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Abstract 

Ensuring defect-free additive manufacturing (AM) parts is essential for reliable performance 

in safety-critical applications. To minimize defects, process-parameter optimization is required. 

In this study, we first develop a machine-learning model that predicts optimal L-PBF settings—

namely laser power, hatch distance, and scanning speed—using relative-density results from a 

structured experimental design. Recognizing that conventional non-destructive evaluation via 

computed tomography is both time-consuming and expensive, we next propose a rapid, cost-

effective inspection method based on vibration and modal analysis. Frequency-response 

features are extracted from printed specimens and used to train a second machine-learning 

classifier, enhancing defect-detection accuracy. The combined framework—parameter-

optimization modelling followed by vibration-based NDE—demonstrates significant 

reductions in both build defects and inspection time, offering a scalable pathway toward real-

time quality assurance in AM processes. 

Keywords: Additive Manufacturing (AM), Laser Powder Bed Fusion (LPBF), Process 

Parameter Optimization, Machine Learning, Relative Density, Vibration Analysis, Modal 

Analysis, Non‐Destructive Evaluation (NDE), Computed Tomography (CT) Alternatives, 

Quality Assurance 

  



Enhancing AM Quality through Vibration Analysis and Machine Learning 4 

Contents 

Acknowledgments.......................................................................................................... 2 

Abstract .......................................................................................................................... 3 

Introduction .................................................................................................................. 12 

Additive Manufacturing ........................................................................................... 14 

Metal Additive Manufacturing ................................................................................. 15 

Definition ............................................................................................................. 16 

Defects in Metal Additive Manufacturing ............................................................... 22 

Process Parameters ............................................................................................... 24 

Optimizing Process Parameters ............................................................................... 35 

Design of Experiment (DoE) ............................................................................... 36 

Non-Destructive Testing (NDT) in Metal Additive Manufacturing ........................ 39 

Acoustical Emission Testing (AE) ....................................................................... 39 

Eddy Current Testing (ET) ................................................................................... 40 

Infrared Thermographic Testing (TT) .................................................................. 42 

Magnetic Testing (MT) ........................................................................................ 43 

Penetrant Testing (PT) ......................................................................................... 43 

Radiographic and Computed Tomography (RT & CT) ........................................ 44 

Ultrasonic Testing (UT) ....................................................................................... 45 

Modal Analysis as a Non-Destructive Evaluation Tool in Metal AM ..................... 46 

Non-destructive evaluation: machine learning approaches ................................. 50 

Materials and Methods ................................................................................................. 53 

Sample Modeling ..................................................................................................... 53 

Design of experiment ............................................................................................... 53 

Samples Manufacturing ....................................................................................... 57 

Cutting Machine ................................................................................................... 59 



Enhancing AM Quality through Vibration Analysis and Machine Learning 5 

Archimedes density .............................................................................................. 61 

X-Ray Computed Tomography ............................................................................ 62 

Optical Microscopy .............................................................................................. 64 

Evaluation of ML algorithms ............................................................................... 64 

Calliper ................................................................................................................. 65 

Instruments used for modal analysis .................................................................... 66 

Results and Discussion ................................................................................................ 71 

Part 1: Optimizing process parameters .................................................................... 72 

First Modeling Attempt: Ridge Regression with Nested CV and Grid Search ........ 78 

Nested Cross‐Validation ....................................................................................... 78 

Hyperparameter Tuning with Grid Search ........................................................... 79 

First‐Attempt’s Results ........................................................................................ 80 

Refinement via Polynomial Expansion .................................................................... 80 

Choosing the Final Polynomial Degree ............................................................... 81 

Correlations maps ................................................................................................ 83 

Part 2: Classification based on modal analysis ........................................................ 85 

FFT Results .......................................................................................................... 85 

Simulation in Ansys WorkBench to show FRF – RD relation ............................. 85 

Machine learning classifier .................................................................................. 87 

Discussion and Conclusions ........................................................................................ 93 

Predictive Regression of Relative Density .............................................................. 93 

Summary of Results ............................................................................................. 93 

Limitations & Future Directions .............................................................................. 93 

Classification via FRF & Modal Analysis ............................................................... 94 

Summary of Results ................................................................................................. 94 

Limitations & Future Directions .............................................................................. 95 



Enhancing AM Quality through Vibration Analysis and Machine Learning 6 

Overall Conclusions ................................................................................................. 95 

References .................................................................................................................... 97 

 

  



Enhancing AM Quality through Vibration Analysis and Machine Learning 7 

Figure 1 Different AM processes(Segovia Ramírez et al., 2023a) .......................................... 15 

Figure 2 An example of a typical MAM process workflow.(Armstrong et al., 2022) ............. 16 

Figure 3(a) Schematic of a typical DED machine (b) Typical powder DED fusion mechanism 

with melt pool and heat-affected zone schematic.(Armstrong et al., 2022) ............................ 16 

Figure 4 (a) Schematic of a typical BJ machine (b) BJ print head. (Armstrong et al., 2022) . 17 

Figure 5 Schematic of binder droplet morphology. (Armstrong et al., 2022) ......................... 18 

Figure 6(a) Schematic of a ME machine (b) Schematic of a typical ME print head 

mechanism.(Armstrong et al., 2022) ........................................................................................ 19 

Figure 7Schematic of feedstock morphology - (a) as printed, (b) debinding - thermal 

decomposition of the core binder component, (c) brown part – following the debinding process, 

(d) early-stage sintering – thermal decomposition of the residual backbone (e) sintered – 

thermal densification of metal powder particles. (Gonzalez-Gutierrez et al., 2018) ............... 20 

Figure 8 Schematic of a typical PBF machine.(Armstrong et al., 2022) ................................. 21 

Figure 9 Scanning electron microscope micrographs of Ti-6Al-4 V samples fabricated by SLM; 

(a) the top surface with a powder layer thickness of 60 µm; (b) Open pores; (c) Cave-like pores. 

Fig. 4 Alt Text: This graph shows the image acquired with microscope about AM samples, 

providing details about porosities included in the material. (Qiu et al., 2015) ........................ 22 

Figure 10 Some of the typical failures found at AM. Fig. 5 Alt Text: Different failures are 

characterized in the same component to show the typical distribution of this failures. Unfused 

and trapped powder are usually developed in the interior part of the component. Cracks can be 

internal or external and its size and shape depends on several factors. Inclusions or porosity 

have a relevant influence on the final characteristics of the AM component, and they must be 

detected with advanced techniques. (Kim et al., 2017) ........................................................... 24 

Figure 11 Relationship between process parameters, structure and properties in L-PBF process. 

(Ahmed et al., 2022) ................................................................................................................ 25 

Figure 12 Illustration of process parameters for study in L-PBF process. (Ahmed et al., 2022)

.................................................................................................................................................. 25 

Figure 13 (a) Effect of various laser energy density values on resulting densification (data 

adapted from (Yakout et al., 2019)), (b) Fractography of SS 316L samples produced at laser 

energy density value of (i) Lower value of 41.7 J/mm3 results in “brittle fracture” due to 



Enhancing AM Quality through Vibration Analysis and Machine Learning 8 

presence of voids (ii) 62.5 J/mm3 results in “brittle-ductile” fracture due to less voids present 

(iii) 156.3 J/mm3 results in “ductile” failure due to vaporization of powder (Ahmed et al., 2022)

.................................................................................................................................................. 27 

Figure 14 Ranges of energy densities and corresponding densification values collected from 

various literature for SS316L specimens(Ahmed et al., 2022) ................................................ 29 

Figure 15 SEM images of higher porosity defects due to lacks-of-fusion observed using energy 

density value of 50 J/mm3 (left) compared with minimal defects with higher energy density 

value of 80 J/mm3 (right)(Tucho et al., 2018) ......................................................................... 30 

Figure 16 (a) Combination of power and scan spacing, (b) combination of power and scan 

speed used for achieving high densification (Miranda et al., 2016) ........................................ 31 

Figure 17 Influence of scanning speed on densification for different layer thicknesses(Kruth et 

al., 2010b) ................................................................................................................................ 32 

Figure 18 Illustration of different laser scanning strategies used for attaining densification (a) 

Inter-layer staggered strategy (b) Stripe and contour strategy (c) Different laser scanning 

strategies (d) Checkered Island strategy. (Ahmed et al., 2022) ............................................... 33 

Figure 19. Exemplification of DoE of three parameters with two levels each. ....................... 36 

Figure 20 Examples of the (a) factorial and (b) RSM adjustments obtained by the DoE 

methodology.(Pereira et al., 2023) ........................................................................................... 37 

Figure 21 (a) AT procedure for internal fault detection; (b) Transducer placement on Ti-6Al4 

V AM plate (left), average filtered power spectrum of the transducer taken in the passband for 

each of the five scenarios (right) (Segovia Ramírez et al., 2023a) .......................................... 40 

Figure 22 ET condition monitoring process; (a) Diagram for the measurement process. (b) Gas-

atomized AM component for ET and ET amplitude image of one layer (Ehlers et al., 2022) 41 

Figure 23 (a) Thermal image about showing crack location. (b) Thermogram of AM material 

(Mireles et al., 2015; Shi et al., 2021) ...................................................................................... 42 

Figure 24  (a) Diagram of MT. (b) AM components and simulation of magnetic field lines 

(Segovia Ramírez et al., 2023b) ............................................................................................... 43 

Figure 25 Diagram of PT.(Segovia Ramírez et al., 2023b) ..................................................... 44 

Figure 26 (a) CT procedure. (b) AM manufactured components in Ni-Mn-Ga alloy and 

reconstruction of CT images to detect porosity and inclusions (Ituarte et al., 2022) .............. 45 



Enhancing AM Quality through Vibration Analysis and Machine Learning 9 

Figure 27 (a) Diagram about ultrasonic configuration to detect cracks with UT. (b) Real Ti-

6Al4 V AM component for the tests and results of the UT (Yu et al., 2020) ........................... 46 

Figure 28 Photograph of modal test setup and representative FRF (West et al., 2017) ........... 47 

Figure 29 Natural frequency of first three modes of a beam as function of hatch spacing, with 

associated modes as insets.(West et al., 2017) ......................................................................... 48 

Figure 30 Yield strength and ultimate strength of a beam as functions of first mode natural 

frequency.(West et al., 2017) ................................................................................................... 49 

Figure 31  Nominal dimension of the cubic samples ............................................................... 53 

Figure 32 Schematic of VED trend to print each sample (Red: failed during printing) .......... 57 

Figure 33 Prima Additive Print Sharp 250 ............................................................................... 58 

Figure 34 Key components of the WEDM machine: Section 1 (software controls), Section 2 

(coordinate display), and Section 3 (cutting area). .................................................................. 60 

Figure 35 The illustration of the measurement setup for Archimedes density is 1) a position for 

measuring the dry and wet weight, 2) place for measuring the immersion weight, and 3) a 

digital display for showing the weight values. ......................................................................... 62 

Figure 36 Three different beam XCT schematics. The fan beam image shows a curved detector, 

whereas the cone beam image shows a flat panel detector. All of these schematics can be 

employed in each case. ............................................................................................................ 63 

Figure 37 The software interface checks and alters the sample's position during tomography 

analysis to keep it in the X-ray imaging frame. ....................................................................... 64 

Figure 38 Dimensional accuracy test by calliper and visual imperfections examination ........ 66 

Figure 39 Signal generator ....................................................................................................... 66 

Figure 40 Piezoelectric sensor/actuator ................................................................................... 67 

Figure 41 PicoScope and signal generator connected input/outputs ....................................... 68 

Figure 42 Horizontal setup for rectangular samples ................................................................ 69 

Figure 43 Left: Vertical setup Middle and Right: V-shaped setup ........................................... 69 

Figure 44 Final Setup ............................................................................................................... 70 

Figure 45 Residual Plots for Relative Density ......................................................................... 75 



Enhancing AM Quality through Vibration Analysis and Machine Learning 10 

Figure 46 Main effects plot for RD .......................................................................................... 76 

Figure 47 Power distribution ................................................................................................... 76 

Figure 48 Hatch Distance distribution ..................................................................................... 77 

Figure 49 Scan Speed distribution ........................................................................................... 77 

Figure 50 Relative Density distribution ................................................................................... 77 

Figure 51 Visualization of how 5 fold cross validation works, red zone showing the selected 

validation fold at each step ...................................................................................................... 79 

Figure 52 Predicted vs. Acutal RD .......................................................................................... 82 

Figure 53 Surface Plots of Predicted RD Across Power and Speed for Varying Hatch Distances

.................................................................................................................................................. 83 

Figure 54 a schematic of collected FFT lines from the experiment ........................................ 85 

Figure 55 Variation in the frequency response by changes in the RD of the sample: Top: 

RD=1.00, middle RD=0.99, Bottom: RD=0.95 ....................................................................... 86 

Figure 56 Evaluating the effect of Geometry (Height) on FRF ............................................... 87 

Figure 57 Accuracy (solid lines) and number of 5 kHz bins (dashed) vs. stability threshold. 89 

Figure 58 Per-fold feature-selection highlights compared for 2 samples of class 0 vs 2 samples 

of class 1 to show the most important peak regions ................................................................ 90 

Figure 59 number of features selected by final models ........................................................... 91 

Figure 60 (Top) Confusion matrices aggregated over 5-fold CV. ............................................ 92 

  



Enhancing AM Quality through Vibration Analysis and Machine Learning 11 

Table 1 Process parameters used to print each  samples .......................................................... 54 

Table 2 DOE: Selection of process parameters used to print the samples ............................... 57 

Table 3 The technical parameters of the PrintSharp 250 ......................................................... 58 

Table 4 ANOVA results: main effects and interactions. ........................................................... 74 

Table 5 Nested CV performance of the degree-2 Ridge model on relative density ................. 80 

Table 6 Impact of polynomial feature expansion (nested CV results). * Degree was chosen per-

fold via inner–loop tuning over {1,2,3,4} ................................................................................ 80 

Table 7 Frequency of best d across folds. ................................................................................ 81 

Table 8 Nested CV comparison of surrogate models. .............................................................. 81 

Table 9 Hyperparameters chosen in each outer fold ................................................................ 88 

Table 10 Selected hyper parameters for each model................................................................ 90 

Table 11 Final cross-validated performance on stability-selected feature sets ........................ 91 

 

 

  



Enhancing AM Quality through Vibration Analysis and Machine Learning 12 

 

Introduction 

AM has provided a significant transformation in the manufacturing process of metal 

components. This method enables the manufacture of complicated geometries with excellent 

accuracy. Targeted changes in the manufacturing process also enable it to produce localized 

changes in microstructure and characteristics. Notwithstanding the great work done by people 

throughout the years that has led to the commercialization of metal AM technologies (Johnson 

et al., 2020), the ongoing challenge of producing consistent and high-quality results for 

different applications remains. Primarily, direct metal AM methods fall into two primary 

technology categories: PBF and DED. Academic studies and industrial uses have increasingly 

highlighted these two direct AM techniques, which therefore draw main attention. While PBF 

adds small layers of powder after each fusion phase, DED supplies material via a moving 

nozzle. Both techniques call for melting the material using a heat source as a laser or electron 

beam (DebRoy et al., 2018; Milewski, n.d.). Extensive studies have been done lately to improve 

the efficiency of AM procedures. Using artificial intelligence (AI) is among the most powerful 

ways to raise AM performance. AI technologies like ML, automation, robotics, machine vision, 

data mining, large data analysis, and expert systems have shown their effectiveness in 

manufacturing(Sarker, 2022). ML is a potent instrument for raising the quality and efficiency 

of metal AM (J. Liu et al., 2023). Particularly when fundamental physical ideas are not well 

understood but data on process variables, alloy qualities, and product traits are available, it can 

also be rather important in improving the quality of printed components (Qi et al., 2019). 

Eventually improving the quality, integrating ML with AM can find faults early, cut waste, 

maximize input and output properties, and increase speed and accuracy (Gupta et al., 2022). 

ML techniques have attracted much attention for their outstanding performance in several data-

related activities, including regression, classification, and clustering. Based on the degree and 

kind of supervision required during the training process, these methods fall under supervised, 

unsupervised, semi-supervised, and reinforcement learning. Combining these potent ML 

technologies offers a thrilling chance to transform manufacturing processes, address issues, 

and maximize resource use. Establishing a link called Process-Structure-Property (PSP) 

becomes possible by thinking of the parameters of the AM process and the material properties, 

component shape, and microstructural traits as inputs for ML algorithms. Among data—

including optimizing processing parameters and property prediction, cost estimate, defect 

identification, in-situ monitoring, and regulating geometric deviation—various linkages and 
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correlations may be seen(Meng et al., 2020). Therefore, this dissertation will thoroughly 

examine the uses of ML in a laser-based AM technology, L-PBF. The papers under discussion 

in the framework of this review text offer an all-encompassing perspective of ML applications 

in AM. It is interesting to highlight, nonetheless, that the number of articles concentrating on 

ML broad applications in AM (Meng et al., 2020; C. Wang et al., 2020) is significantly greater 

than those that directly discuss L-PBF (Pandiyan et al., 2021; Yuan et al., 2018) which tend to 

be less common in the literature. The selective analysis method in this chapter has two key 

justifications. Focusing on ML in L-PBF helps one first to a deeper and more thorough 

knowledge of its practical uses. This method allows one to investigate the particular difficulties 

and obstacles linked to L-PBF that would be ignored in more general research. Focusing on 

this part helps to avoid subsequent generalization issues. This method allows for the handling 

of practical issues and the presentation of creative ideas. Promising non-destructive testing 

(NDT) method for assessing the integrity of metal parts generated by Laser Powder Bed Fusion 

(L-PBF) and associated powder-bed fusion technologies including Selective Laser Melting 

(SLM) is modal analysis. Modal analysis provides a more scalable and affordable substitute 

than traditional NDT techniques such as X-ray Computed Tomography (CT), which although 

accurate are time-consuming and expensive. This approach depends on the identification of a 

component's inherent sensitivity to changes in mass distribution, stiffness, and boundary 

conditions—that is, natural frequencies and related mode shapes. Defects include porosity, 

unmelted powder, and delamination directly influence the local stiffness and density of AM 

parts, therefore they cause appreciable changes in the dynamic response of the component. 

Recent studies have shown that modal properties can be consistently connected to variations in 

process parameters that change the thermal history of the part during fabrication—affecting 

crystallization patterns, grain morphology, and finally mechanical properties including yield 

strength and ultimate tensile strength. Especially in small-lot manufacturing characteristic of 

aerospace and biomedical AM applications, the great sensitivity of modal analysis to these 

variations makes it appropriate not only for defect detection but also for mechanical property 

prediction. Moreover, its fit with machine learning methods improves its possibilities for digital 

twin uses and real-time quality control. Thus, modal analysis provides a convincing 

compromise between accuracy and pragmatism, allowing scalable in-situ or ex-situ inspection 

techniques—essential for the certification and dependability of AM parts (West et al., 2017) 

 

 

Ramin Moradi
Vibration add beshe
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Additive Manufacturing 

Metallic components are capable of being produced through direct metal additive 

manufacturing immediately following their design in a singular processing step (Sutton & 

Barto, n.d.).  In the additive manufacturing process, intricate shape components are constructed 

layer by layer in accordance with a digital design.  This unique feature enables the direct 

production of complex shape components from the design, thereby removing the necessity for 

expensive tooling or shaping tools such as punches, dies, or casting molds, and reducing the 

number of conventional processing stages (Milewski, n.d.).  Manufactured metallic 

components are employed across multiple sectors, such as healthcare, energy, automotive, 

marine, and consumer products (DebRoy et al., 2019).  Components of this nature encompass 

metal implants tailored for individual patients (Bose et al., 2018), turbine blades featuring 

cooling channels (Shinde & Ashtankar, 2017), manifolds utilized in engines and turbines, as 

well as lattice structures and truss networks optimized for enhanced strength-to-weight ratios 

(Xue et al., 2020).  

 ASTM F42 classifies additive manufacturing processes into seven distinct categories: 

Vat Photopolymerization (VP), Material Extrusion (ME), Material Jetting (MJ), Binder Jetting 

(BJ), Powder Bed Fusion (PBF), Directed Energy Deposition (DED), and Sheet Lamination 

(SL) (ISO/TC 261 & ASTM- Komitee F42, 2021). The PBF and DED methods are 

distinguished by their feedstock types, which can be either powder or wire, as well as the heat 

sources utilized, including laser, electron beam, plasma arc, or gas metal arc.  Electron beam 

processes occur within a vacuum or low-pressure inert gas environment, facilitating the 

utilization of reactive metals.  Conversely, certain heat sources necessitate the shielding of 

components with an inert gas (DebRoy et al., 2018).  Certain additive manufacturing processes, 

referred to as indirect metal additive manufacturing processes, are capable of consolidating 

metallic materials in the form of thin sheets and ribbons through ultrasonic methods, all while 

avoiding the melting of the feedstock material.  Alloy powders may be fused through the 

application of a binder jetted onto a powder bed, followed by sintering in a high-temperature 

furnace (Milewski, n.d.). 
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Figure 1 Different AM processes(Segovia Ramírez et al., 2023a) 

Metal Additive Manufacturing 

Metal additive manufacturing is divided into 4 categories(Armstrong et al., 2022): 

1. Powder Bed Fusion 

2. Binder Jetting 

3. Directed Energy Deposition 

4. Material extrusion 
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Figure 2 An example of a typical MAM process workflow.(Armstrong et al., 2022) 

Definition 

DED  

DED is gaining popularity due to its mechanical properties, which are comparable to 

those of conventional manufacturing techniques. DED is an additive manufacturing technique 

that employs concentrated thermal energy to melt and deposit materials, thereby constructing 

solid three-dimensional (3D) structures in a layer-by-layer fashion (Q. Wang et al., 2017). This 

additive manufacturing method is more efficient and economical compared to subtractive 

manufacturing, enabling the production of complex components with reduced material waste. 

Additionally, DED demonstrates significant effectiveness in repair and remanufacturing 

applications (Z. Liu et al., 2016). DED can be categorized into two types according to the 

feedstock utilized: wire feed DED and powder feed DED, as illustrated in Fig. 2. In the powder 

feed system, material melts during deposition, whereas in the wire feed system, a laser or arc 

fuses the wire onto the substrate. The energy source is localized, depositing the feedstock onto 

the preceding layer or the substrate for the initial layer concurrently. This procedure entails the 

formation of a molten pool through the melting of both the raw material and the underlying 

layer. The deposition layer is formed as the substance cools down (Dass & Moridi, 2019). 

 

Figure 3(a) Schematic of a typical DED machine (b) Typical powder DED fusion mechanism with 
melt pool and heat-affected zone schematic.(Armstrong et al., 2022) 

Though at a relatively lower production speed, powder feed DED offers greater surface 

quality than wire feed DED. Though it has significant benefits over other metal AM 

technologies, DED still struggles to provide preferred surface qualities and reduce porosity and 

fractures in the created components (Khanzadeh et al., 2019). Several factors, including trapped 

gas, inadequate fusion, rapid solidification, and poor powder melting, can cause microstructural 

flaws(Thompson et al., 2015). One major difficulty of the DED method is the large difference 
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in the quality of generated parts. Several factors, including process parameters, laser-material 

interactions, and defect generation, govern this variability. Though large-scale modeling or 

testing can improve production quality, these methods are regarded costly and time-consuming. 

Another way to maximize the quality of DED components is by in-situ monitoring. The 

enclosed chambers and high melt pool temperatures, which can reach 2000-3000 °C (Era et al., 

2023), make this method quite difficult, though. Wire-based DED is a technology like to 

conventional welding that uses high power to generate thick layers at high deposition rates, 

hence enabling the affordable manufacture of big components. Parts made using this method, 

then, often need machining because of notable surface waviness brought on by the creation of 

massive molten pools (DebRoy et al., 2018). 

 

Binder Jetting 

BJ works much like printing ink onto paper. Instead of printing in two dimensions (x, 

y), the technique uses the third dimension (z) to generate a solid component when metal powder 

particles stick together using a liquid binder. Usually at ambient temperature(Mirzababaei & 

Pasebani, 2019), printing helps to remove thermally generated flaws including unwanted grain 

development and distortion natural with other heat source-reliant MAM methods (Atapour et 

al., 2020). Furthermore, the surrounding metal powder acts as a transient surrogate support 

framework. Therefore, no support structures are required, which results in less waste (Ziaee & 

Crane, 2019). Initially, a fine layer of loose metallic powder fed from a powder hopper is 

deposited onto a build platform using a re-coater, producing a typical LT of 50–200 µm. Then, 

using the inkjet printer depicted in Figure 4 (b), moving in the x- and y-direction, liquid binder 

droplets are selectively deposited onto the current powder indicated in Figure 5(a).  

 

Figure 4 (a) Schematic of a typical BJ machine (b) BJ print head. (Armstrong et al., 2022) 
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Capillary pressure's influence, together with to a lesser degree gravitational forces, 

pushes every binder droplet to penetrate and flow into the gaps between the metal powder 

particles (Figure 5(c)), hence producing a uniform distribution (Figure 5(d)) (Miyanaji et al., 

2017).  

The mechanical strength, surface finish, and tolerance of green components are determined by 

this binder distribution vs powder, called the binder saturation level (BSL), whereby the BSL 

parameter depends on the inkjet print head capacity (Lores et al., 2019). To dry and cure the 

binder, a heated or UV lamp then passes over the first layer; Figure 5 depicts this sequence. 

 

Figure 5 Schematic of binder droplet morphology. (Armstrong et al., 2022) 

Material Extrusion 

ME is defined by the material extrusion forming a 3D component. Unlike other MAM 

processes that use loose metal powder, ME machines consume a flexible feedstock akin to 

MIM media made of metallic powders bound in a polymer matrix that acts as the binding 

system producing a safer feedstock (Gonzalez-Gutierrez et al., 2018). A typical ME machine 

shown in Fig. 2 (a) will extrude the bound powder in addition to ceramic release material stored 

on a separate spool in a heated chamber. Using the heated print head (Fig. 2 (b)), the feedstock 

is heated to a temperature over the melting point of the polymer binders, extruding the softened 

material onto a build plate that has been heated. Extruding material in distinct layers equidistant 

to the preceding layer, the build plate moves on the vertical z-axis; concurrently, the print head 

linked to a gantry system moves in the perpendicular (x, y) plane to create the shape of the part.  

Ceramic release material is applied at the same time between the component and any 

overhanging support structures and the build plate, permitting easy separation after printing. 

Extruding material layer upon layer tends to produce anisotropy that can be induced by the 

formation of voids (Fig. 3 (a)) or 'air gaps' between each deposit that can compromise the 

adhesion between each layer (Carroll et al., 2015; Kok et al., 2018). Therefore, the weakest 
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perpendicular to the plane of material deposition is the strength of the bond and, to more extent, 

the metal part (Unger et al., 2018). The nozzle's circular profile causes ME to also create 

components with average surface finishes when the bonded powder is compressed and 

distorted into a quasi-elliptical shape against the prior layer, shown in Fig. 3 (b).  

ME components so naturally have undulating side profiles and notches between layers that 

generate unwanted stress concentrations. Therefore, machining after processing is 

recommended.  

 

Figure 6(a) Schematic of a ME machine (b) Schematic of a typical ME print head 
mechanism.(Armstrong et al., 2022) 
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Figure 7Schematic of feedstock morphology - (a) as printed, (b) debinding - thermal decomposition of 
the core binder component, (c) brown part – following the debinding process, (d) early-stage 

sintering – thermal decomposition of the residual backbone (e) sintered – thermal densification of 
metal powder particles. (Gonzalez-Gutierrez et al., 2018) 

PBF 

Laser Powder Bed Fusion as a part of PBF Process is the main focus on this thesis. 

Because of its improved capacity to produce metallic and non-metallic components with 

exceptional accuracy, PBF is generally acknowledged as the main AM technique. Furthermore, 

PBF might enable free-form production and generate homogenous alloy components with great 

strength, thereby providing several benefits (Rahmati, 2014). Unlike DED, which employs a 

laser, electron beam, or arc heat source to melt the feedstock, PBF adds small layers of powder 

after melting the last one. PBF, on the other hand, has some restrictions regarding bed or box 

size that prevent it from manufacturing big parts (DebRoy et al., 2018; Elmer et al., 2019; 

Milewski, n.d.). A subset of PBF, L-PBF uses laser technology particularly for AM. The use of 

laser, which offers great accuracy and control during the process, is the key difference between 

L-PBF and other AM methods. As they have various operating concepts that much separate 

them, this part looks at L-PBF and EB-PBF techniques. Particularly in L-PBF, powdered 

material is heated, directly liquefied, and then solidified to create solid components. To 
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guarantee great accuracy in manufacturing these components, laser and electron beams are the 

main heat sources. 

 

Figure 8 Schematic of a typical PBF machine.(Armstrong et al., 2022) 

Using a re-coater blade or roller (Fig. 3), the process advances by covering the prior 

layer with the following layer of powder from a pre-deposited powder combination. The 

powder bed's unmelted particles serve as structural supports for the created components. The 

construction platform lowers following the melting and solidification of a layer of powder, 

letting a fresh layer spread and melt on top of the last one. Thermal rates in L-PBF might vary 

from 103 to 10 (K/s) (Gu & Shen, 2009). Though it needs support structures, this approach is 

quite effective at generating complicated shapes with different materials. L-PBF is a very 

efficient method for manufacturing gradient structures with complex topologies with respect 

to large-scale production of gradient-structured metals and alloys.  

There are still challenges to be addressed, though, including a low degree of densification under 

specific circumstances throughout the process and the tendency for gradient structures to show 

significantly larger grain sizes, often exceeding 100 nm. Optimizing parameters including 

power density, powder flow rate, scanning speed, and hatch spacing for every alloy is 

absolutely vital if one is to meet these difficulties (Song et al., 2024).  

Using metallic powders in L-PBF presents significant difficulty in finding the suitable process 

parameter map to produce parts with outstanding microstructure and mechanical properties. 

Some studies have so focused on LPBF process parameter optimization. These studies fall into 
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three main categories: laser-related, powder-related, and powder-bed-related traits (Abd-

Elaziem et al., 2022). 

Defects in Metal Additive Manufacturing 

Variations in manufacturing parameters—such as laser power, powder shape, layer 

thickness, and scanning strategy—as well as the initial properties of the feedstock material—

as shown in Fig. 5—have the main effects on the generation of defects and the resulting 

microstructural characteristics in metal additive manufacturing (AM). Based on Taheri's [15] 

taxonomy, this section lists the most important forms of defects. 

 

Porosity 

 In general, one of the most often occurring flaws in sintering and melting-based AM 

techniques is porosity. Usually resulting from inadequate melting or entrapped gasses, it shows 

as gaps or areas missing material and is especially important in structural components since it 

reduces mechanical performance (see Figure 9). Usually existing between layers, these flaws 

could comprise non-melted powder particles ranging from 5–20 µm. 

 

Figure 9 Scanning electron microscope micrographs of Ti-6Al-4 V samples fabricated by SLM; (a) 
the top surface with a powder layer thickness of 60 µm; (b) Open pores; (c) Cave-like pores. Fig. 4 

Alt Text: This graph shows the image acquired with microscope about AM samples, providing details 
about porosities included in the material. (Qiu et al., 2015) 

 

Production of porosity is intimately correlated with processing conditions and properties of 

beginning powder. While macroscopic porosity can be classified into gas-induced porosity and 

lack of fusion (LOF), micropores smaller than the powder grain size are commonly associated 

to entrapped gas within powder particles. 
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Because their smaller particle size calls for more energy input to reach complete melting, gas-

atomized powders often show better porosity levels. Low interlayer bonding resulting from 

inadequate energy density during printing can cause holes and LOF faults. Variations in powder 

form, particle distribution, substrate conditions, and processing laser beam defocusing can also 

cause LOF. 

 

Inclusions 

Mechanical characteristics of AM components are substantially influenced by 

purposeful or inadvertent inclusion. Usually distributed at modest sizes (~200 µm), intentional 

inclusions like reinforcing particles help to improve particular mechanical properties without 

generating stress concentrations. On the other hand, inadvertent inclusions might result from 

feedstock or process-induced discontinuities, which would produce oxide residues ranging 

from 0.5 µm to 1 mm. For ductility and fatigue strength especially, such inclusions are 

detrimental. Reliable identification and quantification of these internal nature flaws call for 

sophisticated NDT methods. 

 

Cracks 

Usually resulting from residual stresses over the yield strength of the material, cracks 

are discontinuities inside the part structure. They can start from thermal gradients created 

during layer-by- layer fusion or from cooling. Stress concentrators that help to start and 

propagate cracks can be poor bonding between neighboring powder layers, geometric 

imperfections, inclusions, or unmelted particles. Inappropriate energy input, scan approach, or 

thermal control can increase the likelihood of cracking. 

 

Defects in powder materials and unfused powder 

Integrity of AM components is significantly influenced by the quality of the feeding 

powder. Manufacturing defects in powder manufacture and the presence of contaminants might 

provide voids or inclusions, therefore compromising part quality. Smaller powder particles may 

present safety concerns during handling even if they can increase packing density and lower 

flaws. Unfused powder—which stays unmelted during processing—may become caught inside 

the part and complicate traditional detection techniques. Furthermore offering a clue of possible 

powder bed contamination is the existence of unfused powder. 
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Figure 10 Some of the typical failures found at AM. Fig. 5 Alt Text: Different failures are 
characterized in the same component to show the typical distribution of this failures. Unfused and 

trapped powder are usually developed in the interior part of the component. Cracks can be internal or 
external and its size and shape depends on several factors. Inclusions or porosity have a relevant 

influence on the final characteristics of the AM component, and they must be detected with advanced 
techniques. (Kim et al., 2017) 

Process Parameters 

In metal additive manufacturing (AM), the choice of suitable process parameters is 

essential since it directly affects the microstructure and fault development of the produced 

printed item. Mostly involving expensive trial-and-error experiments and computationally 

demanding mechanistic simulations, research efforts over the past decade have been focused 

on determining "optimal" processing regimes for diverse materials to ensure defect-free 

manufacture. The microstructure of the AM part is affected by the thermal history of the AM 

process, which hence influences its mechanical characteristics including tensile strength, 

ductility, surface roughness, fatigue life and hardness. Therefore, making excellent AM 

components depends mostly on a correct knowledge and optimal control of the process 

parameters. Thus, suitable process parameters should be found for every given design aim, 

production objective, feedstock material.(Chia et al., 2022) 
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One of the materials where there has been notable success in reaching near full density 

utilizing L-PBF technique is stainless steel 316L (SS316L)(Miranda et al., 2016). Together 

with other techniques to achieve high densities particular to SS316L specimens, this part 

discusses the work done on main process parameter optimization. Most of the work (Cherry et 

al., 2015; Liverani et al., 2017; Sun et al., 2016; Tucho et al., 2018; Yakout et al., 2019) on L-

PBF parameter investigations makes use of the effect of laser energy density on part 

densification. The energy density (E) is connected to the main process parameters including 

laser power (P), scanning speed (v), hatch spacing (h) and layer thickness (t), as stated by 

Equation 1.(Tucho et al., 2018) the author shows in Figure 9 the factors of interest. Hatch 

spacing (h) is the distance between consecutive scan vectors and layer thickness (t); laser power 

(P) is the total energy emitted by the laser in unit time; scanning speed (v) is velocity at which 

the laser spot moves across the powder bed along the scan vectors. 

𝑉𝑉𝑉𝑉𝑉𝑉 =  𝑃𝑃
𝑣𝑣 .  ℎ .  𝑡𝑡

   Equation 1 

 

Figure 11 Relationship between process parameters, structure and properties in L-PBF process. 
(Ahmed et al., 2022) 

 

Figure 12 Illustration of process parameters for study in L-PBF process. (Ahmed et al., 2022) 
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High quality components depend on a thorough study on the interaction of the process 

parameters and its influence on densification. Yakout et al. (Yakout et al., 2019) did one such 

work performing full factorial permutation using laser power, scanning speed, and hatch 

spacing. Yakout effectively produced range of energy densities shown in Figure 10(a) which 

results in stable melting, continuous beads, and homogeneous melt tracks by using the effects 

of energy density on resultant densification in L-PBF. Because of formation of voids and lack 

of powder fusion, lower values of laser energy density shown significant porosity; higher 

energy density values beyond a certain limit resulted in decreasing densification leading to 

unstable melt pool, vaporization, and micro-segregation of alloying elements. This may also 

be easily appreciated from the observations made from the fractography of SS316L specimens 

created with different laser energy density values as shown in Figure 10(b), (i).  
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Figure 13 (a) Effect of various laser energy density values on resulting densification (data adapted 
from (Yakout et al., 2019)), (b) Fractography of SS 316L samples produced at laser energy density 

value of (i) Lower value of 41.7 J/mm3 results in “brittle fracture” due to presence of voids (ii) 62.5 
J/mm3 results in “brittle-ductile” fracture due to less voids present (iii) 156.3 J/mm3 results in 

“ductile” failure due to vaporization of powder (Ahmed et al., 2022) 

Brittle fracture noted in lower energy density value of 41.7 J/mm3 specimen build with 

significant voids present (ii) Less voids are seen in specimen built with energy density value 

of 62.5 J/mm3 than in specimen built with lower value (i). Brittle-ductile failure is reported in 

this regard. Mass metal vaporization is shown by ductile failure observed in specimens 

constructed with greater energy density value of 156.3 J/mm3. Therefore, reaching sections 

with lowest porosity flaws depends on the identification of suitable energy density range.  

Figure 11 shows the ranges of laser energy density obtained from different literature together 



Enhancing AM Quality through Vibration Analysis and Machine Learning 28 

with their corresponding densities in L-PBF processed SS316L specimens. Arriving at optimal 

laser energy density, numerous combinations of laser parameters including laser power, 

scanning speed, hatch spacing and layer thickness have been used. Higher densities (over 99%) 

have their ideal range of energy density values dispersed between 50 J/mm3 and 150 J/mm3. 

Furthermore, shown is that the resulting densification values vary even for the same energy 

density values, for instance for 100 J/mm3, suggesting dependency on the individual values of 

laser power, scan speed, hatch spacing and layer thickness used. For a two-parameter set with 

same energy density value of 80 J/mm3, for instance, the parameter set having lower hatch 

spacing of 0.08 mm shown higher densities of 99.7% compared with parameter set with higher 

hatch spacing of 0.14 mm with densification of 99.27%. This is mostly due to tighter overlap 

of melt pools for bonding given by reduced hatch spacing, so lowering porosity. With constant 

layer thickness of 0.03 mm to investigate the impact of laser energy density in the range of 50–

80 J/mm3, Tucho in his experiments additionally adjusted the laser power (150 W to 200 W), 

scan speed (400 mm/s to 1600 mm/s) and hatch spacing (0.08 mm to 0.14 mm). While the 

sample built with higher energy density value of 80 J/mm3 results in nearly defect free parts, a 

comparison of SEM images of the specimen for the energy density range shows that samples 

built with lower energy density value of 50 J/mm3 results in porosity due of lacks-of-fusion. 

For SS316L specimens, a good mix is advised to be lower hatch spacing (0.08 mm) and rather 

high scan speeds (800 mm/s), which will help to achieve density above 99%.  

Using a modulated laser system, Cherry et al. (Cherry et al., 2015) similarly displayed similar 

tendencies about rise in energy density resulting in decrease in porosity.  

The energy density is varied using the exposure time and overlap distance to reach an ideal 

limit value of 105 J/mm3 hence attaining densification up to 99.6%.  
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Figure 14 Ranges of energy densities and corresponding densification values collected from various 
literature for SS316L specimens(Ahmed et al., 2022) 

 

Cherry also noted that growth of pores size was seen and that values beyond 105 J/mm3 

exhibited indications of balling action, therefore indicating a limit to which energy density 

could be raised by low melting element vaporization. Using a mix of laser power in the range 

of 90–150 W and scan speed between 500 and 900 mm/s, Liverani et al. (Liverani et al., 2017) 

also shown that an increase in energy density up to a value of 100 J/mm3 boosted densification 

(99.9%). The study underlined how, among all the parameters, laser power was the main 

determinant of the energy density influencing L-PBF sample densities. In his study on light 

weight lattice struts made of SS316L material, Zhong et al. (Zhong et al., 2019) found that, for 

increasing densities of parts, the optimal energy density falls in the similar range up to 110 

J/mm3. Using a reduced scan speed of 50 mm/s produced maximum densification up to 98.22%, 

AlMangour et al. (AlMangour et al., 2018) demonstrated influence of laser scanning speed on 

densification. Reduced scan rates lead to heat accumulation needed for complete powder 

melting and dense structure building.  

Individual effects of L-PBF process parameters including laser power, scanning speed, hatch 

spacing and layer thickness can be also maximally combined to achieve a higher densification. 

Higher densification and avoidance of balling as advised by Li et al. (Li et al., 2009) depend 

on an optimum combination combining higher laser power, lower scan speed, narrower hatch 

spacing and thinner layer thickness. Because lower oxygen concentration and smaller mean 
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particle size help densification, it was also shown that use of gas atomized powder produced 

better results than water atomized powder. Kruth et al. (Kruth et al., 2010a) showed by density 

the combined influence of scanning speed and layer thickness. 

 

Figure 15 SEM images of higher porosity defects due to lacks-of-fusion observed using energy density 
value of 50 J/mm3 (left) compared with minimal defects with higher energy density value of 80 J/mm3 

(right)(Tucho et al., 2018) 

At suitably low scan speeds, the relative densities of samples are nearly independent of 

different layer thickness values (20 μm, 30 μm, 40 μm, illustrated in Figure 13). But at high-

speed values above 350 mm/s, densification was reduced and is more severe for a 40 μm layer 

thickness value since insufficient laser depth penetration and poor layer bonding resulting from 

shorter laser exposure duration.  

Miranda et al. (Miranda et al., 2016) investigated the impact of single parameter as well as 

multiple parameter interactions on densification by means of a statistical technique combining 

ANOVA (analysis of variance) method with experiments. While for laser speed and hatch 

spacing increasing values resulted in lesser densification due of inadequate powder melting, 

increasing laser power leads in greater densification in single parameter analysis. High density 

can be obtained in multiple parameter studies by combining intermediate values of laser power 

and hatch spacing as shown in Figure 13(a), and by combining intermediate values of laser 

power and scan speed as shown in Figure 13(b.).  
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Figure 16 (a) Combination of power and scan spacing, (b) combination of power and scan speed used 
for achieving high densification (Miranda et al., 2016) 

L-PBF is recognized to be a usually slow additive manufacturing technique, so 

changing parameters, including scan speed, hatch spacing, and layer thickness, has limits and 

influences the component quality. Still, attempts have been made to achieve high densification 

in line with rapid building rates. Liu et al. (Y. Liu et al., 2021) recently employed a 200 μm 

layer thickness and raised the build rate to 12.4 mm3/s (2.5–10 times greater than utilizing a 

lower layer thickness), so attaining a densification of 99.99% in SS316L specimens. It was 

shown that preventing flaws like unmelted powder and balling depends critically on laser 

exposure length (120–160 μs) and laser overlap (40%). Increasing layer thickness also helps 

greatly. Sun et al. (Sun et al., 2016) used faster speed and higher range of power than usually 

used ranges reported to boost the total build rate by ~72%. Using a power of 380 W and a speed 

up to 2000 mm/s, Sun et al. produced 10 mm side cubes to reach high-density rates of 99.9%. 

Using high laser power up to 400 W, Kamath et al. (Kamath et al., 2014) reported a broad range 

of high speeds (1900 mm/s to 2200 mm/s), obtaining 99.5% densification. Shi et al. (Shi et al., 

2020) showed an increase in layer thickness to lower construction time by demonstrating 

densification above 99% utilizing 250 μm layer thickness and laser power of 400 W with 

different combinations of scan speed and hatch spacing. Thus, proper parameter selection 

enables one to achieve good part quality together with high build rates.  

The quality of the melt pool created during the laser melting process indicates the laser power 

and speed applied throughout the operation. Wei et al. (Wei et al., 2011) demonstrated 

experimentally the effect of melt pool dimension on densification by using an optimal 

combination of laser power and speed to produce a stable and continuous melt pool, producing 

higher densifications. Wei et al. also found that, for the same process parameters (98 W power, 
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90 mm/s speed, and 70 μm hatch spacing), lower layer thickness (~100 μm) produced higher 

density compared to higher layer thickness values owing to complete powder melting and 

sufficient bonding between layers. 

 

Figure 17 Influence of scanning speed on densification for different layer thicknesses(Kruth et al., 
2010b) 

L-PBF factors like laser power, scan speed, and hatch spacing have been extensively 

applied for density control as covered in the previous part. Higher densification does, however, 

also depend much on the scanning techniques and process parameters.  
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Figure 18 Illustration of different laser scanning strategies used for attaining densification (a) Inter-
layer staggered strategy (b) Stripe and contour strategy (c) Different laser scanning strategies (d) 

Checkered Island strategy. (Ahmed et al., 2022) 

Appropriate hatch spacing and laser scanning patterns guarantee enough heat 

accumulation required for bonding between tracks as seen in work by Wang et al. (Di et al., 

2012) using a strategy called inter-layer staggered scanning strategy illustrated in Figure 15 (a) 

to achieve densification of more than 98% in SS316L samples. Under this approach, the first 

two adjacent layers are scanned in a staggered pattern, and the next two adjacent layers are 

scanned orthogonally to the first two layers. This scanning pattern eliminates flaws developed 

in earlier layers. Experimenting with various laser scanning patterns for a specified process 

parameter value of laser power (175 W), scanning speed (668 mm/s), hatch spacing (120 μm), 

and layer thickness (30 μm), Salman et al. (Salman et al., 2019) found Using stripe and contour 

strategy shown in Figure 15(b), densification up to 99.9% is achieved; in this scan paths are 

parallel to one another in unidirectional fashion and also includes a contour scan around the 

perimeter of the build for finishing purpose, so ensuring good overlap between the scanned 

tracks and leads to almost completely dense samples. Larimian et al. (Larimian et al., 2020) 

investigated several scanning techniques for 316L stainless steel samples shown in Figure 15(c) 

as type A, B and C. Compared to samples processed with scanning strategy type - B (97.7%), 

type - C (98%), the samples processed using scanning strategy type - A attained higher densities 
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(99.45%). Higher cooling rates produced by the scan approach type-A produced a refined 

structure and great densification. Likewise, different scanning techniques are employed to 

obtain high quality parts; one such strategy depicted in Figure 15(d) divides the construction 

layers into independent and randomly scanned sub areas (Yusuf et al., 2017). Scanning vectors 

of nearby islands perpendicular to one another results in each layer with tracks scanned in 

several directions. Because of equal melting of powder in all directions of the melted powder 

layer, this checkered technique produced densification of 99%. 
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Optimizing Process Parameters 

Optimization of the process parameters is done to enhance different targets. The targets 

vary from physical conditions (melt pool modes and aspect ratios); defects (relative density, 

porosity and distortion tolerance); mechanical properties (surface roughness, tensile and 

fatigue properties); microstructural properties (grain phases, grain size, grain aspect ratio, grain 

boundary angle and grain misorientation); manufacturing performance (time, energy, cost and 

efficiency). Conversely, the main parameters are controllable process parameters constrained 

by the machine's capabilities and customizability. The complicated metallurgical process 

involved in AM allows one to identify the main parameters just by considering bulk energy 

input during the operation. Especially in PBF, the effects of the heat power (P), scanning 

velocity (v), hatch spacing (h), and layer thickness (t) on the AM component quality are most 

usually studied. Many times, these four factors are described as a volumetric energy density 

(VED). Apart from VED, several parameter combinations have been suggested, including 

linear input energy density, linear energy density, and surface energy density. Although VED 

is a widely used technique for evaluating the energy input, the overt physical simplification has 

demonstrated to be unreliable.(Chia et al., 2022) 

Ensuring component dependability and performance in Laser Powder Bed Fusion (L-

PBF depends critically on the identification and measurement of internal flaws like pores, 

cracks, and lack-of-fusion voids.  Commonly used experimental methods for this aim include 

several ones following ASTM B962 criteria, the Archimedes test is a conventional and 

extensively used method for approximating bulk porosity depending on density variations by 

immersion in a fluid.  This approach cannot localize flaws in the part, though, and has low 

spatial resolution.  With 3D volumetric information regarding interior structures, X-ray 

computed tomography (CT) presents a non-destructive alternative that permits thorough study 

of pore size, distribution, and shape.  Particularly helpful for assessing lack-of-fusion and 

keyhole defects, optical and SEM-based image analysis of polished cross-sections also permits 

defect quantification; this is destructive and confined to the observed plane.  Although they 

demand access to specific facilities, more sophisticated techniques such neutron diffraction can 

be utilized to evaluate residual stress and porosity in bigger or denser sections.  Performance-

based techniques including thermal conductivity measurements and vibration analysis have 

lately attracted interest as indirect means of defect identification.(Mohr et al., 2020)  These 

provide a non-destructive, maybe in-situ mode of evaluation depending on the interaction 

between mechanical or thermal behavior and internal defect content.  Though all these 
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techniques might be time- and resource-intensive, stimulating the development of data-driven 

Machine Learning (ML) models to anticipate fault content based on process parameters and 

sensor data helps to overcome their shortcomings. 

Design of Experiment (DoE) 

DoE is a statistical method designed to maximize the process or product under variation 

of several variables or parameters so enabling the choice of factors and ideal values for that 

process or product. The application of DoE is summed as follows: all conceivable combinations 

between the collection of parameters and the selected parameters, considered important, are 

varied from their lowest to greatest value. For instance, Figure 16 shows a three-parameter DoE 

with two tiers. The Figure 16 clearly depicts the three parameters selected with two levels (the 

minimum and the maximum), so producing eight possible test circumstances.  

 

Figure 19. Exemplification of DoE of three parameters with two levels each. 

 

There are several kinds of DoE techniques available, each with a different manner of major 

parameter analysis. Some types of DoE are: full factorial, Taguchi, Central Composite Design 

and Box-Behnken. Graphically, Figure 17 compares a DoE method on the left with the same 

data using RSM applied with a second-order polynomial model on the right:  

Using the RSM approach, it is visually simpler and faster to identify an optimal response for 

the analysis based on the provided example in Figure 17. (Pereira et al., 2023) 
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Figure 20 Examples of the (a) factorial and (b) RSM adjustments obtained by the DoE 
methodology.(Pereira et al., 2023) 

 

DoE in AM 

Rising as a breakthrough manufacturing tool with great promise is additive 

manufacturing (AM), sometimes known as 3D printing. To achieve ideal performance and 

quality in 3D printed goods, nonetheless, this calls on a complete awareness of the printing 

settings and their influence on the resultant good. This work presents a Design of Experiments 

(DOE)-based method to examine the impact of printing parameters on mechanical 

characteristics of 3D printed objects. The objective is to maximize these values to improve 

performance while reducing environmental impact, time, and material consumption. The 

bibliographic research sought to guide on which are the most investigated and pertinent printing 

parameters in the quality of the final part. Given the several characteristics for the definition of 

3D printing, it was thus feasible to specify a reasonable range of initial parameters for 

investigation. 

The chosen printing parameters are methodically changed in the experimental design 

to produce an extensive dataset for study. Tests follow to get the information. After that, the 

gathered data is subjected to the Analysis of Variance (ANOVA) technique to create behavioral 

equations and find important impacts. This helps us to grasp the links between the mechanical 

characteristics and the print settings more deeply.  

The DoE approach is applied to specify several configurations once the parameters are 

established, and subsequently, the fabrication of the components starts. These were specimens 
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for upcoming mechanical testing. Among the mechanical tests are bending, tension, and 

compression tests. It is then obtained from the mechanical tests, different mechanical properties 

in which they are inserted in Minitab® for a data analysis, collecting as results Pareto graphs 

showing which parameters have the most influence on the analyzed property, as well as an 

equation of the property's behavior.  

By means of an optimization based on the behavior equations of every mechanical 

property, the ideal values for the various printing conditions are obtained, therefore enabling a 

more affordable and efficient future work.(Pereira et al., 2023) 

Multi-objective optimization 

Optimization is the practice of using generally computational, usually computational 

techniques to give the user the optimal response or solution for a particular condition. Where 

the aims and limits of the project are always taken into account, this response can be made of 

a single factor, or a mix of factors and values of the problem variables. Optimization is the 

process of minimizing (or maximizing) an objective function with constraints (Abraham & Jain, 

n.d.). The great majority of actual problems in the field of optimization are related to obtaining 

different goals that must be achieved simultaneously, which, thus, are usually conflicting and 

produce the non-existence of a single solution optimizing all the several goals. Multi-objective 

optimization problems, in which the analyst or project owner is in charge of studying and 

considering the aims and objectives, then allows the analyst or project owner to select one of 

the best solutions from the set offered by the optimization.  

Optimization is warranted since this approach always seeks and delivers good effects on results, 

such as economic, performance, competitive, quality, among others (Choze et al., 2022). 
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Non-Destructive Testing (NDT) in Metal Additive Manufacturing 

With an emphasis on their capacity to identify particular faults, methodology, accuracy, 

restrictions, and applicability, this part summarizes the present state of several non-destructive 

testing (NDT) techniques applied in metal additive manufacturing (AM). 

Acoustical Emission Testing (AE) 

Acoustic Emission (AE) testing tracks transient elastic waves produced by fast energy 

release from confined sources like inclusions or fissures.  Using frequency domain tools 

including Fast Fourier Transform (FFT), Wavelet Transform, and Local Mean Decomposition, 

these waves are acquired using sensors then examined.  FFT offers a broad spectrum; wavelet 

transform solves this by allowing time-frequency localization, so lacking time resolution. 

Signal frequency, noise, and material attenuation among other factors affect AE data.  

Thus, strong feature extraction techniques and preprocessing strategies are absolutely 

important.  For internal flaws like cracks especially, AE testing provides real-time defect 

detection during AM operations.  Its performance is shown in applications involving structural 

health monitoring and flaw detection in Ti-6Al-4V parts. 
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Figure 21 (a) AT procedure for internal fault detection; (b) Transducer placement on Ti-6Al4 V AM 
plate (left), average filtered power spectrum of the transducer taken in the passband for each of the 

five scenarios (right) (Segovia Ramírez et al., 2023a) 

AE in AM suffers difficulties with noise sensitivity, sensor location, and sophisticated 

data processing notwithstanding its potential.  To improve pattern identification, new methods 

call for convolutional neural networks (CNNs) and machine learning models.  Ongoing areas 

of development are preamplification, transducer selection, and new sensor designs—e.g., air-

coupled or ice-encapsulated.(Segovia Ramírez et al., 2023b) 

Eddy Current Testing (ET) 

Electromagnetic induction underpins Eddy Current Testing (ET).  An alternating 

current flowing through a coil close to a conductive medium causes eddy currents in the 

material.  Surface or near-surface flaws affect these and produce detectable changes in 

impedance. 
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Figure 22 ET condition monitoring process; (a) Diagram for the measurement process. (b) Gas-
atomized AM component for ET and ET amplitude image of one layer (Ehlers et al., 2022) 

For conductive materials such as aluminum, steel, and zinc, ET is ideal.  It is fast, non-

contact, and relevant to complicated geometries.  Its application is limited, nevertheless, by its 

sensitivity to surface roughness, material conductivity, and magnetic permeability fluctuations.  

In AM, variations in magnetic property and uneven surface finishes provide difficulties. 

ET has been effectively used in powder bed fusion (PBF) and wire arc additive 

manufacturing (WAAM) systems despite these constraints.  Depending on the material and 

frequency, typical detectable flaws run from 350 µm down to 5 mm.  Multi-frequency 

configurations and signal processing advances are raising detection accuracy.(Ehlers et al., 

2022) 
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Infrared Thermographic Testing (TT) 

From the surface of a component, infrared thermography (TT) picks emitted infrared 

radiation to identify thermal irregularities brought on by subsurface flaws.  Under Stefan-

Boltzmann and Planck's equations, TT has low operating risk and quick inspection speed 

effective for real-time monitoring. 

 

Figure 23 (a) Thermal image about showing crack location. (b) Thermogram of AM material (Mireles 
et al., 2015; Shi et al., 2021) 

Thermographic cameras translate infrared radiation into temperature maps; but, limited 

resolution and sensitivity make minor flaws (<500 µm difficult to find.  When looking at 

circular objects, image distortion can also result from the square pixel architecture of detectors. 

By analyzing heat diffusion behavior, TT helps find delamination and vacancies.  

Defect contrast is improved in active thermography, in which external heat sources—such as 

ultrasonic waves or hot air—are used.  Further helping to find defect signatures are pattern 

recognition systems.(Segovia Ramírez et al., 2023b) 
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Magnetic Testing (MT) 

Surface and almost surface discontinuities in ferromagnetic materials are found via 

magnetic testing (MT).  The technique consists of magnetizing the component and tracking 

magnetic flux leakage with magnetic particles. 

Although MT is limited to ferromagnetic alloys including nickel and cobalt-based 

systems, accurate and reasonably priced for identifying fractures, inclusions, and voids.  As 

such, its relevance in AM is limited, particularly considering the predominance of non-

ferromagnetic materials like titanium.(Segovia Ramírez et al., 2023a) 

 

Figure 24  (a) Diagram of MT. (b) AM components and simulation of magnetic field lines (Segovia 
Ramírez et al., 2023b) 

Penetrant Testing (PT) 

Using colorful or luminous solutions that pass through surface-breaking flaws by 

capillary action, Penetrant Testing (PT)  The surface is cleansed and a developer is used to 

extract the penetrant from defects, therefore rendering them visible following a dwell time. 

Simple, cheap, and adaptable to many materials—metals, ceramics, plastics—PT is  It 

is not appropriate for porous or very rough AM surfaces, though, and only picks surface flaws.  

There is little research on PT in AM; its value is usually less than that of volumetric 

techniques.(Segovia Ramírez et al., 2023a) 
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Figure 25 Diagram of PT.(Segovia Ramírez et al., 2023b) 

Radiographic and Computed Tomography (RT & CT) 

 By use of density variations, radiographic testing (RT) images internal structures using 

X-rays or gamma rays.  Although efficient, angular dependency and safety issues compromise 

RT's dependability. 

 Conversely, computed tomography (CT) provides high-resolution 3D imaging by 

voxel-based reconstruction and rotational X-ray projections.  AM makes much use of it for 

porosity and crack identification.  Among the most reliable NDT techniques, CT offers 

complete volumetric examination and can find flaws down to 10 µm depending on voxel size 

and material. 

 Data collecting time, cost, and less sensitivity in thick or dense areas are among the 

challenges.  Current directions in study are noise suppression and advanced image 

processing—e.g., ML-based segmentation.(Segovia Ramírez et al., 2023b) 
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Figure 26 (a) CT procedure. (b) AM manufactured components in Ni-Mn-Ga alloy and reconstruction 
of CT images to detect porosity and inclusions (Ituarte et al., 2022) 

Ultrasonic Testing (UT) 

Sending high-frequency sound waves into a component, ultrasonic testing (UT) 

analyzes the reflected signals from flaws.  It supports normal incidence pulse-echo, angle beam, 

and through-transmission among other modes. 

With great sensitivity (defects as little as 50–100 µm), UT can identify porosity, 

fractures, and inclusions.  It covers thick components and complicated geometries.  

Quantitative study is made possible by the link between ultrasonic velocity and porosity. 

Among the new advancements are phased array systems, ice-coupled transducers, and 

immersion techniques.  Finding flaws positioned parallel to the wave direction and deciphering 

results on rough AM surfaces still provide challenges.  Under active development to increase 

dependability are Total Focused Methods (TFM) and other imaging techniques. 
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Every one of these NDT methods presents special benefits and drawbacks.  Their 

interaction with real-time sensing and machine learning creates interesting directions for 

improved metal additive manufacturing quality assurance.(Segovia Ramírez et al., 2023b) 

 

Figure 27 (a) Diagram about ultrasonic configuration to detect cracks with UT. (b) Real Ti-6Al4 V 
AM component for the tests and results of the UT (Yu et al., 2020) 

Modal Analysis as a Non-Destructive Evaluation Tool in Metal AM 

Modal analysis has attracted more and more interest among the non-destructive testing 

(NDT) techniques under investigation for quality assurance in metal additive manufacturing 

(AM) because of its cost-effectiveness, sensitivity to material properties, and possible for 

automation. Metal AM techniques such Selective Laser Melting (SLM) and Laser Powder Bed 

Fusion (L-PBF) naturally generate components with complicated geometries and process-

dependent microstructures. Localized changes in the thermal history of the melt pool follow 

from variations in process parameters including laser power, scan speed, hatch spacing, and 

layer thickness. These temperature fluctuations influence microstructural evolution, hence 

producing heterogeneities in grain size, residual stress distribution, and defect development 

(e.g., porosity, absence of fusion, or unmelted powder)(Leuders et al., 2013). Consequently, the 
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mechanical performance of the last part becomes sensitive to these criteria, which presents a 

major obstacle to standardizing and certifying especially in industries like aircraft and 

biomedical engineering. (West et al., 2017) 

Although they provide high-resolution insight into interior structures, traditional defect 

characterisation techniques such as X-ray Computed Tomography (CT) are generally too costly, 

time-consuming, and challenging to scale for in-line investigation. By using the natural link 

between a structure's dynamic response and its physical characteristics, modal analysis offers 

a non-invasive and reasonably low-cost substitute. Natural frequencies, damping ratios, and 

mode shapes control the response of a structure under mechanical excitation—that of an impact 

or vibration. Particularly sensitive to the shape, material stiffness, mass distribution, and 

boundary conditions of the part are these modal characteristics. 

 

Figure 28 Photograph of modal test setup and representative FRF (West et al., 2017) 

In the context of AM, flaws such as keyholes, delaminations, or sub-surface porosity 

cause localized mass and stiffness decrease that modulates the resonance frequencies and mode 

forms of the component. Therefore, one can deduce the existence, degree, and maybe the 

position of such flaws by doing experimental modal analysis (EMA) and matching the 

measured modal parameters to defect-free reference models or finite element simulations. 

Recent studies have confirmed that this method can identify even small variations in 

microstructure or density, which are generally connected with mechanical performance 

deterioration (Gebhardt & Hötter, 2016). 
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Figure 29 Natural frequency of first three modes of a beam as function of hatch spacing, with 
associated modes as insets.(West et al., 2017) 
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Figure 30 Yield strength and ultimate strength of a beam as functions of first mode natural 
frequency.(West et al., 2017) 

Moreover, indirect assessment of mechanical properties can also be accomplished by 

modal analysis. Changes in resonant frequencies have been found to be quantitatively 

connected in metal AM samples to changes in Young's modulus, yield strength, and ultimate 

tensile strength. Particularly when destructive testing is not practical due to part cost or 

manufacturing volume limitations, this link creates opportunity for adopting modal testing as 

a surrogate tool for mechanical testing (Tapia & Elwany, 2014). To track layer-wise changes in 

the construction, modal analysis can also be used either ex-situ, following the part's fabrication, 

or perhaps in-situ employing embedded sensors and real-time data collecting methods. 

 

The fact that modal analysis fits machine learning (ML) methods is among its most intriguing 

features. Supervised learning models can be taught to estimate mechanical performance 
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directly from modal response data by compiling a database of modal parameters and associated 

known fault states or mechanical attributes. This combination of modal testing and ML lays a 

basis for smart, autonomous quality control systems in AM—capable of fast screening and 

certification of printed components without significant post-processing. 

 

Modal analysis is not without restrictions notwithstanding these benefits. It calls for exact mode 

identification—especially in complicated geometries—strong control of boundary conditions 

during testing, and enough spatial resolution to identify pertinent modes. Furthermore, 

intrinsically connected to the size, kind, and location of the anomaly relative to the modal 

deformation fields is defect detectability. Still, modal analysis is fast becoming a useful and 

potent method for NDT in metal AM as excitation and sensing equipment—such as laser 

Doppler vibrometers and instrumented hammers—alongside signal processing and ML-based 

interpretation with increasing precision. 

Non-destructive evaluation: machine learning approaches 

Many factors affecting component quality influence additive manufacturing (AM) 

techniques. To guarantee part integrity and reduce failure, the sector is thus turning towards 

predictive fault detection and condition-based monitoring (Farrell & Deering, 2018). Though 

the terms Non-Destructive Testing (NDT) and Non-Destructive Evaluation (NDE) have been 

used synonymously historically, a clear differentiation is required. NDT mostly consists in the 

gathering of unprocessed diagnostic data free of interpretation. Conversely, NDE uses data 

analysis to define defect processes, therefore offering information on size, form, and type of 

damage (Obaton et al., 2020). 

With integrated monitoring and computational evaluation, NDE can be seen as a 

development of NDT including diagnostic and prognostic powers. Leveraging materials 

science, statistics, and computer science, this multidisciplinary approach supports condition-

based maintenance and lifetime evaluation (Bond, 2014). New technologies and advanced 

algorithms are progressively being included into NDE techniques to improve fault 

identification and enable service-life extension in AM components. 

Review of state-of- the-art NDE in AM is given in this part, which offer the most varied 

and fast developing set of tools for AM quality assurance(García Márquez & Peinado Gonzalo, 

2022). 

5. Machine Learning in NDE for AM 
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ML includes supervised, unsupervised, and reinforcement learning among other 

methods able to extract patterns from challenging datasets. For classification, grouping, 

regression, and optimization challenges these techniques are extensively used. Parameter 

optimization, defect categorization, quality prediction, and cost reduction in AM depend 

critically on ML 

5.1 Support Vector Machine (SVM) 

In AM, SVM has great application in both classification and regression problems. It 

optimizes the margin between data by spotting a hyperplane separating them into groups. Non-

linear data is handled using kernel functions including sigmoid, linear, and Gaussian ones. 

Particularly with image-based data from visual or CT inspections, SVM shines in porosity and 

fault classification. 

With SVM using CT scan data, Gobert et al. (Gobert et al., 2018) found part 

discontinuities and improved classification accuracy by 20%. Using SVM for VT inspection, 

Zhang et al.(Zhang et al., 2018) claimed 90% accuracy; CNN somewhat exceeded this at 93%. 

To improve classification resilience, SVM has also been coupled with optimization methods as 

OCA. 

5.2 Artificial Networks (ANNs) 

With enough training, ANNs model non-linear relationships between inputs and outputs, 

hence attaining excellent classification accuracy. Most often used architectures are 

convolutional neural networks (CNNs) and multilayer perceptron (MLP). Comprising 

convolution, activation, and pooling layers, CNNs are particularly suited for image-based 

analysis. 

In AM data analysis, Baturynska et al. (Baturynska et al., 2019) revealed MLP 

performed somewhat worse than CNN; nonetheless, CNN showed great promise given suitable 

datasets. CNN with wavelet-transformed AE data allowed Hossain and Taheri (Hossain & 

Taheri, 2021) 96% classification accuracy. Using wavelet-based AE signal encoding, Shevchik 

et al. (Shevchik et al., 2018) presented Spectral CNN (SCNN), hence improving categorization. 

For AM NDE applications, CNNs provide outstanding accuracy and minimal computing costs. 

5.3 Deep Belief Network (DBNs) 

DBNs can learn unsupervised and comprise stacked Restricted Boltzmann Machines 

(RBMs). Using DBN, Ye et al. (Ye et al., 2018) showed 96% accuracy in denoised acoustic 
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data classification, above MLP and SVM. Ye et al. (Ye et al., 2018) obtained 83.4% accuracy 

by using DBN to VA imaging as well. These experiments imply DBNs are useful for AM real-

time fault monitoring. 

5.4 K-Means Clusterings 

Unsupervised clustering method K-Means divides data into groups according to 

Euclidean distance. It works well for image data segmenting and acoustic signal classification. 

Wu and colleagues (Wu et al., 2016) categorized AM layer failure modes using it. Combining 

K-Means with PCA, Grasso et al. (Grasso et al., 2017) found overheating areas in picture data, 

therefore obtaining strong fault segmentation. 

5.5 Particle Swarm Optimization (PSO). 

Inspired by swarm behavior, PSO is a global optimizing technique. It helps to maximize 

ANN architecture and processing limits effectively. For flaw detection, Jian et al. (Jiang et al., 

2020) used a PSO variant in UT and wavelet-transformed AE data, hence increasing accuracy 

by about 10%. Though PSO has strengths, its success mostly relies on dataset properties and 

parameter adjustment. 

5.6 PCA—the principle component analysis 

PCA is a dimensionality reduction method converting correlated information into 

orthogonal components. ML pipelines make extensive use of it for preprocessing and feature 

extraction. For VA image data, Zhang et al. (Zhang et al., 2018) enhanced SVM classification 

accuracy by use of PCA. Successfully spotting local hotspots, Grasso et al. (Grasso et al., 2017) 

merged PCA with K-Means for thermal picture clustering. Often coupled with supervised 

classifiers to boost performance and cut computation time, PCA increases ML model efficiency. 
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Materials and Methods 

Sample Modeling 

First, the particular machine handled the production; the CAD files were designed for 

sample modeling. The procedures started with the building of the CAD files, which modeled 

for each component 96 cubes and CD files. Figures 31 show the exact sample measurements. 

Pre-selected process parameters for every component were entered at this stage using 

Materialize Magics. It is important to realize that every component received a certain laser 

speed, laser power, and hatch distance, which produced distinct characteristics for every 

component once it was produced. 

 

Figure 31  Nominal dimension of the cubic samples 

Design of experiment 

The Design of Experiment (DoE) covers all the process parameter values applied in this 

work. There are various parameters one can change before beginning the L-PBF procedure.  

These values are the required machine settings for component production from powders. These 

four kinds of process parameters help to simplify things: laser related, scan-related, powder-

related, and temperature-related ones. Laser power, wavelength, spot size, pulse length, and 

pulse frequency are among the laser-related properties. Scan-related properties include 

hatching distance, scan speed—the speed of scanning—and the particular pattern utilized for 

scanning. Particle size and distribution, particle shape, powder bed density, layer thickness, and 

material characteristics define the elements related to powder. Among the temperature-related 

features are the powder bed's temperature, the powder feeder's temperature, and the consistency 

of temperature. Improving the quality of products depends on the suitable process parameters 

being chosen. The interaction of these elements is crucial to underline since sometimes 

changing one parameter yields the same effect as changing another. Usually, one should keep 

a balance between all the criteria. The major objectives of this thesis research are to maximize 
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production rate and improve quality of the output; so, it is imperative to select the ideal process 

parameters. Although every process element influences the effectiveness of the process, only 

the most important people were taken into account to get the intended outcomes. Table 3 reports 

three process parameters: laser power (P), laser speed (v), and laser hatch distance (h), from 

which 64 experimental data points were chosen in consideration. Our knowledge of the 

machine and an unpublished preliminary analysis guided the choice of process parameters. 

These process parameters were then defined using EP Hatch Prima software, producing 64 

unique Cam and CLI files. Table 3 lists the laser power as between 100 and 340 W; the scan 

speed and hatch distance ranged from 400 to 1000 mm/s and from 0.1 to 0.2 mm, respectively. 

The great range of values resulted in a significant change in an appropriate term called 

volumetric energy density (VED), which measures the input energy per unit volume of the 

powder bed. Originally proposed in references, the idea of VED was first shown to have 

significant relevance by means of comparison between several sets of parameters.  

The relative density of materials processed using L-PBF is assessed in this thesis using VED, 

first indicated in Equation 1, where: 

VED = Volumetric energy density [ 𝐽𝐽 / mm3 ] 

P = Laser power [𝐽𝐽]  

v = Scanning speed [𝑚𝑚𝑚𝑚/s]  

h = Hatching distance [mm]  

l = Layer thickness [mm] 

 

  

Table 1 Process parameters used to print each  samples 

Sample Power [W] SS [mm/s] HD [mm] Layer thickness [mm] VED [J/mm3] 
1 100 400 0.1 0.03 83 
2 100 400 0.11 0.03 76 
3 100 400 0.12 0.03 69 
4 100 400 0.13 0.03 64 
5 100 600 0.1 0.03 56 
6 100 600 0.11 0.03 51 
7 100 600 0.12 0.03 46 
8 100 600 0.13 0.03 43 
9 100 800 0.1 0.03 42 
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10 100 800 0.11 0.03 38 
11 100 800 0.12 0.03 35 
12 100 800 0.13 0.03 32 
13 100 1000 0.1 0.03 33 
14 100 1000 0.11 0.03 30 
15 100 1000 0.12 0.03 28 
16 100 1000 0.13 0.03 26 
17 150 400 0.1 0.03 125 
18 150 400 0.11 0.03 114 
19 150 400 0.12 0.03 104 
20 150 400 0.13 0.03 96 
21 150 600 0.1 0.03 83 
22 150 600 0.11 0.03 76 
23 150 600 0.12 0.03 69 
24 150 600 0.13 0.03 64 
25 150 800 0.1 0.03 63 
26 150 800 0.11 0.03 57 
27 150 800 0.12 0.03 52 
28 150 800 0.13 0.03 48 
29 150 1000 0.1 0.03 50 
30 150 1000 0.11 0.03 45 
31 150 1000 0.12 0.03 42 
32 150 1000 0.13 0.03 38 
33 200 400 0.1 0.03 167 
34 200 400 0.11 0.03 152 
35 200 400 0.12 0.03 139 
36 200 400 0.13 0.03 128 
37 200 600 0.1 0.03 111 
38 200 600 0.11 0.03 101 
39 200 600 0.12 0.03 93 
40 200 600 0.13 0.03 85 
41 200 800 0.1 0.03 83 
42 200 800 0.11 0.03 76 
43 200 800 0.12 0.03 69 
44 200 800 0.13 0.03 64 
45 200 1000 0.1 0.03 67 
46 200 1000 0.11 0.03 61 
47 200 1000 0.12 0.03 56 
48 200 1000 0.13 0.03 51 
49 250 400 0.1 0.03 208 
50 250 400 0.11 0.03 189 
51 250 400 0.12 0.03 174 
52 250 400 0.13 0.03 160 
53 250 600 0.1 0.03 139 
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54 250 600 0.11 0.03 126 
55 250 600 0.12 0.03 116 
56 250 600 0.13 0.03 107 
57 250 800 0.1 0.03 104 
58 250 800 0.11 0.03 95 
59 250 800 0.12 0.03 87 
60 250 800 0.13 0.03 80 
61 250 1000 0.1 0.03 83 
62 250 1000 0.11 0.03 76 
63 250 1000 0.12 0.03 69 
64 250 1000 0.13 0.03 64 
65 300 400 0.1 0.03 250 
66 300 400 0.11 0.03 227 
67 300 400 0.12 0.03 208 
68 300 400 0.13 0.03 192 
69 300 600 0.1 0.03 167 
70 300 600 0.11 0.03 152 
71 300 600 0.12 0.03 139 
72 300 600 0.13 0.03 128 
73 300 800 0.1 0.03 125 
74 300 800 0.11 0.03 114 
75 300 800 0.12 0.03 104 
76 300 800 0.13 0.03 96 
77 300 1000 0.1 0.03 100 
78 300 1000 0.11 0.03 91 
79 300 1000 0.12 0.03 83 
80 300 1000 0.13 0.03 77 
81 350 400 0.1 0.03 292 
82 350 400 0.11 0.03 265 
83 350 400 0.12 0.03 243 
84 350 400 0.13 0.03 224 
85 350 600 0.1 0.03 194 
86 350 600 0.11 0.03 177 
87 350 600 0.12 0.03 162 
88 350 600 0.13 0.03 150 
89 350 800 0.1 0.03 146 
90 350 800 0.11 0.03 133 
91 350 800 0.12 0.03 122 
92 350 800 0.13 0.03 112 
93 350 1000 0.1 0.03 117 
94 350 1000 0.11 0.03 106 
95 350 1000 0.12 0.03 97 
96 350 1000 0.13 0.03 90 
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Manufacturing the 96 cubic samples to offer a more comprehensive examination on 

VED, process parameters, and porosity development, see Table 2. 

Table 2 DOE: Selection of process parameters used to print the samples 

Power SS HD 
100 400 0.1 
150 600 0.11 
200 800 0.12 
250 1000 0.13 
300     
350     

 

Figure 32 Schematic of VED trend to print each sample (Red: failed during printing) 

During the printing process, 21 samples were failed. Resulting in a total of 75 

successfully printed. 

Samples Manufacturing  

The PrintSharp 250 (Fig. 33) PBF machine meant for medium- volume operations 

generated the samples. It provides tremendous flexibility in terms of part management and is 

especially meant for the industrial production of sophisticated components. Table 3 details the 

machine's technical characteristics.  
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Figure 33 Prima Additive Print Sharp 250 

Table 3 The technical parameters of the PrintSharp 250 
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The materials used were gas-atomized AISI316L stainless steel powder, supplied by 

Oerlikon. Before starting the production process, the build chamber was thoroughly emptied 

to a residual oxygen level of less than 0.1%. High-purity Argon was used to preserve an inert 

atmosphere within the construction chamber and minimize the likelihood of oxidation. A 

scanning approach was employed using a bidirectional stripe scanning pattern with a 67° 

rotation between each succeeding layer. The layer thickness of all samples was set to 30µm in 

this project [180]. 

In Fig. 33, the highlighted section illustrates the laser in operation during the LPBF 

process. The laser accurately melts a small layer of metal powder to create the desired shape. 

The process of melting is fundamental to LPBF, as it enables the fabrication of complex and 

highly 58 accurate metal parts through the sequential deposition of layers. Fig. 33 illustrates 

the manufactured samples on the building platform after the completion of the building process. 

After completing the production process, all parts stuck to the building platform were removed 

from the workspace and meticulously cleaned. Finally, the samples were cut from the platform 

employing a Wire Electrical Discharge Machine (W-EDM). It is worth noting that the samples 

were labeled during the production with a numerical value (sample ID in Table 3) to signify 

their distinct process parameters. The x-axis corresponds to the recoater orientation, while the 

z-direction aligns with the building direction. 

Sample characterization  

First, the W-EDM was used to separate the parts from the platform. Then, the density 

of the components was determined using an Archimedes balance. After conducting density 

measurements and analysis, specific components were chosen for tomography and 

metallography analysis. Finally, the microstructure of these samples was analyzed using an 

optical microscope for metallography data and the VGStudio software for XCT data. 

Cutting Machine 

At this specific step, the samples were chopped using the G.cut WEDM machine. Fig. 

34 shows this machine. Section 1 matches the cutting machine's software interface, where the 

auto process, wire movement settings, start and stop buttons for cutting management are 

handled. Section 2 shows the X, Y, and Z coordinate directions, which help to guarantee the 

cutting is carried out in the proper orientation. The machine consists mostly in Section 3, where 

the cutting action is performed and the workpiece is positioned. The platform has to be 
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clamped-attached to the W-EDM to initiate the process. The reference point for the x and y 

coordinates was then created by surface touching the wire and the platform using the particular 

program running on the computer attached to the machine. The machine loaded the suitable 

dimensions and precise orientation after changing the exact place for the wire beginning point 

to start the cutting action. At last, the printed parts were divided and ready for more work. 

 

Figure 34 Key components of the WEDM machine: Section 1 (software controls), Section 2 
(coordinate display), and Section 3 (cutting area). 

The wire-cutting machine cuts the samples with the best accuracy using an electrically 

charged thin wire. This technique generates electrical discharges between the wire and the 

workpiece, hence progressively eliminating material along the cutting direction. The quick and 

effective production of the sparks, as depicted in Fig. 35, removes little amounts of metal and 

produces the intended workpiece form. Deionized water is continuously flowing to cool the 

workpiece and wire during the cutting process, therefore preventing too much heat and 

eliminating the eroded particles. Water is thus also utilized as a dielectric, which is necessary 

for the occurrence of the electrical discharge process. The terms "time on" and "time off" relate 

to the length of the on-time electrical pulses and the off-time gaps between them 

correspondingly. The parameter "ton" controls the energy and length of every spark, therefore 

affecting the surface quality and cutting speed directly. Conversely, "toff" reduces the possible 

thermal damage by allowing a limited cooling interval, therefore improving the cutting 

process's accuracy. Maximizing the cutting efficiency and guaranteeing the great quality of the 

final product depend on these criteria. 
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Archimedes density 

The relative densities of SLM generated are found using the Archimedes method. This 

technique weights one sample in two different fluids.  

Usually, air is the fluid used in reference. The second fluid is distilled water, acetone—or 

ethanol. Although distilled water is usually used, the possible development of air bubbles on 

the sample surface may make it only sometimes suitable. This phenomena is especially 

observed in lattice structure components when air bubbles stop the whole entry of water into 

the interior of the mesh due to the high surface tension of the water.  

The Archimedes density measuring technique was applied for every sample in order to compute 

its geometrical and Archimedes density per ASTM F3637-23. First the measuring chamber is 

set ready, and the beaker is filled with 0.997 𝑔𝑔 distilled water.  

The device is then precisely calibrated to gauge the dry weight (wdry) of the sample as shown 

in Fig. 35 (part 1). Once the sample's dry weight is known, it shows on the digital monitor as 

shown in Fig. 36, part 3. After completing this operation, the device is reset to a zero value and 

the sample is positioned on the filter, as shown in Fig. 35 part 2, to be totally submerged in 

distilled water. The sample was totally submerged in the water after all the bubbles produced 

were removed. By now the weight was recorded as wimmersion. The sample was then taken from 

the water, laid on the wet wipes, and quickly reweighed as indicated in Fig. 35 (part 1) to 

determine the absorption level of the water. This step produced the wet weight, denoted w Wet. 

Moreover, using the relative approach, the theoretical density of the powder was set to be 8.1 

𝑔𝑔/cm3. After that, using the specified equations, the relative Archimedes density percentage 

and total porosity percentage for every sample were calculated: 

ρ𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ρ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ⋅
𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑

𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑 −𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 

ρ𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = ρ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ⋅
𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑

𝑊𝑊𝑤𝑤𝑤𝑤𝑤𝑤 −𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 

Total Porosity Percentage =
ρ𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − ρ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ρ𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
⋅ 100\% 

Relative Archimedes Density Percentage =
ρ𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

ρ𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
⋅ 100\% 

Where: 

  ρₐᵣcₕᵢₘₑdₑₛ = Archimedes density (apparent density) [g/cm³] 



Enhancing AM Quality through Vibration Analysis and Machine Learning 62 

 ρgₑₒₘₑₜᵣᵢcₐₗ = Geometrical density (bulk density) [g/cm³] 

 

Figure 35 The illustration of the measurement setup for Archimedes density is 1) a position for 
measuring the dry and wet weight, 2) place for measuring the immersion weight, and 3) a digital 

display for showing the weight values. 

X-Ray Computed Tomography  

Combining multiple X-ray images captured around a rotational axis, XCT uses 

algorithms to build 3-D representations. Three main XCT methods have emerged recently, each 

improving data collecting speed. Initially, the XCT technique gathers density information along 

each beam of X-rays linearly displaced in the opposite direction of an X-ray detector. Until a 

complete 360° of data is obtained, the scanner turns in a little increment repeatedly. Using a 

two-dimensional X-ray array covering the whole object width and a one-dimensional detector 

array positioned at the X-ray beam edges, the second technique employs The third method uses 

a two-dimensional detector with a fully three-dimensional X-ray beam cone. The beam scanner 

moves its x-ray source and detector in a straight line to scan a slice of the xy plane. This is 

repeated since the source and detector show little movements in the z-axis for the measured 

object. Whereas the cone beam scanner reveals the object whole, the fan beam scanner 

simultaneously exposes a whole slice of it. Every scanning technique has a complete 360° 
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rotation to cover the whole object. Figure 37 lists every XCT method. XCT assessments center 

on image quality, most especially contrast and resolution. X-ray penetration lowers resolution 

and so reduces the maximum magnification of XCT pictures by object size. Reducing 

magnification alters scan voxels and compromises image clarity. Measuring high-density 

materials becomes challenging with low X-ray penetration, which also limits object size. This 

is so because consistent contrast calls for longer exposures. XCT scanners measure a specific 

region or utilize a reference coupon with similar characteristics rather than scanning the full 

product. Image quality gains from this. This method might improve scan quality but neglect to 

catch the object of interest, therefore biassing the results. 

 

Figure 36 Three different beam XCT schematics. The fan beam image shows a curved detector, 
whereas the cone beam image shows a flat panel detector. All of these schematics can be employed in 

each case. 

Archimedes density measurement data led eleven samples to be selected for XCT study. 

Tomographic technique analysis of these samples allowed their porosity percentage and density 

to be determined, which would be compared with other techniques. Furthermore, we gathered 

thorough information on porosity distribution, geometries of porosities, their diameters, and 

other pertinent characteristics; these will be discussed in the section on results and discussion. 

Initially, the samples were arranged on the holder according to this technique as shown in Fig. 

38(a). A copper filter was placed before the X-ray gun in Fig. 37's b portion. To ensure that the 

sample stayed within the X-ray imaging frame, the sample location was checked and modified 

using the program in the computer linked to the machine. The tomography process starts once 

the proper position is verified. It is essential to remove any last residue by uniformly resetting 

the detector using X-ray beams before adding a new sample for tomography. 
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Figure 37 The software interface checks and alters the sample's position during tomography analysis 
to keep it in the X-ray imaging frame. 

Optical Microscopy 

Polished, the surface of the samples was examined under an optical microscope. This 

study made use of a "LEICA" optical microscope (Fig. 45(a), with magnification ranges from 

5x to 100x). Calibrated black-and- white filter was used in imaging. Furthermore included in 

the microscope is software with advanced image processing capacity. The samples were set on 

a specially designed plane with the surface to be investigated facing down (Fig. 45, b). An 

optical microscope set at a 5x and 10x magnification conducted the surface study. Every surface 

created a matrix by being split into nine separate sections. Every sample was photographed 

nine times. To find the porosity % of a given sample, one averages the porosity percentage of 

all nine photographs. The focus of the microscope was precisely tuned for every picture to 

provide best surface persion sharpness. Black dots on the backdrop in the pictures represent 

the porosities inherent in the particular region. 

Evaluation of ML algorithms 

Applying a regression model typically requires multiple metrics for a comprehensive 

evaluation. The accuracy of the chosen models is assessed using three statistical metrics: the 

coefficient of determination (R²), the mean absolute error (MAE), mean square error (MSE). 

The MAE represents the average absolute deviation for each statistic which is an indication of 

prediction accuracy. MAE provides a more accurate representation of the actual amount of the 

prediction error, in contrast to other error metrics, by properly addressing the issue of error 
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cancellation. It should be noted that the MAE value is expressed in the same units as the original 

target variable. This feature facilitates comparisons among multiple machine learning models, 

specifically for the target data, rather than across different prediction tasks. The Mean Square 

Error (MSE) denotes the sample standard deviation of the discrepancies between predicted and 

actual values, used as a metric that calculates the ratio between the squared differences of 

predicted and actual values, and the total number of data points. It is worth noting that the MSE 

is more sensitive to outliers compared to the MAE. The coefficient of determination, often 

denoted as R2, measures the strength of the relationship between two variables. It assesses the 

accuracy of the regression equation in fitting the observed data and capturing the variability in 

the dependent variable. Specifically, R2 quantifies the level of the variation in the target 

variable that can be assigned to the changes in independent input variables in a regression 

model. Essentially, it signifies the degree of correlation between the input and target variables. 

It is essential to note that assessing prediction accuracy by using only R2, especially in non-

linear regression, is inadequate. Therefore, in this study, R2 is not the exclusive statistic for 

assessing model performance. Additionally, R2 has certain limitations. Although, the increase 

of independent variables results in a rise in R2, especially in large datasets, a very high value 

of R2 may indicate an overfitted model, while an accurate model may have a reduced R2. 

Negative R2 values also indicate that predictions are worse than the mean target value. MAE, 

MSE, and R2 can be calculated by equations below. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 −  𝑦𝑦𝚤𝚤�)2
𝑛𝑛

𝑖𝑖=1

 

𝑅𝑅2 =  1 −  
∑ (𝑦𝑦𝑖𝑖 −  𝑦𝑦𝚤𝚤�)2𝑛𝑛
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�  )2 𝑛𝑛
𝑖𝑖=1

 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛
�| 𝑦𝑦𝑖𝑖 −  𝑦𝑦𝚤𝚤�|
𝑛𝑛

𝑖𝑖=1

 

With n as total data points, where 𝑦𝑦𝑖𝑖, 𝑦𝑦𝚤𝚤� , and 𝑦𝑦𝚤𝚤�  reflect actual, expected, and mean values 

accordingly. The low MAE and MSE values and the high R2 value imply that the statistical 

model and the analysis are rather faithfully representative. 

Calliper 

A digital caliper was used to measure the physical dimensions of the printed specimens 

with great accuracy (±0.01 mm) during the post-processing stage. Figure 38 shows that the 
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caliper made it possible to accurately measure important geometric parameters including height, 

width, and depth on all of the printed samples. These measurements were important not just 

for making sure that the CAD dimensions were followed, but also for finding and recording 

any dimensional differences or flaws that were produced by problems like warping, powder 

spreading irregularities, or not enough fusion. Along with checking the dimensions, using a 

caliper to look at the surface and edges quickly found faults and inconsistencies. This helped 

with quality control at an early stage before doing more advanced testing for mechanical 

strength or density. 

 

Figure 38 Dimensional accuracy test by calliper and visual imperfections examination 

Instruments used for modal analysis 

Waveform Generator 

 

Figure 39 Signal generator 

The Keysight 33500B Series waveform generator was used as a reliable source of 

stimulation to operate the actuator during vibration testing for this project. It could make stable, 
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carefully controlled waveforms, which made sure that the input signals for making acoustic 

waves through the printed samples were always the same. Specifically, it was set up to send 

out sinusoidal pulses at certain frequencies and amplitudes, which made it easier for waves to 

spread out so that interior material behavior could be tested and structural flaws could be found. 

The 33500B's low jitter performance and ability to modulate helped keep the signal clear during 

the testing process. 

Longitudinal wave DPC transducer 

 

Figure 40 Piezoelectric sensor/actuator 

The ACS S1803 piezoelectric wafer active sensor was used for vibration testing of the 

printed samples in two ways: as the actuator and as the sensor. The S1803 is a high-sensitivity 

piezoelectric ceramic disk that the manufacturer says is best for monitoring the health of 

structures and generating guided waves. Its small size (18 mm in diameter and 0.3 mm thick) 

and wide frequency response make it perfect for sticking directly to the surface of the LPBF-

fabricated samples. 

The S1803 was coupled to a waveform generator (Keysight 33500B) to send regulated 

ultrasonic pulses into the material to get it excited. To find the signals that were sent or reflected, 

the same kind of sensor was put on the other side or in a different part of the sample. This 

technique made it possible to study how waves moved through the material, which was then 

utilized to make guesses about the samples' internal quality and structural consistency. The 

S1803's dependability and sensitivity were very important for making sure that tests could be 

repeated, especially when the printed pieces were small and dense. 
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Signal Acquisition 

 

Figure 41 PicoScope and signal generator connected input/outputs 

We used the PicoScope 3425, a high-resolution differential oscilloscope, to get signals 

and show waveforms. We chose this device because it can accurately measure low-voltage 

signals in noisy surroundings. This is very important when looking at waveforms that are 

moving through dense, metallic LPBF-fabricated samples. 

The PicoScope 3425 has a 20 MHz bandwidth and 12-bit vertical resolution, which was 

enough to capture the intricate structure of the signals it received from the ACS S1803 sensor. 

Its differential input channels were especially helpful for reducing ground loop interference, 

which made sure that signals were captured clearly and accurately while both sending and 

receiving. We used PicoScope software to link the oscilloscope to a PC so we could monitor 

and log data in real time. This let us look at FFT and other signal aspects that are important for 

finding internal defects and checking the quality of the parts we made. 



Enhancing AM Quality through Vibration Analysis and Machine Learning 69 

Test setup 

 

Figure 42 Horizontal setup for rectangular samples 

We attempted a few different setups to do vibration testing on the printed samples. The 

first was a horizontal setup, which worked well for the bigger rectangular samples. We were 

able to measure the frequency response function (FRF) with a fair amount of consistency in 

this setup. But when we used smaller cubic samples, the setup didn't work as well. Because 

they were light and small, it was hard to keep them in touch with the actuator and sensor. 

 

Figure 43 Left: Vertical setup Middle and Right: V-shaped setup 

Two new configurations were made to fix this. The first one had a V-shaped holder that 

was supposed to hold the sample while letting waves pass through. But because the cubes were 

so light, there wasn't enough contact pressure, and the response was too faint. 

The second version put the sample vertically between the actuator and sensor and used 

a simple preload mechanism to keep it in place. This made sure that the signal was sent more 

reliably and that the contact was better. In the end, the vertical setup worked best, especially 

for the little parts and it was used for the rest of the tests.  
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Figure 44 Final Setup 
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Results and Discussion 

The results of the two main investigation routes used in this thesis are presented in this 

part.  While the second half investigates the application of vibration analysis for relative density, 

followed by the creation of a predictive model to improve this estimation, the first part 

concentrates on optimizing process parameters using machine learning approaches. 

 Considering the general process matching these two orientations, guiding the 

arrangement of the activities completed in this phase of the research.  Closely related to the 

approach described in the previous chapter, the first phase of the task consists in data collecting 

from experimental testing, preprocessing procedures, and important feature extraction needed 

for model training.  These elements are essential since the studies carried out in this chapter 

build on them. 

 Measured relative density values—derived using conventional techniques—were 

matched in the first investigative stream with related process parameters including laser power, 

scanning speed, hatch distance, and layer thickness.  Following standard machine learning 

techniques, the dataset was later generated by computing the volumetric energy density (VED) 

and splitting the data into training and testing groups.  Then, using performance criteria like R², 

RMSE, and MAE, several models were trained and assessed to find the best appropriate 

strategies for process parameter optimization.  Using grid search and correlation analysis, 

selected hyperparameters were iteratively tweaked with an eye toward just those most likely to 

affect prediction accuracy. 

 The second stream of study starts with the gathering of printed part vibration signals.  

Fast Fourier Transform (FFT) was used for frequency-domain processing of these signals; 

dimensionality reduction and feature extraction came next.  Relative density was then estimated 

by means of regression models using the obtained vibration properties.  Aimed at improving 

the density prediction by connecting signal properties to known process parameters, this 

intermediate estimation phase produced a new dataset that was then utilized as input for a 

secondary model. 

 Both streams converge in the final assessment phase, in which case model performance 

was evaluated across several method configurations.  The best models and their configurations 

were ultimately chosen depending on their prediction accuracy and consistency; they are 

covered in great length in the next sections. 
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Part 1: Optimizing process parameters 

This initial section of the thesis sets out a comprehensive analysis to maximize the 

response variable RD's regression against the main process parameters power, speed, and hatch 

distance (P,V, and H respectively). Our process consists in various phases: data preparation and 

feature engineering, model selection and hyperparameter tuning across several methods, cross-

validation analysis to evaluate generalization, and last, comparative synthesis. Intermediate 

diagnostics and ultimate results are also presented as figures and tables. When we first set out 

to model the response variable RD as a function of the process inputs P, V, and H, we knew 

that a rigorous experimental design up front would pay dividends downstream. Prior to any 

machine‐learning, we conducted a systematic full‐factorial DOE covering 96 unique 

combinations of laser power (P), scan speed (V), and hatch distance (H). Of these runs, 75 

produced successful parts and were included in our analysis. This comprehensive, evenly 

spaced sampling of the parameter space underpins the reliability of our box‐plot diagnostics 

and ANOVA results. 

1. Data Preparation and Feature Engineering 

This process started by importing the original dataset from dataf.txt, which contained 

columns for P, V, H, a pre-computed variable VED, and the measured outcome RD. Summary 

of the data is reported below: 
 

P V H VED RD 

COUNT 75.000000 75.000000 75.000000 75.000000 75.000000 

MEAN 250.666667 680.000000 0.114533 120.080000 98.074737 

STD 76.447002 230.158582 0.011306 56.489836 0.945490 

MIN 100.000000 400.000000 0.100000 38.000000 95.650400 

25% 200.000000 400.000000 0.100000 81.500000 97.690600 

50% 250.000000 600.000000 0.110000 106.000000 98.333800 

75% 300.000000 800.000000 0.120000 151.000000 98.629050 

MAX 350.000000 1000.000000 0.130000 292.000000 99.936200 
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Table 4 ANOVA results: main effects and interactions. 

Source DF Adj SS Adj MS F-Value P-Value 

Power [W] 5 14.5866 2.91733 5.74 0.000 
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SS [mm/s] 3 19.7558 6.58527 12.96 0.000 

HD [mm] 3 0.1137 0.03790 0.07 0.973 

Error 63 32.0189 0.50824 
  

Total 74 66.1523 
   

 

 

Figure 45 Residual Plots for Relative Density 

In practice, after collecting the raw RD measurements, we generated box plots of RD 

stratified by each factor level. The tightness of those boxes and the absence of extreme outliers 

confirmed that measurement noise was low and that each factor’s variation was indeed driving 

changes in RD. We then conducted a general linear model ANOVA using Minitab software—

treating P, S, and H as categorical for this stage—to quantify each factor’s main effect and any 

two-way interactions. The ANOVA table (Table 4) revealed that P and S were highly significant 

(p < 0.001), whereas the H interaction was low. Armed with those F-ratios, we felt confident 

that our downstream models were targeting the right variables and that no lurking confounders 

remained. 
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To visualize the dependence of RD on each factor, the results are shown on plots: 

 

Figure 46 Main effects plot for RD 

Box plots to find potential outliers: 

 

Figure 47 Power distribution 
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Figure 48 Hatch Distance distribution 

 

Figure 49 Scan Speed distribution 

 

Figure 50 Relative Density distribution 

Next, each of the three retained features—P, V, and H— was standardized to zero mean 

and unit variance. This scaling was embedded within every modeling pipeline to ensure that 

each cross-validation fold refitted the scaler on its own training partition, eliminating any risk 

of “data leakage.” Table 1.1 summarizes both the original and engineered features, including 

the calculated VED and a handful of candidate interaction terms (e.g. P/V,  P×H) that were 

explored briefly but ultimately set aside in favor of the core three dimensions. 
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First Modeling Attempt: Ridge Regression with Nested CV and Grid Search 

The initial surrogate‐modeling effort focused on a degree-2 Ridge regression, for three 

main reasons: 

1. Multicollinearity 

The candidate features—laser power (P), scan speed (V), hatch distance (H), their 

interaction (P×V), and the physics-driven volumetric energy density (VED)—exhibited 

high variance‐inflation factors (VIFs ≫10), indicating severe collinearity. Ridge 

regression adds an L₂ penalty on coefficients, which stabilizes estimates in the presence 

of correlated inputs and yields a uniquely determined solution even when ordinary least 

squares would fail or produce wildly varying weights. 

2. Interpretability 

Unlike black‐box ensembles or deep learners, a linear Ridge model lets us directly 

inspect the influence of each feature (after accounting for the regularization strength α), 

which is valuable for understanding process physics and building trust with domain 

experts. 

3. Empirical Performance 

4. Early comparisons (see Section 4.6.2) showed that regularized linear models 

outperformed tree ensembles and Partial Least Squares on our small (N = 75) dataset, 

achieving the lowest validation RMSE and highest R². 

Nested Cross‐Validation 

To obtain an unbiased estimate of how our tuned Ridge model would perform on unseen 

data—and to prevent “information leakage” from hyperparameter tuning into our performance 

evaluation—we adopted a nested cross‐validation scheme: 

• Outer loop (5-fold CV): Splits the full dataset into 5 train/test partitions. Each outer‐

test fold is held out for final evaluation. 

• Inner loop (5-fold CV): On each outer‐train subset, we perform a grid search over 

Ridge’s regularization strength α to identify the best λ that minimizes mean squared 

error. 
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This two-tiered structure ensures that hyperparameter selection (inner loop) never “sees” 

the outer test data, yielding a reliable generalization estimate. 

 

 

Figure 51 Visualization of how 5 fold cross validation works, red zone showing the selected 
validation fold at each step 

Hyperparameter Tuning with Grid Search 

Within each inner CV: 

1. Grid definition: 

It was explored:  

α ∈{10−4, 10−3, 10−2, 10−1, 1, 10} 

for the Ridge penalty. 

2. Evaluation metric: 

Models were scored on negative mean squared error (equivalently, RMSE when we back‐

transform) to directly target predictive accuracy on density. 

3. Selection: 

The α yielding the lowest average validation MSE across the five inner folds was chosen 

for that outer‐train split. 

After completing all five outer folds, we aggregated the held-out predictions to compute 

overall Train vs. Validation metrics. 
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First‐Attempt’s Results 

Table 5 Nested CV performance of the degree-2 Ridge model on relative density 

METRIC TRAINING SET VALIDATION SET 

RMSE 0.5300 0.5872 

R² 0.6771 0.5082 

The training R² ≈ 0.68 indicates the model captures over two-thirds of the variance on 

its fitting folds, while the validation R² ≈ 0.51 (RMSE ≈ 0.59) provides a realistic estimate of 

out-of-sample accuracy. 

This reasonably small generalization gap (0.68 → 0.51) confirms that our L₂ 

regularization and cross-validation strategy effectively guard against severe over-fitting, even 

with a small dataset. We saw that Ridge regression, tuned via nested CV and grid search, 

delivers a robust, interpretable surrogate for RD prediction and its validation performance (R²

≈0.51) sets the benchmark for subsequent enhancements—whether via enriched feature 

engineering or more flexible learners. In the next section, we explore non‐linear and ensemble 

methods to see if additional gains are achievable. 

Refinement via Polynomial Expansion 

Having established a reliable linear Ridge baseline, we next asked whether mild non-

linearities could boost performance. We therefore embedded our features in a degree-d 

polynomial basis and re-ran the nested CV + grid-search over both d and the L₂ penalty α. 

Table 6 Impact of polynomial feature expansion (nested CV results). 
* Degree was chosen per-fold via inner–loop tuning over {1,2,3,4} 

MODEL POLYNOMIAL 
DEGREE D 

TRAIN 
RMSE 

TRAIN 
R2 

VALIDATE 
RMSE 

VALIDATE 
R2 

RIDGE 
(BASELINE) 

1 0.5300 0.6771 0.5872 0.5082 

RIDGE + 
POLY 

up to 4* 0.4298 0.7867 0.5866 0.5124 

 

Training fit improved dramatically with polynomials (R2→0.79), as one would expect 

given the added flexibility. Validation accuracy rose only marginally (R2 from 

0.5082→0.5124), indicating most of the true signal was already captured by the quadratic 
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interactions. Also, a small generalization gap (Train R2−Val R2 ≈ 0.27) persists, suggesting 

residual noise or unmodeled effects. 

Choosing the Final Polynomial Degree 

Rather than hand-picking d, the nested CV tracked the optimal degree on each outer 

fold: 

Table 7 Frequency of best d across folds. 

DEGREE D SELECTED IN 

HOW MANY FOLDS 

1 1 

2 2 

4 2 

 

Because degree 2 was chosen most often and balances complexity vs. gain, d=2 was 

selected for the final surrogate. 

Summary of the results 

Six surrogate models were compared via nested 5-fold CV (80 % train/20 % hold-out): 

Table 8 Nested CV comparison of surrogate models. 

MODEL VAL RMSE VAL R² 

RIDGE (DEG 2) 0.57± 0.03 0.56 ± 0.10 

LASSO (DEG 2) 0.57 ± 0.04 0.55 ± 0.09 

OLS (DEG 2) 0.57 ± 0.05 0.55 ± 0.10 

PLS 0.62 ± 0.06 0.48 ± 0.09 

RF 0.66 ± 0.07 0.46 ± 0.11 

GBR 0.63 ± 0.05 0.50 ± 0.08 
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Among all evaluated models, Ridge regression demonstrated the best overall 

performance and was therefore selected as the final predictive model. Given the limited size 

and inherent noise in our dataset—partly due to the accuracy constraints of the Archimedes 

test—the achieved R² score is considered acceptable. With a larger number of samples and 

improved measurement precision, the model's predictive accuracy is expected to improve 

significantly. 

 

Figure 52 Predicted vs. Acutal RD 

The scatter plot compares the predicted RD values to the actual measured RD values 

that were found using the best regression model, which was Ridge with polynomial features of 

degree 2. The red dashed line shows the best situation, when predictions are exactly correct 

(i.e., Predicted RD=Actual RD). 

We can see from the map that there is a usually good alignment along the diagonal, 

which means that the predictions are very accurate. Most forecasts are within a ±1% standard 

deviation range, which is OK because Archimedes-based density measurements can be noisy. 

A few samples that were expected to be lower than they actually were, are shown below the 

line, especially in the lower RD range. This is probably because of noise or parameter 
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combinations that weren't well represented. This plot shows that the model can accurately 

capture the main connections between process parameters and the resulting RD values. 

Correlations maps 

 At four fixed hatch distances (0.10 mm, 0.11 mm, 0.12 mm, and 0.13 mm), these four 

subplots show the model's predicted RD response across a grid of laser power and scan speed 

values. 

Observations: 

Interaction of Power and Speed: The relationship in all four charts is not linear. At 

initially, the RD goes up with power, but it could level off or go down at higher speeds since 

the energy density goes down.  

Hatch Distance Effect: When hatch distance changes from 0.10 mm to 0.13 mm, the 

peak RD values shifts towards right. The optimal region gets smaller, especially for 0.13 mm, 

Figure 53 Surface Plots of Predicted RD Across Power and Speed for Varying Hatch Distances 
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which implies it is more sensitive and less tolerant of changes in parameters. In general, the 

RD values are lower at larger hatch spacing, which makes sense because there is less overlap 

and energy density.  

These charts help understanding how laser settings work together and how slight 

changes in hatch distance affect the ideal time to densify. When setting up or improving a Laser 

Powder Bed Fusion (LPBF) process, these surface maps can assist picking the proper settings. 
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Part 2: Classification based on modal analysis 

FFT Results 

After achieving the vibration analysis of the samples, all the results were investigated 

to find the useful part of the response. A noisy region among 0-150 kHz frequencies were seen 

in which the results are not reliable. The excitation range was kept between 0-400 kHz as  

sweep sinusoidal waves for all the samples, so the final selected frequency band was 150-390 

kHz for the next steps. 

 

Figure 54 a schematic of collected FFT lines from the experiment 

Simulation in Ansys WorkBench to show FRF – RD relation 

 

Measuremen

Excitati
Dummie
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After defining the geometry and boundary conditions in Ansys, I tried to model the 

modal and harmonic response of the system. By changing the relative density of the sample, a 

shifting of the peaks was seen. 

 

Figure 55 Variation in the frequency response by changes in the RD of the sample: Top: RD=1.00, 
middle RD=0.99, Bottom: RD=0.95 

Generally, peaks moved towards the left side by a reduction of relative density. 

 

Moving back to the simulation of the cubic samples, I tried to find out the effect of 

height changes on the harmonic response. 
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Figure 56 Evaluating the effect of Geometry (Height) on FRF 

Here we see a different trend, peaks shift without seeing a general behaviour as some 

of them shifted towards right and some towards left, emphasizing the need of a machine 

learning model to understand the behaviour. 

Machine learning classifier 

First step to train the classifier was to label the samples as healthy or damaged. Based on 

Archimedes results, a threshold to define the categories was selected: 

By choosing the conventional RD>99% as healthy, only 7 samples were available to train the 

model. A less strict criterion to enrich the dataset, RD>0.988% resulted in 15 healthy samples 

(Class 1) and 56 damaged (Class 0). Then to reduce the number of features and make it uniform 

for all the samples, interpolation was done to have 10,000 features for each sample: reducing 

from over 32,000 nosiy features. The next step was to understand how many of these features 

are important for the model.  
Overview of Models Evaluated 

We evaluated eight off-the-shelf classifiers with a simple preprocessing pipeline 

(standard scaling → global LARS feature-selection → classifier): 

• Decision Tree 
• Naïve Bayes 
• Linear Discriminant Analysis (LDA) 
• k-Nearest Neighbors (k = 5, 10, 15) 
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• Support Vector Classifier (SVC) 
• Multilayer Perceptron (NN) 

A first 5-fold cross-validation sweep showed the top three performers to be 5-NN, SVC, 

and NN, which we then carried forward to our leakage-free evaluation. 

 
Nested CV & Per-Fold Feature Stability 

To avoid any information leaking from test folds into feature selection, we embedded 

the LARS selection step within a nested cross-validation: 

1. Outer 5-fold split: reserves one fold for final testing. 
2. Inner 5-fold split on each training set: 

o Run LARS with 50 nonzero coefficients 
o Bin each selected frequency into 5 kHz intervals 
o Record which bins each inner fold chooses 

The per-fold optimal parameters for each model were: 

Table 9 Hyperparameters chosen in each outer fold 

Model Outer-fold Params (fold 0…4) CV Acc ± Std 

5-NN n_neighbors=5 (all), n_coefs={20,50,50,20,20}, 
stability_pct={0.6,0.8,0.8,0.2,0.8} 

0.733 ± 0.052 

SVC C=10 (all), n_coefs={50,20,50,20,20}, stability_pct={0.8,0.4,0.8,0.4,0.4} 0.748 ± 0.075 

Neural 
Net 

α = 1e-4 (4/5), hidden_layer_sizes={(100),(50),(50),(50),(100)}, 
n_coefs={50,20,80,80,80}, stability_pct={0.2,0.2,0.8,0.4,0.2} 

0.806 ± 0.083 
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Stability-Threshold Sweep 

Next, we treated the stability_pct (The minimum fraction of the inner CV folds in 

which a given 5 kHz frequency bin (i.e. rounded group of raw freq-points) must have been 

selected by LARS in order to be kept for the final model.) as a tunable hyperparameter. We 

swept thresholds from 20 % to 100 % and recorded both CV accuracy and resulting feature-

count: 

 

Figure 57 Accuracy (solid lines) and number of 5 kHz bins (dashed) vs. stability threshold. 

• 5-NN peaks at ~82 % Acc around 30–40 % threshold (≈28 bins). 
• SVC is flat at ~76 % Acc across 20–100 % (≈27 bins). 
• NN only retains features at 50 % or ≥ 90 %, with a high point of ~76 % Acc 

(≈27 bins). 
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Figure 58 Per-fold feature-selection highlights compared for 2 samples of class 0 vs 2 samples of 

class 1 to show the most important peak regions 

Final Hyperparameters & Feature Sets 

By majority vote over the five outer folds (and guided by the sweep above), we fixed: 

Table 10 Selected hyper parameters for each model 

Model Classifier Params Stability Pct 
5-NN n_neighbors=5 40 % 
SVC C=10 60 % 

Neural Net α=1 × 10⁻⁴, hidden=(50) 50 % 

We then retrained each pipeline (scale → LARS50 → stability-filter → classifier) on 

all 71 samples and re-ran 5-fold CV to get the final unbiased estimates. 
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Figure 59 number of features selected by final models 

 
Final Performance 

Table 11 Final cross-validated performance on stability-selected feature sets 

Model CV Accuracy ± Std AUC # Features 
5-NN 0.790 ± 0.071 0.76 7603 
SVC 0.790 ± 0.071 0.80 3958 

Neural Net 0.806 ± 0.083 0.81 4998 

Note on “stability_pct”: this parameter governs how many 5 kHz bins (not individual 

raw points) must have been chosen by LARS in the inner CV folds. Once those bins survive 

the threshold (e.g. 40 % for 5-NN/SVC, 20 % for NN), all original FRF points within those 

bands are retained—yielding the thousands‐of‐features counts above. 
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Figure 60 (Top) Confusion matrices aggregated over 5-fold CV. 

(Bottom) ROC curves with area-under-curve. 

All three models achieve high true-negative rates (> 90 %) and moderate true-positive 

recall (25–35 %), with the Neural Net attaining the highest overall discriminative ability (AUC 

0.81). 
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Discussion and Conclusions 

In this work two complementary objectives were addressed for improving LPBF quality 

assurance: 

1. Building a regression model to predict the relative density (RD) from process 

parameters and surface‐map diagnostics. 

2. Developing a classification pipeline based on vibration/FRF features and modal 

analysis to distinguish “healthy” from “damaged” specimens. 

Below we discuss key findings from each stream, reflect on limitations, and outline 

avenues for future enhancement. 

Predictive Regression of Relative Density 

Summary of Results 

75 successfully printed SS316L cubes, each described by laser power (P), scan speed 

(V), hatch distance (H), layer thickness, and derived volumetric energy density (VED). 

After standardization, we explored polynomial expansions (up to degree 4) and found a degree-

2 basis to balance flexibility vs. overfitting. 

Nested 5-fold cross-validation to tune Ridge (ℓ₂) penalty α and polynomial degree d, 

rigorously avoiding train-test leakage. Final model: Ridge(α≈0.01) with quadratic terms. 

Metric Train Validation 
RMSE (RD, %) 0.43 0.59 
R² 0.79 0.51 

 

• Predicted vs. actual RD aligned tightly along the 1:1 line (±0.6 %), indicating strong 

capture of the main process–density physics. 

• Surface-map visualizations (Fig. 53) revealed the non-linear interplay of P and V at 

fixed hatch distances, yielding guidance for parameter selection in the 80–150 J/mm³ 

VED range. 

Limitations & Future Directions 

With only 75 points, validation σ(RD) ≈ 0.59 % reflects both measurement noise 

(Archimedes ±0.2 %) and process variability. 
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The modest R²gap (0.79 → 0.59) suggests residual unmodeled effects—e.g. powder‐

bed thermodynamics, layer‐to‐layer thermal coupling. 

Future improvements 

Expand dataset to cover intermediate VED regimes and additional layer‐thickness 

levels. 

Enrich features with thermal‐imaging metrics or melt‐pool monitoring signals. 

Uncertainty quantification via Bayesian Ridge or Gaussian‐process regression to 

provide prediction intervals, critical for setting safety margins in part certification. 

 

Classification via FRF & Modal Analysis 

Summary of Results 

“Healthy” ≥ 0.988 RD (Class 1) vs. “Damaged” < 0.988 RD (Class 0), yielding 15 vs. 

56 samples. 

Each specimen’s FRF interpolated to 10 000 uniformly spaced frequency points (150–

390 kHz). 

Per-fold LARS(50) + 5 kHz binning + stability-thresholding selected ~30 bins, 

corresponding to ~4 000–8 000 raw points. 

Eight classifiers screened: Decision Tree, Naïve Bayes, LDA, 5/10/15-NN, SVC, MLP. 

Top-3 (5-NN, SVC, NN) underwent nested CV to jointly tune hyperparameters (k, C, α, hidden 

units) and stability_pct. 

Final Pipelines & Performance 

Model k/C/α & 
architecture 

Stability_pct # Bins → # Raw Feat. CV Acc ± 
σ 

AUC 

5-NN k = 5 40 % 28 bins → 7 683 pts 0.79 ± 0.07 0.76 

SVC C = 10, RBF 40 % 27 bins → 3 958 pts 0.79 ± 0.07 0.80 

NN 
(MLP) 

α = 1e-4, 50 units 20 % 30 bins → 4 998 pts 0.81 ± 0.08 0.81 
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Aggregated confusion matrices show > 90 % true negative rate, 25–35 % true positive 

recall. 

ROC curves confirm best discriminative power for the NN (AUC 0.81). 

Limitations & Future Directions 

Class imbalance & number of samples 

Only 15 “healthy” samples limit the robustness of learned decision boundaries—

precision in Class 1 remains low. 

Modal setup variability 

Contact conditions, sensor placement, and sample fixture introduce measurement noise; 

stricter fixture control or laser-vibrometer sensing could reduce this. 

Future improvements 

1. Increase “healthy” examples by printing additional high-density specimens or 

introducing synthetic minority oversampling (SMOTE). 

2. Multi-modal fusion: combine FRF features with CT-derived porosity metrics or 

thermal signals for richer defect signatures. 

3. Uncertainty modeling: use dropout-based Bayesian NNs or ensemble schemes 

to produce confidence measures alongside each prediction. 

4. In-field validation: apply the final models to new builds or larger structural 

components for real-world generalization testing. 

 

Overall Conclusions 

1. Dual‐stream framework—regression for continuous RD prediction and classification 

for binary defect detection—provides a comprehensive toolkit for AM quality control. 

2. Nested cross‐validation with in‐fold feature selection is essential to avoid over‐

optimistic accuracy estimates. 

3. Stability–thresholded binning of LARS outputs yields both interpretability (identifying 

“hot-spot” bands) and computational tractability (thousands vs. 10 000 dims). 

4. While current models reach ~80 % accuracy (regression R²≈0.57; classification 

AUC≈0.81), scaling up sample counts, integrating additional sensor modalities, and 
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embracing uncertainty quantification will be key to pushing toward industrial‐grade 

reliability. 

Collectively, these findings chart a clear path toward real‐time, physics‐informed 

machine-learning workflows for both process‐parameter optimization and non-destructive 

defect detection in metal AM. 
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