
POLITECNICO DI TORINO

Master’s Degree in Aerospace Engineering

Master’s Degree Thesis

Multiple-burn trajectory optimization
and guidance design for In-Orbit-Service

missions

Supervisors

Prof.ssa Elisa CAPELLO

Dott. Mauro MANCINI

Ing. Vincenzo ROMANO

Ing. Christophe ROUX

Candidate

Marco CAVALLO

July 2025

Abstract

In-Orbit-Service (IOS) has moved from visionary proposal to operational necessities
for keeping orbits safe, sustainable, and affordable. In fact repairing, refuelling,
upgrading or de-orbiting aging satellites lowers replacement costs and reduces
collision risk.
The lowering of the launch prices has sharpened commercial interest; indeed, market
studies foresee a multi-billion-dollar commercial sector expanding at a high growth
rate over the coming decade. For these reasons, this thesis work aims to plan
and validate impulsive rendezvous manoeuvres through a modular Matlab tool
for IOS that combines an optimization process based on an EA (Evolutionary
Algorithm) with a 3-DOF orbital simulator. The aim of the optimization process
is to minimize the propellant consumption in terms of the ∆V provided by a
classic Lambert’s problem. For this purpose, three evolutionary algorithms with
a dedicated cost function have been tested: Particle Swarm Optimization (PSO),
Differential Evolution (DE) and Covariance Matrix Adaptation (CMA-ES). When
compared to reference transfers optmizations from literature, the three algorithms
implementations show negligible differences with those in literature, demonstrating
their high reliability.
For multi-target optimization the algorithms were combined with a Travelling
Salesman Problem (TSP) since the propellant consumption and the time of flight
(TOF) depend strongly on the order in which targets satellites are visited. This
TSP-EA formulation is particularly valuable for IOS and ADR (Active Debris
Removal) missions, where a single chaser may need to service or de-orbit several
spacecraft distributed across different orbits.
All the optimals parameters provided by the EA (i.e. the time of flight, the tar-
get satellite departure true anomaly and the two ∆V) are passed to the orbital
simulator. This one propagates the spacecrafts states via a classic fourth-order
Runge–Kutta (RK4) integrator in which at each integration sub-step the dynamic
model computes the translational state derivatives of the spacecrafts and the GNC
algorithm updates the throttle command and thrust direction of the chaser. The
guidance logic is open-loop during the first burn, in which the thrust is aligned
with the optimized Lambert’s ∆V1target direction and lasts until this one is fully
erogated by the propulsion system. After this first impulse the algorithm switches
to other two closed-loop phases: the coasting and the second burn. The first one
lasts until a predefined target Argument of Latitude (θtarget) is reached without any
propulsion. The second one starts immidiately after the coasting phase and during
that the algorithm continuosly adjusts thrust direction to match the target satellite
velocity. This second burn lasts until the Lambert’s ∆V2target is reached.
Representative campaigns covering scenarios such as SSO-SSO (Sun-Synchronous

Orbit) transfers, LEO (Low Earth Orbit) two-impulse paths and multi-target servic-
ing missions show close agreement between the desired results and the simulation
ones in terms of ∆V , time of flight, relative velocity, and orbital parameters.
The resulting framework delivers fast and reliable insight into propellant needs and
guidance performance, helping mission designers to obtain quicker evaulation of
In-Orbit-Servicing scenarios.

ii

Agli eterni disorganizzati

Table of Contents

List of Tables ix

List of Figures xii

Acronyms xviii

1 Introduction 1

1.1 IOS hystorical review . 3

1.1.1 AVIO’s In-Orbit Services (IOS) Projects 7

1.2 Classification . 8

1.3 Commercial interest . 10

1.3.1 Aging satellites impact . 11

1.3.2 End-User insights . 12

1.4 Rendezvous and proximity operations 13

1.4.1 Definition . 13

1.4.2 RPO phases . 15

1.4.3 Trajectory and Rendezvous optimization in literature 16

1.4.4 Guidance algorithms in literature 18

2 Foundamentals of astrodynamics 24

2.1 Overview of the laws . 24

2.1.1 Universal Law of Gravitation 24

v

2.1.2 The N-Body Problem . 25

2.1.3 The Two-Body Problem . 26

2.1.4 Constants of the motion . 27

2.1.5 Trajectory Equation . 28

2.1.6 Types of orbits . 30

2.1.7 Coordinate Systems . 33

2.1.8 Classical Orbital Parameters 36

2.1.9 Orbital elements determination from r and v 37

2.1.10 Determining r and v from orbital elements 38

2.2 External disturbances . 39

2.2.1 Atmospheric Drag . 39

2.2.2 J2 Effect . 39

2.2.3 Gravity Gradient . 40

2.2.4 Magnetic Torque . 41

2.2.5 Solar Radiation . 41

2.3 Orbital manoeuvres . 42

2.3.1 Impulsive manoeuvres . 43

3 Evolutionary Algorithms 52

3.1 Overview . 52

3.2 Particle Swarm Optimization . 54

3.3 Differential Evolution . 56

3.4 CMA-ES . 61

3.5 Algorithms performance evaluation 65

3.5.1 Objective Function . 65

3.5.2 Case study 1 – Pontani 2D “case b” 66

3.5.3 Case study 2 – Pontani 3D “case 3” 76

3.5.4 Algorithm Selection . 85

vi

4 Travelling Salesman Problem 86

4.1 TSP formulation . 86

4.2 TSP logic implementation . 87

4.2.1 1st Scenario - TSP . 87

4.2.2 2nd Scenario - TSP . 89

5 3DOF Orbital Simulator 91

5.1 Orbital Simulator overview . 91

5.2 RK4 numerical integrator . 93

5.3 Dynamic model . 95

5.4 Guidance algorithm . 96

5.4.1 Flowchart of the GNC algorithm 98

5.5 Auxiliary functions . 99

6 Simulations results 100

6.1 Test case I . 101

6.2 Test case II . 105

6.3 Test case III . 109

6.4 Test case IV . 112

6.5 Test case V . 117

6.6 Test case VI . 121

6.7 Test case VII . 124

6.8 Test case VIII . 129

7 Conclusions and future improvements 134

A Objective function 138

B Travelling Salesman Problem 140

vii

C GNC algorithm 143

C.1 1st Burn logic . 143

C.2 Guidance code . 144

Bibliography 148

viii

List of Tables

1.1 AVIO’s IOS platform main services 8

1.2 Types of in-orbit services [17] . 10

2.1 Specific impulse of various propellant types [43] 43

3.1 Orbital elements of Pontani’s 2D transfer 67

3.2 Reference solution for Pontani’s 2D transfer 67

3.3 Parameters of the PSO run . 68

3.4 Transfer obtained with PSO (Pontani 2D case) 69

3.5 PSO performance (2D case). 69

3.6 Parameters of the DE run. 70

3.7 Transfer obtained with DE/rand/1/bin (Pontani 2D case) 71

3.8 DE/rand/1/bin performance (2D case) 71

3.9 Transfer obtained with DE/best/1/bin (Pontani 2D case) 71

3.10 DE/best/1/bin performance (2D case) 72

3.11 Transfer obtained with DE/current-to-best/1/bin (Pontani 2D case) 72

3.12 DE/current-to-best/1/bin performance (2D case) 73

3.13 CMA-ES configuration (Hansen & Ostermeier) [55] 74

3.14 Transfer obtained with CMA-ES (Pontani 2D) 74

3.15 Performance summary . 75

3.16 Orbital elements of Pontani’s 3D transfer 77

ix

3.17 Reference solution for Pontani’s 3D transfer 77

3.18 Parameters of the PSO run (Pontani 3D case) 78

3.19 Transfer obtained with PSO (Pontani 3D case) 78

3.20 PSO performance (2D case). 78

3.21 Transfer obtained with DE/rand/1/bin (Pontani 3D case) 79

3.22 DE/rand/1/bin performance (3D case) 80

3.23 Transfer obtained with DE/best/1/bin (Pontani 3D case) 80

3.24 DE/best/1/bin performance (3D case) 81

3.25 Transfer obtained with DE/current-to-best/1/bin (Pontani 2D case) 81

3.26 DE/current-to-best/1/bin performance (3D case) 82

3.27 Transfer obtained with CMA-ES (Pontani 2D) 83

3.28 Performance summary . 83

4.1 Orbital elements of the satellites - scen. 1 88

4.2 Summary of transfer legs - scen. 1 88

4.3 Orbital elements of the satellites - scen. 2 89

4.4 Summary of transfer legs - scen. 2 90

5.1 Auxiliary functions overview . 99

6.1 Environmental constants used in the simulation 101

6.2 Approximation of AVUM vehicle (AVIO) 101

6.3 Starting orbital elements of Chaser and Target 101

6.4 Optimization results for the manoeuvre 102

6.5 Simulation performance results . 102

6.6 Orbital parameters – desired vs achieved 103

6.7 Starting orbital elements of Chaser and Target 105

6.8 Optimization results for the manoeuvre 106

6.9 Simulation performance results . 106

x

6.10 Orbital parameters – desired vs achieved 107

6.11 Starting orbital elements of Chaser and Target 109

6.12 Optimization results for the manoeuvre 109

6.13 Simulation performance results . 110

6.14 Orbital parameters – desired vs achieved 110

6.15 Starting orbital elements of Chaser and Target 113

6.16 Optimization results for the manoeuvre 114

6.17 Simulation performance results . 114

6.18 Orbital parameters – desired vs achieved 115

6.19 Starting orbital elements of Chaser and Target 117

6.20 Spacecraft data . 117

6.21 Optimization results for the manoeuvre 118

6.22 Simulation performance results . 118

6.23 Orbital parameters – desired vs achieved 119

6.24 Starting orbital elements of Chaser and Target 121

6.25 Spacecraft data . 121

6.26 Optimization results for the manoeuvre 122

6.27 Simulation performance results . 122

6.28 Orbital parameters – desired vs achieved 123

6.29 Orbital elements for the chaser and three targets 124

6.30 Optimal manoeuvre results for each leg 125

6.31 Simulation results for each leg . 125

6.32 Orbital parameters for each leg – desired vs achieved 127

6.33 Orbital elements for the chaser and three targets 129

6.34 Optimal manoeuvre results for each leg 129

6.35 Simulation results for each leg . 130

6.36 Orbital parameters for each leg – desired vs achieved 132

xi

List of Figures

1.1 Workflow of the thesis toolchain, from algorithm design to validation
and future extensions . 3

1.2 Final phases of a space walk from the HST second servicing mission,
astronauts Mark Lee (right) and Steven Smith work on HST while
perched on the Shuttle’s remote manipulator arm [8] 4

1.3 Concept of on-orbit servicing by the MEV (the left one) [12] 5

1.4 RISE mission render (on the left) and official patch (on the right) [13] 5

1.5 Evolution timeline of In-Orbit Servicing missions from Skylab (1973)
to RISE (planned 2028). 6

1.6 Vega In-orbit Service (VIS) [15] . 7

1.7 ALEK-2 render model (on the left) and AVUM+ subsystems model
(on the right) [15, 16] . 8

1.8 In-Orbit Operations classification [17] 9

1.9 On-Orbit Satellite Servicing Market Size 2024–2034 [18] 11

1.10 On-Orbit Satellite Servicing Market by Orbit Type [18] 12

1.11 On-Orbit Satellite Servicing Market by End-User [18] 13

1.12 RPO formal definitions [19] . 14

1.13 RDV mission profile [26] . 16

1.14 Open-Loop guidance scheme [24] 19

1.15 Closed-loop ZEM/ZEV guidance 20

1.16 Closed-loop PN guidance . 20

xii

1.17 Closed-loop LQR guidance with online path generation 21

1.18 Closed-loop LQR guidance with offline path generation 22

1.19 Closed-loop APF guidance with control law 23

2.1 The N-Body problem [44] . 25

2.2 Heliocentric-ecliptic coordinate system [45] 34

2.3 Geocentric-equatorial coordinate system [43] 35

2.4 Perifocal frame [43] . 36

2.5 Classical orbital elements [43] . 37

2.6 JB-2006 model [24] . 39

2.7 Earth’s oblateness [24] . 40

2.8 Solar radiation [24] . 42

2.9 Propellant mass fraction versus ∆V for typical specific impulses [43] 44

2.10 Hohmann transfer [43] . 45

2.11 Bi-elliptic transfer from inner orbit 1 to outer orbit 4 [43] 45

2.12 Orbits for which the bi-elliptical transfer is either less efficient or
more efficient than the Hohmann transfer [43] 46

2.13 Main orbit (0) and two phasing orbits, faster (1) and slower (2). T0
is the period of the main orbit [43] 47

2.14 Two non-coplanar orbits about F (on the left). A view down the
line of intersection of the two orbital planes (on the right) [43] . . . 49

2.15 Lambert’s problem [43] . 50

2.16 Lambert’s problem solving logic . 51

3.1 PSO strategy [51] . 56

3.2 Schematic workflow of the Differential Evolution algorithm 57

3.3 Simple DE mutation scheme in 2-D parametric space [53] 58

3.4 Different possible trial vectors formed due to binomial crossover
between the target and the mutant vectors in 2-D search space [53] 59

3.5 Schematic workflow of the CMA–ES algorithm 62

xiii

3.6 Evolution of the CMA-ES search cloud over six generations on a
2D convex objective. Each panel shows background contours of
the cost function, sampled offspring (black dots), and the standard
deviation contour of the Gaussian distribution (orange dashed). As
generations advance, the cloud deforms and shrinks, homing in on
the optimum [56] . 64

3.7 Pontani 2D case b reference trajectory [47] 68

3.8 PSO cost evolution . 69

3.9 Transfer trajectory obtained with PSO (Pontani 2D case) 70

3.10 DE/rand/1/bin cost evolution . 71

3.11 DE/best/1/bin cost evolution . 72

3.12 DE/current-to-best/1/bin cost evolution 73

3.13 Transfer trajectory obtained with DE (Pontani 2D case) 73

3.14 CMA-ES cost convergence . 75

3.15 Transfer trajectory obtained with CMA-ES (Pontani 2D) 75

3.16 Algorithms comparison (Pontani 2D) 76

3.17 Pontani 2D case b reference trajectory [47] 77

3.18 PSO cost evolution . 78

3.19 Transfer trajectory obtained with PSO (Pontani 3D) 79

3.20 DE/rand/1/bin cost evolution . 80

3.21 DE/best/1/bin cost evolution . 81

3.22 DE/current-to-best/1/bin cost evolution 82

3.23 Transfer trajectory obtained with DE (Pontani 3D case) 82

3.24 CMA-ES cost convergence . 83

3.25 Transfer trajectory obtained with CMA-ES (Pontani 3D) 84

3.26 Algorithms comparison (Pontani 3D) 84

4.1 Best tours found for the three debris clouds in the classic TSP variant
for the fragmentation caused by Iridium 33-Cosmos 2251 collision
and the 2007 Fengyun-1C event caused by a Chinese anti-satellite
missile test [58] . 86

xiv

4.2 TSP trajectory sequence - scen. 1 89

4.3 TSP trajectory sequence - scen. 2 90

5.1 Flow chart of the orbital simulator process 92

5.2 The fourth-order Runge–Kutta method evaluates the derivative
four times once at the initial point, twice at two intermediate trial
points, and once at the final trial point and then combines these
four estimates to compute the next value of the unknown y [59] . . 94

5.3 Guidance flowchart . 98

6.1 Propagation velocity evolution . 103

6.2 Propagation velocity chasing . 103

6.3 Rendezvous trajectory . 104

6.4 Orbital elements evolution . 104

6.5 Propagation velocity evolution . 107

6.6 Propagation velocity chasing . 107

6.7 Rendezvous trajectory . 108

6.8 Orbital elements evolution . 108

6.9 Propagation velocity evolution . 110

6.10 Propagation velocity chasing . 110

6.11 Rendezvous trajectory . 111

6.12 Orbital elements evolution . 112

6.13 Propagation velocity evolution . 115

6.14 Propagation velocity chasing . 115

6.15 Rendezvous trajectory . 116

6.16 Orbital elements evolution . 116

6.17 Propagation velocity evolution . 119

6.18 Propagation velocity chasing . 119

6.19 Optimal trajectory . 120

xv

6.20 Simulated trajectory . 120

6.21 Orbital elements evolution . 120

6.22 Propagation velocity evolution . 122

6.23 Propagation velocity chasing . 122

6.24 Optimal trajectory . 123

6.25 Simulated trajectory . 123

6.26 Orbital elements evolution . 124

6.27 Propagation velocity evolution – leg 1 126

6.28 Propagation velocity chasing – leg 1 126

6.29 Propagation velocity evolution – leg 2 126

6.30 Propagation velocity chasing – leg 2 126

6.31 Propagation velocity evolution – leg 3 126

6.32 Propagation velocity chasing – leg 3 126

6.33 Mass evolution for each leg . 127

6.34 Combined rendezvous trajectories 128

6.35 Orbital elements evolution . 128

6.36 Mass evolution for each leg . 130

6.37 Propagation velocity evolution – leg 1 131

6.38 Propagation velocity chasing – leg 1 131

6.39 Propagation velocity evolution – leg 2 131

6.40 Propagation velocity chasing – leg 2 131

6.41 Propagation velocity evolution – leg 3 131

6.42 Propagation velocity chasing – leg 3 131

6.43 Combined rendezvous trajectories 132

6.44 Orbital elements evolution . 133

C.1 |V1des
− VC | undesired peek during a simple plane change maneouver

of 1° . 143

xvi

Acronyms

AOM

AVUM Orbital Module

APF

Artificial Potential Field

ALEK

AVUM Life Extension Kit

ADR

Active Debris Removal

AVUM

Attitude and Vernier Upper Module

CAGR

Compound Annual Growth Rate

CMA-ES

Covariance Matrix Adaptation - Evolution Strategy

CPU

Central Processing Unit

COTS

Commercial Off The Shelf

DE

Differential Evolution

xviii

DOF

Degree Of Freedom

EA

Evolutionary Algorithm

GEO

Geostationary Earth Orbit

GTO

Geostationary Transfer Orbit

GNC

Guidance and Navigation Control

IOS

In-Orbit Servicing

LEO

Low Earth Orbit

LQR

Linear Quadratic Regulatore

MEO

Medium Earth Orbit

MPC

Model Predictive Control

OOS

On-Orbit Servicing

PD

Proportional Derivative

xix

PN

Proportional Navigation

PSO

Particle Swarm Optimization

RACS

Redundant Attitude Control System

RK4

Runge Kutta 4th order

RPO

Rendezvous and Proximity Operations

SCP

Sequential Convex Programming

SSO

Sun Synchronous Orbit

TOF

Time Of Flight

TSP

Travelling Salesman Problem

USD

United States Dollar

ZEM

Zero Effort Mission

ZEV

Zero Effort Velocity

xx

Chapter 1

Introduction

In the last decade, in-orbit servicing (IOS) and active debris removal (ADR) have
become vital for keeping low-Earth orbit safe and cost-effective. Fixing, refuelling,
upgrading, or safely removing old satellites cuts replacement costs and reduces
collision risk. These tasks need new methods that can make these systems faster
and more reliable. The aim of this thesis work is to develop, implement and validate
a MATLAB computational tool capable of designing optimal impulsive rendezvous
maneuvers that minimize the propellant consumption (∆V), while also determining
the most efficient sequence for visiting multiple targets. To achieve this goal, the
work is structured around the following detailed objectives:

1. Evolutionary Algorithm design and tuning

• Implementation of the evolutionary algorithm (Particle Swarm Optimiza-
tion, Differential Evolution, CMA-ES) in MATLAB.

• Construction of an Objective Function based on the Lambert equation
which will be called by the EA for the optimization process.

• Systematically select and tune EA parameters such as population size,
selection criteria and stopping conditions through benchmark tests on
canonical rendezvous scenarios (e.g. Pontani optimal rendezvous [1]).

2. Travelling Salesman Problem for optimal multi-target sequencing

• Extend the optimizer to solve a Travelling Salesman Problem (TSP)
variant: given three distinct rendezvous targets, determine the visitation
sequence that yields the lowest cumulative ∆V .

1

Introduction

• Model inter-target transfers via successive solutions of the Lambert prob-
lem, and insert the resulting ∆V costs into a combinatorial search frame-
work.

3. Guidance Algorithm Design

• Design of a three-phase impulsive guidance law (based on the optimization
results of the EA) composed of:

(a) Burn 1 : initial impulse computed to inject the chaser onto the transfer
arc.

(b) Coasting: passive propagation along the transfer arc, during which
the state is monitored.

(c) Burn 2 : terminal impulse to correct residual errors and complete the
manouver.

4. Integration with a 3DOF numerical propagator

• Couple the EA optimizer (including the TSP module) with a three-
degree-of-freedom (3DOF) propagator based on a Runge-Kutta4 numerical
integrator to simulate the real execution of impulsive sequences in three-
dimensional space.

• Integrate the guidance algorithm as a function to be called in the RK4
numerical inetgrator.

5. Performance evaluation

• Apply the developed code to realistic missions scenarios documenting the
results (e.g. LEO to LEO or SSO manouver).

6. Tool modularity and future extensions

• Design the MATLAB code architecture with modular components opti-
mizer: Lambert solver, TSP sequencer, GNC function, propagator, etc.
to facilitate future extensions.

• Provide comprehensive documentation and example workflows that allow
other users and mission designers to adapt the tool to different mission
profiles and operational scenarios.

2

Introduction

Evolutionary
Algorithm

Design & Tuning

TSP
Sequencing

Guidance
Law

Design

3-DOF
Propagator
Integration

Performance
Evaluation

Modularity &
Future Extensions

refinements

Figure 1.1: Workflow of the thesis toolchain, from algorithm design to validation
and future extensions

By achieving these goals, this thesis delivers a flexible, easy-to-use tool for planning
optimal impulsive rendezvous and multi-target missions, with potential useful
applications in satellite in-orbit servicing.

1.1 IOS hystorical review
Since the 1960s, engineers have searched for extending the life of satellites and
building larger systems by working directly in orbit. The first real test of these
ideas came with the Skylab mission in 1973, when astronauts repaired solar panels,
fixed antennas, and replaced critical components proving that human and robotic
operations in microgravity were possible [2].

The Space Shuttle program of the 1980s then accelerated on-orbit servicing. Early
Shuttle flights worked on the Solar Maximum Mission satellite, repairing its attitude
control system and electronics, and similar operations were later carried out on
Palapa B2 and Westar 6 [3]. Between 1993 and 2009, five dedicated Shuttle missions
serviced the Hubble Space Telescope (HST), correcting its flawed mirror, swapping
out old instruments, and adding new technology. These successes demonstrated
how planning satellites for easy servicing can save time and money [4].

In the 1990s, Japan’s ETS-VII mission became the first fully robotic servicer.
ETS-VII tested autonomous rendezvous and docking, robotic arms, refuelling,
and part replacement without astronauts on board [5]. Almost simultaneously,
the International Space Station (ISS) began to take shape: from 1998 to 2011,
modules and trusses were launched and assembled piece by piece, creating the
largest human-made structure in orbit [6].

A major robotic milestone arrived with Orbital Express in 2007. This mission flew
two free-flying satellites ASTRO (the servicer) and NEXTSat (the client) which
performed automatic rendezvous, capture, refuelling, and exchange of Orbital

3

Introduction

Replacement Units (ORUs), all without crewed spacecraft [7].

Figure 1.2: Final phases of a space walk from the HST second servicing mission,
astronauts Mark Lee (right) and Steven Smith work on HST while perched on the
Shuttle’s remote manipulator arm [8]

From 2010 onward, several new programs have pushed IOS further: the first fully
commercial life-extension missions in geostationary orbit began with Northrop
Grumman’s Mission Extension Vehicle family. MEV-1, launched in 2019, success-
fully docked with Intelsat 901 in February 2020 and provided both east–west and
north–south station-keeping for over a year, proving that a dedicated servicer can
extend a satellite’s operational life without human intervention [9]. Its sister ship,
MEV-2, followed in 2020 to service Intelsat 10-02 in early 2021 and remains on
standby to repeat the process with other clients [9].

Meanwhile, Astroscale’s ELSA-d mission tackled the complementary challenge
of active debris removal in Low Earth Orbit. Launched in 2021, ELSA-d used
a two-satellite chase-and-capture architecture to test magnetic and mechanical
docking mechanisms, demonstrating precise proximity operations that will underpin
both debris mitigation and future life-extension services [10].

Building on these successes, defense and space agencies have launched new de-
velopment programs aimed at more sophisticated inspection, maintenance, and
refueling capabilities. DARPA’s Robotic Servicing of Geosynchronous Satellites
(RSGS) will fly a servicer equipped with dual robotic arms and advanced vision
systems to autonomously berth with commercial GEO satellites for on-orbit repair
and refueling [11].

4

Introduction

Figure 1.3: Concept of on-orbit servicing by the MEV (the left one) [12]

At the same time, ESA together with commercial partner D-Orbit has approved
the Responsive In-Orbit Servicing Experiment (RISE), scheduled for launch in
2028. RISE will perform rendezvous, docking, and fuel transfer in GEO, further
expanding the toolbox of services available to satellite operators and paving the
way for a fully serviced, sustainable orbit [13].

Figure 1.4: RISE mission render (on the left) and official patch (on the right) [13]

5

Introduction

1973
Skylab: first in-space repairs

1984
Solar Maximum serviced by
Shuttle

1984–1985
Palapa B2 and Westar 6 ser-
vicing

1993–2009
Five Hubble Space Telescope
servicing missions

1997
ETS-VII: first robotic ser-
vicer

1998–2011
ISS modular assembly

2007
Orbital Express: ASTRO
and NEXTSat

2019–2020
Launch and docking of MEV-
1

2020–2021
Launch and docking of MEV-
2

2021
ELSA-d: LEO debris-
removal demo

Planned 2025
DARPA RSGS program

Planned 2028
ESA and D-Orbit RISE mis-
sion

Figure 1.5: Evolution timeline of In-Orbit Servicing missions from Skylab (1973)
to RISE (planned 2028).

6

Introduction

1.1.1 AVIO’s In-Orbit Services (IOS) Projects
AVIO is developing a comprehensive In-Orbit Services (IOS) capability branded as
Vega In-Orbit Services (VIS) fully integrated with the Vega C launch system. VIS
is conceived as a modular, end-to-end solution that leverages the Vega C payload
fairing to both deploy primary customer satellites and then undertake secondary
“last-mile” operations, including rendezvous, capture, satellite transportation, refu-
elling, debris removal, and controlled de-orbiting [14]. The IOS vision emphasizes
sustainability and commercial viability, offering a broad spectrum of core services
(rendezvous, debris removal, satellite transport) and a roadmap toward future
capabilities such as in-orbit assembly, life-extension, and on-orbit refurbishment
[14].

Figure 1.6: Vega In-orbit Service (VIS) [15]

A key element of AVIO’s IOS architecture is the AVUM Orbital Module (AOM),
which transforms Vega C’s fourth stage (AVUM+) into a fully functional service
module capable of extended LEO operations. After launch and orbital insertion,
AVUM+ hands over control to the AVUM Life Extension Kit (ALEK), activating
additional avionics, power conditioning, and thermal control systems that sustain
the module for up to two months on orbit [15, 16]. The AOM provides “smart”
propulsion (via the Vega’s bi-propellant main engine and RACS), power (through
deployable solar arrays delivering up to 3.6 kW, with 2 kW reserved for payloads),
attitude control (reaction wheels, magnetic torquers, and star trackers), and a
robust On-Board Data Handling system, all packaged within a reinforced PLA-1194
adapter to interface seamlessly with both the launcher and serviced payloads [15,
16].

The table below shows the main services that AVIO’s IOS platform can perform

7

Introduction

through VIS missions

Service Description

Rendezvous &
Proximity Operations

Autonomous guidance, navigation, and
control to approach and capture target

objects
Satellite Transport &

Deployment
Delivery of secondary payloads to precise
orbits following primary mission release

In-Orbit Refuelling &
Life Extension

Docking and propellant transfer to extend
operational lifetimes

Debris Removal &
Safe Disposal

Capture of obsolete satellites or debris
followed by controlled re-entry or storage

De-Orbit Maneuvers Precision boosts to ensure safe atmospheric
re-entry, minimizing collision risks

Table 1.1: AVIO’s IOS platform main services

This modular, COTS-driven approach maximizing reuse of Vega C heritage hard-
ware while integrating novel avionics positions AVIO’s IOS as a versatile solution
for the growing demand in sustainable, commercial orbital logistics and servicing
[14, 16].

Figure 1.7: ALEK-2 render model (on the left) and AVUM+ subsystems model
(on the right) [15, 16]

1.2 Classification
Although no official or universally agreed definition currently exists and terms like
in-space services or on-orbit services are often used interchangeably the European
Space Policy Institute report [17] identifies three main categories of operations:

8

Introduction

• In-Orbit Servicing which refer to the provision of support services by a space-
craft (servicer) to another space object (serviced) while in orbit;

• In-Orbit Manufacturing which are defined as the use of innovative techniques,
such as space resources or 3D printers, to build items and components directly
in outer space;

• In-Orbit Assembly which is characterized as the assembly or combination of
modular platforms to form a new object as well as the integration of upgrade
payloads in orbit

In-orbit
servicing

In-orbit
manufacturing

In-orbit
assembly

In-orbit
Operations

Figure 1.8: In-Orbit Operations classification [17]

The collection of several definitions of In-Orbit Operations enables to identify
several categories of orbital services such as, but not limited to, maintenance,
tugging and inspection [17]:

9

Introduction

Category Activity Brief Description

Maintenance

Repair Replace or fix components to extend
operational life.

Reconfiguration Modify payloads/modules to change
mission profile.

Refuelling Transfer propellant or fluids to sustain
operations.

Recharging Restore power via docking or power-
beaming.

Upgrade Add or swap components to enhance
capabilities.

Tugging & Towing

Station-keeping Dock to maintain orbit or attitude.
Orbit correction Adjust orbital trajectory.
Relocation Move spacecraft to a new orbital slot.
De-orbiting Transfer to graveyard orbit or enable

controlled re-entry.
Recycling Recover materials from spent stages

for reuse.
Inspection In-orbit inspection Assess satellite health and detect

anomalies.

Table 1.2: Types of in-orbit services [17]

1.3 Commercial interest
As reported in the Precedence Research report on the size of on-orbit satellite
servicing market [18], the surge in commercial interest in in-orbit servicing has been
fueled by advancements in technology and a decline in satellite launch costs. As low
Earth orbit (LEO) satellites become more prevalent, the feasibility of servicing these
satellites has increased. Notably, sectors such as telecommunications have expressed
strong interest in life-extension services. Operators of satellites in geostationary
orbit (GEO) are particularly keen to ensure their satellites remain functional, as
these represent critical assets for communication services.

The global on-orbit satellite servicing market size accounted for USD 4.22 billion
in 2024 and is expected to exceed around USD 11.56 billion by 2034, growing
at a CAGR of 10.60% from 2025 to 2034. The rising demand to maintain and
repair satellites in space, which is essential to extending the life of satellites and

10

Introduction

improving their performance, contributes to the growth of the on-orbit satellite
servicing market.

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
0

5

10

4.22 4.67 5.16
5.71

6.31
6.98

7.72
8.54

9.45
10.45

11.56

U
SD

Bi
lli

on

Figure 1.9: On-Orbit Satellite Servicing Market Size 2024–2034 [18]

1.3.1 Aging satellites impact
The aging satellite population is one of the key drivers of the on-orbit satellite
servicing market. For instance, in September 2022, SpaceX launched 3,399 Starlink
satellites into orbit, including prototypes and spacecraft. Numerous satellite
enterprises are experiencing growth in the U.S., driven by the increasing need for
communication and space-based internet services. Several satellites in orbit near
the end of their operational lifespans often require maintenance or replacement to
sustain functionality.

Typically, satellites are designed to operate for a specific duration, beyond which
they may encounter technical issues or diminished performance. The provision of
on-orbit satellite servicing also serves to tackle technical challenges that emerge
throughout a satellite’s active tenure. Exposure to rigorous space conditions
can lead to failures or declines in performance, and on-orbit servicing offers a
means to detect and rectify these issues. Consequently, this aids in maintaining
the operational integrity and dependability of satellite-dependent services like
communication, navigation, and remote sensing.

With an increasing number of satellites nearing the conclusion of their operational
life, there is an anticipated surge in demand for on-orbit satellite services, which is
poised to stimulate innovation and investment within this sector.

11

Introduction

LEO MEO GEO
0

2

4

6

8

10

Orbit Type

M
ar

ke
t

Si
ze

(U
SD

Bi
lli

on
)

2022 2023 2032

Figure 1.10: On-Orbit Satellite Servicing Market by Orbit Type [18]

On the basis of orbit type, the market is divided into LEO (low earth orbit), MEO
(medium earth orbit), and GEO (geostationary earth orbit). The provision of
on-orbit satellite servicing also serves to tackle technical challenges that emerge
throughout a satellite’s active occupation.

1.3.2 End-User insights
The commercial segment dominated the on-orbit satellite servicing market in 2024.
The dominance of this segment is credited to the presence of on-orbit satellite
servicing companies, which are integrated with advanced technology such as robotic
arms, sensors, and software to command, interact, and manipulate the satellite.
Additionally, commercial companies use automation, robotics, and navigation
technology to maneuver satellites to position them for servicing.

12

Introduction

59%

41%

Commercial
Military and Government

Figure 1.11: On-Orbit Satellite Servicing Market by End-User [18]

The military and government segment is projected to expand rapidly in the on-orbit
satellite servicing market over the coming years. The growth of this segment is
owed to the utilization of OOS for satellite intelligence gathering, navigation, and
communication by the military and government. Along with that, they are also
being used for disaster management, agriculture, and forestry.

1.4 Rendezvous and proximity operations
1.4.1 Definition
The concept of rendezvous and proximity operations (RPO) has existed for decades,
but it has recently received more attention from the industry due to increased
interest in activities like in-orbit servicing. Generally, RPO involves orbital ma-
neuvers in which two spacecraft achieve the same orbit and approach each other
at close distances. Such rendezvous procedures might subsequently lead to dock-
ing, although docking is not necessarily required. A formal definition of RPO is
presented in Fig. 1.12 below [19].

As said before, activities such as in-orbit servicing, formation flying, and active
debris removal have made RPO more relevant than ever. In-orbit servicing requires
two satellites to match orbits, stay in close proximity, and often dock or grapple
for instance, to transfer fuel [11, 20]. Formation flying describes multiple satellites
keeping fixed relative positions to collect large numbers of Earth images[21] or
boost system resilience [22]. In fact, formation flying is just a special case of RPO,
since it defines the relative motion framework. Active debris removal seeks to

13

Introduction

intercept and secure defunct satellites or stray fragments before their orbits decay
naturally (especially in GEO or crowded LEO altitudes) [23].

A key distinction is between cooperative and non-cooperative RPO. In cooperative
RPO, the chaser and target exchange status, position, attitude, and other data
sometimes routed through the ground. Docking with the ISS is a classic example,
with two-way communications throughout the approach. Non-cooperative RPO,
by contrast, involves only one-way data gathering by the chaser; the target doesn’t
actively share its state [24]. Servicing inactive satellites or removing debris typically
falls under this category.

Rendezvous and Proximity Operations

Initial
configuration.

The transfer orbit,
which effects
rendezvous.

Example of a
maneuver for

proximity
operations.

Final configuration
just before docking.

Definitions:
Rendezvous matching the plane, altitude, and phasing of two (or more)

satellites.
Proximity operations two (or more) satellites in roughly the same

orbit intentionally perform maneuvers to affect their relative states.
Docking subset of proximity operations, where one satellite intention-

ally performs maneuvers to physically contact another satellite.
Cooperative RPO information (position, velocity, health/status, etc.)

transfer is two-way via crosslinks, ground contact, etc. Example:
docking with the ISS.

Non-cooperative RPO information transfer between vehicles is one-
way only. Example: active debris removal.

Figure 1.12: RPO formal definitions [19]

14

Introduction

1.4.2 RPO phases
As previously mentioned, a rendezvous is comprised of a list of orbital maneuvers
in which two vehicles enter the same orbit and converge until very close, and
then stop. Usually, the Chaser takes an active trajectory that brings it towards
an inactive Target, the latter merely maintains its position. The Target may be
cooperative (e.g., an active spacecraft prepared to support) or non-cooperative
(e.g., an old satellite, bit of debris). Following rendezvous, the two spacecraft
may establish the rigid union. If both are free flyers and both approach and dock
actively, the procedure is termed docking, preferred for crewed missions since it can
be performed rapidly in case of emergencies (e.g., for the evacuation of the ISS). If
instead, through the use of a robot arm, the passive module is brought into fixed
interface, the procedure is referred to as berthing. Berthing is usually best tailored
for in-orbit servicing situations, particularly if the Target is non-cooperative in
that instance it is better in this case to consider the procedure capture instead
of berthing. Following that, once the Chaser and Target approach is very near,
the operations must comply with stringent rules on the manner in which the two
approach one another, sense each other, and interact. Constraints are put on the
relative pose and velocity, on the sensor and algorithm accuracy, and even on the
very path approach trajectory. In order to handle the complexity, the whole process
is divided into different stages each with its own design methods, coordinate frames,
and requirements for performance [24, 25]:

• Launch and Orbit Injection: Put the Chaser into the same lower orbit as
the Target, having the same inclinations and RAAN. The selection of launch
location and window is dictated by this requirement.

• Phasing: Compensate for any RAAN or inclination misalignments, then trim
the phase angle between Chaser and Target. Bring the Chaser near in orbital
position for the start of the relative navigation while still under ground-station
control.

• Far-Range Rendezvous (“Homing”): Slow the Chaser relative velocity
down to align it in the same orbit as the Target. Guidance from then on is
relative and may be automated.

• Close-Range Rendezvous:

– Closing: Achieve the accuracies in relative position, velocity, and attitude
necessary for the final approach.

– Final Approach: Execute along a predetermined path towards the Target
in order to achieve the state necessary for mating.

• Mating: Mate the Chaser and Target with stringent tolerancing on residual

15

Introduction

angular/linear velocity and pointing. If berthing, this will also control the
motion of the robotic arm in capture.

Although numerous strategies may be conceived and implemented, an illustrative
mission profile is presented in Fig. 1.13

Figure 1.13: RDV mission profile [26]

1.4.3 Trajectory and Rendezvous optimization in literature
A wide variety of numerical and analytical techniques have been proposed for
optimal spacecraft trajectory design. Beyond the Lambert–EA approach adopted
in this work, four major families dominate the literature. For each family, the
main principles are outlined together with key strengths, weaknesses, and detailed
applications specifically related to Rendezvous and Proximity Operations (RPO).

Indirect Methods

Indirect or optimum-control methods apply Pontryagin’s Maximum Principle to
derive first-order necessary conditions of optimality. This yields a two-point
boundary-value problem (TPBVP) in the state x and costate λ variables,

ẋ = f(x,u), λ̇ = −∂H
∂x ,

∂H

∂u

u=u⋆

= 0, (1.1)

where H(x,u,λ) = λTf(x,u) + L(x,u) is the Hamiltonian.

• Strengths — High accuracy and formal guarantees of optimality; computation-
ally efficient once a convergent initial guess is supplied.

• Weaknesses — Extreme sensitivity to the initial costate guess; implementation
effort grows quickly with problem dimensionality, phasing, and complex path
constraints [27, 28].

16

Introduction

• Applications in RPO — Indirect methods have been widely employed for
cooperative rendezvous missions where fine accuracy is required, such as space-
craft docking missions to space stations and multiple spacecraft cooperative
maneuvers. These methods enable accurate final-approach trajectories and
have been effectively applied to missions requiring strict trajectory constraints
like station-keeping and refueling missions [29].

Primer-Vector Theory

Primer-vector theory offers an analytical framework for impulsive, fuel-optimal
transfers. The primer vector p(t), equal to the costate of the velocity, must satisfy

p(ti) = 0, ∥p(t)∥ ≤ 1 ∀t, (1.2)

with impulses applied precisely at the switching times ti where ∥p∥ touches unity.

• Strengths — Closed-form insight into optimal ∆V split and timing; low
computational cost once analytical solutions exist.

• Weaknesses — Limited to impulsive maneuvers and to problems that admit
primer analytics (typically low-eccentricity or planar cases).

• Applications in RPO — Primer-vector theory is particularly suited for impul-
sive rendezvous maneuvers in nearly circular orbits, such as servicing satellites
in geostationary orbit or performing inspection and maintenance missions in
low Earth orbit. Its analytical simplicity allows for real-time trajectory adjust-
ments during close-proximity operations, crucial for rapid-response scenarios
[30].

Direct Transcription and Collocation

Direct methods discretize state and control histories on a grid, transforming the
continuous optimal-control problem into a nonlinear program (NLP). Either finite-
difference collocation or spectral pseudospectral schemes enforce the dynamics and
continuity constraints.

• Strengths — Robust to the initial guess; can handle multi-phase structures,
interior-point constraints, and low-thrust dynamics in a unified way.

• Weaknesses — Produces large, sparse NLPs that demand efficient sparse solvers
and careful mesh refinement .

• Applications in RPO — Direct transcription and collocation techniques are
extensively applied to trajectory optimization for spacecraft proximity ren-
dezvous, particularly beneficial for missions involving intricate constraints

17

Introduction

like collision avoidance, debris removal operations, and multi-phase transfers.
The techniques efficiently manage dynamic challenges involved in spacecraft
rendezvous operations to produce accurate trajectory planning for complex
missions. [31, 32].

Sequential Convex Programming (Successive Convexification)

Sequential convex programming (SCP) linearizes non-linear dynamics and non-
convex constraints around the current iterate (xk,uk), yielding a convex sub-problem
typically a quadratic or second-order cone program solved iteratively.

1. Initialize with a dynamically feasible trajectory.

2. Linearize dynamics and constraints about (xk,uk).

3. Solve the convexified problem to obtain (xk+1,uk+1).

4. Repeat until convergence.

• Strengths — Rapid convergence in practice; accommodates stringent state/-
control limits by construction.

• Weaknesses — Convergence is local; poor linearization trust regions can lead
to sub-optimal solutions or divergence [33].

• Applications in RPO — SCP is widely applied to time-critical rendezvous
missions, like autonomous spacecraft docking, close-proximity operations under
strict safety conditions, and coordinated missions by several vehicles. SCP’s
capacity to converge quickly makes it a good option for real-world applications
for automated rendezvous and docking operations, such as ISS servicing
missions and debris mitigation initiatives. [34].

Overall, indirect and primer methods excel when analytical insight and maximum
optimality are predominant, whereas direct transcription and SCP provide robust-
ness and constraint handling for modern, complex, multi-phase RPO missions at
the cost of larger numerical optimization problems.

1.4.4 Guidance algorithms in literature
As previously said, in this thesis work we combine an optimization algorithm
together with a guidance logic based on an optimization of the Lambert’s problem.
More generally choosing the right navigation and guidance algorithms for the chaser
spacecraft’s GNC system is critical to ensuring successful rendezvous and proximity
operations and in this section are provided some major examples from literature.
There are two main GNC logic: open-loop algorithm and closed-loop algorithm.

18

Introduction

Open-Loop guidance

We pre-compute an optimal steering schedule on the ground using a detailed
vehicle model and upload it to the spacecraft before launch. Once in flight, the
on-board system looks up the appropriate commands from a table and applies
them automatically based on the vehicle’s elapsed time or current position [24].

Input
Open-Loop
Guidance
(ground)

Lookup Table
{∆Vi, diri} Actuators Dynamic

model
commands F

no feedback

Figure 1.14: Open-Loop guidance scheme [24]

The advantages and limitations of this kind of algorithm are briefly described.
Firstly the spacecraft only needs to read commands from a table so no complex
software is required onboard and there is an overall reduction in onboard computa-
tion which saves power in flight. On the other hand if something goes off course
(for example thruster performance or unexpected forces) the system cannot adapt.
In addition to this, to fix any drift or misalignment the spacecraft, additional
maneuvers are often needed, adding operational work. In this thesis we will see
a ground correction of the key factor due to the disturbances that the Lambert
problem doesn’t take into account [35, 36].

Closed-Loop guidance

Closed-loop guidance continuously updates steering commands based on real-time
state estimates and desired trajectories, providing robustness against disturbances
and model uncertainties. Major classes are:

• Acceleration-based algorithms

– Zero-Effort-Mission / Zero-Effort-Velocity (ZEM-ZEV)
The ZEM term is the distance between the Chaser and the Target con-
sidering that the Target is moving along a known predefined path while
the ZEV term can be defined as the end-of-mission velocity offset with no
acceleration applied [24].

ZEM = rf − tgo v +
Ú tf

t

(tf − τ) g(τ)
tgo

dτ, (1.3)

ZEV = vf −
5
v +

Ú tf

t
g(τ) dτ

6
, (1.4)

where tgo = tf − t represents tha time-to-go, i.e. the mission flight
time necessary to achieve the Target and it’s defined by the user. The

19

Introduction

commanded acceleration is

a = 6
t2go

ZEM − 2
tgo

ZEV. (1.5)

State x, ẋ ZEM/ZEV
Guidance Actuators

Dynamic model

aP N

F

x, ẋ

Figure 1.15: Closed-loop ZEM/ZEV guidance
It is usually combined with a Sliding Mode Controller and its usage could
be a good option for Mars Landing [37].

– Proportional Navigation (PN)
Proportional Navigation is a classic guidance law, first developed for
tactical missiles and later adapted for spacecraft rendezvous. It drives
the line-of-sight (LOS) rate to zero by commanding a lateral acceleration
proportional to the LOS angular rate. Defining

λ = arctan
1

z
x

2
, λ̇ = x ż − z ẋ

r2 , Vc = −x vx + z vz

r

the acceleration normal to the LOS is

aP N = N Vc λ̇nLOS,

where N (the navigation constant) is typically chosen between 3 and 5 to
balance responsiveness and smoothness.

State x, ẋ PN Guidance Actuators

Dynamic model

aP N

F

x, ẋ

Figure 1.16: Closed-loop PN guidance

Nowadays augmented versions of the PN are used in CubeSats equipped
with only optical sensor to achieve autonomous and robust proximity with
uncooperative satellites [38].

20

Introduction

• Control-based algorithms

– LQR-based guidance
Linear-Quadratic Regulator (LQR) controller combines a reference trajec-
tory provided by guidance with a state-feedback controller to minimize
a quadratic cost on tracking error and control effort. Starting from the
linearized dynamics

ẋ = Ax +B u,

we define the state-error xe = x− xref and seek the control law

u = KLQR xe,

where KLQR is chosen to minimize the infinite-horizon cost

J = 1
2

Ú ∞

0

1
x⊤

e Qxe + u⊤Ru + 2 u⊤N xe

2
dt.

Here Q, R, and N are designer-specified weighting matrices that bal-
ance state-tracking accuracy against control effort. The optimal gain is
computed by solving the associated Algebraic Riccati Equation ([39]) to
obtain

KLQR = −R−1 (B⊤P +N⊤),

where P is the positive-definite solution of

A⊤P + P A− (P B +N)R−1(B⊤P +N⊤) +Q = 0.

The matrices Q and R can be retuned onboard as the rendezvous geometry
evolves to maintain robustness and performance.

Linearized
Dynamics
Equations

Guidance
Algorithm

LQRActuation
Dynamics

x, ẋ

(x, ẋ)des

a

F

Figure 1.17: Closed-loop LQR guidance with online path generation

21

Introduction

Linearized
Dynamics
Equations

Guidance
Algorithm

LQRActuation
Dynamics

x, ẋ (x, ẋ)des

a

F

Figure 1.18: Closed-loop LQR guidance with offline path generation

This algorithm has been widely used in proximity operation scenarios
such as distance control maneouvres in satellites constellations [40]

– MPC-based guidance
Model Predictive Control (MPC) formulates, at each sampling instant k,
a finite-horizon optimal control problem using the linearized dynamics

ẋ = Ax +B u,

and minimizes the quadratic cost

Jk = 1
2

N−1Ø
i=0

5
(xk+i|k − xref)⊤Q (xk+i|k − xref) + ∆u⊤

k+iR∆uk+i

6
,

where ∆uk+i = uk+i − uk+i−1, subject to actuator limits and LOS-cone
constraints. The resulting Quadratic Program is solved online, the first
control increment ∆uk is applied, then the horizon “recedes” and the
procedure repeats with updated state measurements. This approach is
widely used for autonomous rendezvous in elliptical orbits and for robust
proximity operations under uncertainty such as rendezvous with a spinning
orbital object [41].

• Collision-Avoidance algorithms

– Artificial Potential Field (APF)
Artificial Potential Field guidance treats the chaser and obstacles as
charged particles moving under electrostatic-like forces. Since its introduc-
tion in the 1990s for mobile robots, APF has been adapted for spacecraft
proximity operations due to its conceptual simplicity and capability for
real-time path planning [24]. An attractive potential

Ua(x) = 1
2 Ka ∥x− xgoal∥2

22

Introduction

pulls the vehicle toward the target, while a repulsive potential

Ur(x) =


1
2 Kr

3
1

η(x) −
1
η0

42
, η(x) < η0,

0, η(x) ≥ η0,
η(x) = ∥x− xobs∥,

pushes it away from any convex obstacle within a safety radius η0. The
gradient of the total potential

F = −∇
1
Ua + Ur

2
yields a guidance vector which, when normalized and scaled by a designer-
chosen maximum speed ẋmax, defines the commanded velocity direction
and magnitude.

APF
Control Law

(PD, LQR, SMC)
Transformation

Matrix

Dynamics
Equations

xdes

ẋdes FB

F

x, ẋ

Figure 1.19: Closed-loop APF guidance with control law

APF offers online reactivity to moving obstacles and for this reason is
widely used in LEO formation flying for collision avoidance [42].

23

Chapter 2

Foundamentals of
astrodynamics

2.1 Overview of the laws
This chapter provides a concise overview of the essential theoretical concepts on
which the physics of the problem analyzed in this thesis is based. The fundamental
laws governing the motion of spacecraft and planets, as well as the primary elements
used to define orbital parameters, will be described. Finally, concepts related to
propulsion will be introduced in order to present the key characteristics of orbital
manoeuvres. References [24], [25], and [43] were used to draft this chapter.

2.1.1 Universal Law of Gravitation
The foundation of celestial mechanics was laid by Isaac Newton, who formulated
the law of universal gravitation. In its classical form, the law states that two point
masses M and m, separated by a distance r, attract each other with a force whose
magnitude is

F = G
M m

r2 (2.1)

where G = 6.673× 10−11 m3 kg−1 s−2 is the universal gravitational constant.

If we introduce the vector r to denote the displacement from mass M to mass m,
then the gravitational force exerted on m by M can be written in vector form as

F = −G M m

|r|3 r. (2.2)

24

Foundamentals of astrodynamics

The negative sign indicates that the force is attractive, pulling m directly toward
M (i.e., in the opposite direction of r).

Although real celestial bodies are not perfect point masses, Newton’s law remains
valid for extended objects provided they are spherically symmetric or their sep-
aration is much larger than their own dimensions. In such cases, one can treat
each body as if its entire mass were concentrated at its center when calculating the
gravitational interaction.

2.1.2 The N-Body Problem
Given a spacecraft traveling in space, it is subjected at each instant to N different
gravitational forces from N different bodies with distinct gravitational masses (see
Figure 2.1). Other forces may act on the spacecraft—such as thrust, aerodynamic
drag, or solar radiation pressure—but they are neglected in the following discussion.

Figure 2.1: The N-Body problem [44]

Considering a system in Euclidean space of N bodies, {m1,m2,m3, . . . ,mN}, one
of which is the body whose motion we wish to study (e.g., the spacecraft), the
following assumptions are made:

• The bodies are spherically symmetric. This allows us to treat each body as
though its entire mass were concentrated at its geometric center.

• The masses of all bodies are constant over time.

• There are no external or internal forces acting on the system other than the
mutual gravitational forces, which act along the line joining the centers of the
bodies.

25

Foundamentals of astrodynamics

Assume an inertial reference frame centered at an arbitrary point O. The gravita-
tional force exerted on body i by body n can be written as

Fin = −G mn mi

r3
ni

rni, n /= i, rni = ri − rn. (2.3)

Here, G is the universal gravitational constant, mi and mn are the masses of bodies
i and n, respectively, and ri, rn are their position vectors relative to O. By summing
over all n /= i, the total gravitational force on body i becomes

Fi =
NØ

n=1, n /=i

Fin = −
NØ

n=1
n /=i

G
mn mi

r3
ni

rni. (2.4)

Combining (2.4) with Newton’s second law, Fi = mi r̈i, and introducing relative
position vectors between bodies i and j, rij = rj − ri, one obtains the following
system of second-order differential equations:

r̈i = −
NØ

n=1
n /=i

G
mn

r3
ni

rni = −G mi +mj

r3
ij

rij −
NØ

n=1
n /=i, n /=j

Gmn

A
rnj

r3
nj

− rni

r3
ni

B
, (2.5)

for each i = 1,2, . . . , N . In (2.5), the first term represents the direct gravitational
interaction between bodies i and j; the summation that follows accounts for
perturbations due to all remaining bodies in the system. Because there are N
bodies, one obtains N coupled second-order differential equations (or equivalently
2N first-order equations). In general, this system cannot be solved analytically
and must be integrated numerically.

2.1.3 The Two-Body Problem
When the full N -body system is reduced to only two bodies say masses mi and mj

all indices n /= i, n /= j vanish, so that the perturbation sum in (2.5) disappears.
The equation of motion for the relative vector rij then simplifies to

r̈ij = −G mi +mj

r3
ij

rij. (2.6)

If one body (say mj) is much more massive than the other (mj ≫ mi), one obtains
the restricted two-body problem. In that case, the smaller mass mi exerts a negligible
force on mj, and the origin of coordinates may be taken at the center of the larger
mass. Defining M = mj and m = mi, the relative distance r = ri − rj becomes

26

Foundamentals of astrodynamics

equivalent to the absolute position of the small body relative to the large one.
Equation (2.6) reduces to

r̈ = −G (M +m)
r3 r. (2.7)

Finally, because M ≫ m, one may neglect m in the numerator to arrive at the
familiar form

r̈ = −G M

r3 r. (2.8)

It is customary to define the standard gravitational parameter µ of the larger body
as

µ = GM,

so that (2.8) can also be written as

r̈ = −µ r
r3 .

These equations form the basis of classical celestial mechanics for a spacecraft (or
planet) moving under the gravitational attraction of a single dominant body.

2.1.4 Constants of the motion
The gravitational field is conservative and radial, so an object moving under the
influence of gravity alone does not lose or gain mechanical energy but only exchanges
one form of energy (kinetic) for another form called potential energy. Since the
gravitational field is radial, the angular momentum of the satellite about the center
of the reference frame (the large mass) remains constant.

Conservation of Mechanical Energy

The energy constant of motion can be derived by taking the scalar product between
the equation of motion and the velocity ṙ:

ṙ · r̈ + µ

r3 r · ṙ = 0 (2.9)

From (2.9), one obtains
d

dt

A
V 2

2 − µ

r

B
= 0, (2.10)

where V = ∥ṙ∥ is the speed and µ = GM is the standard gravitational parameter.
Equation (2.10) implies that

E = V 2

2 − µ

r
is constant in time. By choosing the integration constant of the potential energy
to be zero at r →∞, the total specific mechanical energy E is defined as above.

27

Foundamentals of astrodynamics

Conservation of Angular Momentum

The angular-momentum constant of motion results from taking the cross product
of the equation of motion with r:

r× r̈ + µ

r3 r× r = 0. (2.11)

Since r × r = 0, the second term in (2.11) vanishes. Applying the product-rule
form of differentiation to the first term yields

d

dt

1
r× ṙ

2
= 0. (2.12)

Define the specific angular momentum vector as

h = r× ṙ.

Because h is constant in time, r and ṙ must always lie in the same plane perpen-
dicular to h. Consequently, the motion of the satellite remains confined to a fixed
plane in space, commonly called the orbital plane.

2.1.5 Trajectory Equation
It is possible to obtain a partial solution that determines the size and shape of the
orbit. A fully explicit, time-dependent solution requires a double integration and is
therefore more difficult to derive. By taking the cross product of the equation of
motion

r̈ = −µ r
r3

with the specific angular-momentum vector h = r× ṙ, one arrives at

r̈× h = µ

r3 (r× h) = µ

r3

1
r× (r× ṙ)

2
. (2.13)

Since r× (r× ṙ) = (r · ṙ) r− r2 ṙ, equation (2.13) can be shown after a few algebraic
manipulations to become

d

dt

1
ṙ× h

2
= d

dt

3
µ

r
r

4
. (2.14)

Integrating both sides of (2.14) with respect to time introduces a constant (vector)
of integration B. Hence,

ṙ× h = µ
r
r

+ B. (2.15)

Taking the scalar (dot) product of r with both sides of (2.15) gives

r ·
1
ṙ× h

2
= µ

r · r
r

+ r ·B.

28

Foundamentals of astrodynamics

But r · (ṙ× h) = 0 since r, ṙ, and h = r× ṙ are mutually perpendicular. Therefore,

0 = µ r + r ·B =⇒ r ·B = −µ r.

Define the angle ν between the vectors B and r. Then

r ·B = r B cos ν = −µ r =⇒ B cos ν = −µ.

Since B = ∥B∥, we may write

B

µ
cos ν = − 1. (2.16)

In practice, one chooses the direction of B so that ν is measured from pericenter
(where r is minimum), yielding

r = h2/µ

1 + (B/µ) cos ν .

Equation (2.1.5) is the trajectory equation expressed in polar coordinates, where

r =

h2

µ

1 + B
µ

cos ν
.

Here, ν is the true anomaly (the angle between B and r), and B/µ is identified
as the eccentricity e. When ν = 0, r attains its minimum value; when ν = π, r is
maximum. To determine the type of conic section represented by (2.1.5), compare
it with the general polar-coordinate equation of a conic:

r = p

1 + e cos ν , (2.17)

where p is the semilatus rectum and e is the eccentricity. By identifying

p = h2

µ
, e = B

µ
,

one sees that the orbit is elliptical if 0 ≤ e < 1, parabolic if e = 1, and hyperbolic if
e > 1. Equation (2.17) therefore confirms that the trajectory of a two-body system
under a 1/r2 force law is a conic section.

Building on the trajectory equation derived above, we note that

r = p

1 + e cos ν , p = h2

µ
, e = B

µ
,

29

Foundamentals of astrodynamics

where p is the semilatus rectum and e is the eccentricity. From this form and the
preceding analysis, one can draw the following key conclusions:

1. The locus of possible trajectories under a central 1/r2 force is confined to the
family of conic sections (circle, ellipse, parabola, hyperbola), as determined by
the value of e.

2. The focus of each conic section corresponds to the center of attraction (i.e.,
the central mass), confirming that all two-body orbits share the same focal
geometry.

3. The specific mechanical energy

E = V 2

2 − µ

r

remains constant along the orbit, implying that a satellite does not gain or
lose total energy as it moves on its conic trajectory.

4. The motion of the satellite is confined to a fixed plane in inertial space (the
orbital plane), since the specific angular momentum vector h = r × ṙ is
constant in both magnitude and direction.

5. The magnitude of the specific angular momentum

h = ∥r× ṙ∥

is invariant, reinforcing that the areal velocity is constant (Kepler’s second
law).

2.1.6 Types of orbits
The term conic originates from the fact that each of these orbital paths can be
defined as the intersection of a plane and a right circular cone. Every conic orbit
possesses two foci, which determine its geometric properties:

• Circle: both foci coincide at the center of the circle.

• Ellipse: the two foci lie on the major axis, separated by twice the focal distance.

• Parabola: one focus lies at a finite distance, while the other effectively resides
at infinity; it represents the boundary between bound (elliptical) and unbound
(hyperbolic) trajectories.

• Hyperbola: the two foci lie on the transverse axis, beyond the vertices, indicat-
ing an unbound trajectory.

30

Foundamentals of astrodynamics

A parabolic orbit corresponds to exactly the minimum specific energy required for
a spacecraft to escape the central body’s gravitational influence.

For any conic section, the following geometric parameters are defined:

• Semilatus rectum p: the distance from the focus to the curve measured along
a line perpendicular to the major axis (i.e., half the width of the conic at the
focus).

• Semi-major axis a: half the length of the chord passing through both foci.

• Focal distance c: half the distance between the two foci.

• Semi-minor axis b: half the length of the chord passing through the center of
the conic and perpendicular to the major axis.

These definitions provide the basis for distinguishing between different orbital
shapes:

e =


0, circle,
0 < e < 1, ellipse,
e = 1, parabola,
e > 1, hyperbola,

where e = c

a
is the eccentricity.

Building on the geometric definitions of a conic orbit, one can derive additional
relations among the orbital elements. Recall that the eccentricity is defined by

e = c

a
=
ó

1 + 2 E h2

µ2 ,

where E is the specific mechanical energy, h is the specific angular momentum, and
µ is the gravitational parameter of the central body. The semilatus rectum p is
related to a and e by

p = a
1
1− e2

2
.

From these definitions, the periapsis distance rmin and apoapsis distance rmax can
be written as

rmin = p

1 + e
= a (1− e), rmax = p

1− e = a (1 + e).

31

Foundamentals of astrodynamics

Elliptical Orbit An ellipse (0 ≤ e < 1) is a closed orbit with constant period T .
For any point on an ellipse, the sum of distances to the two foci is constant:

r + r′ = 2a,

where r and r′ are the instantaneous distances from each focus. Denoting ra and
rp as the apocenter and pericenter distances, respectively, one finds

ra − rp = 2c, e = 2c
2a = ra − rp

ra + rp

.

The orbital period of an ellipse follows Kepler’s third law:

T = 2π
ó
a3

µ
.

Circular Orbit A circle is the special case e = 0, for which both foci coincide at
the center. Hence, r is constant and equal to the semi–major axis a. The circular
speed Vc at radius rc satisfies

Vc =
ó
µ

rc

,

and the period reduces to

Tc = 2π
ó
r3

c

µ
.

Parabolic Orbit A parabola has e = 1 and represents the exact boundary
between bound and unbound motion. In this case, one focus is effectively at infinity,
and the semilatus rectum satisfies

p = 2 rp,

where rp is the periapsis distance. The specific mechanical energy for a parabolic
trajectory is zero, and the periapsis speed (escape velocity at rp) is

Vp =
ó

2µ
rp

.

Since a parabolic trajectory is an open path, it does not have a well-defined orbital
period.

32

Foundamentals of astrodynamics

Hyperbolic Orbit For e > 1, the trajectory is a hyperbola, also open, with
periapsis distance

rp = p

1 + e
,

and the excess velocity at infinity V∞ satisfies

E = V 2
∞
2 > 0.

The hyperbolic excess speed is related to a by

a = − µ

2 E (note that a < 0),

and the asymptotic turning angle θ∞ (measured from periapsis) obeys

cos θ∞ = − 1
e
.

This concludes the summary of conic orbits and their key geometric and dynamical
parameters.

2.1.7 Coordinate Systems
The first requirement for describing an orbit is to choose a suitable inertial reference
frame. In the case of orbits around the Sun (e.g., planets, asteroids, comets, and
deep-space probes), the heliocentric-ecliptic coordinate system is convenient. For
satellites of the Earth, one typically uses the geocentric-equatorial system. To
define any reference frame, we need to specify:

• The origin of the reference frame;

• The orientation of the fundamental plane (the X–Y plane);

• The principal direction (i.e., the direction of the X axis);

• The direction of the Z axis, which is perpendicular to the fundamental plane.

The Y axis is always chosen so that (X, Y, Z) form a right-handed set of coordinate
axes.

The Heliocentric-Ecliptic Coordinate System

In the heliocentric-ecliptic system, the origin is at the center of the Sun. The
fundamental plane coincides with the ecliptic, which is the plane of the Earth’s
revolution around the Sun. The line of intersection between the ecliptic plane and
the Earth’s equatorial plane defines the direction of the vernal equinox, commonly

33

Foundamentals of astrodynamics

denoted by γ̂. On the first day of spring (the March equinox), the line joining the
center of the Earth and the center of the Sun points along the positive X–axis (i.e.,
toward γ̂).

Because the Earth’s rotation axis precesses by roughly 50 arcseconds per year, the
heliocentric-ecliptic frame is not strictly inertial over very long timescales. However,
for typical mission durations of two to three years, this precession has a negligible
effect, so the heliocentric-ecliptic frame can be treated as effectively inertial.

Figure 2.2: Heliocentric-ecliptic coordinate system [45]

The Geocentric-Equatorial Coordinate System

The geocentric-equatorial system has its origin at the center of the Earth. The
fundamental plane is the Earth’s equatorial plane, and the positive X–axis points
toward the vernal equinox direction. The Z–axis points toward the north celestial
pole, while the Y –axis completes a right-handed set of axes, lying in the equatorial
plane 90◦ east of the X–axis.

Because this frame is fixed relative to the stars, it rotates with the Earth. In other
words, as the Earth spins, the geocentric-equatorial coordinate frame also rotates
in inertial space. Consequently, positions of satellites expressed in this frame must
account for Earth’s rotation when converting to inertial or Earth-fixed longitude
and latitude.

34

Foundamentals of astrodynamics

Figure 2.3: Geocentric-equatorial coordinate system [43]

The Perifocal Coordinate System

The perifocal frame is particularly useful for describing the instantaneous motion
of a satellite in its orbital plane. Its origin is located at the focus of the Keplerian
orbit (i.e., the center of attraction, such as the Earth’s center for an Earth-orbiting
satellite). The fundamental (reference) plane of the perifocal frame is the satellite’s
orbital plane.

• The p–axis (p̂) points from the focus toward the periapsis (closest approach)
of the orbit.

• The q–axis (q̂) lies in the orbital plane, perpendicular to p̂, in the direction of
motion at periapsis (i.e., 90◦ ahead of the periapsis direction).

• The w–axis (ŵ) is perpendicular to the orbital plane and completes the
right-handed triad (p̂, q̂, ŵ). In fact, ŵ = p̂× q̂.

In this frame, the satellite’s position vector r lies in the p–q plane and can be
written as

r = r cos ν p̂ + r sin ν q̂,

where r is the orbital radius and ν is the true anomaly measured from periapsis.
The velocity vector ṙ also lies in the orbital plane and may be expressed in the p–q
basis as

ṙ = ṙ p̂ + r ν̇ q̂,

with ṙ = µ
h
e sin ν and r ν̇ = h

r
, where h is the specific angular momentum, µ is the

gravitational parameter, and e is the eccentricity.

35

Foundamentals of astrodynamics

Figure 2.4: Perifocal frame [43]

2.1.8 Classical Orbital Parameters
In astrodynamics, a set of five independent quantities called orbital parameters
is sufficient to specify the size, shape, and orientation of a Keplerian orbit. To
indicate the location of a satellite along its orbit at a particular epoch, a sixth
parameter is required. The classical set of six orbital elements (see Figure 2.5) is
defined as follows:

• Semi-major axis, a: a constant that determines the overall size of the conic
section.

• Eccentricity, e: a constant that defines the shape of the conic (circle, ellipse,
parabola, or hyperbola).

• Inclination, i: the angle between the orbital plane’s angular momentum vector
h and the reference Z-axis.

• Longitude of the ascending node, Ω: the angle measured in the reference plane
(from the reference direction Î) to the point where the satellite crosses that
plane moving northward (the ascending node).

• Argument of periapsis, ω: the angle in the orbital plane between the ascending
node and the orbit’s periapsis, measured in the direction of motion.

• True anomaly, ν(t): the angle between the orbital radius vector r(t) and the
periapsis direction, measured in the direction of motion.

36

Foundamentals of astrodynamics

Figure 2.5: Classical orbital elements [43]

The six classical orbital elements defined above are not exhaustive; in certain special
cases one or more elements become indeterminate. In those situations, alternate
angular parameters are introduced:

• If the inclination i = 0, then Ω and ω cannot be determined. Instead, one
defines the longitude of periapsis, Π, measured from the reference direction Î
to periapsis.

• If the eccentricity e = 0, then ω and ν become undefined. In this case, one
uses the argument of latitude, θ, which is the angle from the ascending node
to the satellite’s current position measured in the direction of motion.

• If both e = 0 and i = 0, then Ω, ω, and ν are all indeterminate. An alternate
parameter, the true longitude at epoch ℓ, is used to specify the satellite’s
position along the circular, equatorial orbit.

2.1.9 Orbital elements determination from r and v
If a ground station on Earth provides the position vector r and velocity vector v of
a satellite in the geocentric-equatorial frame at a given instant, one can compute
the eccentricity vector via:

v× h
µ

− r
r

= e, (2.18)

where h = r× v is the specific angular momentum, r = ∥r∥, and µ is the standard
gravitational parameter of Earth. Once e is known, its magnitude e = ∥e∥ gives the

37

Foundamentals of astrodynamics

orbit’s eccentricity. From r and v one also obtains h and the specific mechanical
energy E = v2

2 −
µ
r
, from which the semi-major axis a and semilatus rectum p can

be derived in the usual way.

The remaining orientation angles follow from the following relations, where I, J,
and K are the unit axes of the geocentric-equatorial frame and P is the unit vector
along periapsis (i.e., e/e):

Ω = arccos
3I · (K× h)
∥K× h∥

4
, ω = arccos

3(K× h) · P
∥K× h∥

4
,

i = arccos
3K · h
∥h∥

4
, ν = arccos

3r · P
r

4
.

2.1.10 Determining r and v from orbital elements
Assume that all six orbital elements are specified and we wish to compute the
satellite’s position and velocity. In the perifocal frame, the position vector can be
written as:

r = r cos ν p̂ + r sin ν q̂, (2.19)

where the magnitude of r is given by:

r = p

1 + e cos ν , (2.20)

with p = a (1− e2).

To find the velocity vector, differentiate r with respect to time, treating the perifocal
axes as fixed:

ṙ = v =
1
ṙ cos ν − r ν̇ sin ν

2
p̂ +

1
ṙ sin ν + r ν̇ cos ν

2
q̂. (2.21)

Using the standard relations

ṙ =
ó
µ

p
e sin ν, r ν̇ =

ó
µ

p

1
1 + e cos ν

2
,

one obtains the compact form:

v =
ó
µ

p

5
− sin ν p̂ +

1
e+ cos ν

2
q̂
6
. (2.22)

38

Foundamentals of astrodynamics

2.2 External disturbances
2.2.1 Atmospheric Drag
Drag is caused by the residual atmosphere in the LEO orbits, where the density of
the air is lower than on the ground and the continuum model of fluid mechanics
doesn’t apply because the interaction is on a molecular level. Four assumptions
are made:

• The momentum of molecules arriving at the surface of the spacecraft is totally
lost to the surface;

• The thermal motion of the atmosphere is much smaller than the spacecraft
speed;

• The spacecraft is nominally non-spinning.

The force is calculated as:
F = ρ

2 V
2 S CD (2.23)

ρ was obtained from the JB-2006 model of atmospheric density based on altitude:

Figure 2.6: JB-2006 model [24]

2.2.2 J2 Effect
The term J2 comes from an infinite-series mathematical equation that describes
the perturbational effects of oblateness on the gravity of a planet. The coefficients

39

Foundamentals of astrodynamics

of each term in this series are denoted Jk, of which J2, J3, and J4 are called “zonal
coefficients.” However, J2 is over 1000 times larger than the rest and has the
strongest perturbing influence on orbits.

Figure 2.7: Earth’s oblateness [24]

It is possible to define the force applied to the spacecraft by this effect as:

FJ2 = −mc
3 J2 µR

2

2 r4


1− 3 sin2(i) sin(ν)

2 sin2(i) sin(ν) cos(ν)
2 sin(i) cos(i) sin(ν)

 (2.24)

where:

• i is the orbital inclination,

• ν is the true anomaly,

• r is the orbital radius,

• R is the mean radius of the Earth, and

• J2 = 1.08263× 10−3.

2.2.3 Gravity Gradient
The gravity-gradient torque is caused by Earth’s gravity force, which decreases
quadratically with distance from the Earth’s center. In fact, the gravitational

40

Foundamentals of astrodynamics

force on a mass farther from the Earth is smaller than the force on a mass that is
closer. This difference in gravitational force produces a torque on the spacecraft.
In particular, four assumptions were made:

• Only one celestial primary body is considered;

• The celestial body possesses a spherically symmetrical mass distribution;

• The spacecraft is small compared to its distance from the mass center;

• The spacecraft is a single rigid body.

After these assumptions, we obtain:

T̃ = 3ω2


1
Izz − Iyy

2
ϕ1

Izz − Ixx

2
θ1

Ixx − Iyy

2
r2 ϕ θ

 (2.25)

where:

• ω is the orbital rate,

• Ixx, Iyy, Izz are the principal moments of inertia of the spacecraft,

• ϕ and θ are the small angular displacements about the x and y axes, respec-
tively,

• r is the orbital radius.

2.2.4 Magnetic Torque
The disturbance related to the magnetic field of the Earth acts purely as a torque
and is caused by the interaction of the residual dipole of the spacecraft with Earth’s
magnetic field. Usually, it is considered constant, but more accurate models can be
used. The torque can be written as:

Tm = M×B (2.26)

where M is the residual magnetic dipole of the satellite and B is the local geomag-
netic field.

2.2.5 Solar Radiation
The disturbance related to solar radiation can be considered both as a disturbance
force (secondary effect) and as a disturbance torque, which is the primary effect.

41

Foundamentals of astrodynamics

In particular, the force magnitude can be written as:

Fs =
1
1 +K

2
Ps S (2.27)

where:

• S is the frontal area of the spacecraft exposed to the Sun;

• K is the reflectivity index (K = 1 in sunlight, K = 0 in eclipse);

• Ps = Is

c
is the solar radiation pressure constant, with Is = 1367 W/m2 (solar

irradiance at 1 AU) and c = 3× 108 m/s (speed of light).

In this thesis, the force direction is taken along the line between the Sun and the
satellite (referred to as the Sun vector), pointing away from the Sun. The resulting
torque about the spacecraft’s center of mass is given by:

Ts = rs × Fs (2.28)

where rs is the vector from the spacecraft’s center of mass to its optical center of
pressure, and Fs is the force vector of magnitude Fs acting in the Sun line direction.

Figure 2.8: Solar radiation [24]

2.3 Orbital manoeuvres
Orbital manoeuvres are performed to change one or more orbital parameters.
During manoeuvres, propulsive forces are applied to the spacecraft, implying a
change in vehicle mass with the ejection of a mass ṁp. In this section, some
impulsive manoeuvres will be reported such as the classic fuel efficient Hohmann
transfer and the bi-elliptic version, the phasing manoeuvre and finally the orbital
plane change.

42

Foundamentals of astrodynamics

2.3.1 Impulsive manoeuvres
During an impulsive manoeuvre, the position of the spacecraft is considered to be
fixed; only the velocity changes. The impulsive manoeuvre is an idealization by
means of which we can avoid having to solve the equations of motion (Eq. 2.6)
with the rocket thrust included. The idealization is satisfactory for those cases in
which the position of the spacecraft changes only slightly during the time that the
manoeuvering rockets fire. This is true for high-thrust rockets with burn times
short compared with the coasting time of the vehicle.

Each impulsive manoeuvre results in a change ∆V in the velocity of the spacecraft.
∆V can represent a change in the magnitude or the direction of the velocity vector,
or both. The magnitude ∆V of the velocity increment is related to ∆m, the mass
of propellant consumed, by the formula

∆m
m

= 1− e− ∆v
Ispg0 (2.29)

where m is the mass of the spacecraft before the burn, go is the sea-level standard
acceleration of gravity, and Isp is the specific impulse of the propellants. Specific
impulse is defined as follows:

Isp = thrust
sea-level weight rate of fuel consumption

Specific impulse has units of seconds, and it is a measure of the performance of a
rocket propulsion system. Isp for some common propellant combinations are shown
in Table 2.1. Figure 2.9 is a graph of Equation 2.29 for a range of specific impulses.
Note that for ∆V s on the order of 1 km/s or higher, the required propellant
exceeds 25 percent of the spacecraft mass prior to the burn.

There are no refueling stations in space, so a mission’s delta-v schedule must be
carefully planned to minimize the propellant mass carried aloft in favor of payload.

Propellant Isp (s)
Cold gas 50
Monopropellant hydrazine 230
Solid propellant 290
Nitric acid / monomethylhydrazine 310
Liquid oxygen / liquid hydrogen 455

Table 2.1: Specific impulse of various propellant types [43]

43

Foundamentals of astrodynamics

Figure 2.9: Propellant mass fraction versus ∆V for typical specific impulses [43]

Hohmann Transfer

The Hohmann transfer [46], is the minimum-energy, two-impulse manoeuvre for
transferring a spacecraft between two coplanar circular orbits sharing a common
center. The transfer trajectory is a Keplerian ellipse whose periapsis and apoapsis
coincide with the radii of the inner and outer circles, respectively. Only one half of
this ellipse is traversed either from the lower to the higher orbit or vice versa by
applying two instantaneous velocity changes.

The specific orbital energy of any Keplerian orbit depends solely on its semi-major
axis a. For an ellipse, the specific energy ε is given by

ε = − µ

2a , (2.30)

where µ is the gravitational parameter of the central body. A larger semi-major
axis corresponds to a less negative (i.e. higher) energy.

Starting on the inner circular orbit at point A, an impulsive increment ∆VA is
applied in the direction of motion to place the vehicle onto the transfer ellipse.
After coasting along the ellipse from A to the opposite apsis B, a second impulse
∆VB circularizes the trajectory onto the outer orbit. Without the second burn, the
vehicle would return along the same ellipse back to A. The total propellant cost is
quantified by the sum

∆Vtotal = ∆VA + ∆VB . (2.31)

44

Foundamentals of astrodynamics

Figure 2.10: Hohmann transfer [43]

The same total ∆V is required if the transfer begins at point B on the outer
circular orbit. Since lowering the spacecraft’s energy to reach the inner, lower
energy circular orbit must be accomplished by retrograde burns, the required ∆V
must be provided by retrofires. In a retrofire manoeuvre, the rocket thrust is
applied opposite to the velocity vector so as to brake the spacecraft. Because each
∆V corresponds to the same propellant expenditure regardless of thrust orientation,
when summing the individual ∆V values we need consider only their magnitudes.

Bi-elliptic Hohmann Transfer

Figure 2.11: Bi-elliptic transfer from inner orbit 1 to outer orbit 4 [43]

45

Foundamentals of astrodynamics

A bi–elliptic transfer from a circular orbit at radius rA to another at rC (orbit 4 in
Fig. 2.11) consists of two coaxial half-ellipses. The first ellipse (arc 2) is tangent to
the inner circle at rA and meets the outer circle at point B. The second ellipse (arc
3) starts at B and is tangent to the outer circle at rC . Point B is chosen beyond
rC so that the burn ∆VB there can be made arbitrarily small; indeed, as rB →∞,
we have ∆VB → 0. In order for this bi–elliptic scheme to use less propellant than
the single-ellipse (Hohmann) transfer, its total ∆V must satisfy

∆Vtotal, bi-elliptic < ∆Vtotal, Hohmann (2.32)

A straightforward ∆V analysis of the two methods gives

∆vH =
C

1√
α
−

ñ
2 (1− α)ñ
α (1 + α)

− 1
Dó

µ

rA

, (2.33)

∆Vbi =
Cñ2 (α + β)

αβ
− 1 +

√
α√

α
−

√
2

β
√

1 + β
(1− β)

Dó
µ

rA

(2.34)

where
α = rC

rA

, β = rB

rA

. (2.35)

Figure 2.12: Orbits for which the bi-elliptical transfer is either less efficient or
more efficient than the Hohmann transfer [43]

Plotting the difference between Hohmann and bi-elliptical ∆Vtotal as a function
of the parameters α and β reveals the regions in which this difference is positive,
negative, or zero. These regions are shown in Fig. 2.12.

46

Foundamentals of astrodynamics

• If the target-orbit radius satisfies α = rC/rA ≲ 11.9, the single-ellipse
(Hohmann) transfer uses less ∆v.

• If α ≳ 15, the bi-elliptic scheme becomes more efficient.

• For intermediate values 11.9 ≲ α ≲ 15, whether the bi-elliptic transfer wins or
loses depends on the apoapsis ratio β = rB/rA: large β favor the bi-elliptic
trajectory, while small β favor Hohmann.

However even a modest savings in ∆V can be outweighed by the much longer flight
time of the bi-elliptic path compared to the single semi-ellipse of the Hohmann
transfer.

Phasing manoeuvres

A phasing manoeuvre is a two-impulse Hohmann transfer that departs from and
returns to the same circular orbit, as illustrated in Fig. 2.13. The transfer ellipse
called the phasing orbit is chosen so that the spacecraft re-encounters its original
orbit after a specified period. Phasing manoeuvres change only the spacecraft’s
position along the orbit without altering its energy.

When two spacecraft sharing the same orbital radius are at different longitudes, one
can perform a phasing manoeuvre to catch up with the other for a rendezvous. Sim-
ilarly, geostationary communications and weather satellites use phasing manoeuvres
to drift to new longitudes above the equator.

Figure 2.13: Main orbit (0) and two phasing orbits, faster (1) and slower (2). T0
is the period of the main orbit [43]

47

Foundamentals of astrodynamics

A phasing manoeuvre can target a vacant point in space point P rather than a
physical object. In Fig. 2.13, one might select phasing orbit 1 so that the spacecraft
returns to P in less than one period of the main orbit. This choice is appropriate
when the chaser trails the target: a retrograde burn at P slows the spacecraft
relative to the original orbit, placing it on the shorter phasing ellipse. If instead
the chaser leads the target, phasing orbit 2 with a longer period is preferred, and a
prograde burn at P speeds the vehicle up to drop back onto the main orbit behind
the target.

Once the desired phasing period T is chosen, the semi-major axis a of the phasing
ellipse follows from

a =
A
T
√
µ

2π

B2/3

(2.36)

Knowing that 2a = rP + rA, one then determines whether P serves as periapsis or
apoapsis of the ellipse. The eccentricity follows from the orbit equation 2.20, and
evaluation of the energy or angular momentum relation at P (or A) completely
specifies the phasing trajectory.

Orbital plane change

A plane-change manoeuvre uses a single impulse at constant radius, keeping the
orbital energy and angular momentum fixed. Only the direction of the tangential
velocity Vt is altered, its magnitude (and that of the radial and total speed) remains
the same.

The total cost in ∆V is
∆V = 2Vt sin

3∆ψ
2

4
(2.37)

where ∆ψ is the angle between the tangential velocity directions before and after
the burn.

Since ∆V scales with orbital speed, it is most efficient to perform the plane change
at apoapsis or combine it with a transfer burn. Fig. 2.14 shows a schematic
representation of this manoeuvre.

48

Foundamentals of astrodynamics

Figure 2.14: Two non-coplanar orbits about F (on the left). A view down the
line of intersection of the two orbital planes (on the right) [43]

Chase manoeuvres

Chase trajectories can be found as solutions to Lambert’s problem, which is the
problem of two position vectors and the flight time between them.

According to H. D. Curtis [43] we can synthesize the problem as follows: let’s
suppose we have two known position vectors, r1 and r2, which describe two points
P1 and P2 of an object orbiting a central body (mass M).

49

Foundamentals of astrodynamics

Figure 2.15: Lambert’s problem [43]

To solve Lambert’s problem, we begin by determining the transfer angle ∆θ between
the departure and arrival radius vectors. In practice, one computes

cos ∆θ = r1 · r2

∥r1∥ ∥r2∥
,

and then inspects the Z-component of r1 × r2 to choose the correct branch of the
inverse cosine for a prograde transfer. Once ∆θ is fixed, we introduce the Lagrange
coefficients f and g so that

r2 = f r1 + g v1, v2 = ḟ r1 + ġ v1.

Evaluating f and g efficiently uses the universal-variable formalism: we define a
parameter χ and an auxiliary variable z in the relation

√
µ∆t = χ3 S(z) + Aχ

ñ
C(z),

where A = sin ∆θ
ñ

r1r2
1−cos ∆θ

, and C(z), S(z) are the Stumpff functions. We then
iterate on z via Newton–Raphson, updating

y(z) = r1 + r2 + A
z S(z)− 1ñ

C(z)
, χ =

ò
y(z)
C(z) ,

50

Foundamentals of astrodynamics

until the time-of-flight equation is satisfied. The sign of the final z tells us whether
the trajectory is elliptic (z > 0), parabolic (z = 0), or hyperbolic (z < 0). Finally,
with f , g, ḟ , and ġ obtained, the initial and final velocity vectors follow directly
from

v1 = r2 − f r1

g
, v2 = ġ r2 − r1

g
.

This sequence delivers the unique spacecraft conic trajectory connecting the two
points in the specified time ∆t.

To sum up here follows a flow chart of the Lambert’s problem.

Input data:
r1, r2, ∆t

Compute ∆θ and
choose pro/retro

Compute
parameter A

Iteratively
solve for z

Determine orbit
type via sign of z

Compute
auxiliary
variable y

Compute
Lagrange coeffi-
cients f, g, ḟ , ġ

Compute
velocities v1, v2

Derive orbital
elements

Figure 2.16: Lambert’s problem solving logic

51

Chapter 3

Evolutionary Algorithms

In this work three types of Evolutionary Algorithms were used to achieve the
optimal solution of the Lambert’s problem in terms of propellant consumption
(∆V) and time of flight: Particle Swarm Optimization (PSO), Differential Evolution
(DE) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES). In this
chapter, after e brief overview of the EAs, the logic of the three pre-mentioned
methods are shown together with case studies presented by Pontani [47].

3.1 Overview
The Evolutionary Algorithms are based on the collective learning process within a
population of individuals, each of which represents a search point in the space of
potential solutions to a given problem. The population is initialized randomly and
gradually evolves toward more promising regions of the search space by means of
stochastic processes of selection (sometimes deterministic), mutation, and optionally
recombination. The environment assigns each individual a fitness value, and the
selection mechanism gives those with higher fitness more opportunities to reproduce.
When recombination is used, parental information is mixed in the offspring, while
mutation introduces new variations and innovations. The following notation is
used for a concise description of Evolutionary Algorithms [48].
Let

f : Rn → R

be the objective function to be minimized. The space of individuals is I, and fitness
is given by

Φ : I → R,

52

Evolutionary Algorithms

of which f is one component. An individual is a ∈ I with decision vector x ∈ Rn.
Parent and offspring population sizes are µ ≥ 1 and λ ≥ 1, respectively (typically
λ > µ in non-elitist schemes). At generation t, the parent population is

P (t) = {a1(t), . . . , aµ(t)}.

Recombination is modelled by

rΘr : Iµ → Iλ,

and mutation by
mΘm : Iλ → Iλ,

where Θr and Θm collect any additional parameters. These macro-operators can
be seen as repeated applications of local operators

r′ : Iµ → I, m′ : I → I,

which create single offspring. Selection is defined by

sΘs : Iλ ∪ Iµ → Iµ,

choosing the next parent set from current parents and offspring. The fitness function
Φ is evaluated on all individuals in a population, and termination is decided by

ι : Iµ → {true, false}.

The resulting algorithmic description is given below

Algorithm 1 Outline of an Evolutionary Algorithm [48]
1: t := 0
2: Initialize P (0) := {a1(0), . . . , aµ(0)} ∈ Iµ;
3: Evaluate P (0) : {Φ(a1(0)), . . . ,Φ(aµ(0))};
4: while (ι

1
P (t)

2
/= true) do

5: Recombine P ′(t) := rΘr

1
P (t)

2
;

6: Mutate P ′′(t) := mΘm

1
P ′(t)

2
;

7: Evaluate P ′′(t) : {Φ(a′′
1(t)), . . . ,Φ(a′′

λ(t))};
8: Select P (t+ 1) := sΘs

1
P ′′(t) ∪Q

2
;

9: t := t+ 1;
10: end while=0

Here Q ∈ {∅, P (t)} is a set of individuals that are additionally taken into account
during the selection step. The evaluation stage produces a multiset of fitness values,

53

Evolutionary Algorithms

which need not coincide with the objective function values. Since the selection
operator uses fitness values rather than raw objective values, these fitness values
serve as the outcome of evaluation. Nonetheless, objective function values must be
computed during fitness assessment so that they are available and can be stored in
a suitable data structure.

3.2 Particle Swarm Optimization
In PSO, a swarm of particles is initially scattered throughout the search space
of an optimization problem. Each particle first evaluates the objective function
at its current location. It then updates its motion by considering: its current
position, its own best position found so far, and the best position discovered by
the entire swarm, all perturbed by random factors. When every particle has been
repositioned, the iteration ends. Over successive iterations, the swarm much like a
flock of birds searching for food tends to drift toward an optimum of the fitness
landscape.

Every particle i is described by three D-dimensional vectors (where D is the
dimensionality of the search space):

• current position xi,

• personal best position pi,

• velocity vi.

The vector xi represents a candidate solution. At each iteration, the objective value
at xi is computed; if it improves upon every previous value obtained by the same
particle, then xi is copied to pi. The best fitness found by the whole swarm, stored
in a variable commonly called gbest (denoted by g for its position), is updated
whenever necessary. New candidate points are produced by adding the velocity vi

to the current position, so PSO’s search behavior is governed primarily by the way
it adjusts vi, which acts as a step size.

In the version of PSO used in this thesis proposed by Shi and Eberhart 1 [50] (and
also used by Pontani [47]) the velocity update for particle i at iteration t + 1 is

1In Kennedy and Eberhart’s original PSO [49], the velocity of each particle was updated using
only the cognitive and social components: vi(t + 1) = c1 r1

#
pi(t)−xi(t)

$
+ c2 r2

#
g(t)−xi(t)

$
.

Shi and Eberhart introduced the inertia weight ω as a third term to better balance exploration
and exploitation.

54

Evolutionary Algorithms

given by:

vi(t+ 1) = ω vi(t)ü ûú ý
inertia term

+ c1 r1
è
pi(t)− xi(t)

é
ü ûú ý

cognitive component

+ c2 r2
è
g(t)− xi(t)

é
ü ûú ý

social component

, (3.1)

where:

• ω is the inertia weight, which controls the trade-off between exploration and
exploitation;

• c1 and c2 are learning coefficients for the cognitive and social components,
respectively;

• r1, r2 ∼ U(0,1) are independent uniformly distributed random scalars (drawn
separately for each dimension and each iteration);

• pi(t) is the personal best position of particle i up to iteration t;

• g(t) is the global best position (gbest) found by the swarm up to iteration t;

• xi(t) and vi(t) are the current position and velocity of particle i at iteration t.

After computing the new velocity, the position is updated according to:

xi(t+ 1) = xi(t) + vi(t+ 1). (3.2)

Through these equations, particle i is influenced by:

• its own “momentum” (inertia term),

• attraction toward its personal best solution (cognitive term),

• attraction toward the global best solution found by the swarm (social term).

55

Evolutionary Algorithms

Figure 3.1: PSO strategy [51]

Algorithm 2 PSO pseudo-code
1: ▷ Random initialization of p0

i and v0
i

2: ▷ Set pbest,i = p0
i and pgbest

3: ▷ Set iter = 1
4: while Γ

1
pgbest

2
> ε and iter < itermax do

5: ▷ Evaluate pbest,i and pgbest
6: ▷ Update pi and vi

7: ▷ iter = iter + 1
8: end while
9: ▷ return pgbest as the optimal solution =0

3.3 Differential Evolution
Differential Evolution (DE) is a very powerful stochastic algorithm developed by
Storn and Price in 1995 [52], used to perform global optimization of nonlinear
problems in a continuous search space. In general, the DE algorithm follows the
same computational procedure as a typical Evolutionary Algorithm (EA). Through
the successive processes of mutation, crossover and selection, the algorithm then
chooses which candidate solutions will comprise the next generation. DE executes
these three main steps in a cyclic manner (mutation, crossover and selection) until
a termination criterion is met (e.g., reaching a predefined number of generations).

56

Evolutionary Algorithms

A schematic representation of the DE workflow is shown in Fig 3.2.

Initialization
of the

parameters
vectors

Difference
vector

based mutation
Crossover Selection

loop

Figure 3.2: Schematic workflow of the Differential Evolution algorithm

Initialization of the parameters vectors
DE searches for a global optimum point in a D-dimensional real parameter space
ℜD. It begins with a randomly initiate population of NP D-dimensional real-valued
parameter vectors. Each vector, also called a genome or chromosome, represents a
candidate solution to the D-dimensional optimization problem. We denote the i-th
vector of the population at generation G by

åxi,G =
è
x1,i,G, x2,i,G, x3,i,G, . . . , xD,i,G

é
, i = 1,2, . . . , NP.

In many optimization problems each parameter xj has prescribed lower and upper
bounds because it corresponds to a physical quantity (for example, a length or a
mass cannot be negative). Let

xmin =
î
x1,min, x2,min, . . . , xD,min

ï
and xmax =

î
x1,max, x2,max, . . . , xD,max

ï
be the vectors of lower and upper bounds for each of the D components. The initial
population (i.e., at G = 0) should cover these bounds as uniformly as possible.
Hence, the j-th component of the i-th vector is initialized according to

xj,i,0 = xj,min + randj,i[0,1]
1
xj,max − xj,min

2
, (3.3)

where randi,j [0,1] ∼ U(0,1) is drawn independently for each component j = 1, . . . , D
of each individual i = 1, . . . , NP . In this way, the initial population uniformly
spans the prescribed search space [xmin, xmax].

Difference vector based mutation
Within the Differential Evolution (DE) framework, mutation is interpreted as a
perturbation of a parent (target) vector by incorporating information from other

57

Evolutionary Algorithms

randomly selected individuals in the current population. Specifically, let åxi,G denote
the target vector (parent) for the i-th individual at generation G. To create a
donor vector for each target åxi,G, three distinct parameter vectors denoted åxr1,G,åxr2,G, and åxr3,G are sampled uniformly at random from the current population.
The indices r1, r2, and r3 are chosen such that

r1, r2, r3 ∈ {1,2, . . . , NP}, r1 /= r2 /= r3 /= i,

ensuring they are all distinct and also different from the base index i. Once these
three donor candidates have been selected, the difference of any two (for example,åxr2,G − åxr3,G) is scaled by a factor F . Adding this scaled difference to the third
vector åxr1,G yields the donor vector vi,G. Formally,

vi,G = åxr1,G + F
1åxr2,G − åxr3,G

2
. (3.4)

The resulting donor vector vi,G is later combined with the target åxi,G via a crossover
operation to form a trial vector. Figure 3.3 illustrates this mutation process in a
two-dimensional parameter space, with an arbitrary objective function.

Figure 3.3: Simple DE mutation scheme in 2-D parametric space [53]

Crossover
After generating the donor vector vi,G via mutation (see Eq. 3.4), Differential
Evolution constructs a trial vector ui,G by recombining vi,G with the original target
vector åxi,G. In the most common variant, called binomial crossover, each component
of ui,G = [u1,i,G, u2,i,G, . . . , uD,i,G] is defined as

uj,i,G =
vj,i,G, if randj,i[0,1] ≤ Cr or j = jrand,

xj,i,G, otherwise,
j = 1,2, . . . , D, (3.5)

58

Evolutionary Algorithms

where:

• Cr ∈ [0,1] is the crossover probability (also called the recombination rate);

• randj,i[0,1] ∼ U(0,1) is drawn independently for each component j of individual
i;

• jrand is a randomly chosen index in {1,2, . . . , D} to ensure that at least one
component of vi,G passes to ui,G, even if all random draws exceed Cr.

Thus, for each component j, if the random number randj,i[0,1] does not exceed Cr

(or if j equals the preselected index jrand), the trial component uj,i,G is taken from
the donor vector; otherwise, it is inherited from the target vector. By controlling
Cr, binomial crossover balances exploration (by inheriting more components from
vi,G) against exploitation (by preserving more components from åxi,G).

Figure 3.4: Different possible trial vectors formed due to binomial crossover
between the target and the mutant vectors in 2-D search space [53]

Selection
Once the trial vector ui,G has been formed, DE performs a greedy selection step to
decide whether ui,G or the original target åxi,G survives to the next generation G+1.
Denote by f(·) the objective (fitness) function to be minimized. The selection rule
is:

åxi,G+1 =
ui,G, if f

1
ui,G

2
≤ f

1åxi,G

2
,åxi,G, otherwise.

(3.6)

In other words, if the trial vector yields an equal or lower cost than the target, ui,G

replaces åxi,G in the next population; otherwise, the algorithm retains the original
target. This deterministic, one-to-one replacement ensures that the population’s

59

Evolutionary Algorithms

overall best cost never worsens from one generation to the next. Over repeated
mutation, crossover, and selection steps, the DE population gradually converges
toward high-quality solutions.

DE Mutation Strategies
Storn and Price identified that it is the mutation operator that fundamentally
distinguishes one Differential Evolution (DE) scheme from another. In the simplest
DE variant often called DE/rand/1 the donor vector is generated by selecting a
base vector åxr1,G uniformly at random from the current population and adding to
it a single scaled difference of two other randomly chosen vectors:

vi,G = åxr1,G + F
1åxr2,G − åxr3,G

2
, (3.7)

where r1, r2, r3 ∈ {1,2, . . . , NP} are distinct indices (all different from the target
index i), and F > 0 is a real-valued scaling factor. When DE/rand/1 is used
together with binomial crossover, the full scheme is denoted DE/rand/1/bin.

More generally, DE mutation schemes are named according to the template

DE
O
⟨base

fO
⟨#differences

fO
⟨crossover

f
,

where

• ⟨base⟩ indicates which vector is used as the “base” (e.g., rand, best, or target)
to which difference vectors are added;

• ⟨#differences⟩ specifies the number of pairwise differences of population mem-
bers that are linearly combined;

• ⟨crossover⟩ denotes the crossover type, either binomial (bin) or exponential
(exp).

Altough Storn and Price [52, 54] proposed several mutation strategies in this thesis
work the code user will be able to select from three different ones:

1. DE/rand/1/bin:
vi,G = åxr1,G + F

1åxr2,G − åxr3,G

2
,

where r1, r2, r3 ∈ {1, . . . , NP} are distinct and different from i.

2. DE/best/1/bin:
vi,G = åxbest,G + F

1åxr1,G − åxr2,G

2
,

where åxbest,G is the current global best, and r1, r2 are distinct indices /= i.

60

Evolutionary Algorithms

3. DE/current-to-best/1/bin:

vi,G = åxi,G + F
1åxbest,G − åxi,G

2
+ F

1åxr1,G − åxr2,G

2
,

where åxi,G is the target vector, åxbest,G is the global best, and r1, r2 /= i are
distinct.

Algorithm 3 Differential Evolution (DE) pseudo-code
1: Initialize population {Xi}NP

i=1 randomly within bounds.
2: Evaluate each f(Xi); set best Xbest ← arg min f(Xi).
3: for G = 1 to Gmax and not converged do
4: for i = 1 to NP do
5: Mutation: pick distinct indices r1, r2, r3 /= i.
6: Compute donor Vi = Xr1 + F (Xr2 −Xr3).
7: Crossover: for each j = 1, . . . , D set

Uj,i =
Vj,i, if randj ≤ Cr or j = jrand,

Xj,i, otherwise.

8: Selection: if f(Ui) ≤ f(Xi) then Xi ← Ui.
9: end for

10: Update Xbest ← arg mini f(Xi).
11: end for
12: return Xbest as the optimal solution. =0

3.4 CMA-ES
The Covariance Matrix Adaptation Evolution Strategy (CMA-ES), introduced
by Hansen and Ostermeier [55], is a powerful optimization method that doesn’t
require derivative information. Like other EAs, it iteratively explores the search
space by generating new candidate solutions, evaluating their quality, and selecting
the best ones. The main difference is that CMA-ES actively learns the shape and
scale of the search distribution, which is modeled as a Gaussian ellipsoid. This
distribution gradually adapts, elongating along directions of promising improvement
and shrinking in less fruitful directions.

The general procedure of CMA-ES can be summarized in the following steps, also
illustrated in Figure 3.5:

1. Generate candidate solutions from the Gaussian distribution.

61

Evolutionary Algorithms

2. Evaluate each candidate using the objective function.

3. Select the best-performing candidates and update the distribution mean
accordingly.

4. Adjust both the size (σ) and shape (covariance C) of the Gaussian ellipsoid
to reflect successful directions of search.

Initialization
m(0), σ(0), C(0)

Sampling &
Evaluation

Selection &
Recombination

Adaptation of
σ and C

loop

Figure 3.5: Schematic workflow of the CMA–ES algorithm

Initialization
Initially, the algorithm sets up three primary parameters:

• Mean vector m(0): Set at the center of the search domain, this represents the
current best guess for the solution.

• Global step-size σ(0): Determines how broadly the algorithm initially explores
the search space.

• Covariance matrix C(0): Initially set as the identity matrix, this defines an
initial spherical shape of the search cloud.

The algorithm maintains a population size λ and selects the top half (µ = ⌊λ/2⌋)
as parents. These parents influence the next generation proportionally according to
their rank-based weights, emphasizing better solutions while maintaining diversity.

Sampling and Evaluation
In each generation, the CMA-ES generates new candidate solutions (offspring) by
sampling from the current Gaussian distribution:

x(g+1)
k = m(g) + σ(g) B(g)D(g)z(g)

k , z(g)
k ∼ N (0, I)

Here, B(g) and D(g) represent rotations and scales respectively. Each candidate is
evaluated using the objective function, measuring their fitness.

62

Evolutionary Algorithms

Selection and Recombination
Candidates are ranked according to fitness. The new mean is computed as a
weighted average of the best µ offspring:

m(g+1) =
µØ

i=1
wix(g+1)

i:λ

This moves the Gaussian cloud towards regions of better solutions.

Adaptation of σ and C
Step-size adaptation

To adjust the global scale of exploration, CMA-ES uses an evolution path ps that
records recent successful steps. If recent steps are larger than expected by random
chance, the step size σ increases; if smaller, it decreases:

σ(g+1) = σ(g) exp
A
cs

ds

A
∥p(g+1)

s ∥√
N

− 1
BB

.

Covariance adaptation

The covariance matrix C is updated to reflect the direction and spread of successful
steps:

C(g+1) = (1− c1 − cµ)C(g) + c1p(g+1)
c p(g+1)

c

⊤ + cµ

µØ
i=1

wiy(g)
i:λy(g)

i:λ
⊤

These updates reshape and reorient the search distribution to better fit the landscape
of the optimization problem. Periodically, the covariance matrix is decomposed into
its eigenvalues and eigenvectors to keep numerical stability, which helps maintain a
clear interpretation of directions and scales for subsequent iterations.

63

Evolutionary Algorithms

Figure 3.6: Evolution of the CMA-ES search cloud over six generations on a
2D convex objective. Each panel shows background contours of the cost function,
sampled offspring (black dots), and the standard deviation contour of the Gaussian
distribution (orange dashed). As generations advance, the cloud deforms and
shrinks, homing in on the optimum [56]

64

Evolutionary Algorithms

Algorithm 4 CMA–ES pseudo-code
1: Initialize: mean m, step-size σ, covariance C = I, paths ps = 0, pc = 0.
2: Choose population size λ, parent count µ = ⌊λ/2⌋, weights wi, and learning

rates cs, cc, c1, cµ.
3: Evaluate f(m); set best mbest ←m.
4: for g = 1 to gmax and stopping criterion not met do
5: Sample λ candidates:

Draw each zk ∼ N (0, I), set xk = m + σBD zk.
Clip xk to bounds; compute fk = f(xk).

6: Select & Recombine:
Sort candidates by fk. Update mbest if improved.
Compute new mean m← qµ

i=1 wi xi:λ.
7: Adapt step-size: Update ps using weighted combination of previous path

and new direction; adjust σ up/down according to ∥ps∥ relative to expecta-
tion.

8: Adapt covariance: Update pc similarly; incorporate a rank-one term from
pc and a rank-µ term from the top µ steps to reshape C.

9: Eigen-refresh: Decompose C = BD2B⊤ for next sampling.
10: end for
11: return mbest. =0

3.5 Algorithms performance evaluation
In this section, the performance of the three previously introduced algorithms is
evaluated and compared across two distinct case studies. Initially, the common
elements shared by the three algorithms, including the objective function, will be
briefly described. Subsequently, the comparison will focus on metrics such as the
number of generations required for convergence and the computational running
time.

3.5.1 Objective Function
The objective function used in this thesis is specifically designed to minimize the
total ∆v (impulse) required for performing an orbital rendezvous manoeuvre and
it’s inspired by the one proposed by Pontani [47]. The decision variables optimized
by the evolutionary algorithm are:

• ∆t: The flight time of the chase manoeuvre, i.e., the time between the initiation
of the transfer and the final encounter with the target satellite.

65

Evolutionary Algorithms

• TAdep: The initial true anomaly (in degrees) of the target satellite at the
moment when the manoeuvre begins.

Given these two inputs, the objective function computes the required impulse by
performing the following steps:

1. Initial conditions: Given the orbital parameters for both the chaser and the
target satellite, the state vectors (position r1 and velocity v1) of the chaser at
the manoeuvre start time are computed. Likewise, the initial true anomaly
TAdep allows computation of the target satellite’s initial position and velocity.

2. Calculating Target arrival conditions: With the given flight time ∆t, the
function calculates the arrival time. Using Kepler’s equation, the target
satellite’s final position r2 and velocity v2 at the arrival time are determined
from its orbit.

3. Lambert’s transfer problem (see Section 2.3.1): With initial chaser position
r1, target arrival position r2, and flight time ∆t, Lambert’s equation is solved
to find the required initial velocity v1,lam and arrival velocity v2,lam for the
rendezvous.

4. Delta-V computation: The manoeuvre’s total impulse ∆v consists of two
velocity changes:

∆v1 = v1,lam − v1, (3.8)
∆v2 = v2 − v2,lam. (3.9)

Thus, the total ∆v required is simply the sum of the magnitudes of these two
velocity changes:

∆vtotal = |∆v1|+ |∆v2|. (3.10)

Each iteration of the optimization proposes a pair of values (∆t,TAdep), evaluates
this objective function, and selects candidate solutions based on lower ∆vtotal values.
Through iterative improvement, the algorithm identifies the optimal flight time and
initial true anomaly that result in the lowest fuel consumption for the rendezvous
manoeuvre. The code implemented in the work is reported in the Appendix A.

3.5.2 Case study 1 – Pontani 2D “case b”
The first benchmark is the Pontani 2D case b transfer [47], a manoeuvre between
two coplanar orbits whose orbital elements are reported in Table 3.1, while the

66

Evolutionary Algorithms

reference ∆V budget and the time of flight (∆t) are given in Table 3.2.2

Orbital parameter Initial orbit Final orbit
a [km] 18000 35000
e 0.60 0.80
i [◦] 0 0
Ω [◦] 0 120
ω [◦] 0 0
ν [◦] 158.94 190.50

Table 3.1: Orbital elements of Pontani’s 2D transfer

Transfer detail Value
∆V1 [m/s] 1815
∆V2 [m/s] 748
∆Vtot [m/s] 2563

∆t [s] 61482

Table 3.2: Reference solution for Pontani’s 2D transfer

The resulting trajectory is shown in Fig. 3.7 and will be used as reference for the
evolutionary algorithms presented in the following. All the scripts were executed
in MATLAB® on an Acer Aspire A315-57G notebook equipped with an Intel®

Core™ i5-1035G1 CPU @ 1.00 GHz (4 physical cores, 8 threads).

2In Table 3.1 the true anomaly of the final orbit is the value assumed by the target spacecraft
at rendezvous.

67

Evolutionary Algorithms

Figure 3.7: Pontani 2D case b reference trajectory [47]

Particle Swarm Optimization (PSO)

The algorithm parameter use in the PSO are listed in Table 3.3; the inertia weight
and the learning factors were selected through empirical tuning. A stopping
tolerance on the global best cost avoids unnecessary iterations once convergence
is achieved, while a parallel implementation exploits all CPU cores and reduces
wall–clock time.

PSO parameter Value
Population size 300

Maximum iterations 200
Inertia weight ω 0.9

Cognitive coefficient c1 2
Social coefficient c2 2
Stopping tolerance 10−9

Table 3.3: Parameters of the PSO run

The optimiser returns the transfer reported in Table 3.4; the last column shows the
relative error with respect to Pontani’s analytical solution. All discrepancies are
below 0.15 %, confirming the soundness of the numerical method. Note that the
departure true anomaly of the target, TAdep, is optimised in this work, whereas
Pontani optimises the chaser’s anomalies; hence no direct comparison is possible
for that variable.

68

Evolutionary Algorithms

Transfer detail Value Error
∆V1 [m/s] 1814.1 0.05 %
∆V2 [m/s] 749.3 0.13 %
∆Vtot [m/s] 2563.4 0.02 %

∆t [s] 61486.9 0.008 %
TAdep [◦] 195.04 –

Table 3.4: Transfer obtained with PSO (Pontani 2D case)

The computational performance are summarised in the blue box below. Thanks to
the stopping tolerance the algorithm converged in 64 iterations, avoiding 136 addi-
tional iterations that would have increased the execution time without improving
the solution.

Computational performance (PSO - Pontani 2D)

Metric Value
Execution time [s] 15.67

Iterations 64

Table 3.5: PSO performance (2D
case).

0 10 20 30 40 50 60 70

Iteration

2562

2564

2566

2568

2570

2572

2574

2576

2578

2580

V
to

t (
m

/s
)

V
tot

 evolution during iterations

Figure 3.8: PSO cost evolution

Finally, Fig. 3.9 depicts the optimised trajectory, which is practically indistinguish-
able from the analytical solution in Fig. 3.7.

69

Evolutionary Algorithms

Figure 3.9: Transfer trajectory obtained with PSO (Pontani 2D case)

Differential Evolution (DE)

To ensure a fair comparison with the other methods, we configured the Differential
Evolution (DE) run to match the population size and maximum number of iterations
used elsewhere. The key settings: population size, maximum generations, crossover
rate, and scale factor are summarized in Table 3.6. We adopted the same stopping
criterion as in the PSO experiments and leveraged parallel evaluation across cores
to accelerate convergence.

DE parameter Value
Population size 300

Maximum generations 200
Crossover rate Cr 0.9

Scale Factor F 0.2
Stopping tolerance 10−9

Table 3.6: Parameters of the DE run.

We implemented three classical DE strategies (see Section 3.3), and the resulting
transfer performance and computational metrics appear below:

1. DE/rand/1/bin:

70

Evolutionary Algorithms

Transfer detail Value Error
∆V1 [m/s] 1814.8 0.01 %
∆V2 [m/s] 748.47 0.06 %
∆Vtot [m/s] 2563.28 0.01 %

∆t [s] 61484.56 0.005 %
TAdep [◦] 195.05 –

Table 3.7: Transfer obtained with DE/rand/1/bin (Pontani 2D case)

Computational performance (DE/rand/1/bin - Pontani 2D)

Metric Value
Execution time [s] 14.60

Iterations 58

Table 3.8: DE/rand/1/bin per-
formance (2D case) 0 10 20 30 40 50 60

Generation

2563

2563.5

2564

2564.5

2565

2565.5

2566

2566.5

2567

2567.5

2568

V
to

t (
m

/s
)

V
tot

 evolution during generations

Figure 3.10: DE/rand/1/bin cost
evolution

2. DE/best/1/bin:

Transfer detail Value Error
∆V1 [m/s] 1814.8 0.01 %
∆V2 [m/s] 748.47 0.06 %
∆Vtot [m/s] 2563.28 0.01 %

∆t [s] 61484.56 0.005 %
TAdep [◦] 195.05 –

Table 3.9: Transfer obtained with DE/best/1/bin (Pontani 2D case)

71

Evolutionary Algorithms

Computational performance (DE/best/1/bin - Pontani 2D)

Metric Value
Execution time [s] 6.24

Iterations 17

Table 3.10: DE/best/1/bin
performance (2D case) 0 2 4 6 8 10 12 14 16 18

Generation

2563

2563.5

2564

2564.5

2565

2565.5

2566

2566.5

2567

2567.5

2568

V
to

t (
m

/s
)

V
tot

 evolution during generations

Figure 3.11: DE/best/1/bin cost
evolution

3. DE/current-to-best/1/bin:

Transfer detail Value Error
∆V1 [m/s] 1814.80 0.01 %
∆V2 [m/s] 748.47 0.06 %
∆Vtot [m/s] 2563.28 0.01 %

∆t [s] 61484.56 0.005 %
TAdep [◦] 195.05 –

Table 3.11: Transfer obtained with DE/current-to-best/1/bin (Pontani 2D case)

72

Evolutionary Algorithms

Computational performance (DE/current-to-best/1/bin - Pontani
2D)

Metric Value
Execution time [s] 50.57

Iterations 199

Table 3.12: DE/current-to-
best/1/bin performance (2D
case) 0 50 100 150 200

Generation

2563

2563.5

2564

2564.5

2565

2565.5

2566

2566.5

2567

2567.5

2568

V
to

t (
m

/s
)

V
tot

 evolution during generations

Figure 3.12: DE/current-to-
best/1/bin cost evolution

All three strategies achieve a total ∆V within 0.1 % of the reference solution, with
DE/rand/1/bin and DE/best/1/bin offering the fastest convergence. Figure 3.13
shows the trajectory from the DE/rand/1/bin run; the other strategies produce
virtually identical transfer paths and are omitted for brevity.

Figure 3.13: Transfer trajectory obtained with DE (Pontani 2D case)

73

Evolutionary Algorithms

Covariance Matrix Adaptation (CMA-ES)

We applied the CMA-ES algorithm with the default parameter set recommended by
Hansen and Ostermeier [55], augmented by a tight termination tolerance to prevent
stagnation. Table 3.13 summarizes the configuration used in our 2D rendezvous
case.

Parameter Value / Formula
Population size λ λ = 4 + ⌊3 log(N)⌋
Max iterations opts.maxIter = 1000
Number of parents µ µ = ⌊λ/2⌋
Initial step-size σ0 σ0 = mean

!
(Xmax −Xmin)/6

"
Termination tolerance tol 1× 10−6

Effective selection mass µeff
(qwi)2q

w2
i

Step-size learning rate cs cs = µeff + 2
N + µeff + 5

Step-size damping ds ds = 1 + cs + 2 max
1ñ

µeff−1
N+1 − 1,0

2
Covariance path rate cc cc = 4 + µeff/N

N + 4 + 2µeff/N

Rank-one weight c1 c1 = 2
(N + 1.3)2 + µeff

Rank-µ weight cµ cµ = min
1
1− c1, 2 µeff − 2 + 1/µeff

(N + 2)2 + µeff

2
Table 3.13: CMA-ES configuration (Hansen & Ostermeier) [55]

Here, N denotes the number of decision variables, and Xmax, Xmin are their upper
and lower bounds.

The optimized transfer results for the Pontani 2D case appear in Table 3.14, with
computational performance detailed in the accompanying tcolorbox.

Transfer detail Value Error
∆V1 [m/s] 1814.8 0.01 %
∆V2 [m/s] 748.47 0.06 %
∆Vtot [m/s] 2563.28 0.01 %

∆t [s] 61484.56 0.005 %
TAdep [°] 195.05 –

Table 3.14: Transfer obtained with CMA-ES (Pontani 2D)

74

Evolutionary Algorithms

Computational performance (CMA-ES – Pontani 2D)

Metric Value
Execution time [s] 2.54

Iterations 341

Table 3.15: Performance sum-
mary

0 50 100 150 200 250 300 350

Iteration

2550

2600

2650

2700

2750

2800

2850

V
to

t (
m

/s
)

V
tot

 evolution during iterations

Figure 3.14: CMA-ES cost conver-
gence

Figure 3.25 shows the resulting transfer trajectory, which matches the DE solution.

Figure 3.15: Transfer trajectory obtained with CMA-ES (Pontani 2D)

From Figure 3.16, for the case study the CMA-ES delivers the fastest overall
runtime (2.54 s) but requires the highest number of iterations (341), reflecting its
fine grained covariance adaptation. In contrast, DE/best/1/bin converges in only

75

Evolutionary Algorithms

17 iterations and completes in 6.24 s, demonstrating rapid progress per iteration.
PSO and DE/rand/1/bin show similar behavior around 15 s and 60 iterations each
while DE/current-to-best/1/bin is the slowest at 50.57 s despite a moderate 199
iterations.

0 50 100 150 200 250 300 350

Iterations

0

10

20

30

40

50

60
E

x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Algorithm Performance Comparison

PSO

DE
rand/1/bin

DE
best/1/bin

DE
current-to-best/1/bin

CMA-ES

Figure 3.16: Algorithms comparison (Pontani 2D)

3.5.3 Case study 2 – Pontani 3D “case 3”
The second benchmark is the Pontani 3D case 3 transfer [47], a manoeuvre between
two non coplanar orbits, similar to a GTO whose orbital elements are reported in
Table 3.16 3, while the reference ∆V budget is given in Table 3.17 4.

3In Table 3.16 the true anomaly of the final orbit is the value assumed by the target spacecraft
at rendezvous.

4In this case the time of flight is not given so the comparison will be executed between the
algorithms results.

76

Evolutionary Algorithms

Orbital parameter Initial orbit Final orbit
a [km] 6671.53 42163.95
e 0 0
i [◦] 45 0
Ω [◦] 0 0
ω [◦] 0 0
ν [◦] 0 180

Table 3.16: Orbital elements of Pontani’s 3D transfer

Transfer detail Value
∆V1 [m/s] 2466.583
∆V2 [m/s] 2170.808
∆Vtot [m/s] 4637.391

Table 3.17: Reference solution for Pontani’s 3D transfer

The resulting trajectory is shown in Fig. 3.17 and will be used as reference for the
evolutionary algorithms presented in the following.

Figure 3.17: Pontani 2D case b reference trajectory [47]

Particle Swarm Optimization (PSO)

For the application of the PSO to that case the same population size and maximum
iteration of the previous case were used (see Table 3.3) while the inertia weight
and the learning factors were selected through empirical tuning. The algorithm
parameter use in are listed in Table 3.18 and the optimal results are reported in
Table 3.19.

77

Evolutionary Algorithms

PSO parameter Value
Population size 300

Maximum iterations 200
Inertia weight ω 0.7

Cognitive coefficient c1 1.5
Social coefficient c2 1.5
Stopping tolerance 10−9

Table 3.18: Parameters of the PSO run (Pontani 3D case)

Transfer detail Value Error
∆V1 [m/s] 2476.05 0.38 %
∆V2 [m/s] 2162.29 0.39 %
∆Vtot [m/s] 4638.35 0.02 %

∆t [s] 18776.95 –
TAdep [◦] 101.56 –

Table 3.19: Transfer obtained with PSO (Pontani 3D case)

All the relative error are below 0.4 %, confirming the validty of the PSO also for
this case. The computational performance are summarised in the blue box below,
as we can see no stopping condition was reached in this case forcing the algorithm
to perform all the iterations.

Computational performance (PSO - Pontani 3D)

Metric Value
Execution time [s] 63.79

Iterations 200

Table 3.20: PSO performance
(2D case).

0 20 40 60 80 100 120 140 160 180 200

Iteration

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

V
to

t (
m

/s
)

V
tot

 evolution during iterations

Figure 3.18: PSO cost evolution

Fig. 3.19 shows the optimised trajectory, which is really close to the analytical
solution in Fig. 3.17.

78

Evolutionary Algorithms

Figure 3.19: Transfer trajectory obtained with PSO (Pontani 3D)

Differential Evolution (DE)

We configured the Differential Evolution (DE) run as previously done in the 2d
case. (see Table 3.6).

The resulting transfer performance and computational metrics of the three DE
strategies are shown below:

1. DE/rand/1/bin:

Transfer detail Value Error
∆V1 [m/s] 2464.63 0.08 %
∆V2 [m/s] 2172.73 0.09 %
∆Vtot [m/s] 4637.36 0.0007 %

∆t [s] 18984.66 –
TAdep [◦] 100.68 –

Table 3.21: Transfer obtained with DE/rand/1/bin (Pontani 3D case)

79

Evolutionary Algorithms

Computational performance (DE/rand/1/bin - Pontani 3D)

Metric Value
Execution time [s] 49.31

Iterations 199

Table 3.22: DE/rand/1/bin
performance (3D case) 0 20 40 60 80 100 120 140 160 180 200

Generation

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

V
to

t (
m

/s
)

V
tot

 evolution during generations

Figure 3.20: DE/rand/1/bin cost
evolution

2. DE/best/1/bin:

Transfer detail Value Error
∆V1 [m/s] 2464.63 0.08 %
∆V2 [m/s] 2172.73 0.09 %
∆Vtot [m/s] 4637.36 0.0007 %

∆t [s] 18984.45 –
TAdep [◦] 100.68 –

Table 3.23: Transfer obtained with DE/best/1/bin (Pontani 3D case)

80

Evolutionary Algorithms

Computational performance (DE/best/1/bin - Pontani 3D)

Metric Value
Execution time [s] 33.95

Iterations 142

Table 3.24: DE/best/1/bin
performance (3D case) 0 50 100 150

Generation

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

V
to

t (
m

/s
)

V
tot

 evolution during generations

Figure 3.21: DE/best/1/bin cost
evolution

3. DE/current-to-best/1/bin:

Transfer detail Value Error
∆V1 [m/s] 2463.17 0.14 %
∆V2 [m/s] 2174.21 0.15 %
∆Vtot [m/s] 4637.38 0.01 %

∆t [s] 18973.26 –
TAdep [◦] 100.73 –

Table 3.25: Transfer obtained with DE/current-to-best/1/bin (Pontani 2D case)

81

Evolutionary Algorithms

Computational performance (DE/current-to-best/1/bin - Pontani
3D)

Metric Value
Execution time [s] 53.96

Iterations 199

Table 3.26: DE/current-to-
best/1/bin performance (3D
case) 0 20 40 60 80 100 120 140 160 180 200

Generation

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

V
to

t (
m

/s
)

V
tot

 evolution during generations

Figure 3.22: DE/current-to-
best/1/bin cost evolution

All three strategies achieve acceptable relative errors with DE/rand/1/bin and
DE/best/1/bin offering the lowest ones. Figure 3.23 shows the trajectory from the
DE/rand/1/bin run; the other strategies produce almost identical transfer paths
and are omitted for brevity.

Figure 3.23: Transfer trajectory obtained with DE (Pontani 3D case)

82

Evolutionary Algorithms

Covariance Matrix Adaptation (CMA-ES)

We applied the CMA-ES algorithm with the default parameter set recommended
by Hansen and Ostermeier [55] as previously done in the 2D case incrementing
the population size λ after a small tuning process (λ2Dcase = 4 + ⌊3 log(N)⌋ −→
λ3Dcase = 18 + ⌊3 log(N)⌋).

The optimized transfer results for the Pontani 3D case appear in Table 3.27, with
computational performance detailed in the accompanying blue box.

Transfer detail Value Error
∆V1 [m/s] 2464.64 0.08 %
∆V2 [m/s] 2172.78 0.09 %
∆Vtot [m/s] 4637.42 0.0006 %

∆t [s] 19055.19 –
TAdep [°] 100.38 –

Table 3.27: Transfer obtained with CMA-ES (Pontani 2D)

Computational performance (CMA-ES – Pontani 3D)

Metric Value
Execution time [s] 4.41

Iterations 123

Table 3.28: Performance sum-
mary

0 20 40 60 80 100 120 140

Iteration

4000

5000

6000

7000

8000

9000

10000

11000

V
to

t (
m

/s
)

V
tot

 evolution during iterations

Figure 3.24: CMA-ES cost conver-
gence

Figure 3.25 shows the resulting transfer trajectory, which closely matches the other
solutions.

83

Evolutionary Algorithms

Figure 3.25: Transfer trajectory obtained with CMA-ES (Pontani 3D)

120 130 140 150 160 170 180 190 200

Iterations

0

10

20

30

40

50

60

70

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Algorithm Performance Comparison

PSO

DE
rand/1/bin

DE
best/1/bin

DE
current-to-best/1/bin

CMA-ES

Figure 3.26: Algorithms comparison (Pontani 3D)

From the plotted data in Fig. 3.26, CMA-ES clearly outperforms the others in

84

Evolutionary Algorithms

wall-clock time (4.41 s) while requiring a moderate number of iterations (123),
thanks to its efficient covariance adaptation. DE/best/1/bin achieves the fewest
iterations (142) and completes in 33.95 s, demonstrating rapid convergence per
iteration. DE/rand/1/bin and DE/current-to-best/1/bin exhibit similar runtimes
(49–54 s) at around 199 iterations, reflecting a balanced exploration convergence
trade-off. Finally, PSO is the slowest (63.79 s) and executes the full 200 iterations,
indicating that, without an early stopping criterion, it is the least efficient for this
3D transfer scenario.

3.5.4 Algorithm Selection
Although CMA-ES demonstrated the shortest runtimes in our benchmarks, we
decided to adopt Differential Evolution with both the rand/1/bin and best/1/bin
strategies for two main reasons. First, CMA-ES failed to converge to the true
optimum in approximately 1 out of every 100 runs, undermining its reliability in this
application. Second, the number of generations required by CMA-ES varied widely
from as few as 50 up to nearly 700 making its computational cost unpredictable.
By contrast, both DE/rand/1/bin and DE/best/1/bin consistently reached the
optimal solution across all runs, with a stable iteration count and only a modest
performance penalty. For these reasons, DE with rand/1 and best/1 strategies (in
their parallelized versions) was selected as the primary optimizer in this thesis.

85

Chapter 4

Travelling Salesman Problem

According to Hou and Misra [57], the classical TSP is one of the most intensively
studied problems in computational mathematics due to its broad industrial relevance
seeks the permutation of n targets that minimizes the total travel cost. It finds
several space mission design applications such as multiple flybys, debris rendezvous
tour [58], and asteroid exploration.

Figure 4.1: Best tours found for the three debris clouds in the classic TSP variant
for the fragmentation caused by Iridium 33-Cosmos 2251 collision and the 2007
Fengyun-1C event caused by a Chinese anti-satellite missile test [58]

4.1 TSP formulation
Let I = {1,2, . . . , N} denote the set of N cities (or nodes). For each ordered pair
(i, j), let

dij ≥ 0

86

Travelling Salesman Problem

be the cost (e.g. ∆V) of traveling directly from city i to city j. A tour is a
permutation π = (π(1), π(2), . . . , π(N)) of the indices in I. The (open-chain) tour
length is

J(π) =
N−1Ø
k=1

dπ(k) π(k+1). (4.1)

If a closed tour (returning to the start) is required, one adds the term dπ(N) π(1).

The classical TSP then asks for the permutation π∗ that solves

π∗ = arg min
π

J(π) . (4.2)

In this thesis work we have combined the TSP with the already illustrated evolu-
tionary algorithms (with the same objective function) in order to solve eq. (4.2).

4.2 TSP logic implementation
Given three different target satellites we want to know the optimal visiting sequence
in terms of ∆V . The TSP-EA optimization implemented in MATLAB works as
follow:

1. Pre–compute
î
coststart(i), ∆tstart(i), TAdepstart(i)

ïN

i=1
from the initial chaser

orbit to each of the N targets via an evolutionary algorithm (PSO, DE,
CMA-ES).

2. Fill an N ×N cost matrix costmat(i, j) (and associated ∆tmat, TAdepmat) for
each leg i→ j, i /= j.

3. Enumerate all N ! permutations permsList, accumulating for each sequence

totalCost = coststart(π(1)) +
N−1Ø
k=1

costmat

1
π(k), π(k + 1)

2
,

storing also the time of flight ∆t and target departure true anomaly TAdep

for each leg.

4. Select the minimum-cost sequence.

A more detailed version of the TSP function implemented is depicted in Appendix
B

4.2.1 1st Scenario - TSP
The input data of the first case scenario are reported in the Table 4.1

87

Travelling Salesman Problem

Orbital parameter Initial orbit Orbit 1 Orbit 2 Orbit 3
a [km] 18000 35000 40000 45000
e 0.6 0.8 0.7 0.65
i [◦] 0 15 25 40
Ω [◦] 0 120 90 45
ω [◦] 0 10 85 30
ν [◦] 158.94 0 45 90

Table 4.1: Orbital elements of the satellites - scen. 1

The algorithm find as best travel cost the sequence

Optimal Visit Sequence

Target 3 −→ Target 2 −→ Target 1

with the following legs details in Table 4.2

Leg Transfer ∆t [s] ∆Vtot [m/s] ∆V1 [m/s] ∆V2 [m/s]
1 Chaser → Target 3 29227.54 2811.87 1868.65 943.22
2 Target 3 → Target 2 91881.79 1922.14 684.50 1237.64
3 Target 2 → Target 1 48681.80 1485.32 595.80 889.52

Table 4.2: Summary of transfer legs - scen. 1

and a total cost in terms of ∆V of 6219.32 m/s.
The trajectory combination is illustrated in Figure 4.2

88

Travelling Salesman Problem

Figure 4.2: TSP trajectory sequence - scen. 1

4.2.2 2nd Scenario - TSP
For the second case scenario more common altitude for the manoeuvres of IOS
were chosen. The input data of the second case study are reported in the Table 4.3

Orbital parameter Initial orbit Orbit 1 Orbit 2 Orbit 3
a [km] 6928 6778 7078 7168
e 0 0 0 0
i [◦] 5 6 4 7
Ω [◦] 0 10 5 45
ω [◦] 0 0 10 15
ν [◦] 10 20 45 0

Table 4.3: Orbital elements of the satellites - scen. 2

The best travel ∆V cost is provided by the sequence

89

Travelling Salesman Problem

Optimal Visit Sequence

Target 2 −→ Target 1 −→ Target 3

with the following legs details in Table 4.4

Leg Transfer ∆t [s] ∆Vtot [m/s] ∆V1 [m/s] ∆V2 [m/s]
1 Chaser → Target 2 2322.29 184.88 58.68 126.20
2 Target 2 → Target 1 3671.85 397.92 109.88 288.04
3 Target 1 → Target 3 4207.35 791.54 203.06 588.49

Table 4.4: Summary of transfer legs - scen. 2

Together with a total cost of 1374.34 m/s. The trajectory sequence is shown in
Figure 4.3

Figure 4.3: TSP trajectory sequence - scen. 2

90

Chapter 5

3DOF Orbital Simulator

In this chapter we analyze the structure and the workflow of the 3DOF orbital
simulator used in this thesis. The aim of the simulator is to perform the two
optimizations (TSP + DE) and then execute the orbital propagation via a numerical
integrator in which is annidated a GNC function based on the optimization results.

5.1 Orbital Simulator overview
The orbital simulator is structured into five main modules, each implemented as
a separate MATLAB function. Figure 5.1 shows the data flow and dependencies
between these modules.

91

3DOF Orbital Simulator

Initialization

DE Optimization
(∆t & TAdep)

TSP Route Selection

RK4 Propagation

Post-processing & Plotting

DYN GNC

Figure 5.1: Flow chart of the orbital simulator process

The simulator operates as follows:

1. Initialization and input parameters
In the main script, environment constants (ENV), chaser spacecraft data (LV),
target data (TARGET), and orbital elements for departure and arrival (orbit)
are defined. Search bounds (Xmin, Xmax) and DE settings (DE.pop_size,
DE.Cr, DE.F, DE.eps, DE.genmax, DE.strategy) are also configured.

2. Trajectory Optimization (DE_fun & lambert_cost)
The function DE_fun implements Differential Evolution (strategies rand/1 or
best/1 are used here) to optimize [∆t, TAdep]. Each candidate is evaluated
by lambert_cost, which solves the Lambert problem between the initial and
target state vectors and returns the total ∆V , the starting ∆V1 and the final
∆V2. Once the optimum [∆t∗, TA∗

dep] is found, the orbital elements of chaser
and target are converted to position and velocity vectors via sv_from_oe for
dynamic simulation.

3. TSP Route Selection
This module works in tandem with the trajectory optimizer to support multi-
burn rendezvous scenarios. Given three target satellites, it first computes the
optimal ∆V and time-of-flight for each possible transfer leg (see Section 4.2).
It then reorders the list of targets so that the visitation sequence minimizes
the total mission cost.

92

3DOF Orbital Simulator

4. Dynamic Propagation (RK4 + DYN + GNC)
The time evolution of the chaser–target system is integrated using a fourth-
order Runge–Kutta scheme (RK4), which invokes:

• DYN: computes gravitational, atmospheric drag, and propulsion accelera-
tions based on the current state and throttle/direction command.

• GNC: a guidance module operating in three phases (burn-1, coasting,
burn-2), producing at each step the control vector U = [uthr, dECI].

5. Post-Processing and Plotting
After propagation, key outputs (∆V expended, final mass, relative velocities,
final orbital elements errors) are extracted. The routine plot simulation
results then generates the cost evolution, 3D trajectory, and time histories
of position and velocity.

Detailed descriptions of the RK4 integrator, dynamic model and GNC function are
provided in the following sections.

5.2 RK4 numerical integrator
Given an initial value problem for an ordinary differential equation,

dy
dt

= f(t,y), y(t0) = y0,

we seek a numerical approximation to the true solution y(t) over an interval [t0, tend].
In many practical applications such as orbital propagation under complex forces
closed-form solutions are unavailable, and we turn to step-by-step integration
schemes.

A general one-step method advances the solution from tn to tn+1 = tn + dt by

yn+1 = yn + ∆tΦ
1
tn, yn, dt

2
,

where the increment function Φ depends on values of f at one or more points. The
simplest case, the explicit Euler method,

ΦEuler = f
1
tn,yn

2
,

is only first-order accurate (global error O(dt)) and can be unstable for stiff or
rapidly varying dynamics.

93

3DOF Orbital Simulator

Runge–Kutta methods improve accuracy by sampling f at intermediate stages
within each step. A general explicit s-stage Runge–Kutta method is given by

Fi = f
3
tn + ci dt, yn + dt

i−1Ø
j=1

aij Fj

4
, i = 1, . . . , s,

yn+1 = yn + dt
sØ

i=1
bi Fi,

The four-stage method (RK4) achieves fourth-order convergence (p = 4) with
a minimal number of function evaluations, making it a popular choice for orbit
propagation and other problems requiring a good balance of accuracy and efficiency
[59].

Figure 5.2: The fourth-order Runge–Kutta method evaluates the derivative four
times once at the initial point, twice at two intermediate trial points, and once at
the final trial point and then combines these four estimates to compute the next
value of the unknown y [59]

In this work simulator the numerical integrator advances the state vector S(t) over
a step of size h by computing four increments:

F1 = f
1
tn,Sn

2
,

F2 = f
3
tn + h

2 , Sn + h
2 F1

4
,

F3 = f
3
tn + h

2 , Sn + h
2 F2

4
,

F4 = f
1
tn + h, Sn + hF3

2
,

94

3DOF Orbital Simulator

and then updates the state as

Sn+1 = Sn + h

6
1
F1 + 2F2 + 2F3 + F4

2
,

where f(t,S) represents the time-derivative provided by the dynamic model ex-
plained in the following section.

5.3 Dynamic model
The chaser position rC , chaser velocity vC , target position rT , target velocity vT , and
chaser mass mC are comprised in the state vector S =

è
rC ,vC , rT ,vT ,mC

éT
∈ R13.

Almost the same dynamic model was provided for the chaser and target satellite,
the only difference lies in the absence of propulsion acceleration for the target which
makes it passive.

Forces and Accelerations
Gravity

It is possible to select the gravity model in order to take account or not for the
J2 for a high fidelity disturbance model. The auxiliary function GRAV provides the
gravity acceleration with the J2 effect (see Section 2.2.2).

g(r) =


GRAV(r), if high-fidelity model,

− µ r
∥r∥3 , otherwise.

Aerodynamic Drag

The contrbution of this disturbance is stronger at low altitude where the residual
atmospheric density is higher (see Section 2.2.1).

adrag = −1
2 ρCDA

vrel ∥vrel∥
m

.

where vrel account for Earth’s rotation rate ωE:

vrel = v + ωE k̂× r =⇒


vrel,x = vx + ωE y,

vrel,y = vy − ωE x,

vrel,z = vz.

95

3DOF Orbital Simulator

Propulsion (Chaser only)

Given the throttle U(1 = ON, 0 = OFF) and commanded direction d̂ from the GNC
algorithm:

aprop =


T

mC

d̂, u = 1,

0, otherwise
ṁC =

− ṁprop, u = 1,
0, otherwise

Collecting all contributions, the time-derivative Ṡ = f(t,S, U) is

ṙC = vC ,

v̇C = g(rC) + aprop + adrag,C,

ṁC = − ṁprop{u=1},

ṙT = vT ,

v̇T = g(rT) + adrag,T.

5.4 Guidance algorithm
This section describes the MATLAB function GNC, which implements a multi-phase
guidance algorithm for an orbital rendezvous manoeuvre. The function computes
at each time t:

[U, GNC_DATA, vtarget_now] = GNC
1
t,S, GNC_DATA, LV, ENV, orbit

2
,

where:

• S = [rC ; vC ; rT ; vT ; mC] is the 13-element state (chaser/target positions and
velocities, chaser mass).

• U = [Uthrottle; d̂ECI] is the control vector: a binary throttle command and a
thrust direction in ECI.

• vtarget_now is the desired “target” velocity here used for diagnostics.

• GNC_DATA holds persistent data (phase, time of flight ∆t, time-step dt, target
argument of latitude θ, target ∆V s from the optimization process, accumulated
∆V s).

• LV, ENV, orbit provide vehicle, environment, and orbital parameters.

96

3DOF Orbital Simulator

Multi-phase structure
The algorithm proceeds through four sequential phases here summarized:

Phase 1 – First Burn

1. Initialized the required ∆v1 given by the optimization (∆v1target).

2. Compute remaining ∆v1 = ∆v1 − ∆vapplied and set dt = 1s for a small
integration step during burns 1.

3. If ∥∆v1∥ ≤ ∥∆v1target∥, set d̂ = ∆v1/∥∆v1∥, throttle on (U = 1), and
increment the applied ∆V by T

mc
dt.

4. Else switch throttle off, mark burn complete, set ∆t = 10s, advance to Phase
2.

Phase 2 – Coasting

• Throttle off, dt = 10s (bigger integration step for coasting phase).

• Compute current argument of latitude θ from orbital elements.

• When |θ − θtarget| < 0.5◦, switch to Phase 3.

Phase 3 – Second Burn

1. Initialize required ∆v2 given by the optimization (∆v2target) and set dt = 1s.

2. Compute the velocity error verror = vT − vC for chasing the target velocity.

3. If ∥∆v2∥ ≤ ∥∆v2target∥ set d̂ = verror/∥verror∥, throttle on (U = 1), and
increment the applied ∆V by T

mc
dt.

4. Else throttle off, mark burn complete, set dt = 10s, advance to Phase 4.

Phase 4 – Idle

• Throttle off, coasting with dt = 10s until end of manoeuvre (t ≥ ∆t) .

A better view provided from the MATLAB code can be found in Appindix C.2.

1Initially the logic of the first burn were different, in fact the early trials were conducted by
calling the Lambert equation at each step but due to numerical issues this method was abandoned.
A short in-depth analysis about it can be found in Appendix C.1

97

3DOF Orbital Simulator

5.4.1 Flowchart of the GNC algorithm
The following diagram summarizes the phase-based workflow of the GNC function:

Phase

Start

Burn 1

t, S, GNC_DATA, LV, ENV, orbit

Coasting

Idle

Burn 2

False

True
True

False

False

True

True

End

False

Figure 5.3: Guidance flowchart

98

3DOF Orbital Simulator

5.5 Auxiliary functions
In the previous chapters and sections we have illustrated the main function modules
of the propagator used in this work. For the sake of completeness we briefly
describes in Table 5.1 all the auxiliary functions that were used.

Function Description

DE_fun
execute the Differential Evolution

optimization in combination with the
objective function

DYN_target
contains the dynamic model of the Target

satellite and together with RK4_target
provide a ground propagation of the Target

GRAV contains the gravity model for considering
the J2 effect

kepler_equation solve the Kepler Equation
lambert_equation solve the Lambert problem

oe_from_sv provide the orbital elements given the state
vector

plot_simulation_results contains all the useful propagation plots

RK4_target
numerical integrator that together with

DYN_target provide a ground propagation
of the Target

sv_from_oe provide the state vector given the orbital
parameters

Table 5.1: Auxiliary functions overview

99

Chapter 6

Simulations results

After having introduced in the previous chapters the structure of the thesis work
and its focus on the creation of a reliable orbital simulator which could perform
typical IOS manoeuvres optimizing both the both and the cost in terms of ∆Vtot,
we present in this section a series of possible IOS scenarios tested in the simulator.
For each test will be described:

• Chaser and Target spacecraft details and starting orbital parameters;

• Optimization results: TAdep, ∆V s, time of flight. These last two vari-
ables, together with the Argument of Latitude provided by an ideal ground
propagation of the Target, could be subjected to a simple tuning process for
compensating the disturbances effects. For the propagation that follows a
TSP optimization will be also showed the optimal visiting sequence;

• Manoeuvre results and comparison between actual and desired variable (e.g.
final relative velocity and final orbital parameters);

• Plot comments (trajectory, velocity evolution, orbital elements evolution, etc.).

The enviroment in which all the test cases are performed in characterized by the
following data:

100

Simulations results

Enviroment data Value
Re (Earth radius) 6378137 m
ωearth (Earth’s angular velocity) 7.292115× 10−5 rad/s
µ (Earth’s gravitational parameter) 3.986005× 1014 m3/s2

ρ (atmospheric density) 1× 10−12 kg/m3

g0 (standard gravity) 9.80665 m/s2

Table 6.1: Environmental constants used in the simulation

In the majority of the simuation the following approximation of the AVIO AVUM
data have been used:

Spacecraft data Value
Initial mass m0 [kg] 2500
Propellant mass mprop [kg] 580
Thrust [N] 400
Specific impulse Isp [s] 210
Aerodynamic coefficient (S ∗ CD) 7.6

Table 6.2: Approximation of AVUM vehicle (AVIO)

For all the scenarios considered the mass and the aerodynamic coefficient of the
Target satellite remains constants and equal to the Chaser one.

6.1 Test case I
In this first case a simple semimajor axis a raise is performed (or energy raise
E = − µ

2a
) for bringing the Chaser to a correct rendezvous with the Target.

Orbital element Chaser Orbit Target Orbit
a [km] 7278.173 7378.173
e 0.1 0.1
i [°] 0 0

RAAN [°] 0 0
ω [°] 0 0
ν [°] 0 TBO

Table 6.3: Starting orbital elements of Chaser and Target

101

Simulations results

In Table 6.31 are shown the starting orbital parameters of Chaser and Target. In
this scenario the Chaser will perform the manoeuvre at the periapsis, where this
kind of manoeuvre is more convenient because it is the fastest point on the orbit
[60], for raising the apoapsis and arriving to a higher semimajor axis.

Optimization results Value
ToF (s) 3108.75
Corrected ToF (s) 3108.75 (+0.0%)
TAdep (°) 2.00
∆Vtot (m/s) 50.06
∆V1 (m/s) 25.08
∆V2 (m/s) 24.98
Corrected ∆V1 (m/s) 26.06 (+3.91%)
Corrected ∆V2 (m/s) 26.35 (+5.48%)
θ (°) 179.2323
Corrected θ (°) 172.2422 (–3.9%)

Table 6.4: Optimization results for the manoeuvre

As previously said the Argument of Latitude θ in Table 6.4, which determines
the starting of the second burn in the guidance algorithm, is not provided by the
optimization but with an ideal ground propagation of the Target. The correction
of this parameter together with the one of the time of flight and the ∆V s is crucial
for partially compensate the disturbances of J2 and drag.

Simulation results Value
Simulated final time (s) 3105.10 s
Estimated ToF (s) 3108.75
Final chaser mass (kg) 2462.12
Final relative velocity (m/s) 0.437
Total ∆V expended (m/s) 52.39
Estimated ∆V (m/s) 50.06

Table 6.5: Simulation performance results

Analysing the Table 6.5 it is possible to notice that the ∆Vtot erogated during
the simulation is close to value expected by the optimization with a relative error
of 4.65%. The propellant mass used in this manoeuvre is about 37.88 kg with a
remaing propellant of 542.12 kg.

1Here with TBO we meant every parameter that will be provided by the optimization

102

Simulations results

Orbital parameter Desired Achieved Error
a [km] 7378.1726 7378.2394 0.0668
e 0.1000 0.0973 0.0027
i [°] 0.0001 0.0001 0.0000

RAAN [°] 0.0000 359.7738 0.2262
ω [°] 360.0000 0.7754 0.7755
ν [°] 179.2323 179.0035 0.2289
θ [°] 179.2323 179.7789 0.5466

Table 6.6: Orbital parameters – desired vs achieved

In Table 6.6 are depicted the achieved orbital parameters against the desired one.
It is clear that the apoapsis raise manoeuvre is permformed correctly, in fact the
errors on a and e which determine the geometry of the orbit are small. Even
though the error on the Argument of Latitudine is less then 1 degree (0.5466°)
a rendezvous manoeuvre feels the effect of this. A low value of relative velocity
indicates the reliability of the the second burn logic in the guidance algorithm with
a better view provided in Figure 6.1 and 6.2.

0 500 1000 1500 2000 2500 3000 3500

Time [s]

6600

6800

7000

7200

7400

7600

7800

8000

8200

V
e

lo
c
it
y
 M

a
g

n
it
u

d
e

 |
|V

||
 [

m
/s

]

Velocity Magnitude: Chaser vs Target

E
n

d
 B

u
rn

 1
 (

1
6

2
.1

s
)

S
ta

rt
 B

u
rn

 2
 (

2
9

4
2

.3
s
)

E
n

d
 B

u
rn

 2
 (

3
1

0
5

.0
s
)

E
n

d
 S

im
 (

3
1

0
5

.1
s
)

Chaser Velocity

Target Velocity

Figure 6.1: Propagation velocity evolu-
tion

0 500 1000 1500 2000 2500 3000 3500

Time [s]

0

5

10

15

20

25

30

V
e

lo
c
it
y
 D

if
fe

re
n

c
e

 M
a

g
n

it
u

d
e

 [
m

/s
]

Velocity difference evolution during burns (actual vs desired)

E
n

d
 B

u
rn

 1
 (

1
6

2
.1

s
)

S
ta

rt
 B

u
rn

 2
 (

2
9

4
2

.3
s
)

E
n

d
 B

u
rn

 2
 (

3
1

0
5

.0
s
)

E
n

d
 S

im
 (

3
1

0
5

.1
s
)

Burn 1 Period

Burn 2 Period

Figure 6.2: Propagation velocity chas-
ing

For a first performance evaluation, looking at the ∆V s (propellant consumption)
and ToF values obtained this manoeuvre could be considered strongly affordable
for our spacecraft. In the Figures below are illustrated the rendezvous trajectory
and the evolution of the orbital elements. From a geometric point of view it is
important to notice in Figure 6.4 that the transfer orbit eccentricity is higher than
the eccentricity of the two main orbits with clear similarity with the Hohmann
transfer. In fact when two orbits share the same apsis line the solution is called a
near-Hohmann transfer [61].

103

Simulations results

Figure 6.3: Rendezvous trajectory

0 1000 2000 3000

Time [s]

0.1

0.105

e

Eccentricity

0 1000 2000 3000

Time [s]

9.99

9.995

10

d
e
g

10-5 Inclination

0 1000 2000 3000

Time [s]

0

200

400

d
e
g

RAAN

0 1000 2000 3000

Time [s]

0

0.5

1

d
e
g

Arg. of Perigee

0 1000 2000 3000

Time [s]

0

100

200

d
e
g

True Anomaly

0 1000 2000 3000

Time [s]

0

100

200

d
e
g

Arg. of Latitude

0 1000 2000 3000

Time [s]

0

100

200

d
e
g

True Longitude

0 1000 2000 3000

Time [s]

7.3

7.35

7.4

m

106 Semimajor Axis

Figure 6.4: Orbital elements evolution

104

Simulations results

6.2 Test case II
As second case a classical Hohmann transfer is performed at high LEO altitude.

Orbital element Chaser Orbit Target Orbit
a [km] 8328.173 8448.173
e 0.0001 0.0001
i [°] 0 0

RAAN [°] 0 0
ω [°] 0 0
ν [°] 0 TBO

Table 6.7: Starting orbital elements of Chaser and Target

In Table 6.7 are shown the starting orbital parameters of Chaser and Target. The
eccentricity is set to a very small value (0.001) and not zero to avoid numerical
issues in the Lambert solver. From literature [46] (see Section 2.3.1) we expect the
following ∆V results to represent the most consumption efficient combination:

Initial circular velocity: v1 =
ó
µ

r1
,

Final circular velocity: v2 =
ó
µ

r2
.

The semi–major axis of the transfer ellipse is

at = r1 + r2

2 .

The velocities on the transfer ellipse are:

At perigee (injection): vp =
ó
µ
3

2
r1
− 1

at

4
,

At apogee (circularization): va =
ó
µ
3

2
r2
− 1

at

4
.

The required impulses are

∆V1 = vp − v1,

∆V2 = v2 − va,

105

Simulations results

and the total
∆Vtot = ∆V1 + ∆V2.

with this numerical values

∆V1 = 24.70 m/s,
∆V2 = 24.61 m/s,

∆Vtot = 24.70 + 24.61 = 49.31 m/s.

This analytical results has been almost totally reached as we can see in Table 6.8

Optimization results Value
ToF (s) 3805.59
Corrected ToF (s) 3805.59 (+0.0%)
TAdep (°) 1.90
∆Vtot (m/s) 49.32
∆V1 (m/s) 24.71
∆V2 (m/s) 24.61
Corrected ∆V1 (m/s) 24.83 (+0.5%)
Corrected ∆V2 (m/s) 25.28 (+2.7%)
θ (°) 179.1795
Corrected θ (°) 172.1915 (–3.9%)

Table 6.8: Optimization results for the manoeuvre

Looking at Table 6.9 it is possible to note that also for this manoeuvre the ∆Vtot

used in the numerical propagation is close to the value expected with a relative
error of 0.63% and the propellant consumption is about 59.53 kg, demonstrating
again the affordability of this kind of manoeuvre for the spacecraft.

Simulation results Value
Simulated final time (s) 3796.60
Estimated ToF (s) 3805.59
Final chaser mass (kg) 2440.47
Final relative velocity (m/s) 0.064
Total ∆V expended (m/s) 49.63
Estimated ∆V (m/s) 49.32

Table 6.9: Simulation performance results

In the table below are reported the residual errors on the orbital elements. Even
though the errors seems to be acceptable we must remember that for a perfect
rendezvous the errors on the Argument of Latitude and Eccentricity should be

106

Simulations results

decidedly lower but our aim is to have a first glance performance evaluation that
aligns with the expected behaviour, so we consider this values acceptables.

Orbital parameter Desired Achieved Error
a [km] 8448.1724 8448.0930 0.0795
e 0.0001 0.0021 0.0020
i [°] 0.0001 0.0001 0.0000

RAAN [°] 0.0000 359.8310 0.1690
ω [°] 359.9756 145.8141 145.8385
ν [°] 179.2039 33.5108 145.6931
θ [°] 179.1795 179.3249 0.1453

Table 6.10: Orbital parameters – desired vs achieved

Figure 6.5 and 6.6 together with a low value of final relative velocity, show the
consistency of the GNC logic.

0 500 1000 1500 2000 2500 3000 3500 4000

Time [s]

6850

6860

6870

6880

6890

6900

6910

6920

6930

6940

6950

V
e

lo
c
it
y
 M

a
g

n
it
u

d
e

 |
|V

||
 [

m
/s

]

Velocity Magnitude: Chaser vs Target

E
n

d
 B

u
rn

 1
 (

1
5

4
.1

s
)

S
ta

rt
 B

u
rn

 2
 (

3
6

3
4

.3
s
)

E
n

d
 B

u
rn

 2
 (

3
7

8
6

.5
s
)

E
n

d
 S

im
 (

3
7

9
6

.6
s
)

Chaser Velocity

Target Velocity

Figure 6.5: Propagation velocity evolu-
tion

0 500 1000 1500 2000 2500 3000 3500 4000

Time [s]

0

5

10

15

20

25

V
e

lo
c
it
y
 D

if
fe

re
n

c
e

 M
a

g
n

it
u

d
e

 [
m

/s
]

Velocity difference evolution during burns (actual vs desired)

E
n

d
 B

u
rn

 1
 (

1
5

4
.1

s
)

S
ta

rt
 B

u
rn

 2
 (

3
6

3
4

.3
s
)

E
n

d
 B

u
rn

 2
 (

3
7

8
6

.5
s
)

E
n

d
 S

im
 (

3
7

9
6

.6
s
)

Burn 1 Period

Burn 2 Period

Figure 6.6: Propagation velocity chas-
ing

In the figures below are depicted the rendezvous trajectory and the evolution of the
orbital elements. From a geometric point of view the trajectory perfectly matches
the expected Hohmann [46].

107

Simulations results

Figure 6.7: Rendezvous trajectory

0 1000 2000 3000 4000

Time [s]

0

5

e

10-3 Eccentricity

0 1000 2000 3000 4000

Time [s]

9.99

9.995

10

d
e
g

10-5 Inclination

0 1000 2000 3000 4000

Time [s]

0

200

400

d
e
g

RAAN

0 1000 2000 3000 4000

Time [s]

0

50

100

d
e
g

Arg. of Perigee

0 1000 2000 3000 4000

Time [s]

0

100

200

d
e
g

True Anomaly

0 1000 2000 3000 4000

Time [s]

0

100

200

d
e
g

Arg. of Latitude

0 1000 2000 3000 4000

Time [s]

0

100

200

d
e
g

True Longitude

0 1000 2000 3000 4000

Time [s]

8.3

8.35

8.4

m

106 Semimajor Axis

Figure 6.8: Orbital elements evolution

108

Simulations results

6.3 Test case III
In the third test case, a combined plane-change and apoapsis-raise manoeuvre is
executed. Theory [60] indicates that the most energy-efficient way to raise the
apogee and change the orbital plane simultaneously is to split the plane rotation
between the first and second burns, so that the transfer occurs in an intermediate
plane; consequently, the second burn typically requires a larger ∆V than the first.
Therefore, we expect the optimization to yield ∆V2 > ∆V1.

The two orbits data are reported in the table below

Orbital element Chaser Orbit Target Orbit
a [km] 7378.173 7478.173
e 0.1 0.1
i [°] 5.2 5.8

RAAN [°] 0 0
ω [°] 0 0
ν [°] 0 TBO

Table 6.11: Starting orbital elements of Chaser and Target

The theoretical prediction made in the introduction to this case is confirmed in
Table 6.12. The second impulse in 50% more expensive in terms of consumption
then the first one due to the plane change manoeuvre even though the ∆i is
relatively small.

Optimization results Value
ToF (s) 3188.71
Corrected ToF (s) 3188.71 (+0.0%)
TAdep (°) 2.00
∆Vtot (m/s) 89.62
∆V1 (m/s) 35.51
∆V2 (m/s) 54.10
Corrected ∆V1 (m/s) 36.66 (+3.22%)
Corrected ∆V2 (m/s) 55.36 (+2.33%)
θ (°) 179.9952
Corrected θ (°) 164.6956 (–8.5%)

Table 6.12: Optimization results for the manoeuvre

From Tables 6.13 and 6.14 it is possible to appreciate the propagation results. The
predicted ∆Vtot was almost the same as the actual one with a discrepancy of just
2.41% and the final relative velocity is near zero. The propellant consumption was

109

Simulations results

about 108.98 kg and the two key parameters of this manoeuvre, a and i, present
relative errors respectively of 0.0002% and 0.012%, making this kind of scenario
affordable for the spacecraft.

Simulation results Value
Simulated final time (s) 3181.20
Estimated ToF (s) 3188.71
Final chaser mass (kg) 2391.02
Final relative velocity (m/s) 0.004
Total ∆V expended (m/s) 91.78
Estimated ∆V (m/s) 89.62

Table 6.13: Simulation performance results

Orbital parameter Desired Achieved Error
a [km] 7478.1725 7478.1556 0.0170
e 0.1000 0.0974 0.0026
i [°] 5.8000 5.7993 0.0007

RAAN [°] 0.0000 359.5033 0.4967
ω [°] 360.0000 1.5046 1.5046
ν [°] 179.9952 179.1636 0.8317
θ [°] 179.9952 180.6682 0.6730

Table 6.14: Orbital parameters – desired vs achieved

As previously done, here are reported the evolutions of the velocity vector magnitude
of Chaser and Target and the velocity difference between actual and desired provided
by the guidance algorithm

0 500 1000 1500 2000 2500 3000 3500

Time [s]

6600

6800

7000

7200

7400

7600

7800

8000

8200

V
e

lo
c
it
y
 M

a
g

n
it
u

d
e

 |
|V

||
 [

m
/s

]

Velocity Magnitude: Chaser vs Target

E
n

d
 B

u
rn

 1
 (

2
2

6
.9

s
)

S
ta

rt
 B

u
rn

 2
 (

2
8

4
7

.1
s
)

E
n

d
 B

u
rn

 2
 (

3
1

8
1

.1
s
)

E
n

d
 S

im
 (

3
1

8
1

.2
s
)

Chaser Velocity

Target Velocity

Figure 6.9: Propagation velocity evolu-
tion

0 500 1000 1500 2000 2500 3000 3500

Time [s]

0

10

20

30

40

50

60

V
e

lo
c
it
y
 D

if
fe

re
n

c
e

 M
a

g
n

it
u

d
e

 [
m

/s
]

Velocity difference evolution during burns (actual vs desired)

E
n

d
 B

u
rn

 1
 (

2
2

6
.9

s
)

S
ta

rt
 B

u
rn

 2
 (

2
8

4
7

.1
s
)

E
n

d
 B

u
rn

 2
 (

3
1

8
1

.1
s
)

E
n

d
 S

im
 (

3
1

8
1

.2
s
)

Burn 1 Period

Burn 2 Period

Figure 6.10: Propagation velocity chas-
ing

110

Simulations results

Altough it’s difficult to appreciate the plane change form the trajectory plot (Fig.
6.11) the evolution of the orbital elements provided in the last figure illustrates the
physics described previously. In fact it is possible to see the inclination varying
mostly in the second burn with a small increase in the first one.

Figure 6.11: Rendezvous trajectory

111

Simulations results

0 1000 2000 3000

Time [s]

0.1

0.105

e

Eccentricity

0 1000 2000 3000

Time [s]

5.2

5.4

5.6

d
e
g

Inclination

0 1000 2000 3000

Time [s]

0

200

400
d
e
g

RAAN

0 1000 2000 3000

Time [s]

0

200

400

d
e
g

Arg. of Perigee

0 1000 2000 3000

Time [s]

0

100

200

d
e
g

True Anomaly

0 1000 2000 3000

Time [s]

0

100

200

d
e
g

Arg. of Latitude

0 1000 2000 3000

Time [s]

0

100

200

d
e
g

True Longitude

0 1000 2000 3000

Time [s]

7.4

7.45

7.5

m

106 Semimajor Axis

Figure 6.12: Orbital elements evolution

6.4 Test case IV
For the fourth test case a Sun-synchronous orbit (SSO) scenario is presented. A
(SSO) is defined as one whose orbital plane precesses about the Earth’s spin axis
at the same rate that the Earth revolves around the Sun. Equivalently, the orbit’s
ascending-node longitude Ω must advance by approximately

nE = 2π
TE

≈ 1.991× 10−7 rad/s,

where TE ≈ 365.25 days is the Earth’s sidereal year. For a circular orbit this
condition guarantees that the local solar time of the ascending node and hence the
Sun’s elevation angle at any given ground point remains constant from one pass to
the next.

Natural two-body motion cannot produce this steady nodal precession, but the
Earth’s oblateness (the J2 perturbation) imparts a secular drift of the ascending
node given by

Ω̇ = −3
2

R2
E

a2(1− e2)2 n J2 cos i,

By selecting a and i so that Ω̇ ≃ +nE, one obtains the classic Sun-synchronous

112

Simulations results

condition. That feature is widely used for Earth observation and remote sensing
because it ensure:

• Consistent illumination: imaging instruments always see the ground under
nearly the same Sun-elevation and shadowing conditions.

• Regular revisit times: the repeat ground-track pattern is highly repeatable,
simplifying mission planning and data analysis.

• Temperature stability:constant solar geometry reduces thermal cycling on the
spacecraft.

These properties make SSOs ideal for multispectral imaging, radar mapping, and
any application requiring uniform lighting over long time spans [62].

Orbital element Chaser Orbit Target Orbit
a [km] 7078.173 7178.173
e 0.003 0.003
i [°] 98.2 98.6

RAAN [°] 0 0
ω [°] 0 0
ν [°] 0 TBO

Table 6.15: Starting orbital elements of Chaser and Target

In the presented scenario the objective is to test a transfer from a Sun-synchronous
orbit at 700 km, i = 98.2◦, to one at 800 km, i = 98.6◦, driven by several operational
and engineering considerations. For example raising the orbit from 700 km/98.2°
to 800 km/98.6° greatly reduces atmospheric drag cutting the ∆V needed for
station-keeping and aligns the nodal regression (≈ 0.9856 °/day) exactly with
Sun-synchronous requirements. The higher altitude also widens the ground swath
by about 8% and lengthens the period slightly (100.9 min vs. 98.8 min), offering
more flexible revisit and downlink scheduling [63]. Finally, this transfer provides
the precise phasing and ∆V profile needed for efficient rendezvous operations at
800 km.

113

Simulations results

Optimization results Value
ToF (s) 2994.29
Corrected ToF (s) 2994.29 (+0.0%)
TAdep (°) 1.90
∆Vtot (m/s) 74.00
∆V1 (m/s) 36.76
∆V2 (m/s) 37.24
Corrected ∆V1 (m/s) 36.86 (+0.25%)
Corrected ∆V2 (m/s) 39.03 (+4.8%)
θ (°) 179.9850
Corrected θ (°) 166.3061 (–7.6%)

Table 6.16: Optimization results for the manoeuvre

Simulation results Value
Simulated final time (s) 2991.80
Estimated ToF (s) 2994.29
Final chaser mass (kg) 2410.32
Final relative velocity (m/s) 0.003
Total ∆V expended (m/s) 75.22
Estimated ∆V (m/s) 74.00

Table 6.17: Simulation performance results

The results demonstrate that the optimized transfer requiring 74 m/s of ∆V over
a 2994 s flight time holds up in simulation with just 75.2 m/s actually used and
a negligible timing error. A final relative speed of 0.003 m/s and a residual mass
of 2410 kg (which means a propellant consumption of 89.68 kg) confirm good
propellant control and velocity guidance performance (Fig. 6.13. It is clear that
also this manoeuvre lies well within the spacecraft’s performance envelope with
also an accurate guidance behaviour (Fig. 6.14).

114

Simulations results

0 500 1000 1500 2000 2500 3000

Time [s]

7400

7420

7440

7460

7480

7500

7520

7540

7560
V

e
lo

c
it
y
 M

a
g

n
it
u

d
e

 |
|V

||
 [

m
/s

]

Velocity Magnitude: Chaser vs Target

E
n

d
 B

u
rn

 1
 (

2
2

8
.2

s
)

S
ta

rt
 B

u
rn

 2
 (

2
7

5
8

.4
s
)

Chaser Velocity

Target Velocity

Figure 6.13: Propagation velocity evo-
lution

0 500 1000 1500 2000 2500 3000

Time [s]

0

5

10

15

20

25

30

35

40

V
e

lo
c
it
y
 D

if
fe

re
n

c
e

 M
a

g
n

it
u

d
e

 [
m

/s
]

Velocity difference evolution during burns (actual vs desired)

E
n

d
 B

u
rn

 1
 (

2
2

8
.2

s
)

S
ta

rt
 B

u
rn

 2
 (

2
7

5
8

.4
s
)

Burn 1 Period

Burn 2 Period

Figure 6.14: Propagation velocity chas-
ing

Orbital parameter Desired Achieved Error
a [km] 7178.1365 7178.1322 0.0043
e 0.0030 0.0029 0.0001
i [°] 98.6000 98.6000 0.0000

RAAN [°] 0.0000 0.0326 0.0326
ω [°] 359.9991 44.0830 44.0838
ν [°] 179.9858 135.9975 43.9883
θ [°] 179.9850 180.0805 0.0955

Table 6.18: Orbital parameters – desired vs achieved

The post-manoeuvre orbital elements align almost exactly with the targets: the
semi-major axis error is just 4.3 m, the eccentricity remains essentially circular
with a 1 ∗ 10−4 deviation, and the inclination matches with a clean 0% error.
These results confirm that the transfer provide both the orbit’s size and geometry
expected with negligible perturbation. Figure 6.15 and 6.16 shows the rendezvous
trajectory evolution from a second point of view demonstrating in a graphic way
the reliabily of the results.

115

Simulations results

Figure 6.15: Rendezvous trajectory

0 1000 2000 3000

Time [s]

5

10

e

10-3 Eccentricity

0 1000 2000 3000

Time [s]

98.2

98.4

98.6

d
e
g

Inclination

0 1000 2000 3000

Time [s]

0

0.05

d
e
g

RAAN

0 1000 2000 3000

Time [s]

0

200

400

d
e
g

Arg. of Perigee

0 1000 2000 3000

Time [s]

0

100

200

d
e
g

True Anomaly

0 1000 2000 3000

Time [s]

0

100

200

d
e
g

Arg. of Latitude

0 1000 2000 3000

Time [s]

0

100

200

d
e
g

True Longitude

0 1000 2000 3000

Time [s]

7.1

7.15

7.2

m

106 Semimajor Axis

Figure 6.16: Orbital elements evolution

116

Simulations results

6.5 Test case V
The fifth test case is the Pontani 2D manoeuvre already discussed in Section (1).
Knowing the optimal results and the trajectory of the trasnfer we will use this case
as a benchmark for the simulator. The starting orbital elements are shown in the
table below

Orbital element Chaser Orbit Target Orbit
a [km] 18000 35000
e 0.6 0.8
i [°] 0 0

RAAN [°] 0 120
ω [°] 0 0
ν [°] 158.94 TBO

Table 6.19: Starting orbital elements of Chaser and Target

In order to perform this manoeuvre the existent spacecraft data set was modified.
The thrust and the specific impulse have been augemented to values comparable
with the Rocket Lab Rutherford Engine [64] and of course the propellant mass was
raised to an acceptable value. The new data set is described in Table 6.20

Spacecraft data Value
Initial mass m0 [kg] 10000
Propellant mass mprop [kg] 7000
Thrust [N] 18000
Specific impulse Isp [s] 350
Aerodynamic coefficient (S ∗ CD) 7.6

Table 6.20: Spacecraft data

The optimization results are the same obtained in the previous chapters and for
completeness are shown in the table below

117

Simulations results

Optimization results Value
ToF (s) 61484.52
Corrected ToF (s) 57672.48 (-6.2%)
TAdep (°) 195.05
∆Vtot (m/s) 2563.28
∆V1 (m/s) 1814.80
∆V2 (m/s) 748.47
Corrected ∆V1 (m/s) 1827.51 (+0.7%)
Corrected ∆V2 (m/s) 55.36 (+2.55%)
θ (°) 186.3694
Corrected θ (°) 188.0094 (+0.88%)

Table 6.21: Optimization results for the manoeuvre

Simulation results Value
Simulated final time (s) 57671.60
Estimated ToF (s) 57672.48
Final chaser mass (kg) 4695.44
Final relative velocity (m/s) 0.909
Total ∆V expended (m/s) 2594.63
Estimated ∆V (m/s) 2563.28

Table 6.22: Simulation performance results

Table 6.22 illustrates the numerical propagation results. The actual ∆Vtot erogated
is slightly higher then the one expected by the optimization (+1.22%) with a
propellant mass consumption of 5304.56 kg. The final relative velocity is under the
metre per second showing a good convergence of the two velocities (see Fig. 6.17)
and the time error between the simulated and the expected one is negligible.

118

Simulations results

0 1 2 3 4 5 6

Time [s] 10
4

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000
V

e
lo

c
it
y
 M

a
g

n
it
u

d
e

 |
|V

||
 [

m
/s

]

Velocity Magnitude: Chaser vs Target

E
n

d
 B

u
rn

 1
 (

7
8

7
.1

s
)

S
ta

rt
 B

u
rn

 2
 (

5
6

3
7

7
.3

s
)

E
n

d
 B

u
rn

 2
 (

5
6

6
0

1
.5

s
)

E
n

d
 S

im
 (

5
7

6
7

1
.6

s
)

Chaser Velocity

Target Velocity

Figure 6.17: Propagation velocity evo-
lution

0 1 2 3 4 5 6

Time [s] 10
4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

V
e

lo
c
it
y
 D

if
fe

re
n

c
e

 M
a

g
n

it
u

d
e

 [
m

/s
]

Velocity difference evolution during burns (actual vs desired)

E
n

d
 B

u
rn

 1
 (

7
8

7
.1

s
)

S
ta

rt
 B

u
rn

 2
 (

5
6

3
7

7
.3

s
)

E
n

d
 B

u
rn

 2
 (

5
6

6
0

1
.5

s
)

E
n

d
 S

im
 (

5
7

6
7

1
.6

s
)

Burn 1 Period

Burn 2 Period

Figure 6.18: Propagation velocity chas-
ing

From Table 6.23 it is possible to notice that the semi-major axis deviates by only
0.0017% from the 35000 km target, while the achieved eccentricity of 0.7995 lies
within 5× 10−4 of the nominal 0.8, confirming preservation of the orbit’s scale and
shape. The inclination matches exactly at 0.0001◦, and the RAAN error of 0.1133◦

indicates negligible nodal displacement. The pronounced offset in Argument of
Latitude (4.1328◦) reflect a slight phasing lag rather than any structural transfer
error. Such minimal discrepancies are well within acceptable limits for a long-
duration manoeuvre and can be readily corrected by a brief phasing adjustment or
station-keeping burn.

Orbital parameter Desired Achieved Error
a [km] 34999.9729 34994.0859 5.8869
e 0.8000 0.7995 0.0005
i [°] 0.0001 0.0001 0.0000

RAAN [°] 120.0000 120.1133 0.1133
ω [°] 360.0000 0.1179 0.1179
ν [°] 190.5021 186.2514 4.2507
θ [°] 190.5021 186.3694 4.1328

Table 6.23: Orbital parameters – desired vs achieved

119

Simulations results

Figure 6.19: Optimal trajectory Figure 6.20: Simulated trajectory

Figure 6.19 and 6.20 shows the trajectory plots as graphic benchmark. It is possible
to notice a larger gap between the Target initial and final positions: this is due to
the time of glight (ToF) correction that happen in the simulation tuning phase.
The evolution of the orbital elements follows an expected behaviour demonstrating
again the reliability of the model.

Figure 6.21: Orbital elements evolution

120

Simulations results

6.6 Test case VI
The second Pontani case, the 3D one, is performed as sixth test case for comparing
it with the optimal solution found in Section (1). The initial orbital parameters
are shown in the table below

Orbital element Chaser Orbit Target Orbit
a [km] 6671.53 42163.95
e 0 0
i [°] 45 0

RAAN [°] 0 0
ω [°] 0 0
ν [°] 0 TBO

Table 6.24: Starting orbital elements of Chaser and Target

From the starting condition it is possible to see that this is a manoeuvre form a
parking orbit in LEO to a Geosynchronous orbit. The propulsion system of the
tested spacecraft is not able to provide the necessary thrust for performing this
kind of manoeuvre in an impulsive way. The alternative spacecraft parameter are
shown in Table 6.25

Spacecraft data Value
Initial mass m0 [kg] 10000
Propellant mass mprop [kg] 8000
Thrust [N] 150000
Specific impulse Isp [s] 350
Aerodynamic coefficient (S ∗ CD) 7.6

Table 6.25: Spacecraft data

The values have been assigned considering the ratio T hrust
W eight

≃ 1÷ 3 for an instanta-
neous impulse [65]. So we suppose to erogate the thrust of six Ruthuerford Engine
aligned. 2 The optimization results obtained are the same described in the previous
chapter and here are reported for completeness.

2In a real case it is mandatory to consider the momentum caused by this kind of propulsive
configuration, but for this 3DOF simulator it is not necessary

121

Simulations results

Optimization results Value
ToF (s) 18986.39
Corrected ToF (s) 18986.39 (+0.0%)
TAdep (°) 100.67
∆Vtot (m/s) 4637.32
∆V1 (m/s) 2464.50
∆V2 (m/s) 2172.82
Corrected ∆V1 (m/s) 2475.59 (+0.45%)
Corrected ∆V2 (m/s) 2166.30 (-0.3%)
θ (°) 179.9996
Corrected θ (°) 180.4316 (+0.24%)

Table 6.26: Optimization results for the manoeuvre

Simulation results Value
Simulated final time (s) 18979.70
Estimated ToF (s) 18986.39
Final chaser mass (kg) 2588.12
Final relative velocity (m/s) 16.392
Total ∆V expended (m/s) 4636.42
Estimated ∆V (m/s) 4637.32

Table 6.27: Simulation performance results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [s] 10
4

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

V
e

lo
c
it
y
 M

a
g

n
it
u

d
e

 |
|V

||
 [

m
/s

]

Velocity Magnitude: Chaser vs Target

E
n

d
 B

u
rn

 1
 (

1
1

7
.5

s
)

S
ta

rt
 B

u
rn

 2
 (

1
8

0
3

7
.7

s
)

E
n

d
 B

u
rn

 2
 (

1
8

0
8

9
.6

s
)

E
n

d
 S

im
 (

1
8

9
7

9
.7

s
)

Chaser Velocity

Target Velocity

Figure 6.22: Propagation velocity evo-
lution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [s] 10
4

0

500

1000

1500

2000

2500

V
e

lo
c
it
y
 D

if
fe

re
n

c
e

 M
a

g
n

it
u

d
e

 [
m

/s
]

Velocity difference evolution during burns (actual vs desired)

E
n

d
 B

u
rn

 1
 (

1
1

7
.5

s
)

S
ta

rt
 B

u
rn

 2
 (

1
8

0
3

7
.7

s
)

E
n

d
 B

u
rn

 2
 (

1
8

0
8

9
.6

s
)

E
n

d
 S

im
 (

1
8

9
7

9
.7

s
)

Burn 1 Period

Burn 2 Period

Figure 6.23: Propagation velocity chas-
ing

In Table 6.27 the simulation delivers a final time of 18979.70 s, just 6.69 s shorter
than the estimated 18986.39 s, and expends a total ∆V of 4636.42 m/s, only 0.02%
below the predicted 4637.32 m/s. The Chaser’s final mass of 2588.12 kg confirms
that the propellant budget was respected, while a residual relative velocity of

122

Simulations results

16.39 m/s is critically high for a rendezvous operation, indicating the need of a
more accurate/rigid closing approach to achieve the precision required for safe
proximity operations.

Orbital parameter Desired Achieved Error
a [km] 42163.9500 42064.2427 99.7073
e 0.0000 0.0606 0.0606
i [°] 0.0001 0.0453 0.0452

RAAN [°] 0.0000 349.7655 10.2345
ω [°] 0.0000 94.1017 94.1017
ν [°] 179.9996 99.5497 80.4499

argLat [°] 179.9996 193.6515 13.6519

Table 6.28: Orbital parameters – desired vs achieved

Examining the errors on the final orbital parameters from Table 6.28, the semi-
major axis is undershot by 0.24%, yielding an achieved eccentricity of 0.0606 rather
than the nominal circular orbit. The inclination error remains negligible at 0.0452◦,
and the RAAN offset of 10.2345◦ is modest, but the Argument of Latitude exhibit
a larger deviation of 13.6519◦. This phase-angle discrepancies highlight a significant
timing offset that would necessitate substantial correction burns to fully align the
spacecraft with the target orbital slot.

As done for the test case IV here in Figure 6.24 and 6.25 are depicted the trajectory
plots as graphic benchmark. It is possible to notice the final phase-angle misalign-
ment but also an overall deep similarity in the two trajectories. The evolution
of the orbital elements in Figure 6.26 shows an overall correct trend with a final
discrepancy that immediately catches the eye.

Figure 6.24: Optimal trajectory Figure 6.25: Simulated trajectory

123

Simulations results

0 0.5 1 1.5 2

Time [s] 104

0

0.5

e

Eccentricity

0 0.5 1 1.5 2

Time [s] 104

0

50

d
e
g

Inclination

0 0.5 1 1.5 2

Time [s] 104

0

200

400
d
e
g

RAAN

0 0.5 1 1.5 2

Time [s] 104

0

50

100

d
e
g

Arg. of Perigee

0 0.5 1 1.5 2

Time [s] 104

0

200

400

d
e
g

True Anomaly

0 0.5 1 1.5 2

Time [s] 104

0

100

200

d
e
g

Arg. of Latitude

0 0.5 1 1.5 2

Time [s] 104

0

100

200

d
e
g

True Longitude

0 0.5 1 1.5 2

Time [s] 104

0

5

m

107 Semimajor Axis

Figure 6.26: Orbital elements evolution

6.7 Test case VII
The seventh test case provides information about the performance of the TSP
integration in the simulator. For for simplicity’s sake the Chaser will perform three
near-Hohmann transfers for raising the apoapis to rapoapis ≃ 8335 km. The starting
orbit details are shown in Table 6.29

Parameter Chaser Target 1 Target 2 Target 3
a [km] 7278.137 7578.137 7378.137 7478.137

e 0.1000 0.1000 0.1000 0.1000
i [°] 0.0001 0.0001 0.0001 0.0001

RAAN [°] 0.0000 0.0000 0.0000 0.0000
ω [°] 0.0000 0.0000 0.0000 0.0000
ν [°] 0.0100 TBD TBD TBD

Table 6.29: Orbital elements for the chaser and three targets

After running the TSP-DE algorithm (see Section 4) the best visiting sequence was
the following

124

Simulations results

Optimal Visit Sequence

Target 2 −→ Target 3 −→ Target 1

with an esitamed ∆Vtot of 147.21 m/s

For each leg performed the optimal reults provided by the simulation are listed in
Table 6.34. It is possible no notice that each leg has its owns ∆V and θ corrections.
This last thing combined with the fact that each successive leg is influenced by the
previous one makes the fine tuning process longer and harder.

Optimization results Leg 1 Leg 2 Leg 3
ToF (s) 3108.72 3054.02 3027.48
Corrected ToF (s) 3108.72 (+0.0%) 3054.02 (+0.0%) 3027.48 (+0.0%)
Optimal TAdep (°) 2.0 181.2 352.4
∆V1 (m/s) 25.08 19.02 20.41
∆V2 (m/s) 24.98 29.15 28.36
Corrected ∆V1 (m/s) 26.00 (+3.68%) 18.70 (-1.71%) 21.20 (+3.89%)
Corrected ∆V2 (m/s) 26.35 (+5.48%) 30.18 (+3.53%) 30.91 (+9.00%)
θ (°) 179.2334 350.5392 163.3488
Corrected θ (°) 172.2432 338.2702 145.691

Table 6.30: Optimal manoeuvre results for each leg

Simulation results Leg 1 Leg 2 Leg 3
Simulated final time (s) 3103.10 3045.20 3019.60
Estimated ToF (s) 3108.72 3054.02 3027.48
Final chaser mass (kg) 2437.26 2381.89 2323.72
Final relative velocity (m/s) 0.256 0.158 0.131
Total ∆V expended (m/s) 52.33 47.32 50.91
Estimated ∆V (m/s) 50.06 48.18 48.76

Table 6.31: Simulation results for each leg

In Table 6.31 the simulation results show that the chaser completes the three
transfer consuming 176.28 kg of propellant (see Fig. 6.33). The ∆Vtot received an
overall increase of 2.42% with respect to the TSP-DE estimation. For each leg
the final relative velocities are under the metre per second indicating the effective
guidance control (see also from Fig. 6.27 to 6.32). These figures demonstrate that
each leg’s time of flight and propellant use remain within a few percent of the
design values, while the low residual velocities indicate effective guidance control.

125

Simulations results

0 500 1000 1500 2000 2500 3000 3500

Time [s]

6600

6800

7000

7200

7400

7600

7800

8000

8200
V

e
lo

c
it
y
 M

a
g
n
it
u
d
e
 |
|V

||
 [
m

/s
]

Velocity Magnitude: Chaser vs Target - Leg 1

E
n
d
 B

u
rn

 1
 (

1
6
1
.3

s
)

S
ta

rt
 B

u
rn

 2
 (

2
9
4
1
.5

s
)

E
n
d
 B

u
rn

 2
 (

3
1
0
3
.0

s
)

E
n
d
 S

im
 (

3
1
0
3
.1

s
)

Chaser Velocity

Target Velocity

Figure 6.27: Propagation velocity evo-
lution – leg 1

0 500 1000 1500 2000 2500 3000 3500

Time [s]

0

5

10

15

20

25

30

V
e
lo

c
it
y
 D

if
fe

re
n
c
e
 M

a
g
n
it
u
d
e
 [
m

/s
]

Velocity difference evolution during burns (actual vs desired) - Leg 1

E
n
d
 B

u
rn

 1
 (

1
6
1
.3

s
)

S
ta

rt
 B

u
rn

 2
 (

2
9
4
1
.5

s
)

E
n
d
 B

u
rn

 2
 (

3
1
0
3
.0

s
)

E
n
d
 S

im
 (

3
1
0
3
.1

s
)

Burn 1 Period

Burn 2 Period

Figure 6.28: Propagation velocity
chasing – leg 1

0 500 1000 1500 2000 2500 3000 3500

Time [s]

6600

6800

7000

7200

7400

7600

7800

8000

8200

V
e
lo

c
it
y
 M

a
g
n
it
u
d
e
 |
|V

||
 [
m

/s
]

Velocity Magnitude: Chaser vs Target - Leg 2

E
n
d
 B

u
rn

 1
 (

1
1
3
.3

s
)

S
ta

rt
 B

u
rn

 2
 (

2
8
6
3
.5

s
)

E
n
d
 B

u
rn

 2
 (

3
0
3
5
.1

s
)

E
n
d
 S

im
 (

3
0
4
5
.2

s
)

Chaser Velocity

Target Velocity

Figure 6.29: Propagation velocity evo-
lution – leg 2

0 500 1000 1500 2000 2500 3000 3500

Time [s]

0

5

10

15

20

25

30

V
e
lo

c
it
y
 D

if
fe

re
n
c
e
 M

a
g
n
it
u
d
e
 [
m

/s
]

Velocity difference evolution during burns (actual vs desired) - Leg 2

E
n
d
 B

u
rn

 1
 (

1
1
3
.3

s
)

S
ta

rt
 B

u
rn

 2
 (

2
8
6
3
.5

s
)

E
n
d
 B

u
rn

 2
 (

3
0
3
5
.1

s
)

E
n
d
 S

im
 (

3
0
4
5
.2

s
)

Burn 1 Period

Burn 2 Period

Figure 6.30: Propagation velocity
chasing – leg 2

0 500 1000 1500 2000 2500 3000 3500

Time [s]

6600

6800

7000

7200

7400

7600

7800

8000

8200

V
e
lo

c
it
y
 M

a
g
n
it
u
d
e
 |
|V

||
 [
m

/s
]

Velocity Magnitude: Chaser vs Target - Leg 3

E
n
d
 B

u
rn

 1
 (

1
2
5
.5

s
)

S
ta

rt
 B

u
rn

 2
 (

2
8
1
5
.7

s
)

E
n
d
 B

u
rn

 2
 (

2
9
8
9
.5

s
)

E
n
d
 S

im
 (

3
0
1
9
.6

s
)

Chaser Velocity

Target Velocity

Figure 6.31: Propagation velocity evo-
lution – leg 3

0 500 1000 1500 2000 2500 3000 3500

Time [s]

0

5

10

15

20

25

30

V
e
lo

c
it
y
 D

if
fe

re
n
c
e
 M

a
g
n
it
u
d
e
 [
m

/s
]

Velocity difference evolution during burns (actual vs desired) - Leg 3

E
n
d
 B

u
rn

 1
 (

1
2
5
.5

s
)

S
ta

rt
 B

u
rn

 2
 (

2
8
1
5
.7

s
)

E
n
d
 B

u
rn

 2
 (

2
9
8
9
.5

s
)

E
n
d
 S

im
 (

3
0
1
9
.6

s
)

Burn 1 Period

Burn 2 Period

Figure 6.32: Propagation velocity
chasing – leg 3

126

Simulations results

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time [s]

1900

2000

2100

2200

2300

2400

2500

M
a

s
s
 [

k
g

]

Mass Evolution During Rendezvous

2437.3 kg

2381.9 kg

2323.7 kg

E
n

d
 L

e
g

 1

E
n

d
 L

e
g

 2

E
n

d
 L

e
g

 3

Dry Mass 1920 kg

Leg 1

Leg 2

Leg 3

Figure 6.33: Mass evolution for each leg

The orbital element residual errors in Table 6.32 confirms that the semi-major axis
errors between chaser and targets stays under 0.0007% and the eccentricity errors
stay below 3×10−3. Inclination errors are negligible (≤ 10−4 deg).The Argument of
Latitude exhibit a phase offset of 0.4563◦. As already said. these small geometric
and timing discrepancies can be corrected with brief phasing burns to ensure precise
final rendezvous geometry.

Leg 1 Leg 2 Leg 3
Parameter Desired Achieved Error Desired Achieved Error Desired Achieved Error
a [km] 7378.1326 7378.1305 0.0021 7478.1327 7478.1730 0.0403 7578.1324 7578.1838 0.0514
e 0.1000 0.0973 0.0027 0.1000 0.1019 0.0019 0.1000 0.0977 0.0023
i [°] 0.0001 0.0001 0.0000 0.0001 0.0001 0.0000 0.0001 0.0001 0.0000
RAAN [°] 0.0000 359.7738 0.2262 360.0000 0.0058 0.0058 0.0000 359.7666 0.2334
ω [°] 359.9998 0.8170 0.8172 0.0002 359.1641 0.8361 359.9998 1.0751 1.0753
ν [°] 179.2336 178.8727 0.3609 350.5390 351.2276 0.6886 163.3490 162.5784 0.7706
θ [°] 179.2334 179.6897 0.4563 350.5392 350.3916 0.1476 163.3488 163.6535 0.3047

Table 6.32: Orbital parameters for each leg – desired vs achieved

Figure 6.34 and 6.35 shows the trajectory of each leg in the XECI − YECI plane
since the orbits are coplanar. As expected from the physics od the problem the
chaser tour start from the lower orbit and continue to the higher one in order to
consume less propellant.

127

Simulations results

Figure 6.34: Combined rendezvous trajectories

0 2000 4000 6000 8000 10000

Time [s]

0.09

0.1

0.11

e

Eccentricity

0 2000 4000 6000 8000 10000

Time [s]

1

1.01

1.02

i

10-4 Inclination [deg]

0 2000 4000 6000 8000 10000

Time [s]

0

200

400
RAAN [deg]

0 2000 4000 6000 8000 10000

Time [s]

0

200

400
Arg. of Perigee [deg]

0 2000 4000 6000 8000 10000

Time [s]

0

200

400
True Anomaly [deg]

0 2000 4000 6000 8000 10000

Time [s]

0

200

400

A
rg

L
a
t

Argument of Latitude [deg]

0 2000 4000 6000 8000 10000

Time [s]

0

200

400

T
ru

e
L
o
n

True Longitude [deg]

0 2000 4000 6000 8000 10000

Time [s]

7300

7400

7500

r

Semimajor axis [km]

Figure 6.35: Orbital elements evolution

128

Simulations results

6.8 Test case VIII
For the final test case, a three-leg mission across distinct Sun-synchronous orbits
is selected to replicate actual constellation deployments and multi-site servicing
operations, thereby showcasing the guidance solution’s robustness and flexibility
under demanding conditions. Table 6.33 illustrates the starting orbits of Chaser
and Targets.

Parameter Chaser Target 1 Target 2 Target 3
a [km] 6978.173 7178.173 7078.137 7278.137

e 0.003 0.003 0.003 0.003
i [°] 97.8 98.6 98.2 99.03

RAAN [°] 0.0000 0.0000 0.0000 0.0000
ω [°] 0.0000 0.0000 0.0000 0.0000
ν [°] 0.01 TBD TBD TBD

Table 6.33: Orbital elements for the chaser and three targets

The optimization lead to following optimal visit sequence and manoeuvre parameters

Optimal Visit Sequence

Target 2 −→ Target 1 −→ Target 3

Optimization results Leg 1 Leg 2 Leg 3
ToF (s) 2931.94 2858.48 3207.93
Corrected ToF (s) 2931.94 (+0.0%) 2858.48 (+0.0%) 3207.93 (+0.0%)
Optimal TAdep (°) 1.9 181.8 353.3
∆V1 (m/s) 37.30 35.12 34.87
∆V2 (m/s) 37.77 39.66 44.46
Corrected ∆V1 (m/s) 37.47 (+0.46%) 34.77 (-1.00%) 33.03 (-5.29%)
Corrected ∆V2 (m/s) 39.58 (+4.80%) 42.36 (+6.80%) 47.53 (+6.90%)
θ (°) 179.9881 351.7806 180.2270
Corrected θ (°) 165.4905 339.4682 164.3670

Table 6.34: Optimal manoeuvre results for each leg

From Table 6.35 and Figure 6.36, the Chaser’s mass decreases from its initial value
to 2231.98 kg after the last leg, with a propellant usage of 268.2 kg that indicates
a consistent propellant usage in line with the design estimates. The total ∆V
expended against the predicted one is higher of just 1.88%. This, together with a
consistent guidancr algorithm behaviour (see from Fig.6.37 to 6.42) translates into

129

Simulations results

residual final relative velocities of only 0.182 m/s, 0.008 m/s and 0.292 m/s, well
below the metre per second. Flight durations for each transfer also remain within
a few seconds of their optimal values, confirming overall timing fidelity.

Simulation results Leg 1 Leg 2 Leg 3
Simulated final time (s) 2930.80 2850.50 3198.90
Estimated ToF (s) 2931.94 2858.48 3207.93
Final chaser mass (kg) 2408.58 2321.09 2231.98
Final relative velocity (m/s) 0.182 0.008 0.292
Total ∆V expended (m/s) 76.72 76.18 80.62
Estimated ∆V (m/s) 75.07 74.78 79.34

Table 6.35: Simulation results for each leg

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time [s]

1900

2000

2100

2200

2300

2400

2500

M
a

s
s
 [

k
g

]

Mass Evolution During Rendezvous

2408.6 kg

2321.1 kg

2232.0 kg

E
n

d
 L

e
g

 1

E
n

d
 L

e
g

 2

Dry Mass 1920 kg

Leg 1

Leg 2

Leg 3

Figure 6.36: Mass evolution for each leg

130

Simulations results

0 500 1000 1500 2000 2500 3000

Time [s]

7460

7480

7500

7520

7540

7560

7580

7600

7620
V

e
lo

c
it
y
 M

a
g
n
it
u
d
e
 |
|V

||
 [
m

/s
]

Velocity Magnitude: Chaser vs Target - Leg 1

E
n
d
 B

u
rn

 1
 (

2
3
1
.9

s
)

S
ta

rt
 B

u
rn

 2
 (

2
6
8
2
.1

s
)

E
n
d
 B

u
rn

 2
 (

2
9
2
0
.7

s
)

E
n
d
 S

im
 (

2
9
3
0
.8

s
)

Chaser Velocity

Target Velocity

Figure 6.37: Propagation velocity evo-
lution – leg 1

0 500 1000 1500 2000 2500 3000

Time [s]

0

5

10

15

20

25

30

35

40

V
e
lo

c
it
y
 D

if
fe

re
n
c
e
 M

a
g
n
it
u
d
e
 [
m

/s
]

Velocity difference evolution during burns (actual vs desired) - Leg 1

E
n
d
 B

u
rn

 1
 (

2
3
1
.9

s
)

S
ta

rt
 B

u
rn

 2
 (

2
6
8
2
.1

s
)

E
n
d
 B

u
rn

 2
 (

2
9
2
0
.7

s
)

E
n
d
 S

im
 (

2
9
3
0
.8

s
)

Burn 1 Period

Burn 2 Period

Figure 6.38: Propagation velocity
chasing – leg 1

0 500 1000 1500 2000 2500 3000

Time [s]

7420

7430

7440

7450

7460

7470

7480

7490

7500

7510

V
e
lo

c
it
y
 M

a
g
n
it
u
d
e
 |
|V

||
 [
m

/s
]

Velocity Magnitude: Chaser vs Target - Leg 2

E
n
d
 B

u
rn

 1
 (

2
0
7
.5

s
)

S
ta

rt
 B

u
rn

 2
 (

2
6
0
7
.7

s
)

E
n
d
 B

u
rn

 2
 (

2
8
5
0
.4

s
)

E
n
d
 S

im
 (

2
8
5
0
.5

s
)

Chaser Velocity

Target Velocity

Figure 6.39: Propagation velocity evo-
lution – leg 2

0 500 1000 1500 2000 2500 3000

Time [s]

0

5

10

15

20

25

30

35

40

V
e
lo

c
it
y
 D

if
fe

re
n
c
e
 M

a
g
n
it
u
d
e
 [
m

/s
]

Velocity difference evolution during burns (actual vs desired) - Leg 2

E
n
d
 B

u
rn

 1
 (

2
0
7
.5

s
)

S
ta

rt
 B

u
rn

 2
 (

2
6
0
7
.7

s
)

E
n
d
 B

u
rn

 2
 (

2
8
5
0
.4

s
)

E
n
d
 S

im
 (

2
8
5
0
.5

s
)

Burn 1 Period

Burn 2 Period

Figure 6.40: Propagation velocity
chasing – leg 2

0 500 1000 1500 2000 2500 3000 3500

Time [s]

7340

7360

7380

7400

7420

7440

7460

7480

7500

7520

V
e
lo

c
it
y
 M

a
g
n
it
u
d
e
 |
|V

||
 [
m

/s
]

Velocity Magnitude: Chaser vs Target - Leg 3

E
n
d
 B

u
rn

 1
 (

1
9
0
.0

s
)

S
ta

rt
 B

u
rn

 2
 (

2
9
3
0
.2

s
)

E
n
d
 B

u
rn

 2
 (

3
1
9
8
.8

s
)

E
n
d
 S

im
 (

3
1
9
8
.9

s
)

Chaser Velocity

Target Velocity

Figure 6.41: Propagation velocity evo-
lution – leg 3

0 500 1000 1500 2000 2500 3000 3500

Time [s]

0

5

10

15

20

25

30

35

40

45

V
e
lo

c
it
y
 D

if
fe

re
n
c
e
 M

a
g
n
it
u
d
e
 [
m

/s
]

Velocity difference evolution during burns (actual vs desired) - Leg 3

E
n
d
 B

u
rn

 1
 (

1
9
0
.0

s
)

S
ta

rt
 B

u
rn

 2
 (

2
9
3
0
.2

s
)

E
n
d
 B

u
rn

 2
 (

3
1
9
8
.8

s
)

E
n
d
 S

im
 (

3
1
9
8
.9

s
)

Burn 1 Period

Burn 2 Period

Figure 6.42: Propagation velocity
chasing – leg 3

131

Simulations results

Table 6.36 shows that the orbital geometry is preserved with minimal drift. Semi-
major axis errors stay below 300 m (relative errors ≤ 4 × 10−5), eccentricity
deviations never exceed 1.1× 10−3, and inclination remains within 0.0015◦. The
Argument of latitude errors remain below 0.27◦. These small residual can be
removed with brief phasing burns to ensure exact rendezvous geometry.

Leg 1 Leg 2 Leg 3
Parameter Desired Achieved Error Desired Achieved Error Desired Achieved Error
a [km] 7078.1322 7078.1070 0.0251 7178.1323 7178.1432 0.0109 7278.1316 7278.4237 0.2921
e 0.0030 0.0031 0.0001 0.0030 0.0041 0.0011 0.0030 0.0031 0.0001
i [°] 98.2000 98.2000 0.0000 98.6000 98.5987 0.0013 99.0300 99.0285 0.0015
RAAN [°] 0.0000 0.0297 0.0297 360.0000 0.0251 0.0251 0.0000 0.0144 0.0144
ω [°] 359.9916 46.9442 46.9526 0.0085 331.5073 28.5012 359.9914 44.8804 44.8891
ν [°] 179.9964 133.2294 46.7671 351.7721 20.0051 28.2330 180.2356 135.0896 45.1460
θ [°] 179.9881 180.1736 0.1855 351.7806 351.5124 0.2682 180.2270 179.9700 0.2569

Table 6.36: Orbital parameters for each leg – desired vs achieved

Figure 6.43: Combined rendezvous trajectories

132

Simulations results

Figure 6.44: Orbital elements evolution

Figure 6.43 illustrate how the chaser departs and arrives on he tthree distinct
sun-synchronous orbits, smoothly transitioning altitude and phase in each leg while
maintaining tight proximity to the target. Meanwhile, the time histories of the
orbital elements in Figure 6.44 confirm that semi-major axis, eccentricity and
inclination remain effectively bounded within their expected ranges, and that the
small jumps in eccentricity, inclination and semi-major axis coincide precisely with
each burn.

133

Chapter 7

Conclusions and future
improvements

The primary objective of this thesis work was to develop and implement a modular
MATLAB tool chain that supports the design and validation of impulsive rendezvous
manoeuvres for AVIO’s In-Orbit-Service (IOS) missions minimizing the propellant
consumption (∆V). In the first chapter, the discussion opens with an hystorical
overview of the IOS missions followed by a survey on the current market landscape
and a literature review of the optimization and guidance algorithms. After this, the
second chapter introduces the theoretical framework of astrodynamics, illustrating
the foundamentals laws and detailing the key equations for the classical impulsive
manoeuvres. In the third chapter, attention shifts to the choice of evolutionary
algorithms, highlighting the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES), Differential Evolution (DE), and Particle Swarm Optimization (PSO).
The performances of each algorithms were investigated with a Lambert’s problem
based cost function, searching the best combination of time-of-flight and Target’s
satellite departure true anomaly that minimize the total ∆V . Among them the
CMA-ES proved the fastest convergence despite the high iteration count, whereas
DE and PSO offered a more balanced trade-off between runtime and robustness.
The reliability of the optimization results was brought by the Pontani’s results
presented in literature [1, 47] that work as benchmarks for that purpose. In chapter
four, a combination of the evolutionary algorithms and Travelling Salesman was
analyzed in order to make the tool chain able to minimise the overall ∆V for
multi-target sequences. Chapter five presents a dedicated three-phase guidance law
in which the spacecraft first executes a burn along the Lambert solution’s target
velocity vector until the prescribed ∆V1target has been delivered. After this initial
manoeuvre, the propulsion system is shut down and the vehicle coasts unpowered

134

Conclusions and future improvements

until it reaches a target’s argument of latitude (θtarget) . Ultimately, a second burn
is initiated to “chase” the target’s actual velocity, until the required ∆V2target or
the optimal time-of-flight is reached. In the last chapter the combined phase flow
optimisation-simulation behaved reliably in all eight test runs: the gap between the
planned and simulated ∆V stayed below 5 %, and the leftover velocity was always
under 0.5 m/s. The tool also worked well in commercial scenarios such as SSO
manoeuvres, Hohmann transfers in LEO, and multi-target transfers while keeping
within the mass and thrust limits of the AVUM+ stage. It can be stated that the
thesis offers a reusable and easy to use framework for early mission analysis that
speeds up performances evaluations.

Future improvements

The current guidance architecture still mixes open-loop and closed-loop elements.
During the first burn the chaser fires almost exactly along the fixed ∆V1target vector
delivered by the optimiser, while during the second burn it chases the target velocity,
adjusting its thrust direction at every step. This hybrid logic is fast and lightweight,
yet it inherits the usual weakness of Lambert-based approaches: the ideal solution
assumes perfectly impulsive burns and a disturbance-free environment, so even
small modelling errors or perturbations can leave the chaser a few hundred metres
from the target. In the thesis this gap is only softened by empirical correction
factors on the time-of-flight, the two ∆V magnitudes, and the argument of latitude
that triggers the second burn. A clearer path forward is to replace this hybrid
scheme with a fully closed-loop controller that reacts to the current relative state
either through a state-feedback law based on Clohessy–Wiltshire dynamics or, more
ambitiously, through a Model Predictive Controller that embeds the full nonlinear
relative motion and jointly minimises position error, velocity error and propellant.

A second improvement becomes relevant as soon as the mission involves more than
one target. At present, the simulator starts each transfer at whatever true anomaly
happens to arise and initiates the next leg immediately after the previous one,
without searching for an optimal waiting time. As a result, the departures can be
far from ideal and the total ∆V (or elapsed time) is not truly minimal. Extending
the optimiser to include both the initial true anomaly and an adjustable coast
phase between legs would let the tool find the best “wait-to-go” strategy, trimming
propellant, flight time, or both for multi-target campaigns.

Finally, the simulator itself would benefit from an upgrade from the current 3-DOF
translation-only model to a full 6-DOF formulation. A 6-DOF version would
incorporate attitude dynamics and its own attitude-control loop, so the tool could

135

Conclusions and future improvements

account for thruster torques, solar-radiation pressure, magnetic-torquer interactions,
gravity-gradient effects and sensor line-of-sight constraints during docking. Such
fidelity is indispensable for precision rendezvous studies, where orientation errors
and coupled translation–rotation manoeuvres can make the difference between a
clean capture and a missed rendezvous.

136

Appendix A

Objective function

Objective function MATLAB code

1 f unc t i on [cost , delta_v1 , delta_v2] = lambert_cost (x , o r b i t)
2 % Object ive func t i on
3 % x (1)=delta_t , x (2)=TA2 (degree)
4 delta_t = x (1) ;
5 TA2_deg = x (2) ;
6

7 mu = 398600;
8 deg = pi /180 ;
9

10 a1 = o r b i t . a1 ; e1 = o r b i t . e1 ; inc l1_deg = o r b i t . inc l1_deg ;
11 RA1_deg = o r b i t . RA1_deg ; w1_deg = o r b i t . w1_deg ; TA1_deg = o r b i t .

TA1_deg ;
12 a2 = o r b i t . a2 ; e2 = o r b i t . e2 ; inc l2_deg = o r b i t . inc l2_deg ;
13 RA2_deg = o r b i t . RA2_deg ; w2_deg = o r b i t . w2_deg ;
14

15 % Angular momentum
16 h1 = sq r t (a1 ∗ mu ∗ (1 − e1 ^2)) ;
17 h2 = sq r t (a2 ∗ mu ∗ (1 − e2 ^2)) ;
18

19 % Orb i ta l e lements d e f i n i t i o n
20 oe1 = [h1 , e1 , RA1_deg∗deg , inc l1_deg ∗deg , w1_deg∗deg , TA1_deg∗

deg] ;
21 oe2 = [h2 , e2 , RA2_deg∗deg , inc l2_deg ∗deg , w2_deg∗deg , TA2_deg∗

deg] ;
22

23 [r1 , v1] = sv_from_oe (oe1 , mu) ;
24 [r2 , v2] = sv_from_oe (oe2 , mu) ;
25

138

Objective function

26 % Orb i ta l per iod o f the f i n a l o r b i t
27 T2 = 2∗ pi /mu^2 ∗ (h2/ sq r t (1−e2 ^2)) ^3 ;
28

29 f a c t o r _ i n i t i a l = sq r t ((1− e2) /(1+e2)) ∗ tan (TA2_deg∗deg /2) ;
30 i f f a c t o r _ i n i t i a l < 0
31 E _ i n i t i a l = 2∗(p i + atan (f a c t o r _ i n i t i a l)) ;
32 e l s e
33 E _ i n i t i a l = 2∗ atan (f a c t o r _ i n i t i a l) ;
34 end
35 t _ i n i t i a l = T2/(2∗ p i) ∗ (E _ i n i t i a l − e2∗ s i n (E _ i n i t i a l)) ;
36

37 t_arr = t _ i n i t i a l + delta_t ;
38

39 % Kepler equat ion with new TA2
40 Me = 2∗ pi ∗ t_arr /T2 ;
41 E = kepler_equat ion (e2 , Me) ;
42 i f s q r t ((1− e2) /(1+e2)) ∗ tan (E/2) < 0
43 TA2_new = 2∗(p i + atan (sq r t ((1− e2) /(1+e2)) ∗ tan (E/2))) ;
44 e l s e
45 TA2_new = 2∗ atan (sq r t ((1− e2) /(1+e2)) ∗ tan (E/2)) ;
46 end
47

48 oe2_new = [h2 , e2 , RA2_deg∗deg , inc l2_deg ∗deg , w2_deg∗deg ,
TA2_new] ;

49 [r2_new , v2_new] = sv_from_oe (oe2_new , mu) ;
50

51 [v1_transfer , v2_trans fe r] = lambert_equation (r1 , r2_new , delta_t
, mu) ;

52 delta_v1 = v1_trans fe r − v1 ;
53 delta_v2 = v2_new − v2_trans fer ;
54 delta_v_total = norm(delta_v1) + norm(delta_v2) ;
55

56 co s t = 1000 ∗ delta_v_total ;
57 end

139

Appendix B

Travelling Salesman Problem

TSP MATLAB code

1 f unc t i on [bestSeq , tota lCost , l egCosts , legTOFs , legTAs] = TSP(DE,
Xmin , Xmax, orbitChaser , o rb i tTarge t s)

2 % Trave l l i ng Salesman Problem
3 N = numel (o rb i tTarge t s) ;
4 c o s t S t a r t = ze ro s (1 ,N) ;
5 t o f S t a r t = ze ro s (1 ,N) ;
6 TA2Start = ze ro s (1 ,N) ;
7 costMat = i n f (N,N) ;
8 tofMat = ze ro s (N,N) ;
9 TA2Mat = ze ro s (N,N) ;

10

11 initTA2 = 0 ;
12

13 % Cost from i n i t i a l chaser o r b i t to each t a r g e t
14 f o r i = 1 :N
15 orb i tLeg = orb i tChaser ;
16 % s e t t a r g e t o r b i t
17 orb i tLeg . a2 = orb i tTarge t s (i) . a2 ;
18 orb i tLeg . e2 = orb i tTarge t s (i) . e2 ;
19 orb i tLeg . inc l2_deg = orb i tTarge t s (i) . inc l2_deg ;
20 orb i tLeg . RA2_deg = orb i tTarge t s (i) . RA2_deg ;
21 orb i tLeg . w2_deg = orb i tTarge t s (i) . w2_deg ;
22 orb i tLeg . TA2_deg = initTA2 ;
23 [best , f_best , ~ , ~ , ~] = DE_fun(DE, Xmin , Xmax, orb i tLeg) ;
24 c o s t S t a r t (i) = f_best ;
25 t o f S t a r t (i) = best (1) ;
26 TA2Start (i) = best (2) ;
27 end

140

Travelling Salesman Problem

28

29 % Cost between each pa i r o f t a r g e t s
30 f o r i = 1 :N
31 f o r j = 1 :N
32 i f i~=j
33 orb i tLeg . a1 = orb i tTarge t s (i) . a2 ;
34 orb i tLeg . e1 = orb i tTarge t s (i) . e2 ;
35 orb i tLeg . inc l1_deg = orb i tTarge t s (i) . inc l2_deg ;
36 orb i tLeg . RA1_deg = orb i tTarge t s (i) . RA2_deg ;
37 orb i tLeg . w1_deg = orb i tTarge t s (i) . w2_deg ;
38 orb i tLeg . TA1_deg = initTA2 ;
39 orb i tLeg . a2 = orb i tTarge t s (j) . a2 ;
40 orb i tLeg . e2 = orb i tTarge t s (j) . e2 ;
41 orb i tLeg . inc l2_deg = orb i tTarge t s (j) . inc l2_deg ;
42 orb i tLeg . RA2_deg = orb i tTarge t s (j) . RA2_deg ;
43 orb i tLeg . w2_deg = orb i tTarge t s (j) . w2_deg ;
44 orb i tLeg . TA2_deg = initTA2 ;
45 [best , f_best , ~ , ~ , ~] = DE_fun(DE, Xmin , Xmax,

orb i tLeg) ;
46 costMat (i , j) = f_best ;
47 tofMat (i , j) = best (1) ;
48 TA2Mat(i , j) = best (2) ;
49 end
50 end
51 end
52

53 % Evaluate a l l v i s i t sequences
54 permsList = perms (1 :N) ;
55 numPerms = s i z e (permsList , 1) ;
56 t o t a lCo s t s = i n f (numPerms , 1) ;
57 totalTOFs = ze ro s (numPerms ,N) ;
58 totalTAs = ze ro s (numPerms ,N) ;
59 f o r k = 1 : numPerms
60 seq = permsList (k , :) ;
61 co s t = c o s t S t a r t (seq (1)) ;
62 t o f s = ze ro s (1 ,N) ;
63 ta s = ze ro s (1 ,N) ;
64 t o f s (1) = t o f S t a r t (seq (1)) ;
65 ta s (1) = TA2Start (seq (1)) ;
66 co s t = cos t + costMat (seq (1) , seq (2)) ;
67 t o f s (2) = tofMat (seq (1) , seq (2)) ;
68 ta s (2) = TA2Mat(seq (1) , seq (2)) ;
69 co s t = cos t + costMat (seq (2) , seq (3)) ;
70 t o f s (3) = tofMat (seq (2) , seq (3)) ;
71 ta s (3) = TA2Mat(seq (2) , seq (3)) ;
72 t o t a lCo s t s (k) = cos t ;
73 totalTOFs (k , :) = t o f s ;
74 totalTAs (k , :) = tas ;
75 end

141

Travelling Salesman Problem

76

77 % S e l e c t optimal sequence
78 [~ , idx] = min (t o t a lC o s t s) ;
79 bestSeq = permsList (idx , :) ;
80 t o ta lCos t = to t a l Co s t s (idx) ;
81 l e gCos t s = [c o s t S t a r t (bestSeq (1)) , costMat (bestSeq (1) , bestSeq (2))

, costMat (bestSeq (2) , bestSeq (3))] ;
82 legTOFs = totalTOFs (idx , :) ;
83 legTAs = totalTAs (idx , :) ;
84

85 end

142

Appendix C

GNC algorithm

C.1 1st Burn logic
In the early implementation, the first burn logic invoked the Lambert problem
solver at every integration step in order to compute the “desired” departure velocity
for the next step (V1des

). However, when executing non-coplanar maneuvers, this
approach frequently produced extremely large and physically unrealistic velocity
vectors from the Lambert solution (see Fig. C.1). These spurious high velocities
then corrupted the state propagation and rendered the downstream guidance logic
invalid.

-2000 -1000 0 1000 2000 3000

Time [s]

0

2000

4000

6000

8000

10000

V
e
lo

c
it
y
 D

if
fe

re
n
c
e
 M

a
g
n
it
u
d
e
 [
m

/s
]

Velocity difference evolution during burns (actual vs desired)

E
n
d
 B

u
rn

 1
 (

7
8
2
.3

s
)

Figure C.1: |V1des
− VC | undesired peek during a simple plane change maneouver

of 1°

143

GNC algorithm

One might expect to avoid such solutions by constraining the maximum V1des
,

but even this solution was not fruitful and didn’t prevent the guidance algorithm
from corrupted results. Given this issues the logic was changed in the one already
explained in the thesis main body.

C.2 Guidance code
GNC algorithm MATLAB code

1 f unc t i on [U, GNC_DATA, v_target_now] = GNC(t , S , GNC_DATA, LV, ENV,
o r b i t)

2

3 % Spacec ra f t and t a r g e t s t a t e
4 POS_C = S (1 : 3) ; VEL_C = S (4 : 6) ;
5 POS_T = S (7 : 9) ; VEL_T = S (1 0 : 1 2) ;
6 massC = S (13) ;
7

8 % U = [t h r o t t l e , d i r e c t i o n _ e c i (3)]
9 U = ze ro s (4 , 1) ;

10 d i r_ec i = [0 ; 0 ; 0] ;
11 dt_step = GNC_DATA. dt ;
12

13 % Calcu la t i on cons tant s
14 a c c e l = LV. thrus t / massC ;
15 tol_dv = 0 . 0 1 ;
16

17 switch GNC_DATA. phase
18

19 %% PHASE 1 − F i r s t burn
20 case 1
21 % 1) Build the r equ i r ed DV vector
22 i f ~ i s f i e l d (GNC_DATA, ’dv1_vec_cmd ’)
23 GNC_DATA. dv1_vec_cmd = GNC_DATA. dv1_target ’ ;
24 GNC_DATA. dv1_applied = ze ro s (3 , 1) ; % accumulated DV
25 end
26

27 % 2) Compute r e s i d u a l DV
28 dv_res1 = GNC_DATA. dv1_vec_cmd − GNC_DATA. dv1_applied ;
29 norm_res1 = norm(dv_res1) ;
30 i f norm_res1 > tol_dv
31 d i r_ec i = dv_res1 / norm_res1 ; % r e s i d u a l un i t

vec to r
32 e l s e
33 d i r_ec i = [0 ; 0 ; 0] ;
34 end
35 v_target_now = VEL_C + dv_res1 ;

144

GNC algorithm

36

37 % 3) Throt t l e ON/OFF l o g i c and update accumulated DV
38 i f norm(d i r_ec i) > 1e−9
39 U(1) = 1 ; % engine ON
40 i f dt_step > 0
41 dv_inc = d i r_ec i ∗ a c c e l ∗ dt_step ;
42 GNC_DATA. dv1_applied = GNC_DATA. dv1_applied +

dv_inc ;
43 GNC_DATA. dv_accum1 = norm(GNC_DATA. dv1_applied) ;
44 end
45 e l s e
46 U(1) = 0 ; % engine OFF
47 end
48

49 % 4) F i r s t burn terminat ion c r i t e r i o n
50 i f (norm_res1 <= tol_dv) | | (GNC_DATA. dv_accum1 >= norm(

GNC_DATA. dv1_target))
51 U(1) = 0 ;
52 GNC_DATA. burn_active = f a l s e ;
53 GNC_DATA. phase = 2 ; % switch to coa s t i ng
54 GNC_DATA. dt = 10 ;
55 e l s e
56 GNC_DATA. burn_active = (U(1) == 1) ;
57 GNC_DATA. dt = 0 . 1 ;
58 end
59

60

61 %% PHASE 2 − Coast u n t i l d e s i r e d l a t i t u d e argument
62 case 2
63 U(1) = 0 ;
64 GNC_DATA. dt = 10 ;
65 v_target_now = VEL_C;
66

67 % Compute cur rent l a t i t u d e argument
68 oe_c = oe_from_sv (POS_C, VEL_C, ENV.mu) ;
69 arg_lat = mod(oe_c (5) + oe_c (6) , 2∗ p i) ;
70

71 delta_ang = abs (arg_lat − GNC_DATA. target_arg_lat) ;
72 delta_ang = min (delta_ang , 2∗ p i − delta_ang) ;
73 i f delta_ang < deg2rad (0 . 5)
74 GNC_DATA. phase = 3 ; % s t a r t second burn
75 GNC_DATA. burn_active = true ;
76 GNC_DATA. dt = 0 . 1 ;
77 end
78

79 %% PHASE 3 − Second burn
80 case 3
81 % 1) I n i t i a l i z e the r equ i r ed DV2 vecto r
82 i f ~ i s f i e l d (GNC_DATA, ’dv2_vec_cmd ’)

145

GNC algorithm

83 GNC_DATA. dv2_vec_cmd = GNC_DATA. dv2_target ’ ;
84 GNC_DATA. dv2_applied = ze ro s (3 , 1) ; % accumulated

DV
85 end
86

87 % 2) Compute r e s i d u a l DV
88 dv_res2 = VEL_T − VEL_C;
89 norm_res2 = norm(dv_res2) ;
90 i f norm_res2 > tol_dv
91 d i r_ec i = dv_res2 / norm_res2 ;
92 e l s e
93 d i r_ec i = [0 ; 0 ; 0] ;
94 end
95 v_target_now = VEL_C + dv_res2 ;
96

97 % 3) Update accumulated DV and t h r o t t l e
98 i f norm(d i r_ec i) > 1e−9
99 U(1) = 1 ;

100 i f dt_step > 0
101 dv_inc = d i r_ec i ∗ a c c e l ∗ dt_step ;
102 GNC_DATA. dv2_applied = GNC_DATA. dv2_applied +

dv_inc ;
103 GNC_DATA. dv_accum2 = norm(GNC_DATA. dv2_applied) ;
104 end
105 e l s e
106 U(1) = 0 ;
107 end
108

109 % 4) Second burn terminat ion c r i t e r i o n
110 i f (norm_res2 <= tol_dv) | | (GNC_DATA. dv_accum2 >= norm(

GNC_DATA. dv2_target))
111 U(1) = 0 ;
112 GNC_DATA. burn_active = f a l s e ;
113 GNC_DATA. phase = 4 ; % maneuver complete
114 GNC_DATA. dt = 10 ;
115 e l s e
116 GNC_DATA. burn_active = (U(1) == 1) ;
117 GNC_DATA. dt = 0 . 1 ;
118 end
119

120 %% PHASE 4 End o f maneuver
121 case 4
122 U(1) = 0 ;
123 GNC_DATA. dt = 10 ;
124 v_target_now = VEL_T;
125 end
126

127 % Update l a s t time and thrus t d i r e c t i o n
128 GNC_DATA. la s t_t = t ;

146

GNC algorithm

129 i f (U(1) > 0 . 5) && (norm(d i r_ec i) > 1e−6)
130 U(2 : 4) = d i r_ec i ;
131 e l s e
132 U(2 : 4) = [0 ; 0 ; 0] ;
133 U(1) = 0 ;
134 end
135 end

147

Bibliography

[1] Mauro Pontani and Bruce A. Conway. «Particle swarm optimization applied
to impulsive orbital transfers». In: Acta Astronautica 74 (2012), pp. 141–155.
doi: 10.1016/j.actaastro.2011.09.011 (cit. on pp. 1, 134).

[2] Wikipedia contributors. Skylab. https://it.wikipedia.org/wiki/Skylab.
[online; accessed 02-May-2025]. 2025 (cit. on p. 3).

[3] National Aeronautics and Space Administration. On-Orbit Satellite Servicing
Study: Project Report. Technical Report. NASA Goddard Space Flight Center,
2010 (cit. on p. 3).

[4] Wikipedia contributors. Hubble Space Telescope. https://it.wikipedia.
org/wiki/Hubble_Space_Telescope. [online; accessed 02 May 2025]. 2025
(cit. on p. 3).

[5] Wikipedia contributors. ETS-VII. https://it.wikipedia.org/wiki/ETS-
VII. [online; accessed 02 May 2025]. 2025 (cit. on p. 3).

[6] Wikipedia contributors. International Space Station. https://it.wikipedia.
org/wiki/International_Space_Station. [online; accessed 03 May 2025].
2025 (cit. on p. 3).

[7] Wikipedia contributors. Orbital Express. https://it.wikipedia.org/wiki/
Orbital_Express. [online; accessed 05 May 2025]. 2025 (cit. on p. 4).

[8] NASA Astronomy Picture of the Day. New Eyes for the Hubble Space Telescope.
https://apod.nasa.gov/apod/ap970221.html. [online; accessed 05 May
2025]. 1997 (cit. on p. 4).

[9] Northrop Grumman. SpaceLogistics. https://www.northropgrumman.com/
space/space- logistics- services. Accessed: 2025-05-10. 2025 (cit. on
p. 4).

[10] Blackerby, Okamoto, Fujimoto and Okada. «ELSA-D: an in-orbit end-of-life
demonsration mission». In: ELSA-1-Conference-IAC-2018-v1 (2018) (cit. on
p. 4).

148

https://doi.org/10.1016/j.actaastro.2011.09.011
https://it.wikipedia.org/wiki/Skylab
https://it.wikipedia.org/wiki/Hubble_Space_Telescope
https://it.wikipedia.org/wiki/Hubble_Space_Telescope
https://it.wikipedia.org/wiki/ETS-VII
https://it.wikipedia.org/wiki/ETS-VII
https://it.wikipedia.org/wiki/International_Space_Station
https://it.wikipedia.org/wiki/International_Space_Station
https://it.wikipedia.org/wiki/Orbital_Express
https://it.wikipedia.org/wiki/Orbital_Express
https://apod.nasa.gov/apod/ap970221.html
https://www.northropgrumman.com/space/space-logistics-services
https://www.northropgrumman.com/space/space-logistics-services

BIBLIOGRAPHY

[11] Defense Advanced Research Projects Agency. RSGS: Robotic Servicing of
Geosynchronous Satellites. https://www.darpa.mil/research/programs/
robotic-servicing-of-geosynchronous-satellites. Accessed: 2025-05-
10 (cit. on pp. 4, 13).

[12] Wei-Jie Li et al. «On-orbit service (OOS) of spacecraft: A review of engineering
developments». In: Progress in Aerospace Sciences 108 (2019), pp. 32–120
(cit. on p. 5).

[13] European Space Agency. ESA costruisce la prima missione di manutenzione
in orbita con D-Orbit. https://www.esa.int/Space_in_Member_States/
Italy / ESA _ costruisce _ la _ prima _ missione _ di _ manutenzione _ in _
orbita_con_D-Orbit. Accessed: 2025-05-10. 2024 (cit. on p. 5).

[14] Giorgio Gasbarrini. In-Orbit Services: AVIO Vision. Presentation at Clean
Space Industrial Days, ESA Indico. 21 September 2021. 2021 (cit. on pp. 7,
8).

[15] Stefano Gallucci, Roberto Mancini, and Ettore Scardecchia. «Vega Space
System». In: 8th European Conference for Aeronautics and Space Sciences
(EUCASS). 2019. doi: 10.13009/EUCASS2019-987 (cit. on pp. 7, 8).

[16] Stefano Gallucci and Roberto Mancini. «The AVUM Orbital Module for the
Space Rider System». In: Proceedings of the 8th European Conference for
Aeronautics and Space Sciences (EUCASS). 2019. doi: 10.13009/EUCASS20
19-0860 (cit. on pp. 7, 8).

[17] European Space Policy Institute. In-Orbit Services. Tech. rep. Accessed: 2025-
05-09. European Space Policy Institute, 2020. url: https://www.espi.or.
at/reports/in-orbit-services/ (cit. on pp. 8–10).

[18] Precedence Research. On-Orbit Satellite Servicing Market Size, Share and
Trends 2025 to 2034. https://www.precedenceresearch.com/satellite-
market. Accessed: 2025-05-09. 2025 (cit. on pp. 10–13).

[19] Rebecca Reesman and Andrew Rogers. Getting in Your Space: Learning
from Past Rendezvous and Proximity Operations. Tech. rep. OTR201800593.
Approved for public release; distribution unlimited. Center for Space Policy
and Strategy, The Aerospace Corporation, May 2018 (cit. on pp. 13, 14).

[20] Ron Ticker. Restore-L Mission Information: Spacecraft Bus Concepts to
Support the Asteroid Redirect Robotic Mission and In-Space Robotic Servicing.
PowerPoint presentation (PDF) via NASA Headquarters. accessed 2025-05-
16. 2015. url: https://www.nasa.gov/wp-content/uploads/2015/05/
restore-L-info_nnh15heomd001_r7.pdf (cit. on p. 13).

149

https://www.darpa.mil/research/programs/robotic-servicing-of-geosynchronous-satellites
https://www.darpa.mil/research/programs/robotic-servicing-of-geosynchronous-satellites
https://www.esa.int/Space_in_Member_States/Italy/ESA_costruisce_la_prima_missione_di_manutenzione_in_orbita_con_D-Orbit
https://www.esa.int/Space_in_Member_States/Italy/ESA_costruisce_la_prima_missione_di_manutenzione_in_orbita_con_D-Orbit
https://www.esa.int/Space_in_Member_States/Italy/ESA_costruisce_la_prima_missione_di_manutenzione_in_orbita_con_D-Orbit
https://doi.org/10.13009/EUCASS2019-987
https://doi.org/10.13009/EUCASS2019-0860
https://doi.org/10.13009/EUCASS2019-0860
https://www.espi.or.at/reports/in-orbit-services/
https://www.espi.or.at/reports/in-orbit-services/
https://www.precedenceresearch.com/satellite-market
https://www.precedenceresearch.com/satellite-market
https://www.nasa.gov/wp-content/uploads/2015/05/restore-L-info_nnh15heomd001_r7.pdf
https://www.nasa.gov/wp-content/uploads/2015/05/restore-L-info_nnh15heomd001_r7.pdf

BIBLIOGRAPHY

[21] Rich Burns, Craig A. McLaughlin, Jesse Leitner, and Maurice Martin. «Tech-
Sat 21: Formation Design, Control, and Simulation». In: Proceedings of the
IEEE Aerospace Conference. Air Force Research Laboratory, Space Vehicles
Directorate. Kirtland Air Force Base, NM, USA, 2000 (cit. on p. 13).

[22] Owen Brown and Paul Eremenko. The Value Proposition for Fractionated
Space Architectures. Tech. rep. Unpublished manuscript. Defense Advanced
Research Projects Agency and Booz Allen Hamilton, 2011 (cit. on p. 13).

[23] Christophe Bonnal, Jean-Marc Ruault, and Marie-Christine Desjean. «Active
debris removal: Recent progress and current trends». In: Acta Astronautica
85 (2013). Available online 16 January 2013, pp. 51–60. doi: 10.1016/j.
actaastro.2012.11.009 (cit. on p. 14).

[24] Elisa Capello. 01SRGMT – Dinamica e Controllo di Veicoli Spaziali. Lecture
notes, Politecnico di Torino. mailto:elisa.capello@polito.it. 2023–2024
(cit. on pp. 14, 15, 19, 22, 24, 39, 40, 42).

[25] Davide Celestini. «Navigation and Guidance Algorithms for In-Orbit servicing
Rendezvous Mission». Master thesis – supervisors: Prof.ssa E. Capello, Ing.
M. Saponara. MA thesis. Torino, Italia: Politecnico di Torino, Corso di Laurea
in Ingegneria Aerospaziale, Thales Alenia Space, 2021 (cit. on pp. 15, 24).

[26] Yazhong Luo, Jin Zhang, and Guojin Tang. «Survey of Orbital Dynamics
and Control of Space Rendezvous». In: Chinese Journal of Aeronautics 27.1
(2014). Available online 1 August 2013, pp. 1–11 (cit. on p. 16).

[27] Jr. Bryson Arthur E. and Yu–Chi Ho. Applied Optimal Control: Optimization,
Estimation and Control. New York, NY: Taylor & Francis, 1975. isbn: 0-
89116-228-3 (cit. on p. 16).

[28] Pontani M. Romano V. Corallo F. and Teofilatto P. Minimum-Fuel Orbit
Transfers Using Modified Equinoctial Elements via Indirect Heuristic Method.
Technical Report. Rome, Italy: Sapienza Università di Roma and Thales
Alenia Space Italia, 2019 (cit. on p. 16).

[29] Fei Ren, Ruichuan Li, Jikang Xu, and Chenyu Feng. «Indirect optimization
for finite-thrust orbit transfer and cooperative rendezvous using an initial
guess generator». In: Advances in Space Research 71 (2023), pp. 2575–2590.
doi: 10.1016/j.asr.2022.11.009. url: https://www.sciencedirect.
com/science/article/pii/S0273117722010328 (cit. on p. 17).

[30] Maozhang Zheng, Jianjun Luo, and Zhaohui Dang. «Optimal Impulsive
Rendezvous for Highly Elliptical Orbits Using Linear Primer Vector Theory».
In: Chinese Journal of Aeronautics 37.3 (2024), pp. 194–207. doi: 10.1016/
j.cja.2023.06.005 (cit. on p. 17).

150

https://doi.org/10.1016/j.actaastro.2012.11.009
https://doi.org/10.1016/j.actaastro.2012.11.009
mailto:elisa.capello@polito.it
https://doi.org/10.1016/j.asr.2022.11.009
https://www.sciencedirect.com/science/article/pii/S0273117722010328
https://www.sciencedirect.com/science/article/pii/S0273117722010328
https://doi.org/10.1016/j.cja.2023.06.005
https://doi.org/10.1016/j.cja.2023.06.005

BIBLIOGRAPHY

[31] John T. Betts. «Survey of Numerical Methods for Trajectory Optimization».
In: Journal of Guidance, Control, and Dynamics 21.2 (Mar. 1998), pp. 193–
207. doi: 10.2514/2.4231 (cit. on p. 18).

[32] Michael A. Patterson and Anil V. Rao. «GPOPS-II: A MATLAB Software for
Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaus-
sian Quadrature Collocation Methods and Sparse Nonlinear Programming».
In: ACM Transactions on Mathematical Software 39.3 (2013), pp. 1–41. doi:
10.1145/2484920.2484922 (cit. on p. 18).

[33] Danylo Malyuta, Taylor P. Reynolds, Michael Szmuk, Behcet Acikmese, and
Mehran Mesbahi. Fast Trajectory Optimization via Successive Convexifi-
cation for Spacecraft Rendezvous with Integer Constraints. arXiv preprint
arXiv:1906.04857. [math.OC]. 2019 (cit. on p. 18).

[34] Zhenbo Wang. «A survey on convex optimization for guidance and control of
vehicular systems». In: Annual Reviews in Control 57 (2024), p. 100957. doi:
10.1016/j.arcontrol.2024.100957. url: https://www.sciencedirect.
com/science/article/pii/S1367578823001082 (cit. on p. 18).

[35] John M. Hanson, M. Wade Shrader, and Craig A. Cruzen. «Ascent Guidance
Comparisons». In: Journal of the Astronautical Sciences 43.3 (July 1995).
NASA–TM–112493, pp. 307–326 (cit. on p. 19).

[36] Robert D. Braun, Zachary R. Putnam, Bradley A. Steinfeldt, and Michael J.
Grant. «Advances in Inertial Guidance Technology for Aerospace Systems».
In: Proceedings of the AIAA Guidance, Navigation, and Control (GNC)
Conference. Boston, MA, Aug. 2013 (cit. on p. 19).

[37] Robert D. Braun and Robert M. Manning. «Mars Exploration Entry, Descent,
and Landing Challenges». In: Journal of Spacecraft and Rockets 44.2 (Mar.
2007), pp. 310–323. doi: 10.2514/1.25116 (cit. on p. 20).

[38] Weilin Wang. «Cooperative augmented proportional navigation and guidance
for proximity to uncooperative space targets». In: Advances in Space Research
71.3 (2023), pp. 1594–1604. doi: 10.1016/j.asr.2022.09.026 (cit. on
p. 20).

[39] Leone Guarnaccia, Riccardo Bevilacqua, and Stefano P. Pastorelli. «Subopti-
mal LQR-based spacecraft full motion control: Theory and experimentation».
In: Acta Astronautica 122 (2016), pp. 114–136. doi: 10.1016/j.actaastro.
2016.01.016 (cit. on p. 21).

[40] Pedro A. Capó-Lugo and Peter M. Bainum. «Digital LQR control scheme
to maintain the separation distance of the NASA benchmark tetrahedron
constellation». In: Acta Astronautica 65.7–8 (2009), pp. 1058–1067. doi:
10.1016/j.actaastro.2009.02.008 (cit. on p. 22).

151

https://doi.org/10.2514/2.4231
https://doi.org/10.1145/2484920.2484922
https://doi.org/10.1016/j.arcontrol.2024.100957
https://www.sciencedirect.com/science/article/pii/S1367578823001082
https://www.sciencedirect.com/science/article/pii/S1367578823001082
https://doi.org/10.2514/1.25116
https://doi.org/10.1016/j.asr.2022.09.026
https://doi.org/10.1016/j.actaastro.2016.01.016
https://doi.org/10.1016/j.actaastro.2016.01.016
https://doi.org/10.1016/j.actaastro.2009.02.008

BIBLIOGRAPHY

[41] Peng Li and Zheng H. Zhu. «Model predictive control for spacecraft rendezvous
in elliptical orbit». In: Acta Astronautica 146 (2018), pp. 339–348. doi:
10.1016/j.actaastro.2018.03.025 (cit. on p. 22).

[42] Xiutao Gu, Liaoxue Liu, Lu Wang, Zhaobao Yu, and Yu Guo. «Energy-optimal
adaptive artificial potential field method for path planning of free-flying space
robots». In: Aerospace Science and Technology 143 (2024), p. 108935. doi:
10.1016/j.ast.2023.108935 (cit. on p. 23).

[43] Howard D. Curtis. Orbital Mechanics for Engineering Students. 3rd ed. Oxford,
UK: Elsevier Butterworth-Heinemann, 2013. isbn: 978-0-08-097747-8 (cit. on
pp. 24, 35–37, 43–47, 49, 50).

[44] Benjamin A. Stahl and Robert D. Braun. «Low-Thrust Trajectory Opti-
mization Tool to Assess Options for Near-Earth Asteroid Deflection». In:
AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Aug. 2008. doi:
10.2514/6.2008-6255. url: https://doi.org/10.2514/6.2008-6255
(cit. on p. 25).

[45] Davide Conte and David B. Spencer. «Targeting the Martian Moons via
Direct Insertion into Mars’ Orbit». In: AIAA/AAS Astrodynamic Specialist
Conference. Vail, CO, Aug. 2015 (cit. on p. 34).

[46] Walter Hohmann. The Attainability of Heavenly Bodies. NASA TT F-44.
Translation of “Die Erreichbarkeit der Himmelskörper,” R. Oldenbourg, Mu-
nich–Berlin, 1925. Washington, DC: National Aeronautics and Space Admin-
istration, 1960 (cit. on pp. 44, 105, 107).

[47] Mauro Pontani, Pradipto Ghosh, and Bruce A. Conway. «Particle Swarm
Optimization of Multiple-Burn Rendezvous Trajectories». In: Journal of
Guidance, Control, and Dynamics 35.4 (2012), pp. 1190–1203. doi: 10.2514/
1.55592 (cit. on pp. 52, 54, 65, 66, 68, 76, 77, 134).

[48] Thomas Bäck and Hans-Paul Schwefel. An Overview of Evolutionary Al-
gorithms for Parameter Optimization. Technical Report. P.O. Box 50 05 00,
D–4600 Dortmund 50, Germany: University of Dortmund, Department of
Computer Science, Chair of Systems Analysis, 1993 (cit. on pp. 52, 53).

[49] Riccardo Poli, James Kennedy, and Tim Blackwell. «Particle Swarm Optimiza-
tion: An Overview». In: Swarm Intelligence 1.1 (2007). Received: 19 December
2006 / Accepted: 10 May 2007, pp. 33–57. doi: 10.1007/s11721-007-0002-0
(cit. on p. 54).

[50] Yuhui Shi and Russell Eberhart. «A Modified Particle Swarm Optimizer».
In: Proceedings of the IEEE International Conference on Evolutionary Com-
putation (ICEC ’98). Part of the IEEE World Congress on Computational
Intelligence. Anchorage, AK, USA: IEEE, 1998, pp. 69–73 (cit. on p. 54).

152

https://doi.org/10.1016/j.actaastro.2018.03.025
https://doi.org/10.1016/j.ast.2023.108935
https://doi.org/10.2514/6.2008-6255
https://doi.org/10.2514/6.2008-6255
https://doi.org/10.2514/1.55592
https://doi.org/10.2514/1.55592
https://doi.org/10.1007/s11721-007-0002-0

BIBLIOGRAPHY

[51] Hana Rhim. How Does Particle Swarm Optimization Work? Baeldung. Re-
viewed by Grzegorz Piwowarek. May 2024. url: https://www.baeldung.
com/cs/pso (visited on 06/04/2025) (cit. on p. 56).

[52] Rainer Storn and Kenneth Price. Differential Evolution: A Simple and Ef-
ficient Adaptive Scheme for Global Optimization Over Continuous Spaces.
Technical Report TR-95-012. International Computer Science Institute, Mar.
1995 (cit. on pp. 56, 60).

[53] Swagatam Das and Ponnuthurai N. Suganthan. «Differential Evolution: A
Survey of the State-of-the-Art». In: IEEE Transactions on Evolutionary
Computation 15.1 (2011), pp. 4–31. doi: 10.1109/TEVC.2010.2059031 (cit.
on pp. 58, 59).

[54] Kenneth Price, Rainer Storn, and Janne Lampinen. Differential Evolution: A
Practical Approach to Global Optimization. Heidelberg: Springer, 2005. isbn:
978-3-540-21268-4 (cit. on p. 60).

[55] Nikolaus Hansen and Andreas Ostermeier. «Completely Derandomized Self-
Adaptation in Evolution Strategies». In: Evolutionary Computation 9.2 (2001),
pp. 159–195. doi: 10.1162/106365601750190398. url: https://direct.
mit.edu/evco/article/9/2/159/1355/Completely-Derandomized-Self-
Adaptation-in-Evolution (cit. on pp. 61, 74, 83).

[56] U. Tan, O. Rabaste, C. Adnet, and J.-P. Ovarlez. «On the Eclipsing Phe-
nomenon with Phase Codes». In: Transactions of the French Society for Signal
Processing 58.4 (2021), pp. 123–130. doi: 10.1007/s00034-021-02123-4.
url: https://link.springer.com/article/10.1007/s00034-021-02123-
4 (cit. on p. 64).

[57] Liqiang Hou and Arun Misra. «Traveling Salesman Problem of optimal debris
removal sequence using non-population gradient search». In: Acta Astronautica
215 (2024), pp. 373–386. doi: 10.1016/j.actaastro.2023.12.045 (cit. on
p. 86).

[58] Dario Izzo, Ingmar Getzner, Daniel Hennes, and Luís Felismino Simões.
«Evolving Solutions to TSP Variants for Active Space Debris Removal». In:
Proceedings of the 2015 Genetic and Evolutionary Computation Conference.
GECCO ’15. New York, NY, USA: ACM, 2015, pp. 1207–1214. isbn: 978-1-
4503-3472-3. doi: 10.1145/2739480.2754727 (cit. on p. 86).

[59] Agostino De Marco. Integrazione di sistemi di equazioni differenziali con
il metodo di Runge–Kutta. Appunti delle lezioni di Dinamica del Volo. Ing.
Agostino De Marco, agodemar@unina.it. Università degli Studi di Napoli
“Federico II”, Dipartimento di Progettazione Aeronautica, 2023 (cit. on p. 94).

[60] Lorenzo Casalino. Space Propulsion. Lecture notes, Politecnico di Torino.
mailto:lorenzo.casalino@polito.it. 2023–2024 (cit. on pp. 102, 109).

153

https://www.baeldung.com/cs/pso
https://www.baeldung.com/cs/pso
https://doi.org/10.1109/TEVC.2010.2059031
https://doi.org/10.1162/106365601750190398
https://direct.mit.edu/evco/article/9/2/159/1355/Completely-Derandomized-Self-Adaptation-in-Evolution
https://direct.mit.edu/evco/article/9/2/159/1355/Completely-Derandomized-Self-Adaptation-in-Evolution
https://direct.mit.edu/evco/article/9/2/159/1355/Completely-Derandomized-Self-Adaptation-in-Evolution
https://doi.org/10.1007/s00034-021-02123-4
https://link.springer.com/article/10.1007/s00034-021-02123-4
https://link.springer.com/article/10.1007/s00034-021-02123-4
https://doi.org/10.1016/j.actaastro.2023.12.045
https://doi.org/10.1145/2739480.2754727
mailto:lorenzo.casalino@polito.it

BIBLIOGRAPHY

[61] Jing Li. «Minimum-fuel two-impulse transfer between coplanar noncoaxial
elliptical orbits». In: Advances in Space Research 73.1 (Jan. 2024), pp. 143–
159. doi: 10.1016/j.asr.2023.10.008 (cit. on p. 103).

[62] Daniele Mortari, Matthew P. Wilkins, and Christian Bruccoleri. «On Sun-
Synchronous Orbits and Associated Constellations». In: Advances in the
Astronautical Sciences 154 (2015), pp. 1441–1458 (cit. on p. 113).

[63] GlobalSpec. Chapter 12: Relationships Between Swath Width, Footprint,
Integration Time, Sensitivity, Frequency, and Other Parameters for Satellite-
Borne, Real Aperture Imaging Systems. GlobalSpec Reference Library, “Mi-
crowave Radiometer Systems: Design and Analysis, Second Edition”. Retrieved
from https://www.globalspec.com/. 2006 (cit. on p. 113).

[64] Rocket Lab. Launch – Electron: Rutherford Engine. https://www.rocketlab
corp.com/launch/electron/. Accessed June 15, 2025. 2025 (cit. on p. 117).

[65] James R. Wertz and Wiley J. Larson. Space Mission Analysis and Design.
3rd. El Segundo, CA and Dordrecht, The Netherlands: Microcosm Press and
Kluwer Academic Publishers, 1999. isbn: 079236209X (cit. on p. 121).

154

https://doi.org/10.1016/j.asr.2023.10.008
https://www.rocketlabcorp.com/launch/electron/
https://www.rocketlabcorp.com/launch/electron/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	IOS hystorical review
	AVIO’s In-Orbit Services (IOS) Projects

	Classification
	Commercial interest
	Aging satellites impact
	End-User insights

	Rendezvous and proximity operations
	Definition
	RPO phases
	Trajectory and Rendezvous optimization in literature
	Guidance algorithms in literature

	Foundamentals of astrodynamics
	Overview of the laws
	Universal Law of Gravitation
	The N-Body Problem
	The Two‐Body Problem
	Constants of the motion
	Trajectory Equation
	Types of orbits
	Coordinate Systems
	Classical Orbital Parameters
	Orbital elements determination from r and v
	Determining r and v from orbital elements

	External disturbances
	Atmospheric Drag
	J2 Effect
	Gravity Gradient
	Magnetic Torque
	Solar Radiation

	Orbital manoeuvres
	Impulsive manoeuvres

	Evolutionary Algorithms
	Overview
	Particle Swarm Optimization
	Differential Evolution
	CMA-ES
	Algorithms performance evaluation
	Objective Function
	Case study 1 – Pontani 2D ``case b''
	Case study 2 – Pontani 3D ``case 3''
	Algorithm Selection

	Travelling Salesman Problem
	TSP formulation
	TSP logic implementation
	1st Scenario - TSP
	2nd Scenario - TSP

	3DOF Orbital Simulator
	Orbital Simulator overview
	RK4 numerical integrator
	Dynamic model
	Guidance algorithm
	Flowchart of the GNC algorithm

	Auxiliary functions

	Simulations results
	Test case i
	Test case ii
	Test case iii
	Test case iv
	Test case v
	Test case vi
	Test case vii
	Test case viii

	Conclusions and future improvements
	Objective function
	Travelling Salesman Problem (1)
	GNC algorithm
	1st Burn logic
	Guidance code

	Bibliography

