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Kurzfassung

Synchrone Schaufelschwingungen können die Lebensdauer von Rotoren stark beeinträchti-

gen, da ihr Auftreten zu

Limit Cycle Oscillations führen kann, die mit der Zeit das

Risiko von Bauteilversagen aufgrund von

High Cycle Fatigue erhöhen. Eine Eigen-

schaft, die die Schwingungseigenschaften des Rotors wesentlich beeinussen kann, ist

Mistuning. Mistuning entsteht durch strukturelle Unterschiede zwischen den Schaufeln,

welche die Periodizität des Laufrads verletzen. Hauptursachen hierfür sind Fertigungstol-

eranzen, Materialinhomogenitäten sowie ungleichmäßiger Verschleiß der Schaufeln im

Betrieb. Mistuning führt zu einer Lokalisierung der Dissipation von Schwingungsenergie

und erheblichen Amplitudenüberschreitungen. Dadurch können die Amplituden einzel-

ner Schaufeln deutlich höher sein als die eines rotationssymmetrischen Systems. Zudem

führt Mistuning zu einer Mischung von Schwingungsmoden, die im Frequenzbereich eng

beieinander liegen, was zu

mistuned Modenformen führt. In diesem Zusammenhang

können verstimmte Modenformen, die sich aus Verdichter- und Turbinenmoden zusam-

mensetzen, beide Rotorseiten koppeln und somit Schwingungen über den gesamten Ro-

tor verursachen. Diese Arbeit untersucht das Schwingungsverhalten eines verstimmten

Rotors numerisch mittels eines verstimmten FEM-Modells. Ein Vergleich zwischen

einem

tuned und einem


mistuned Rotor wird im Hinblick auf die Lokalisierung

von Schwingungen und die Rotorkopplung durchgeführt. Zudem wird die Untersuchung

der durch Mistuning auftretenden gekoppelten Moden vorgenommen, um die Mechanis-

men hinter der Entstehung dieser Moden zu identizieren. Darüber hinaus werden der

Einuss der Randbedingungen sowie die Auswirkungen verschiedener Mistuning-Muster

auf die gekoppelten Moden analysiert. Für die Implementierung der Mistuning-Muster

werden experimentelle Daten herangezogen.





Abstract

Synchronous blade vibrations can have a severe impact on the service life of rotors as

their occurrence leads to limit cycle oscillations, which over time increase the risk of

component failure due to high cycle fatigue. A property that can substantially inu-

ence the vibration characteristics of the rotor is mistuning. Mistuning appears due to

structural dierences between the blades, which violates the rotational periodicity of

the impeller. Manufacturing tolerances, material inhomogeneities and uneven wear of

the blades during operation are the main causing factors. Mistuning leads to localized

dissipation of the vibration energy and signicant amplitude overshoots. As a result, the

amplitude of individual blades can be signicantly higher than those of rotationally pe-

riodic structures. Additionally, mistuning mixes vibration modes that are closely spaced

in the frequency domain, leading to mistuned mode shapes. In this context, mistuned

mode shapes, which are composed of compressor- and turbine-expressed modes, can cou-

ple both rotor sides, causing vibrations across the entire rotor. This thesis investigates

the vibrational behaviour of a mistuned rotor numerically using a mistuned FEM model.

A comparison between a tuned and a mistuned rotor is conducted in regard to vibration

localization and rotor coupling, while an examination of the coupled modes occurring

due to mistuning is performed to identify the mechanism behind the appearance of these

modes. Furthermore, the impact of the boundary conditions as well as the eect of dif-

ferent mistuning patterns on the coupled modes is investigated. For the implementation

of mistuning patterns, experimental data are employed.
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1 Introduction

1.1 Global context

In recent years, the reduction of carbon dioxide emissions has become increasingly important. In

the context of turbo machinery, this translates into the need to increase the operational eciency

of the machines.

A substantial part of research and development eorts is focused on optimizing the geometry

of mechanical components. In particular, reduction in blade thickness leads to the following

advantages:

Reduction of friction forces and wear between rotor and stator [10]

Reduction of heat losses due to conduction [10]

Reduction in dissipations at the trailing edge [11]

At the same speed and inlet pressure, the turbine can achieve a higher mass ow rate at

the outlet [2]

In summary, the optimization of the geometry of the blades would lead to an increase in thermo-

mechanical eciency. Moreover, reducing the rotor mass increases the power-to-mass ratio, which

is particularly relevant for aeronautical and transport applications.

One of the main causes of failure during the operation of bladed impellers is High Cycle Fatigue,

caused by dynamic stresses resulting from blade vibrations [10]. In fact, most cases of impeller

blade fracture are caused by fatigue fracture, as shown in Fig. 1.1 [2]. A typical blade failure due

to fatigue is illustrated in Fig. 1.1.

The thickness optimization problem requires knowledge of the exact values of the dynamic

stresses and, therefore, of turbine dynamics and aerodynamic interactions. A reduction in the

blade thickness would magnify dynamic stresses due to vibration. Therefore, it is important to

investigate all aspects of rotor dynamic behaviour of rotors for adequate prediction of vibration-

induced dynamic loads. In particular, the precise determination of the resonance operating points

and the estimation of the vibration magnitudes are crucial for an accurate assessment of the service

life of the impeller.

Flow dynamics aspects like the study of ow dynamics, such as aerodynamic excitation and
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Figure 1.1: Example of crack fatigue overwhelmed impeller [2]

damping as well as the structural aspects of damping and mistuning are essential for enhancing

understanding toward this goal this goal.

1.2 Synchronous vibration in real operation

Rotor blades travel through an uneven ow eld (Fig. 1.2) , which exerts cyclic, time-varying

pressure uctuations on the blades. As a result, in radial turbines, the primary cause of excitation

is the interaction between the ow eld at the guide vane outlet and the impeller inlet. [10]

Figure 1.2: Schematic representation of the excitation in a radial turbine stage (left) and static
pressure distribution in a plane between guide vanes and rotor blades of a radial
turbine from a CFD simulation (right) [3]

[4] For this reason, the primary vibration component occurs at a frequency equal to the rotor

speed multiplied by the number of vanes. In general, the excitation frequency ωE equals an

integer times the rotation frequency Ω. This integer multiplier, called the Engine Order (EO),

represents the number of excitation periods a blade encounters during one full rotation. (1.1)
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ωE = EO · Ω, EO  N+ (1.1)

Equation 1.1 represents the condition of synchronous vibration which discriminates the presence

of a resonance point based on the excitation frequency, but this is not the only condition. For

resonance to be possible, it is in fact necessary that the excitation is in phase with the vibration

mode to be excited. To express this condition it is necessary to consider the modes of a bladed

assembly. Consider a tuned bladed assembly composed of Z sectors. Due to cyclic symmetry

(rotational periodicity) in the rotor geometry, the sectors of the bladed assembly share identical

mode shapes. Each sector mode shape corresponds to Z bladed assembly modes, where the same

mode shape repeats across sectors with a constant phase dierence ϕ.

ϕi,j = 2π
ND

Z
, ND = 0, 1, NDmax (1.2)

ND is an integer typical of each mode, called nodal diameter or harmonic index. The ND

determines the constant phase dierence between two neighbouring blades. This constant phase

dierence produces mode shapes that follow a harmonic function (sine or cosine) along the rotor

circumference.

ψt, j = ψ0 · sin(2πND
j

Z
) (1.3)

We can now explain the meaning of the integer ND, known as the Nodal diameter. The Nodal

diameter represents the number of periods along the circumference, according to Eq. (1.3). Thus,

ND also represents the number of diameter lines where the mode shape evaluates to zero (nodes),

which explains the name. From equation (1.2), we see that for ND = 0, modes have zero phase

dierence between sectors. The other limiting case occurs when the number of blades, Z, is even,

and ND = NDmax = Z2. In this case, the phase dierence between neighboring blades (IBPA)

is equal to ϕi,j = 180◦, each blade vibrates with a phase that is opposite to that of the adjacent

blades.

The maximum number of nodal diameters NDmax depends on the number of sectors Z (1.4).

NDmax =





Z−1
2 , for odd Z

Z
2 , for even Z

(1.4)

If the number of sectors Z is even, the modes with ND between 1 and Z
2 have multiplicity 2 .

However, if Z is odd, the modes with ND between 1 and Z−1
2 also have multiplicity 2. These are

orthogonal solutions, which have the same sector mode and the same number of nodal diameters,

are called twin modes.
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The occurrence of synchronous vibration requires that the excitation frequency matches the

natural frequency of the impeller and that the excitation is phase-aligned. For radial centrifugal

turbines, Wilson and Utengen [12] proved the condition that links the engine order of excitation

to the ND of the mode predominantly excited by that excitation.

EO − k · Z = ±ND, k = 1, 2, 3 (1.5)

Equation (1.5) is called Phase correctness condition or internal resonance condition and it denes

the condition for the occurrence of a mode of nodal diameter ND. In a more simpied form, eq.

(1.5) can be written as 2πEO
Z

= ±2πND
Z

+2kπ. This means that the phase of the excitation seen

by the blades 2πEO
Z

must match the inner blade phase angle 2 πND
Z

.

1.3 Mistuning, denition and eects

The modes of the impeller are obtained by solving the equation of motion for free vibration.

When all mode shapes have the same dynamical properties due to symmetry, the Inter Blade

Phase Angle (IBPA) remains constant, as shown in (1.2). This constant phase dierence between

neighbouring blades results in mode shapes that form a pure harmonic periodic pattern along

the circumferential coordinate of the impeller. The number of periods in this pattern along the

circumferential coordinate is equal to the ND of the mode.

In fact, a perfectly tuned impeller, where all the blades have identical properties, cannot be

manufactured. Mistuning is the dierence in the dynamical properties between turbine blades,

due to material inhomogeneities, manufacturing tolerances and uneven wear. Mistuning causes

localized hardening and softening on individual blades, disrupting the symmetry between blade

sectors. This causes phase dierence between blades to be not constant. Mistuning causes the

frequencies of twin modes to split, whereas for a tuned rotor, these frequencies are coincident.

This splitting increases the number of critical speeds.

It is possible to represent the mistuned mode shapes as a superposition of the tuned mode

shapes(1.6) [13] . Tuned mode shapes form a linear basis [14], and therefore every single mistuned

mode shape ψm can be expressed as a weighted sum of tuned mode shapes [Ψt] as shown in

equation (1.6)

[Ψm] = [W ][Ψt] (1.6)

For this reason a mistuned mode shape can be represented as a sum of single harmonics, that

correspond to the tuned modes. This leads to a nodal diameter spectrum, which is dened as

the series of ND components that compose the mistuned mode. Nodal diameter spectrum is
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calculated as Discrete Fourier Transform of the mistuned mode across the circumference of

the impeller. [13] [15]

Furthermore, mistuning causes random hardening and softening on blades, leading to the con-

centration of high modal amplitudes on individual blades. This phenomenon is called mode

localization. In [8] it is demonstrated numerically that localization in the modes shapes and

mode localization increases as a function of the mistuning intensity up to a certain threshold.

It is also demonstrated that there is a maximum value of mistuning intensity at which mode

localization reaches its peak, beyond which localization decreases. This property is exploited by

implementing intentional mistuning, where articially applied high-intensity blade mistuning is

used with a pattern designed to reduce modal localization. [5]

1.4 Coupled modes

Furthermore, this thesis aims to investigate the eect of mistuning on the turbine - compressor

coupled vibration. The mechanisms that allow coupled vibration of the turbine and compressor

are known in the literature [7] [16], and are due to torsion, ’thrust’, bending and transverse

translation of the shaft. The torsional coupling of the turbine and compressor is associated with

nodal diameter of 0 on both the turbine and the compressor. The coupling due to normal ’thrust’

forces of the turbine and compressor causes homogeneous movement of the rotors in the axial

direction and is therefore associated with a nodal diameter 0.

Coupling mechanisms involving transverse translation on the shaft accompanied by shaft bending

that causes ’tilting’ of the turbine and compressor wheels is associated with nodal diameter 1 on

both wheels. All turbine-compressor coupled modes known in the literature are associated with

Nodal Diameter 0 or 1. Therefore, it is established that, in tuned rotors, only ND 0 and ND 1

vibration travels through the shaft.

In fact, for ND > 1 modes, resultant momentum carried by blades in rotational or translational

directions is equal to 0 and therefore mode does not transmit thoriugh the shaft.

1.5 Research questions

These statements are conrmed by a numerical study of the rotor object of this thesis [17].

In this study researchers have investigated dierent bearing congurations and their eect on

the turbine-compressor coupling. To evaluate the degree of coupling of modes they employed

the Amplitude ratio, dened by equation (1.7) as the ratio between maximum displacement on

turbine and compressor. In this thesis we repeat this study, this time considering the mistuning

on the turbine.

ARturb, comp =
maxuturb
maxucomp

(1.7)
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Despite the results of the study, in a previous investigation conducted at IKDG [4] it was

observed that an interaction between both impellers and the shaft can exist for modes of higher

ND than 0 & 1. Particularly, vibrations with an EO equal to the number of diuser blades at the

compressor were observed at the turbine. Nevertheless the EO of this vibration, according to the

Wilson and Utengen phase correctness criterion, leads to a ND5 mode to the turbine impeller.

Moreover, the compressor ow seems to signicantly inuence the vibration characteristics on

the turbine side. These results seem to contradict the ndings of Klaus and others [16] [7] as it

is evident that vibrations with nodal diameter higher than 1 can cause interaction between both

impellers. This thesis investigates the hypothesis that mistuning might be responsible for these

turbine-compressor interactions with ND>1.

In synthesis, this work targets the following questions:

Is it possible to encounter coupled modes with ND > 1 in mistuned impellers?

Can the measured resonances with ND¿1, like those observed on the EO17

line, be explained by introducing mistuning?

What are the physical mechanisms responsible of turbine - compressor cou-

pling?

What is the inuence of the boundary conditions on coupled modes?

Chapter 2 is presents a resume of the knowledge on the dynamics of tuned and mistuned bladed

assemblies. Chapter 3 briey presents the techniques and the materials used in order to mea-

sure mistuning as well as the main results obtained in the experimental bench by my tutor M.

Sasakaros. Chapter 4 presents the Finite element Models used to calculate the tuned and mis-

tuned modal properties of the impeller. Chapter 5 presents the procedure used for implementing

mistuning on the nite element model. Chapter 6 are presents the evaluation procedure and the

results and the comparison the tuned and a mistuned systems. Chapter 7 is presents the inter-

pretation of the coupling between turbine and compressor according to theory considerations.

In Chapter 8, we observe the sensitivity of the system to dierent congurations. Inuence of

bearing and the interaction with mistuning, has been taken into account repeating the study [17].

Dierent mistuning patterns on the turbine are tested. Furthermore, mistuning on the compres-

sor blades is implemented.



2 State of the art

2.1 Equations of motion

Rotor vibration can be described through the equation of motion (2.1).

[M ]q̈+ [C(Ω)]q̇+ [K(Ω)]q = f(t) (2.1)

q is a vector that contains all the degrees of freedom on the rotor. [M] is the mass matrix,[C(Ω)]

is generalized damping matrix, while [K(Ω)] is the generalized stiness matrix. These generalized

stiness and damping eects are generally dependant on the rotational speed.

f(t) is the forcing function. For a bladed rotor this term is given by the interaction forces with

the uid. Knowledge of these interactions is given by uid-dynamics simulations. The primary

contribution to the forcing function is given by the uneven pressure eld in the outlet of the

stator vanes [4] [10]. Therefore, the dominant forcing function is harmonic with an EO equal to

the number of stator vanes.

f(t) ≈ f0(t)ei·EO·Ωt, E0 = Zstator (2.2)

It is useful to consider the equations of motion without the forcing eect due to uid interactions

in order to better understand the properties of the rotor. The homogeneous equations of motion

for a generic rotor can be written in matrix form by expanding Eq. (2.1) into the general form

given in Eq. (2.3) : [18]

[M ]q̈+ ([Cr] + [Cnr] + Ω[G])q̇+ ([K] + [KΩ]Ω
2 − Ω[Cr]− [KS ])q = 0 (2.3)

The matrices in Eq. (2.3) represent:
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[M ] Mass matrix
[Cnr] Non rotating damping matrix
[Cr] Rotating damping matrix
[G] Gyroscopic matrix
[K] Stiness matrix
[KΩ] Centrifugal stiening matrix
[KS ] Spin softening matrix

The mass matrix represents the inertia carried by the degrees of freedom of the structure.

The non rotating damping matrix represents the damping force exerted from outside the

rotor, for example the bearings and the action of uids. Non rotating damping always increases

the margin of stability.

Rotating damping matrix, on the other hand represents the sources of damping internal to

the rotor, such as the structural damping (hysteresis damping). As the speed increases, rotating

damping proportionally reduces the stiness formulation, potentially causing instability.

Stiness matrix, (in this notation the stiness of rotor at speed = 0) represents the link by

linear elastic forces between two degrees of freedom.

Gyroscopic terms are inertial terms of a rotor whose sections can rotate and translate along axes

perpendicular to the axis of rotation. Physically, it arises from the Coriolis forces. These forces

arise from a cross product, coupling the two transverse axes with opposite actions; therefore, the

gyroscopic matrix is anti-symmetric.

Centrifugal stiness matrix [KΩ]Ω
2 represents the increase in stiness due to the state of stress

induced by the centrifugal forces on the dierent parts of the rotor. The matrix [KΩ] is a matrix

of constant values. To compute this matrix, it is necessary to calculate the stress-strain state by

performing a static analysis of the steady-state rotation.

Spin softening eect, [19] is an eect due to the rotational velocity of the structure that

reduces the stiness matrix. The vibration of a spinning body will cause relative circumferential

motions, which will change the direction of the centrifugal load which, in turn, will tend to

destabilize the structure. It is usually the result of centrifugal forces, causing deformations that

modify the geometry of the structure resulting in a less stable conguration. The spin softening

contribution is included in Ansys analysis if the model includes pre stress, Coriolis eects and

large deformations.

Equation (2.3) can be represented in state space form (2.4)

ż = [A]z (2.4)
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[A] =


−[M ]−1([Cnr] + [Cr]− Ω[G]) −[M ]−1([K] + Ω2[KΩ]− Ω[Cr]− [KS ])

[I] [0]



z =


˙q

q



Looking for a solution of the type z0 · eλt the state space formulation yields the eigenvalue

problem:

([A]− [I]λ)z0 = 0 (2.5)

This equation can be expanded to the 2N degree polynomial with real coecients (N Number

of degrees of freedom) whose roots are complex conjugate.

λ = λR ± iλI (2.6)

Where the real part of the eigenvalue in Eq. 2.6 contains information on the stability of the

mode. In particular, if the real part is negative, the mode is stable, and its amplitude will decrease

exponentially unless the system is externally excited.

The imaginary part of the eigenvalue represents the oscillation frequency of the free response of

the rotor. The modes whose eigenvalue have positive imaginary part are called forward modes.

The modes whose eigenvalues have negative imaginary part are called backwards modes. Forward

modes represent vibrations that travel in the direction of rotation, while backward modes repre-

sent vibrations that travel in the opposite direction. See Fig. 2.1 for illustration.

In general, eigenvalue λ changes with the rotational speed Ω. A plot of the real part of the

eigenvalue as a function of the speed is called stability map. A plot of the imaginary part as a

function of the speed is called Campbell diagram.

2.2 Vibration of tuned impellers

This section provides a brief overview on the vibration properties of a single bladed disk, for

example the turbine or the compressor can be considered isolated from the rest of the rotor.

Modes of a blade-disk assembly are conventionally subdivided into three families: [5]

Disk modes, if 70% of the strain energy of the mode resides in the disk structure
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Figure 2.1: Illustration of backward mode (a), forward mode (b)

Blades modes, if 70% of the strain energy of the mode resides in the blade

Mixed modes, in case it cannot be clearly classied in one of the previous categories.

Figure 2.2: Example of a blade dominant mode (a) , and of a mixed mode with strong disk
participation (b)

When vibration is concentrated in the blade, the vibration energy is primarily dissipated in a

localized area—the blades and the blade root. This leads to high stress levels, which, over time,

cause considerable fatigue on the impeller. For this reason, the blade modes are of particular

concern.

2.2.1 Blade modes

To describe the vibration of bladed disks, it is helpful to rst consider the vibration of individual

blades. Using FEM analysis and experimental methods, the mode shapes and the mode frequen-
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cies can be computed. Fig. 2.3 shows the FEM calculated blade mode shapes which occur in the

frequency range 0 : 18000 Hz.

Figure 2.3: Deection of mode shapes of the turbine blades, of the radial turbine of this thesis
[4] [5]

Table 2.1: Approximate frequency ranges for the rst six blade mode families

Blade mode 1 ≈ 3500:4000 Hz
Blade mode 2 ≈ 7500:8000 Hz
Blade mode 3 ≈ 8800:9700 Hz
Blade mode 4 ≈ 9000:9400 Hz
Blade mode 5 ≈ 13500:14000 Hz
Blade mode 6 ≈ 15000:17800 Hz

The resonant frequencies are given as an interval (Tab. (2.1)) because the single blades are

not independent. Instead neighbouring blades interact elastically with each other, creating blade

assembly modes. For each blade mode there are Z bladed assembly modes. Frequencies of modes

belonging to the same blade mode family dier slightly from one another, depending on the

strength of the elastic coupling between the blades. Moreover, due to centrifugal stiening, spin

softening, gyroscopic eect and rotating damping, blade mode frequency are also inuenced by

the speed of rotation Ω of the rotor, as shown by the Campbell diagram, presented in Sec. 2.2.3.

2.2.2 Blade interaction and Nodal diameter spectrum

Since the blades are mounted on a disk that is not innitely rigid, they interact elastically with the

neighbouring blades. Besides the disk, the aero-elastic coupling between two blades contributes

to this interaction, but it is usually of a much lower order of magnitude relative to blade coupling

[20]. The blade to blade interaction can be conceptualized with the use Reduced-order models

(ROM). The simplest and most commonly adopted ROMs are the One Degree of Freedom per

Sector model (1-DOF), represented in Fig. 2.5 or the Two Degree of Freedom per Sector
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2-DOF, represented in Fig. 2.4 [13] [6]. However, to ensure the accurate representation of the

interaction, nite element models with thousands of degrees of freedom are required.

Figure 2.4: Scheme of the 1-DOF per sector model

The 1-DOF per sector model is the simplest conceptualization of a turbine rotor. It abstracts

the motion of the blade mode with a mass and a stiness attached on a rigid frame. Coupling

between blades is modelled as a spring between two blades.

The equation of motion for the i-th sector is then:

müj + kuj − ki(uj+1 + uj−1) = f (2.7)

j: blade index

m : mass idealizing sector inertia

k : stiness linking mass with frame, idealizing sector internal stiness

ki : stiness linking masses, idealizing sector to sector coupling

uj : j-th sector displacement

Imposing harmonic solution as uj = uj,0 · eiΩt and solving for uj+1,0 we obtain the algebraic

equation which relates the amplitudes of the sectors:

uj+1,0 =
1

R
(1− Ω2

ω2
N

)uj,0 − uj−1,0 (2.8)

Where R = ki
k

and ωN =


k
m

Since the assembly is circular, with Z sectors, it is evident that the periodicity constraint in Eq.

2.9 must be respected:

uj+Z,0 = uj,0 (2.9)

Assuming that uj = uj,0 and that there is a phase dierence between j-th and j+1-th blade equal

to ϕ = 2π(h− 1)Z, then, in complex notation, uj+1 = uj,0 · e
iϕ
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It can be written:

[1 + 2R(1− cos(2π
h− 1

Z
− Ω2

r

ω2
N

)] · uj,0 = 0 (2.10)

looking for non null solutions of Ω2
r :

Ω2
r = ω2

N ·


1 + 2R


1− cos


2π(h− 1)

Z


(2.11)

and

uj = cos(2πh ·
j

Z
) (2.12)

Where h is a scalar harmonic index. It represents the number of periods of the mode shape

along the tangential coordinate. The maximum value of h depends on the number of sectors

Z,it evaluates to Z/2 if Z is even, and (Z-1)/2 if Z is odd. This index takes the name of Nodal

diameter. For n = 0, all the sectors vibrate in phase and Ωr = ωn. In the 1-DOF per sector

model the natural frequency increases monotonically with the nodal diameter.

The maximum nodal diameter, with Z even, is equal to Z/2 and represents the mode in which

neighbouring sectors have a phase dierence of 180 .

Figure 2.5: Resonance frequency dependency on Nodal diameter for 1-DOF per sector model

A slightly more complex model is the two degrees of freedom of the blade mass and the sector

disk mass respectively. The blade is coupled to the disk with a spring. The sector disk masses

are connected to each other by a spring, representing the inter-disk stiness.
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Figure 2.6: Scheme of the 2-DOF per sector model

The equations of the model are: For the disk masses:

M ¨x2,j + k2x2,j − k3x2,j+1 − k3x2,j−1 − k1(x1,j − x2,j) = 0 (2.13)

and for the blade masses:

m ¨x1,i + k1(x1,i − x2,i) = 0 (2.14)

x1,j coordinate idealizing i-th blade motion

x2,j coordinate idealizing i-th disk part motion

m blade mass

M disk sector mass

k1 stiness linking blade to respective disk part

k2 stiness linking disk part to shaft

k3 stiness linking two neighbouring blades

By solving the eigenvalue problem in the same way as the 1-DOF per sector model Z blade

dominant modes and Z disk dominant modes are found.

An important result of this simplied model (Fig. 2.7) , which is a general property of all bladed

assemblies [20], is that the disk dominant modes, compared to the blade dominated modes, have a

stronger elastic inter-sector interaction, therefore show a larger frequency variation with dierent

nodal diameter modes within the same blade mode family.

By solving the eigenproblem of a realistic bladed assembly model realized with FEM, the har-

monic patterns described by Eq.(2.12) are revealed for each blade mode family, and are repre-

sented in Tab. 2.2 .
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Figure 2.7: Resonance frequency dependency on Nodal diameter for the 2-DOF per sector model
[6]

ND 0 1 2 ... 6

BM1 ...

BM2 ...

BM3 ...
...

...
...

...
...

...

Table 2.2: Mode shapes of turbine model, showing harmonic patterns with number of nodal
diameter ND = 0,1,...NDmax
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Nodal diameter 6 is the highest possible nodal diameter observable in this assembly, as it is

composed of 12 sectors. For the highest nodal diameter, each sector vibrates in opposition to the

neighbouring sectors.

Figure 2.8: Chart of rst 6 blade mode families frequency and Nodal diameter

Fig. 2.8 shows , for the turbine object of this thesis, the variation of each blade mode family’s

natural frequency with its nodal diameter. Unlike the 1-DOF per sector model frequency does

not increase monotonically with ND.

2.2.3 Campbell diagram

The Campbell diagram oers great insights on the dynamic behaviour of the rotor. the imaginary

part of a mode’s eigenvalue represents the vibration frequency of the mode. Modes whose fre-

quency curve increases with speed are modes in which hardening prevails. Figure 2.10 shows that

in turbo machines, the blade dominated modes are strongly hardening as the centrifugal eects

prevail. Disk dominant modes are less sensitive to speed. Coupled blade-disk modes present a

veering region, as the blade part becomes more important with increasing frequency, or conversely

it may transition to blade dominant to disk dominant by increasing rotating speed. [7]

Not all points on the Campbell curve represent possible resonances. In fact, in order for syn-

chronous vibration to occur, excitation frequency must be an integer multiple of the rotational

speed, satisfying the condition in Eq. (2.15).
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ω = ±EO · Ω, EO = 1, 2, 3,  (2.15)

Equation (2.15) can be represented on the Campbell diagram as a straight line passing through

the origin. Intersection points between Campbell curves and Engine order lines represent the

synchronous vibration resonance points. Fig.2.9 shows an exemplary Campbell diagram. As-

suming an engine order of excitation EO, forward synchronous vibration resonance points are

given by the intersection in the positive ω between Campbell curves and the line ω = EO · Ω,

and are represented in blue. Backward synchronous vibration resonance points are given by the

intersection between Campbell curves and the line ω = −EO · Ω, and are represented in red.

Figure 2.9: Exemplary Campbell diagram showing multiple modes and respective forwards and
backwards synchronous resonance points.

Figure 2.10 shows, for a mixed blade-disc mode, the mutual interaction of the Campbell curves.

Blade modes (solid black line) exhibit marked hardening behaviour due to centrifugal actions,

which leads to an increase in natural frequency as speed increases. Disk modes, on the other

hand, are relatively insensitive to centrifugal hardening (solid brown line). The coupling of blade

and disk gives rise to two modes (dashed black lines). The lower frequency curve corresponds to

the mode that represents the vibration in the blade and disk phase. The higher frequency mode

represents phase-opposed vibration of disk and blade.
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Figure 2.10: Exemplary Campbell diagram of a disk-blade coupled mode [7]

2.2.4 ZZENF diagram

A useful tool for visualising the conditions for synchronous resonances is the ZZENF diagram.In

this diagram (Fig. 2.11), the nodal diameter is represented on the x-axis, while the vibration fre-

quency is represented on the y-axis. The vibration frequency for synchronous vibrations depends

on the rotational speed and the engine order EO of the excitation. The engine order and mode

nodal diameter are related through the Wilson Utengen equation. The coloured zig-zag lines

represent, for a given rotation speed, the locus of the synchronous vibration conditions and the

phase correctness criterion. The upward part of the zig-zag line represents forward modes, while

the downward part represents the backward modes. Blue dots represent the resonant frequency of

blade mode families and mixed modes families with their dierent nodal diameter congurations.

A resonance occurs when the blue dots representing a mode lies on a coloured line representing

the synchronous vibration conditions.



2 State of the art 19

Figure 2.11: ZZENF diagram of the turbine rotor part of the impeller object of this thesis [1]

2.2.5 Impact of operating conditions

Eect of speed

The eect of rotational speed is captured in the Campbell diagram of the system. The eects

that cause frequency change with speed, with reference to the equation of motion (2.3) are:

Centrifugal stiening or Spin stiening, proportional to Ω2

Spin softening

Rotating damping, softening eect proportional to Ω

Gyroscopic eect, stiening eect proportional to Ω

The Campbell diagram of the rotor is analysed in Section 4.7. This diagram is generated by

performing a prestressed modal analysis of the system at various rotational speeds. By solving
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this analysis, the relationship between the rotor’s natural frequencies and its rotational speed can

be eectively captured.

To understand the inuence of rotational speed on the natural frequencies of the impeller, it is

crucial to account for the stress distribution within the impeller at a given speed when solving

the eigenvalue problem. This can be achieved numerically through a prestressed modal analysis,

which incorporates the eect of centrifugal forces. The detailed procedure for performing this

analysis is outlined in 2.4.2.

Centrifugal stiening arises from the static state of stress and deformation induced by centrifugal

forces during rotation. As the rotor spins, these forces cause the material of the impeller to stretch

outward, which, in turn, alters the stiness characteristics of the system. This eect must be

incorporated into the analysis to ensure accurate predictions of the dynamic behaviour.

Prestressed modal analysis begins with a static solution for the stationary rotor rotating at a

specic speed, Ω. The result of this static analysis includes the stress distribution (illustrated in

Figure 2.12) and the associated deformations (depicted in Figure 2.13) caused by the centrifugal

forces. These results form the basis for the subsequent modal analysis.

Using the stress and deformation state obtained from the static analysis, the software computes

the centrifugal stiening matrix [KΩ]. This matrix represents the changes in the system’s stiness

due to the rotational speed. Incorporating [KΩ] into the modal analysis ensures that the natural

frequencies reect the eects of centrifugal forces, providing a realistic assessment of the rotor’s

dynamic characteristics at various operating conditions.

Figure 2.12: Von Mises stress on the sector due to centrifugal forces at 35000 RPM
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Figure 2.13: Deformation eld on the sector due to centrifugal forces at 35000 RPM

Eect of gas temperature

Turbine comes into contact with exhaust gas from a heat source whose temperature changes

substantially with working conditions of the machine. An increase in temperature causes a

decrease in the elastic properties, causing softening in the turbine blades, according to data in

table 2.3. The eect of temperature can be taken into account by downscaling the eigenvalues of

the turbine proportionally as a function of the square root of the Young Modulus.

Table 2.3: Young’s Modulus IN713C/LC (Pratt & Whitney)

Temp. [ F / C] Young’s Modulus [psi / GPa]

78 / 25.6 2994× 106 / 206.4
200 / 93.3 2948× 106 / 203.3
400 / 204.4 2872× 106 / 198.0
600 / 315.6 2797× 106 / 192.8
800 / 426.7 2717× 106 / 187.3
1000 / 537.8 2616× 106 / 180.4
1200 / 648.9 2514× 106 / 173.3
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Figure 2.14: Young Modulus of the turbine material dependence on the temperature
IN713C/LC (Pratt & Whitney)

2.2.6 Coupling of turbine and compressor

There are only four mechanisms known in the literature that allow coupled vibration between the

turbine and compressor. [7]. These are:

Torsional vibration of the shaft, causing in-phase vibration of the blades (with nodal diam-

eter 0) as shown in gure 2.15

Normal (axial) vibration of the shaft, causing umbrella-like in phase vibration of the blades

(with nodal diameter 0) shown in gure. 2.16

The rigid vibration of the shaft transversal to its axis, causing vibration of the blades with

opposite phase (ND = 1) on the two sides.

Bending vibration of the shaft, resulting in tilting of the rotor, causing the blades on opposite

sides to vibrate with opposite phase (ND1). It is represented in gure 2.17

From this, it follows that coupled vibrations between turbine and shaft, and between compressor

and shaft, are possible only for rotor modes with nodal diameter 0 or 1.
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Figure 2.15: Torsion coupled mode, with ND0 vibration of the turbine and compressor

Figure 2.16: Axially coupled mode, with umbrella ND0 vibration of the turbine and compressor

Figure 2.17: Bending coupled mode, with ND1 vibration on turbine and compressor

2.2.7 Eect of boundary conditions (bearings)

For the same turbo-compressor geometry used in this thesis, Zobel et al. [17], investigated the

modes of a tuned rotor with dierent bearing congurations.

In their work, they analysed changes in axial and radial bearing stinesses, showing comparisons

of the main modes’ frequencies and shapes.

Higher bearing stinesses cause an increase in frequency of the ’rigid’ mode shapes of the shaft,

but also lead to changes in the higher frequency modes which is not intuitive and can be in both

directions.
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Name Description Setup of bearings

FRB Fixed at radial bearings radial: all DOF suppressed
thrust: not modeled

FBC Full modeled boundary condition radial: Ref. values
thrust: Ref. values

LOW Low damped setup radial: Ref. values
thrust: 1% of Ref. values

FAD Fixed DOF in axial direction radial: Ref. values
thrust: axial DOF suppressed

Table 2.4: Description and setup of bearings in the paper of Beirow & others

To quantify the degree of coupling of a mode, authors use the displacement Amplitude Ratio,

dened as the ratio between maximum displacement on the two impellers:

ARturb =
umax,turb

umax,comp

;ARcomp = AR−1
turb (2.16)

A mode is more coupled the closer the AR is to 1.

Authors’ results can be summarised:

In all cases authors conrm that only ND0 and ND1 can cause AR close to 1.

For the Fixed Radial Bearings (FRB) condition, authors found there are no coupled modes,

as the lowest AR is 2500

Releasing radial degrees of freedom, from FRB to FRC, allows many coupled modes to

emerge, as bending and rotation/torsion of the shaft are allowed.

Between LOW, FBC, FAD few signicant variations are observed. Particularly, a few

selected modes seem to show signicant variability in AR.

2.3 Vibration of mistuned impellers

2.3.1 Mistuning denition

Mistuning is dened as the dierence in the dynamic properties of a bladed assembly. It is caused

by various phenomena of dierent nature. The main causes of mistuning are:

Blade geometric tolerances associated with manufacturing techniques: The complex geom-

etry of a radial turbine requires tolerances to allow manufacturing. Even small variations

in blade thickness and surfaces have eects on the natural frequencies of the blade.
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Material inhomogeneity leads to variations in density and Young’s modulus, both between

dierent blades and even within a single blade. In steel alloy castings, density in particular

tends to be inhomogeneous due to the solidication process.

Uneven wear, during the operational life of the turbine can develop or increase existing mis-

tuning. Existing mistuning causing vibration intensication increases wear rate on selected

blades and leads to the formation of micro-cracks on the blade root.

2.3.2 Eect of mistuning on frequencies

To understand the eect of mistuning on the natural frequencies of an impeller it is possible

to refer to the simplest model: the 1-DOF per sector model. A reasonable way to represent

mistuning by introducing a variation in the value of the spring k to the k + δk. Experimental

evidence shows that mistuning on the disk is less signicant, and since the coupling is primarily

determined by the disk, the coupling stiness can be considered tuned.

Representing the equation of the 1-DOF per sector in matrix form as:

müj + (k + δ)uj − kiuj−1 − kiuj+1 = 0 (2.17)




m 0    0

0 m    0
...

...
. . .

...

0 0    m







ü1

ü2
...

üZ




+




k + δ1 −ki    −ki

−ki k + δ2    0
...

...
. . .

...

−ki 0    k + δZ







u1

u2
...

uZ




= 0 (2.18)

δ is the random variable representing blade stiness mistuning. It is possible to estimate the

range of the natural frequencies of the mistuned wheel using Gerschgorin’s circle theorem. The

eigenvalues of the system are located within the union of Z circles, where each circle corresponds

to a column of the stiness matrix. The position of the centres of the circles is equal to the value

on the diagonal: k + δi . The radius of each circle is given by the sum of all the o-diagonal

elements in the corresponding row, therefore Radius = 2ki. Since the interface stiness ki is not

aected by mistuning it is constant, and the radius is the same for all circles. Due to the random

parameter δ each circle centre shifts of the mistuning term δi of the i-th blade.

The superposition of all the circles, Fig. 2.18, gives an envelope of possible eigenvalues in the

interval [ k
m

− 2ki
m

− |δmax|
m

, k
m

+ 2ki
m

+ |δmax|
m

].

A general result of this mistuning model is that random mistuning broadens the span of the

eigenvalues of the bladed assembly. For a tuned system, the span between the maximum and the

minimum eigenvalue of the structure is given by the strength of the coupling ki. When random

mistuning is considered , all eigenvalues and eigenvectors are randomly perturbed. Furthermore,

the mistuning term δi causes the range of the impeller eigenvalues to expand. For a mistuned



26 2 State of the art

δi
m

ki
m ω2

Figure 2.18: Gerschgorin circles for the 1-DOF per sector ROM, represented in the complex
plane. Dotted circle represents the tuned range for eigenvalues.

impeller this implies a wider resonance area for any given blade mode family, resulting in increased

fatigue issues and larger critical speed areas.

Furthermore, the frequencies of the twin modes, which in a tuned case are equal at pairs, in

the mistuned case split into two very close natural frequencies [15]. This split has little eect

for modes which in frequency domain are spaced enough from other modes. In such cases, it is

possible to relate a mistuned mode to its corresponding tuned mode. In cases when modes with

dierent ND are closely spaced in frequency domain, it is not possible to relate a mistuned mode

to a single tuned mode. Figure 2.19 shows the output of a BTT measurement after applying a

rotational speed sweep. The resonance peaks observed correspond to the natural frequencies of

the modes. If the turbine were tuned, only one peak corresponding to ND0 in left picture, ND6 in

right picture would be observed. However, mistuning causes the modes to exhibit a combination

of NDs, with all modes being excited to some degree. Additionally, frequency splitting can be

observed in peaks that are closely spaced in frequency.
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Figure 2.19: Turbine Blade tip timing output for modes BM5 ND0 and BM5 ND6

2.3.3 Mistuned mode shapes and Nodal diameter spectrum

Tuned mode shapes have the characteristic of having the same amplitude with a phase shift from

sector to sector which depends on the nodal diameter, and thus build a sine wave along the

tangential coordinate of the type: sin(ND · 2π i−1
Z

), where i is the sector index, Z is the number

of sectors.

Mistuning eect consists in a localized softening or hardening, thus it breaks the symmetry of

the harmonic mode shapes.

It is possible to employ oversimplied 1-DOF per sector model as an analogy of the vibration

behavour of a turbine. Introducing non dimensionalized mistuning parameter γj = δjk on

equation (2.8), Eq. (2.19) relating mode shapes of two consequent blades is obtained [6]:


qj+1

qj


=


(1 + γj + 2R − ( Ω2

ω2

N

))R −1

1 0


qj

qj−1


, j = 1,    , Z (2.19)
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Due to the random mistuning contribution γj to the j-th blade stiness, the phase dierence

between two neighbouring blades is no longer constant, thus for a mode shape sectors no longer

follow a pure harmonic.

Tuned mode shapes form an orthogonal linear basis for the space of the system’s degrees of

freedom. This allows the mistuned mode shapes to be expressed as a superposition of tuned

modes. These tuned mode shapes are represented by harmonic functions along the circumferential

coordinate.

Let the tuned eigenvector matrix, containing the tuned eigenvectors as columns, be denoted by

[Φt], and a mistuned eigenvector by [Φm]. It is possible to express the mistuned eigenvector as a

linear combination of the tuned eigenvectors, as shown in Eq. (2.20) [13].

Φm =

Z

i=1

wiΦt (2.20)

Denition of the nodal diameter spectrum

Tuned modes form an harmonic along the circumference of the shaft:

Φt,j = Am cos(2π ·ND
j − 1

Z
+ ϕm) (2.21)

The mistuned mode, which is a sum of harmonic forms, therefore no longer has a single nodal

diameter component, but rather can be written as the sum of dierent nodal diameter components,

each with varying intensities. These components form the nodal diameter spectrum.

Nodal diameter spectrum F of the mistuned mode can be calculated by performing a

Discrete Fourier transform over the sectors mode shapes, ordered along the circumferential

coordinate.

F =
1

Z
[F ]Φm (2.22)

with the matrix [F] being dened as:

Fi,j = e
2πi

F
·(i−1)·(j−1) (2.23)

Mode localization

Klauke numerically demonstrated the eect of a harmonic mistuning pattern with growing

intensity on a bladed disk. [8] He implemented a sine-wave mistuning with root mean square
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value ∆K = σV erstimmung ·K. Fig. 2.20 shows the evolution of an ND0 turbine mode shape with

the growth of the mistuning amplitude. An increase in mistuning amplitude increases the mode

localization.

Figure 2.20: Localization eect due to the increasing level of mistuning σV erstimmung on an ND0
mode shape of a bladed assembly and on the localization factor (def. in Eq. 2.28)
(percentage below) [8]

Nevertheless, in general, it has been shown that there exists a level of mistuning at which both

the localization and the amplication of modal amplitude reach a maximum. [21] [13]. Above

this level, the degree of localization tends to decrease.

Klauke provided denitions for the complete set of parameters to quantify the modal localiza-

tion eect [8].

First, he denes, based on the nodal diameter spectrum, the ratio of the maximal Fourier

coecient ξ as a measure of how equal are the levels of the nodal diameter components in a

mistuned mode. (2.24). In a perfectly tuned mode there is only one non-zero nodal diameter

component. In a worst-case mistuned mode, vibration is concentrated on one blade. In this case

all components of the nodal diameter spectrum have equal amplitude.

ξ =

NDmax

j=0 DFTj

DFTmax


(2.24)

For the tuned case , the DFT spectrum is composed by just one ND component, the sum

(numerator) is also the maximum (denominator) and therefore ξunverstimmt = 1.

The worst-case mistuned mode occurs when only one blade participates in the vibration. In this

case, all DFTj components have equal amplitude. Thus, the maximum mistuning ratio is given

by:

ξverstimmt,max =

NDmax

j=0 DFTj

DFTmax



verstimmt,max

= NDmax + 1 (2.25)
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Klauke dened the parameter Modenfulligkeit (i.e Mode Fill Factor in English) to achieve 0%

for the tuned case and 100% for the maximum mistuning case, as in Eq. (2.26).

Modenfülligkeit :=
1

NDmax
(ξ − 1) (2.26)

Furthermore, by considering the ratio between the maximum amplitude and the mean square

value (RMS) of the mode between the dierent blades, the ratio ζ is dened in order to evaluate

the resemblance of the mistuned mode shape to a pure harmonic Eq. (2.27) . In fact for a perfect

harmonic the RMS value of the blade deections is equal to the maximum deection divided by√
2. In the worst-case mistuned scenario, the deection is concentrated on a single blade, so the

ratio between the maximum value and RMS is 1 for 0 < ND < NDmax, and 1
√
2 for ND = 0 or

ND = NDmax. Therefore a normalizing factor β is introduced.

ζ =
maxu

u2
(2.27)

In order to compare rotors with dierent numbers of blades, the ratio ζ is normalized as shown

in Eq. (2.28), resulting in value called localization factor (LokaGra). This factor ranges from 0

to 100 % and represents the degree of deviation from a perfect harmonic shape of the mistuned

mode.

LokaGra :=
ζ − β√
Z − β

, where β =





√
2, 0 < NDdom < NDmax,

1, NDdom = 0 or NDdom = NDmax
(2.28)

2.4 Numerical analysis

2.4.1 Basics of Finite element method

Discretization

The Finite element method is a mathematical technique widely used in all elds of engineering

for solving partial dierential equation problems with complex domain geometry and boundary

conditions.

Finite element method allows the discretization of a structure into elements with simple geometry

such as tetrahedrons, hexahedrons, rectangular plates and beams which have a nite number of

degrees of freedom, and can be assembled into a structure with a mathematical procedure. The

degrees of freedom of the elements are typically the displacements at specic points, known as

nodes. In 3D space each node has three degrees of freedom that represent displacement in x,y and
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z directions. The displacement of all other points of the element is linked to the nodal degrees of

freedom by means of specic interpolation functions N(x, y, x), called shape functions.





ux(x, y, z, t)

uy(x, y, z, t)

uz(x, y, z, t)





=




N(x, y, z) 0 0

0 N(x, y, z) 0

0 0 N(x, y, z)








qx(t)

qy(t)

qz(t)





(2.29)

ux(x, y, z, t) displacement in x direction in a generic point of the element with coordinates

(x,y,z)

uy(x, y, z, t) displacement in y direction in a generic point of the element with coordinates

(x,y,z)

uz(x, y, z, t) displacement in z direction in a generic point of the element with coordinates

(x,y,z)

qx(t) matrix containing displacement of nodes in x direction

qx(t) matrix containing displacement of nodes in y direction

qx(t) matrix containing displacement of nodes in z direction

N(x, y, z) matrix containing shape functions

Shape functions must satisfy several criteria to ensure the eectiveness and convergence of the

FEM solution:

Interpolation condition: The shape function for node i should have value 1 at that node

and 0 at all other nodes.

Local support: The shape function should vanish outside the element containing the node.

Interelement compatibility: Shape functions must ensure at least C0 continuity between

adjacent elements .

Completeness: The set of shape functions should be able to represent any linear polyno-

mial exactly within the element .

Partition of unity: The sum of all shape functions at any point within the element should

equal 1.

Continuity: Shape functions must be able to grant the continuity of the solution across

element boundaries.

Shape functions are usually polynomial functions derived for an element type in its natural

coordinates through a mathematical procedure. The degree of the polynomial is, in cases of iso-

parametric elements, equal to the number of degrees of freedom of the element considering one
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direction only. The procedure used to determine the polynomial coecients of the shape functions

is called p-method. Shape functions determined for an element in natural coordinates (perfect

cubes of perfect hexaedrons) are then generalized by means of geometric transformation to the

distorted elements that form the mesh of the model. This geometric transformation involves an

error in the evaluation of stiness, called distortion error, which can be limited by limiting the

element distortion.

Elemental matrices derivation

It is thus possible to calculate the strains internal to the element as:

ϵ(x, y, z, t) = B(x, y, z)q(t), B(x, y, z) = N(x, y, z) (2.30)

Stresses are linked to the deformations by a linear characteristic equation typical of the material,

representable in matrix form as E.

σ(x, y, z, t) = Eϵ = EB(x, y, z)q(t) (2.31)

Once stresses and strains are known it is possible to calculate, with the virtual works formulation,

the elastic potential energy absorbed in the element as a volume integral:

U =
1

2



V

ϵTσdV =
1

2
qT



V

BTEBdV


q (2.32)

Nodal degrees of freedom q do not depend of the position and can be written outside the volume

integral. Therefore the integral assumes the typical form 1
2q

TKq, highlighting the stiness matrix

K.

K :=



V

BTEBdV (2.33)

By applying time derivative to Eq. (2.29) it is possible to derive the velocity:

u̇(x, y, z, t) = N(x, y, z)q̇(t) (2.34)

In a manner similar to the potential energy, it is possible to express the kinetic energy and derive

the mass matrix, M.
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T =
1

2



V

ρu̇T u̇dV =
1

2
q̇T



V

ρNTNdV


q̇, (2.35)

M :=



V

ρNTNdV (2.36)

In the case of the discretization of a structure which is rotating, the expression of the kinetic

energy is slightly more complex. In fact the velocity can be written as:

u̇∗ = u̇+ Ω̄× u (2.37)

Therefore the kinetic energy integral is equal to:

T =
1

2



V

ρu̇∗T u̇∗dV

=
1

2



V

ρ[u̇T u̇+ 2u̇T Ω̄× u+ (Ω̄× u)T (Ω̄× u)]dV

(2.38)

The second term of this formulation represents the work of the Coriolis forces, and leads to the

formulation of the Gyroscopic matrix:

G := 2
ρ

Ω



V

NT Ω̄NdV (2.39)

Assembling

The matrices (2.33), (2.36), (2.39) refer to one single element. In order to study an entire

structure, composed by multiple elements it is necessary to assemble the model, satisfying balance

and consistency. Assembly method is based on the topology map of the system, which is a simple

table in which indexes of the degrees of freedom of one element are related to the indexes of the

degrees of freedom of the whole assembled structure.

Figure 2.21: Assembling scheme of a global matrix [9]
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The contributions of individual elements to the global matrix are additive. As shown in Figure

2.21, [K], the global matrix, is constructed by assembling the elemental matrices [k]h of the h-th

element. The entry [i, j] of the elemental matrix [k]h is added to the global matrix at index

position [Ghi,Ghj]. The relation [i, j] → [Ghi,Ghj ] is determined by the topology map, which is

automatically generated during the meshing phase in nite element software like Ansys.

2.4.2 Prestressed modal analysis

Pre-stressed modal analysis requires performing a static structural analysis rst. Static structural

output is used as the initial condition for the modal analysis. Static structural analysis outputs

deformations ϵ0 and stresses σ0 on the rotor elements. In the equation of motion Eq.(2.3),

pre stress is represented by a positive stiness contribution matrix named [KΩ]. This matrix

is computed for each element in a similar way as the other matrices (2.36) (2.33) and is then

assembled according to the scheme in Fig. 2.21. [18].

[KΩ] :=
1

2Ω2



V

(BTσ0(x, y, z)B))dV (2.40)

where σ0(x, y, z) is the stress tensor created by the centrifugal forces, calculated in static anal-

ysis.

2.4.3 Eigenvalue solver

The damped eigensolver (accessed in MAPDL with MODOPT, QRDAMP) [19] is applied only

when the system damping matrix needs to be included in the eigenproblem. This eigensolver

allows for nonsymmetric [K] and [C] matrices. This method employs the modal orthogonal

coordinate transformation of system matrices to reduce the eigenvalue problem into the modal

subspace.

The method initially solves the symmetric undamped problem by dropping the matrix [C]. Thus

real eigenvalues and the corresponding eigenvectors are found, and it is possible to write the

modal transformation (2.41).

u = [Φ]η (2.41)

Then using the modal transformation Eq. (2.41) the equation of motion (2.1) is rewritten as:

[I]η̈+ [Φ]T [C][Φ]η̇+ [Λ2] + [Φ]T [Kunsym][Φ]η = 0 (2.42)



2 State of the art 35

The stiness matrix is written as a sum of symmetric matrix and antisymmetric matrix which

is diagonalized by the transformation Eq. (2.41), forming the eigenvalue matrix [Λ2]. The anti-

symmetric matrix [Kunsym] is diagonalized by the modal transformation Eq. (2.41).

Successively, Eq. (2.42) is written in state space formulation as:

[I]ẇ = [D]w, w =


η
η̇


, [D] =


[O] [I]

−[Λ2]− [Φ]T [Kunsym][Φ] −[Φ]T [C][Φ]


(2.43)

Finally the inverse iteration method (Wilkinson and Reinsch) [19] is used to calculate the complex

modal subspace eigenvectors. The full complex eigenvector of the original system is recovered

using the following equation:

[Ψ] = [Φ]η (2.44)

2.4.4 Cyclic symmetry

Cyclic symmetry allows the reduction of the computational load for analysing one component

with the nite elements method. A model can be reduced by means of cyclic symmetry if we can

divide it in Z sectors around a principal axis and each sector must have:

Same geometry

Same distribution of material properties

Same load distribution

Same boundary conditions

If these characteristics are fullled, it is possible to reduce the number of nodes of the model

and thus the computational eort by studying only one sector, called reference sector.



36 2 State of the art

Figure 2.22: Example of a cyclic symmetric structure and its reference sector

Considering the reference sector, it is possible to divide the degrees of the freedom of the reference

sector in three arrays:

Array containing the Interface nodes degrees of freedom, which are in common with the

sector on the left, with size I, we call it q
(n)
i

Array containing Internal nodes degrees of freedom, of size R, we call it q
(n)
r

Array containing Interface nodes degrees of freedom, which are in common with the sector

on the right,with size I, we call it q
(n+1)
i because they coincide with the left interface nodes

of the sector on the right (n+i -th sector)

Thus the reference sector’s degree of freedom vector can be written:

q(n) =





q
(n)
i

q
(n)
r

q
(n+1)
i





(2.45)

Note that the number of elements of the vectors q
(n)
i and q

(n+1)
i must be equal.

The fundamental concept used in a cyclic symmetry model is that the deection of one sector

has the same amplitude and a constant phase dierence from the deection of the previous sector.

It is therefore possible to analyse the complete structure by considering only one substructure,

and applying appropriate complex constraints at its boundary with the following substructure,

so as to impose this phase dierence.[22]

q
(n+1)
i = q

(n)
i eih

2π
Z (2.46)
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Where h is called ’harmonic index’ or ’nodal diameter’. 2π
Z

represents the angle which each

sector occupies, which is also called IBPA Inter Blade Phase Angle. It can be observed that the

harmonic index is the number of phase rounds we allow on the circumferential coordinate theta.

By virtue of hypothesis (2.46) we can write the equation:

q(n) =





q
(n)
i

q
(n)
r

q
(n+1)
i





=




I(L) 0

0 I(K)

I(L)eih
2π
Z 0





q
(n)
i

q
(n)
r


= T q

(n)
CS

(2.47)

T is the transformation matrix and q
(n)
CS is the vector of the degrees of freedom under the hypoth-

esis of cyclic symmetry.

On the equation of motion (2.3), if we only consider the R+2I degrees of freedom of the reference

sector, we will have the equation:

[M ](n)q̈(n) + ([Cr]
(n) + [Cnr]

(n) +Ω[G](n))q̇(n) + ([K](n) + [KΩ]
(n)Ω2 −Ω[Cr]

(n) − [KS ]
(n))q(n) = 0

(2.48)

It is possible to premultiply the equation by the transpose of T and substitute the expression

(2.47), so all the matrices will written in the form:

M
(n)
CS = T TM (n)T (2.49)

G
(n)
CS = T TG(n)T (2.50)

K
(n)
ΩCS = T TK

(n)
Ω T (2.51)

K
(n)
CS = T TK(n)T (2.52)

Similarly,for all the matrices that appear in the complete equation of motion (2.3), it is possible

to apply the linear transformation. This way the eigenvalue problem is reduced in size to roughly

1/Z of its original size.





3 Experimental measurements

3.1 Experimental setup

An experimental test bench for testing the behaviour of a radial impeller of a turbocharger turbine

in real operation has been built in Instutut für Kraftswerktechnik Dampf und Gasturbinen in

Aachen.

The bench is open loop, which means the ow of the turbine and the ow of the compressor are

uncoupled. The inlet ow of the turbine is not the output ow of the turbocharger compressor,

but is instead the output of a separate supply compressor. The supply compressor can output 12

kg/s @ 30 bar. Dierent lamination valves are placed on the circuit for ow control and ensure

a controllability on mass ow rate both for the turbine and the compressor. [1]

The radial turbine has 12 blades. The compressor has 9 main blades and 9 splitter blades.

Figure 3.1: View of the turbo-charger unit in the experimental setup
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Figure 3.2: View of the turbo-charger impeller in the experimental setup

Figure 3.3: Axial view of the turbine impeller, dismounted

3.2 Blade tip timing [1]

The technique is based on the measurement of the ’time of arrival’, i.e. the time that passes

between the passage of one blade edge and the next. It is conventionally measured using opti-

cal sensors that are distributed along the circumference. This sensor detects the passage of the

blades, and it is possible through a mathematical procedure to calculate the deection of the

blade based on the ’time of arrival’ of the dierent blades. Conventionally, a sensor mounted on

the shaft, called ’once per revolution’, detects the number of revolutions, and by measuring the
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relative position of the various blades, allows the identication of the blades.

Advantages of BTT: contactless, therefore the sensor does not inuence the dynamics of the

turbine, unlike Strain Gauge techniques which alter the mass of the blade, and therefore re-

quire taking into account. It also allows all blades to be measured simultaneously, which makes

this technique particularly suitable for identifying localizations of vibration amplitudes due to

mistuning.

Limits of BTT: Due to space constraints, the number of sensors is limited, so the measurement

of the vibrations of a blade is not continuous but necessarily discrete, with few readings per

revolution. The signal will therefore be under-sampled and will not meet the minimum Nyquist-

Shannon requirement of at least two samples per period. The signal cannot therefore be perfectly

reconstructed. This is a problem that mainly aects high EOs, and can be contained but not

eliminated by adopting mathematical noise reduction techniques such as the Savitzky Golay lter.

To allow the sensors to recognize the dierent blades as they pass, ’blade ngerprint’ identiers

can be adopted. Conveniently, a reliable identier can be the angle between two pairs of blades,

which due to manufacturing process defects is not uniform but rather variable, and therefore

allows the sensor to recognize the blade.

Time of arrival (TOA) is the chronometer time registered at the passage of a blade in front of

a sensor. It is possible to calculate the time elapsed between two blades as the time dierence

between two consequtive TOAs mesaured at the same sensor.

With a series of mathematical passages it is possible to calculate the exact speeds of each

blade, and then, by ltering out the rotational speed, the relative positions of the blades can be

calculated as they pass in front of the sensors. Furthermore, by carrying out the test at dierent

speeds, it is possible to lter the static component of the deformation. This results in a series

of frames of each blade at dierent times. These frames represent a subsampled signal of the

blade vibration. For this reason it is not immediate to calculate the vibration frequencies, as the

Fourier transform of the subsampled signal would give rise to aliasing phenomena. In fact, a more

advanced technique is used, known as the ’multi sampling method’. This technique consists in

carrying out several Fourier ts considering at each repetition only the data coming from a subset

of the sensors. The intersection of the dierent subsamples gives rise to a series of frequencies,

some of which correspond to the true critical frequencies.

To estimate the characteristics of the vibrations at these critical speeds, the ’conventional Fourier

t’ is used, i.e. a least squares t to decompose the deection signal over time into harmonic

functions. Maintaining a particular constant rotation speed Ω results in a deection of the type:

d(t) = A1sin(ωt+ ϕ) +B1cos(ωt+ ϕ) +D (3.1)
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where

ωt = 2πfRt = EO · θ (3.2)

thus

d(θ) = A1sin(EO · θ) +B1cos(EO · θ) (3.3)

This equation for each blade i. Subtracting the deections of two consecutive blades gives:

d1 − d2 = A1(sin(EO · θ1)− sin(EO · θ2)) +B1(cos(EO · θ1)− cos(EO · θ2)) (3.4)

This equation can be written for any pair of samples, and thus leads to the overdetermined linear

system:




d1 − d2

d1 − d3
...

dS−1 − dS




=




sin(EOθ1)− sin(EOθ2) cos(EOθ1)− cos(EOθ2)

sin(EOθ1)− sin(EOθ3) cos(EOθ1)− cos(EOθ3)
...

...

sin(EOθS−1)− sin(EOθS) cos(EOθS−1)− cos(EOθS)





A1

B1


(3.5)

It is then possible to solve for the amplitudes A and B with a linear best t. It is not granted

that the tting error is small. In fact the error is a good criterion for testing if the critical speeds

resulting from the Multi sampling method are real resonant points or numerical aliasing points.

A =


A2
1 +B2

1 , φ = tan−1(
A1

B1
) (3.6)

3.3 Strain gauge

Strain gauge is an invasive measurement technique which allows to measure vibration in operation.

It consists of the application of strain gauges oriented radially on the surfaces of the blades (Fig.

3.4). The strain gauges aect the measurement of a few Hz as they increase the mass and stiness

of the blades.
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Figure 3.4: Arrangement of strain gauge sensors on the blade [1]

3.4 Experimental results

On the experimental bench located at IKDG, M. Sasakaros & M. Shafferus measured the

frequency and amplitudes of the vibration modes of the turbine impeller with the Blade Tip

Timing technique and strain gauges in a real operation scenario.[4]

Figure 3.5: Plot of numerically calculated Campbell diagram (colored curves) for the turbine
blade and disk modes’ critical speeds, superimposed to experimental resonance
points (yellow dots) measured with blade tip timing. [4]

Many of the resonance points lie on the Engine order 24 line, in frequencies roughly correspond-

ing to BM3, BM4, BM5, MM15 modes. This is due to the number of guide vanes on the turbine

stator being equal to 24. Therefore, the nodal diameter of these resonances is given by the Wilson
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and Utengen formula, 24− 12 · k = ±ND (k any integer) , and therefore ND=0.

Furthermore, many other modes which do not lie on the EO24 line have been measured. In

particular, at the speed of 35000 RPM a set of resonances is clustered around the Engine Order

17 line. 17 is the number of blades of the IGV (Inlet guide vane) of the compressor. This suggests

the presence of coupled turbine-compressor vibration modes in this frequency region. Applying

again the Wilson and Utengen formula, 17− 12 · k = ±ND (for any integer k), the only solution

is ND = 5.
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4.1 Materials

The material properties relevant to the dynamic analysis of the model include density (ρ), Young’s

modulus (E), and Poisson’s ratio. These properties are isotropic but vary across the dierent

components of the rotor. Additionally, the turbine disk and blades have distinct properties due

to the dierent temperatures they experience. At the standard gas temperature (200 C), the

blades exhibit a lower average Young’s modulus. Material properties are listed in table 4.1

Features Young Modulus E Poisson’s Ratio ν Density ρ

Turbine disk 219500 MPa 0.3 8076 kg/m3

Turbine blades at 200 C 200640 MPa 0.3 8076 kg/m3

Shaft 207090 MPa 0.3 7850 kg/m3

Compressor 71000 MPa 0.33 2770 kg/m3

Table 4.1: Mechanical Properties of Impeller parts

4.2 Discretization

The discretization of all components is achieved in Ansys with 3D elements with a mix of struc-

tured and unstructured mesh. Shaft and blades are discretized with a structured mesh with

SOLID186 hexahedral elements. Turbine and compressor disks, which have a more complex ge-

ometry, are discretised with non structured mesh composed of SOLID 187 tetrahedral elements.

SOLID186 [19] is a higher order 3-D 20-node solid element that exhibits quadratic displacement

behaviour. The element is dened by 20 nodes and has three degrees of freedom per node

corresponding to the translations in the nodal x, y, and z directions, and produces elemental

matrices of size 60x60.

SOLID187 element [19] is a higher order 3-D, 10-node element. SOLID187 has a quadratic

displacement behaviour and is well suited to modelling irregular meshes (such as those produced

from various CAD/CAM systems). The element is has 10 nodes and three degrees of freedom per

node, corresponding to the translations in the nodal x, y, and z directions and produces elemental

matrices of size 30x30.
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Figure 4.1: Scheme representing element SOLID186 geometry

Figure 4.2: Scheme representing element SOLID187 geometry

4.3 Cyclic symmetry turbine sector model

For the calculation steps that require the highest number of iterations of solutions, for assessing

the tuned turbine properties, it is convenient to use the turbine sector model, as the number of

nodes is slightly higher than 1/12 that of the full turbine.

A boundary condition of symmetry must be imposed on the left and right interfaces of the

reference sector with the neighbouring sectors.
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Figure 4.3: Cyclic simmetry model, with clamping BC surface highlighted in blue

In orter to implement the cyclic symmetric condition we need to dene the axis of rotation and

the two interfaces of the reference sector.

Furthermore a rotating velocity must be applied to the entire model of the reference sector. The

axis of rotation coincides with the axis of symmetry.

The sector model counts 392620 nodes in total and 118832 elements.

4.4 Turbine model

In order to understand the dynamics of the tuned and mistuned blade assembly, a model with only

the turbine has been created. Cyclic symmetry model is not able to sustain mistuning because

mistuning breaks the conditions for cyclic symmetry.
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Figure 4.4: Turbine model, axial view Figure 4.5: Turbine model, side view

The selection of an accurate boundary condition on the interface of the shaft depends on the

object of the study. Fixed boundary condition brings to an over-estimation of the natural fre-

quencies. Free boundary condition brings to a gross under-estimation of the natural frequencies

but the results can be used for coupling mathematically with the rest of the model using the

Impedance coupling technique.

4.5 Full rotor model

Finally the full rotor model is employed to represent the structural assembly of the shaft, com-

prehensive of Turbine side, Shaft, Compressor shaft and bearings.
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Figure 4.6: Side view of the full rotor model, radial and axial bearing surfaces are highlighted
in green

Figure 4.7: View of the full rotor model
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Bearing Modeling

Bearings’ modelling is complex as it usually involves the study of the non-linear Reynolds equa-

tions for the hydro static solution of the oil layer. [18]. Typically solutions are linearized around

the working point. This is particularly dicult for a turbo-machines as they experience very

dierent ranges of temperature and speed.

For this thesis we accept the values of stiness and damping given by the constructor of the turbo-

machine Kompressorenbau Bannewitz, These data are found for a reference working condition of

40000 RPM.

We assume that reasonably small deviations around the reference point are not impacting in

a signicant way the results we want to prove. A sensitivity analysis to the bearings’ values is

carried in the next chapter.

Axial bearings are modelled on Ansys as 1D connections to remote points with an associated

value of stiness and damping. Radial bearings are modelled on Ansys with 2d connections,

with three associated values of stiness and damping. Regarding the stiness, the k11 and k22

terms are dierent because the bearing is not isotropic. Mixed term k21 is responsible for an

skew-symmetric term on the stiness matrix.

Figure 4.8: Scheme of the 2D linearized ra-
dial bearings

Figure 4.9: Scheme of the axial bearing, I is
a remote point on the stator, J is
a node of the surface of the axial
bearing

4.6 Convergence

For convergence analysis, the conventional method involves the creation of a progressive series of

self-contained meshes, in which the ner mesh is obtained by subdividing elements of the previous

coarser mesh. This method grants the mesh to be geometrically similar between two steps, and

thus makes it possible to observe a monotonic convergence of the frequencies to the exact solution

as the number of elements increases.
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However, due to the complex geometry of a turbine it is dicult to apply. Subsequently, an

alternative technique is proposed for evaluating the convergence by reconstructing a new mesh

for each dimension.

Multiple 3d meshes are created with an algorithm specifying a maximum dimension and a quality

threshold.

Mash maximum size (s) = 2 mm, 3.1 mm, 4 mm, 4.1 mm, 8 mm

Since for each dimension a completely new mesh is generated, the quality varies randomly from

one mesh to another, creating a noise in the convergence. It is possible to write the convergence

curve for the j-th natural frequency as the sum of two terms:

ωN,j(s) = mj(s) + nj(s) (4.1)

where mj(s) is the monotonously convergent curve as a function of the mesh size, while nj(s)

is the noise term due to the random quality variation. With the assumption that the noise term

is random, it modies convergence curves independently from mode and mesh size. It is possible

to calculate the arithmetic mean of the convergence curves of multiple modes:

1

N

N

j=1

ωN,j(s) =
1

N

N

j=1

mj(s) +
1

N

N

j=1

nj(s) (4.2)

This way, the noise term


j nj(s) tends to cancel out statistically due to the central limit

theorem. The highest the number of modes N considered in the sum, the less relevant the noise

term will be. The sum of the monotonic convergent parts


j nj(s) converges to a constant value,

as slowly as the slowest converging mode.

It is possible to t the mean value curve by introducing the parameter λ = 1s and perform a

best-t of the type: a · e−b·λ + c.
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Figure 4.10: Convergence curves for the rst 100 modes

Figure 4.11: Mean frequency vs mesh size
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a = 267 Hz

b = -15.76 mm

c = 4883 Hz

Thus it is possible to conservatively assume that a mesh size of 2 mm (λ = 0.5 mm−1) is enough

to grant convergence of the frequencies of the model.

4.7 Campbell diagram

The Campbell diagram is obtained with the cyclic symmetry model, by applying dierent rota-

tional speeds and solving the prestressed-modal analysis analysis problem,.

Speeds from 0 to 5000 rad/s ( 47700 RPM) have been tested, with an incremental step of 250

rad/s (2380 RPM) for each simulation.

Results show that in general the eect of speed on the frequencies is low, causing dierence in

frequencies of the order of 10 Hz for in the whole span of 0:5000 rad/s.

In general disk dominated modes show a decrease in the resonance frequency with the increase

of speed, showing that speed softening is prevailing.

Figure 4.12: Campbell diagram of the rst mixed mode (disk dominant)

On the other hand, all the blade modes show an increase in the natural frequency with the speed.

This is due to the fact that centrifugal stiening is considerably more relevant on the blades.
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Figure 4.13: Campbell diagram of the rst blade mode)



5 Mistuning implementation

Mistuning impacts both density and stiness of the material. For the implementation of mistuning

on a model there are two possible strategies:

Mass mistuning, which involves altering the density of the blade

Stiness mistuning, which involves altering the Young Modulus of the blade

The two strategies are equivalent as they both act on the natural frequency of the blade. Mass

mistuning poses more challenges as an articial mass unbalance is introduced in the rotor model.

In this thesis mistuning is implemented by introducing mistuned values of Young Modulus based

on results from the blade-tip timing measurement of the turbine blades.

Due to the manufacturing technique, mistuning on the turbine is signicantly more important

than on the compressor. In fact the turbine, made from cast steel has a higher degree of material

inhomogeneity. Compressor wheel is machined from aluminium, therefore material properties are

more homogenous. Mistuning on the turbine is estimated to be larger than mistuning on the

compressor for a factor of 2.[1] For this reason, mistuning is initially implemented exclusively on

the turbine blades. Later, in the sensitivity analysis chapter, we attempt to introduce mistuning

to the compressor blades to observe its eect on the modal properties.

5.1 Experiment

The implementation of mistuning is based on the experimentally determined resonant frequencies

of the dierent blades obtained with the Blade Tip Timing technique. Blade tip timing measure-

ment was conducted on the test bench by increasing or decreasing the angular velocity in order

to sweep through the resonances. Critical speeds of each blade are recorded with the procedure

described in [1]. Among all the resonance peaks recorded using the Blade Tip Timing technique

(for example, in Fig. 2.19), the frequency corresponding to the peak with the greatest ampli-

tude is considered as the critical speed of the blade. This criterion is based on the assumption

that the highest peak represents the most signicant resonance condition for the blade under

examination.

It is important to underline that the amplitude of the resonance peaks is strongly inuenced

by the operating conditions of the system. Consequently, measurements taken under dierent
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operating conditions may lead to the identication of dierent critical frequencies. In other words,

in dierent situations, the peak with the largest amplitude may be at a dierent frequency, thus

leading to the large error bars shown in gure Fig. 5.1. This makes it essential to contextualize

measurement results in relation to specic operating conditions for correct interpretation and

analysis of data.

Under the EO24 condition, the Wilson and Utengen formula predicts that only the nodal diam-

eter of 0 occurs, as can be easily demonstrated:

EO − k · b = ±ND , ∀k  N+ → 24− k · 12 = ±ND → ND = 0, k = 2 (5.1)

In the frequency region of blade mode 5 (RPM = 35000, Frequency = EO ·RPM ≈ 13500Hz)

times of arrival of the blades have been recorded. Subsequently, using the technique described in

Section 3.2 , the frequencies of vibration at resonance at each blade have been extracted. Seven

takes have been executed, and the result is the average of all the measurements.

Notation remark: ωexp
BMm,NDn,j indicates: Experimental frequency of the j-th blade obtained

for the mode of m-th Blade mode family, Nodal diameter n

Blade index j 1 2 3 4 5 6 7 8

ωexp
BM5,ND0,j [Hz] 13737.5 13774.3 13757.7 13755.1 13803.3 1.3738 13803.8 13783.0

9 10 11 12

13830.6 13832.2 13772.3 13782.6

5.2 Model

Meanwhile, it is possible to employ the cyclic symmetry model to calculate the eect of the Young

Modulus on the natural frequencies. An array of dierent Young Modulus parameters has been

implemented as the blade material.

Young Modulus case index, c 1 2 3 4 5 6 7 8 9

Young modulus value, E
(test)
c [GPa] 100 190 200 210 300 180 195 216.11 217.22

10 11 12 13 14 15 16

218.33 219.44 220.55 221.66 222.77 223.88 225
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Figure 5.1: Averaged experimental frequencies ωexp
BM5,ND0,j with error bands (2-sigma)

Result of one pre-stressed modal analysis of the cyclic symmetry model consists of a set of modes

grouped by Blade Mode Family. Each blade mode family contains 12 modes, with Nodal diameter

number ranging from 0 to 6.

Notation remark: E
(test)
c represents the test value of Young’s modulus, input of the simulation

case of index number c.

ωBMm,NDn,c represents the frequency output of the calculation of the case c, of the mode of

Blade Mode family m, with Nodal Diameter n

For each mode, of Blade mode family j, Nodal diameter k it is thus possible to create a graph with

the Young’s modules E
(test)
c on the abscissa, and the frequencies ωBMm,NDn,c on the ordinate.

We aim to obtain the most precise estimate possible of the function ωBMm,NDn(E) which de-

scribes the variation of frequencies as a function of Young’s Modulus. To obtain this function we

interpolate the discrete output represented by the simulation points E(test)
c ,ωBMm,NDn,c .

At rst it is possible to assume as a charachteristic, since the analysis is a linear modal analysis,

the square root dependency of the frequency on the parameter of stiness, the Young Modulus:

ω2
BMm,NDn = am,n · E (5.2)

The best t estimation of am,n is a single scalar parameter is calculated as the mean for all

simulation points:
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Figure 5.2: Material allocation selection

am,n =
1

Nc

Nc

c=1

ω2
BMm,NDn,c

E
(test)
c

(5.3)

The result for Mode BM5 ND0, shown in gure 5.3, is a5,0 = 94652 Hz2

MPa , with a maximum

residual of 40 Hz.

Although the linear t seems to adhere well to simulation points, residuals are not randomly

distributed,as shown in Fig. 5.4, indicating additional eects. For cases with a low Young’s Mod-

ulus residuals are positive, indicating an intensication of the centrifugal stiening phenomena

in these lower stiness conditions.

For this reason, an alternative interpolation that does not assume linearity should be proposed.

One possible approach is to employ a cubic spline to interpolate between the simulation points-

For each interval between two simulation points, [E
(test)
c , E

(test)
c+1 ], a linear system is solved to de-

termine the four weighting coecients p0,m, n, c, q0,m, n, c, p1,m, n, c, q1,m, n, c of the Hermite

functions h00, h01, h10, h11. Weighting coecients are determined by imposing continuity in the

function and its derivative.

The function ωBMm,NDn,c(E) is therefore piecewise dened.

ωBMm,NDn(E) =h00(E)p0,m,n,c + h10(E)q0,m,n,c+

+ h01(E)p1,m,n,c + h11(E)q1,m,n,c ,

E  [E(test)
c , E

(test)
c+1 ], c = 1, 2,    , Nc

(5.4)
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Figure 5.3: Linear t, BM5 ND0

Figure 5.4: Square root t residuals vs Young modulus

h00(E) = 2E3 − 3E2 + 1 = (1 + 2E)(1− E)2

h10(E) = E3 − 2E2 + E = l(1− E)2

h01(E) = −2E3 + 3E2 = E2(3− 2E)

h11(E) = E3 − E2 = E2(E − 1)

(5.5)

5.3 Eect of speed

The measured data are obtained by applying a linear RPM sweep to the rotor. The recorded

resonant frequencies are therefore referred to blades resonating at dierent RPMs. To account

for this RPM variation, one approach is to study the Campbell curves, which are scaled with the

Young Modulus values, in order to nd the intersection point with the Engine Order line. The
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intersection point changes with the Young’s Modulus level, as the Campbell curve of the mode

scales up or down, as illustrated by gure 5.5.

Figure 5.5: Scheme showing the variation of the intersection point with the variation of rotor
speed Ω

Suppose we call the Campbell diagram function for a reference Young’s modulus Eref ωm, n(ref) =

C
(ref)
m,n (Ω).

This function scales with the Young modulus of the Blade Material E. For an arbitrary Young’s

modulus, the function can be written as in Eq. 5.6.

ωBMm,NDn
(Ω, E) = Cm,n(Ω, E) = C(ref)

m,n (Ω) ·
ωBMm,NDn

(E)

ωBMm,NDn
(Eref )

(5.6)

Thus, the intersection point can be found by solving the system with the line ω = Ω ·EO. So it

is needed to solve the equation:

C(ref)
m,n (Ω) ·

ωBMm,NDn
(E)

ωBMm,NDn
(Eref )

− EO · Ω = 0 (5.7)

It can be solved iteratively and the solution expresses the resonant speed Ω as a function of the

young Modulus E. Additionally, the blade frequency ω is equal to EO · Ω. The function the

function ωBMm,NDn
(E) is eventually found, that keeps into account the speed variation, along

the Engine order line.
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5.4 Implementation

Once the function describing the eect of the Young’s Modulus on the frequency is obtained, it

is possible to map the mistuned frequency of each blade to corresponding values of the Young’s

Modulus. This is achieved by solving the function for the Young’s Modulus of the mistuned j-th

blade, E∗
j,m,n.

The process involves substituting the experimentally determined mistuned frequency ωexp
BMm,NDn,j

into the function and solving for E∗
j,m,n. The resulting values represent the eective Young’s Mod-

ulus for each blade, accounting for the mistuning eects.

This method provides a straightforward way to evaluate the material property variations respon-

sible for the observed frequencies and allows for assessing the impact of mistuning on the rotor’s

dynamic behavior.

ωBMm,NDn(E
∗
j,m,n) = ωexp

BMm,NDn,j (5.8)

Using the square root interpolation for determination of the Young’s modulus of each blade, the

Mistuned Young’s modulus of the j-th blade is computed as:

E∗
j,m,m =


ωexp
BMm,NDn,i

2

am,n

(5.9)

j E∗
j,5,0 (linear interp.) [GPa] E∗

j,5,0 (spline interp.) [GPa] Deviation (%)

1 215.2951 215.2829 0.0057
2 214.4207 214.4020 0.0087
3 200.4970 200.3767 0.0600
4 201.1247 201.0093 0.0574
5 215.3437 215.3319 0.0055
6 212.4597 212.4267 0.0156
7 200.4842 200.3637 0.0601
8 200.4160 200.2950 0.0604
9 215.3089 215.2969 0.0056
10 214.3297 214.3104 0.0090
11 200.6684 200.5495 0.0593
12 200.4752 200.3547 0.0601

Table 5.1: Mistuned Young modulus values, with linear and spline characteristics, and percent-
age dierences.
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Figure 5.6: Mistuned young modulus of the turbine blades

The mistuned Young Modulus pattern calculated with the linear interpolation is almost identical,

with a maximum error of 130 MPa, less than 0.07% of the value, therefore the two methods are

considered equivalent. Young’s modulus is applied to the turbine blades on the full turbine model

and the full rotor model.



6 Reference case, Tuned - Mistuned comparison

This chapter presents the procedure for evaluating the results and comparing the tuned and mis-

tuned models in a reference case, described in Tab. 6.1.

Rotational speed 35000 RPM

Radial bearing stiness
Value from
manufacturer

Axial bearing stiness
Value from
manufacturer

Gas Temperature 200 C

Turbine mistuning BM5 EO24

Compressor mistuning Tuned

Table 6.1: Parameters describing reference mistuned case

6.1 Amplitude ratio

Amplitude ratio (AR) is computed as in the paper by Zobel et al [17] as in Eq. (2.16).

Given that modal solutions have been exported with a sensitivity of 0.0001 , for some modes the

exported solution data for either the turbine or the compressor is exactly 0. In order to obtain

a nite output, the denominator is added to 1e-6. Therefore amplitude ratio is evaluated in the

range 10±6.

By plotting frequency of a mode on the abscissa the amplitude ratio of each mode on the ordinate,

the distribution of turbine-dominant, coupled, and compressor-dominant modes in the frequency

domain can be observed. This reproduces the plots presented in the paper [17].
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6.1.1 Tuned case

Figure 6.1: Freq-AR plot of reference tuned case

In Fig.6.4 and Fig. 6.1 in the vertical axis is conveniently represented the natural logarithm

of the amplitude ratio. The amplitude ratio is dened as the turbine’s maximum deformation

divided by the compressor’s maximum deformation. Therefore in the the positive abscissa area are

represented the modes predominantly expressed on the turbine. Negative abscissa is associated

to the modes predominantly expressed on the compressor. Modes with zero participation of the

turbin tips have been assigned an AR equal to 10−6, therefore they evaluate to log(AR)=-13.6

in the bottom part of the diagram.

Conventionally, in similar way to the paper [17], a mode is considered turbine-compressor coupled

when AR falls the interval [1/25, 25] .This interval, represented by the red dashed lines, is

conventionally used to identify coupled modes.

On the left side of Fig.6.4 and Fig.6.1, it can be observed that the low-frequency modes are

substantially coupled. The rst four modes can be considered rigid motions of the shaft on the

bearings, and they are conned within the [0, 240] Hz region. They are represented in Fig. 6.2.

Mode 1 corresponds to an axial rotation at a frequency very close to 0. Mode 1 and 2 correspond

to roto-translations on the radial bearings in the two orthogonal planes. Mode 4 represents the

axial bearing mode, characterized by the uniform axial motion of the impeller at 166 Hz.
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Figure 6.2: Rigid motion solutions

Two additional whole turbine modes occur at low frequency Fig. 6.3. These are Gyroscopic

modes, and consist in the precession of the turbine around the rotor axis.

Figure 6.3: Modes 5 and 6 of the tuned rotor

6.1.2 Mistuned case

Figure 6.4 shows the frequency and the logarithm of the amplitude ratio (AR) for modes within

the frequency range [0, 18] kHz, considering mistuning applied to the turbine. It is immediately

noticeable that, in the tuned case, certain modes are concentrated on the turbine blades. However,

in the mistuned case, these modes exhibit a non-zero participation on the compressor. As a result,

these modes shift closer to the coupled region. To better understand this phenomenon it may be

useful to look at the detailed comparison.
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Figure 6.4: Freq-AR plot of reference mistuned case

6.1.3 Comparison

Figure 6.5: Freq-AR plot of tuned and mistuned case
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In Fig. 6.5, modes that were turbine-dominated in the tuned case move closer to the coupled

region when mistuning is introduced on the turbine. The other modes remain relatively unaected

by mistuning.

Figure 6.6: Comparison of amplitude ratios for tuned and mistuned modes

Since in this case mistuning does not alter the frequencies too signicantly, it is possible to

associate mistuned modes to tuned modes based on the frequency proximity. In the diagram in

Fig. 6.6, the AR of the tuned modes (x axis) is compared with the respective mistuned modes

on the y axis. It is possible to distinguish two sets of modes:

A set of modes in which the amplitude ratio does not change by introducing mistuning,

grouped around the red line x=y

A set of modes for which mistuning shifts the AR remarkably towards 1. All of these modes

are poorly coupled in the tuned case.

It can therefore be said that if a tuned mode is highly coupled, the introduction of mistuning does

not change the situation. For very poorly coupled tuned modes, mistuning shifts the amplitude

ratio very close to 1. Colour in Fig. 6.6 represents the number of nodal diameters on the tuned

turbine. Blue = ND0, Yellow = ND6. It is explained in next section how the calculation of the

dominant nodal diameter of the mode is performed.

As shown in Fig. 6.12, these modes are associated with a low number of nodal diameters.
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Conversely, the second set is composed of modes that are associated to high number of nodal

diameters.

6.2 Calculation of nodal diameter spectrum

Fourier decomposition is needed in order to relate each mistuned mode shape to the tuned mode

shapes. Equation (2.22) is implemented in Matlab with the function fft (fast Fourier trans-

form).

Since, due to mistuning, more than one blade mode family can compose one mistuned mode,

it is necessary to evaluate the Fourier coecients on multiple points. As blade sectors are iden-

tical and coordinates are cyclically periodic, selection of corresponding nodes is straightforward.

For computational simplicity, and given the relevance in Blade Tip Timing [1], unless specied

otherwise, the Fourier evaluation is limited to the nodes on the turbine tips.

Figure 6.7: Selections on the rotor tips for the calculation of the Discrete Fourier transform on
the rotor

In order to evaluate the Discrete Fourier transform, it is needed to transform the modal solu-

tion, which is given as an output in Cartesian coordinates ux, uy, uz, into cylindrical coordinates

ux, ur, ut, referenced to the axis of rotation.

The x axis coincides with the axis of the rotor, while y and z axes describe the plane normal

to the rotor axis. The tangential coordinate can be conveniently computed as the ratio of the

deformed position and un-deformed position expressed as complex number. The imaginary part

of this ratio corresponds to the angle of deformation Eq. (6.1)

ut = Im(y + uy) + i(z + uz)

y + iz
 ·


y2 + z2 (6.1)

The radial component is computed similarly, using instead the real part of the complex ratio,

which represents the deformation in the radial direction, as in Eq. (6.2)
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ur = Re(y + uy) + i(z + uz)

y + iz
 ·


y2 + z2 (6.2)

Since the axial coordinate of the rotor remains invariant and coincides with the x-axis, axial

components ux are simply:

ux = ux (6.3)

To calculate the DFT, the nodes must be grouped into sets of Z equispaced nodes that belong

to the same circular series on a chosen axial plane.

for Nq  j-th tip x(j)q , y(j)q , z(j)q  ↔ u(j)x,q, u
(j)
t,q , u

(j)
r,q (6.4)

q is node index, j is the blade index.

Tangential components can be arranged in the table 6.5, and axial components can be rearranged

in the table 6.6. In both tables, the values in the same column correspond to nodes belonging to

the same circular series. The discrete Fourier transform can then be computed for each column:

[ψt] =




u
(1)
t,1 u

(1)
t,2 · · · u

(1)
t,Q

...
... · · ·

...

u
(j)
t,1 u

(j)
t,2 · · · u

(j)
t,Q

...
... · · ·

...

u
(Z)
t,1 u

(Z)
t,2 · · · u

(Z)
t,Q




(6.5)

[ψx] =




u
(1)
x,1 u

(1)
x,2 · · · u

(1)
x,Q

...
... · · ·

...

u
(j)
x,1 u

(j)
x,2 · · · u

(j)
x,Q

...
... · · ·

...

u
(Z)
x,1 u

(Z)
x,2 · · · u

(Z)
x,Q




(6.6)

[ψt] table with the tangential components

[ψx] table with the axial components

We take each column of ψt and ψx that constitutes array of size (Zx1) and calculate the discrete

Fourier transform according to Eq.(2.22) with fft function on Matlab, which returns as output

an array Ft or Fx of size (Zx1).
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The complex output of Eq. (2.22) can be interpreted as Amplitude and Phase of the correspond-

ing tuned mode. In this case the phase corresponds to the angular position of the nodal diameter

line of the tuned component.

Figure 6.8: Demonstration of blade deection and nodal diameter spectrum for tuned mode 103

Figure 6.9: Demonstration of blade deection and nodal diameter spectrum for tuned mode 142

Figure 6.11: Demonstration of blade deection and nodal diameter spectrum for mistuned mode
230

Dominant nodal diameter is the nodal diameter that has the highest amplitude in the nodal

diameter spectrum.
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Figure 6.10: Demonstration of blade deection and nodal diameter spectrum for tuned mode
201

6.2.1 Turbine tips

The dominant nodal diameter of a mode can be plotted against the amplitude ratio to show the

eect of the nodal diameter on turbine-compressor coupling. In plot 6.12 the nodal diameter

of the turbine is represented on the x-axis, log(AR) is represented on the y-axis. Values which

evaluate to 0 on all the turbine tips have been excluded because could not be related to one

dominant nodal diameter.

Figure 6.12: Dominant nodal diameter component on the turbine blade tips and Amplitude
ratio, for the tuned turbine case
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Figure 6.13: Dominant nodal diameter component on the turbine blade tips and amplitude
ratio, for the BM5ND0 mistuned turbine

Introducing mistuning, Fig. 6.13, it is possible to note that, although it remains generally true

that almost all coupled modes have a nodal diameter of 0 or 1, there are coupled modes even for

a nodal diameter greater than one, represented in the red rectangle.

These modes are listed in table 6.2. It is possible to observe that all these modes are expressed

primarily on the turbine (AR>1). Furthermore, all modes listed have dominant nodal diameter

0 and 1 on the compressor.

Mode N Frequency [Hz] AR dominant ND turb. dominant ND comp.

143 9483.5 20.9 3 0
200 11817.9 2.9 4 0
201 11819.4 9.6 4 0
230 13676.8 6.8 2 1
231 13683.6 6.0 2 1
234 13770.2 5.7 3 1
235 13784.9 11.3 3 0
239 13840.0 10.4 6 0
240 13853.9 16.2 5 0
275 15522.8 2.6 2 0
276 15523.9 13.6 2 0
295 16147.2 10.7 2 0
296 16150.4 22.9 2 0
303 16375.2 23.7 3 0

Table 6.2: List of coupled modes which arise due to mistuning
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Figure 6.14: Weakly coupled turbine leading mode, Mode 143, AR = 21, Frequency = 9479 Hz

Figure 6.15: Weakly coupled turbine leading mode, Mode 230, AR = 6.9, Frequency = 13667
Hz in the turbine BM5 frequency region

Figure 6.16: Weakly coupled turbine leading mode, Mode 234, AR = 5.7, Frequency = 13770
Hz in the turbine BM5 frequency region

In Figures 6.14, 6.16, and 6.15, several coupled modes with dominant nodal diameters (ND)

greater than 1 (ND > 1) are shown. These modes are contained within the red rectangle

highlighted in Figure 6.13.

Figures 6.14 and 6.16 specically display two weakly coupled modes. Mode 143 exhibits a

dominant ND3 component on the turbine and a dominant ND0 component on the compressor.

The coupling between the turbine and compressor occurs primarily through torsional interactions.

This coupling mechanism induces a non-zero ND0 component in the turbine’s nodal diameter

spectrum due to the transmission of the compressor’s ND0 component.
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Mode 230, on the other hand, corresponds to BM5 with ND2 on the turbine and has a domi-

nant ND1 component on the compressor. This mode represents a bending-coupled mode, where

the ND1 component from the compressor is transmitted to the turbine, leading to a non-zero

ND1 component in the turbine’s discrete Fourier transform (DFT) spectrum. The bending cou-

pling mechanism emphasizes the interaction between the compressor and turbine through shared

vibrational energy associated with specic nodal diameters.

These modes demonstrate the coupling phenomena in mistuned systems, where dominant nodal

diameter components from one component (e.g., compressor) inuence the vibrational character-

istics of another (e.g., turbine), resulting in coupled dynamic behavior.

6.2.2 Compressor tips

Figure 6.17: Dominant nodal diameter component on compressor main blade tips and amplitude
ratio, for the tuned turbine case
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Figure 6.18: Dominant nodal diameter component on compressor main blade tips and amplitude
ratio, for the BM5ND0 mistuned turbine

When plotting the dominant nodal diameters on the compressor, we observe a negligible dierence

between the case of tuned turbine and mistuned turbine, indicating a negligible inuence of the

turbine mistuning on the nodal diameter components of the compressor. Regarding the tuned

compressor, it is possible to conrm that the zero and one nodal diameters are the only ones

responsible for the coupled vibration of the turbine and compressor.

6.3 Mode localization(Klauke)

The mode localization parameters proposed by Klauke (2.28) (2.26) (2.24) have been evaluated

for all modes on the turbine tips, both in the tuned and mistuned case. In gure 6.19 is shown

the eect of mistuning on the mode ll factor. Due to the asymmetry of the rotor model, some

degree of localization is inevitable, even in the tuned case. In gure 6.19 it can be observed how

the mode ll factor is aected by mistuning. We note that the maximum value of the mode ll

factor is 0.4 for the mistuned case and 0.1 for the tuned case.
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Figure 6.19: For the turbine mode shapes in freq. range [0,18] kHz Natural frequency (x-axis)
and mode ll factor (y-axis) for tuned and mistuned case

Figure 6.20: For the full rotor modes in freq. range [0,18] kHz, plot of the mode ll factor of the
tuned case (x-axis) and mode ll factor of the respective mistuned case (y-axis)

Figure 6.20 shows the general trend with respect to the mode ll factor of a mistuned mode

compared to the respective tuned mode (association based on proximity in frequency). Colour
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represents the nodal diameter on the turbine, blue = ND0, yellow = ND6. We note that it is

possible to recognize two sets of modes:

Modes whose mode ll factor does not increase substantially with the introduction of mis-

tuning, grouped along the diagonal line which corresponds to the line x=y. All these modes

have low nodal diameter, either 0 or 1.

Modes whose mode ll factor increases considerably introducing mistuning, independently

on the tuned mode ll factor. These modes are clustered around the vertical axis.

In Figure 6.21, an example of modal localization is shown, specically one of the modes with

the greatest increase in mode ll factor: the full rotor mode 132, in the tuned case (on the left)

and the mistuned case (on the right).

Figure 6.21: Localization of turbine mode shape for full rotor mode 132 in cases tuned (left)
and mistuned (right), with dominant nodal diameter 4

Figure 6.22 presents a comparison between the Localization Factor of tuned and mistuned modes.

It can be observed that modes characterized by low nodal diameters experience only a minimal

increase in the Localization Factor when subjected to mistuning. This indicates that the struc-

tural coupling or energy distribution in these modes is relatively unaected by the imperfections

introduced. In contrast, modes with high nodal diameters exhibit a pronounced increase in the

Localization Factor, suggesting that these modes are more sensitive to mistuning. The signicant

rise in the Localization Factor for high-nodal-diameter modes implies a greater concentration of

vibrational energy in specic regions, leading to more localized mode shapes.
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Figure 6.22: Comparison of localization factor between tuned and mistuned modes

6.4 Modal assurance criterion

To evaluate the degree of similarity of two mode shapes, the most popular method is the Modal

assurance criterion. Modal assurance criterion is given by a product of normalized mode shapes,

that results in a value between zero and 1.

Since the mode solutions are in an arbitrary angular position, it is necessary to compare two

dierent mode shapes by testing the dierent sector angle congurations by steps of 2πZ, and

choosing the conguration that allows to obtain the highest MAC value.

Given two mode shapes ϕA and ϕX the Modal assurance criterion is computed as in Eq. (6.7).

[23] [24]

MAC(r, q) =

ϕATr ϕXq

2


ϕATr ϕAr


ϕXTq ϕXq

 (6.7)
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Figure 6.23: MAC values comparing tuned and mistuned modes evaluated on the turbine tips

Figure 6.24: MAC value comparing tuned modes to their most similar mistuned mode evaluated
on the turbine tips

In the gures, the MAC evaluation is limited to the modes with non-zero components in the

turbine. The mode index in Figure 6.24 is ordered by frequency and includes only the modes that

are non-zero on the turbine. It can be observed that the introduction of mistuning causes a few

selected modes to exhibit MAC values as low as 0.6. This indicates that the mistuning pattern has

a high intensity, signicantly disrupting the tuned mode shapes and leading to notable deviations

in the modal behaviour.





7 Analysis of turbine - compressor coupling

7.0.1 Shaft analysis

Shaft analysis is important for identifying the coupling mechanism for turbine/compressor coupled

modes. Since the shaft mesh is structured,nodes are grouped into planes perpendicular to the

shaft axis. This structured mesh simplies the evaluation of shaft modes by allowing the nodal

solution to be analyzed section by section.

Bending

To identify bending deformation, the mean deformation of each section in the axial plane is

evaluated as in Eq. (7.1).


Uy

Uz


=

1

Nnodes



q


uy,q

uz,q


(7.1)

Torsion

Torsion angle Θ is computed as the mean rotation angle around the rotor axis for all the nodes

of the section. Assuming small displacements, Θ equals the imaginary part of the ratio between

two complex numbers: the numerator representing the deformed point and the denominator

representing the undeformed point, as shown in (7.2)

Θsec =
1

Nnodes

Nnodes

q=1

Im(yq + uy,q) + i(zq + uz,q)

yq + izq
 (7.2)

Axial Behaviour

Axial deformation is simply calculated, for each section as the mean deformation of each node in

the axial direction.
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Ux =
1

Nnodes

Nnodes

q=1

ux,q (7.3)

Shaft displacement amplitude ratios

Quantifying the torsion, bending, and thrust components is essential to understanding the cou-

pling mechanism of a mode. These quantities can be used by isolating each of the three mecha-

nisms and comparing their associated displacements and to the maximum displacement value of

the shaft.

It is possible to dene the Amplitude ratio for the shaft as the ratio between the maximum

displacement on the shaft to the maximum displacement on the entire model 7.4.

ARshaft =
maxushaft

maxu (7.4)

maxushaft is the maximum total deformation occurring on the shaft. Furthermore, to each of

the three mechanisms it is possible to associate an amplitude ratio:

ARbend =
max


U2
y + U2

z 
maxushaft

(7.5)

ARrot =
⟨r⟩maxΘ
maxushaft

(7.6)

⟨r⟩ is the mean radius of the shaft, equal to 2mm.

ARnorm =
max Ux

maxushaft
(7.7)

Validation - tuned case

To validate the shaft analysis tool, three modes will be veried, each of which presents a behaviour

characterized by either pure bending, torsion and axial movement:

Mode 8 Torsion mode, represented in Fig. 2.15

Mode 12 Thrust mode, represented in Fig. 2.16

Mode 7 Bending mode, represented in Fig. 2.17
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Mode8 , pure torsion

In Fig. 7.2 is represented the torsion angle of the shaft for the mode 8. In Fig. 7.4 is represented

the mean bending line of the mode, and in Fig. 7.3 is represented the modal deformation of

axial direction Ux(x). One can note that both axial displacement and bending evaluate to null

or negligible value.

ARex = 6.5392e-05

ARrot = 0.2880

ARnorm = 0

Figure 7.1: Mean bending line of the Mode shape N 8

Figure 7.2: Rotation angle due to torsion as a function of the axial coordinate for the Mode
shape N 8
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Figure 7.3: Axial displacement as a function of the axial coordinate for the Mode shape N 8

Mode 12, pure axial behaviour

In Fig. 7.2 is represented the modal deformation if axial direction Ux(x). In Fig. 7.4 is represented

the mean bending line of the mode, and in Fig. 7.5 the torsion angle of the shaft for the mode 8.

One can note that both torsion and bending evaluate to null or negligible value.

ARbend = 7.1738e-05

ARrot = 0.0013

ARnorm = 0.8784

Figure 7.4: Mean bending line of the Mode shape N 12
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Figure 7.5: Rotation angle due to torsion as a function of the axial coordinate for the Mode
shape N 12

Figure 7.6: Axial displacement as a function of the axial coordinate for the Mode shape N 12

Mode 7, pure bending

In Fig. 7.7 the mean bending line of the mode. In Fig. 7.9 is represented is the modal deformation

in axial direction Ux(x), and in Fig. 7.8 the torsion angle of the shaft for the mode 8. One can

note that both torsion and axial displacement evaluate to null or negligible value.

ARex: 0.3449

ARrot: 2.0005e-04



86 7 Analysis of turbine - compressor coupling

ARnorm: 1.5212e-18

Figure 7.7: Mean of the Mode shape

Figure 7.8: Rotation angle due to torsion as a function of the axial coordinate for the Mode
shape N 7
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Figure 7.9: Axial displacement as a function of the axial coordinate for the Mode shape N 7

Mistuned results

The main results from the shaft analysis in the reference case are as follows.

Fig. 7.10 represents each mode, with the number of dominant nodal diameters on the turbine

plotted on the x-axis and the modal coordinate representing the displacement in the axial direction

of the mode on the y-axis. The mode shapes are mass-normalized. For mistuned modes, it is

conrmed that the axial coupling mechanism is characterized by a nodal diameter of 0.

Figure 7.10: Representation of turbine nodal diameter (abscissae) and shaft axial modal dis-
placement on turbine side, for full rotor mass normalized modes
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In Fig. 7.11, similar to previous graph, the dominant nodal diameter on the turbine and the

torsion angle required on the turbine side of the shaft are represented, for the mass-normalized

mode shapes. It is conrmed that the torsion is associated with nodal diameter 0 for mistuned

rotors. Despite this, the presence of an important outlier for nodal diameter 2 is recorded.

Figure 7.11: Representation of turbine nodal diameter (abscissae) and shaft axial modal rota-
tion due to torsion, on turbine side, for full rotor mass normalized modes

Additionally, in gure 7.11, for each mode, is represented on the x axis the dominant nodal

diameter on the turbine and the on the y axis the transverse displacement of the shaft on the

turbine side, it is demonstrated that even for mistuned rotors the bending is associated with

nodal diameters 1.

Figure 7.12: Representation of turbine nodal diameter (abscissae) and shaft axial modal dis-
placement on the turbine side, for full rotor mass normalized modes (ordinates)
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7.0.2 Physical principle

Figure 6.13 demonstrates that coupled modes exist for nodal diameters other than 0 and 1, which

raises questions about the physical meaning of these modes.

Mistuning causes the modes to exhibit multiple nodal diameter components, resulting in an

extended nodal diameter spectrum. Consequently, a mistuned mode with a dominant nodal

diameter greater than 1 can still exhibit non-zero components for diameters 0 and 1, enabling

transmission along the shaft. Note in Fig. 7.13 the nodal diameter spectrum of the tuned mode

130 is concentrated in the ND=2. However, mistuning causes the spectrum to spread across the

entire range of nodal diameters, with non-zero contributions at ND=0 and ND=1.

Figure 7.13: Nodal diameter components of the BMND2 tuned mode (left) and the correspond-
ing mistuned mode (right)

A simple mental model to try to understand how mistuning causes vibrations in the turbine

is to consider the blades as concentrated masses vibrating in a tangential direction anchored

elastically to a sti frame. Let u represent the eigenvector containing the displacements of each

blade for the mode in question. The rotational moment of inertia is proportional to
Z

i=1 ui,

which corresponds to the nodal diameter component 0. The translational moment of inertia is

given by
Z

j=1 uj · cos(θj) in the horizontal direction and by
Z

j=1 uj · sin(θj) in the vertical

direction, which are exactly proportional to the nodal diameter component 1.

Thus, the degree of torsional coupling of the shaft is inuenced by the rotational moment of

inertia of the blades. This relationship directly connects the torsional coupling strength to the

nodal diameter 0 (ND0) component of the mode, as the ND0 component represents uniform

angular deformation across the circumference of the rotor. Higher ND0 contributions indicate

stronger interactions through torsional dynamics.
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Similarly, the degree of bending coupling is determined by the bending moment of the blades in

the transverse direction. This is primarily associated with the nodal diameter 1 (ND1) component

of the blades, which reects the rst asymmetric bending mode. A dominant ND1 component

signies enhanced bending interactions between the turbine and the compressor, as vibrational

energy is transmitted through non-uniform deformation patterns across the rotor.

Axial Tangential
ND0 Thrust Rotation (torsion)
ND1 Bending (rotor tilting) Bending (rotor translation)

Table 7.1: Summary of the coupling mechanisms and associated nodal diameter

In a real bladed wheel, axial deformation also occurs in addition to the tangential deforma-

tions. The nodal diameter 0 (ND0) component in the axial direction is associated with thrust,

representing uniform axial motion of the bladed wheel. Similarly, the nodal diameter 1 (ND1)

component is associated with tilting, analogous to the asymmetric deformation observed in the

tangential components.

To better characterize the dynamics of the system, a parameter should be dened for each

mode to quantify the relative prevalence of the ND0 and ND1 components on the turbine. This

parameter would provide a measure of the contribution of nodal diameter 0&1 components, both

axial and tangential, to the overall deformation. First it is possible to dene the equivalent ’total’

deformation component, taking account of all directions as in Eq. (7.8) Eq. (7.9)

DFTtot(ND0) =


DFT 2
ax(ND0) +DFT 2

tg(ND0) (7.8)

DFTtot(ND1) =


DFT 2
ax(ND1) +DFT 2

tg(ND1) (7.9)

Furthermore, it would be useful to dene a parameter that combines the eect of the ND0 and

ND1 components. One possibility is the one described in Eq. (7.10).

DFT (ND0&ND1)(eqv) =


DFT 2
tot(ND0) +DFT 2

tot(ND1) (7.10)

Graph in Fig. 7.10 corresponds to the plot for each mode of the Full Rotor, of the parameter

DFT (ND0&ND1)(eqv) with respect to the amplitude ratio. The mode shapes are normalized

to the maximum deformation value over the entire rotor. The nodal diameter components are

evaluated on the turbine tips. Colour represents the prevalence of ND0 over ND1. Yellow points

represent the ND1 dominated modes, while blue points represent ND0 dominated modes. It is

interesting to note how ND0 and ND1 are complementary in creating the trend of the graph.

It can be observed that the trend of AR → 1 occurs for increasing values of Nodal Diameter

Components 0 or 1. The trend is particularly clear and clean for compressor-dominant modes.

For the dominant turbine modes, although the general trend is still evident, the existence of some



7 Analysis of turbine - compressor coupling 91

outlier modes is recorded, which present a high degree of coupling with very low nodal diameter

components 0 and 1.

Figure 7.14: Diagram showing the inuence of ND0 and ND1 on the Amplitude Ratio

In section 7.1 is attempted an explanation for these outlier modes, involving the comparison of

the natural frequencies of turbine and compressor and their distance in the frequency domain in

both tuned and mistuned case.

7.0.3 Detailed evaluation of some coupled modes with dominant ND> 1

In Fig. 6.13 the important presence of coupled turbine-compressor modes for nodal diameter >1

is demonstrated. In all the graphs presented so far, the modes have been shown in aggregate

form to extrapolate general correlations. However, in order to understand the dynamics of these

modes, it is important to go into detail and observe the characteristics of the turbine, compressor

and shaft for each of these.

Below are presented a few modes with AR close to 1 and ND>1, which stand out as outliers in

some of the correlations presented so far.
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Mode 200

Mode N 200

Frequency 11810 Hz

Amplitude ratio 2.9101

Turbine tip dominant ND4

Compressor main bl. ND0

Compressor split. bl. ND0

Figure 7.15: Full rotor mistuned mode shape N 200

This mode is a ND4 turbine leading coupled mode (AR = 2.9) Fig.6.13. On the compressor this

mode involves mainly the splitter blades with a clear ND0. Despite this, ND0 and ND1 component

are relatively low on the turbine side. On the turbine this mode involves the participation of both

disk and blades, and shows a very noticeable displacement in axial direction. 7.15.

The DFT spectrum on compressor and turbine tips evaluates to data in Fig 7.27 and Fig. 7.27.

Figure 7.16: Full rotor mistuned mode shape N 200, DFT components of the tangential modal
coordinates evaluated on 1) Turbine Blade tips 2) Compressor Main Blade tips 3)
Compressor Splitter Blade tips
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Figure 7.17: Full rotor mistuned mode shape N 200, DFT components of the axial modal
coordinates evaluated on 1) Turbine Blade tips 2) Compressor Main Blade tips 3)
Compressor Splitter Blade tips

In the gure 7.27 it is possible to see the tangential DFT components on the three selections,

while in Fig. 7.17 the corresponding axial DFT components are shown. It is noted that as far as

the turbine is concerned, the axial component prevails over the tangential one, with almost tuned

ND4 in both cases. For the compressor, the situation is similar for both the splitters and main

blades, with ND0 being dominant and ND1 contributing to a lesser extent. On the compressor

the tangential behaviour prevails so we can assume that as far as the compressor is concerned

the mode consists of an axial torsion of the compressor.The tangential ND0 component on the

turbine is surprisingly low, which is inconsistent with the torsion behaviour of the compressor To

try to better understand the physical meaning of this turbine-compressor coupled mode we can

focus on the shaft.

Figure 7.18: Modal coordinate of the shaft axial direction for mode 200
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Figure 7.19: Modal coordinate of axial rotation (torsion) of the shaft for mode 200

Figure 7.20: Modal coordinate of transversal (bending, absolute value) deection of the shaft
for mode 200

In Fig. 7.18values with the same sign are observed, indicating that the mode expresses a sort of

back and forward motion of the rotor on the axial bearing. The highest coordinate is observed

at the end of the turbine, in agreement with the observation of strong axial component on the

turbine but not on the compressor.

In Fig. 7.20 we observe a two-node bending mode, with participation of both the turbine and

the (major) compressor which in fact is observed on the compressor DFT.

In Fig. 7.19 we actually see a torsion mode shape similar to the rst torsion mode shape of

a torsion bar, with two almost nodes in the extremities. in the right end, corresponding to the

turbine, there is a greater torsion component compared to the compressor end which has ND0.

This seems in even more evident contradiction to the lack of ND0 components on the turbine.
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In order to try to understand better, it is possible to also study the DFT components on the

disk and the shaft root of the turbine, in order to see the evolution between turbine ND4 and

shaft torsion.

Figure 7.21: DFT results of tangential and axial modal coordinates evaluated on disk point

Figure 7.22: DFT results of tangential and axial modal coordinates evaluated on disk shaft root

Figure 7.23: DFT results of tangential and axial modal coordinates evaluated turbine-end of
the shaft

In gure 7.21 one can see how the situation on the disk, at a point with a rather large radius, is

similar to that on the turbine tips. In fact there is a strong ND4 component, mainly in the axial

direction. Unlike what is seen on the blades, there is also a signicant tangential ND0 component

on the disk, indicating a non-zero rotation component that was not observed on the blades. Going
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down to a point of the disk with a smaller diameter, Fig. 7.22, the axial ND4 component drops

drastically, from 8 to a value just over 0.1. Even the ND0 component which indicates rotation

drops from 1.2 to 0.4, however becoming the dominant component at the base of the disk. On

the shaft Fig.7.23, we observe that the ND4 component has disappeared almost completely, while

the tangential ND0 component due to the torsional motion remains relevant.

Based on the transition shown in Fig. 7.21 to 7.23 it can be observed:

There is an ND4 component moving in both axial and tangential (mostly axial) directions

with very high magnitude, which is however very localized on the turbine disk and consti-

tutes a mode of the turbine at the frequency of this mode.

From the DFT components of the compressor and turbine to the base of the shaft, the

turbine-compressor coupling is due to a combined mechanism of torsion (primary tangential

ND0) and axial behaviour (secondary axial ND0). These components are very small with

respect to the ND4 component but are dominant on the shaft.

Looking at the tuned modes at the same frequency level, Fig. 7.24, we notice that Splitter

blades ND0 on the compressor and the Turbine ND4 appear in two separate modes very close

in frequency, with 3 Hz of dierence. The mistuning on the turbine therefore creates residual

ND0 components which allow it to interact with the ND0 splitter blades mode on the compressor.

Although the ND0 components for this mode are very small, the 200 tuned mode is a motion with

a high degree of coupling, being an outlier in Diagram 7.14. In next chapter outliers modes like

this are examined with the hypothesis that the additional coupling is due to mistuning moving

very close to each other the frequencies of turbine and compressor.

Figure 7.24: Tuned modes 199 and 200, occurring at frequency close to mistuned mode 200
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Mode 275

Mode N 275

Frequency 15523 Hz

Amplitude ratio 2.6324

Turbine tip dominant ND2

Compressor main bl. ND0

Compressor split. bl. ND0

Figure 7.25: Full rotor mistuned mode shape N 275

Mode 275 is a mixed mode both on the turbine and in the compressor. The AR is very close to

1. It is noted that this mode has a strong ND0 component on the compressor, with a dominant

ND2 component on the turbine, predominantly axial. This mode appears similar to case 201, as

the ND0 component on the turbine is low (0.025 tangential, 0.02 axial).

Figure 7.26: Full rotor mistuned mode shape N 200, DFT components of the tangentialmodal
coordinates evaluated on 1) Turbine Blade tips 2) Compressor Main Blade tips 3)
Compressor Splitter Blade tips
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Figure 7.27: Full rotor mistuned mode shape N 200, DFT components of the axial modal
coordinates evaluated on 1) Turbine Blade tips 2) Compressor Main Blade tips 3)
Compressor Splitter Blade tips

Like for mode 200, to understand more, we can go in detail and perform the fourier decomposition

for three cicular point series, going progressively from blade tips to shaft.

Figure 7.28: DFT results of tangential and axial modal coordinates evaluated on disk point

Figure 7.29: DFT results of tangential and axial modal coordinates evaluated on disk shaft root

In Figures 7.28, 7.29, and 7.30, it can be observed that the tangential and axial modal deec-

tions have nearly equal amplitudes. Both components diminish as we move closer to the rotor

axis. However, the ND2 components decrease more rapidly, resulting in a dominant ND0 axial

component on the shaft. This is associated with normal thrust, which is presumably the primary

coupling mechanism for this mode.
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Figure 7.30: DFT results of tangential and axial modal coordinates evaluated on the turbine
end of the shaft

Mistuned mode 275 is the superposition of two tuned modes (Fig. 7.31), one specic to the

turbine and one to the compressor. Mistuning on the turbine causes non-zero ND0 residual

components, which although small interact with the compressor mode.

Figure 7.31: Tuned modes in the same frequency range as the 275 mistuned mode

7.1 Subdivision of the model and Impedance coupling

In this section, we aim to understand in greater detail the mechanisms behind the creation of cou-

pled modes. It is interesting to note, as shown in the examples in Figures 7.31 and 7.24, that some

mistuned modes can be represented as the superposition of two tuned modes, one predominantly

expressed on the turbine and the other predominantly expressed on the compressor.

The common condition is that these two modes are suciently close in frequency. However, it

is not enough for the two modes to be close or even identical in frequency for a mistuned mode

to arise. If we imagine two completely isolated parts that do not mechanically interact, even if

they share the same natural frequencies, they do not give rise to common modes. Therefore, the

creation of a coupled mode requires some form of mechanical interaction between the two parts.

Ewins, in [25], proposes a method to calculate the interaction of two parts connected through an

interface, given the modal properties of the two parts in free conguration. This method utilizes
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the transfer functions of the two systems, which can be computed from the modal properties

(eigenvalues and eigenvectors) of the two systems.

Mistuning can create small residual ND0 & ND1 components in modes which are dominated by

a NDdom > 1. Using the equations proposed in [25], we aim to demonstrate how the proximity in

frequency and small interaction between the interfaces due to mistuning, lead to coupled modes

between the two parts of the model.

7.1.1 Relationship between Amplitude ratio and Frequency response functions

Considering two degrees of freedom of the model, A and B, both amplitude ratio and transfer

function between are measures of the coupling of a mode. For a totally uncoupled mode the

amplitude ratio between the two points is either zero or innity. The transfer function (considering

just the contribution of one mode), between two points is zero if at least on one of the points A

and B the mode shape is null. Considering one mode that is coupled to some degree between

point A and B, the transfer function presents a peak in correspondence of the resonant frequency,

with a value dependent on the amount of damping.

The receptance transfer function, between two points of a mechanical system is dened as:

HA→B(ω) := HB→A(ω) =
Harmonic displacement measured in B

Harmonic force applied in A
(7.11)

For a generic MDOF system, the transfer function is given by: [25]

HA→B = HB→A =

Nm

r

ϕr,A · ϕr,B

mr · (λr − ω2)
(7.12)

In case the mass normalized mode shapes ψ are used:

HA→B(ω) = HB→A(ω) =

Nm

r

ψr,A · ψr,B

(λr − ω2)
(7.13)

HA→B(ω) is the receptance transfer function between A and B, dened as the ratio between

harmonic displacement on

r : mode number

λr r-th eigenvalue of the system, λr = Re(λr) + iIm(λr), Re(λr) = ω2
r

ω frequency coordinate

ϕr,A or ϕr,B Mode shape of the r-th at degree of freedom A or B
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mr Modal mass

The Amplitude ratio between degrees of freedom A and B are dened, for the mode r, as

ARr =
ψr,B

ψr,A

(7.14)

for this reason, the displacement transfer function can be written as:

HA→B(ω) = HB→A(ω) =

Nm

r

ψ2
r,A · ARr

(λr − ω2)
(7.15)

The transfer function is the sum of N terms, one for each mode. It is useful to consider only

the contribution of the r-th mode, which is the dominant contribution at frequencies close to the

r-th natural frequency.

Hr,A→B(ω) =
ψ2
r,A · ARr

(λr − ω2)
(7.16)

at the r-th resonance point, with frequency ω2 = Re(λr) = ω2
r :

Hr,A→B(ωr) =
ψ2
r,A · ARr

i(Imλr)
(7.17)

Hence the peak value of the transfer function at the r-th resonance point is linked both to the

Amplitude ratio and the importance of the modal coordinate psi evaluated at one of the ends, as

well as the stability term (Imλr) contained in the denominator.

ψr,A

ψr,B

ψr,A · ψr,B ∝ Hr,A→B

A way to represent the relationship between AR and receptance peak is in Fig. 7.1.1. The

transfer function peak is proportional to the area of the rectangle ψr, A · ψr, B, and inversely

proportional to the denominator term (Imλr). Amplitude ratio is the ratio between the two

sides of the rectangle.

It is always possible to normalize the mode shape for the maximum deection value, assuming

that it is the maximum deection on the turbine ψr,A (or on the compressor, it is identical), the

expression simplies to Eq. 7.18. Since the mode shape is no longer mass-normalized, the modal

mass appears in the denominator.
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Hr,A→B(ωr) =
ARr

Imλr · mr

(7.18)

It is also possible to write Eq. (7.17) under logarithm:

Hr,A→B(ωr) = log(ARr)− log(Imλr)− log(mr) (7.19)

Thus, the AR (Amplitude Ratio) of a mode and the peak of the transfer function at the frequency

corresponding to the mode are two alternative metrics that indicate how strongly coupled a mode

is. These are linked to each other by 7.19

7.1.2 Subdivision of the model

To understand in more detail the reasons and the conditions for turbine - compressor coupling,

it is possible to section the model in two subsystems.

Figure 7.32: Subdivision in the two subsystems

Subsystem A: composed of compressor assembly and shaft (bearings included)

Subsystem B: Turbine model

These two subsystems have in common an interface. For the method, the boundary condition

in the interface is free displacement. Prestressed modal analysis is computed for the two

subsystems. As a result we have a set of Na eigenvalues λr, a and eigenvectors ψr,a for the

subsystem A; we obtain a set of Nb eigenvalues λr,b and eigenvectors ψr, b for the subsystem

B.
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The eigenvectors of the subsystems A and B can be conveniently evaluated at the blades and at

the interface degrees of freedom, neglecting the other DOFs.

ψr,A =






ψ
(tips)
r,A



ψ
(interf)
r,A




 , ψr,B =






ψ
(interf)
r,B



ψ
(tips)
r,B




 (7.20)

Since the mesh of the two subsystems on the interface is not the same (structured in model

A, unstructured in model B), to compare the solutions it is possible them with a polynomial.

Since the interface lies on the plane (y,z) the solution components will be written as a polynomial

function of y and z. To nd the polynomial coecients one must solve an over-dened linear

system.

ψ(interf) =





...

u
(interf)
x,i

u
(interf)
y,i

u
(interf)
z,i

...





(7.21)





u
(interf)
x,i = a1 + a2 · yi + a3 · zi + a4 · yi

2 + a5 · z2i + a6 · yi · zi +   

u
(interf)
y,i = b1 + b2 · yi + b3 · zi + b4 · yi

2 + b5 · z2i + b6 · yi · zi +   

u
(interf)
z,i = c1 + c2 · yi + c3 · zi + c4 · yi

2 + c5 · z2i + c6 · yi · zi +   

(7.22)

Use of 15 coecients is enough to obtain a polynomial function that approximates well the

solution.

This way, the coecients of the polynomial become a new synthesised formulation of the eigen-

vector components. The two alternative formulations for the interface eigenvectors are linked by

the matrix [A].

ψ∗(interf) =





...

aj

bj

cj
...





j = 1, , 15 (7.23)

ψ(interf) = [A]ψ∗(interf) (7.24)
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[A] =




1 yi zi y2i z2i · · ·

1 yi zi y2i y2i · · ·

...
...

...
...

... · · ·

1 yi zi y2i y2i · · ·

1 yi zi y2i y2i · · ·




(7.25)

Applying the transformation to the interface eigenvectors on both systems makes it possible to

compare them as polynomial coecients. The rst three components a1 , b1 c1 have the meaning

of translation in the x,y,z direction respectively. Furthermore, the rst order coecients capture

the eects of bending and torsion.

The polynomial transformation is also convenient to reduce the number of interface DOFs lim-

iting computational time. It allows a reduction in size from 3xNi, Ni ≈ 700 number of interface

nodes to 3x15 = 45 polynomial coecients. In the example shown in Fig. 7.33 polynomial

approximation describes the interface deection with an error of 0.28%.

Figure 7.33: Interface of the turbine mode 59

7.1.3 Impedance coupling

Given two substructures that share an interface it is possible to couple with a mathematical

procedure. This procedure is based on the frequency response function of the two subsystems,

named A and B.

[HA(ω)] = [ψA] diag

(λr (A) − ω2)−1


[ψA]

T , (7.26)

[HB(ω)] = [ψB ] diag

(λr (B) − ω2)−1


[ψB ]

T (7.27)
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Imposing the conditions of equilibria and congruence at the interface, it is possible to demon-

strate [25] that the transfer function matrix of the interface, [Hc] is equal to to the sum of the

inverse of the transfer function matrices of the two subsystems that compose it.

[Hc(ω)]
−1 = [HA(ω)]

−1 ⊕ [HB(ω)]
−1 (7.28)

[HC ]
−1 =



[H

(t−t)
A ]−1 [H

(t−i)
A ]−1

[H
(i−t)
A ]−1 ([H

(i−i)
A ]−1 + [H

(i−i)
B ]−1) [H

(i−t)
B ]−1

[H
(t−i)
B ]−1 [H

(t−t)
B ]−1


 (7.29)

[H
(t−t)
A ] transfer function matrix of subsystem A between tips and tips DOFs

[H
(t−i)
A ] transfer function matrix of subsystem A between tips and interface DOFs

[H
(i−i)
A ] transfer function matrix of subsystem A between interface and interface DOFs

[H
(t−i)
B ] transfer function matrix of subsystem B between tips and interface DOFs

[H
(t−t)
B ] transfer function matrix of subsystem B between tips and tips DOFs

[H
(i−i)
B ] transfer function matrix of subsystem B between interface and interface DOFs

The equation (7.28) can be rewritten as:

[Htot(ω)]
−1 = [HA(ω)]

−1 ⊕ [HB(ω)]
−1

= [HA(ω)]
−1


I⊕ [HA(ω)] [HB(ω)]

−1


= [HA(ω)]
−1 ([HB(ω)]⊕ [HA(ω)]) [HB(ω)]

−1

(7.30)

Finally


Htot (ω)


=

HB (ω)

 
HB (ω)


⊕

HA (ω)

−1 
HA (ω)


(7.31)

Considering:

the n-th mode of the turbine with corresponding eigenvalue λB

the m-th mode of the compressor-shaft subsystem with corresponding eigenvalue λA

The turbine mode can be evaluated in a point in the tips with a value ψ
(t)
B and on the

interface with a polynomial coecient ψ
(i)
B

The compressor mode can be evaluated in a point in the compressor tips with a value ψ
(t)
A

and on the interface with a polynomial coecient ψ
(i)
A
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Then equation (7.31) can be evaluated as:

HA→B =
ψ
(i)
A ψ

(t)
A

ω2 − λA

·


ψ
(i) 2
A

ω2 − λA

+
ψ
(i) 2
B

ω2 − λB

−1

·

ψ
(i)
B ψ

(t)
B

ω2 − λB

(7.32)

Simplifying and introducing variable ∆ = λA − λB that represents the dierence between the

eigenvalues of the subsystems, the expression evaluates to:

HA→B =
ψ
(i)
A · ψ

(t)
A · ψ

(i)
B · ψ

(t)
B

λA(ψ
(i) 2
A + ψ

(i) 2
B ) +∆ · ψ

(i) 2
A − ω2(ψ

(i) 2
A + ψ

(i) 2
B )

(7.33)

If the dierence ∆ between the eigenvalues of the system becomes bigger, then the denominator

of the transfer function becomes bigger, and the degree of coupling decreases.

7.1.4 Evaluation of frequencies

Computing the parameter ∆ as the dierence between the eigenvalues of two modes of subsystem

A and B, it is possible to create the tables 7.34 7.35

Figure 7.34: Table showing the proximity of eigenvalues of modes of subsystem A (y-axis) and
tuned subsystem B (x-axis), in form of the parameter ∆−1 ,with ∆ = λA − λB
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Figure 7.35: Table showing the proximity of eigenvalues of modes of subsystem A (y-axis) and
mistuned subsystem B (x-axis), in form of the parameter ∆−1 ,with ∆ = λA − λB

In gures 7.34 and 7.35 there is a light stripe representing the turbine and compressor modes

that are closest to each other. It is possible to represent the values in this diagonal stripe with

values 1∆ with respect to the frequency of either the turbine or the compressor, thus creating

the graph 7.36. The higher the value, the closer the frequencies are. Blue line represents the

values for the tuned case, while red represents the values of the mistuned case. It is noted that

the values often coincide, while in some peaks the mistuned value is much higher, given that the

scale of the y axis is logarithmic.

7.1.5 Evaluation of the interfaces

In Eq. (7.33), on the numerator is the product of the interfaces of the two subsystems. In fact

it appears also on the denominator. Using the polynomial coecient as a degrees of freedom

is convenient because they have a physical meaning. Order 0 polynomial coecients represent

constant motion of the interface. Order 1 represent plane motion of the interface. If product

of the interfaces of the two interfaces is zero, then these modes do not interact and they do not

create a coupled mode.

Figure 7.37 shows the turbine and shaft interface with tuned turbine (blue) and mistuned turbine

(red). It can be seen in (a) how the mistuning causes a rotation component of the shaft-turbine
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Figure 7.36: Graph of frequency (x-axis) and proximity between two closest pair of poles (1∆)
on the y-axis

interface. Furthermore in (b) it can be noted that the mode shape at the mistuned interface

presents an additional axial translation component (ND0). This proves that the mistuning causes

an interface-interface interaction between the turbine subsystem and the compressor subsystem,

and for this reason, together with the proximity in frequency, it allows to give rise to the coupled

mode shown in the gure 7.15, starting from two modes represented in Fig. 7.24.

Figure 7.37: Comparison of tuned and mistuned turbine interfaces for mode 59 (11810 Hz)
corresponding to full rotor mode 200
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8.1 Sensitivity analysis on the bearing conditions

In this section we attempt to repeat the sensitivity study of the modes on the eects of bearing

conditions proposed in the [17] study, with the with the inclusion of mistuningin the model.

In this study Zobel, Beirow & al. carried out on the geometry of the same rotor, produced

by KBB, they implemented the combinations of boundary conditions reported in the table Tab.

2.4, while varying both the stiness and the damping coecient. In this chapter a simplied

version is proposed considering the variation in stiness and leaving the damping unchanged at

the values provided by the manufacturer. For the low stiness case (LS) we use a value equal to

1/100 of the reference value provided by the manufacturer. For the high-stiness case we use a

very high value of stiness in order to lock the degrees of freedom (≈ 1030 times the reference

values).

8.1.1 Sensitivity on the radial bearings stiness

High stiness

The high radial stiness condition was implemented with a value equal to 1037 times the reference

value in order to suppress DOF in the radial direction of the radial bearing surfaces. This causes

a signicant upward shift in the frequencies.

In g. 8.1 ,8.2, 8.3 it is noted that the amplitude ratio is not very sensitive to even a large

increase in the radial stiness of the bearings. The reference value is therefore a suciently high

value such that it can be assimilated to rigid bearings. In the gure 8.3 it is possible to observe

some slightly coupled modes that arise in compressor ND2 modes. In the gure 8.4 an example

of these modes is shown. It is Mode 77. The additional coupling is attributed to the residual

DFT component of amplitude 0.38 for ND0.

In Fig. 8.5 and 8.6 we show the comparison of the mode shapes on the turbine tips with the

reference mistuned case. The mode shapes show a high degree of similarity, with MAC values on

the diagonal oscillating between 1 and 0.8.
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Figure 8.1: Frequency vs Amplitude ratio plot for the modes of high radial stiness case in the
frequency region [0,18] kHz and comparison with reference mistuned case

Figure 8.2: Amplitude ratio vs Turbine dominant Nodal Diameter plot for the modes of high
radial stiness case in the frequency region [0,18] kHz

Figure 8.3: Amplitude ratio vs Compressor MB dominant Nodal Diameter plot for the modes
of high radial stiness case in the frequency region [0,18] kHz
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Figure 8.4: Mistuned mode 77 for high radial stiness conguration, illustration and DFT on
compressor side

Figure 8.5: Modal assurance criterion table between mode shapes evaluated in turbine tip nodes
in Low radial stiness and reference mistuned case

Figure 8.6: Modal assurance criterion table between mode shapes evaluated in turbine tip nodes
in high radial stiness and reference mistuned case
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Low stiness

For the Low Stiness condition, a value equal to 0.01 times the reference value is used on rare

bearings. In gure 8.7 the eect of the decrease in stiness is shown, with a clear increase in

coupled modes. However, a signicant number of null modes remain on the turbine (bottom of

gure). In gures 8.8 and 8.9 we can see how even modes with ND>1 have a degree of coupling

similar to ND0 and ND1.

Figure 8.7: Frequency vs Amplitude ratio plot for the modes of low radial stiness case in the
frequency region [0,18] kHz and comparison with reference mistuned case

Figure 8.8: Amplitude ratio vs Turbine dominant Nodal Diameter plot for the modes of low
radial stiness case in the frequency region [0,18] kHz
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Figure 8.9: Amplitude ratio vs Compressor MB dominant Nodal Diameter plot for the modes
of low radial stiness case in the frequency region [0,18] kHz

Figure 8.10: Modal assurance criterion table between mode shapes evaluated in turbine tip
nodes in Low radial stiness and reference mistuned case
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Figure 8.11: Modal assurance criterion between tuned mode and most similar mode

Belowe are shown examples of the additional coupled modes with ND¿1due to the release in the

radial stiness:

Figure 8.12: Example of coupled mode, Mode 140 mistuned, ND3 dominant on turbine, 9.4658
kHz, AR = 1.22

Figure 8.13: Example of coupled mode, Mode 148 mistuned, ND4 dominant on turbine, 9.5208
kHz, AR = 0.84
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8.1.2 Sensitivity on the axial bearing stiness

High Stiness

The high stiness axial condition was implemented with a value equal to 1030 times the reference

value provided by the manufacturer for the axial bearing. The result is the suppression of the

axial degrees of freedom on the bearing surface located approximately halfway up the shaft (x

= -0.243 m). In Fig. 8.14, we compare the degree of coupling of the modes for the High axial

stiness case and the Reference case. The color represents the dominance of the normal behavior

component on the shaft. The dashed red line indicates equal AR values between the two cases.

Most modes with a stronger axial component (yellow) are found above the red line, where the

modes in the high axial stiness case exhibit AR values deviating more from 1 than in the tuned

case.

Figure 8.14: Frequency vs Amplitude ratio plot for the modes of the high axial stiness case in
the frequency region [0,18] kHz and comparison with the reference mistuned case.

Figure 8.15 compares the degree of coupling (log(AR)) between the reference mistuned case and

the Low Axial Stiness case, with the dierent nodal diameters. It is possible to observe small

dierences in the absolute degrees of coupling, despite some individual modes shifting toward

higher or lower values of log(AR). The same is observed by plotting the modes’ log(AR) with

dominant nodal diameters on the compressor (Fig. 8.16).
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Figure 8.15: Amplitude ratio vs Turbine dominant Nodal Diameter plot for the modes of the
high axial stiness case in the frequency region [0,18] kHz.

Figure 8.16: Amplitude ratio vs Compressor MB dominant Nodal Diameter plot for the modes
of the high axial stiness case in the frequency region [0,18] kHz.
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Figure 8.17: Modal assurance criterion table between mode shapes evaluated in turbine tip
nodes in high stiness axial and reference mistuned cases.

Figure 8.18: Modal assurance criterion table between mode shapes evaluated in turbine tip
nodes in high stiness axial and reference mistuned case

Low stiness

Evaluation of a low-axial stiness conguration gives results similar to the reference mistuning

case.
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Figure 8.19: Frequency vs Amplitude ratio plot for the modes of low axial stiness case in the
frequency region [0,18] kHz and comparison with reference mistuned case

Figure 8.20: Amplitude ratio vs Turbine dominant Nodal Diameter plot for the modes of low
axial stiness case in the frequency region [0,18] kHz

Figure 8.21: Amplitude ratio vs Compressor MB dominant Nodal Diameter plot for the modes
of low axial stiness case in the frequency region [0,18] kHz
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Comparison of mode shapes with the MAC criterion shows a very high degree of similarity

between the mode shapes in Fig. 8.22. On the diagonal, most modes evaluate to AR close to 1.

Fig. 8.23.

Figure 8.22: Modal assurance criterion table between mode shapes evaluated in turbine tip
nodes in low axial stiness and reference mistuned case

Figure 8.23: Modal assurance criterion table between mode shapes evaluated in turbine tip
nodes in Low stiness axial and reference mistuned case

8.1.3 Simplied shaft model

A model of the shaft representing the bladed wheels as concentrated masses and inertias has

been created in Matlab. The shaft consists of 50 nodes and 49 equal-length 3D beam elements.

Mass, stiness and gyroscopic matrices are calculated for each shaft section with the properties
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(diameter, moment of inertias) that vary along the axial coordinate. At each node, 3d beam

element has six degrees of freedom, represented in Eq. (8.1)

q(el) =





ux

uy

uz

Θ

ϕy

ϕz





(8.1)

ux displacement in axial direction

uy, uz displacement in the x and y directions

Θ angular deection in axial direction (torsion)

ϕy, ϕz angular deection in y and z direction associated to bending

The stiness matrix is computed with Euler-Bernoulli formulation found in [9]. The mass matrix

and the gyroscopic matrices are lumped at the nodes [18]. The structure is in series; therefore,

elemental matrices are assembled with the technique described in [9] in Fig.8.24 Axial and radial

bearings are modelled in the node closest to the actual position of the bearing. Modelling of

the boundary conditions imposed by the bearing is achieved by adding stiness terms on the

corresponding entries of the stiness matrix. As an example, axial bearing is a simple spring

connection to a remote point, and is modelled adding the stiness value to the diagonal of the

stiness matrix, in the index corresponding to the ux degree of freedom of the node where the

bearing is located. Similarly, the radial stiness is modeled as a 2D connection, and therefore a 2x2

stiness term, which is added to the stiness matrix, across the diagonal at indices corresponding

to uy, uz degrees of freedom of the node whose position corresponds to the radial bearing.
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Figure 8.24: Assembling scheme of elemental matrices for structures in series

Eigenvalues and eigenvectors can be calculated numerically given the stiness, mass and gyro-

scopic matrices. The modal analysis of this simplied model can be iteratively repeated by testing

dierent boundary conditions of the bearings. In particular, the amplitude ratio of a mode can

be calculated between the rst and last nodes of the shaft, as shown in Eq. (8.2).

ARSE =
ui

uj
, i rst node, j last node (8.2)

It is possible to test dierent congurations of radial bearings by applying an axial bearing

gain of value between 10−2 and 105. By applying these changes it is possible to track how the

amplitude ratio changes. In g. 8.25 shows the amplitude ratio of the rst bending mode shape

as a function of the gain on the radial bearings.

In Fig. 8.25 it is possible to note that for low values of stiness gain (axial condition free), the

AR of the axial mode is close to 1, as the shaft moves rigidly on the bearing, while increasing

the axial stiness the AR of the axial mode diverges to a very large or very small value, as the

mode shapes become concentrated on one side of the shaft relative to the bearing. The bulk

of the transition seems to occur for axial stiness gain around 104.This nding also supports

the results in 8.1.2, in which little variation is noted in the gain values between 10−2 and 100,

while a signicant decrease in the degree of coupling for the modes with strong axial behaviour

is observed as the gain values increase from 100 to 1030..
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Figure 8.25: Eect of axial bearing stiness gain on log(ARSH), between the two ends of the
shaft, of the rst axial mode of the shaft

8.2 Results with dierent mistuning patterns

In this section we implement mistuning patterns measured for modes dierent from the one

implemented so far, the BM5 ND0. The aim is to conrm the results obtained so far and observe

any dierences in the occurrence of coupled modes, as well as their impact on frequencies, degrees

of localization, and mode ll factor.

8.2.1 BM4 EO17 Mistuning

Thr mistuning pattern measured for mode BM4 EO17 has been implemented on the model with

the technique presented in Chapter 5.
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Figure 8.26: Plot of the blades frequencies measured with the Blade Tip timing technique for
the BM4 EO17 mode

In Fig. 8.27, the dierences in aspect ratios (AR) and frequencies are visible. While the frequen-

cies remain relatively stable, the amplitude ratios (AR) of the modes exhibit signicant variation.

Turbine-dominated modes are observed in the BM3/BM4 region, which show increased cou-

pling. At high frequencies, above 12 kHz, the number of coupled modes increases signicantly.

Compressor-dominated modes remain largely unchanged compared to the tuned case, result which

is also conrmed in Fig. 8.29. In g. 8.29 we observe dierences only for a few modes.

Figure 8.27: Frequency vs Amplitude ratio plot for the modes of BM4 EO17 mistuned case in
the frequency region [0,18] kHz and comparison with reference mistuned case



124 8 Sensitivity analyses

Figure 8.28: Amplitude ratio vs Turbine dominant Nodal Diameter plot for the modes of BM4
EO17 mistuned case in the frequency region [0,18] kHz

Figure 8.29: Amplitude ratio vs Compressor MB dominant Nodal Diameter plot for the modes
of BM4 EO17 mistuned case in the frequency region [0,18] kHz

Comparison of mode shapes with the MAC criterion shows a very high degree of similarity

between the mode shapes in Fig. 8.30. On the diagonal, most modes evaluate to AR close to 1,

Fig. 8.31.
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Figure 8.30: Modal assurance criterion table between mode shapes evaluated in turbine tip
nodes in BM4 EO17 mistuned and reference mistuned case

Figure 8.31: Modal assurance criterion table between mode shapes evaluated in turbine tip
nodes in BM4 EO17 and reference mistuned case

Following (Fig. 8.32 is the mode which shows the most increase in coupling, mode 316 (and

its twin mode 317). Another mode with a high increase in coupling in the BM4/BM3 frequency

region is shown in gure 8.32.

It is interesting to analyze the coupling mechanism for the rotor with an additional mistuning

pattern compared to the reference case to verify or challenge the invariance of the observations

made in the previous chapter. Mistuning patterns can signicantly alter the vibrational char-

acteristics of a rotor, inuencing both the coupling mechanisms and the distribution of energy

across dierent nodal diameters. To investigate this further, we consider an additional mistuning

pattern and compare its eects with the reference case.
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Figure 8.32: Mode 316, with dominant ND 5 on the turbine, 16.860 kHz, AR = 1.89

Figure 8.33: Mode 139, with dominant ND 5 on the turbine, 9.197 kHz, AR = 10.3

To this end, we can plot the parameter DFT (ND0&1)(eqv), dened in Equations (7.8) to (7.10),

on the x-axis. This parameter quanties the equivalent contributions of nodal diameters 0 and

1 in the nodal diameter spectrum, which are key indicators of coupling strength. On the y-axis,

we plot the coupling degree, represented as log(AR), where AR stands for the amplitude ratio.

This relationship is illustrated in Figure 8.34.

The diagram reveals a clear general trend: as the contributions of nodal diameters 0 and 1

(ND0 and ND1) increase in the spectrum, log(AR) approaches 1. This trend indicates that

higher contributions of these nodal diameters correspond to stronger coupling between the rotor’s

components. Specically, the ND0 component reects torsional coupling eects, while the ND1

component is associated with bending coupling mechanisms. The presence of these components

in the spectrum highlights the dominant modes through which energy is transmitted and shared

between the two rotors.

This observation aligns well with the results from the reference mistuned case. In both scenarios,

it can be inferred that the majority of coupled modes are a consequence of the residual ND0 or

ND1 components in the nodal diameter spectrum. This suggests that the coupling mechanisms

are predominantly inuenced by these components, and this behavior appears to be consistent.
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Figure 8.34: Diagram of DFT (ND0&1)eqv and log(AR) for BM4 EO17 mistuned modes in the
frequency range [0,18] kHz

8.2.2 BM5 EO24 Intentional mistuning

In order to mitigate the eects of random mistuning due to material inhomogeneities, uneven

wear and other causes, one strategy is to implement an articial, intentional mistuning with much

larger amplitude. This has been proven in [5] to reduce mode localization and intensication.

The mistuning pattern is designed to minimize mode localization of the rst blade mode family.

The intentional mistuning pattern is usually a periodic function. It is implemented on the turbine

by removing small quantities of material (tip cropping, trailing edge machining).

It is observed in Fig. 8.35 with the harmonic pattern, and a smaller uncertainty in the frequency

measurement, due to the fact that the intentional mistuning has a large amplitude, and the

mistuned modes are suciently spaced in frequency. Due to this in the BTT results peaks are

quite stable.
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Figure 8.35: Plot of the blades frequencies measured with the Blade Tip timing technique for
the intentionally mistuned BM5 EO24 Mode

In the gure 8.38 we observe the variation in terms of AR and frequency compared to the

reference mistuned case. As expected, the low frequency modes (rigid and gyroscopic) are not

very sensitive to the level of mistuning. For other modes, the mode coupling level changed in

both directions. Unlike the previous case, the compressor-leading modes are also slightly shifted

due to the level of mistuning. This is likely due to the fact that the level of intentional mistuning

brings large variations in stiness of the blades.

Figure 8.36: Frequency vs Amplitude ratio plot for the IM mistuned case in the frequency region
[0,18] kHz and comparison with reference mistuned case
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Figure 8.37: Amplitude ratio vs Turbine dominant Nodal Diameter plot for the IM mistuned
modes in the frequency region [0,18] kHz

Figure 8.38: Amplitude ratio vs Compressor MB dominant Nodal Diameter plot for the IM
mistuned modes in the frequency region [0,18] kHz

Figure 8.39 shows the comparison between the Amplitude Ratio of Reference mistuning case

and Intentional mistuning case. It is possible to see that the increase in the degree of coupling is

limited to modes expressed primarily on the turbine with nodal diameter higher than 1.

Comparison of mode shapes with the MAC criterion shows a very high degree of similarity

between the mode shapes in Fig. 8.40. On the diagonal, modes evaluate to AR close to 1, Fig.

8.41.



130 8 Sensitivity analyses

Figure 8.39: Comparison of Amplitude ratio in reference mistuned case and intentional mistun-
ing

Figure 8 40: Modal assurance criterion table between mode shapes evaluated in turbine tip
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Figure 8.41: Modal assurance criterion table between mode shapes evaluated in turbine tip
nodes for the IM mistuned modes and reference mistuned case

In the case with intentional mistuning, an abnormally high number of coupled modes with nodal

diameters greater than 1 is observed. We repeat the analysis presented in Chapter 7 using the

standard methods to understand the reason behind this large number of coupled modes. Figure

8.42 shows the log(AR) - DFT (ND0&1)(eqv) plot. Once again, we observe the usual trend of

log(AR) approaching 0 as the contributions of ND0 and ND1 components in the nodal diameter

spectrum increase. However, a larger number of outlier modes is present.

Figure 8.42: Diagram of DFT (ND0&1)eqv and log(AR) for BM4 EO17 mistuned modes in the
frequency range [0,18] kHz

The increase in coupled modes can be partially explained by higher values of DFT components 0

& 1, as shown Figure 8.43. It is possible to see that the majority of modes intentionally mistuned

in the DFT (ND0&1)eqv , which takes
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Figure 8.43: Comparison of the amplitude of ND0&1 components in the NDS of Reference
mistuning (x-axis) and Intentional mistuning (y-axis)

At the same time, intentional mistuning with high intensity further separates the various reso-

nance frequencies of the turbine, increasing the likelihood of turbine eigenvalues being very close

in frequency to compressor eigenvalues. Figure 8.44 shows a comparison of the proximity of tur-

bine and compressor eigenvalues for each given frequency among the tuned, reference mistuned,

and intentional mistuned cases. It is evident that intentional mistuning signicantly increases

the proximity of turbine and compressor eigenvalues for certain frequencies.

The proximity in frequency allows for the merging of compressor and turbine modes, provided

there is even a small residual ND0 or ND1 component in the Nodal Diameter Spectrum (NDS),

creating a new coupled mode.

Figure 8.44: Comparison of the eigenvalue proximity, of turbine and compressor eigenvalues,
for tuned case, reference mistuned case, intentional mistuning case
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This phenomenon, together with the increase in residual ND0 and ND1 components in the Nodal

Diameter Spectrum (NDS), helps explain the large number of coupled modes for ND> 1 on the

turbine, caused by intentional mistuning.

8.3 Both sides mistuned

In this section a mistuning is introduced also in the compressor. Given the lack of experimental

data, it is not possible to implement the procedure explained in 5. Instead, on the compressor

we apply a randomly generated mistuning. For the generation of this mistuning we base on the

estimation that states mistuning on the compressor has half the amplitude of the amplitude on

the turbine. In the rst place, the percentage of mistuning on the turbine is computed as the ratio

between the frequency of a blade and the mean. The percentage of mistuning in the compressor

is generated as a Gaussian random number with half the standard deviation of mistuning on the

turbine. This mistuning is applied equally in the Main blades as in the Splitter blades.

Table 8.1: Mistuned Young Modulus values implemented on compressor blades

Sect N Main Bl., Young Modulus [MPa] Sp. Bl., Young Modulus [MPa]

1 71301.30 70628.86
2 71141.65 71052.37
3 70785.14 71056.29
4 71587.93 71455.02
5 70778.21 71498.64
6 71119.18 70989.64
7 71117.43 70966.32
8 70979.60 71244.75
9 71231.5 71232.84

Figure 8.45: Frequency vs Amplitude ratio plot for the modes of mistuned compressor and
turbine case in the frequency region [0,18] kHz
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Figure 8.46: Frequency vs Amplitude ratio plot for the mistuned compressor and turbine case
as well as the tuned case in the frequency region [0,18] kHz

Figure 8.45 shows the frequency vs. amplitude ratio diagram for the modes in the case with

both rotors mistuned. We note how, compared to the gures 6.1 and 6.5, compressor-dominated

modes increase the degree of coupling. Furthermore, there are no longer any modes that have

zero participation on one of the two bladed sets. In the most localized modes on one of the two

rotors there is at most an Amplitude Ratio of 125000. There is a moderate increase in the number

of coupled modes, which in the frequency region [0.18] kHz amounts to 93 modes.

In the gure 8.47 the modes of the case with both rotors mistuned are compared with the case

with both rotors tuned. In particular, we note the interesting result that there is a correspon-

dence between modes of the two cases in the region of the most coupled modes. In this region,

the introduction of mistuning on the compressor does not change the degree of rotor coupling.

What changes instead, observing the lower part of the diagram, are the modes which in the case

of tuned rotors were extremely compressor-dominated in the mistuned case they move towards

the coupled region.

The same binary behaviour is observed in Fig. 8.47 and 8.48 , which show the comparison of

the Amplitude Ratios of the Both sides mistuned modes and the Both sides tuned modes. Com-

parison of modes is possible by associating tuned and mistuned modes by frequency proximity,

since mistuning does not signicantly alter the eigenvalues. It is observed that the modes are

fundamentally divided into two sets: one in which the tuned AR is already close to 1, the mis-

tuning does not increase the degree of coupling, the other set for which the mistuning causes a
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substantial approach of the AR to 1 For this last group, high nodal diameters are mainly observed

on the turbine.

Figure 8.47: Comparison between Amplitude ratio of the Tuned modes and the Amplitude ratio
of the both sides mistuned modes. Color represents the dominant nodal diameter
in the turbine

Figure 8.48: Comparison between Amplitude ratio of the Tuned modes and the Amplitude ratio
of the both sides mistuned modes. Color represents the dominant nodal diameter
in the compressor

It can be seen in Fig. 8.47 that the new modes that become coupled due to mistuning have, if

turbine-leading, a high number of nodal diameters on the turbine. Similarly, the new compressor-

leading coupled modes that arise due to mistuning exhibit a high number of nodal diameters on

the compressor.
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Figure 8.49: Comparison between Amplitude ratio of the Tuned modes and the Amplitude ratio
of the both sides mistuned modes. Color represents the dominant nodal diameter
in the compressor

Figures 8.49 and 8.50 show the Amplitude Ratio of the modes with dominant nodal diameter on

the turbine and dominant nodal diameter on the compressor. Figure 8.49 shows that mistuning on

the compressor has an inuence, albeit localized to a few modes, on the nodal diameter. Speci-

cally, three modes, with dominant nodal diameters of 2 and 3, shift from being turbine-dominated

to compressor-dominated. Additionally, there is a general shift of modes with dominant nodal

diameter 0 toward greater participation from the compressor.

Figure 8.50: Amplitude ratio vs Turbine dominant Nodal Diameter plot for the modes of both
sides mistuned case in the frequency region [0,18] kHz

In Figure 8.50, the shift of all modes with ND > 1 on the compressor toward a higher degree of

coupling is conrmed.

Comparing the mode shapes of the turbine with those of the tuned compressor, using the MAC

criterion (Fig. 8.51 8.52), we observe slight variations in some mode shapes, resulting in MAC

values as low as 0.9. This indicates that mistuning in the compressor aects certain modes on

the turbine side.
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Figure 8.51: Modal assurance criterion table between mode shapes evaluated in turbine tip
nodes for the both sides mistuned modes and reference mistuned case

Figure 8.52: Modal assurance criterion table between mode shapes evaluated in turbine tip
nodes for the both sides mistuned modes and reference mistuned case

8.4 Eect of rotating damping

Rotating damping is introduced in the reference conguration. The damping value is calculated

based on all measurements at resonance points for the BM5 ND0 mode. Rotational pressure

is introduced through the rotor strut structure by implementing a proportional pressure matrix

based on the stiness, as shown in Eq. (8.3).

[Cr] = β · [K] (8.3)
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The resonance peaks of the BM5 ND0 mode show a mean damping ratio of ζ = 007. Therefore,

the scalar gain for proportional damping β can be calculated using Eq. (8.4) [19]. We introduce

structural damping, attributing all sources of damping to this term.

β =
2ζ

ω̄
=

2 · 00764

13781Hz
= 111× 10−5 (8.4)

By introducing damping into the equation and running a prestressed modal analysis with the

damped solver, a set of modes and eigenvalues is obtained.

The mode shapes and eigenvalues do not change signicantly compared to the reference case.

The variation in frequency (imaginary part) between corresponding modes is less than 0.001 Hz.

The mode shapes are also very similar. As shown in the MAC table 8.53, the diagonal values

are either 1 or very close to 1 for all modes. In 8.54, the MAC values of each damped mode are

compared with the most similar corresponding modes from the reference case.

Figure 8.53: Modal Assurance Criterion table for reference and damping case.

Furthermore, it is possible to compare the amplitude ratios of the modes. In Fig. 8.56, each dot

represents a mode. The x-axis shows the log(AR) values for the reference case, while the y-axis

shows the log(AR) values for the damped case. It can be observed that most of the modes are

clustered along the X = Y red dotted line.
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Figure 8.54: Maximum MAC value for each damped mode compared to the reference case.

Figure 8.55: Maximum MAC value for each damped mode compared to the reference case.

Figure 8.56: Comparison between the amplitude ratio in the reference case (x-axis) and the
amplitude ratio in the case with damping.





9 Conclusion

In this thesis the linear modal analysis of a mistuned radial impeller was carried out using nite

element models. The bearings were modeled as approximate linear stiness and damping, using

condential values provided by the manufacturer. Centrifugal pre-stress and spin softening were

considered, as well as the gyroscopic eect. Structural damping was instead considered only in

a nal case study, which demonstrated its negligible eect. However, in this thesis the eect of

aerodynamic forces has been neglected, which must be calculated with CFD. The aerodynamic

forces cause coupling between the blades, but this is known to be signicantly weaker than the

structural coupling.

It has been demonstrated through abundance of examples that implementation of mistuning

causes the existence of coupled turbine-compressor modes that have dominant nodal diameter

> 1. This physical mechanism arises from the asymmetry of mistuned mode shapes. Due to

mistuning, blades carry residual torsional or bending momentum (associated to ND0 and ND1

respectively) in modes where ND > 1 is dominant. More in detail, residual axial ND0 components

are associated to thrust, tangential ND0 is associated to torsion and ND1, bot axial and tangential

is associated to bending of the rotor. This mechanism is demonstrated by the AR diagram with

an equivalent parameter that sums the axial and tangential ND0 and 1 components expressed

on the turbine. The trend shows the AR converging to 1 as the ND0 and ND1 components

increase. There is, however, a considerable number of outliers, especially on the side of the

turbine-dominated modes. In these outliers a high degree of coupling occurs despite very low

0 and 1 components.It has been noted that these coupled outlier modes are the superposition

of two tuned modes, one expressed mainly on the compressor and one expressed mainly on the

turbine. These modes, very close in frequency, merge due to mistuning to form a coupled mode.

Proximity in frequency alone does not explain the merging of the modes; mechanical interaction

is also necessary. In order to better understand the phenomenon of the merging of these modes,

the model is dissected into two subsystems, each subjected to modal analysis under free-interface

conditions. The theoretical Impedance Coupling technique is then adopted to mathematically

couple the two models.

It has been shown that proximity in frequency favors the coupling between turbine and

compressor modes

It was observed that the mistuning applied on the turbine model modies the mode at the

turbine-shaft interface giving rise to interaction between the two subsystems
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The sensitivity analysis with respect to bearing conditions introducing mistuning conrms the

results of the paper by Zobel et al. As in the paper, more coupled modes with low stiness values

are observed, and fewer coupled modes with high stiness values

for low values of bearing stiness the shaft behaves as a rigid rigid body, and its modes

resemble rigid-body behavior, making them more coupled, with AR values approaching 1.

for high stiness values, the modes are primarily localized to one side of the bearing, with

AR values diverging to innity.

There is a transition zone, which is expressed at average stiness values. For axial bearings, this

transition occurs at gain values between 103 and 105. For radial bearings it is expressed at lower

values, as radial bearings are already much stier.

Furthermore, mistuning was introduced in the compressor, revealing that more modes predomi-

nantly expressed on the compressor tend to approach the coupled region. Finally, the structural

damping eect was introduced in terms of damping proportional to the stiness matrix, assum-

ing all system damping eects are solely attributable to this eect. However, modal analysis

results show that the overall eect of structural damping on the dynamic response of the system

is negligible.

A future development is to introduce aerodynamic coupling eects, which would increase blade-

to-blade coupling and allow observation of how this aects the presence of coupled modes. Fur-

thermore, by computing the aerodynamic forces acting on the blades with stationary CFD anal-

ysis, it is possible to compute the forced response of the modes. Forced response analysis allows

comparison of the signals measured with BTT with the results of the FEM model. Furthermore,

this would allow us to predict the eect of mistuning on the amplitude magnication which in

turn allows prediction of the loads on the individual blades for any mistuning pattern.

A further important development, in order to improve understanding of mistuning’s impact

on impeller dynamics is the creation of a bladed assembly Reduced Order Model of moderate

complexity. In fact, the 1-DOF per sector and 2-DOF per sector models are based on too simplied

assumptions and do not allow an accurate description of a real bladed assembly. At the same

time, the models used in this thesis, consisting in the order of ≈ 106 nodes, demand signicant

computational resources and time, and do not allow the immediate extraction of conclusions in

exact mathematical terms. In section 8.1.3 a shaft model with 3D beam elements was presented,

in which the turbine and compressor are modeled as rigid masses. A moderately complex bladed

assembly ROM can be created using substructuring techniques ([26] ) to integrate with the

simplied shaft model.
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10.1 Preliminaries

Two matlab les need to be created for a new model in order to use the toolbox, for each new

model:

Node coordinate table, a table of size [NN x 4] (NN number of nodes) that contains on

the columns the sequential indexes and X,Y,Z coordinates of the model.

It contains, on the rst column the Ansys indexes of the nodes of the model.

On column 2 are the X coordinates of the nodes of the model

On column 3 are the Y coordinates of the nodes of the model

On column 4 are the Z coordinates of the nodes of the model

Eventually, for each named selection a named selection table must be created, a table

containing on each row the indeces of the nodes on the named selection. In case of multiple

instances (e.g. blade tips) many rows can be pasted next to each other in the table. Node

indexes are exported from Ansys named selection.

10.2 APDL snippet for eigenvector extraction

These few lines are needed in order to extract the results of pre-stressed modal analysis on the

working folder. Eigenvectors are imported on the folder as text les. One le is created for each

mode.

The snippet must be pasted in the input le, right after the introduction to the /POST1 envi-

ronment of the modal analysis.

/POST1

*GET,knotenanzahl,NODE,0,COUNT

*GET,modenanzahl,ACTIVE,0,SOLU,NCMSS

k=1

*DIM,Matrix,ARRAY,knotenanzahl,7

SET,,k
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*VFill,Matrix(1,1),RAMP,1,1

*VGET,Matrix(1,2),NODE,1,U,X

*VGET,Matrix(1,3),NODE,1,U,Y

*VGET,Matrix(1,4),NODE,1,U,Z

*VGET,Matrix(1,5),NODE,1,LOC,X

*VGET,Matrix(1,6),NODE,1,LOC,Y

*VGET,Matrix(1,7),NODE,1,LOC,Z

a = k

*CFOPEN,Eigenvektor_Mode%a%,txt,’/rwthfs/rz/cluster/hpcwork/rwth1562/pietro/

TC-Coupling/COUP11’,APPEND

*VWRITE,Matrix(1,1),Matrix(1,2),Matrix(1,3),Matrix(1,4),Matrix(1,5),Matrix(1,6),Matrix(1,7)

(F10.4,F10.4,F10.4,F10.4,F10.4,F10.4,F10.4)

*CFCLOS

*DO,k,1,modenanzahl,1

*DIM,Matrix,ARRAY,knotenanzahl,7

SET,,k

*VFill,Matrix(1,1),RAMP,1,1

*VGET,Matrix(1,2),NODE,1,U,X

*VGET,Matrix(1,3),NODE,1,U,Y

*VGET,Matrix(1,4),NODE,1,U,Z

*VGET,Matrix(1,5),NODE,1,LOC,X

*VGET,Matrix(1,6),NODE,1,LOC,Y

*VGET,Matrix(1,7),NODE,1,LOC,Z

a = k+1

*CFOPEN,Eigenvektor_Mode%a%,txt,’/rwthfs/rz/cluster/hpcwork/rwth1562/pietro/TC-Coupling

/COUP11’,APPEND

*VWRITE,Matrix(1,1),Matrix(1,2),Matrix(1,3),Matrix(1,4),Matrix(1,5),Matrix(1,6),Matrix(1,7)

(F10.4,F10.4,F10.4,F10.4,F10.4,F10.4,F10.4)

*CFCLOS

*ENDDO

10.3 Matlab function extractSolu

The function extractSolu extracts data from the eigenvector text les generated with the Ansys

APDL snippet and uploads them on Matlab creating a solution table, a structure containing

all the eigenvectors of the full model. It is the most time- and computationally expensive phase



10 Evaluation Toolbox Documentation 145

of the evaluation toolbox. Uploading time, for full rotor model is around 10 seconds per mode.

function extractSolu(rd, node coords,stMode, endMode )

rd: [text string] path of the folder where eigenvector text les are located

node coords: [4xN] Node coordinate table of the model

stMode: [1x1] index of the rst mode user wants to import

endMode:[1x1] index of the last mode user wants to import

function solTable = extractSolu(rd, node_coords,stMode, endMode)

for modeN = stMode:endMode

filename =[’Eigenvektor_Mode’, num2str(modeN), ’.txt’]; %file name of the .txt

file

fullpath = [rd, filename];

while exist(fullpath, ’file’) ~= 2 %checks if text file has already been

downloaded, otherwise loops pause and message

pause(1);

disp(’waiting for file’);

end

rawTable = readtable(fullpath);

modenAnzahl = endMode-stMode;

disp([’Mode ’,num2str(modeN),’ of ’,num2str(modenAnzahl),’ imported’]);

i = modeN;

start_index=1;

end_index = height(rawTable);

solTable.([’Mode’,num2str(i)]).NN =

table2array(rawTable(start_index:end_index,1));

solTable.([’Mode’,num2str(i)]).X =

table2array(rawTable(start_index:end_index,5));

solTable.([’Mode’,num2str(i)]).Y =

table2array(rawTable(start_index:end_index,6));

solTable.([’Mode’,num2str(i)]).Z =

table2array(rawTable(start_index:end_index,7));

solTable.([’Mode’,num2str(i)]).ux =

table2array(rawTable(start_index:end_index,2));

solTable.([’Mode’,num2str(i)]).uy =

table2array(rawTable(start_index:end_index,3));

solTable.([’Mode’,num2str(i)]).uz =

table2array(rawTable(start_index:end_index,4));

solTable.([’Mode’,num2str(i)]).GesamVerf =

sqrt((solTable.([’Mode’,num2str(i)]).uz).^2 +

(solTable.([’Mode’,num2str(i)]).uy).^2 +(solTable.([’Mode’,num2str(i)]).ux).^2);
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disp([’Solution table for Mode ’,num2str(modeN),’ of ’,num2str(modenAnzahl),’

created’]); %display message for progress

end

end

The Solution table created with this function has the hierarchic form:

Solution table

– Mode N

NN [NNx1] List of Ansys node numbers

X [NNx1] List of X node coordinates

Y [NNx1] List of Y node coordinates

Z [NNx1] List of Z node coordinates

ux [NNx1] List of x displacement component of nodes

uy [NNx1] List of y displacement component of nodes

uz [NNx1] List of z displacement component of nodes

10.4 Matlab function reduceSol2NS

This function reduces the full solution table to certain nodes expressed in a vector of the named

selection.

function redsolTable = reduceSol2NS(solTable, NamedSelNN, nodeCoords,stMode, endMode)

solTable: [structure] solution table created with extractSolu

NamedSelNN: [NS x Z] Named selection array containing the Ansys node indexes of

nodes of interest, NS node of interest, Z instances (blades)

stMode: [1x1] index of the rst mode user wants to import

endMode:[1x1] index of the last mode user wants to import

nodeCoords: [4xN] Node coordinate table of the model

function redsolTable = reduceSol2NS(solTable, NamedSelNN, nodeCoords,stMode,

endMode)

allNNs = nodeCoords(:,1); %node indexes (Ansys indexes)

Z = width(NamedSelNN); %number of items
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%loop retrieving solutions from the full solution table

for i=stMode:endMode

for bladeN = 1:Z

[~, indices] = ismember(NamedSelNN(:,bladeN), allNNs);

redsolTable.([’Mode’,num2str(i)]).([’Blade’,num2str(bladeN)]).NN =

NamedSelNN(:,bladeN);

redsolTable.([’Mode’,num2str(i)]).([’Blade’,num2str(bladeN)]).ux =

solTable.([’Mode’,num2str(i)]).ux(indices);

redsolTable.([’Mode’,num2str(i)]).([’Blade’,num2str(bladeN)]).uy =

solTable.([’Mode’,num2str(i)]).uy(indices);

redsolTable.([’Mode’,num2str(i)]).([’Blade’,num2str(bladeN)]).uz =

solTable.([’Mode’,num2str(i)]).uz(indices);

redsolTable.([’Mode’,num2str(i)]).([’Blade’,num2str(bladeN)]).X =

solTable.([’Mode’,num2str(i)]).X(indices);

redsolTable.([’Mode’,num2str(i)]).([’Blade’,num2str(bladeN)]).Y =

solTable.([’Mode’,num2str(i)]).Y(indices);

redsolTable.([’Mode’,num2str(i)]).([’Blade’,num2str(bladeN)]).Z =

solTable.([’Mode’,num2str(i)]).Z(indices);

redsolTable.([’Mode’,num2str(i)]).([’Blade’,num2str(bladeN)]).GesamVerf =

solTable.([’Mode’,num2str(i)]).GesamVerf(indices);

end

disp([’Mode ’, num2str(i), ’ done’]);

end

%for j=1:Z

% hold on;

% X =redsolTable.([’Mode’,num2str(stMode)]).([’Blade’,num2str(j)]).X;

% Y = redsolTable.([’Mode’,num2str(stMode)]).([’Blade’,num2str(j)]).Y;

% Z = redsolTable.([’Mode’,num2str(stMode)]).([’Blade’,num2str(j)]).Z;

%scatter3(X,Y,Z); % activate plot for manual check on the named selection

points

%end

disp(’Reduced solution table created’);

end

Structure of the reduced solution table is:

Reduced solution table

– Mode N

Blade j

NN [NNx1] List of Ansys node numbers
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X [NNx1] List of X node coordinates

Y [NNx1] List of Y node coordinates

Z [NNx1] List of Z node coordinates

ux [NNx1] List of x displacement component of nodes

uy [NNx1] List of y displacement component of nodes

uz [NNx1] List of z displacement component of nodes

10.5 Matlab function AmpRat

This function calculates the Amplitude ratio between the maximum value of total deformation

of the mode shapes found on two reduced tables. It gives an error if the two reduced solution

tables contain a dierent number of modes.

If for a mode the denominator (maximum total displacement on reduced sol. table B) is zero, to

be able to compute a nite value the denominator is added to a value of 10−17

function [AR, MaxA, MaxB] = AmpRat(redSolA, redSolB, stMode, endMode )

AR: [NM x 1] Vector containing Amplitude ratio result

MaxA, MaxB: [NM x 1] Named selection array Maximum values of the reduced solution

tables A and B respectively, used to compute the amplitude ratio

redSolA, redSolB: [structure] reduced solution table from function reduceSol2NS

stMode: [1x1] index of the rst mode user wants to process

endMode:[1x1] index of the last mode user wants to process

function [AR, MaxA, MaxB] = AmpRat(redSolA, redSolB, stMode, endMode)

%check if the two solTables have the same number of elements

if (length(fieldnames(redSolA)) - length(fieldnames(redSolA)))^2>0

disp(’Error: The two structure do not contain the same number of fields’);

end

Za = length(fieldnames(redSolA.([’Mode’,num2str(stMode)]))); %return number of

blades A

Zb = length(fieldnames(redSolB.([’Mode’,num2str(stMode)]))); % return number

of blades B

for mode = stMode:endMode

ListA = []; %predefine lists
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ListB = [];

for blade = 1:Za %scan all blades of redSolA and list deformations

ListA = [ListA;

redSolA.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).GesamVerf]; %list the

total deformations of the mode

end

for blade = 1:Zb %scan all blades of redSolB and list deformations

ListB = [ListB;

redSolB.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).GesamVerf]; %list the

total deformations of the mode

end

MaxA(mode-stMode+1) = max(ListA);

MaxB(mode-stMode+1) = max(ListB);

AR = MaxA./(MaxB+1e-17); % +1e-17 in order to give finite result

end

end

Two arrays: ListA and ListB are created to list the total deformation components on all the

blades. Then out of these lists the maximum value is computed for each mode. Endly, the

Amplitude ratio is computed.

10.6 Matlab function four decomp

Executes the discrete Fourier transform over the blades for a reduced solution table. Output

is a structure with the Fourier output in dierent forms. There are two options for executing

the Fourier transform: over tangential or axial components. DFT is executed in parallel for all

points on the blades’ tips, for this reason it is important that the node on the blade tips have

corresponding coordinates.

function four out = four decomp(redsolTable, stMode, endMode, specifier)

redsolTable: [structure] Reduced solution table from the

stMode: [1x1] index of the rst mode user wants to process

endMode:[1x1] index of the last mode user wants to process

specier: [text string] ’t’ for tangential component (default) , ’a’ for axial component

function four_out = four_decomp(redsolTable, stMode, endMode, specifier)
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%specifier = ’a’, execute with the axial component of deformation

%specifier = ’t’, execute with tangential component of deformation

redSol = redsolTable;

if strcmp(specifier,’a’) ==1

c =1;

else

c =0;

end

% 1. Sort the coordinates and displacement components in ascending X(axial

coordinate) order

Z =length(fieldnames(redSol.([’Mode’,num2str(stMode)]))); % retrieve number of

blades

for mode = stMode: endMode

for blade = 1:Z

[Xcoord_sorted,sortIdx] =

sort(redSol.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).X);

redSolsort.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).X =

Xcoord_sorted;

redSolsort.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).Z =

redSol.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).Z(sortIdx);

redSolsort.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).Y =

redSol.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).Y(sortIdx);

redSolsort.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).ux

=redSol.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).ux(sortIdx);

redSolsort.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).uy

=redSol.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).uy(sortIdx);

redSolsort.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).uz

=redSol.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).uz(sortIdx);

end

end

%Check: x coordinates must coincide between blades:

for blade = 1:Z

axcoords(:,blade) =

redSol.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).X;

end

if norm(diff(axcoords’))> 5e-4

disp(’Error: axial coordinates of the different features do not correspond.

Fourier decomposition can not be performed correctly with this geometry.’);

end
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First, in order to compare dierent blades, it is needed to sort nodes by ascending axial coordinate.

After sorting, it is checked whether X components of the nodes on dierent blades correspond.

Successively, it is necessary to create an array suitable or the ’t’ function.

for mode = stMode:endMode

for blade = 1:Z

x = redSolsort.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).X;

y = redSolsort.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).Y;

z = redSolsort.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).Z;

ux = redSolsort.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).ux;

uy = redSolsort.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).uy;

uz = redSolsort.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).uz;

hold on;

%scatter3(x,y,z,’MarkerEdgeColor’,’k’);

hold on;

%d = 0.002;

%scatter3(x+ d*ux,y + d.*uy,z + d.*uz,’MarkerEdgeColor’,’b’);

%orient(:,blade)= imag(((y+uy)+1i.*(z+uz))./(y+1i.*z));

%table.([’Mode’,num2str(mode)])(blade,:) = sqrt(c.*ux.^2 + uy.^2

+uz.^2).*sign(orient(:,blade));

table.([’Mode’,num2str(mode)])(blade,:) = imag((y + uy + 1i.*(z + uz))/(y +

1i*z))*sqrt(y.^2 + z.^2).*(c-1) + c*ux;

end

end

Lastly, the FFT is executed and outputs are extracted:

for mode = stMode:endMode

four_out.([’Mode’,num2str(mode)]).cmplxVals =

fft(table.([’Mode’,num2str(mode)]));

%sort in the correct order negative and positive ND

if mod(Z, 2) ==0 %if number of blades is even

cut = Z/2+1;

else

cut = Z/2+0.5; %if number of blades is odd

end

four_out.([’Mode’,num2str(mode)]).cmplxVals =

[four_out.([’Mode’,num2str(mode)]).cmplxVals(cut+1:end,:);four_out.([’Mode’,num2str(mode)]).cmp

four_out.([’Mode’,num2str(mode)]).Mag =

abs(four_out.([’Mode’,num2str(mode)]).cmplxVals);

four_out.([’Mode’,num2str(mode)]).Angle =

angle(four_out.([’Mode’,num2str(mode)]).cmplxVals);
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[~,four_out.([’Mode’,num2str(mode)]).DominantND] =

max(sum(four_out.([’Mode’,num2str(mode)]).Mag’)); %find for each mode the dominant

nodal diameter as where the absolute value of the fft is located

if mod(Z, 2) ==0 %if number of blades is even

four_out.([’Mode’,num2str(mode)]).DominantND =

four_out.([’Mode’,num2str(mode)]).DominantND- cut+1;

else

four_out.([’Mode’,num2str(mode)]).DominantND =

four_out.([’Mode’,num2str(mode)]).DominantND- cut;

end

%normalize the absolute value table

for j = 1:length(ux)

four_out.([’Mode’,num2str(mode)]).MagNorm(:,j) =

four_out.([’Mode’,num2str(mode)]).Mag(:,j)./(max(four_out.([’Mode’,num2str(mode)]).Mag(:,j)));

end

%average result on the nodes of the same blade:

four_out.([’Mode’,num2str(mode)]).DFT =

mean(four_out.([’Mode’,num2str(mode)]).Mag’);

four_out.([’Mode’,num2str(mode)]).DFTnorm =

mean(four_out.([’Mode’,num2str(mode)]).MagNorm’);

four_out.([’Mode’,num2str(mode)]).Variation =

norm(diff(four_out.([’Mode’,num2str(mode)]).MagNorm’));

four_out.([’Mode’,num2str(mode)]).bladePotrait =

table.([’Mode’,num2str(mode)])’;

end

end

Output of the structure is:

Fourier output

– Mode N

cmplxVals: [ZxNS], Z is the number of blades, NS the number of points on the

blade, it represents the complex output of the t function

Mag: [ZxNS], contains the absolute values of the Fourier transform along the blades
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Angle: [ZxNS], contains the phase of the Fourier transform along the blades

MagNorm: [ZxNS], contains the absolute values of the Fourier transform along the

blades

DFT: [1xZ] is the mean value, over the dierent nodes, of the variable Mag. It

represents the spectrum of nodal diameter (considering both positive and negative

nodal diameters)

DominantND: [1x1], is the number of nodal diameter that has the highest value on

the DFT

DFTnorm: [1xZ] Variable DFT but normalized for the maximum component to be

equal to 1

10.7 Matlab function shaftAnalysis

Given one full solution table calculates the main shaft properties such as the bending, rotation

angle due to torsion, normal deformation along the axial coordinate.

function shaftOutput = shaftAnalysis(solTable, modeN, p )

solTable: [structure] Full solution table of the full rotor model

modeN: [1x1] index of the mode user wants to analyse

p:[1x1] number for specifying whether you want graphs as an output. p = 1 for making

graphs, p=0 for only numeric output

specier: [text string] ’t’ for tangential component (default) , ’a’ for axial component

10.8 Matlab script fourierPoint

This function, given the coordinates of a generic point on the model, generates a circular ring of

N points around the rotor axis, then performs the Discrete Fourier Transform of the solution for

that point (either for axial or tangential component).

X = node_coords(:,2);

Y = node_coords(:,3);

Z = node_coords(:,4);

scatter3(X,Y,Z);

point1 = [-0.0038,0.0144 ,0.0038]; %choose a point
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N =12;

theta = 0:(2*pi/N):(2*pi*(N-1)/N); % angles between the points

RotMat = @(th) [1 0 0; 0 cos(th) -sin(th); 0 sin(th) cos(th)]; %define rotation matrix

to find the position of the other points

for i = 1:length(theta)

points(:,i) = RotMat(theta(i))*point1’; %calculate tyhe position of all the points

end

indexes = [];

err = [];

for i = 1:N %loop for finding the point with the minimal error

err = ([X,Y,Z] - ones(height(X),1)*points(:,i)’);

err = err(:,1).^2 +err(:,2).^2 + err(:,3).^2;

[minerr(i), indexes(i)] = min(err);

hold on;

scatter3(X(indexes(i)),Y(indexes(i)),Z(indexes(i)));

end

ux = solTable_tun.Mode201.ux;

uy = solTable_tun.Mode201.uy;

uz = solTable_tun.Mode201.uz;

y = solTable_tun.Mode201.Y;

z = solTable_tun.Mode201.Z;

%transform deformations to polar (axial, tangential, radial)

u_ax = ux; %axial deformation

u_r = imag((y+ uy + 1i.*(z+uz))./(y + 1i.*z)).*sqrt(z.^2 + y.^2); % radial deformation

u_tang = real((y+ uy + 1i.*(z+uz))./(y + 1i.*z)).*sqrt(z.^2 + y.^2); % tangential

deformation

figure;

fft1 = [];

fft1 = fft(u_tang(indexes)); %choose to perform the fft on the tangential deflections

DFT=fft1;

if mod(N, 2) ==0 %case even

pivot = ceil(N/2);

DFT =fft1(1:7);

DFT(2:6) = DFT(2:6) + flip(fft1(8:end));

else

pivot = ceil((N+1)/2);

DFT =[DFT(pivot), DFT(1:pivot+1)+ flip(DFT(1:pivot-1))];

end
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10.9 Matlab function Klauke

This function computes the Klauke denitions of Ratio of the DFT components as well as Mode

ll factor, Localization grade for one mode given a reduces solution table.

function [zita, ModeFKeit, xi, LokaGra] = Klauke(FourOut, ModeN )

FourOut: [structure] Fourier output structure for one reduced solution table, it is the output

of the function four decomp

ModeN: [1x1] number of the mode user wants to calculate

function [ModeFkeit, zita, csi, LokaGra] = Klauke(fourOut, numMode)

DFT = fourOut.([’Mode’,num2str(numMode)]).DFT;

N = length(DFT);

if mod(length(DFT), 2) ==0 %case even

pivot = ceil(N/2);

DFT =[DFT(pivot), DFT(pivot+1:end-1)+ flip(DFT(1:pivot-1)), DFT(end)];

else

pivot = ceil(N+1/2);

DFT =[DFT(pivot), DFT(pivot+1:end)+ flip(DFT(1:pivot-1))];

end

zita = sum(DFT)/max(DFT);

if mod(N, 2) ==0 %case even

CSM_max = N/2;

else

CSM_max = N/2+0.5;

end

ModeFkeit = (zita-1)/CSM_max;

mean(fourOut.([’Mode’,num2str(numMode)]).bladePotrait’);

[M, Mi] = max(abs(ans));

tipU = fourOut.([’Mode’,num2str(numMode)]).bladePotrait(Mi,:);

NDdominant = abs(fourOut.([’Mode’,num2str(numMode)]).DominantND);

if floor(N/2) == N/2

NDmax = N/2;

else

NDmax = (N-1)/2;

end

RMS = rms(tipU);

M = max(abs(tipU));
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if abs(NDdominant) == 0 || abs(NDdominant) == NDmax

beta = 1;

else

beta = sqrt(2);

end

csi = M/RMS;

LokaGra = abs((csi - beta)/(sqrt(N) - beta));

end

10.10 Matlab function mactable

This function calculates the Modal assurance criterion between the modes contained in two

reduced solution tables, creating a MAC table.

function matrix = mactable(redsolA, redsolB, modeIdxs )

redSolA: [structure] rst reduced solution table for the comparison

redSolB: [structure] second reduced solution table for the comparison

modeIdxs: [Xx1] vector of arbitrary length X, containing the indexes of the modes to include

in the comparison

function matrix = mactable(redsolA, redsolB, modeIdxs)

%extract the reference modes from one blade in the tuned model

%modIdxs is the vector containing the mode numbers of all the modes you

%want to compare

psi_A = [];

psi_B = [];

Z = length(fieldnames(redsolA.([’Mode’,num2str(modeIdxs(1))]))); %number of

blades

for j = 1:length(modeIdxs) %for each mode specified in the list

Eigvect_A = [];

moden = modeIdxs(j);

for bladen = 1:Z

gesamVerf =

redsolA.([’Mode’,num2str(moden)]).([’Blade’,num2str(bladen)]).GesamVerf;

Eigvect_A = [Eigvect_A; gesamVerf]; %list the total nodal deformationsin an

arra
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end

psi_A = [psi_A, Eigvect_A]; %create an array with total deformations on each

colum for each mode

%extract solution for the solution table B

Eigvect_B = [];

for bladen = 1:Z

gesamVerf =

redsolB.([’Mode’,num2str(j)]).([’Blade’,num2str(bladen)]).GesamVerf;

Eigvect_B = [Eigvect_B; gesamVerf];

end

psi_B = [psi_B, Eigvect_B]; %create an array with total deformations on each

colum for each mode

end

%unpack psi_b in the blades components

length_ns = height(psi_A)/Z;

for bladen = 1:Z

Psi_B.([’Blade’,num2str(bladen)]) =

psi_B(((bladen-1)*length_ns+1):((bladen-1)*length_ns+length_ns),:);

end

%vector of the possible orders for correct orientation

orders(:,1) =1:1:Z;

for i = 2:Z

orders(:,i) = circshift(orders(:,i-1),1);

end

for i = 1:Z %recompose the arrays B in all the possible orders

Psi_B.([’ord’,num2str(i)]) = [];

for j = 1:Z

Psi_B.([’ord’,num2str(i)]) = [Psi_B.([’ord’,num2str(i)]);

Psi_B.([’Blade’,num2str(orders(j,i))])];

end % Close the inner loop

end % Close the outer loop

%i : index of the A mode number

%j : index of the B mode number

for i = 1:length(modeIdxs)

Eigenvect_A = psi_A(:,i);

for j = 1:length(modeIdxs)

mac = zeros(Z,1);

MAC = 0;

for ord = 1:Z %loop on all the orders to find the max MAC value



158 10 Evaluation Toolbox Documentation

Eigenvect_B = Psi_B.([’ord’,num2str(ord)])(:,j);

mac(ord) = calc_MAC(Eigenvect_B, Eigenvect_A);

end

MAC = max(mac);

matrix(i,j) = MAC;

end

end

figure;

pcolor(matrix);

title(’MAC matrix’);

ylabel(’Tuned mode index’);

xlabel(’Mistuned mode index’);

end

Output matrix is a [X x X] symmetric matrix, with MAC values comparing the reduced solution

table A and reduced solution table B.

10.11 Matlab function calc MAC

This function calculates the MAC of two vectors of the same size. It normalizes mode shapes and

then it computes the scalar product.

function MAC = calc MAC(vector1,vector2 )

vector1: [Fx1] rst array

vector2: [Fx1] second array

MAC: [1x1] MAC value

function mac_value = calc_MAC(vector1, vector2)

% Check if the input vectors have the same length

if length(vector1) ~= length(vector2)

error(’Input vectors must have the same length’);

end

% Compute the MAC value

numerator = abs(vector1’ * vector2)^2;

denominator = (vector1’ * vector1) * (vector2’ * vector2);

mac_value = numerator / (denominator+1e-18);

end
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10.12 Matlab function normalizeModeShapes

This function normalises the mode shapes evaluated on turbine tips. It takes as input the reduced

solution tables evaluated on the turbine, compressor MB, compressor SB tips. The mode shapes

are normalized such that the maximum defrection =1.

function [TurbN, compMBN, compSBN] = normalizeModeShapes(Turb, compMB, compSB, stMode,

endMode)

TurbN normalised turbine shape reduced solution table

compMBN normalised compressor main bladereduced solution table

compSBN normalised compressor splitter blade shape reduced solution table

function [TurbN, compMBN, compSBN] = normalizeModeShapes(Turb, compMB, compSB,

stMode, endMode)

[~,MaxTurb, MaxMB] = AmpRat(Turb, compMB,stMode,endMode);

[~,MaxTurb, MaxSB] = AmpRat(Turb, compSB,stMode,endMode);

for mode = stMode:endMode

MaxModel(mode) = max([MaxTurb(mode), MaxMB(mode), MaxSB(mode)]);

for blade = 1:length(fieldnames(Turb.([’Mode’,num2str(mode)])))

TurbN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).GesamVerf =

Turb.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).GesamVerf./MaxModel(mode);

TurbN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).ux =

Turb.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).ux./MaxModel(mode);

TurbN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).uy =

Turb.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).uy./MaxModel(mode);

TurbN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).uz =

Turb.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).uz./MaxModel(mode);

TurbN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).X =

Turb.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).X;

TurbN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).Y =

Turb.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).Y;

TurbN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).Z =

Turb.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).Z;

end

for blade = 1:length(fieldnames(compMB.([’Mode’,num2str(mode)])))

compMBN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).GesamVerf =

compMB.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).GesamVerf./MaxModel(mode);

compMBN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).ux =

compMB.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).ux./MaxModel(mode);
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compMBN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).uy =

compMB.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).uy./MaxModel(mode);

compMBN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).uz =

compMB.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).uz./MaxModel(mode);

compMBN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).X =

compMB.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).X;

compMBN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).Y =

compMB.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).Y;

compMBN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).Z =

compMB.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).Z;

end

for blade = 1:length(fieldnames(compSB.([’Mode’,num2str(mode)])))

compSBN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).GesamVerf =

compSB.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).GesamVerf./MaxModel(mode);

compSBN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).ux =

compSB.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).ux./MaxModel(mode);

compSBN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).uy =

compSB.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).uy./MaxModel(mode);

compSBN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).uz =

compSB.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).uz./MaxModel(mode);

compSBN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).X =

compSB.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).X;

compSBN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).Y =

compSB.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).Y;

compSBN.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).Z =

compSB.([’Mode’,num2str(mode)]).([’Blade’,num2str(blade)]).Z;

end

end

end
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[16] M. Klaus. Strömungsinduzierte Schaufelschwingungen in Radialturbinen mit Beschaufeltem
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