
 

 



Abstract 
The search for an alternative propulsion system for marine transport has returned back to its 

roots, to a technology that has been known for thousands of years, wind propulsion. The need 

to reduce emissions and costs of transporting goods has revived the idea of applying wing sails 

to ships, starting with the experience of high-performance racing sailboats, that have been 

experimenting with this concept for 20 years already. The purpose of this work is to provide an 

innovative framework for wing sail design optimization, known in literature as Surrogate Based 

Design Optimization. The idea is to reduce the computational burden of high-fidelity fluid 

dynamic simulations, that would be too impractical to use coupled with an evolutionary 

algorithm for design space exploration and substituting them with a surrogate model trained on 

as few samples as possible. To account for the complex dynamics and behaviours that a wing 

sail would create on the whole boat, a static model is implemented in the workflow to guarantee 

the analysis of just feasible geometries. Six parameters are used to describe the geometry of the 

wing sails, and they are initially sampled to create a Design of Experiments (DOE) table 

through a Latin Hypercube Sampling technique. In order to minimise the necessary DOE 

individuals, an Adaptive Sampling algorithm is implemented. These initial samples are then 

simulated with 2D unsteady CFD simulations to extract CL and CD values for each design 

point; these data are then used as training dataset for a Neural Network. The training of the 

Neural Network is carried out using the k-fold cross validation technique and the evaluation of 

different error metrics. A 6 Degrees of freedom static model is used to evaluate the equilibrium 

conditions, finding the combination of control parameters that maximises forward speed and at 

the same time guarantees the equilibrium of the system.

The optimal geometry of the wing sail is explored and found by a genetic algorithm that is using 

the overall VMG (Velocity Made Good) as objective function.
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3. Introduction

Wind propulsion has been part of human history for thousands of years: the first sailing vessels 

are traced back to the Egyptians, around 3000/4000 BC. It helped in the development of trade 

and can be considered a great contributor to the growth of Roman, Greek, Viking and 

Phoenicians societies, as well as the human species in general, allowing to discover new 

territories, new cultures and new opportunities. After centuries of sailing boats dominating the 

seas, with the industrial revolutions of the 18th, 19th and 20th century, this kind of vessels lost to 

the more powerful and versatile steam or fuel powered ones, setting the decline of this type of 

propulsion.

Nonetheless, it still kept its presence as a cultural and recreational activity all over the world, in 

events like the America’s Cup, the Vendée Globe, the Ocean Race, SailGP, and also in the 

Olympic games to mention a few.

The oil crisis that took place in the 1980s, involving the sudden increase of oil price, shook the 

economy and the industries, leading to an exploration for alternatives. If energy consumption 

and pollution are taken into considerations too, a need for research for more eco-friendly 

sources arose quickly, involving all engineering fields, marine transport as well.

Research efforts for more sustainable alternatives to fossil fuel propulsion slowed down as soon 

as the oil prices dropped down again, but as reported in (1), all experts agree that, since its new 

rise in 1998, oil price will steadily keep growing, leading to an increase of the shipping cost for 

approximately 90% of the traded goods. Starting from 2008, many ships reduced their cruising 

velocity from 25 to 20 knots, or even to 12 knots, but such a solution is in contrast with the need 

of delivering goods in a timely manner to meet market demands.

As reported in (2), <In a world with volatile energy prices and limited global availability of 

several energy carriers, the possibility of directly harvesting wind energy on board decreases 

operational costs, thereby reducing financial risks as well as emissions=.

Thus, an urge in development of wind propulsion technology is needed, also considering that 

the worldwide merchant fleet produces more than 3% of the total global carbon emissions (1), 

and sail technology is likely to be a valid alternative. Electrification, fuel cells, nuclear power, 

and alternative fuels have the potential to provide carbon-neutral energy for specific trade 

routes, but each technology still faces unresolved challenges.



Although the exact reduction in fuel consumption is debated, the first applications of wind-

assisted propulsion systems made their appearance in 1980, on the tanker <Shin-Aitoku-Maru= 

(3). Since then, there have been various applications and technologies developed. In (1) some 

examples are reported. In 1986, a cargo wind-ship with rigid wing sails was built and generated 

an average annual saving of between 15% and 30%. In the year 2000, a product carrier with 

rigid wing sails was designed by the Danish Ministry of Environment and Energy reported 15% 

savings of fuel. According to (2), the European Maritime Safety Agency reported energy savings 

of up to 30% for ships mounting rotor sails, while savings up to 50% for ships designed ad hoc 

for wind propulsion. An example of such a concept is the Oceanbird project, shown in Figure 

1.

Figure 1 Concept design of the Oceanbird carrier (2)

Due to their conformation and absence of superstructures, low-speed bulk carriers and oil 

tankers could particularly benefit from wind-assisted propulsion. The long distances covered 

and mainly not in restricted waters, means that the wing sails could generate useful thrust 

without compromising significantly manoeuvrability.

Another important application of wing sails that has been researched is autonomous marine 

systems, that are designed to reach location inaccessible or inhospitable for humans. Regarding 

marine robots, researchers have been directed to electric motors or combustion engines, but the 

dependence on board fuel or battery capacity means restrictions in range and endurance. As 



reported in (3), these limitations can be overcome by wind propelled vessels, due to their ability 

of harvesting propulsive power from the environment, instead of storing it on board.

This type of sails found its application in high performance sailing as well. The America’s Cup 

represents the pinnacle of high-performance sailboats, and since its first edition, it led to the 

development of many innovations in sailboat design. The first competition took place in 1851, 

making it also the oldest trophy in international sport.

As stated in (4), <high performance sails such as the ones used on the America’s’ Cup boats, 

required sails whose aerodynamics approach those of rigid wings=.

The first appearance of this technology in the Cup was in 1988 thanks to the intuition of Dennis 

Connor. A last minute <Deed of Gift= challenge coming from a New Zealand team meant that 

the American team, winner of the previous edition, had no time to design and build a new boat, 

so Dennis Connor partnered up with some airplane designers to design a rigid wing instead of 

a traditional cloth one.

The difference in performance between the two boats was astonishing, showing that the hard 

sail was far superior in all points of sail. The wing sail catamaran ended up beating the large 

monohull with a soft sail by about 20 minutes each race.

Due to the court battles over the validity of the boats, the following 5 editions took place in 

traditional monohulls, very similar one to another. Rigid wing sails appeared again in the 2010 

edition in another Deed of Gift match between Alinghi Team and BMW Oracle Team, in which 

both teams showed up with two 110 feet long catamarans. Alinghi was mounting a huge soft 

sail plan capable of doing 2.5 times the wind speed, while BMW Oracle had developed a huge 

223 feet wing sail, capable of doing 3 times the wind speed. The American team dominated all 

the races by more than 5 minutes, leading to the adoption of such wing sails in the rule books 

of the following editions (5).



Figure 2 BMW Oracle on the right, Alinghi Team in the top left image. The two boats side by side in the bottom left image - 
Americas's Cup 2010 (5)

Figure 3 Luna Rossa AC72 mounting a wing sail in San Francisco Bay in 2013 (5)

With this in mind, this work aims at proposing an innovative workflow to optimize a wing sail 

that could be mounted on a racing boat. The case study has been chosen being Glaros, a R3 

class foiling skiff, developed and built by the Polito Sailing Team, in 2020/2021. The Polito 

Sailing Team is a student team from Politecnico di Torino carrying out the design, construction, 

and sailing of Skiff and Moth prototypes, focusing on performance and sustainability of the 

designs. Although wing sails are most often associated with larger vessels, the idea of mounting 

a wing sail on a boat that is not of the size of an AC72 is not new, in fact, there have been some 



prototypes of C-class catamarans that implemented one, as reported in (6), thus the inspiration 

for Glaros. 

Figure 4 Glaros foiling with two sailors from the Polito Sailing Team



4. Background

4.1 Current technologies

The revived interest in wind assisted propulsion didn’t converge on one single type of wing sail 

for all applications. Alternative types of wing sails emerged and reported below:

• Rotor Sails (Flettner rotor)

• Suction wing

• Hard sail

• Soft sail

• Kite

4.1.1 Flettner rotors

Flettner rotors are vertically rotating cylinders mounted on the deck of ships that exploit the 

Magnus effect to generate a thrust force. These cylinders can rotate up to 300 rpm, depending 

on size and application, and are generally made out of composite materials in order to reduce 

weight.

The Magnus effect is a physical phenomenon where rotation creates a thin boundary layer that 

creates a pressure differential across the rotor when exposed to wind. This pressure differential 

creates a force that acts perpendicular to the wind direction. The wind is most effectively 

harnessed when it blows from the side (beam reach relative to the vessel). In addition, the 

amount of thrust generated can be increased or decreased by adjusting the speed of the rotor 

(7). Figure 5 shows a real-world implementation of this technology.



Figure 5 Flettner Rotors in action (8)

4.1.2 Suction wings

Suction wings are advanced propulsion systems that harness wind energy by modifying airflow 

over a wing using small pumps or fans. In typical wings, air close to the surface can become 

turbulent and detach, which lowers efficiency. Suction wings overcome this by using pumps to 

draw in air, eliminating turbulence and maintaining smooth, attached airflow4greatly 

enhancing lift and overall performance. Figure 6 shows an example of suction wings 

application.

Figure 6 Suction wings application (9)



4.1.3 Rigid sails

Rigid, or hard, sails are wing-like structures installed on ships to harness wind energy for 

propulsion, with the aim of increasing propulsive efficiency. Unlike traditional cloth sails, hard 

sails are made of carbon fibre or fibre glass composites, and are designed to function similarly 

to aircraft wings, generating lift to propel the vessel forward.

Hard sails are designed to optimise aerodynamic efficiency. Their rigid structure allows precise 

control of shape and angle, resulting in better performance in different wind conditions. An 

example of such wings is visible in Figure 7.

Figure 7 Rigid sail on an AC45 (10)

4.1.4 Soft sails

Soft sails refer to the conventional sails mounted on sailboats, flexible fabric-based structures 

used to harness wind energy for vessel propulsion. Modern soft sails are constructed from 

durable, lightweight materials such as polyethylene fibre fabrics, which offer enhanced strength 

and longevity in marine environments (11). Figure 8 shows an example of a sailboat with 

common cloth sails.



Figure 8 Soft sails on recreational sailboat

4.1.5 Kite sails

Kite sails are large aerodynamic kites that fly at high altitudes in order to capture stronger and 

more consistent winds, ranging from 200 to 400 meters. They can be used to assist in towing 

vessels and can be dynamically controlled to maximise aerodynamic efficiency to generate 

substantial traction power (often flying in figure eight-shaped patterns) (12). Figure 9 shows a 

real-world application of a kite sail on a ship.

Figure 9 Kite sail application (13)



4.2 Key aspects of sails

It hasn’t been easy to find a comprehensive definition of what a wing sail is, but (3) provided 

one that encompasses the key features: <a wing sail is a rigid structure presenting an airfoil 

cross section which can provide a much better lift/drag ratio than conventional sails= (3).

As it has been done for centuries, sailboats can be powered by traditional cloth sails, and it still 

remains the most common approach. In the previous section alternative types of propulsive 

systems have been presented, but the founding principle remains common to all of them: when 

an airflow encounters a surface, various forces are generated, and if oriented correctly, these 

forces can lead to a forward thrust that is capable of propelling a boat forward, regardless of 

whether it is a cloth surface or a wing sail.

Cloth sails are easier to handle and rely on wind pushing against the cloth or flowing around it 

to generate lift, depending on whether the boat is sailing downwind or upwind. Wing sails are 

rigid, shaped like an airfoil, thus allowing the airflow to better follow the surface of the wing 

and generate lift more effectively. The main advantages of flexible sails are:

• They are easier to handle by a human sailor

• More suitable for lowering and storing, especially in adverse weather conditions or 

mooring

• Allow easy exchange of sails to better adapt to wind conditions

• Easily repairable and modifiable

• Shape and camber of the sail are easily changed by just altering tensions on the lines 

(ropes)

On the other hand, they also present various drawbacks, like:

• Prone to wearing and tearing

• Being controlled by on-board lines, they’re difficult to set perfectly

• Must be furled down or folded to be stored, which degrades the material

• Sensitive to luffing, a fluttering behaviour that occurs then the sail is not correctly 

trimmed

• Even when perfectly trimmed, the maximum lift that can be extracted is not so high

• Require rigid masts and wiring to be held in place



Meanwhile, the key aspects for wing sails can be summarised as follows:

• Increased Lift/Drag ratio compared to conventional sails, which means that for the same 

drag they generate more lift

• More efficient for both downwind and upwind navigation

• More reliable and do not suffer from luffing and flapping, even in light wind

• More easily controlled and set at the perfect angle of attack

• Do not require any additional structural elements

• Challenging to design a wing sail that can be reefed

• Difficult to find a compromise between strong, lightweight and cost-effective structure

4.3 Fluid dynamic forces

The aforementioned forces are generated when an air flow, or more generally any fluid, interacts 

with a surface, and are due to the pressure difference that generates on both sides of such 

surface. This interaction can be illustrated as shown in Figure 10.

Figure 10 Aerodynamic forces decomposition (17)

The resulting force from the fluid-structure interaction can be decomposed into a component 

perpendicular to the flow direction named Lift, and one parallel to the flow direction called 

Drag. On the upper side there’s a higher velocity then the one at the lower side, and according 

to Bernoulli’s principle, this leads to having a higher pressure at the bottom of the airfoil 

(pressure side) and a lower one at the top (suction side), which translates into a force.



Čāāā = ČĀ + 12 ÿĒ2 + ÿĝČ = ęāĀąĆ
This relationship is important because it gives the formulation of the Drag and Lift forces [Ċ], 
i.e.:

Ĉ = 12 ÿĒ2ďÿ�
Ā = 12 ÿĒ2ďÿÿ

in which, ÿ is the fluid density [āąÿ3], Ē2 is the square of the fluid relative velocity [ÿĀ ], ď is the 

planar projection of the surface of the wing [ÿ2], ÿ� and ÿÿ are defined as the lift and drag 

coefficients, respectively. It is important mentioning that ÿ�  and ÿÿ  are influenced by the 

Reynolds number (Ďě = ���Ā )  and by the angle of attack ÿ , which is defined as the angle 

between the chord line of the airfoil and the flow direction. Generally, the ÿ� and ÿÿ values are 

found in polars plotted as a function of Ďě and ÿ, like the ones reported in Figure 11 and Figure 

12.

Figure 11 CL polar for the AH79-100 B airfoil (14)

The same plots are found also for ÿÿ. It is worth noticing that ÿ� and ÿÿ differ by one or two 

orders of magnitude, depending on the angle of attack.



Figure 12 CD polar for the AH79-100 B airfoil (14)

The drag force can be further decomposed into three main components, called form drag (or 

pressure drag), skin friction drag, and induced drag. The first one is generated by the shape 

and size of the airfoil, the second one is generated by the viscous effects on the interface 

between the flow and the airfoil surface, and the latter one is linked intrinsically with the lift 

generation, because at the tip of the wing the low and high pressure zones cause the fluid to 

move from the higher to the lower pressure zone, creating vortexes, thus dissipation and drag.

These definitions are fundamental to understand the function principle of a sail, in fact both 

flexible and rigid wing sails produce lift and drag forces. By acting on the angle of attack of the 

sail, it is possible to modulate the lift force and thus the forward thrust. In fact, the sail’s lift is 

not enough to push the boat forward, but there’s another component of a sailboat that is 

contributing to the generation of the propulsive force, the daggerboard.

4.4 Forces acting on a sailboat

In Figure 13 it is possible to observe the decomposition of the various forces acting on the sail 

and daggerboard, as well as the resulting driving force.



Figure 13 Forces acting on a sailing yacht - top view (15)

To better understand this diagram, another fundamental concept must be introduced, the 

Apparent Wind, which is described by Apparent Wind Angle (AWA) and Apparent Wind Speed 

(AWS). The Apparent wind can be described as the relative wind perceived by the sail when the 

boat is moving, and it is a combination of the True Wind, which is the wind perceived in the 

surrounding environment standing still and the wind created by the motion of the boat. The 

True Wind is defined by True Wind Speed (TWS) and True Wind Angle (TWA). The formulas 

expressing these two quantities are reported below:

ýēý = acos Đēď ∗ cos(Đēý) + Ē√Đēď2 + Ē2 + 2 ∗ Đēď ∗ Ē ∗ cos(Đēý)
ýēď = √Đēď2 + Ē2 + 2 ∗ Đēď ∗ Ē ∗ cos(Đēý)



Figure 14 Apparent Wind Calculations (15)

The daggerboard is a component of a sailboat found at the bottom of the hull, with a symmetric 

airfoil section, whose purpose is to generate a lift force that counteracts the sail force. Since it 

is operating in water and not in the air, the fluid density is a thousand times higher, meaning 

that to generate a comparable force to the sail it requires lower angles of attack, lower velocities, 

and lower surfaces. The lift of the daggerboard is perpendicular to the boat velocity (that 

corresponds to the velocity of the fluid perceived by the daggerboard) and through a vectorial 

summation with the sail lift, the thrust force is obtained.

As most of the components installed a sailboat, the daggerboard presents a symmetric airfoil, 

which means that in order to generate a lift force it requires an angle of attack, corresponding 

to the so called leeway angle, the angle between the actual direction of the boat and the direction 

the boat is pointing to, and it is caused by the sideways force of the wind of the sails (which 

pushes the boat slightly off-course).

The thrust of the sail is counteracted by the resistance of the hull and of the various 

hydrodynamic appendages, which act opposite to the boat’s velocity. The main contributor to 

the drag force is hull resistance, which presents the same components illustrated for airfoil 

sections but with the addition of wave resistance, proportional to the energy lost due to waves 

generated by the hull moving through water.



4.5 Foiling

The difference between a foiling boat and a traditional one is the fact that the former one is 

<flying over of the water= thanks to hydrofoils (which will hereafter be referred to as foils). This 

technology has been known since the 1920s, but just in the last two decades got more traction 

thanks mainly to the America’s Cup. 

Foils can be described as wing-like structures mounted under the hull, to lift the boat out of the 

water as it gains speed. The idea behind foiling boats is to drastically reduce hull resistance and 

improve the velocity of the boat (less drag means more forward speed for the same thrust) and 

allowing also for a smother rider in wavy sea conditions. Naturally, this comes at a price: foils 

generate not only lift but also resistance, so when the hull is not completely out of the water 

drag at low velocity is actually higher compared to a conventional boat, but as soon as it gains 

some speed, the lift produced by the foils lift the hull out of the water and resistance is decreased 

significantly.

Foils are named and classified after the alphabetic letters that resemble, as displayed in Figure 

15, taken from (15). The choice of the airfoil shape and of the foil as a whole, depends on 

various factors, such as desired speed, manoeuvrability, easiness to control and efficiency.

There are primarily two types of hydrofoils, surface piercing and fully submerged ones (15).

• Surface piercing foils form a V-shape and during operation break the water surface, thus 

the name. They are inherently stable because ride height can be controlled passively, so 

no active control system is required. The height is automatically adjusted so that the 

submerged part of the foil has just enough lift to carry the weight of the boat, which 

means that the higher the speed, the smaller the part of the foil in the water.

• T-foils are the simplest example of fully submerged foils, and in this case, the lifting 

surface is independent of ride height, which means that an active control needs to be 

implemented. It must be said that there is a weak control mechanism caused by the free-

surface effect of the water, but it is not sufficient to be exploited for height regulation 

purposes. A typical active control systems mounted on T-foils is a flap, that is controlled 

starting inputs of sensors that measure the ride height.



Figure 15 Different foil shapes and relative names (15)

4.6 Design optimisation

Sailboat design is a very specific niche of naval architecture due to the need to account for the 

presence of sails that apply a driving force and a heeling moment to the yacht. These forces 

affect the stability, motions and appendage design of the vessels, which translates to a very 

complex set of constraints and often conflicting objectives that need to be taken into 

consideration during the optimisation process. An ideal racing yacht design must add further 

complexity by accounting for different performance characteristics, both upwind and 

downwind, in a variety of sea and wind conditions.

Despite significant investments in computational tools, design optimization remained largely 

manual and reliant on designers’ expertise, intuition and incremental adjustments up until not 

so many years ago, due to computational complexity and resources demands. Progress in 



automating design space exploration 3 systematically testing parameters to identify optimal 

configurations was thus needed.

Generally, an optimisation problem can be formulated as:ÿÿĀ  Ă(ý),      ý ∈ ℝĀ/(ý) < 0ĝ(ý) = 0
where ý = (Ċ1, Ċ2, & , ĊĀ)�  is the vector of independent variables that can be modified and 

describe the optimisation problem. The design variables are subject to constraints (equality /Ā(ý) and inequality ĝā(ý) constraints) that define the boundaries of the design space and are 

evaluated using an objective function Ă(ý) (16).

The aim is to push the design of rigid wing sails directly to the optimal zone of the design space, 

requiring as few iterations and incremental adjustments as possible. In Chapter 6 the flowchart 

of the whole optimisation process is shown, which is split into two parts, the creation of the 

surrogate model and the optimization loop itself.

4.7 Surrogate-Based Design Optimisation (SBDO)

In order to perform a useful optimisation within a reasonable time using readily available 

computer hardware, the number of expensive simulations and test must be reduced to the bare 

minimum. It is common knowledge that CFD simulations can be extremely computationally 

expensive, especially in optimisation processes where evolutionary algorithms are adopted and 

imply testing of thousands of individuals.

Surrogate-based modelling optimisation is a technique used to simplify and speed up the 

process of optimising complex systems, particularly in cases where the high-fidelity 

simulations are computationally expensive, like CFD. The idea behind this approach is to build 

a model that approximates the real model from a small number of sampled data. This 

approximation model, called surrogate model can be calculated in advanced using chosen 

samples tested on the high-fidelity model, or alternatively, it can be calculated in real time, by 

progressively being refined using additional samples as the optimisation proceeds.



For a problem in m-dimensional space, it is assumed that the focus is on predicting the output 

of a high-fidelity, costly computer simulation that corresponds to an unknown function ċ: ℝÿ → ℝ. By running these simulations, ċ is observed at Ā sites (determined by the DOE, 

explained in Design of Experiments (DOE)).� = [ý(�), & , ý(ÿ)]� ∈ ℝĀ×ÿ,     ý = {Ċ1, & , Ċÿ} ∈ ℝÿ
þ� = [ċ(1), & , ċ(Ā)]� = [ċ(ý(�)), & , ċ(ý(ÿ))]� ∈ ℝĀ

The pairs (�, þ�) denotes the sampled data in the vector space (17).

 The objective is to build a surrogate model for predicting the output of the <expensive-to-

evaluate= simulations for any untried sample ý  based just on the least possible number of 

sampled data sets (�, þ�), and without compromising the desired accuracy of the results (17).

4.8 Design of Experiments (DOE)

A surrogate model is built on sampled data to obtain an approximation of the cost function of 

the problem, sufficient to predict the output of an expensive computer code at untried points of 

the design space. Sample points can be extracted by using a Design of Experiments (DOE) 

technique, a procedure that aims at extracting the maximum amount of information from a 

limited number of sample points. (17) and (16) provide a very detailed description of the most 

common sampling techniques, which can be classified into two categories, <classic= and 

<modern=.

ÿĈýďďąÿýĈ ĉċĀāĎĊĂćþþ ĂėęĆāĄÿėþ ĈėĆÿĀ ĄċĂěĄęćĘě ďėÿĂþÿĀĝÿěĀĆĄėþ ÿāÿĂāąÿĆě ĀěąÿĝĀ ċĄĆ/āĝāĀėþ ýĄĄėċ ĀěąÿĝĀþāĊ 2 þě/ĀýěĀ đĀÿĜāĄÿ ĀěąÿĝĀĀ 2 ċĂĆÿÿėþ ĀěąÿĝĀ Đėĝćę/ÿ
Table 1 Sampling algorithms



The Latin Hypercube Sampling (LHS) divides the range of each design variable into equal 

intervals, effectively partitioning the design space into distinct subspaces. By allowing only one 

sample per subspace, it ensures that the samples do not overlap, leading to a well-distributed 

and non-redundant set of points.

LHS is particularly useful in applications such as simulation, uncertainty quantification and 

sensitivity analysis, where it helps to obtain accurate estimates with fewer samples than 

traditional methods. Its efficiency and effectiveness in representing complex systems make 

LHS a valuable tool in engineering, risk assessment and other fields where robust statistical 

analysis is required.

Figure 16 Example of distribution of 40 sample points for a two-dimensional problem (left: LHS; right: Uniform Design) (16)

The number of samples to be added to the DOE is proportional to the complexity of the problem, 

the number of variables, the number of outputs and the desired accuracy of the surrogate model. 

There’s no general rule to determine the precise number of samples required, but a rule of thumb 

commonly adopted is to aim at 10 samples per variable, but it is highly-context dependent. One 

of the most influential constraints on the number of samples is the available computational 

resources, since the goal is to obtain enough data to capture all the variables' influences while 

minimising the cost of simulation.

Another possible approach for determining the number of training data points for surrogate 

models is known as <Adaptive Sampling=. To maximize the efficiency of available 

computational resources, training points are not preselected using a fixed sampling plan. 

Instead, they are dynamically added to the dataset based on a specific criterion, so in a way, the 

surrogate model itself guides the placement of these training points.



Another way to reduce the burden of computational cost is the adoption of multi-fidelity 

methods, models that are trained on a combination of data from two or more fidelity (accuracy) 

levels, but these models are beyond the scope of this work (18).

4.9 Surrogate Model candidates

There are a number of surrogate modelling methods in optimisation literature, each one with its 

advantages and disadvantages. (17) and (16) provide a comprehensive analysis of each one of 

these methods, being:

• RSM 

• Kriging

• Gaussian process

• Artificial Neural Network

• Radial Basis Function

• Support Vector Machine

Different surrogate models have some advantages and disadvantages, and each will show better 

features for different engineering problems. After a prolonged literature review, no single 

surrogate model was found to be the most effective for all problems. A deep analysis of each 

method is beyond the scope of this work, so only the details of the most common ones are 

reported.

4.9.1 Response Surface Method

The expression Response Surface Method ( Ďďĉ ) is usually used to refer to low order 

polynomial approximation models, especially quadratic polynomial models. Second order 

polynomials generally offer the best compromise between the modelling accuracy and 

computational expense, when compared with the linear or higher order polynomial models.

A significant advantage of such models is the capability of smoothing out numerical noise in 

the data while capturing the global trend of the variation, making it very robust, thus well suited 

for optimisation problems.

The Ďďĉ can be formulated in the following form:ċ(ý) = ċ�(ý) + �



where ċ�(ý)  is the quadratic polynomial approximation and �  is the random error (normally 

distributed with zero mean and variance ÿ2.

ċ�(ý) = Ā0 + ∑ ĀÿĊÿÿ
ÿ=1 + ∑ ĀÿÿĊÿ2 + ∑ ∑ ĀÿĀĊÿĊĀÿ

Ā≥1
ÿ

ÿ=1
ÿ

ÿ=1
In this formulation, Ā0, & , ĀÿĀ are the unknown coefficients to be determined (17).

4.9.2 Artificial Neural Network

An Artificial Neural Network (ýĊĊ) is a network composed of multiple simple processors, 

known as units or neurons, interconnected by communication channels or connections that 

facilitate the transmission of encoded numeric data. The units operate exclusively on the local 

data and input they receive via the connections, applying a multiple linear regression followed 

by a non-linear transformation on the output value. This transformation, or activation function, 

is most commonly a sigmoidal function (16).

Figure 17 Neuron with activation function (19)

ÿ = ∑ ĉÿĊÿ + ĀĀ
ÿ=0ċ = 11 + ě2�{Ċ1, Ċ2, & , ĊĀ} are the inputs to each neuron, the regression coefficients are designated by the 

weights {ĉ1, ĉ2, & , ĉĀ}, and Ā is the <bias value= of the neurons.

Neural network can present in different architectures and topologies, but the most commonly 

found in engineering applications is the Multi-Layer Perceptron (ĉĈČ). This type of network 



shows an input layer, one or more hidden layers and one output layer. Both the number of 

neurons and the number of layers can vary and need to be optimised.

Figure 18 Multi-Layer perceptron (16)

4.9.3 Kriging

Kriging model, also known as Gaussian process model, is an interpolation technique based on 

covariance function. It is based on the assumption that the true response can be modelled as

ĕ =  ∑ ĀÿĜÿ(ý) + Ė(ý)ÿ
ÿ=0

where Ĝÿ(ý) is the regression basis function (generally a constant or low-order polynomial), Āÿ 
denotes the corresponding coefficient, Ė(ý)  is a stochastic process with zero mean, and 

covariance given by ÿāĈ(Ė(ý), Ė(ý′)) = ÿ2Ď(ý, ý′)
with Ď(ý, ý′) correlation function dependent only on Euclidean distance between ý and ý′ in 

the design space. Usually, a Gaussian exponential correlation function is adopted, in the form 

Ď(ý, ý′) = exp [2 ∑ �āÿ
ÿ=1 |Ċā 2 Ċā′ |Ă�       , 1 < Ăā ≤ 2

where Āā and Ăā are the tuneable hyperparameters of the model.

The Kriging model is composed of a parametric regression model and non-parametric random 

process. Therefore, the Kriging model is more flexible than the general parametric model, and 



at the same time, it overcomes the limitation of non-parametric model in processing high 

dimensional data and has stronger prediction ability.

4.9.4 Radial Basis Function (RBF)

Radial Basis Function networks (RBF) show a very similar structure to Multi-Layer Perceptron 

networks, but they use a different activation function. Instead of sigmoidal activation function, 

RBFs use linear combinations or radially symmetric basis functions that can be modelled as

ċ(ý) = ∑ ĉÿ� ||�
ÿ=1 ý 2 ý� ||

 with ý is the vector of inputs, ĉÿ are weighting coefficients, ý� are RBF centres, || ∙ || denotes 

the Euclidean norm, and � is typically a Gaussian function (16)�||ý� 2 ý�|| = exp [2Ā||ý 2 ý�||2]

Figure 19 RBF architecture (16)

4.10 Surrogate model training

To estimate the test error associated with fitting a particular statistical learning method on a set 

of observations, the validation set approach can be employed, a method which involves 

randomly dividing the available data into two parts: a training set and a validation (or hold-

out) set. The model is trained on the training set, and its performance is evaluated by predicting 

the responses for the observations in the validation set. The resulting error rate gives an idea of 

the accuracy of the model’s prediction capability.



The validation set approach is conceptually simple and easy to implement, but it shows a major 

drawback: the test error can be highly variable depending on which points are included in the 

training set, and which are included in the validation set (20).

In the following section a refinement of the validation set approach that addresses this issue is 

presented, cross-validation.

4.10.1 Leave-One-Out Cross-Validation

Leave-one-out cross-validation (LOOCV) is a specific type of cross-validation where the 

number of folds equals the total number of data points in the dataset. A single observation (Ċ1, ċ1) is used for the validation set, and the remaining observations {(Ċ2, ċ2), & , (ĊĀ, ċĀ)} 

make up the training dataset. The surrogate model is trained on Ā 2 1 observations (where Ā is 

the number of total observations) and a prediction ċ� is made on the sample Ċ1.

The ĉěėĀ ďăćėĄěĚ āĄĄāĄ ĉďā1 is an unbiased estimate for the test error, since Ċ1 was not 

used in the fitting process. This procedure is repeated selecting (Ċ2, ċ2) as new validation set, {(Ċ1, ċ1), (Ċ3, ċ3), & , (ĊĀ, ċĀ)} as training set and computing ĉďā2 = (ċ2 2 ċ2�)2, and so on 

for all Ā points.

LOOCV estimate for the test ĉďā is the mean value of all Ā test error estimates

ÿĒ(Ā) = 1Ā ∑ ĉďāÿĀ
ÿ=1

This method maximises the training data used in each iteration, which can lead to an almost 

unbiased estimate for the model’s performance. However, it is computationally intensive, 

especially for large datasets. Another great advantage of this approach is the fact that there is 

no randomness associated with the training/validation set splits, in fact, this approach tends not 

to overestimate the test error rate as much as the validation set approach does (20).

4.10.2 ý 2 �Āþþ Cross-Validation

An alternative approach to LOOCV that involves randomly dividing the set of observations into ý groups, or folds, of approximately equal size. For each iteration, one-fold is reserved as the 

test set while the remaining ý 2 1 folds are used to train the model. Once the model is trained 

it is evaluated on the test fold, and ĉďāÿ is computed on the observations in the held-out fold.



This procedure is repeated ý times and each time, a different group of observations is treated 

as a validation set, resulting in ý estimates of the test error, ĉďā1, & , ĉďāā. The ý-fold CV 

estimate is computed by averaging these values

ÿĒ(ā) = 1ý ∑ ĉďāÿā
ÿ=1

LOOCV can be considered a particular case of ý-fold CV, in which ý = Ā. The advantage is 

quite simple: computational effort required. Typical values of ý are ý = 5 and ý = 10.

Although it may seem a little counterintuitive, apart from the computational cost ý-fold presents 

another advantage, that is related to Ęÿėą 2 ĈėĄÿėĀęě trade off.

4.10.3 Bias-Variance trade off

Bias-variance trade-off is a fundamental concept in machine learning, that explains the balance 

between two sources of error in predictive models.

Bias is the error arising from oversimplified assumptions in the model. High-bias models 

underfit, failing to learn meaningful patterns in the data, while variance is an error caused by 

excessive sensitivity to training data fluctuations. High-variance models overfit, memorising 

noise instead of generalizable trends and performing poorly on new data.

Figure 20 Explanation of Bias-Variance  trade-off (21)

The trade-off lies in optimising model complexity to reduce total error, represented 

mathematically as:ĐāĆėþ āĄĄāĄ = (þÿėą)2 + ĒėĄÿėĀęě + ąĄĄěĚćęÿĘþě āĄĄāĄ



ć-fold cross-validation presents a bias-variance trade-off when estimating test error. Although 

LOOCV uses nearly the entire dataset for training and thus provides nearly unbiased error 

estimates, it suffers from high variance because the models, trained on nearly identical data, 

produce highly correlated predictions. In contrast, ý-fold CV (with ý < Ā) uses training sets 

that are slightly smaller, which introduces some bias, but the resulting models are less 

correlated, leading to lower variance in the error estimates. Empirical evidence suggests that 

using ý  = 5 or ý  = 10 offers a good balance between bias and variance, resulting in more 

accurate test error estimates overall (20).



5. Glaros’ description

As already mentioned, the case study for this work has been chosen being Glaros, a R3 class 

foiling skiff, developed and produced by the Polito Sailing Team, competing in the <1001 Vela 

Cup=, a student regatta organised in Italy every September.

Glaros is mounting two J-foils (outward) and a T-foil, that serves as the rudder as well. Figure 

21 shows Glaros in action flying above the water in its current set up, while Table 2 reports the 

main dimensions and measurements.

Figure 21 Glaros flying

Figure 24, Figure 23 and Figure 24 show different views of Glaros. They are intended to give 

the reader a comprehensive idea of the boat.



Figure 22 Glaros rendering



Figure 23 Side view of Glaros

Figure 24 Front view of Glaros



ĀąĉāĊďąċĊ ĒýĈđāĈěĀĝĆ/ ċĈěĄ ýþþ (Ĉċý) 4.62 ÿĈěĀĝĆ/ ēėĆěĄ ĈÿĀě (ĈēĈ) 4.45 ÿĉėĊ þěėÿ 1.34 ÿĀĄėĜĆ 0.12 ÿĉėąą 124.5 ýĝďėÿþāĄ’ą ÿėąą 70 ýĝĊ° āĜ ąėÿþāĄą 2Ċ° āĜ Ć 2 Ĝāÿþą 2Ċ° āĜ Đ 2 Ĝāÿþą 1
Table 2 Glaros' measurements

The total lift generated by the foils is equal to the weight of the whole boat (that consists of hull 

weight and rigging) and the two sailors, split between the two J-foils and the rudder. The 

distribution is 72% on the J-foils and 28% on the rudder.

Figure 25 Local reference frame for the boat's dimensions



Other relevant information is contained in Table 3, in which the positions of the CoG of the 

main components are given with respect to a reference frame whose origin is on the deck at the 

bow (see Figure 25), Ċ axis aligned with the symmetry axis of the boat pointing forward, Č axis 

on the symmetry plane perpendicular to the Ċ  axis pointing downward, and ċ  axis 

perpendicular to both Ċ and Č axes and point to starboard (right-hand side).

ÿāÿĂāĀěĀĆ Ĕ ęāāĄĚÿĀėĆě [ÿ] ĕ ęāāĄĚÿĀėĆě [ÿ] Ė ęāāĄĚÿĀėĆě [ÿ]Ć Ĝāÿþ ĀĔ 22.15 0.4 1.1Ć Ĝāÿþ ďĔ 22.15 20.4 1.1ĎćĚĚěĄ 24.7 0 1.34ĀėĝĝěĄĘāėĄĚ 22.42 0 0.87þāėĆ ÿă 22.6 0 0.10
Table 3 Main components coordinates

In order to compute the Centre of Gravity of the whole system the sail and the sailors’ must be 

accounted for, but they are not reported in Table 3 because the local CoG of the two elements 

is a function of design variables used in the optimisation process, thus not reported in this 

section.

Figure 29 and Figure 29 report the main dimensions of the J-foils and rudder respectively.

Figure 26 Glaros J foil – front view



Figure 27 J foil main dimensions

Figure 28 Rudder foil – front view



Figure 29 Rudder foil main dimensions

Glaros was conceived with a soft sail plan of 33 ÿ2, imposed by the 1001 Vela Cup rulebook, 

distributed on of three sails: a mainsail, a jib and a gennaker. The respective surfaces are 

reported in Table 4 Sails surface areasTable 4.ďýąĈ ďđĎĂýÿā 2 [ÿ2]ĉėÿĀąėÿþ 16ĆÿĘ 6ăěĀĀėýěĄ 11
Table 4 Sails surface areas

This distribution translated into a design constraint for the wing sail as well: the maximum 

surface of the wing sail has been thus imposed being equal to 16 ÿ2.



6. Optimisation Workflow

The workflow is split into two branches, one devolved to the creation of the surrogate model 

inputted to the VPP, and the other carrying out the optimisation itself. Figure 30 reports a 

flowchart displaying all the steps of the algorithm.

The training begins with the generation of the DOE via a Python script exploiting a specific 

library. All designs are then simulated with CFD to extract aerodynamic coefficients, which 

serve as the model’s output variables the training is carried out on. In order to minimise the 

number of individuals and still gather the right amount of data, an adaptive sampling algorithm 

is implemented and through Bayesian optimisation, the best combination of hyperparameters 

in pinpointed.

Once the surrogate model has obtained the desired accuracy, it is used as input in Glaros’ VPP 

to predict sail performance. A genetic algorithm is used to explore globally the Design Space 

of the geometric parameters, and each individual generated is tested with the VPP and highest 

reachable VMG is evaluated, iterating until the algorithm converges.



Figure 30 Optimisation flowchart



7. Geometry creation

For the previously explained framework to work, it is necessary to have a method that creates 

from scratch a complete sail geometry (parametric modelling), or alternatively, be able to 

deform an existing design to match the design parameters required (parametric 

transformation).

In literature several approaches are proposed to parametrise a wing sail geometry. In (16) 

various technique are reported for hull shape optimisation, but nothing prevents applying the 

same concepts for sail geometries as well.

When dealing with different geometry testing, a very popular approach is the mesh morphing 

technique, which has the main advantage of operating directly in the numerical domain in the 

simulation environment, as shown in (22), but it wasn’t quite suitable for this application.

Another interesting approach is proposed in (23), where a simplified CAD-based parametric 

model developed in Rhino 3D- Grasshopper and based on B-spline curves is presented, though 

being applied on a soft sail.

Regarding rigid wing sail geometries, two main approaches have been analysed, described in 

(24) and (25). In the former one, the parameters reported in Figure 31 are used to explore the 

effect of chord length ratio in a two elements wing sail, meanwhile in the latter an aerodynamic 

analysis with URANS and LES simulations are carried out.

Figure 31 Geometry parametrisation adopted in (24)



Figure 32 Geometrical parameters adopted in (25)

The final design variables chosen for Glaros’ sail are those of Figure 32, schematised in Table 

5.

ČýĎýĉāĐāĎ ďĕĉþċĈĉėÿĀ ěþěÿěĀĆ ę/āĄĚ ÿ1ĂþėĂ ěþěÿěĀĆ ę/āĄĚ ÿ2ăėĂ ă% ÿ1 ČĎýÿĄĜāÿþ ąěęĆÿāĀ ÿėÿĀ ā1ýÿĄĜāÿþ ąěęĆÿāĀ ĜþėĂ ā2þāāÿ ėĀĝþě ÿĂþėĂ ĚěĜþěęĆÿāĀ Ă
Table 5 Final parameters adopted

ā1 and ā2 are not properly treated as thicknesses of the airfoils, but they are integer values 

used as indexes to choose different txt files from which various airfoils can be imported in the 

CAD modeller to create different wings. In this particular case, the algorithm can choose 

between four different symmetric NACA airfoils, precisely Ċýÿý0012 , Ċýÿý0015 , Ċýÿý0018 and Ċýÿý0020.

In order to carry out an automatised surrogate model creation process, a Python script has been 

developed for the open-source FreeCAD tool, a general-purpose parametric 3D CAD modeller. 



Python’s most widespread use is as scripting language embedded in applications, like 

FreeCAD, and it can be run from Python console or from customs scripts, called <macros=.

For the purpose of this thesis, a custom Python script has been developed, and it is structured 

in the following way:

• Importing of necessary libraries

• Definition of geometrical parameters and relative boundaries

• DOE creation with sampling algorithm

• Execution of geometry creation function

• Export of DOE parameters, input files for CFD simulations and CAD models’ export

The first step is to add FreeCAD paths to <sys.path=, a list of directories where Python looks 

for modules when import statement is used. Then <numpy= library is imported together with 

the <smt= library, that stands for <Surrogate Modelling Toolbox=, an open-source package 

including libraries for surrogate models fitting, sampling methods and benchmarking problems. 

This library is necessary to recall the LHS method and generate the initial geometries. Table 6 

reports the upper and lower boundaries of each parameter.

ČýĎýĉāĐāĎ ĈċēāĎ þċđĊĀýĎĕ đČČāĎ þċđĊĀýĎĕÿ1 950 1550ÿ2 800 1200ă 10 50ČĎ 0.5 1ČĎċĂąĈā1 1 4ČĎċĂąĈā2 1 4ÿ 215 0Ă 215 0
Table 6 Geometrical parameters and relative boundaries

The main functions of this Python script are: given a set of geometrical parameters, export the 

CAD models in iges format, generate a txt file containing the necessary inputs for CFD 



simulations in StarCCM+, which are the two profiles’ chords and rotation angles, and generate 

a csv file containing the parameters of each individual generated. This last csv file is then 

imported into MATLAB and assembled with CL and CD data to generate the training dataset.

This process is illustrated graphically in Figure 33.

Figure 33 Geometry creation workflow

 

The Surrogate Modelling Toolbox (SMT) is a Python library designed to facilitate the 

construction, training and evaluation of surrogate models. It is particularly useful in engineering 

applications where high-fidelity simulations are computationally expensive, and an 

approximate model is required to efficiently explore the design space. In addition, it provides 

several sampling algorithms as well, such as Latin Hypercube Sampling or Full Factorial.

SMT is built on top of several Python libraries and leverages their functionalities to facilitate 

the user in training a surrogate model. The main libraries that SMT is built upon are:

• PyDOE3: sampling for design of experiments

• SciPy: numerical computing and optimisation

• Scikit-learn: machine learning models and evaluation

• Matplotlib: data visualization

In the framework of this thesis just the sampling algorithm has been exploited, to generate a 

distribution of individuals with the Latin Hypercube algorithm.

FreeCAD ended up being the most suitable CAD software because of three features it presented:



• Parametric modeller, which means that designs are created using parameters, thus 

allowing easy editing and modification

• Open source, which means that it is free to use and requires no license to operate

• Scripting and automation capabilities, since it’s highly integrated and scriptable using 

Python (it is even possible to import FreeCAD libraries into external editors like Visual 

Studio Code).

Since the CAD models needed to be imported to be analyses with CFD, the iges format for the 

CAD models was adopted because of its seamless integration with Star-CCM+. IGES stands 

for Initial Graphics Exchange Specification, and it is a vendor-neutral file format, which means 

that it allows exchange of information among CAD systems and other software, being thus 

perfect for this application.

A MATLAB script was used to launch the simulations of each wing sail automatically.

Figure 34 Full geometry-simulation workflow



8. CFD simulations

In order to investigate the flow behaviour around the sail Star-CCM+ was adopted, a CFD 

software developed by Siemens widely spread in aerodynamics and hydrodynamics 

applications, used to numerically solve Navier-Stokes equations to predict fluid flow, heat 

transfer, turbulence and other physical phenomena.

Computational Fluid Dynamics (CFD) is a branch of fluid mechanics that uses numerical 

analysis and algorithms to solve and analyse problems involving fluid flows, under defined 

boundary conditions (26). It solves the Navier-Stokes equations with techniques like the Finite 

Volume Method (FVM), Finite Element Method (FEM) and Finite Difference Method (FDM). 

Star-CCM+ makes use of the FVM method.

Navier-stokes equations describe accurately fluid flow phenomena but are nearly impossible on 

present-day computers to solve, and a possible solution is to decompose them into what are 

known as <Reynolds-Averaged Navier-Stokes Equations= ( ĎýĊď  Equations). In RANS 

equations the fluid flow is described by separating instantaneous quantities into mean and 

fluctuating components, so time-dependent turbulent velocity fluctuations are separated from 

mean flow velocity. This transformation introduces additional unknowns called <Reynolds 

stresses=, which depend on the velocity fluctuations, and in order to produce a solvable closed 

system, require a turbulence model (27). In addition, it is relatively simple to produce an 

unsteady variant of the RANS equation, known as <Unsteady Reynolds Averaged Navier-

Stokes= (đĎýĊď Equations) for transient flows.

Turbulence models are mathematical formulations used to simulate the effects of turbulence 

without resolving every minor fluctuation, enabling engineers to predict the behaviour of 

turbulent flows in a computationally feasible way. As most of the aspects related to 

computational simulations, the choice of the turbulence model is a trade-off between accuracy 

and computational cost. They are differentiated by the number of equations they are solving, 

and the most common ones are:

• Zero-Equation Models (algebraic model)

• One-Equation Models

• Two-Equation Models

• Reynolds Stress Models (RSM)



A deeper analysis of each model is out of the scope of this thesis, so only the most adopted 

models in engineering applications will be examined. Models like the ý 2 � and ý 2 Ā models 

have become industry standards for most engineering problems, in which ý  represents the 

turbulent kinetic energy and the second transported variable varies between the two. The second 

variable can be thought of as the variable that determines the scale of the turbulence, while the 

first variable determines the energy in the turbulence (28).

The ý 2 ă  turbulence model is a commonly employed two-equation closure that computes 

turbulent kinetic energy ý and its dissipation rate ă through distinct transport equations, while 

the ý 2 Ā turbulence model is a widely used two-equation framework that simulates turbulent 

flows by solving distinct transport equations for turbulent kinetic energy ý  and specific 

dissipation rate Ā, which dictates the turbulence length scale. 

The Shear-Stress Transport (SST) ý 2 Ā turbulence model is a widely utilized two-equation 

eddy-viscosity turbulence closure that combines the strengths of the ý 2 Ā  and ý 2 ă 

frameworks. It employs a ý 2 Ā  formulation near solid boundaries, providing precise 

resolution of flow features down to the viscous sublayer without requiring additional damping 

functions - a characteristic that makes it robust as a low-Reynolds-number model. In free-

stream regions, the model switches to a ý 2 � type formulation, mitigating its dependence on 

inlet turbulence specifications. This blended strategy enhances its performance in complex flow 

scenarios involving adverse pressure gradients and flow separation. However, it may exhibit a 

tendency to overestimate turbulence levels in zones of high normal strain, although to a smaller 

degree than conventional ý 2 ă models (29).

Figure 35 ý 2 Ā ďďĐ model switches between turbulence model using blending function (30)



In (31) an alternative approach to traditional CFD is proposed, involving 2D-RANS calculations 

around wing profiles in conjunction with a lifting line method to account for three-dimensional 

flow phenomena. Nonetheless, in this work 2D-RANS calculations have been adopted because 

were considered the best trade-off between computational cost and results accuracy, as 

mentioned in (31).

8.1 Computational Model

8.1.1 Automatization of the simulations

The workflow to set up the CFD simulations in this thesis is the following:

• CAD import as iges file

• Meshing

• Physics setup

• Solving

• Extraction of CL and CD values

The automatization of the process was possible thanks to Star-CCM+’s possibility to run Java 

macros, scripts used to automate tasks like setting up simulations, manipulating geometries, 

running solvers, and exporting results, allowing thus to create fully automated workflows.

Once the simulation has met the stopping criteria and stopped, the macro exports a csv file with 

the CL and CD values per every time step and saves the results into a dedicated folder, from 

which, will be uploaded in MATLAB to complete the surrogate model training dataset together 

with the geometrical parameters.

8.1.2 Computational domain

In this section the CFD model developed in Star-CCM+ is described. For the numerical 

analysis, we solve two-dimensional unsteady, incompressible RANS equations. 

Being two dimensional simulations, the computational domain is treated like a 2D plane, with 

a length of 280 meters, and a width of 60 meters. The wing sail is positioned at 80 meters from 

the inlet section, equally spaced between top and bottom edges. All these measures were 

determined starting from the length of the total chord of the wing sail, which has an average 

value of 2 meters.



Figure 36 Computational domain

At the leading edge of the first wing, in the space between the trailing edge of the first wing and 

the leading edge, and at the trailing edge of the second wing a cylinder is positioned and used 

as local refinement of the mesh afterward. Since the angles of the two elements of the wing sail 

rotate, the position of the cylinders is parametrised as a function of the angles ÿ and Ă. The 

effect of the cylinders is visible in Figure 40.

The cylinder on the main wing’s leading edge is positioned on the reference frame’s origin.ďĆėĄĆ ęāāĄĚÿĀėĆě = [0, 0, 0]āĀĚ ęāāĄĚÿĀėĆě = [0, 0, 1]
The position of the centre of the middle cylinder is expressed by the following relations:ďĆėĄĆ ęāāĄĚÿĀėĆě = [ÿ1, 2ÿ1 ∗ tan(2ÿ) , 0]āĀĚ ęāāĄĚÿĀėĆě = [ÿ1, 2ÿ1 ∗ tan(2ÿ) , 1]
Meanwhile, the position of the trailing edge cylinder is expressed as:ďĆėĄĆ ęāāĄĚÿĀėĆě = [ÿ1 + ÿ2 + 0.03, 2(ÿ1 + ÿ2) ∗ tan(2ÿ) 2 ÿ2 ∗ tan(2Ă) , 0]āĀĚ ęāāĄĚÿĀėĆě = [ÿ1 + ÿ2 + 0.03, 2(ÿ1 + ÿ2) ∗ tan(2ÿ) 2 ÿ2 ∗ tan(2Ă) , 1]
All three cylinders present a radius of 0.15 ÿ.



Figure 37 Local refinements between wing edges

A rectangular block was used to set a local mesh refinement above and below the wing sail to 

better capture the pressures fields above and under the wing. Additionally, an <Offset= part has 

been added to refine the mesh around the wings, reported in Figure 38.

Figure 38 Offset refinement

8.1.3 Mesh

Figure 39 reports the final mesh. Since every tested geometry was different, the total number 

of cells varied slightly around 110.000 cells. A polyhedral mesh was chosen, and the different 

refinements were express as a function of the parameters reported in Table 7.



Figure 39 Domain mesh

Figure 40 Local mesh refinements between wings



Figure 41 Wake and vertical box refinements

The parameters used to build the mesh are reported in Table 7, Table 8, Table 9, Table 10 and 

Table 11. ÿ1, ÿ2, ÿ and Ā are indicated as <Variable= since those values are retrieved from the 

input file written by the Python script responsible for generating the CAD models. The macro 

reads the values from that file and updates the parameters in the <Custom tree= of the 

simulations before executing the mesh. This is necessary because the angles and chords change 

in every geometry and the positions of the cylinders needs to be updated to position them 

correctly.

ČýĎýĉāĐāĎ ĒýĈđā/ĂċĎĉđĈýÿ1 ĒėĄÿėĘþěÿ2 ĒėĄÿėĘþěÿ ĒėĄÿėĘþěĂ ĒėĄÿėĘþě



āĊĆěĄĀėþ ĎěċĀāþĚą{Ďě_ĜĄāÿ_āćĆ} 2 ∗ 105ĀěĀąÿĆċ {ÿ} 1.18415 ćĝ/ÿ3ĀċĀėÿÿę ĈÿąęāąÿĆċ {�} . 85508 ∗ 1025 ČėĒěþāęÿĆċ ĜĄāÿ ĎěċĀāþĚą {ĒĄÿāÿ��} Ďě ∗ ÿ1ÿ ∗ �ĒěþāęÿĆċ {Ē} [ĒĄÿāÿ�ăþėąě ďÿČě {þď} 1.4ĊćÿĘěĄ āĜ þėċěĄą ÿėÿĀ ĉÿĀĝ {ĊĈėċěĄą 35ĊćÿĘěĄ āĜ þėċěĄą ĜþėĂ ĉÿĀĝ {ĊĈėċěĄą þėęý} 32ďĆĄěĆę/ ĂėęĆāĄ {ďĂ} 1.13ĕ + 0.5ĊěėĄ ēėþþ Đ/ÿęýĀěąą {ĊěėĄēėþþĐ} ĕ + ∗  �ÿ ∗ đ∗ĐāĆėþ Đ/ÿęýĀěąą ÿėÿĀ ĉÿĀĝ {ĐāĆėþĐ} ĊěėĄēėþþĐ ∗ 1 2 ďĂ��ÿÿăÿĀ1 2 ďĂĐāĆėþ Đ/ÿęýĀěąą ĜþėĂ ĉÿĀĝ {ĐāĆėþĐ þėęý} ĊěėĄēėþþĐ ∗ 1 2 ďĂ��ÿÿăÿĀ ýÿāā1 2 ďĂĎěċĀāþĚą āĀ ÿėÿĀ ĉÿĀĝ ÿ1 ∗ ||Ē|| ∗ ÿ�ĎěċĀāþĚą āĀ ĜþėĂ ĉÿĀĝ ÿ2 ∗ ||Ē|| ∗ ÿ�ďýÿĀ ĜĄÿęĆÿāĀ ęāěĜĜÿęÿěĀĆ {ÿĄ} ÿĄ = [2 ∗ log10(Ďě) 2 0.65]22.3
ēėþþ ď/ěėĄ ďĆĄěąą {�ý} �ý = 12 ÿđ2ÿĄĂĄÿęĆÿāĀ ĈěþāęÿĆċ {đ∗} √�ýÿ
ĉāĚěþ ęāěĜĜÿęÿěĀĆ {ÿÿ} 0.09ĐćĄĘćþěĀęě ĈěĀĝĆ/ ąęėþě {þ} 0.4 ∗ ĐāĆėþĐĐćĄĘćþěĀĆ ýÿĀěĆÿę ěĀěĄĝċ {ý} 32 ĒĄÿāÿ�ă2 ĐćĄĘÿĀāăĀĀÿāÿ2



ĐćĄĘćþěĀęě ÿĀĆěĀąÿĆċ {ĐćĄĘÿĀāăĀĀÿāÿ} 0.03ĐćĄĘćþěĀęě ĚÿąąÿĂėĆÿāĀ ĄėĆě {�} ÿÿ ∗ ý32þĎěėþ ĆāĆėþ Ć/ÿęýĀěąą ÿėÿĀ ĉÿĀĝ 0.37 ∗ ÿ1Ďě0.2Ďěėþ ĆāĆėþ Ć/ÿęýĀěąą ĜþėĂ ĉÿĀĝ 0.37 ∗ ÿ2Ďě0.2
Table 7 Mesh parameters

ĀāĂýđĈĐ ÿċĊĐĎċĈď ĒýĈđāĉěą/ěĄ ČāþċĝāĀėþ ÿěą/ěĄČĄÿąÿ ĈėċěĄ ÿěą/ěĄ āĀėĘþěĚþėąě ďÿČě {þď}ĐėĄĝěĆ ďćĄĜėęě ďÿČě (ĎěþėĆÿĈě Ćā Ęėąě) 200%ĉÿĀÿÿćÿ ďćĄĜėęě ďÿČě (ĎěþėĆÿĈě Ćā Ęėąě) 0.05%ďćĄĜėęě ăĄāĉĆ/ ĄėĆě 1.05
Table 8 Mesh default controls

ČĎąďĉ ĈýĕāĎ ÿċĊĐĎċĈď ĒýĈđāďĆĄěĆę/ÿĀĝ ĂćĀęĆÿāĀ ăěāÿěĆĄÿę ČĄāĝĄěąąÿāĀĀÿąĆĄÿĘćĆÿāĀ ĉāĚě ďĆĄěĆę/ ĂėęĆāĄĊćÿĘěĄ āĜ ČĄÿąÿ ĈėċěĄą 35 {ĊþėċěĄą}ČĄÿąÿ ĈėċěĄ ďĆĄěĆę/ÿĀĝ 1.13 {ďĂ}ČĄÿąÿ ĈėċěĄ ĐāĆėþ Đ/ÿęýĀěąą (ýĘąāþćĆě Ĉėþćě) 0.0405 {ĐāĆėþĐ}
Table 9 Prism Layer controls

ÿđďĐċĉ ÿċĊĐĎċĈď ĒýĈđāĀāÿÿĀÿā (ĎěþėĆÿĈě Ćā Ęėąě) 200%



ÿċþÿĀĚěĄą′ąÿČě (ýĘąāþćĆě Ĉėþćě)  { ÿ1250}
ċĜĜąěĆ ąÿČě (ýĘąāþćĆě Ĉėþćě) { ÿ1100}

ĄāĄÿČāĀĆėþ ēėýě (ýĘąāþćĆě Ĉėþćě) {ÿ120}
ĒěĄĆÿęėþ þāĊ ĄěĜÿĀěÿěĀĆ (ýĘąāþćĆě Ĉėþćě) {ÿ120}

Table 10 Custom controls mesh

ďćĄĜėęě ęāĀĆĄāþ ĐėĄĝěĆ ďćĄĜėęě ďÿČě ĉÿĀÿÿćÿ ďÿČě ąąāĆĄāĂÿę ąÿČě ĉėýě ĄěĜÿĀěÿěĀĆ ĉėÿĀ ĉÿĀĝ { ÿ1100} 0.05% ĎěþėĆÿĈě Ćā þėąě {ÿ130}
ĂþėĂ ĉÿĀĝ { ÿ2100} 0.05% ĎěþėĆÿĈě Ćā þėąě {ÿ230}

Table 11 Surface controls

All the formulas in the tables are taken from (32), a comprehensive guide for correct modelling 

of the boundary layer. Firstly, the height of the first cell adjacent the surface of the body needs 

to be calculated, starting from the Reynolds number.

Ďě = ÿđĈ�ÿĄ = [2 log10 Ďě 2 0.65]22.3
The skin friction coefficient is determined by an empirical correlation for fully developed 

turbulent flow over a flat plate (which is valid for turbulent flows with Ďě < 109).

Once the skin friction coefficient is determined, the wall shear stress �ý is calculated as

�ý = 12 ÿđ2ÿĄ
Friction velocity is then computed from wall shear stress

ć� = √�ýÿ



Having chosen a ċ+= 0.5, it is possible to calculate the height of the wall adjacent cell, also 

referred to as <Near Wall Thickness=

ĊěėĄ ēėþþ Đ/ÿęýĀěąą = ċ + ∗ �ć�ÿ
Having defined the total number of layers in the boundary layer and the growth ratio, also 

referred to as <stretch factor=, it is possible to compute the total thickness of the boundary layer

ĐāĆėþ Đ/ÿęýĀěąą = ĊěėĄēėþþĐ/ÿęýĀěąą ⋅ 1 2 Ą�1 2 Ą
When implementing inflation layers, it is preferable that the transition from the final inflation 

layer to the freestream mesh maintains a consistent cell volume. Abrupt variations in cell 

volume can induce sudden fluctuations in sub-grid viscosity and potentially lead to inaccuracies 

and instability.

To provide the necessary background information, an inflation layer is a region in a 

computational mesh where cells are refined near a surface 3 typically a wall 3 to capture more 

accurately the steep gradients in physical quantities, such as velocity and temperature, that 

occur in the boundary layer. These layers comprise multiple rows of cells, with a gradual 

increase in thickness as they extend away from the wall. This ensures that the simulation 

accurately resolves the near-wall flow dynamics without excessively increasing the overall 

mesh size. This approach is critical in Reynolds-Averaged Navier-Stokes (RANS) modelling, 

where the accurate resolution of the boundary layer is paramount for predicting aerodynamic 

or hydrodynamic behaviour.

8.1.4 Simulation set up

Firstly, the boundary conditions were assigned to the respective regions, as reported in Figure 

422. Velocity inlet is assigned to the top, bottom and front edges, while pressure outlet is 

assigned to the back one. The wing sail is modelled as a no-slip wall condition.



Figure 42 Boundary conditions

Following, the solver’s settings are selected:

• Implicit unsteady

• Segregated flow

• ďďĐ ý 2 Ā turbulence model

• ā 2 ĎěĀ transition model

A segregated solver has been chosen in order to reduce memory usage and reduce computational 

cost since it solves momentum, pressure, and turbulence equations in sequence, reusing smaller 

matrices, resulting lighter for moderate‐sized clusters.

An unsteady solver is selected to solve for time-dependent phenomena that can occur at high 

angles of attack, like vortex shedding and stall, while an implicit scheme is chosen to have an 

unconditionally stable problem.

ÿĂĈ = |ć|�Ć�Ċ = 1
The time step has been set equal to �Ć = 0.01 ą and considering an average mesh element size 

of �Ċ = 0.02  m around the sail, the CFL is kept around 1. |ć|  is calculated starting from a 

Reynold number of 200000, which equates to a velocity of 2.3 ÿ/ą.

The ďďĐ ý 2 Ā turbulence model is widely used in CFD due to its effectiveness in capturing 

both near-wall and free-flow turbulence (33). However, it assumes that the flow is fully 

turbulent, thereby ignoring the critical laminar-to-turbulent transition essential for accurate 

simulations in aerodynamics, turbomachinery and marine applications. To overcome this 

limitation, the ā 2 ĎěĀ  transition model is incorporated to explicitly predict the onset and 

evolution of turbulence. Unlike conventional models that assume fully turbulent flow, the ā 2



ĎěĀ model considers laminar, transition and turbulent regions, allowing for a more accurate 

characterisation of the boundary layer. In practice, the inclusion of a transition model is critical 

- especially when analysing airfoil performance - as relying solely on the ďďĐ ý 2 Ā model can 

lead to overestimation of turbulence, resulting in inaccurate drag predictions and suboptimal 

boundary layer control.

The coefficients of the turbulence model are computed starting from the turbulent kinetic energy ý, from the turbulence intensity ą and the inlet velocity đ (32):

ý = 32 đ2ą2
The specific dissipation rate � is calculated next, and from that, the specific dissipation rate Ā:

� = ÿÿý32þ  
Ā = �ÿÿý

8.1.5 Stopping criteria

Physical time has been chosen as the stopping criteria of the simulation. A trade-off between 

accuracy and computational cost was necessary in order to allow the physical phenomena to 

develop fully but avoid unnecessary iterations. Thus, to determine the optimal physical time, a 

convergence study was carried out on the aerodynamic coefficients’ values, reported in Table 

132.

ČĄĕďąÿýĈ Đąĉā āĔāÿđĐąċĊ Đąĉā ÿĈ ÿĀ10ą 8 ÿÿĀ 2.1171 0.102620 ą 14 ÿÿĀ 2.1263 0.086430 ą 22 ÿÿĀ 2.1087 0.084645 ą 38 ÿÿĀ 2.0944 0.085260 ą 41 ÿÿĀ 2.0955 0.0855
Table 12 Simulation time and results for different physical times



This convergence study is performed by calculating the percentage error, using the result from 

the longest computational time as reference. Results are reported in Table 13.

ČĄĕďąÿýĈ Đąĉā āĎĎċĎ ċĊ ÿĈ āĎĎċĎ ċĊ ÿĀ10 ą 21.03% 220%20 ą 21.47% 1.05%30 ą 20.63% 1.05%45 ą 0.05% 0.35%60 ą 0% 0%
Table 13 Errors for different physical times

Considering the computational time necessary to carry out each simulation, a physical time of 

28 seconds has been chosen as most appropriate compromise. Given that the initial pool 

individuals to be tested was of 80 designs, the total simulation time amounted to roughly 28 

hours, without considering the time consumed by the adaptive sampling algorithm. The 

simulations were run on a desktop computer mounting two Intel Xeon Silver 4114 CPUs and 

128GB of RAM and required on average 20 minutes each.

The variation of values per iteration was used as the convergence metric. To make this criterion 

more conservative, only the second half of the simulation was considered, specifically, the 

deviation during the last 14 seconds of physical time. First, the mean values of CL and CD were 

calculated. Then, the maximum recorded values were identified. If the difference between the 

mean and the maximum was less than 0.1, the case was considered converged; otherwise, it 

was discarded.

ÿĈÿăÿĀ =  1Ā ∑ ÿĈÿÿ=28Ā
ÿ=14ĀěĄĄþ� = max(ÿĈ) 2 ÿĈÿăÿĀ  <  0.1

In order to mitigate influence of possible small oscillations of the coefficients, the mean value 

of CL was added to the dataset, not the value of the last iteration. The same concept and 

procedure were applied to the drag coefficient.



9. Neural Network training

Since the objective was to reduce the computational burden of the CFD simulations during the 

optimisation process, the adoption of a surrogate model was imperative. As reported in Design 

of Experiments (DOE), a Latin Hypercube Sampling algorithm was adopted, and following the 

general rule of thumb of the 10 individuals per design variable, 80 initial designs were 

generated. Table 14 reports a few examples of individuals extracted from the DOE.

ÿ1 ÿ2 %ÿ1 ă ČĎċĂąĈā 1 ČĎċĂąĈā 2 ýĈČĄý ĀāĈĐý1028.8 1147.5 0.92 27.25 1 2 27.78 20.841351.3 917.5 0.91 35.75 3 1 28.91 211.721253.8 877.5 0.71 38.25 1 1 29.47 214.341441.3 1007.5 0.67 49.75 2 2 25.72 27.78
Table 14 Some examples of LHS individuals

Since the Design Space is eight dimensional it would it be impossible to represent the 

distribution of samples generated, so Figure 433, Figure 44, Figure 45 report just 2D projections 

of such space.

Figure 43 Samples distribution α-Ă parameters



Figure 44 Samples distribution C1-Gap parameters

Figure 45 Samples distribution C1-%C1

Given the limited computational power available, in order to reduce to the bare minimum the 

number of simulations necessary, an Adaptive Sampling technique was implemented in 

MATLAB. Since the number of individuals generated by LHS could have been insufficient, the 

idea behind this algorithm was to add individuals to the initial DOE until the Maximum Absolute 

Error (ĉýā) reported by the model was lower than 0.1 for both CL and CD predictions. Other 

indicators adopted to evaluate the accuracy of the models where the Coefficient of 

Determination Ď2  and Root Mean Squared Error Ďĉďā . Ď2  and RMSE   were not used as 

criterions for convergence but still observed during the iterations and taken into consideration 

when evaluating the correctness of the optimal solution.



9.1 Error metrics

In the surrogate modelling context, Absolute Error (AE) is defined as the difference between 

the predicted value and the true value of a measurement (candidate). The Maximum Absolute 

Error is just the highest AE reported while evaluating the test dataset with the model.ýā = |ċĂÿăĂ 2 ċāÿĂă|ĉýā = max(ýā) = max(|ċĂÿăĂ 2 ċāÿĂă|)
The Coefficient of Determination, most commonly referred to as Ď2, expresses a measure of 

how well the model’s predictions match the actual data. It ranges from 0 to 1, where 1 means 

perfect matching and 0 means the model is not capable of catching the variability of the data. 

Its expression is the following (34):

Ď2 = 1 2 ∑(ċāÿĂă 2 ċĂÿăĂ)2∑(ċāÿĂă 2 ċ�)2
where ċ� is the mean value of actual measurements.

ċ� = 1Ā ∑ ċÿĀ
ÿ=1

The Root Mean Square Error (RMSE) is a measure of the average error in predictions. RMSE 

help assess the error in a regression or statistical model, with a value of 0 indicating a perfect 

match between predicted and actual values. Lower RMSE values suggest more accurate 

predictions and a better model fit, while higher RMSE values indicate greater errors and less 

reliable forecasts (35).

9.2 Adaptive Sampling

The Adaptive Sampling routine was dealt with a MATLAB code, in which the initial dataset 

was built, coupling design variables and CL and CD values extracted from CFD simulations, 

creating a 80 × 10 table. This dataset was used to build the training dataset with 80% of the 

samples and the remaining 20% formed the testing dataset.

For this particular application, a Regressional Neural Network was chosen as most suitable, due 

to its improved performance in dealing with complex non-linear problems. The functioning of 



this type of model is equal to that explained in Artificial Neural Network, and Regressional 

refers to the fact that the neural network is being used to predict continuous numerical values 

rather than discrete categories.

A first surrogate model was trained on this data and showed poor performance, thus the 

necessity of adding extra points to the dataset. The errors obtained after the initial training are 

reported below in Table 15.

ÿāěĜĜÿęÿěĀĆ āĄĄāĄÿ_Ĉ 0.2219ÿ_Ā 0.0115
Table 15 Errors after initial training

As infilling criterion, the Maximum Absolute Error has been chosen and 0.1 has been set as 

threshold for the stopping of the sampling.

At every iteration of the algorithm, three new candidates were generated via LHS, with the aim 

of maintaining uniformity of points distribution. Each one of these candidates was tested on 

CFD and if its convergence criterion (on CL and CD oscillations) was met, it was added to the 

dataset, otherwise discarded.

Every iteration of the algorithm lead to an increase of the dataset size and an optimisation of 

the surrogate model parameters was carried out. As before, individuals were split into training 

dataset and testing dataset and provided as input to an optimisation function. The purpose of 

this function was to find the best combination of parameters affecting the predictive 

performance of the surrogate model.

The optimisation function made use of a Bayesian optimisation algorithm, since in literature it 

is considered one the most suitable for neural network hyperparameter tuning due to its 

efficiency in handling <expensive-to-evaluate= functions.



9.3 Bayesian optimisation

Bayesian optimisation is a commonly used strategy for fine-tuning neural network 

hyperparameters, which have a fundamental impact on model’s performance and are unrelated 

to the dataset. A hyperparameter is a parameter that is used to control the learning process of 

the model, and an optimisation process searches for the best combination of such parameters 

with the objective of minimising a predefined loss function.

This optimisation algorithm is significantly more efficient compared to random search or 

evolutionary algorithms, because instead of testing random values, it builds a probabilistic 

model of the objective function and uses it to select the most promising hyperparameter settings 

to evaluate next (36).

A probabilistic model is a mathematical framework that uses probability theory to represent and 

analyse uncertain events or phenomena, by defying a set of possible outcomes and assigning 

probabilities to each one of these, allowing for predictions and inferences even when there is 

randomness or uncertainty involved (37).

Bayesian optimization follows a structured process involving the following key steps:

• Surrogate model: A probabilistic approximation of the objective function4in this case, 

the Mean Absolute Error (MAE) of the predictions. This model is typically built using 

Gaussian Processes and serves to estimate the performance of different hyperparameter 

configurations without evaluating them all directly.

• Acquisition function: A strategy used to decide which set of hyperparameters to evaluate 

next. It balances exploration (trying new areas) and exploitation (focusing on promising 

regions) based on the surrogate model’s predictions.

• Evaluation and update: The selected hyperparameters are tested on the actual objective 

function, here represented by the MAE of CL predictions on validation data. Based on 

these results, the surrogate model is updated to reflect the new information.

• Iteration: These steps are repeated iteratively until a predefined stopping criterion is met 

(e.g., a maximum number of iterations or convergence of the objective function).

Instead of attempting to optimize the true objective function, Ĝ(Ċ), directly, which may prove 

prohibitively expensive to evaluate, a surrogate model is constructed to approximate that 

function, employing a set of sampled data points. The purpose of this model is twofold: firstly, 

to provide a prediction (mean) of the function value at any given point, and secondly, to provide 



an uncertainty (variance) estimate. The acquisition function is defined on this surrogate model 

and is used to decide which point in the input space to evaluate next. It quantifies the utility of 

sampling each point by balancing exploration (searching where the uncertainty is high) and 

exploitation (searching where the predicted value is promising). The subsequent selection and 

evaluation of the next sample point is undertaken using the true objective function, resulting in 

the updating of the surrogate model with the new data. This iterative process continues until a 

predetermined termination criterion is fulfilled.

Two commonly adopted acquisition functions are the following:

• Expected improvement (āą), which chooses the combination with the highest expected 

improvement

The Expected Improvement at a point (Ċ) is given byāą(Ċ) =  � [max(0, Ĝ(Ċ) 2 Ĝ(Ċ+))]
where Ĝ(Ċ+) is the current best observed value.

• Upper Confidence Bound (đÿþ), which chooses points that have a good balance of 

high guess and high uncertainty, effectively balancing exploration and exploitation

The Upper Confidence Bound at a point (Ċ) is given byđÿþ(Ċ) = �(Ċ) + ýÿ(Ċ)
where �(Ċ) and ÿ(Ċ) are the mean and standard deviation predicted by the Gaussian 

Process, and ý is a parameter balancing exploration and exploitation (38).

After selecting a new point ĊĀăý  by optimising the acquisition function, the true objective 

function is evaluated at this point. Then the Gaussian Process model is updated with this new 

data, enhancing its accuracy in approximating the objective function. In this work, the algorithm 

was run with default settings, thus using the Expected Improvement function.

9.4 Results

The hyperparameters that led to the best accuracy of the model are reported in Table 16.



ĊćÿĘěĄ āĜ /ÿĚĚěĀ þėċěĄą 2ĊěćĄāĀą ĂěĄ þėċěĄ 5ĈėÿĘĚė 0.001ýęĆÿĈėĆÿāĀ ĜćĀęĆÿāĀ ĆėĀ/
Table 16 Optimal model's hyperparameters

Table 17 reports the accuracy metrics per every iteration of the sampling algorithm. 

Convergence was met after 8 iterations, with a total of 101 individuals in the dataset. The same 

procedure was followed for the CD model as well and hereafter the metrics per iteration are 

reported in Table 18.

ąĐāĎýĐąċĊ ýā Ď2 Ďďĉā1 0.1336 0.9785 0.06282 0.1832 0.9687 0.07073 0.1478 0.9742 0.06264 0.1079 0.9759 0.05895 0.2934 0.9394 0.10456 0.1045 0.9856 0.05207 0.1165 0.9831 0.05188 0.0954 0.9820 0.0491
Table 17 CL error metrics per iteration

ąĐāĎýĐąċĊ ýā Ď2 Ďďĉā1 0.0153 0.8423 0.00532 0.0081 0.9227 0.00353 0.0078 0.8511 0.00414 0.0108 0.7912 0.0045



5 0.0106 0.8823 0.00446 0.0083 0.8375 0.00427 0.0079 0.8991 0.00328 0.0032 0.9771 0.0015
Table 18 CD error metrics per iteration

The training of the surrogate model ended when the desired accuracy was met, and as it can be 

seen from Table 17 and Table 18, the maximum error on the CL was 0.0954, while the maximum 

error on the CD was 0.0032. The maximum error on the validation data was chosen as 

convergence criterion because it was more conservative than considering the mean absolute 

error, which would’ve in fact, been even lower, for both CL and CD models.

Nonetheless, the mean absolute error was used as objective function for neural network 

hyperparameters optimisation, which was carried out with the ý 2 ĜāþĚ cross validation.

9.5 ý 2 �Āþþ cross validation

k-fold cross validation was carried out during the optimisation of the surrogate model 

hyperparameters, because it represents a more robust and reliable estimate of model 

performance compared to single validation set testing, which might be biased or 

unrepresentative of the whole dataset.

For this application, ý = 5 has been chosen and mean absolute error as evaluation metric, and 

consequently cost function of the optimisation, because it quantifies the average magnitude of 

the errors in predictions, independent of their direction. The interpretation of ĉýā  is 

straightforward since it is expressed in the same units as the target variable. Evaluating ĉýā 

over ý-fold cross-validation provides a consistent measure of the model's prediction accuracy 

across different data splits, thus helping to identify a hyperparameter configuration that 

minimises error reliably.



10.VPP

In order to test the suitability of each sail geometry candidate, the behaviour of the boat with 

such sail needs to be evaluated, so a VPP is required. VPP stands for <Velocity Prediction 

Program=, a widely used tool in yacht design for speed assessment, which depends on the boat 

characteristics and sail performance, in a way that requires several aspects of physics involved 

to be opportunely modelled (22).

10.1 General background knowledge

VPPs are procedures that evaluate the global equilibrium of the system, balancing aerodynamic 

and hydrodynamic forces and thus calculating actual sailing performance data for any sailboat 

design generated during the exploration of the design space (22).

In the field of sailing, various methodologies for VPPs have been proposed, with each method 

tailored to the specific type of boat. Nonetheless, the fundamental principle of a VPP is the 

adoption of an iterative procedure at each wind speed and angle to find an <equilibrium sailing 

condition=, defined by a unique combination of parameters that satisfy equilibrium equations 

(39). ∑ Ă = ∑ ĉ = 0
In this work, a six degrees of freedom VPP is integrated in the optimisation environment, which 

permits to find the sail shape and trim that maximises the boat’s VMG. VMG stands for 

<Velocity Made Good= and corresponds to the effective speed at which a boat is progressing in 

a desired direction. The component of the boat's speed in the direction of the target is calculated 

by multiplying the boat's speed by the cosine of the angle between its heading and the direction 

of the wind. This measure is of crucial importance in the field of sailing, particularly in the 

context of racing, whether upwind or downwind.Ēĉă = ĒĀāÿā ∙ cos(Đēý)
where ĒĀāÿā is the velocity of the boat with the selected sail geometry and appendages.



A similarly important concept is the VMC, <Velocity Made on Course=, which is the component 

of a boat’s velocity in the direction of a specified waypoint or destination. It represents the 

effective speed at which the boat is approaching the target, regardless of wind direction.Ēĉÿ = ĒĀāÿā ⋅ cos (Ā)
where Ā  is the angle between the boat’s heading and the direct course to the waypoint. In 

contrast to VMG (Velocity Made Good), which measures speed relative to the wind direction, 

VMC focuses on progress towards a specific location, thus making it an important metric for 

route optimisation in offshore and long-distance racing.

The motions of a marine craft exposed to wind, waves and ocean currents takes place in 6 DOF, 

thus the need to use a complex six-dofs model.

10.2 Glaros’ VPP

A VPP states the boat’s optimal speed through the water as a function of the sailing conditions 

at best possible trimming at each point of sailing, so the resultant of all forces and moments 

must equal to zero.

Nonetheless, not every equilibrium condition is acceptable, in fact, if for instance the computed 

equilibrium condition resulted with a pitch angle of 40° it wouldn’t be a physical sailing 

condition. For this reason, constraints on the optimisation parameters need to be set.

The accuracy of a VPP is strictly linked to the accuracy with which the individual components 

of the sailboat are modelled. Since Glaros is a foiling boat, no hull resistance modelling was 

required since it was assumed to be capable of foiling in the wind conditions analysed. It is 

evident that J and T foils necessitate distinct modelling strategies, a consequence of their 

inherent behavioural properties.

In order to model adequately the behaviour of Glaros, a six-dofs static model was implemented 

in MATLAB. The roll degree of freedom was deliberately neglected based on the observations 

of the boat made during tests on the field, that showed consistently that the best condition to 

facilitate take-off and keep a steady flight condition was keeping the boat flat, which would 

have translated in a very limiting constraint on the roll angle. For this reason, it has been 

considered acceptable setting that angle to zero but still retaining the degree of freedom in the 

problem formulation.



10.2.1 Environmental conditions

The sail optimisation was carried out on the most critical section of a regatta course, the upwind 

leg. Regatta courses can have different shapes depending on the competition but in the two 

most common scenarios, Olympic ring course and upwind/downwind course, the first two 

buoys lie directly upwind, perpendicular to the start line, as shown in Figure 46.

(40) offers an interesting example of optimisation for this type of regatta course. Additionally, 

this assumption led to a simplification of the problem, since the heading of the boat was tightly 

linked to the TWA and the leeway angle.

A trade-off for wind speed was required, since it had to be high enough to guarantee full foiling 

conditions for Glaros but not too extreme, so a Đēď = 6.3 ÿ/ą was considered.

Figure 46 Upwind/downwind regatta field example

10.2.2 Force decomposition

Given that no hull modelling is required, all the other forces are aerodynamic forces and can be 

modelled as such, with the relation

Ă = 12 ÿďĒ2ÿĂ
where ÿĂ is a six-element vector, one row per each degree of freedom.



Figure 47 Side view forces acting on Glaros

Figure 48 Back view forces acting on Glaros

Figure 47 and Figure 48 display all the forces acting on the system. For clarity reasons, only 

the left J foil is presented in the pictures, and the relative forces are sketched. Naturally, the 



same forces are present on the right foil as well. Forces generated by the daggerboard and by 

the rudder are presented too.

The weight of the sailors was not considered as an external force but as part of the system’s 

mass, and by varying the position of the sailor, the position of the global CoG was recomputed 

as well.ĆāĆ. ÿă = ĘāėĆ. ÿă ∗ ĘāėĆ. ÿėąą + ąėÿþāĄ. ÿă ∗ ąėÿþāĄ. ÿ + ąėÿþ. ÿă ∗ ąėÿþ. ÿĆāĆ , ĘāėĆ , ąėÿþāĄ  and ąėÿþ  are structures created in the MATLAB workspace to store in an 

orderly manner parameters and input data relative to that specific part of the boat. In addition 

to these, each foil has its own structure, namely, ĆĀĔ, ĆďĔ, Ěėĝĝ and ĄćĚ, respectively for 

right J foil, left J foil, daggerboard and rudder.

Appendages were considered in the boat CoG term since their position was fixed, while the sail 

was considered separately since its height was a function of the design parameters.

Appendages’ forces were expressed initially in their local ĂĈċē reference frame defined by 

three axes and two angles, ÿ and Ā, and then roto-translated into body axes together with all 

other forces. ÿ indicates the incidence angle on the xz plane, while Ā is the <side= incidence 

angle for vertical appendages, in plane xy.

The total CoG represented the origin of the body axes reference frame and reference point for 

moment calculations, as displayed in Figure 49.

Figure 49 Body axes reference frame



10.2.3 Aerodynamic forces

The sail force is assumed being applied in the centre of gravity of the sail due to its regular 

shape. Figure 48 and Figure 48 report the original sail of Glaros for sake of simplicity but the 

same concept is valid for wing sails. The expression of the wing sail centre of gravity with 

respect to the mast position is the following:

ąėÿþ. ÿă = [ÿ1, 0, ąėÿþ. /ěÿĝ/Ć2  ]
The aerodynamic centre was supposed to be coincident with the sail’s CoG given the 

rectangular shape of the sails.

For sake of simplicity, sail forces were directly expressed in body axes, by inserting the 

aerodynamic coefficients coming from the surrogate model in the following equations:Ăþ = ÿĈ ⋅ sin(ýēý) 2 ÿĀ ⋅ cos(ýēý)Ăÿ = ÿĈ ⋅ cos(ýēý) + ÿĀ ⋅ sin(ýēý)
10.2.4 Hydrodynamic forces

Hydrodynamic forces are modelled identically to aerodynamic forces with the only difference 

being the density of water entering the formula instead of air density.

The J foils generate a lift force, a drag force and a moment around the ċ-axis due to the focal 

moment of the airfoil section. Their vertical sections also generate a lateral (side) force along 

the ċ-axis and additional drag. The rudder similarly is generating lift, drag and a moment about ċ-axis. The daggerboard is generating just drag and a side force, the horizontal- foil equivalent 

of lift.

The hydrodynamic coefficients’ polar for the J foils have been computed with CFD simulations, 

using a template developed by Polito Sailing Team’s fluid dynamics department. The polar plot 

is displayed below in Figure 50.



Figure 50 J foil polar

On the other hand, given the simplified shape of the rudder and daggerboard, simulations 

exploiting the Vortex Lattice Method were considered accurate enough for this purpose and 

significantly less computationally onerous. Polar graphs are reported in Figure 51 and Figure 

52.

Figure 51 Daggerboard polars



Figure 52 Rudder foil polar

10.2.5 Implementation

A MATLAB routine was developed to determine the boat’s equilibrium state given the 

environmental conditions and the sail geometry as inputs. The optimization algorithm chosen 

to calculate the equilibrium points was fmincon, a gradient-based method widely adopted for 

this purpose. It has the advantage of being significantly quicker than other global optimisation 

algorithms while still maintaining its capability to find the global equilibrium of the problem, 

especially when combined with MATLAB’s MultiStart algorithm to explore multiple local 

minima.

The decision variables manipulated by fmincon are reported below and addressed to as the 

vector Ċć (a blend of x state vector and u control vector), representing the boat-trim condition. 

Their corresponding boundaries are listed in Table 19.

Ċć = [Č ć Ĉ Ā ÿ ÿ1 ÿ2 ĊĀ ċĀ ĄćĚ. ĚěþĆė] 
ČėĄėÿěĆěĄ ĈāĉěĄ þāćĀĚėĄċ đĂĂěĄ þāćĀĚėĄċ đĀÿĆ āĜ ÿěėąćĄěĖ 21.1 +  ĆāĆ. ęĝ(3) 20.3 +  ĆāĆ. ęĝ(3) ÿđ 1 15 ÿ/ąĒ 0 2 ÿ/ą



Đ/ěĆė 25 25 °Čąÿ 30 140 °ýþĂ/ė1 215 22 °ýþĂ/ė2 215 22 °Ĕ_ą 24.5 21.5 ÿĕ_ą 22 0 ÿĎćĚ_ĚěþĆė 210 10
Table 19 fmincon boundaries

The optimisation itself was carried out in a script called <FUNC_mdl6= which returned the boat 

speed in the Ċċ plane, the VMG and a structure in which all the coefficients and forces’ values 

were saved. This script was used as cost function for the fmincon optimisation, and in addition, 

a nonlinear constraint function was implemented in order to guide fmincon towards solutions 

that maximised VMG while still guaranteeing equilibrium. The system was considered in 

equilibrium when the norm of the forces vector was close to zero, within a 0.5 tolerance.

Figure 53 Outputs of FUNC_mdl6

Figure 54 Nonlinear constraint equilibrium function



FUNC_mdl6 begins by collecting the decision variables supplied of fmincon. Then it calculates 

the boat’s incidence angles and uses these to determine hydrodynamic forces in the flow 

reference frame. These forces are then rotated and translated into the body-fixed axes, where 

the resulting moments are computed and summed into a single vector, TAU. The Euclidean 

norm of TAU serves as the equilibrium indicator.

10.2.6 Geometry optimisation

The geometry optimisation is carried out in two optimisation loops, an external one where a 

genetic algorithm is exploring the geometric parameters design space, and an inner one 

represented by the fmincon routine with the aim of finding the optimal boat-sail trim to 

maximise velocity for that particular sail geometry.

Two additional scripts are required to execute this routine:

• OPT_SAIL is devolved to setting up the genetic algorithm (GA) parameters and the post 

processing of the results

• OBJECTIVE_FUNCTION_VMG is used to launch the FUNC_mdl6 for each design, 

verify equilibrium for the analysed sail and extract the maximum VMG, which serves 

as objective function for the GA.

The boundaries of the geometric parameters are initially presented in Table 6 and reported here 

below in Table 20.ČýĎýĉāĐāĎ ĈċēāĎ þċđĊĀýĎĕ đČČāĎ þċđĊĀýĎĕÿ1 950 1550ÿ2 800 1200ă 10 50ČĎ 0.5 1ČĎċĂąĈā1 1 4ČĎċĂąĈā2 1 4ÿ 215 0Ă 215 0
Table 20 Geometrical parameters and relative boundaries



11. Results’ analysis

The optimisation routine has been run several times changing for example initial conditions and 

sail surfaces, to test its robustness, and it always converged on the final result reported in Table 

21.

ÿ1 ÿ2 ăýČ %ÿ1 ČĎċĂąĈā 1 ČĎċĂąĈā 21550 1189.5 10.09 0.58 Ċýÿý0012 Ċýÿý0012
Table 21 Optimal design parameters

The analysis of the optimisation results shows that the chord of the wing sail was maximised 

on the first element and flap moved towards the upper boundary as well, which means that the 

height of the sail was being reduced. This suggests that the algorithm was finding shorter sails 

to be more robust and better performing than taller configurations. The rotation point of the flap 

lies almost at mid-length of the first wing segment, and the gap between the two is minimised 

as much as possible. Among all the tested profiles, he NACA 0012 was perceived as the best 

performing airfoil, likely because of its slenderer shape.

Figure 55, Figure 56, Figure 57 and Figure 58 present the final CAD model of the optimised 

sail. The mast and the flap rotation axis positions are displayed as well.

Figure 55 Airfoil sections of optimal sail



Figure 56 Isometric view optimal sail

Figure 57 Top view at different angles

Figure 58 Isometric view at different angles



The GA had following parameters reported in Table 22, following the values recommended by 

the MATLAB documentation. Figure 59 plots the iterations of the algorithm over successive 

generations and shows that the GA terminated after just 108 generations, even though the 

stopping criteria was set to 200. This means that the algorithm couldn’t find any better sail 

configurations as the iterations progressed, strongly suggesting convergence to a global 

optimum. Additionally, the points’ distribution exhibits a clear downward trend, which indicates 

good convergence of the GA.

Ċ° āĜ ÿĀĚÿĈÿĚćėþą ĂěĄ ĝěĀěĄėĆÿāĀ 100Ċ° āĜ ĝěĀěĄėĆÿāĀą 200
Table 22 Genetic algorithm parameters

Figure 59 GA convergence

Once the GA was completed, Glaros’s performance was reevaluated, and the final results are 

reported in Table 23 below. Equilibrium was reached since the norm of the force vector tau was 

equal to 0.50, and the largest residual was of 0.4 N, meaning that on the other dofs was even 

lower, around 0.01 N.



čćėĀĆÿĆċ Ēėþćě đĀÿĆĒĉă 6.05 ÿ/ąċĂĆÿÿėþ /ěėĚÿĀĝ 42,38 °þāėĆ ĈěþāęÿĆċ 8.8 ÿ/ąđ ęāÿĂāĀěĀĆ 8.78 ÿ/ąĒ ęāÿĂāĀěĀĆ 0.64 ÿ/ąĈěěĉėċ ėĀĝþě 4.17 °āĜĜěęĆÿĈě āĂĆÿÿėþ ėĀĝþě 46,58 °Ąÿĝ/ěąĆ ěăćÿþÿĘĄÿćÿ ĄěąÿĚćėþ 0.4 Ċ
Table 23 Optimal results

The optimal heading to be followed by Glaros in order to obtain the best performance for the 

first leg of the regatta is 42.38°, with a speed of 8.8 m/s, corresponding to roughly 17 knots. 

For this condition the leeway ends up being around 4.1° degrees, in line with theoretical 

expectations.

The polar plot of the optimised sail, displayed in Figure 60, exhibit the expected trend for CL 

and CD curves: the CL is increasing linearly with the angle of attack, while CD is increasing 

quadratically, as a demonstration of the model’s predictive accuracy.



Figure 60 Sail’s aerodynamic coefficients’ polars

Figure 61 reports polars graphs for different sail geometries, clearly illustrating that the 

geometric parameters’ variation was significantly affecting the aerodynamic performance of 

the configurations evaluated.

Figure 61 Comparison between polars of different geometries



The obtained results are consistent with the physical principles governing them, demonstrating 

the predictive capabilities and reliability of the developed system, despite the simplifications 

that were assumed during the development of this work. By integrating more accurate physics 

and models if more computational power was available, the quality of the results would increase 

even more, but the purpose of this work was to set the basis for a geometry optimisation. Four 

core components can be identified as the building block of this workflow: geometry 

parametrisation, CFD model, neural network training and VPP. By refining each of these 

<blocks= even more accurate and robust optimisations can be achieved, underscoring the 

significant potential of this approach.



12.Conclusions

In this work, a comprehensive modelling and simulation framework was developed to predict 

and optimize the performance of Glaros under upwind sailing conditions. A static six‐degree‐

of‐freedom MATLAB model was implemented to compute equilibrium trim states and predict 

boat behaviours, into which environmental inputs (wind speed, course geometry) and sail‐

geometry parameters were fed. The sail aerodynamic coefficients were modelled with an 

accurate neural network, and by replacing costly, time-intensive CFD runs with near-

instantaneous model evaluations, this approach eliminates the simulation stage as a bottleneck 

in fluid-dynamics optimizations. This means that it is possible to iterate through design 

variations far more efficiently and still achieve CFD-level accuracy and reliability.

The several limitations that have been presented do not reduce the value of the workflow, rather 

they pave the way for future research to improve its optimisation capabilities. Future extensions 

are limitless and concern all fields of this thesis.

The sail’s geometry can be captured more precisely by adding extra shape parameters, like a 

twist angle, and by expanding the airfoil library with additional sections. Instead of describing 

the leech as a simple straight line and getting thus just rectangular shapes, it can be described 

with a flexible B-spline curve. This combination would give us far greater design fidelity and 

control.

CFD simulations could be improved by fine-tuning the turbulence model’s parameters, by 

carrying out a more thorough mesh and CFL convergence study. 3D simulations would further 

improve the reliability of results significantly but would also require more computational power 

than the one that was available for this work.

By training the neural network on data from simulations of varying fidelity, computational 

efficiency could improve even further. A multi-fidelity surrogate model would be built by 

generating a high number of low fidelity samples through simple but fast simulations, like a 

panel method algorithm or CFD models with a coarser mesh. This dataset would then be 

enriched by few selected high-fidelity simulations, yielding the same level of accuracy as a 

single-fidelity model but at a fraction of the cost.

Adaptive sampling can be made more efficient by choosing which new points to evaluate based 

on a variance analysis, rather than indiscriminately adding samples each iteration. In practice, 

this means that instead of simulating three new candidates every time, just the single most 



informative candidate would be identified, simulated, and added to the dataset, thereby cutting 

down on computation time even further.

Lastly, the static model for boat-trim evaluation can be substituted by a transient dynamic 

model, and by adopting more precise foil polars, more accurate results could be predicted. A 

more robust controller for the sailor behaviour and adding the roll degree of freedom would be 

beneficial as well. Additionally, instead of considering just one wind condition, the optimisation 

could result more robust if a more realistic wind distribution was considered, implemented as 

a Markov chain model or by consider real wind fields taken from Windy’s API. An example of 

Markov chain implementation is presented in (40).
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