 Reference frames and orbital elements

2.1.1 Earth-Centered Inertial reference frame
One of the most commonly used reference frames (RFs) in spaceflight mechanics is
the Earth-Centered Inertial (ECI) frame, illustrated in Figure 2.1 (adapted from
[54]).
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Figure 2.1: Earth-Centered Inertial reference frame

This reference frame is defined as follows:

• Origin is located at the Earth’s center of mass.

• The X-axis points toward the vernal equinox direction at the epoch J2000
(January 1, 2000). This direction is defined by the intersection of the Earth’s
equatorial plane and the ecliptic plane (the plane of Earth’s orbit around the
Sun).

• The Z-axis is aligned with Earth’s mean rotational axis at J2000, pointing
toward the North Celestial Pole.

• The Y-axis completes a right-handed orthonormal coordinate system, lying
in the equatorial plane and perpendicular to both the X- and Z-axes.

Although the ECI frame is not strictly inertial due to relativistic and precessional
effects, it is generally treated as inertial for most practical applications, especially in
low Earth orbit. This is because the ECI frame is fixed relative to the "fixed stars"
- distant celestial objects whose positions appear constant over short timescales -
and does not rotate with the Earth. Therefore, it provides a stable, non-rotating
frame suitable for describing satellite motion.

24



2.1 – Reference frames and orbital elements

2.1.2 Classical Orbital Elements

Figure 2.2: Classical Orbital Elements

The instantaneous position and velocity of a satellite in orbit can be fully
described using a set of six classical orbital elements (COEs). These elements
define the size, shape, and orientation of the orbit, as well as the position of the
satellite along the orbit at a given time, and are displayed in Figure 2.2, extracted
from [22].

The figure shows the typical configuration of an elliptical orbit of a secondary
body (e.g., a spacecraft) around a primary body (the Earth, in this thesis). The
primary body is located at one of the foci of the ellipse. The figure highlights both
the equatorial plane, defined by the X and Y axes of the ECI frame, and the orbital
plane, in which the satellite’s motion occurs.

The intersection of the orbital and equatorial planes forms the line of nodes.
The point where the satellite crosses the equatorial plane from south to north
is the ascending node, while the opposite crossing defines the descending node.
The angular momentum vector, obtained by the cross product of the position and
velocity vectors in the ECI RF, is perpendicular to the orbital plane.
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Also visible in the diagram are the periapsis and apoapsis - the points of minimum
and maximum distance, respectively, between the orbiting satellite and the center
of the primary body.

The six classical orbital elements are defined as follows:

• a (semi-major axis): Defines the size of the ellipse; half the distance of the
major axis.

• e (eccentricity): Describes the shape of the orbit; ranges from 0 (circular) to 1
(parabolic).

• i (inclination): The angle between the orbital plane and the equatorial plane,
or equivalently, between the angular momentum vector and the ECI Z-axis.

• Ω (right ascension of the ascending node): The angle from the ECI X-axis to
the ascending node, measured in the equatorial plane.

• ω (argument of periapsis): The angle between the ascending node and the
periapsis, measured in the orbital plane.

• ν (true anomaly at epoch): The angle between the periapsis and the position
of the satellite at a given epoch.

2.1.3 State vector
In orbital mechanics, the state vector of a satellite refers to the set of its position
and velocity at a specific moment in time, typically expressed in a chosen reference
frame. The position vector defines where the satellite is relative to the center of
the primary body, and the velocity vector describes its speed and direction.

Together, these two 3-dimensional vectors form a 6-dimensional state vector.

x =
A

r
v

B
(2.1)

The six classical orbital elements offer an alternative, yet fully equivalent,
representation of an object’s orbital state. There exists a one-to-one correspondence
between the orbital elements and the state vector (position and velocity). This
means:

• Given a specific set of orbital elements, we can uniquely compute the corre-
sponding state vector at any point along the orbit.

• Conversely, a known state vector can be used to uniquely determine the
corresponding set of orbital elements that define the orbit.
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When modeling a spacecraft, the state vector defined in equation 2.1 is augmented
with an additional component: the spacecraft’s mass. This is necessary because
the spacecraft’s mass changes over time due to engine firings, which consume
propellant. Accurately tracking mass throughout the trajectory is essential, as it
directly affects the equations of motion (see Section 2.2). Moreover, mass can be
integrated alongside position and velocity at each time step, making the augmented
state vector a natural and efficient choice for this purpose.

x =

 r
v
m

 (2.2)

In contrast, the state vectors representing the various debris objects follow the
form of equation 2.1 and do not include mass. This is because debris are assumed
to be non-maneuvering objects, and their masses remain constant over time.

As a clarification, some ambiguity can arise regarding which object is at risk
in a potential collision. In this work, we will use the term protected object or
spacecraft (S/C) to refer to the active satellite with maneuvering capabilities. The
term debris will be used as a general label for all potential threats, whether they
are actual debris fragments or non-cooperative satellites, that pose a collision risk
to the protected object.

The state vector can be represented in different reference frames depending
on the context and application. In this thesis, the states of all space objects are
consistently expressed in the ECI RF, resulting in the following form of the state
vector:

x =



X
Y
Z
Ẋ
Ẏ
Ż
m


(2.3)

2.1.4 Radial–Transverse–Normal reference frame

Finally, it is necessary to introduce another reference frame, which has been used to
express the thrust acceleration acting on the satellite: the Radial–Transverse–Normal
(RTN) reference frame.
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Figure 2.3: Radial-Transverse-Normal reference frame

The RTN frame, shown in Figure 2.3 (adapted from [55]), is a satellite-centered,
right-handed orthonormal frame defined as follows:

• The origin is located at the satellite’s position.

• The unit vector ĥ1 (radial) points in the direction of the satellite’s position
vector r, from the center of the Earth to the satellite. It is computed as:

ĥ1 = r
∥r∥ (2.4)

• The unit vector ĥ3 (normal or cross-track) is aligned with the satellite’s angular
momentum vector h = r× v, and is computed as:

ĥ3 = r× v
∥r× v∥ (2.5)

• The unit vector ĥ2 (transverse or along-track) lies in the orbital plane and
completes the right-handed triad:

ĥ2 = ĥ3 × ĥ1 (2.6)
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2.2 – Equations of motion

Since thrust acceleration must be combined with other accelerations expressed
in the ECI reference frame (as discussed in Section 2.2), it must be transformed
from RTN to ECI. This is done via a 3x3 rotation matrix whose columns are the
RTN unit vectors expressed in ECI coordinates. The matrix is constructed as:

RRTN→ECI =
è
ĥ1 ĥ2 ĥ3

é
(2.7)

This transformation matrix is time-dependent, and is computed using the
satellite’s current position and velocity vectors in the ECI frame.

2.2 Equations of motion

2.2.1 Two-body problem
The two-body problem is the simplest dynamical model used to describe the motion
of two masses with respect to an inertial reference frame (assumed to be fixed
relative to the fixed stars). This model relies on two key assumptions:

• Each body is treated as a point mass, with its entire mass concentrated at a
single point (its center).

• The only force acting on the bodies is their mutual gravitational attraction.

Figure 2.4: Two-body problem
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In this scenario, shown in Figure 2.4 (extracted from [56]), the two bodies, of
masses m1 and m2, are located at positions represented by the vectors R1 and R2,
respectively. The gravitational force F12 is the force exerted on body 1 by body 2,
while F21 is the force on body 2 due to body 1.

Given the assumptions, and since gravity is a central force (acting along the line
connecting the two bodies), Newton’s second law leads to the following equations
of motion:

F12 = Gm1m2

r2 r̂ = m1R̈1 F21 = −Gm1m2

r2 r̂ = m2R̈2 (2.8)

where

r = R2 −R1 r̂ = r
r

(2.9)

and G = 6.6743×10−11m3kg−1s−2 is the universal gravitational constant. These
equations also satisfy Newton’s third law: the forces are equal in magnitude and
opposite in direction (F12 = −F21).

A further simplification of the two-body equations can be obtained by manipu-
lating the expressions in equation 2.8). Specifically, multiplying the first equation
by m2 and the second by m1, then subtracting the first from the second, leads to:

Gm1m2
2

r2 r̂ = m1m2R̈1 − Gm1
2m2

r2 r̂ = m1m2R̈2

m1m2
1
R̈2 − R̈1

2
= −G

m1m2

r2 (m1 + m2)r̂
(2.10)

Canceling out the common factor m1m2, and recalling the definition of the
relative position vector r = R2 −R1 from equation 2.9, we obtain the simplified
second-order differential equation:

r̈ = −G (m1 + m2)
r2 r̂ (2.11)

In the case examined in this thesis, a satellite orbiting the Earth, it is reasonable
to assume that the inertial reference frame is Earth-centered (ECI), as introduced
in Section 2.1.1. This assumption implies that r ≡ R2. Additionally, because the
mass of the Earth (m1) is significantly greater than the mass of the satellite (m2),
we can approximate the total mass as m1 alone. This leads to:

r̈ = − µ

r2 r̂ = − µ

r3 r (2.12)

where
µ = Gm1 ≃ 3.986× 1014 m3s−2 (2.13)
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2.2 – Equations of motion

Equation 2.12 represents the fundamental expression for the gravitational accel-
eration experienced by a much smaller body (e.g., a satellite) under the influence
of a significantly larger body (e.g., the Earth), in the context of the simplified
two-body problem. The equation confirms that the resulting acceleration is purely
radial, consistent with the nature of gravity as a central force.

In this thesis, the two-body acceleration is expressed in the ECI reference frame.
The vector equation 2.12 can be expanded into its Cartesian components as follows:

a2b =


−µX

r3

−µY
r3

−µZ
r3

 (2.14)

where r =
√

X2 + Y 2 + Z2.

2.2.2 Perturbations
In spaceflight mechanics, the two-body problem constitutes an idealized scenario
in which an orbiting body moves solely under the influence of the gravitational
attraction of a much larger central body. This model assumes that both bodies are
point masses and that no other accelerations are present. Under these conditions,
the motion is perfectly Keplerian, meaning that the first five orbital elements
defined is 2.1.2 remain constant over time, while only the true anomaly evolves to
describe the position along the orbit.

However, in reality, this idealization breaks down due to the presence of additional
accelerations known as perturbations, which cause all the orbital elements to vary
over time. Such deviations must be accounted for in order to accurately propagate
the states of space objects over long time intervals. In this thesis, we focus on
the primary perturbations relevant to low Earth orbit: gravitational effects due
to the Earth’s oblateness (J2) and atmospheric drag. Other perturbing influences,
such as higher-order gravitational harmonics, third-body effects and solar radiation
pressure are not considered in the current analysis.

2.2.2.1 J2 gravitational perturbation

Gravitational perturbations arise from the fact that the Earth is not a perfect
sphere, but rather an oblate body with an uneven mass distribution. Specifically,
the Earth’s equatorial radius is slightly larger than its polar radius due to its
rotation, resulting in a noticeable equatorial bulge. These irregularities in the
Earth’s shape and internal structure cause its gravitational field to deviate from the
ideal point-mass model assumed in the two-body problem. The resulting perturbing
forces can be modeled through a series of spherical harmonics, with each term
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representing a different aspect of the Earth’s mass distribution. Among these, the
J2 term, associated with the Earth’s equatorial bulge, is by far the most significant,
especially for satellites in low Earth orbit.

This oblateness leads to perturbations in the orbit of a satellite, primarily
affecting the orbital elements related to the orbit’s orientation: the right ascension
of the ascending node and the argument of periapsis. The J2 perturbation induces
a precession of the orbital plane and a rotation of the orbit on its plane, causing
secular (long-term) variations in these elements, while the semi-major axis and
eccentricity experience only small periodic changes.

The acceleration due to the Earth’s oblateness can be derived from the gravi-
tational potential expanded in spherical harmonics. Truncating the expansion to
include only the J2 term, and taking the negative gradient of the potential with
respect to the Cartesian position vector yields the perturbative acceleration in
Cartesian coordinates:

aJ2 =


−3

2J2
µR2

eq

r5

1
1− 5Z2

r2

2
X

−3
2J2

µR2
eq

r5

1
1− 5Z2

r2

2
Y

−3
2J2

µR2
eq

r5

1
3− 5Z2

r2

2
Z

 (2.15)

where Req is the equatorial radius of the Earth and J2 = 1.08263× 10−3.

2.2.2.2 Residual atmospheric drag

At low altitudes in low Earth orbit, typically below 800–1000 km, the Earth’s
residual atmosphere exerts a non-negligible aerodynamic force on orbiting satellites.
This force, known as atmospheric drag, arises from collisions between the spacecraft
and atmospheric particles, and acts opposite to the direction of motion relative to
the atmosphere. Although extremely rarefied, the atmosphere at these altitudes
is sufficient to cause a gradual decay in a satellite’s orbit over time. The most
pronounced effect of atmospheric drag is a secular decrease in the semi-major
axis and orbital energy, which leads to orbital decay and ultimately re-entry if no
corrective maneuvers are applied. It also tends to circularize the orbit by reducing
eccentricity. Accounting for residual drag is essential when modeling long-term
orbital dynamics in LEO.

The magnitude of the drag acceleration is strongly dependent on the ballistic
coefficient, defined as:

B = CDA

m0
(2.16)

Here, CD is the drag coefficient, which reflects the aerodynamic properties of
the object and varies based on its shape and surface material, while A denotes
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the cross-sectional area exposed to the atmospheric flow. In this thesis, space
objects are modeled as spheres. The cross-sectional area is estimated based on the
known initial mass m0, assuming an average internal density and accounting for
the contribution of solar arrays.

Another key component in calculating the residual atmospheric drag is the
velocity of the atmosphere, which is typically assumed to corotate with the Earth.
Under this assumption, the velocity of the atmosphere at a given point is given by:

vatm = ωEarth × r vrel = v− vatm (2.17)

where ωEarth is the angular velocity vector of the Earth, aligned with the planet’s
rotation axis and pointing toward the North Pole. This leads to the definition of
the relative velocity vrel, which is the velocity of the spacecraft with respect to the
surrounding atmosphere.

To compute the drag force, it is also essential to estimate the atmospheric
density at the spacecraft’s position. This can be modeled using an exponential
density profile:

ρ = ρ0 exp
3
−r −R

H0

4
(2.18)

Here, R is the Earth’s mean radius, ρ0 is a reference density (typically at sea
level), and H0 is the scale height, representing the characteristic altitude over which
atmospheric density decreases by a factor of e.

With these definitions, the perturbative acceleration due to atmospheric drag is
given by:

adrag = −1
2ρB∥vrel∥vrel (2.19)

As with the two-body acceleration and the J2 perturbation, the drag acceleration
can be fully expressed in the ECI frame. By expanding the vector expression
component-wise, we obtain:

adrag =


−1

2ρBvrel(Ẋ + ωEarthY )
−1

2ρBvrel(Ẏ − ωEarthX)
−1

2ρBvrelŻ

 (2.20)

where vrel = ∥vrel∥ is the magnitude of the spacecraft’s velocity relative to the
rotating atmosphere.
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2.2.2.3 Neglected perturbations

In addition to the dominant perturbations modeled in this thesis, there exist several
other perturbative effects that can influence satellite motion. These include higher-
order gravitational harmonics, which represent increasingly detailed deviations of
Earth’s gravity field from spherical symmetry. While the J2 term accounts for the
primary equatorial bulge, higher-degree terms (such as J3, J4, etc.) describe more
subtle variations due to irregularities in Earth’s mass distribution.

Other significant perturbations arise from third-body effects, primarily due to
the gravitational influence of the Moon and the Sun, and from solar radiation
pressure, which results from the momentum exchange between solar photons and the
spacecraft surface. These forces can lead to long-term orbital changes, particularly
in higher orbits.

However, in the context of low Earth orbit, the influence of these additional
perturbations is generally negligible compared to the dominant effects of J2 and
atmospheric drag. For this reason, and to maintain a focus on the most relevant
dynamics, these secondary perturbations are not considered in the present analysis.

2.3 Propulsion system and control variables

2.3.1 Propulsion system
One of the central components of this thesis is the modeling of the propulsion
system and the thrust acceleration it generates. The objective is to replicate
real-world behavior as accurately as possible, while maintaining a balance between
fidelity and model simplicity.

Modeling a propulsion system requires the definition of several key parameters.
First, the thrust F , which is proportional to the thrust acceleration and determines
how quickly the spacecraft is able to change its velocity, and, consequently, its
trajectory.

Other fundamental quantities are the effective exhaust velocity, denoted c, and
the specific impulse Isp, proportional to c. Both parameters represent a measure of
engine efficiency.

c = F

ṁP

Isp = F

ṁP g0
(2.21)

where ṁP is the propellant mass flow rate.
Typically, engines that deliver high thrust exhibit low specific impulse, resulting

in greater propellant consumption. Conversely, engines with high specific impulse
tend to produce lower thrust.

In this thesis, the protected object is equipped with an ion thruster. An ion
thruster operates by ionizing a neutral gas, typically xenon, extracting positively
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charged ions from the propellant through an electric field. These ions are then
accelerated to high velocities using electrostatic or electromagnetic forces and
expelled through a nozzle, producing thrust. Due to the low thrust levels, such
propulsion systems require long firing durations to achieve significant ∆V s, making
the assumption of impulsive maneuvers inapplicable.

Table 2.1 summarizes the parameters adopted for the propulsion system. The
maximum thrust has been estimated based on the assumption that the spacecraft
requires 100 mN of thrust for every 100 kg of mass.

Parameter Value
m0 [kg] 500
Fmax [N] 0.5
Isp [s] 1000
c [m/s] 9810

Table 2.1: S/C initial mass and engine performance

2.3.2 Control variables

The thrust vector is governed by three control parameters, which are outputs of the
actor network described in Chapter 4. These parameters define both the direction
and magnitude of the applied thrust.

The direction is specified by two angles: the elevation angle ϕ and the azimuth
angle θ. Together, they determine the orientation of the thrust vector in the RTN
frame introduced in Section 2.1.4. The magnitude of the thrust is regulated by the
variable engine, which acts as a throttle by representing the fraction of maximum
thrust Fmax being applied.

These control variables are visualized in Figure 2.5, where the applied thrust
magnitude is given by F = engine · Fmax.

The thrust components along the RTN axes can be computed by projecting the
vector according to the angles ϕ and θ:

FR = engine · Fmax · cos(ϕ) · cos(θ)

FT = engine · Fmax · cos(ϕ) · sin(θ)

FN = engine · Fmax · sin(ϕ)

(2.22)
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Figure 2.5: Thrust vector in the RTN frame

The corresponding acceleration components are obtained by dividing each thrust
component by the spacecraft’s instantaneous mass m:

athrustRTN =


FR

m

FT

m

FN

m

 (2.23)

Since the thrust acceleration must be combined with the gravitational and
perturbative accelerations discussed in the previous section, the acceleration vector
in RTN must still be rotated into the ECI frame using the rotation matrix defined
in Section 2.1.4.

athrustECI = RRTN→ECI athrustRTN (2.24)
In addition to determining the spacecraft’s performance, the expressions in this

section allow for the computation of the spacecraft’s mass variation over time.
Since the only source of mass loss is the expulsion of propellant, the propellant
mass flow rate ṁP is related to the time derivative of the spacecraft’s mass m by:

ṁP = −dm

dt
(2.25)

Recalling the definition of the effective exhaust velocity, the derivative of the mass
can be expressed as:

dm

dt
= −Fmax · engine

c
(2.26)
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This equation is integrated at each time step to update the spacecraft’s mass
throughout the trajectory.

2.3.3 Engine constraints
To more accurately simulate the behavior of a real ion thruster, an additional
operational constraint has been introduced. As previously discussed, ion propulsion
systems require extended firing durations to produce significant velocity changes
due to their low thrust. However, prolonged operation can lead to overheating.

To account for this thermal constraint, the thruster in the simulation is subject
to a duty cycle. Specifically, if the engine has been active for more than 20 minutes,
it is assumed to have reached its thermal limit and is consequently shut down to
prevent overheating. Once this threshold is crossed, the thruster must undergo a
cooldown phase during which it remains inactive for a full orbital period. Only
after this cooldown can the engine resume operation.

2.4 State transition and integration
The 7-dimensional state vector of the protected object is propagated at each time
step using a state transition function, which integrates the time derivative of
the state vector as defined in equation (2.27). This function takes as input the
current state, the thrust vector (both its magnitude and direction), and the time
increment. It then computes the updated state by numerically integrating the
governing dynamics over the specified interval.

ẋ =



Ẋ

Ẏ

Ż

Ẍ

Ÿ

Z̈

ṁ


=



Ẋ

Ẏ

Ż

[a2b + aJ2 + adrag + athrustECI ]X
[a2b + aJ2 + adrag + athrustECI ]Y
[a2b + aJ2 + adrag + athrustECI ]Z

−Fmax·engine
c


(2.27)

2.5 Database generation
While the use of a real database, such as Two-Line Element (TLE) data from real
satellites tracked by the Space Surveillance Network and accessible via platforms
like Space-Track, was considered, it was ultimately discarded due to the limited
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number of conjunction events available. This scarcity would hinder meaningful
learning. Consequently, a synthetic database was generated to train the RL model,
with an emphasis on ensuring a sufficient number of high-risk conjunction events
characterized by small miss distances and non-negligible collision probabilities.

The approach is inspired by Bourriez et al. [53], with several modifications, and
is detailed below:

1. S/C initialization: The spacecraft, serving as the protected object, is
initialized using its classical orbital elements. These elements are subsequently
converted into the Cartesian state vector in the ECI frame. An initial mass
is also assigned to the spacecraft, which remains constant throughout the
simulation, as no thrust is applied.

2. Scenario definition: A simulation time interval is established, along with a
target number N of conjunction events. Each conjunction corresponds to a
debris object whose TCA is defined within a window early in the simulation.
This design ensures the S/C is undisturbed during the latter part of the
simulation, allowing it time to return to its nominal orbit post-avoidance.

3. S/C forward propagation: The spacecraft is propagated forward over the
full simulation interval by numerically integrating its equations of motion. Its
state at each predefined TCA is recorded.

4. Debris generation at TCA: At each TCA, a debris object with random mass
is generated by perturbing the S/C’s position by 10 m in a random direction,
while retaining its velocity. This introduces an initial layer of stochasticity to
the database generation process.

5. Debris backpropagation: Each debris is backpropagated from its respective
TCA to the initial time, and its initial state is recorded.

6. Velocity perturbation: To introduce a second layer of stochasticity, the
velocity of each debris at the initial time is perturbed by 10−2 m/s in a random
direction, while the position remains unchanged.

7. Debris forward propagation: The debris are then propagated forward over
the entire simulation interval, and their state vectors are stored at each time
step.

8. Conjunction reassessment: The relative position between the S/C and the
N debris is computed at every time step. The minimum distances for each
debris represent the miss distances, and the corresponding times lead to the
definition of the new TCAs, typically different from the initial assigned ones
because of the perturbations that were added.
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The final database consists of:

• The initial state vector of the S/C (as subsequent actions, during learning, will
cause deviations from the trajectory computed during database generation).

• The state vectors of all debris at every time step throughout the simulation
duration.

Since debris are non-maneuverable and passive, their positions, velocities, and
masses are assumed to be fully known over the entire duration of the simulation.

This generation procedure ensures the presence of N distinct conjunction scenar-
ios, each with varying collision probabilities. These events are critical for training
the RL model to learn avoidance maneuvers by maximizing the reward associated
with reducing collision probability. The next section outlines the method used to
compute this probability.

2.6 Collision probability estimation
The goal of this work is for a satellite to find the optimal trajectory to avoid space
debris or other spacecraft. In order to do so, the probability of collision between
two orbiting objects must be computed. This probability will then be a key term
in the reward function of the RL agent, with the aim of minimizing the risk of
collision. Due to the inaccuracies in the knowledge of the states of spacecraft and
debris, which arise from instrument limitations as well as modeling errors (e.g.,
higher order gravitational perturbations, solar radiation pressure, and third-body
effects have been neglected), the risk of collision can never be effectively zero and
it is referred to as a probability. NASA guidelines, which have been applied, for
instance, to the ISS and Space Shuttle programs, mandate that yellow warnings
are raised for collision probabilities higher than 10−5 and red warnings are raised
for probabilities higher than 10−4 [57]. The latter value has been considered as the
reference threshold in this research, in order to ensure safe conjunction events. The
computation of the collision probability between two objects in a conjunction event,
hereinafter also referred to as Pc, is of primary importance, and depends on the
position and velocity vectors of the objects and on the associated error covariance
at TCA.

The position uncertainty is normally represented by a three-dimensional Gaussian
distribution, and it has a graphical representation as an ellipsoid centered at the
object. The shape of such ellipsoid is defined by a diagonal covariance matrix
(assumption of independency), that gives an indication of the error associated with
the measurement (x, y and z are local axes centered at the object).
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Conjunction events are normally divided into two categories [58]:

• Linear relative motion (short-term conjunction): the relative velocity is consid-
ered sufficiently high to ensure a short-term encounter between the 2 objects.
Therefore, the relative motion is linear and the position error, represented by
the covariance matrix, can be considered constant.

• Non-linear relative motion (long-term conjunction): the relative velocity is
low, leading to a long-term encounter. The magnitude and direction of the
relative velocity vector both change over time, and the motion cannot be
considered linear, leading to a more complex collision probability evaluation.
Examples are formation flight and rendezvous.

Before digging into the specifics of the computation of the collision probability,
the following assumptions, which lead to a simplification of the problem, have been
made:

• All space objects are modeled as spheres, thus eliminating the need to consider
the effect of their attitude.

• Their relative velocity at TCA is considered sufficiently high, leading to a
short encounter, static covariance and linear relative motion (first category of
conjunction event presented before).

• The positional errors of the objects are constant, independent of each other,
have mean zero and are represented by Gaussian distributions.

Since the error covariance matrices are independent, they can be summed in
order to obtain a single, large covariance ellipsoid centered on the primary object
(the S/C in this case). In order to add flexibility to the procedure, the user, based
on the expected uncertainties of the case, can define the size of the ellipsoid by
specifying the axes in terms of nσ, with σ being the standard deviation in the
Gaussian distribution of the position error and n being usually in the range 3-8. A
sphere of radius R, representing the combined radii of the two objects, passes in
the vicinity of the ellipsoid, and intersects it creating a “collision tube”. A collision
happens if the relative distance between the two objects is smaller than their
combined radii. The collision probability Pc is then equal to the volume integral
of the three-dimensional probability density function (PDF) within the collision
tube [59]. Thus, larger objects, as well as more uncertainties in the estimation of
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Figure 2.6: Collision probability estimation on the encounter plane

positions and velocities (which result in a larger ellipsoid), lead to higher collision
probabilities.

It can be demonstrated that the same result can be obtained by taking the
intersection of the ellipsoid and of the collision tube with the plane perpendicular to
the relative velocity vector at the TCA, called encounter plane. On this plane, the
ellipsoid becomes an ellipse, defined by the combined standard deviations σx and
σy, and the collision tube becomes a circle of radius R, with center (µx, µy). Figure
2.6 provides the graphical depiction of this simplification on the encounter plane.
Thus, the volume integral becomes the surface integral of the two-dimensional PDF
on the area of the circle, as expressed by equation 2.28.

Pc =
ÚÚ
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1
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dxdy

(2.28)

Different authors have tried to further simplify the computation. Foster [60],
Patera [61, 62] and Alfano [63] give a numerical approximation of equation 2.28,
while Chan [64] attempts to give an analytical approximation.

In this work, Chan’s method has been employed. Under the assumption of two
spherical objects and isotropic Gaussian position errors (i.e., the covariance matrix
is proportional to the identity), Chan’s method simplifies the two-dimensional
Gaussian collision integral to a one-dimensional Rician integral.
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Assuming equal positional uncertainty along the x and y axes (i.e., σx = σy = σ),
the resulting formula becomes:

Pc = e−v/2
MØ

m=0

vm

2mm!

A
1− e−u/2
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k=0

uk

2kk!

B
(2.29)

where

u ≡
3

R

σ
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Equation 2.29, which converges after just a few terms, provides a way of computing
the collision probability between two space objects as a function of only three
terms: the combined radii R, the combined variance σ2, and the miss distance d.
The first two parameters are user-defined and depend on the physical size of the
objects and the expected uncertainty in their positional estimates.

In this work, the standard deviation σ is estimated to emulate the actual process
of covariance propagation, where the associated covariances increase over time. In
particular, σ is modeled to vary linearly with the time to TCA, reflecting the fact
that prediction uncertainty grows the further in time the event is projected.

The miss distance d has been found from the knowledge of the relative position
and relative velocity vectors, exploiting the formula to find the shortest distance
between 2 straight lines (thanks to the assumption of linear relative motion).

d =
.....(r⃗1 − r⃗2)×

v⃗1 − v⃗2

∥v⃗1 − v⃗2∥

..... (2.31)

with r⃗1− r⃗2 being the relative position vector and v⃗1− v⃗2 the relative velocity vector.
In simpler terms, equation 2.31 expresses the shortest perpendicular distance from
an object’s current position to the line along which the other object is moving
(defined by the relative velocity vector).

Figures 2.7 and 2.8 illustrate the behavior of equation 2.29, specifically show-
ing how the collision probability varies with the miss distance. The plots are
parameterized by either the combined radii or the combined variance.

42
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Figure 2.7: Pc as a function of d, parametrized by R

Figure 2.8: Pc as a function of d, parametrized by σ2

The computation of the collision probability presented in this section represents
the foundation for how the collision probability term will be computed in the
reward function.
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Chapter 3

Deep Learning techniques

The Reinforcement Learning architecture proposed in this thesis is based on
various neural networks - Multilayer Perceptron, Long Short-Term Memory, and
Transformer - each chosen for its suitability to different aspects of the learning task.
This chapter provides a quick description of these neural networks.

3.1 Multilayer Perceptrons

3.1.1 Introduction
A Multilayer Perceptron (MLP) is one of the foundational architectures in neural
networks, often used for tasks that require complex pattern recognition, such as
classification and regression. MLPs consist of multiple layers of neurons connected
in a feedforward manner, where each layer’s neurons receive inputs from the previous
layer and pass their outputs to the next layer. This layered structure enables MLPs
to learn hierarchical representations of data, making them effective in capturing
non-linear relationships that simpler models might miss [65]. An MLP is trained
using supervised learning techniques, where the network learns a mapping from
input features to a target output. This learning is achieved through a process known
as backpropagation [66], a gradient-based optimization technique that minimizes
the error by adjusting weights in the network.

3.1.2 Architecture of the MLP
An MLP (see Figure 3.1) consists of:

• Input layer: receives the input features.

• Hidden layer(s): contains neurons that perform computations on the inputs
to extract features.
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• Output layer: produces the final output of the network.

Figure 3.1: Example of MLP architecture

Each neuron j in the network computes an activation based on the weighted sum
of its inputs. The output of neuron j in layer l is given by the following formula:

z
(l)
j =

Ø
i

w
(l)
ji a

(l−1)
i + b

(l)
j (3.1)

where:

• w
(l)
ji represents the weight between neuron i in layer l − 1 and neuron j in

layer l.

• a
(l−1)
i is the activation of neuron i in the previous layer.

• b
(l)
j is the bias term for neuron j in layer l.

The activation of neuron j in layer l, denoted as a
(l)
j , is obtained by applying a

non-linear activation function f :
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a
(l)
j = f

1
z

(l)
j

2
(3.2)

Common choices for f include:

• Sigmoid: f(x) = 1
1+e−x , used to squash outputs to a range between 0 and 1 ,

often in binary classification tasks.

• Hyperbolic tangent (tanh): f(x) = tanh(x), which normalizes outputs between
-1 and 1, commonly used in hidden layers for faster convergence.

• Rectified Linear Unit (ReLU): f(x) = max(0, x), commonly used for hidden
layers to mitigate the vanishing gradient problem.

• Softmax: f (xj) = exjq
k

exk
, often applied to the output layer in multi-class

classification tasks, as it converts outputs into probabilities that sum to 1.

The output layer’s activations are then used to compute the network’s predictions,
either for classification or regression.

During the training of an MLP, an error function (or loss function) measures the
discrepancy between the predicted outputs and the true target values. Minimizing
this error is central to optimizing the MLP’s performance. Two common error
functions are:

• Sum of Squares (SSE): often used for regression tasks, the sum of squares
error is calculated as:

SSE =
Ø

i

(yi − ŷi)2
(3.3)

where yi is the true target value and ŷi is the predicted output for sample i.
The SSE penalizes large errors more heavily and works well in cases where
exact numeric predictions are required.

• Cross-Entropy: commonly used for classification tasks, especially with softmax
outputs, cross-entropy error quantifies the difference between two probability
distributions-the true distribution p and the predicted distribution q :

H(p, q) = −
Ø

i

p (yi) log (q (yi)) (3.4)
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For binary classification, this simplifies to binary cross-entropy, while for
multi-class classification, it becomes categorical cross-entropy. Cross-entropy
penalizes misclassifications more heavily, helping the model focus on distin-
guishing between different classes.

These error functions, combined with backpropagation, guide the learning
process in an MLP by adjusting weights to minimize the error on training data,
ultimately improving the network’s predictive accuracy.

Depending on the choice of activation function in the output layer and the
corresponding error function [65], the following applications are possible:

• Binary classification: sigmoid + cross-entropy for two classes.

• Multiclass classification: softmax + cross-entropy.

• Regression: linear activation function + sum of squares error function.

3.1.3 Backpropagation
Backpropagation is the key algorithm used to train an MLP [67]. It is based on the
chain rule of calculus, which helps compute the gradient of the error with respect
to each weight in the network. The steps in backpropagation are as follows:

1. Forward pass: compute the activations from the input layer through each
hidden layer up to the output layer, yielding predictions.

2. Compute error: calculate the error E between the network’s predictions and
the actual target values.

3. Backward pass: propagate the error back through the network, calculating
the gradient of the error with respect to each weight w. This involves:

• Computing the gradient of the error with respect to the output layer.
• Using the chain rule to backpropagate these gradients through each hidden

layer [66].

4. Update weights: update the weights in the network using an optimization
algorithm. A basic and widely used method is Stochastic Gradient Descent
(SGD), which updates weights by moving them in the direction that reduces
the error:

w
(l)
ji ← w

(l)
ji − η

∂E

∂w
(l)
ji

(3.5)
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where η is the learning rate, and ∂E

∂w
(l)
ji

is the gradient of the error with respect
to the weight.

Through iterative applications of these steps, the MLP learns to minimize its
error on the training data.

While SGD is simple and effective, it can suffer from slow convergence and
instability, particularly in the presence of noisy or sparse gradients. To address these
limitations, this thesis employs the Adam optimizer (Adaptive Moment Estimation),
introduced by Kingma and Ba [68]. Adam improves upon SGD by computing
adaptive learning rates for each parameter using estimates of the first moment
(the mean of the gradients) and the second moment (the uncentered variance of
the gradients). Adam often leads to faster convergence and more stable training
dynamics, especially in complex or high-dimensional optimization landscapes.

3.2 Recurrent Neural Networks

3.2.1 Introduction
Recurrent Neural Networks (RNNs) are designed for handling sequential data,
where information at each time step is contextually linked to previous and/or
future elements in the sequence. By retaining information across time steps, RNNs
can capture these temporal dependencies, making them ideal for applications
such as speech recognition, language processing, and time-series analysis. Unlike
feedforward neural networks, RNNs have connections that form cycles, allowing
information to persist through iterations. This persistence is maintained through a
hidden state, an internal representation that is updated at each time step, carrying
forward essential information about the sequence. The hidden state serves as a form
of memory, storing knowledge about prior inputs, which is crucial for understanding
and predicting sequential data.

3.2.2 Architecture of RNNs
In a simple RNN, see Figure 3.2, the architecture is structured so that each input
at time t (denoted as xt ) affects not only the immediate output but also the next
hidden state ht. The hidden state ht is updated at each time step using both the
new input and the previous hidden state ht−1:

ht = f (Wxxt + Whht−1 + bh) (3.6)
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where:

• Wx and Wh are weight matrices associated with the input and hidden state,
respectively.

• bh is a bias term.

• f is typically a non-linear activation function, such as the hyperbolic tangent
or ReLU.

Figure 3.2: Vanilla RNN (spread in time)

The output yt at each time step t is generally computed as:

yt = g (Wyht + by) (3.7)

where:

• Wy is the weight matrix that maps the hidden state to the output.

• by is the output bias term.

• g is often a softmax function for classification tasks.

The power of RNNs lies in this recursive structure, which enables them to learn
context-dependent patterns in data. For instance, in language processing, each
word’s meaning is influenced by preceding words, a dependency that RNNs are
well suited to model.
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3.2.3 The vanishing gradient problem
Despite their utility, traditional RNNs face a major challenge known as the vanishing
gradient problem. During training, the network’s parameters are updated using
backpropagation through time (BPTT), an extension of standard backpropagation
applied to sequence models. BPTT calculates gradients for each parameter by
recursively applying the chain rule over each time step in the sequence. However,
as gradients are propagated back through many time steps, they can either shrink
(vanish) or grow (explode) exponentially, depending on the eigenvalues of the weight
matrices involved.

The vanishing gradient problem was highlighted by Bengio et al. [69], who showed
that RNNs often struggle to learn patterns that require long-term dependency, thus
limiting their applicability to short sequences. To address this, several approaches
have been proposed, such as gradient clipping to control exploding gradients [70]
and, more significantly, the development of specialized RNN architectures like Long
Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRUs) [71].

3.2.4 Long Short-Term Memory
Long Short-Term Memory (LSTM) networks were introduced by Hochreiter and
Schmidhuber in 1997 [72] specifically to tackle the vanishing gradient problem.
LSTMs use a more complex cell structure than traditional RNNs, with a set of gates
that regulate information flow, allowing them to retain long-term dependencies
effectively. This architecture is especially beneficial for tasks that require the
network to remember information over long sequences, such as machine translation,
music generation, and time-series forecasting. The LSTM cell consists of three
primary gates that control the flow of information into and out of the cell state
(see Figure 3.3).

Forget gate: controls which parts of the previous cell state should be retained
or discarded. This gate is crucial for "forgetting" irrelevant information, allowing
the cell to focus on more pertinent aspects of the sequence.

Ft = σ (WfXt + UfHt−1 + bf ) (3.8)

where σ is the sigmoid activation function, Wf and Uf are weights, and bf is
a bias term. The forget gate ensures that unnecessary information is not carried
forward, thereby preserving essential patterns.

Input gate: controls how much of the new input is stored in the cell state. The
input gate helps incorporate new information relevant to the sequence, helping the
network learn contextually significant details.
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It = σ (WiXt + UiHt−1 + bi)
C̃t = tanh (WCXt + UCHt−1 + bC)

(3.9)

Here, It determines the amount of new information added to the cell state, and
C̃t is the candidate cell state that includes the new data to be remembered.

Cell state update: the cell state Ct at each time step combines retained and
newly added information.

Ct = Ft ⊙ Ct−1 + It ⊙ C̃t (3.10)

where the symbol ⊙ represents the Hadamard (elementwise) product. This
mechanism allows LSTMs to maintain long-term information that is critical for
learning sequential dependencies, even over lengthy input sequences.

Output gate: determines the final output of the LSTM cell, which is influenced
by the updated cell state.

Ot = σ (WoXt + UoHt−1 + bo)
Ht = Ot ⊙ tanh (Ct)

(3.11)

The output gate controls which part of the cell state should contribute to the
hidden state Ht, ensuring that the LSTM’s output reflects relevant long-term and
short-term information from the sequence.

Figure 3.3: Architecture of an LSTM unit

Due to these gates, LSTMs can effectively handle long sequences without suffering
from the vanishing gradient problem, making them highly successful in various

52



3.3 – The Transformer Encoder (BERT)

sequential modeling tasks. Graves et al. [73] demonstrated the power of LSTMs for
speech recognition tasks, while Sutskever et al. [74] showcased their effectiveness
in machine translation.

3.2.5 LSTM for collision avoidance
Long Short-Term Memory networks are particularly effective for tasks involving
sequential data with long-term dependencies, making them suitable for space debris
avoidance applications where the trajectories and relative positions of debris over
time are critical. In space debris avoidance, LSTMs can be used to process sequences
of positional data, enabling autonomous spacecraft systems to predict and react
to collision threats dynamically. This capability is especially valuable in complex
orbital environments, where the number of potential debris threats may vary over
time. In this case, an LSTM encoder can handle the variable-length sequence and
produce a fixed-length summary vector, which encapsulates information about
many debris [52].

Another important use of LSTMs is in feature extraction: they provide a
structured representation of time series data by capturing temporal dependencies
and maintaining a belief over the true state of the system through the integration
of historical observations [53]. This concept will be explored further in the next
chapter.

3.3 The Transformer Encoder (BERT)

3.3.1 Introduction
The Transformer architecture, introduced by Vaswani et al. [75], represents a
breakthrough in deep learning for natural language processing (NLP) and other
sequence-based tasks. The original Transformer model comprises two main com-
ponents: the encoder and the decoder. The encoder is responsible for processing
the input sequence and generating a set of context-aware representations, while
the decoder uses these representations to produce the output sequence, typically in
tasks such as machine translation.

In the encoder, a series of self-attention and feedforward layers transform the
input into a sequence of embeddings that capture the relationships between tokens
across the entire sequence. The decoder, meanwhile, uses these embeddings and
applies an additional attention mechanism, called encoder-decoder attention, which
allows it to focus on relevant parts of the encoder’s output when generating each
token in the output sequence. This encoder-decoder structure enables the Trans-
former to model both context within the input and dependencies between the input
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and output sequences, making it highly effective for translation, summarization,
and other sequence generation tasks.

BERT (Bidirectional Encoder Representations from Transformers) focuses exclu-
sively on the encoder part of the Transformer architecture, leveraging its powerful
bidirectional self-attention mechanisms to understand contextual information within
a sequence of text. By pretraining on large amounts of text data, BERT learns to
generate rich, context-aware embeddings, which can be fine-tuned for various NLP
tasks.

3.3.2 Self-attention mechanisms
At the core of the Transformer model is the self-attention mechanism, which enables
each position in the input sequence to attend to (or focus on) other positions,
regardless of their distance. This mechanism overcomes the limitations of sequential
processing in RNNs by enabling the model to capture context across the entire
sequence at once, allowing it to handle long sequences without losing information.

The self-attention mechanism operates through the following steps:

1. Query, Key, and Value computations: for each input token xi in the sequence,
the model computes three vectors: a query vector Qi, a key vector Ki, and
a value vector Vi. These vectors are derived through linear transformations
applied to the input:

Qi = xiW
Q, Ki = xiW

K , Vi = xiW
V (3.12)

where W Q, W K , and W V are learned weight matrices for the query, key, and
value projections, computed through back-propagation (supervised learning).

2. Attention scores: the attention score between two tokens i and j is calculated
by taking the dot product of Qi and Kj, then scaling by the square root of
the dimension dk of the key vectors to avoid extremely large values. These dot
products are then passed through a softmax function to generate attention
weights, effectively turning them into probabilities.

Attention (Q, K, V ) = softmax
A

QKT

√
dk

B
V (3.13)

where QKT
√

dk
represents the scaled dot-product attention [75, 76].
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3. Weighted sum of values: the output for each token is computed by taking the
weighted sum of all value vectors V , using the attention weights computed in
the previous step. This process allows each token to incorporate contextual
information from other tokens in the sequence.
To further enhance the model’s ability to capture different types of relationships
between tokens, the Transformer uses multi-head attention. In multi-head
attention, multiple attention heads are computed in parallel, each with its own
set of learned weight matrices. The outputs from all heads are concatenated
and linearly transformed:

MultiHead (Q, K, V ) = Concatenate (head1, . . . , headh) W O (3.14)

where each headi = Attention
1
QW Q

i , KW K
i , V W V

i

2
, and W O is a learned

weight matrix [75].

3.3.3 BERT architecture
BERT [77], developed by Devlin et al., builds upon the Transformer encoder
architecture and applies it in a bidirectional manner to better understand language
context. BERT is pretrained on large-scale text corpora using two main tasks:
Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). This
bidirectional pretraining allows BERT to generate rich contextual embeddings for
words by considering both left and right context.

The architecture of BERT consists of a stack of Transformer encoder layers,
each comprising the following components:

1. Input embedding: the input tokens are first mapped to embeddings, which
represent each word in a continuous vector space. Additionally, BERT adds
positional encodings to these embeddings to inject information about the order
of words, since Transformers lack inherent sequentiality:

Embedding (xi) + PositionalEncoding (i) (3.15)

The positional encoding for each position i in the sequence is given by:

PE(i, 2k) = sin
3

i

100002k/dmodel

4
, PE(i, 2k + 1) = cos

3
i

100002k/dmodel

4
(3.16)
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where dmodel is the embedding dimension.

2. Multi-head self-attention: each token in the sequence attends to other tokens
using the multi-head self-attention mechanism, as described above. This
mechanism enables BERT to capture complex, bidirectional dependencies
between tokens.

3. Add & Norm: the output of the attention mechanism is combined with the
original input via a residual connection and then normalized to stabilize
training:

Add& Norm(X) = LayerNorm (X + Attention(Q, K, V )) (3.17)

This normalization helps mitigate issues related to gradient vanishing/explosion
[78].

4. Feedforward Neural Network (FFN): the output from the Add & Norm layer
is passed through a feedforward neural network, which typically consists of
two linear transformations separated by a ReLU activation:

FFN(x) = max (0, xW1 + b1) W2 + b2 (3.18)

This network enables the model to learn complex patterns in the input. The
FFN is applied independently to each position in the sequence matrix.

5. Add & Norm: another residual connection and normalization are applied after
the feedforward layer:

Add & Norm(X) = LayerNorm (X + FFN(X)) (3.19)

This structure is repeated across N layers, and each layer allows the model to
progressively refine its understanding of the input sequence.
Figure 3.4 illustrates the structure of each Transformer Encoder layer used in
BERT. The model’s ability to learn bidirectional relationships and capture
complex dependencies has led to state-of-the-art performance in numerous
NLP tasks.
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Figure 3.4: Architecture of the Transformer Encoder

3.3.4 Transformers for Reinforcement Learning

The Transformer architecture has gained traction in RL as a tool to tackle chal-
lenges such as long-term dependencies, high-dimensional state spaces, and partial
observability. Traditional neural network architectures, such as CNNs and RNNs,
while successful, often struggle with the complexity of RL tasks, particularly in cap-
turing long-range dependencies. Transformers, with their self-attention mechanism
and capacity for parallel processing of sequence data, are proving to be powerful in
overcoming these limitations.

A Transformer expressively tailored for this problem is the Decision Transformer
(DT) [79], which reframes RL as a conditional sequence modeling task. It predicts
actions based on sequences of rewards, observations, and past actions (see Chapter
4). The model is trained using supervised learning, treating trajectories as examples.
While DT has demonstrated strong performance on benchmark offline RL tasks,
it is fundamentally limited by its reliance on high-quality, diverse offline datasets.
Since it does not interact with the environment during training, DT struggles
in settings where successful trajectories are rare, exploration is essential, or the
dataset is suboptimal. This restricts its application in dynamic or safety-critical
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domains like autonomous control or space robotics.
Another notable application in the space domain has been the use of Transformers

for trajectory optimization in spacecraft rendezvous missions. Guffanti et al.
[80] demonstrated how the Transformer architecture can effectively learn policies
for complex control tasks using offline Reinforcement Learning. In this context,
the Transformer model warm-starts and enhances classical optimization-based
methods by leveraging attention over sequences of past states, actions, and rewards,
improving both sample efficiency and performance robustness over traditional
methods.

3.4 Normalization and regularization in neural
networks

Layer normalization normalizes inputs across all features within a single data
sample. For each input to a layer, it computes the mean and variance over all
the neurons in that layer for the given sample, and uses these statistics to rescale
and shift the activations, an approach that has proven especially beneficial in
Transformers.

Dropout acts as a regularization technique by randomly deactivating a subset
of neurons during training, which prevents overfitting and encourages redundancy
and robustness in learned features.

Weight decay, another regularization method, penalizes large weights by adding
a term to the loss function proportional to the squared magnitude of the weights,
promoting simpler models that generalize better to unseen data.

Together, these techniques contribute to the stability, efficiency, and generaliza-
tion ability of neural networks. In the Transformer encoder, layer normalization
and dropout are applied after the multi-head attention and feedforward sub-layers
(see Figure 3.4), while weight decay is employed in the optimization of both the
actor and critic MLPs.
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Chapter 4

Reinforcement Learning
framework

4.1 Fundamentals of Reinforcement Learning
Reinforcement Learning is a class of machine learning algorithms where an agent
learns to make decisions by interacting with an environment. The agent’s objective is
to maximize cumulative rewards over time by taking actions that lead to favorable
outcomes. Unlike supervised learning, where models are trained using labeled
datasets, RL is characterized by the trial-and-error nature of the agent’s learning
process. The agent learns the best strategy (policy) through interactions with the
environment and feedback in the form of rewards or penalties. The framework of
RL is formalized using Markov Decision Processes, which define the environment in
terms of states, actions, and rewards. This section provides an in-depth discussion of
RL, covering its foundations, key concepts, Bellman equations, and an introduction
to Deep Reinforcement Learning.

4.1.1 Story of Reinforcement Learning
The origins of Reinforcement Learning can be traced back to Edward Thorndike
in the early 20th century. Thorndike’s Law of Effect [81] proposed that responses
followed by satisfying consequences are more likely to be repeated, while responses
followed by unsatisfactory consequences are less likely to recur. This principle was
foundational for developing reward-driven learning, a core idea that would later be
formalized in computational models of decision-making.

In the 1980s, RL began to take its modern shape with Richard Sutton and Andrew
Barto leading the development of temporal-difference learning. They formalized
the RL framework by introducing value functions and Bellman equations, which
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provided a structured way to solve sequential decision-making problems. Sutton
and Barto’s 1998 book, Reinforcement Learning: An Introduction [82], formalized
the concepts of value iteration, policy iteration, and the exploration-exploitation
trade-off.

The most significant advancement in RL came in the 2010s, when Deep Q-
Networks combined Deep Learning with RL. Introduced by Mnih et al. in 2015
[83], DQN used deep neural networks to approximate the action-value function,
allowing RL to scale to environments with large, high-dimensional state spaces,
such as playing Atari games directly from raw pixel inputs. The success of Deep RL
has revolutionized the field, with DQN, PPO, and other algorithms being applied
to complex tasks, including robotics, autonomous vehicles, and AlphaGo.

4.1.2 Agent-environment interaction

Figure 4.1: The agent-environment interaction

The agent interacts with its environment in a sequential decision-making process,
where it must choose actions at each step to maximize its cumulative reward (see
Figure 4.1, taken from [84]). This interaction is formalized as a Markov Decision
Process, a mathematical framework used to model decision-making in situations
where outcomes are partly random and partly under the control of an agent. An
MDP is defined by the tuple (st, at, P , rt+1, st+1):

• st: State of the environment at time t.

• at: Action performed by the agent at time t.

• P (st+1|st, at): Transition function; probability of moving from state st to state
st+1 after taking action at.

• rt+1(st|at): Reward received by the agent after taking action at in state st.
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The defining characteristic of an MDP is the Markov property, which states
that the next state and reward depend only on the current state and action, not
on the full history of previous states and actions.

The agent’s goal is to find a policy π(a|s), a mapping from states to actions,
that maximizes the expected cumulative return. The return Gt is defined as the
total discounted reward the agent will receive starting at time t:

Gt =
∞Ø

k=0
γkrt+k+1 (4.1)

where γ is the discount factor, controlling the relative importance of immediate
versus future rewards. A small γ prioritizes immediate rewards, while a larger γ
encourages the agent to consider long-term consequences. By maximizing Gt, the
agent learns the optimal policy that leads to the most beneficial actions over time.

4.1.3 Value functions
To evaluate the performance of a policy, we consider the agent’s interaction with
the environment over time, which results in a trace, a sequence of states, actions,
and rewards. Formally, a trace is a sequence of the form (s0, a0, r1, s1, a1, r2 . . . ),
generated by following a policy π in the environment. However, since both the
environment and the policy can be stochastic, repeating the same policy may result
in different traces. Therefore, rather than focusing on the return from a single
trace, we are interested in the expected cumulative reward over all possible traces
induced by a given policy.

The agent evaluates states and actions using value functions:

• The state-value function V π(s) represents the expected return from state s
following policy π:

V π(s) = Eπ[Gt|st = s] (4.2)

• The action-value function Qπ(s, a) represents the expected return from taking
action a in state s, then following policy π:

Qπ(s, a) = Eπ[Gt|st = s, at = a] (4.3)

4.1.4 Optimal policies
An optimal policy, denoted by π⋆, is a policy that yields the highest expected return
from every state. More formally, a policy π is considered optimal if its state-value
function V π(s) is greater than or equal to that of any other policy π′ for all states
s ∈ S. All optimal policies share the same optimal state-value function, denoted
by V ⋆, defined as
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V ⋆(s) .= max
π

V π(s) (4.4)

and the same optimal action-value function, denoted by Q⋆, defined as

Q⋆(s, a) .= max
π

Qπ(s, a) (4.5)

for all s ∈ S and a ∈ A(s).
The Bellman optimality equations formalize the recursive structure of these

optimal value functions. They express the idea that the value of a state, or state-
action pair, under an optimal policy equals the expected sum of the immediate
reward and of the discounted value of the next state, assuming the best possible
action is taken thereafter.

These recursive relationships are central to computing optimal policies and they
form the basis of dynamic programming methods such as value iteration and policy
iteration.

4.1.5 Taxonomy of Reinforcement Learning methods
Reinforcement Learning methods can be broadly categorized based on their learning
paradigms and how they represent and optimize decision-making strategies.
Online vs. offline learning:

• Online RL: The agent learns from interacting directly with the environment,
updating its policy as it gains new experiences.

• Offline RL: The agent learns from a fixed dataset of past experiences, with no
further interaction during the learning process.

Value-based methods: In value-based RL, the agent learns a value function that
estimates the expected return from each state or state-action pair. Q-learning and
SARSA are the most common value-based methods. These methods update the
action-value function Q(s, a) to find the optimal policy by selecting actions that
maximize the value function.
Policy-based methods: In policy-based RL, the agent directly learns the policy
function π(a|s), which defines the probability of taking action a in state s. An
example is the REINFORCE algorithm, which uses policy gradients to adjust the
policy based on the observed rewards.
Actor-critic methods: Actor-critic methods combine both value-based and policy-
based approaches. The actor updates the policy π, while the critic evaluates the
chosen actions by computing the value function V π(s) or Qπ(s, a). This combination
allows the agent to learn both the optimal policy and the value of states or actions.
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Proximal Policy Optimization, used in this thesis, is an online actor-critic
algorithm that balances learning stability and policy improvement by constraining
updates to the policy. Its robustness and efficiency make it one of the most widely
used algorithms in Deep Reinforcement Learning.

4.2 Collision avoidance as an MDP
The problem of spacecraft navigation in a cluttered low Earth orbit-where the
agent must simultaneously avoid collisions, restore its nominal orbit, and minimize
fuel consumption-can be naturally formulated as a Markov Decision Process. In
this setting, the spacecraft acts as the agent, while the environment comprises the
dynamically evolving space populated by orbital debris.

At each discrete time step t, the agent observes a state st, representing informa-
tion such as the spacecraft’s position, velocity, and the relative configuration of
surrounding debris. Based on this state, it selects an action at, drawn from a set of
control inputs - namely, thrust magnitude (engine) and orientation angles (ϕ, θ),
as defined in Section 2.3.2. The environment responds via a transition function,
previously detailed in Section 2.4, which determines the next state st+1 based on
the agent’s action and the system dynamics.

The spacecraft receives a scalar reward rt+1 from the environment, quantifying
the desirability of its action with respect to multiple objectives: minimizing proxim-
ity to debris (collision avoidance), conserving fuel, and restoring orbital parameters.
These reward signals guide the learning or optimization of a policy that balances
safety and efficiency.

4.3 Reward function engineering

4.3.1 Purpose of the reward function

The reward function is a central element in Reinforcement Learning, as it constitutes
the sole feedback mechanism available to the agent. It quantifies the desirability
of the agent’s actions by assigning numerical values based on their impact on the
environment. Through the process of maximizing the expected return Gt, the
discounted sum of future rewards, the agent is encouraged to learn an optimal
policy π⋆, as discussed in Section 4.1.4.

In the specific case of spacecraft collision avoidance, the primary objective is
to prevent collisions between the protected object and surrounding space debris.
However, additional performance objectives are also critical, albeit sometimes
conflicting with the primary goal. In this thesis, two such secondary objectives are
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addressed: minimizing fuel consumption and minimizing the deviation from the
spacecraft’s original operational trajectory.

The subsections below present the implementation of each reward component
corresponding to these objectives. Each component has been formulated to produce
only negative or zero values. This design choice ensures that the maximum
achievable return is zero, which provides a clear and stable target for the learning
process and facilitates convergence during training.

4.3.2 Collision probability term

While earlier works have employed simplified collision terms, such as assigning a
penalty only upon actual collision [50], or applying a penalty inversely proportional
to the miss distance [85], the spacecraft collision avoidance scenario presents
additional complexities. As discussed in Section 2.6, it is fundamentally impossible
to determine with certainty whether two space objects will collide, due to inherent
limitations in sensor accuracy and uncertainties in orbital modeling. This requires
the design of a reward function based on the estimated collision probability, which
depends on factors such as the miss distance, the physical dimensions of the objects,
and their associated covariance matrices (see equation 2.29).

Inspired by prior work on the topic [48, 52], a logarithmic formulation has been
adopted for the collision penalty term in the reward function. Each debris object i
is included in this term only if its estimated collision probability with the protected
object, denoted by Pi, exceeds the threshold of 10−4 introduced in Section 2.6.

The collision penalty rcollision is thus computed as:

rcollision =


Ø

i

3
4− log10

3
Pi

10−8

44
if Pi > 10−4

0 otherwise

This formulation ensures that higher penalties are assigned to more threatening
debris, while ignoring negligible threats. Figure 4.2 shows the trend of the reward
term as a function of Pi.
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Figure 4.2: rcollision as a function of Pi

4.3.3 Fuel efficiency term
Rather than penalizing the absolute magnitude of the thrust vector [86], or the
fraction of the total available ∆V expended at each time step t [87], the fuel
consumption penalty in this work uses the variable engine, which ranges from 0 to
1 and is directly proportional to the magnitude of the applied thrust (as defined in
Section 2.3.2).

rfuel = −engine (4.6)

4.3.4 Trajectory deviation term
Collision avoidance maneuvers, as well as orbital perturbations, inevitably cause the
spacecraft to deviate from its nominal operational orbit. Consequently, a restore
phase is required to bring the S/C back to its reference trajectory.

Although perturbations induce natural variations in most orbital elements, in-
cluding changes in the semi-major axis and eccentricity due to residual atmospheric
drag, and shifts in the right ascension of the ascending node and argument of
periapsis due to the J2 gravitational effect (as discussed in Section 2.2.2), the restore
phase is traditionally concerned only with the semi-major axis a, the eccentricity e,
and the inclination i.
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If perturbations are neglected, restoring the orbit serves solely to counteract the
effects of the avoidance maneuver. However, when perturbations are present, this
reward term also encourages the agent to perform station-keeping, thus compensat-
ing for the drift caused by the perturbative environment, even in the absence of
avoidance events.

To prevent overcorrection, a buffer zone is defined around the nominal orbital
parameters. Denoting the initial orbital elements with subscript 0, the trajectory
deviation penalty is defined as:

rdeviation = −|at − a0| · 1{|at−a0|>1 km} − 1000 · |et − e0| · 1{|et−e0|>2·10−4}

−10 · |it − i0| · 1{|it−i0|>10−1 deg}
(4.7)

Here, 1{·} denotes the indicator function, which equals 1 if the condition inside
the braces is satisfied, and 0 otherwise. This ensures that each penalty term is
applied only when the corresponding deviation exceeds its predefined threshold,
effectively ignoring minor variations that fall within acceptable operational margins.

4.3.5 Total reward
The reward received by the agent at each time step is:

rt = α · rcollision + β · rfuel + δ · rdeviation (4.8)
The three positive constants must be accurately chosen in order to balance the

competing objectives of the trajectory optimization scenario.
An additional concept has been introduced in order to achieve the right balance

of the goals. The relative weights assigned to the different reward components
are adapted dynamically depending on the maneuvering context. Specifically, the
coefficient β, which scales the fuel penalty term rfuel, retains its previous value if
no maneuver is required (i.e., when both rcollision = 0 and rdeviation = 0. Otherwise,
it is set to zero to prioritize safety or orbital correction.

β =
βold if rcollision = 0 and rdeviation = 0

0 otherwise
(4.9)

Similarly, the coefficients α and δ, which weight the collision probability and
trajectory deviation terms respectively, are adjusted based on whether a critical
debris lies ahead. A debris is considered critical if its predicted time of closest
approach with the satellite occurs within the next three hours and the associated
collision probability is at least 10−4. When no such threat is present, collision
avoidance is irrelevant (α = 0), and the agent focuses entirely on restoring or
maintaining its orbit (δ = δold). Conversely, when a critical threat exists, 90% of
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the weight is assigned to the collision penalty and 10% to orbit restoration, thereby
prioritizing safety while still applying a corrective influence to prevent excessive
drift from the initial trajectory.

(α, δ) =
(0, δold) if no critical debris ahead

(0.9 αold, 0.1 δold) if critical debris ahead
(4.10)

This adaptive scheme enables the agent to shift its focus between collision
avoidance, fuel conservation, and trajectory recovery, depending on the evolving
threat scenario.

4.4 Proximal Policy Optimization
Proximal Policy Optimization is a family of policy gradient algorithms that aim to
optimize a stochastic policy in a manner that is both sample-efficient and stable.
Introduced by Schulman et al. [88], PPO is conceptually derived from Trust Region
Policy Optimization (TRPO) [89], which introduced the idea of a constrained
policy update using a trust region. Instead of enforcing a strict constraint on
policy changes as in TRPO, PPO uses a clipped surrogate objective to prevent
excessively large updates. This clipping mechanism ensures that the new policy
does not deviate too drastically from the old one, promoting stable training while
avoiding the complexity of second-order optimization.

4.4.1 Main principles of PPO
At the heart of PPO lies the actor-critic architecture, which uses two separate neural
networks: one for the actor (policy network) and one for the critic (value network).
The actor is responsible for selecting actions according to a stochastic policy πθ(a|s).
In this thesis, the control parameters engine, ϕ and θ are sampled from the Gaussian
distributions generated by the policy network at each time step. The critic, on the
other hand, evaluates the quality of the current state by estimating the state-value
function V π(s). These networks have distinct objectives and loss functions: the
actor is trained to maximize the expected advantage-weighted probability ratio
(with clipping for stability), and the critic is trained to minimize the mean squared
error between predicted and actual returns. This dual-network architecture allows
PPO to decouple action selection from value estimation, promoting more stable
and robust learning.

PPO builds on the policy gradient framework and addresses the issue of instability
in RL caused by excessively large policy updates. These abrupt changes can lead
to what is known as "policy collapse", where the new policy becomes drastically
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different from the previous one, possibly resulting in catastrophic forgetting or
convergence to a suboptimal behavior.

4.4.2 Actor loss and critic loss
The actor loss LCLIP (θ), which depends on the weights θ of the actor MLP, is
defined as the negative of the surrogate objective function:

LCLIP (θ) = −Et [min(ρt(θ)Ât, clip(ρt(θ),1− ϵ,1 + ϵ)Ât)] (4.11)

where ρt(θ) = πθ(at|st)
πθold

(at|st)
is the importance sampling ratio between the new and

old policies. The clip function bounds the ratio between 1− ϵ and 1 + ϵ (with ϵ
being called clip ratio), which effectively prevents large policy updates.

Ât is the advantage function, which estimates how much better (or worse) taking
an action at in a state st is, compared to the expected value of the state under the
current policy. Formally, it is defined as:

Ât = Q(st, at)− V (st) (4.12)
where Q(st, at) is the action-value function and V (st) is the state-value function.

Intuitively, if Ât is positive, the action at was better than expected and should be
encouraged; if negative, it was worse than expected and should be discouraged.

The advantage is typically computed using Generalized Advantage Estimation
(GAE) [90]:

Ât =
∞Ø

l=0
(γλ)lδt+l (4.13)

where γ is the discount factor, λ is the GAE parameter controlling the bias-
variance trade-off, and δt is the temporal difference error given by:

δt = rt + γV (st+1)− V (st) (4.14)

where rt is the reward at time step t, V (st+1) is the estimated value of the next
state and V (st) is the estimated value of the current state.

The critic loss LV F (w), or value function loss, which depends on the weights w
of the critic MLP, is defined as:

LV F (w) = Et[(Vw(st)− V target
t )2] (4.15)

This loss represents the mean squared error between the predicted value Vw(st),
which is computed by the critic and is also used in the estimation of the advantage,
and the target value V target

t , where V target
t is computed using the discounted sum

of rewards.
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To prevent excessive shifts in the critic’s predictions during training-which could
destabilize advantage estimation-PPO implementations often apply value function
clipping, which constrains the update of Vw(st) within a small range relative to its
previous value.

4.4.3 Total PPO loss and entropy
In PPO, the total loss combines contributions from the policy (actor), the value
function (critic), and the entropy. The total loss is defined as:

LP P O = LCLIP (θ) + c1L
V F (w)− c2Et[H[πθ(·|s)]] (4.16)

The total loss guides the update of the weights of the MLPs of the actor and
critic:

θnew = θold − η∇θ LP P O(θ, w)

wnew = wold − η∇w LP P O(θ, w)
(4.17)

where η is the learning rate, in this case the same for both the actor and critic
networks.

In continuous action spaces where πθ is modeled as a Gaussian distribution
N (µ, σ2), the entropy has the analytical form:

H[πθ(·|s)] = 1
2 log(2πeσ2) (4.18)

which depends directly on the mean of the standard deviations of the actions.
In the total loss (equation 4.16), this entropy term appears with a negative sign.
Therefore, minimizing the total loss implicitly promotes the maximization of entropy.
This mechanism encourages the policy to maintain stochasticity during the initial
stages of training, mitigating the risk of premature convergence to suboptimal
deterministic behaviors. As training progresses, however, the policy becomes
increasingly confident in its action choices, which is reflected by a reduction in
variance. Consequently, the entropy naturally decreases in the later phases of
training.

4.4.4 Rollout and mini-batch construction
Training in PPO relies on collecting a batch of experiences through a process called
rollout. A rollout consists of sequences of observations, actions, rewards, dones
(episode termination flags), value estimates, and log-probabilities of actions taken
under the old policy. These data tuples are stored in a structure commonly referred
to as the rollout buffer. Each step during the rollout includes storing the current
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state st, the action at sampled from the policy πθold
, the log-probability of the

action, the received reward rt, a terminal signal, and the value prediction V (st)
from the critic network. Once the entire rollout is complete, which typically spans
a fixed number of time steps, GAE is applied to compute the advantage estimates
Ât for each timestep.

The buffer also computes the target values V target
t for critic training using the

discounted sum of rewards:

V target
t =

T −t−1Ø
l=0

γlrt+l + γT −tV (sT ) (4.19)

where T is the rollout horizon and γ the discount factor. Once all advantages
and values are calculated, the entire buffer is shuffled. PPO then performs several
epochs of optimization over mini-batches, which are subsets randomly sampled
from the full rollout buffer. This approach allows the model to reuse data multiple
times, enhancing sample efficiency while keeping the training stable thanks to the
clipped objective function. The data are iterated through multiple epochs, and
after each mini-batch the weights and biases of the actor and critic networks are
updated by backpropagation.

4.5 Deep POMDP

4.5.1 Definition and motivation
In Reinforcement Learning, Markov Decision Processes (MDPs) provide a formal
framework where an agent interacts with an environment fully observable at each
timestep. An MDP is defined by the tuple (st, at, p, rt+1, st+1), as described in
Section 4.1.2.

In many real-world applications, however, the agent cannot fully observe the
environment. This gives rise to Partially Observable Markov Decision Processes
(POMDPs). A POMDP extends an MDP by including a set of observations Ω and
an observation function O, forming the tuple (S, A, P , rt+1, Ω, O). The elements
of the tuple are:

• S: Set of possible environment states (hidden from the agent).

• A: Set of actions available to the agent.

• P (st+1|st, at): Transition function; probability of moving from state st to state
st+1 after taking action at.

• rt+1(st|at): Reward received by the agent after taking action at in state st.
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• Ω: Set of possible observations the agent can receive.

• O(ot+1|st+1, at): Observation function; probability of observing ot+1 after
transitioning to state st+1 using action at.

The key distinction is that in a POMDP the true state st is hidden, and the
agent must infer it based on the observation history. This leads to the concept of a
belief state bt(st), which is a probability distribution over possible states given the
past observations and actions.

4.5.2 Classical belief state estimation
In classical POMDP theory, the belief state is updated using Bayesian filtering:

bt+1(st+1) = η ·O(ot+1|st+1, at)
Ø
s∈S

P (st+1|st, at) · bt(st) (4.20)

where η is a normalization constant.
Other classical belief estimation methods include the Kalman filter for linear

Gaussian systems, the Extended Kalman filter and Unscented Kalman filter for
nonlinear systems, and the Particle filter for highly nonlinear or non-Gaussian
models.

These methods are tractable only for small state spaces or simple dynamics.
Hence, modern RL employs deep networks for belief estimation.

4.5.3 Deep belief estimation
Before exploring specific architectures, it is worth noting how the transition from
the belief as a probability distribution to a vector representation is justified. In
classical formulations, the belief state bt(st) is a distribution over the state space
S, which can be high-dimensional or continuous. Storing and manipulating such
distributions explicitly is intractable in most real-world settings. Therefore, deep
learning approaches approximate the belief state using a fixed-dimensional vector
b̂t, learned from historical observations and actions. This embedding captures the
sufficient statistics of the history relevant to future decision-making and can be
trained together with the policy and value networks.

In deep RL, the belief state is often approximated using recurrent or attention-
based neural networks.

4.5.3.1 RNNs for deep POMDPs

Recurrent neural networks and their variants such as LSTMs or GRUs are widely
used. The hidden state ht of the RNN implicitly tracks the belief:

ht = RNN(ot, ht−1)
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The policy and value function are then conditioned on ht:

π(at|ht), V (ht)

The policy effectively becomes a mapping from the hidden state of the RNN, best
representation of the actual state, to the set of possible actions.

While RNNs handle partial observability well for short temporal contexts, they
suffer from vanishing gradients and memory limitations over long sequences.

4.5.3.2 Transformers for deep POMDPs

Transformers have emerged as powerful alternatives due to their ability to capture
long-range dependencies via self-attention mechanisms.

In particular, a sliding window of the last L tokens (which derive from the
observations) can be fed to the Transformer encoder:

[xt−L+1, . . . , xt]

The Transformer produces output embeddings [zt−L+1, . . . , zt]. The belief represen-
tation b̂t can be computed either as the last output token zt, as a mean or max
pooling over all zi, or as a special learned token (e.g. [CLS] token in BERT).

This b̂t is then used by the policy and value function:

π(at|b̂t), V (b̂t)

4.5.4 Proposed architecture

Figure 4.3 illustrates the architecture proposed in this thesis for integrating belief
estimation with PPO in a deep POMDP setting.
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Figure 4.3: Deep POMDP PPO architecture

In this architecture, the agent makes decisions based on partial observations of
the environment, such as in spacecraft collision avoidance, where sensing limitations
prevent precise knowledge of the position and velocity of space objects. To address
this, the architecture maintains a belief over the environment’s state, updated using
a temporal sequence of observation vectors. After that sequence is memorized, for
an entire mini-batch, the procedure is as follows, and it is performed for all the
time steps in the mini-batch:

1. The observation vector, of size 7 + 6N , where N is the number of debris (see
Section 2.1.3), is split into the 7 × 1 vector representing the S/C state and
the N separate 6× 1 vectors for each debris.

2. The 6× 1 debris vectors are processed by an LSTM, which summarizes the
set of debris into a single fixed-length vector, represented by the hidden state
of the last LSTM layer. The output dimension matches the size of the hidden
state.

3. This summary vector is concatenated with the S/C vector to produce a
fixed-size representation of the full environment.

4. Before applying positional encoding, each input vector is first projected to a
higher-dimensional space to enrich its representational capacity. The resulting
sequence is then processed by Nx layers of a Transformer encoder. To handle
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variable-length input during inference, particularly at the beginning of each
episode, when the mini-batch is gradually assembled, a buffer with zero
padding is used to ensure uniform input length. After Transformer encoding,
the output is projected back down to a 13-dimensional vector.

The encoded representation of the environment is then passed to the PPO agent.
During training, the entire mini-batch of Transformer outputs is used, while during
inference only the final output vector, corresponding to the current time step, is
retained. This final vector is treated as the approximated belief state b̂t. Based on
this belief, the actor MLP produces a probability distribution over the available
actions, and the critic MLP estimates the state-value function.

Building on the work of C. Mu et al. [52], the inclusion of the LSTM in the
architecture is motivated by the need to produce a fixed-length input for the
Transformer. Although LSTMs are typically employed for time series data, their
ability to encode sets of variable-length, time-independent vectors makes them
suitable here. By leveraging its memory cells and gating mechanisms, the LSTM
compresses the variable number of debris vectors into a fixed-size summary. This
allows the downstream Transformer to receive a consistent input shape, avoiding
architectural modifications when the number of debris changes.

4.5.5 Training considerations
It is important to highlight that training the POMDP architecture involves es-
timating all network parameters via backpropagation. The total loss, defined
in Equation 4.16, is first propagated through the actor and critic networks, and
subsequently through the Transformer and LSTM modules. After all gradients
have been computed, the network weights are finally updated using the Adam
optimizer.

Moreover, another important distinction is that, when the Transformer is in-
cluded in the architecture, the rollout buffer is not shuffled before training. Indeed,
the Transformer needs ordered temporal sequences to learn the dynamics of the
simulation scenario.
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Chapter 5

Results

5.1 Simulation scenario and initial conditions

The simulation scenario consists of one protected object and ten debris. To introduce
variability in the dataset, the physical properties of the debris are randomly sampled
from uniform distributions. Table 5.1 summarizes the physical parameters of both
the spacecraft and the debris.

The total cross-sectional area, which is necessary for computing the residual
drag acceleration, is calculated as the sum of the area of the solar arrays and the
projected area of the main body. The latter is derived under the assumption that
the object is a uniform-density sphere, using its mass and internal density ρ.

Parameter S/C 10 debris
m0 (initial mass) [kg] 500 U(200, 500)
ρ (density) [kg/m3] 1500 1500
Aarrays [m2] 5 U(3, 5)
Abody [m2] π

1
3m0
4πρ

22/3
π
1

3m0
4πρ

22/3

A (total cross-sectional area) [m2] Abody + Aarrays Abody + Aarrays
CD (drag coefficient) 2.2 2.2

Table 5.1: Physical properties of the spacecraft and debris

Since collision avoidance is particularly relevant in low Earth orbit, the protected
spacecraft is placed in a typical LEO orbit. The initial classical orbital elements of
the spacecraft are presented in Table 5.2.
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Element Value
a [km] 7000
e 0.01
i [◦] 0.1
Ω [◦] 90
ω [◦] 90
ν [◦] 5

Table 5.2: Initial classical orbital elements of the spacecraft

Two datasets have been generated for training and evaluation purposes. The first
includes only the unperturbed dynamics, while the second incorporates full orbital
perturbations, specifically the Earth’s oblateness (J2) and residual atmospheric
drag. As the debris properties are randomly sampled, their mass and cross-sectional
area differ across the two datasets.

Figures 5.1 and 5.2 show the trend of the distance between the spacecraft and
the ten debris. In both datasets, TCAs are marked by vertical red dashed lines.
The presence of multiple close approaches in each dataset has been deliberately
ensured, following the procedure outlined in Section 2.5, to generate non-negligible
collision probabilities in the absence of active avoidance maneuvers.

The total simulation time is 30 hours. Every training or evaluation episode starts
from the same initial conditions described above. However, the duration of each
episode is generally shorter and can be adjusted by modifying the hyperparameters,
as explained in the next section.

Figure 5.1: Database generated without orbital perturbations
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Figure 5.2: Database generated with orbital perturbations

5.2 Policy architecture and hyperparameters
The implementation of PPO used in this thesis is based on the Stable Baselines3
library [91]. This framework provides a convenient and flexible interface for
configuring training parameters and supports the integration of custom architectures,
including LSTM and Transformer-based feature extractors. The following section
details the main hyperparameters employed and provides a rationale for their
selection.

5.2.1 Simulation parameters for training

Parameter Value
max_episodes 500
k_ep 40
batch_size 32
incr_t [s] 60
episode_length [s] k_ep× batch_size× incr_t
n_steps k_ep× batch_size× 5
total_timesteps k_ep× batch_size× max_episodes

Table 5.3: Simulation parameters used for training

Table 5.3 summarizes the main parameters governing the training phase of the
simulation. The parameter max_episodes defines the upper limit on the number
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of episodes that can be executed during training. After each episode concludes,
the spacecraft and debris are reset to the same initial conditions described in the
previous section.

The duration of a single episode is determined by the product of three quantities:
k_ep, the number of mini-batches per episode; batch_size, the number of time
steps in each mini-batch; and incr_t, the time increment per simulation step (in
seconds). This product yields the episode length in seconds. It is essential that
this duration remains shorter than the total simulation time span defined in the
database, to ensure consistency with the generated orbital data.

The choice of batch_size significantly impacts the training dynamics, as it
influences the value of k_ep and ultimately determines the number of weight
updates per rollout. A batch size of 32 was selected as a compromise between
computational efficiency and learning stability. Smaller values can lead to noisy
gradient estimates and unstable updates, while larger batches tend to oversmooth
the gradients, potentially slowing down convergence. Empirically, batch sizes in
the range of 32–64 are widely used in PPO for their balance between these effects.

The parameter incr_t must strike a balance between computational efficiency
and control flexibility: a larger value reduces the computational burden but restricts
the frequency of thrust updates, effectively "freezing" the control input over longer
intervals; a smaller value increases resolution but also the computational load.

The parameter n_steps defines the total number of simulation time steps col-
lected in one rollout buffer, as detailed in Section 4.4.4. In the present configuration,
a rollout consists of five episodes, which are subsequently divided into mini-batches
for gradient updates. Finally, total_timesteps specifies the maximum number
of time steps allowed during training. This limit is rarely reached, as training is
typically terminated earlier by an early stopping criterion.

5.2.2 Simulation parameters for evaluation

Parameter Value
eval_freq k_ep× batch_size× 5
n_eval_episodes 1

Table 5.4: Simulation parameters used for evaluation

Table 5.4 summarizes the parameters used during evaluation (also referred to as
testing). The parameter eval_freq specifies how often evaluation is triggered,
expressed in environment time steps. In this setup, evaluation is conducted every 5
training episodes, allowing the agent sufficient time to learn between evaluations.
Although not strictly required, the evaluation frequency has been deliberately chosen
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to match the length of a rollout buffer. As a result, testing occurs immediately
after a complete rollout has been collected and training has been performed on it.

The parameter n_eval_episodes defines how many test episodes are executed
during each evaluation. This enables a more robust assessment of the policy’s
performance, typically by averaging the undiscounted return across evaluation
episodes.

Running multiple evaluation episodes is especially useful in the presence of
stochasticity, either in the policy or the environment. However, in this case, both
the policy and the environment are deterministic: actions are selected as the means
of the Gaussian distributions (rather than sampled), and the same database is
consistently used across episodes. As a result, repeated evaluation episodes yield
identical outcomes.

5.2.3 PPO-specific and learning parameters

Parameter Value
actor_network [150, 150]
critic_network [100, 100]
η 10−5

n_epochs 4
c1 0.5
c2 0.005
γ 0.995
λ 0.95
ϵ 0.25
std_init 0.25
weight_decay 10−5

clip_range_vf 0.2
max_grad_norm 0.2

Table 5.5: PPO-specific and learning parameters

Table 5.5 lists the hyperparameters specific to the PPO algorithm and the learning
process. Both the actor and critic networks are composed of two hidden layers.
However, the actor network is designed with a larger number of neurons, as it
outputs the mean and standard deviation for three continuous action dimensions,
whereas the critic only produces a single scalar representing the state-value function.

The learning rate η controls the step size during gradient descent and must
balance convergence speed with training stability to prevent overly aggressive
updates. The n_epochs parameter specifies the number of times each mini-batch
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is iterated over during training, effectively controlling how often the same data is
reused in a single update cycle.

The coefficients c1 and c2, as defined in equation 4.16, regulate the contributions
to the total loss of the value function loss and the entropy term, respectively. While
c1 was set to its default value of 0.5, c2 was deliberately assigned a nonzero value,
departing from its default of zero, in order to promote exploration during training.

The parameters γ, λ, and ϵ correspond to the discount factor, the GAE parameter,
and the clip ratio, respectively. While standard values are used in this work, the
clip ratio ϵ is set slightly higher than the common default (0.2) to allow for larger
policy updates.

Another important parameter is std_init, which specifies the initial standard
deviation of the Gaussian distributions from which the actor samples actions. This
value influences the initial degree of exploration.

Finally, weight_decay, clip_range_vf, and max_grad_norm are stabilization
techniques. Weight decay discourages large weights by adding an L2 penalty to the
loss function. Value function clipping introduces a clipping mechanism analogous to
that used for the policy update, helping prevent excessive shifts in value estimates.
Gradient clipping limits the maximum norm of gradients during backpropagation,
further improving training stability.

5.2.4 Reward function constants

Constant Value
α 5× 10−1

β 10−2

δ 10−2

Table 5.6: Constants used in the reward function

The selection of appropriate weights for the components of the reward function is
arguably one of the most critical and impactful design decisions in the Reinforcement
Learning setup. As shown in Table 5.6, the constants α, β, and δ determine the
relative importance of the three main objectives encoded in the reward function.

The constant α scales the penalty associated with collision risk and reflects
the primary objective of the task: avoiding collisions with debris. The constant
β weighs the fuel consumption term, encouraging fuel-efficient maneuvers. Lastly,
δ governs the penalty for deviations from the reference trajectory, promoting a
return to the nominal orbital path when possible.

These constants must be chosen carefully to keep a good balance between the
different goals. The values shown were selected empirically to make sure all three
objectives are taken into account during training.
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5.2.5 LSTM- and Transformer-specific parameters

Constant Value
lstm_embed_dim 6
tf_dim 16
tf_heads 4
tf_layers 2
tf_ffn 30
tf_dropout 0.1

Table 5.7: LSTM- and Transformer-specific parameters

Table 5.7 presents the hyperparameters used for the LSTM and Transformer
components of the architecture.

The parameter lstm_embed_dim defines the size of the LSTM’s hidden state
and was empirically set to 6. Although larger values could also be effective, this
choice was found to be sufficient for generating a compact yet informative summary
vector representing the 10 debris objects.

This summary vector, after concatenation with the S/C state vector, is projected
to a higher-dimensional space of size 16 (tf_dim) to increase its expressiveness
before being processed by the Transformer. The Transformer encoder applies
multi-head attention using 4 parallel attention heads (tf_heads), followed by a
feedforward neural network with 30 neurons (tf_ffn). A dropout rate of 0.1
(tf_dropout) is applied after both the attention and feedforward layers to promote
training stability. This entire process is repeated for 2 layers (tf_layers), allowing
the model to refine the representation over multiple Transformer blocks.

The relatively small size of the Transformer is a deliberate design choice that
reflects the nature of the problem: the orbital scenarios considered involve structured
and moderately dynamic interactions, which do not require deep or high-capacity
models.

5.3 Experimental results
From this point onward, the results presented aim to systematically compare the
performance of two main model architectures: (1) a baseline architecture combining
an LSTM feature extractor with PPO, and (2) an enhanced architecture that
integrates a Transformer encoder between the LSTM and PPO modules. These
two variants are evaluated under two distinct settings: with and without artificially
introduced noise in the state space.
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In this context, the term noise refers to bounded multiplicative perturbations
applied to the position and velocity components of the debris objects during
database generation. Specifically, when noise is enabled, each component of the
state vector is scaled by a random factor uniformly drawn from the range [0.95, 1.05],
introducing independent random variations of up to ±5% in each component of
every debris object.

This mechanism simulates realistic inaccuracies such as sensor noise in orbital
estimation, effectively replacing real states with observations to simulate a POMDP
scenario. The goal is to evaluate whether the Transformer-enhanced policy can learn
the underlying dynamics under noisy conditions and exhibit greater robustness and
stability compared to the PPO baseline.

The two configurations (LSTM+PPO and LSTM+Transformer+PPO) will be
analyzed in two representative scenarios: one with ideal Keplerian motion and no
noise, and one with both orbital perturbations and noise.

5.3.1 Comparison under Keplerian dynamics without noise

As a first experiment, we compare the performance of the baseline PPO model
with that of the Transformer-enhanced PPO under a simplified scenario. In this
setting, the orbital dynamics are purely Keplerian and no artificial noise is applied.

Figures 5.3 and 5.4 illustrate the evolution of the average cumulative reward
during training and evaluation, respectively. The average cumulative reward,
also referred to as the undiscounted return, is defined as the mean, across a set
of episodes, of the total reward accumulated in each episode, without applying
a discount factor. This distinguishes it from the discounted return defined in
equation 4.1.

During training, the average is computed over the five episodes that constitute
a single rollout buffer. In contrast, during evaluation, a single evaluation episode is
executed every five training episodes, and the reported average corresponds to the
return of that sole episode, as detailed in Table 5.4.

82



5.3 – Experimental results

Figure 5.3: Average cumulative reward
in training

Figure 5.4: Average cumulative reward
in evaluation

As it can be noticed from the figures, the behavior of the two models differs
across training and evaluation.

In the training phase, both the baseline PPO and the Transformer-enhanced
PPO progressively improve their performance over time. The baseline PPO shows
a steeper learning curve and reaches higher average cumulative rewards earlier,
but its performance plateaus and slightly declines toward the end of training. The
Transformer-enhanced PPO, on the other hand, learns more slowly, likely due to
the added complexity of the Transformer module, but demonstrates a steadier
progression and eventually approaches the performance of the baseline model.

In the evaluation phase, both models exhibit high variance in early episodes,
particularly the baseline PPO, which shows sharp drops in performance. These
sudden declines correspond to specific evaluation episodes where the agent experi-
enced increased collision risk, but do not concern the enhanced policy, due to the
Transformer’s ability to contextualize temporal sequences (i.e., the dynamics is
taken into account). Over time, the variability decreases and both models stabilize,
consistently achieving high performance.

It is also worth noting that the Transformer-enhanced PPO was trained for the
full 500 episodes in an effort to explore potential long-term gains, even though its
best performance was achieved early. In contrast, the baseline PPO model was
terminated earlier due to the absence of further improvements.

Figures 5.5 and 5.6 show the evolution of total loss and value function loss
during training for both models.
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Figure 5.5: Total loss Figure 5.6: Value function loss

In terms of total loss, both algorithms show a general decreasing trend, but the
Transformer-enhanced PPO exhibits higher peaks throughout training, indicating
greater variability in overall optimization.

For the value function loss, both models display similar behavior: a rapid
decline in early training followed by stabilization with comparable fluctuations. No
significant difference in overall stability is observed between the two.

These results suggest that while both models converge, the Transformer-enhanced
PPO introduces slightly more variability in total loss, potentially due to its increased
representational complexity.

From this point onward, we focus on the evaluation episodes that yielded the
best performance for each model. For the baseline PPO, the highest evaluation
cumulative reward was achieved at episode 85, whereas the Transformer-enhanced
PPO reached its peak performance much earlier, at episode 28.

Figures 5.7 and 5.8 present the individual reward components for these respective
episodes.

Figure 5.7: Reward terms in the base-
line PPO

Figure 5.8: Reward terms in the
Transformer-enhanced PPO
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Both models exhibit desirable outcomes, with the only penalty being related
to fuel usage. In that regard, the baseline achieves a slightly better result overall,
being characterized by a lower thrust magnitude and therefore less fuel consumption
penalty. The on-off behavior of the engine control variable is a consequence of the
thermal constraint introduced in Section 2.3.3.

The same can be observed when analyzing the actions. Figures 5.9 and 5.10
show the evolution of the control variables ϕ (elevation angle) and θ (azimuth angle)
during the best evaluation episodes for the baseline and Transformer-enhanced
PPO models.

In both cases, the thrust is applied intermittently, with coasting phases in which
the engine is forced to shut down. The horizontal dotted lines indicate the action
bounds: ϕ ∈ [−π/2, π/2] and θ ∈ [0, 2π].

Figure 5.9: S/C actions in the baseline
PPO

Figure 5.10: S/C actions in the
Transformer-enhanced PPO

Although both models achieve comparable outcomes, their control strategies
differ noticeably. The baseline PPO tends to achieve greater separation from the
debris by applying thrust with a significant out-of-plane component (i.e., with
non-zero elevation angles). In contrast, the Transformer-enhanced PPO relies more
heavily on in-plane thrusting, keeping the elevation angle closer to zero. In both
cases, the azimuth angle θ remains close to π, indicating that the thrust is primarily
directed toward the center of the Earth, opposite to the ĥ1 unit vector in the RTN
frame.

Although the baseline algorithm commands out-of-plane thruster firings to
increase separation from the debris, the satellite’s inclination remains within
acceptable limits. This is because thrust is applied symmetrically on opposite sides
of the orbit, effectively compensating for any inclination change. As a result, the
inclination stays near its initial value, and no penalty for trajectory deviation is
incurred.

The increased distance from the orbital debris, achieved through these distinct
strategies, is illustrated in Figures 5.11 and 5.12.
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Figure 5.11: Relative position of the
S/C in baseline PPO

Figure 5.12: Relative position of the
S/C in in the Transformer-enhanced
PPO

It is evident that the Transformer maintains a smaller final separation from the
debris, indicating its ability to avoid collisions while remaining closer to its original
nominal orbit. Consequently, this would result in a more fuel-efficient restore phase,
should one be required.

As the distance between the spacecraft and the debris grows, the collision
probability rapidly drops to zero in both cases, as shown in Figures 5.13 and 5.14.

Figure 5.13: Collision probabilities in
the baseline PPO

Figure 5.14: Collision probabilities in
the Transformer-enhanced PPO

The collision probabilities for all debris objects remain consistently below the
critical threshold of 10−4 throughout the episode. This ensures that no collision
penalties are incurred in either case.

The early suppression of collision risk reflects the effectiveness of both control
policies in rapidly maneuvering the spacecraft to safe trajectories. Notably, the
baseline PPO appears to neutralize high-risk objects slightly earlier, while the
Transformer-enhanced PPO achieves similar safety margins with a more gradual
reduction. In both cases, the collision avoidance objective is fully satisfied.
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5.3.2 Comparison under perturbed dynamics with noise

As a second experiment, we compare the performance of the two models under
a more challenging scenario. In this setting, the database with added noise and
orbital perturbations has been used.

Figures 5.15 and 5.16 show the behavior of the average cumulative reward during
training and evaluation, respectively.

Figure 5.15: Average cumulative re-
ward in training

Figure 5.16: Average cumulative re-
ward in evaluation

Although the Transformer-enhanced architecture exhibits slower initial learning,
it eventually surpasses the PPO baseline in the later stages of training, with
performance continuing to improve. In contrast, the PPO baseline undergoes a
sudden drop in undiscounted return, likely due to increased exploration after failing
to escape a suboptimal policy.

The slower learning of the enhanced architecture can be attributed to its higher
computational complexity. However, this same complexity contributes to greater
training stability, making the policy less prone to diverging or regressing once a
suboptimal solution has been reached.

During inference, both models clearly fail to surpass a certain performance
threshold. This limitation is most likely due to the agent’s inability to simultane-
ously achieve collision avoidance and maintain effective station-keeping, a trade-off
that will be further examined in the following analysis.

However, the enhanced policy exhibits more consistent high performance in the
final stages, aligning with the trends observed during training.

Both models were terminated based on early stopping criteria, triggered by the
lack of further improvements in the evaluation cumulative reward.

Figures 5.17 and 5.18 show the evolution of total loss and value function loss
during training for both models.
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Figure 5.17: Total loss Figure 5.18: Value function loss

Although the baseline PPO exhibits a lower average total loss, it is marked
by high and irregular peaks. In contrast, the enhanced PPO shows a smoother
and more stable loss curve, suggesting greater training stability and potential for
further improvement with extended training.

The value function loss decreases over time for both policies, as expected, but
baseline PPO displays more pronounced spikes during the later stages of training.

Like in the previous experiment, we are now interested in analyzing the outcomes
of the best evaluation episodes for both models. For the baseline PPO, the highest
evaluation cumulative reward was achieved at episode 33, while the Transformer-
enhanced PPO reached its best performance at episode 52.

Figures 5.19 and 5.20 present the individual reward components for these
respective episodes.

Figure 5.19: Reward terms in the base-
line PPO

Figure 5.20: Reward terms in the
Transformer-enhanced PPO

In both scenarios, the primary objective of collision avoidance is successfully
achieved. However, significant penalties are incurred throughout the episode due to
deviations from the nominal orbit. These penalties arise from the eccentricity, which
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varies in a sinusoidal manner with a period corresponding to one orbital revolution
of the spacecraft. This oscillatory behavior is induced by the J2 perturbation and
causes the eccentricity to exceed the bounds defined in the reward function.

Additionally, it can be observed that the fuel efficiency term becomes active
only when it is the sole penalty being applied. In all other cases, it is deactivated
to prioritize collision avoidance and the restoration of the reference orbit.

Figures 5.21 and 5.22 illustrate the actions executed by each algorithm during
their respective best-performing test episodes.

Figure 5.21: S/C actions in the baseline
PPO

Figure 5.22: S/C actions in the
Transformer-enhanced PPO

It is evident that both models adopt nearly identical control policies: thrust
firings are primarily directed in-plane, opposite to the ĥ1 unit vector in the RTN
frame, effectively pointing towards the center of the Earth. As observed in earlier
cases, the thrust sequences are regularly interrupted by cooldown phases, each
lasting one orbital period.

Finally, the successful achievement of the primary objective, collision avoidance,
is clearly demonstrated in 5.23 and 5.24.

Figure 5.23: Collision probabilities in
the baseline PPO

Figure 5.24: Collision probabilities in
the Transformer-enhanced PPO
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In both cases, the collision probability remains consistently below the 10−4

threshold, despite the presence of noisy observations and perturbed dynamics.
Unlike the previous experiment, where the spacecraft achieved significant separation
from the debris early in the episode, the separation here is more limited. As a result,
non-negligible collision probabilities persist until nearly the end of the episode.
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Chapter 6

Conclusion and outlook

6.1 Thesis outcomes
This thesis presented a comprehensive investigation into the use of Proximal
Policy Optimization algorithms enhanced with Transformer and LSTM-based
architectures for autonomous decision-making in spacecraft collision avoidance
tasks, under Partially Observable Markov Decision Process conditions and in the
presence of multiple debris objects.

The primary objective was to assess whether advanced sequence-processing
models such as LSTMs and Transformers could address the challenge posed by
partial and noisy observability of the environment. The work extended the PPO
framework with an LSTM encoder and a custom Transformer module designed to
extract meaningful representations from high-dimensional, sequential input data.

The experimental campaign, detailed in Chapter 5, demonstrated that:

1. PPO proved robust to environment noise and orbital perturbations.

Baseline PPO, coupled with LSTM, worked well in all setups. Even when faced
with noisy observations to learn from, and in the more challenging scenario
of the full dynamical model, the algorithm fulfilled the main goal of avoiding
collisions.

2. LSTM encoders facilitated scalable representation of multiple debris
objects.

Leveraging an LSTM, the agent was able to extract a meaningful fixed-size
embedding vector from the unordered sequence of debris states. Combined
with reward feedback, this enabled the policy to make effective decisions and
avoid all debris. Moreover, the recurrent nature of the LSTM architecture
provides the flexibility to handle a variable number of debris objects.
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3. The Transformer worked as dynamical context.
In contrast to the Transformer-based approaches for RL discussed in Sec-
tion 3.3.4, this thesis proposes a novel architecture in which a lightweight
custom Transformer leverages the history of past observations to capture
system dynamics and enhance the agent’s belief state.

4. The Transformer helped regularize training behavior.
Both in the absence of noise (MDP framework), and when faced with noisy ob-
servations (POMDP framework), the Transformer produced smoother returns
and more stable convergence. This can be attributed to the Transformer’s
ability to contextualize the dynamics hidden behind the observations. How-
ever, this enhanced performance comes at the cost of increased computational
complexity, resulting in longer settling times.

In conclusion, this thesis makes a strong case for incorporating structured deep
learning models, particularly Transformers and LSTMs, within Reinforcement
Learning pipelines to tackle POMDPs under challenging conditions. By addressing
the learning of robust policies in noisy environments, the proposed architecture
paves the way for more intelligent, adaptable, and autonomous decision systems.

6.2 Potential applications
The methods developed and validated in this work have broad implications, also
beyond the specific task of spacecraft collision avoidance. Several areas stand to
benefit from the proposed approach:

• Autonomous spacecraft collision avoidance systems: Since current
collision avoidance procedures still largely depend on human intervention, the
research presented in this thesis could contribute to the development of future
autonomous on-board systems.

• Active debris removal and in-orbit servicing: With the growing density
of space objects, establishing a circular space economy is becoming increasingly
urgent. The need to deorbit debris and extend the operational life of existing
satellites will soon be critical. Transformer-enhanced Reinforcement Learning
agents could support autonomous on-board decision-making in these scenarios,
particularly under conditions of noisy or uncertain measurements.

• Multi-agent robotics: Tasks involving a variable number of agents or
obstacles (e.g., swarm robotics, underwater drones, autonomous vehicles in
urban environments) require policies that generalize across configurations.
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The LSTM-based embedding of dynamic entities offers a path forward for
such systems.

• UAV control: Unmanned Aerial Vehicles (UAVs) operating in crowded
airspace can use similar architectures to avoid mid-air collisions or restricted
zones. Particularly under low-visibility conditions, the benefits of Transformer-
based observation encoding become compelling.

• Healthcare and wearables: For real-time decision-making in health mon-
itoring systems, where input data streams are noisy and partially observed
(e.g., ECG, PPG signals), attention-based policies may improve estimation of
the signal.

• Noise filtering: More broadly, any application involving the estimation of a
variable observed, either directly or indirectly, under noisy conditions could
benefit from this approach. Traditional methods such as Kalman filtering and
batch least squares, widely used in orbit determination, may be enhanced by
preprocessing temporal observation sequences with a Transformer encoder.

These applications share a need for decision systems that can handle high-
dimensional, time-dependent inputs and that are resilient to partial observability
and noise, requirements directly addressed by this thesis.

6.3 Future work
Several promising research directions emerge from the findings of this thesis.

1. Extension to full multi-agent settings
While this work focused on a single-agent system navigating through multiple
uncooperative objects, a natural next step is the explicit modeling of interactive
multi-agent environments, where active spacecraft, rather than passive debris,
may also have decision-making capacity. Incorporating decentralized policies
with inter-agent communication and coordination could enhance safety and
performance.

2. Integration with realistic orbit determination and sensor models
In future work, the observation model can be expanded to simulate the collision
avoidance process more realistically. Instead of direct observations of the states
of the spacecraft and debris, an orbit determination model could be included,
and sensor constraints (e.g., time delay and field-of-view limitations) might be
added. Coupling PPO-Transformer architectures with domain-specific sensor
models would bring simulations closer to on-board deployment conditions.
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3. Curriculum learning and domain randomization
To improve generalization further, training regimes could include curriculum
learning, where the agent is first trained on simpler tasks and gradually exposed
to harder ones, or domain randomization, which exposes the agent to a wide
variety of conditions to promote robust policy acquisition.

4. Exploitation of LSTM properties
LSTMs not only enable the aggregation of information from multiple debris
objects into a fixed-size representation, but also provide the flexibility to
accommodate the addition or removal of debris, such as when previously
critical debris become irrelevant or new objects enter the vicinity. This
adaptability arises from the internal gating mechanisms, specifically the input
and forget gates, which allow selective integration and discarding of information
over time. Future experiments will further investigate these properties.
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