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Abstract 
The objective of this thesis is to study the nonlinear effects that occur during vibration testing 
of large, deployable space antennas. Since traditional linear analysis methods are insufficient 
to describe these complex behaviors, the work focuses on quantifying how the structure's 
dynamic parameters, such as resonant frequency and damping, change as a function of 
vibration amplitude. 

To achieve this, two advanced system identification techniques were used and compared: 

− CONCERTO method 
− Modified Dobson method 

These methods were first validated on numerical models with known nonlinearities and on 
simpler experimental structures to verify their reliability. 

Subsequently, the techniques were applied to experimental data from a qualification 
campaign conducted on LEOB (Large Deployable Reflector for Earth Observation). 
By analyzing the responses to different levels of sinusoidal excitation, it was possible to 
extract the amplitude-dependent modal parameters 

The ultimate goal was to use this data to more accurately predict the frequency and amplitude 
shifts in the antenna's response. This predictive capability is critical for optimizing vibration 
tests, particularly "notching" strategies (the reduction of input at critical frequencies), 
ensuring the structure is tested safely without being damaged. 
The predictive capability showed promising results, though with some limitations. 
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1 Spaceborne Deployable Reflector Antennas 

1.1 Introduction 
To explore space, launching satellites with antennas is the first step [1]. 
Consequently, spaceborne antennas have become essential components in a wide range of 
satellite missions, for example: 

− Communication 
− Reconnaissance 
− Navigation 
− Remote sensing 
− Deep-space exploration 
− Radio astronomy 

They act as the “eyes” and “ears” of satellite systems, playing a fundamental role in the 
successful execution of satellite operations. 
To meet the demanding conditions of space applications, these antennas are generally 
required to possess four main characteristics: 

− High precision to operate effectively at high frequencies 
− Large diameter to achieve high signal gain 
− Light weight 
− High stowage ratio 

Depending on their specific function and the current state of technological development in 
the aerospace industry, deployable antennas are typically categorized into three types: 

− Reflector antennas 
− Array antennas 
− Microelectromechanical antennas 

1.2 Status of spaceborne deployable reflector antennas 
Reflector antennas are the most commonly employed type across a wide range of satellite 
applications. Based on the structural configuration of the reflector, these antennas can be 
further classified into four main categories: 

− Rigid reflector antennas 
− Inflatable reflector antennas 
− Mesh reflector antennas 
− Membrane reflector antennas 

1.2.1 Rigid reflector antenna 
This antenna type is distinguished by a reflective surface composed of a central hub and 
several rigid, curved panels. 
These rigid deployable reflectors are typically fabricated from metal plates or carbon fiber 
reinforced plastic (CFRP) coated with a metallic reflective layer. 
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One of the primary advantages of this design lies in the ability to manufacture the panels 
into an accurate parabolic shape, resulting in a highly precise reflector surface. 
This high surface accuracy after deployment makes it particularly suitable for applications 
in the field of microwave remote sensing, such as microwave radiometers and 
scatterometers. 

Nonetheless, this antenna type presents certain limitations, including a heavy structure, high 
costs and a large stowed volume. 
As a result, it is now seldom used for large-diameter satellite antennas. 

1.2.2 Inflatable reflector antenna 
Inflatable deployable antennas offer key advantages such as a high furled ratio and a large 
diameter. However, they also present notable drawbacks. The accuracy of the reflector 
surface is limited because a compressor, which adds to the system’s overall areal density, 
needs to be carried into space. These antennas are typically constructed from flexible 
materials, such as Kevlar or Mylar membranes treated with chemical resin. 

The deployment mechanism of inflatable antennas is similar to that of inflatable membranes 
employed in civil buildings. The structure is expanded into its intended shape and position 
through internal pressurization. However, unlike civilian applications, once the antenna is 
fully deployed, exposure to sunlight triggers a process that hardens the membrane material. 
This solidification allows the antenna to retain its deployed shape, even if internal pressure 
decreases due to gas leaks, ensuring the reflector surface maintains its accuracy over time.   

Figure 1.1: Petal type reflector antenna 

Figure 1.2: Deployment process of inflatable antenna 
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1.2.3 Mesh reflector antenna 
Currently, mesh deployable antennas represent the primary choice for in-orbit large-scale 
deployable antennas. They are a major research focus of the international aerospace industry, 
encompassing theoretical studies, methodological development, and experimental 
validation. The defining feature of this antenna type is its reflector surface, which is made 
of a flexible wire mesh, classifying it as a flexible-force structure. 

The position of the tensioning points and the level of tension applied to the supporting net 
play a crucial role in determining the mesh reflector's ability to conform to the desired shape, 
as well as its surface accuracy, smoothness and deployment reliability. 
Mesh reflectors are extremely lightweight and easy to fold, they have a high furled rate and 
can achieve large apertures with relative ease. They are also well-suited for integration with 
different types of deployable support structures. 
However, they do come with drawbacks, notably their structural complexity and lower 
performance in terms of precision, reliability, and repeatability of the reflector surface. 
Depending on the type of support structure used for the mesh and the deployment 
mechanism, mesh deployable antennas can take a various structural configuration. 
1.2.3.1 Loop antenna 

The loop antenna is a deployable structure that combines an unfolded truss system with a 
supporting cable-net. The truss can be arranged along the perimeter, at the center, or extend 
radially from the hub. This category of antennas includes several variants, such as the 
peripheral truss type, Harris ring and EGS loop antenna. 

1.2.3.2 Radial rib antenna 

The radial rib antenna features an umbrella-like configuration, consisting of multiple 
parabolic carbon fiber tubular ribs extending from a central hub. A reflective mesh surface 
is stretched between the ribs, forming the antenna’s parabolic reflector.  

Figure 1.3: Loop mesh reflector antenna 

Figure 1.4: Radial rib antenna 



14 

1.2.3.3 Frame antenna 

This antenna employs a modular design, typically composed of multiple tetrahedral or 
hexagonal prism-shaped modules. The overall diameter can be adjusted by varying the size 
and number of these modules, allowing for flexible adaptation to different mission 
requirements. 

1.2.3.4 Wrapping rib antenna 

This antenna is another variation of the umbrella-type design, primarily composed of a 
central hub, parabolic radial ribs with a lenticular cross-section and a reflective mesh surface 
stretched across the structure. 

1.2.4 Electrostatic forming membrane reflector antenna 

The membrane reflector is a recently developed antenna type. 
It utilizes a polyimide membrane coated with a metallic reflective layer to reflect 
electromagnetic waves. To achieve and maintain the necessary surface precision, this design 
relies on a combination of skirt cable tension, internal gas pressure and electrostatic forces. 

The membrane reflector antenna offers several advantages over traditional reflector designs, 
including high surface precision, ultra-lightweight construction, small furled volume and 
ease of folding and deployment. 
It has attracted significant interest due to its low areal density and the capability to actively 
control the reflector shape by adjusting the electrostatic forces. 
  

Figure 1.5: ETS-VIII frame antenna 

Figure 1.6: ATS-6 wrapping rib antenna 
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To provide a clear overview of the methods and technologies discussed above, the 
application ranges of the four main types of reflector antennas (rigid, membrane, mesh and 
inflatable) are illustrated in the Figure 1.8. 

It can be seen from Figure 1.8 that the existing reflector antennas are mainly developed 
toward two goals: a larger scale and a higher precision.  

Figure 1.7: Electrostatic forming deployable membrane antenna 

Figure 1.8: Application ranges for four types of reflector antennas 
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2 Loads analysis process 

2.1 Introduction 
The analysis of structural loads plays a crucial role in spacecraft development, aiming to 
ensure that the vehicle can safely endure all mission phases, from launch through in-orbit 
operation. This process involves identifying all relevant mechanical environments, both 
deterministic and random, and translating them into design loads. 

Because structural loads are influenced by both the external environments and the evolving 
design of the spacecraft and launch vehicle, their estimation follows an iterative logic known 
as the “loads cycle” which involves: 

− Building mathematical models of the structure 
− Defining forcing functions and load factors representing critical environments 
− Calculating design loads and displacements throughout all phases 
− Assessing results to identify potential design changes or risks 
− Updating the design or choosing to accept the associated risks 

Spacecraft programs usually perform several load cycles, for: preliminary design, final 
design and final verification (which uses test correlated models). 
The main steps of a launch vehicle–payload load cycle analysis are shown in Figure 2.1 

Since the prediction of dynamic environments and test criteria are influenced by modeling, 
which always carries a certain degree of inaccuracy, uncertainty factors are applied to the 
calculated loads. 

This process is typically conducted across multiple levels of assembly: each hardware level 
is usually tested separately to ensure proper performance when integrated. 
However, the types of dynamic excitations of concern may vary between assembly levels 
and must be carefully evaluated for each stage. The application of safety factors follows a 
recursive logic, starting at the system level and cascading down. 

Figure 2.1: The Load Cycle Analysis Process 
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2.2 Mechanical loads for design and verification 

2.2.1 Spacecraft flight environments and dynamic loads 
Launch is composed of multiple events, each involving several independent load sources 
that act on both the launch vehicle and the payload. The flight environments responsible for 
generating static and dynamic loads on spaceflight hardware are typically classified as 
follows: 

− Static acceleration from constant or slowly varying external forces 
− Low-frequency dynamic response (0–100 Hz, up to 150 Hz for small launchers) due 

to transient flight events affecting the launch vehicle/payload system 
− High-frequency random vibration environment (20 Hz–2000 Hz) transmitted from 

the launch vehicle to the payload at interfaces between them 
− High-frequency acoustic pressure environment (20 Hz–8000 Hz) inside the payload 

compartment 
− Shock events with energy usually concentrated above 500 Hz and measured in the 

range of 100 Hz to 10 kHz 

These loads can occur in combination at various stages throughout the flight. 
Once in orbit, the spacecraft’s structural response to the micro-vibration environment can 
play a crucial role in verifying mission performance. 

2.2.2 Vibration environments and frequency range 
One of the main challenges in spacecraft structural analysis is that loads and responses occur 
across a wide frequency range, from low to high frequencies: 

− Low frequency includes static conditions up to the first modes. 
− High frequency refers to regions with high modal density and modal overlap. 

This distinction is not absolute and depends on the characteristics of the structure. 
For small, stiff components, low frequency may reach hundreds of Hz, while for large 
satellites, frequencies above 100 Hz may be considered high. 

Currently, no single structural analysis method can fully capture the behavior across the 
entire frequency range; Finite Element Models (FEM) predict structural behavior well at low 
frequencies, but accuracy decreases as frequency increases due to: 

− Computational reasons: mesh resolution is often too coarse to capture short-
wavelength deformations at high frequencies; Additionally, modal truncation 
introduces further errors 

− Physical reasons: the response at high frequencies becomes highly sensitive to 
structural details, some of which are unavoidable manufacturing and assembly 
tolerances. 
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2.2.3 Introduction to analysis and test types 
Mechanical environments, such as pressure, vibration, shock and thermal gradients, impose 
specific design requirements on many structural components, requiring extensive pre-flight 
testing to ensure hardware survivability. Qualification test environments are typically more 
severe than any flight condition and may drive the design. 

The process starts by defining the maximum expected environments during launch and on-
orbit operation and these are then cascaded from system to subsystem and component level 
to set design and test requirements. 

While computational methods help predict dynamic behavior, environmental testing remains 
essential, especially for small structures where high-frequency effects are harder to model. 
The objectives of the system level testing are: 

− Verify mechanical and electrical connections 
− Measure structural responses and ensure that the test levels were adequate 
− Ensure protection against unexpected phenomena 
− Determine the dynamic contributions to the design inertia loads 

Although often grouped with environmental tests, the sine vibration test is technically 
distinct. Its primary purpose is not to simulate a flight environment directly, but rather to 
verify structural strength by monitoring responses to controlled inputs, specifically to 
prevent overloads. 

A final point to note is that dynamic environments affecting space vehicle hardware are 
typically multi-axial. While acoustic tests replicate this naturally, shock and vibration tests 
are often performed sequentially along single axes, which can be inaccurate. 

2.2.4 Sine vibration test 
Sine-wave excitations, such as swept-sine vibration tests, are commonly used for the 
qualification of spacecraft hardware, especially to simulate low-frequency transients. The 
main goal is to verify the strength of secondary structures and primary structures (if needed). 
However, this can lead to simultaneous undertest and overtest conditions. 

Undertest refers to a situation where the test is not severe enough, potentially 
underestimating the actual damage the hardware might experience during real operating 
conditions. This typically happens because only one resonance is excited at a time, unlike 
real transients that excite multiple modes simultaneously. 
Overtest, on the other hand, occurs when the test is too severe, potentially leading to an 
overestimation of the damage. This is usually caused by an excessive number of stress cycles 
applied to the hardware during the swept-sine test, a condition that can be mitigated by 
increasing the sweep rate. 

Another source of overtesting is the difference in boundary conditions between test and 
flight. During a vibration test the item under investigation responds according to its 
“clamped” natural modes, rather than in the coupled modes that occur during actual flight 
conditions, since in that case the spacecraft is mounted on a flexible structure. 
At certain frequencies, corresponding to the resonance frequencies of the test article when it 
is mounted on a rigid support (such as a shaker table), the acceleration at the interface 
between the mounting structure and the test article drops. 
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This phenomenon is known as the vibration absorber effect and leads to exaggerated 
amplification of input forces at the resonance frequencies of the test article. 

To prevent this, the sine input spectrum must be notched at resonance frequencies. 
However, the notching criteria must not compromise the spacecraft flightworthiness. 
There are two types of notching: 

− Primary notching: limits forces and moments at the launch vehicle/spacecraft 
interface to values matching the maximum axial and lateral quasi-static (QS) levels 
from the launcher manual. 

− Secondary notching: limits the acceleration or loads at specific spacecraft locations, 
typically based on the qualification thresholds of subsystems or units. 

2.2.5 Other types of tests 
The preliminary structural design of a spacecraft is usually based on load factors provided 
in the launch vehicle user’s manual: the Quasi-Static Loads, which represent the worst-case 
combinations of static and dynamic accelerations that may occur throughout the mission. 
Static tests are used to verify the strength of the spacecraft’s primary structural elements. 

Some load environments are considered random due to unpredictable forces, such as engine 
oscillations, buffeting, or sound pressure. 
Random vibration tests check whether hardware can withstand the broad-band high 
frequency vibration environment. These tests are performed using shakers and are governed 
by a control system, which uses feedback from accelerometers to ensure a realistic and non-
damaging response. 

Acoustic pressure fluctuations under the fairing are caused by engine operation and 
aerodynamic effects during flight. Structures vibrate randomly in response to acoustics. 
Lightweight and large-area structures are most affected, while compact and heavy structures 
are less directly excited but can still vibrate due to coupling with other parts. 
These vibrations especially affect electrical and electronic components. 
Acoustic testing of spacecraft or major subsystems aims to reproduce the acoustic pressure 
conditions expected during lift-off and mission phases. Complex components susceptible to 
acoustic noise are tested prior to system integration in an acoustic chamber with high 
reverberation where loudspeakers or horns generate the acoustic field. 

Shocks are a transient mechanical loading with a very short duration, high frequency content 
and accelerations, typically occurring during launch and early deployment phases. 
Main sources of shock include launcher stages separation, fairing jettisoning, separation of 
the satellite from the launcher and deployment of appendages. 
System level shock tests replicate mission events using actual shock sources or by using 
sophisticated pyro-shock generating systems. Unit-level shock tests are typically performed 
using various methods, most commonly by mounting the component on a fixture that is then 
subjected to an impact. 
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2.3 Basic principles, criteria and assumptions in structure and 
loads verification 

2.3.1 Equivalence criteria for loads and environments 
Acceleration is widely used to define the severity of the mechanical environments due to its 
direct link to forces and ease of measurement. Loads are typically expressed as: 

− Equivalent accelerations at the center of gravity (CoG), for quasi-static loads 
− Sine spectra, for low-frequency transients and harmonic loads 
− Power spectral densities (PSD), for broad band random vibrations 
− Shock response spectra (SRS), for shock loads 

Duration is also a key factor as it influences potential damage and structural life. 

The topic of equivalence criteria for dynamic environments is highly complex. 
In most cases the concept of “equivalence” is limited and may present certain drawbacks, 
therefore enveloping techniques and conservative assumptions are often applied. 
Determining equivalence between different environments or identifying the most critical one 
usually requires evaluating and comparing the anticipated structural responses. 

2.3.2 Criteria for assessing verification loads 
In analytical evaluations, safety margins must be greater than or equal to zero to ensure 
structural adequacy. 

In the context of static or sinusoidal testing, the test loads or stresses are compared to the 
total predicted loads expected during the mission. 
This comparison serves as evidence that the applied test loads were sufficiently high, 
including qualification margins. 

For acoustic or random vibration testing, the test environments are compared with random-
vibration environments derived from system-level acoustic tests. 
This demonstrates that the random vibration test levels applied at lower levels of assembly 
were high enough and included appropriate qualification margins. 

In shock testing, test environments are validated against shock environments derived from 
system-level shock testing, providing evidence that the applied shock levels at lower 
assembly levels were sufficiently severe, again including qualification margins. 
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3 System identification 

3.1 Introduction 
Inferring models from observations and studying their properties is really what science is 
about. The models may be of more or less formal character, but they have the basic feature 
that they attempt to link observations together into some pattern. System identification deals 
with the problem of building mathematical models of dynamical systems based on observed 
data from the system [2]. 

In a broad sense, a system is an object excited by external stimuli (inputs), in which variables 
interact and produce observable signals (outputs). External disturbances such as noise may 
also be present (measured or unmeasured). 

Mathematical models may be developed along two routes: 

− Modeling route: it consists in subdividing the system into subsystems whose 
properties are well understood from previous experience and then mathematically 
joining them to obtain a model of the complete system.  
The modeling procedure is highly application-dependent and doesn’t necessarily 
involve experimentation on the actual system. 

− System identification route (inverse problem): input and output signals from the 
system are recorded and subjected to data analysis in order to infer a model. 

Identified models generally serve different purposes: 

− Understanding: in this context, system identification is used as a tool to gain insights 
into the physical behavior of the system under investigation (white box and grey box 
models may be used). 

− Prediction: the identified model is used to predict the system’s behavior beyond the 
conditions represented in the training dataset, which often involves extrapolating the 
current understanding of the system to untested scenarios. Such extrapolation can be 
risky, especially when dealing with nonlinear systems. 

− Control: the identified model is integrated into control strategies, usually within 
feedback loops (black box models are used). 

3.2 Inverse problem procedure 
The construction of a model from data involves three entities. 

1) The data record 
Input and output data are often collected during a dedicated identification 
experiment, where the user can decide which signals to record as well as select the 
input signals to apply. The main goal of designing such an experiment is to make 
these choices in a way that maximizes the information content of the collected data, 
while also respecting any practical constraints that may exist. 
In other situations, the user might not have control over the experimental conditions 
and thus must rely on data collected during the normal operation of the system.  
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2) The set of models or the model structure 
This selection involves defining the collection of candidate models within which the 
most suitable one will be sought. This step is arguably the most critical and 
challenging part of the system identification process. 
It is here that prior knowledge, engineering intuition, and expertise must be combined 
with the formal properties of the models. In some cases, the model set is defined after 
careful modeling the physical interactions and phenomena of the system (white box). 
In other situations, standard linear models are used without any reference to the 
physical background and their parameters are used to fit the data (black box). 
There are also models that represent a compromise: the parameters remain adjustable 
but still retain physical meaning (gray box). Generally speaking, the model structure 
is a parametric mapping that relates past system inputs and outputs to the model 
output space: 

𝑦𝑦�(𝑡𝑡|𝜃𝜃) = 𝑔𝑔(𝜃𝜃,𝑍𝑍𝑡𝑡−1) (3. 1) 

where 𝜃𝜃 is the finite-dimensional parameter vector used to parametrize the mapping. 
3) Determining the "best" model in the set, guided by the data 

Selecting the most suitable model from the set is known as the identification method. 
Evaluating the quality; the techniques for this evaluation are generally addressed 
independently of the specific model structure chosen. 

Once the previous three steps have been completed, a specific model is chosen: the one that 
best fits the data based on the selected criterion. The next step is to validate whether this 
model is adequate for its intended purpose. This evaluation is known as model validation. 
Model validation includes various procedures designed to assess how well the model aligns 
with the observed data, prior knowledge and the model's intended application. 
It is important to note that a model can never be accepted as the definitive and true 
representation of the system; at best, it should be considered an adequate description of 
certain specific aspects that are of particular interest. 

As we’ve seen, the system identification process follows a logical sequence: first, data is 
collected; then a model set is chosen and finally, the "best" model within that set is selected. 
If the initial model fails the validation tests, it becomes necessary to revisit and revise the 
earlier steps of the procedure. There are several reasons why the model may be inadequate: 

− The numerical method failed to find the best model according to the criterion. 
− The chosen criterion was not appropriate. 
− The selected model set was inadequate and did not include any model capable of 

providing a sufficiently good description of the system. 
− The dataset lacked the necessary information to guide the selection of a good model. 

A significant part of any identification task is dedicated to tackling these issues, especially 
the choice of an adequate model set, which is done through an iterative process guided by 
prior knowledge and the results of previous attempts. 
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In Figure 3.1 we can see a graphic visualization of this process, known as the system 
identification loop. 

3.3 From linear to nonlinear system identification 
As stated in [3], the properties that characterize a linear system are: 

− Principle of superposition: it is more than just a property of linear systems; in 
mathematical terms, it actually defines what is considered linear and what is not. 
The overall response of a linear structure to multiple simultaneous inputs can be 
determined by applying each input individually, recording the corresponding output 
and summing all the individual responses to obtain the total response. 

− Homogeneity and invariance of the FRF: homogeneity represents a restricted form 
of the principle of superposition. It indicates that the system's response is 
independent of the input signal's magnitude: an input 𝛼𝛼𝑥𝑥1(𝑡𝑡) always produces an 
output 𝛼𝛼𝑦𝑦1(𝑡𝑡). If we pass to the frequency regime this implies that: 

𝐻𝐻(𝜔𝜔) =
𝛼𝛼𝛼𝛼(𝜔𝜔)
𝛼𝛼𝛼𝛼(𝜔𝜔) =

𝑌𝑌(𝜔𝜔)
𝑋𝑋(𝜔𝜔) (3. 2) 

So, the FRF is invariant under changes of α or effectively of the level of excitation. 
− Invariance of the modal parameters: modal parameters such as resonance 

frequencies, damping ratios, mode shapes are considered invariant, since the 
principle of superposition ensures that the system's dynamic characteristics remain 
unchanged with varying input amplitudes. 

− Uniqueness of the solution: in a linear system, the response to a given excitation is 
unique and deterministic.  

Figure 3.1: The system identification loop 
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Many of the assumptions valid for linear structures or systems no longer hold in the presence 
of nonlinearity. In fact, all engineering structures exhibit some degree of nonlinearity, 
typically due to factors such as: 

− Structural joints with looseness or friction characteristics 
− Boundary conditions that impose variable stiffness constraints 
− Materials with amplitude dependent properties 
− Components such as shock absorbers, vibration isolators, bearings, linkages or 

actuators whose dynamics are input dependent. 

There is no unique approach to dealing with the problem of nonlinearity either analytically 
or experimentally and thus, several approaches must often be tested to ascertain whether a 
structure can be classified as linear or nonlinear. 

Kerschen et al. in [4] try to give a general overview on the different nonlinear system 
identification methods. 

3.3.1 Modal methods 
This section briefly introduces the modal approach, which is described extensively in [5]. 
The modal approach solves the equations of motion by exploiting the normal modes of a 
linear structure and the process is carried out in two main steps: 

− Eigenvalue Problem: the undamped equations of motion are solved without 
considering external excitation, yielding the system’s normal modes, which consists 
of eigenvalues and their associated eigenvectors, defined over the internal degrees of 
freedom. 

− Mode Superposition: the complete equations of motion, including both damping and 
external excitation, are solved by summing the contribution of each mode. 

Essentially, the modal approach projects the system’s motion onto a basis of normal modes 
that are orthogonal, which imply implies that the equations of motion become uncoupled, 
allowing each mode to behave as an independent single degree of freedom system 
contributing individually to the total response. 

This technique is a fundamental tool for structural dynamicists and remains unmatched for 
the analysis of linear systems. Unfortunately, the "linear" qualifier is significant [3]. 
Modal analysis is the quintessential linear theory, fundamentally dependent on the principle 
of superposition. However, this reliance poses a major limitation in today's context, where 
nonlinear effects are increasingly acknowledged as key contributors to the dynamic 
behaviour of systems and structures. 

In general, the presence of nonlinearity has a rather destructive impact on modal analysis. 
All the system properties typically considered invariant in a linear system, such as resonant 
frequencies, damping ratios, mode shapes, and frequency response functions (FRFs), 
become dependent on the excitation level used during testing. 

Since the fundamental aim of modal analysis is to describe systems based on these invariants, 
the best result achievable in the nonlinear case is a model that represents a linearization of 
the system, valid only for the specific level of excitation applied. Such a model, however, 
cannot accurately predict behavior under different excitation levels and therefore has limited 
practical value. Additionally, other properties unique to linear systems, such as reciprocity, 
are also lost in general nonlinear systems.  
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Another fundamental principle of modal analysis is decoupling or dimension reduction. 
By transforming the system from physical coordinates to normal or modal coordinates, a 
linear system with 𝑛𝑛 degrees of freedom is converted into 𝑛𝑛 independent Single-Degree-of-
Freedom (SDOF) systems. However, this decoupling property no longer holds in the case of 
general nonlinear systems. 

When faced with these limitations, a structural dynamicist has three primary approaches: 

1) Preserve the philosophy and fundamental principles of modal analysis, while 
developing methods to characterize nonlinear systems by understanding how and 
where amplitude invariance breaks down. 

2) Maintain the modal analysis framework but broaden the theory to include objects 
which are amplitude invariants of nonlinear systems. 

3) Abandon the modal analysis approach entirely and instead pursue theoretical models 
specifically designed to handle nonlinear behavior directly. 
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4 Selected identification methods 
This chapter focuses on selected methods for extracting equivalent modal parameters, 
namely natural frequency, damping ratio and modal constants, from Frequency Response 
Functions (FRFs) of weakly-nonlinear systems, which can be either transmissibilities or 
receptances. 

These methods are based on the assumption that at a given response amplitude, the nonlinear 
system can be linearized, allowing for frequency-domain modal estimation techniques to be 
applied iteratively across different amplitude levels. This approach yields amplitude-
dependent modal parameters, which can be useful for modeling and predicting the dynamic 
behavior of nonlinear structures. 

Modal parameters could be extracted through level-controlled sinusoidal tests, where the 
excitation input is adjusted to maintain a constant response amplitude and then a linear modal 
analysis method can process the transfer functions. This procedure is repeated for various 
amplitude levels. However, implementing this approach can be quite challenging due to the 
difficulty in precisely controlling the input force to achieve a constant response amplitude. 
Moreover, it requires conducting a large number of tests. The identification techniques 
proposed here are based on different linearization strategies. 

4.1 CONCERTO Method 
COde for Nonlinear identifiCation from mEasured Response To vibratiOn (CONCERTO), 
described in [6], belongs to the class of Single-Degree-of-Freedom (SDOF) modal analysis 
methods, which can be applied either to SDOF systems or MDOF systems characterized by 
well - separated resonance peaks. In these cases the system’s behavior near a resonance peak 
can be approximated by the mode corresponding to that resonance, while contributions from 
other modes are neglected. Therefore, physical coordinates and forces can be used instead 
of modal coordinates and forces. 

No assumption is made regarding the types of nonlinearities involved. However, the 
nonlinearities must be weak enough to ensure the system's response remains synchronous 
with the input. 

Since the system is assumed to behave linearly at a given displacement response amplitude, 
the modal parameters are further considered to be amplitude-dependent functions of the 
displacement response.  

4.1.1 Receptance case 
In a frequency range close to the resonance peak, the system can be approximated as a SDOF 
system with modal properties 𝑚𝑚𝑟𝑟 , 𝑐𝑐𝑟𝑟,𝑘𝑘𝑟𝑟, that represents modal mass, damping and stiffness, 
respectively. The modal mass is assumed to remain constant, while modal damping and 
stiffness are assumed to be function of the displacement amplitude |𝑋𝑋|, thus yielding: 𝑐𝑐𝑟𝑟 =
𝑐𝑐𝑟𝑟(|𝑋𝑋|),𝑘𝑘𝑟𝑟 = 𝑘𝑘𝑟𝑟(|𝑋𝑋|).  
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A schematic representation of the system is shown in Figure 4.1. 

The equation of motion of the system is: 

𝑚𝑚𝑟𝑟𝑥̈𝑥 + 𝑐𝑐𝑟𝑟(|𝑋𝑋|)𝑥̇𝑥 + 𝑘𝑘𝑟𝑟(|𝑋𝑋|)𝑥𝑥 = 𝐹𝐹(𝑡𝑡) (4. 1) 

The exciting force is assumed to be sinusoidal: 

𝐹𝐹(𝑡𝑡) = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝜔𝜔𝜔𝜔) (4. 2) 

The steady-state response is assumed to be harmonic at the same frequency 𝜔𝜔: 

𝑥𝑥(𝑡𝑡) = |𝑋𝑋|𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔 + 𝜙𝜙) = 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋(𝜔𝜔𝜔𝜔) (4. 3) 

This is an approximation, since in the case of nonlinear vibrations the response of the system 
could also contain harmonics and/or subharmonics of the excitation frequency. 

Utilizing a complex notation, we can rewrite equations (4.2) and (4.3) as: 

𝑥𝑥(𝑡𝑡) = 𝑋𝑋𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗, where: 𝑋𝑋 = |𝑋𝑋|𝑒𝑒𝑗𝑗𝑗𝑗 

𝐹𝐹(𝑡𝑡) = 𝐹𝐹𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗, where: 𝐹𝐹 = |𝐹𝐹| 
(4. 4) 

Substituting (4.4) into (4.1), we obtain: 

[−𝑚𝑚𝑟𝑟𝜔𝜔2 + 𝑘𝑘𝑟𝑟(|𝑋𝑋|) + 𝑗𝑗𝑐𝑐𝑟𝑟(|𝑋𝑋|)𝜔𝜔]𝑋𝑋𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 = 𝐹𝐹𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 (4. 5) 

It is possible to define the receptance as: 

𝐻𝐻(𝜔𝜔) =
𝑋𝑋
𝐹𝐹 =

1
−𝑚𝑚𝑟𝑟𝜔𝜔2 + 𝑘𝑘𝑟𝑟(|𝑋𝑋|) + 𝑗𝑗𝑐𝑐𝑟𝑟(|𝑋𝑋|)𝜔𝜔 =

1/𝑚𝑚𝑟𝑟

−𝜔𝜔2 + 𝑘𝑘𝑟𝑟(|𝑋𝑋|)
𝑚𝑚𝑟𝑟

+ 𝑗𝑗𝑐𝑐𝑟𝑟(|𝑋𝑋|)
𝑚𝑚𝑟𝑟

𝜔𝜔
 (4. 6) 

We can rewrite 𝐻𝐻(𝜔𝜔) in terms of the amplitude-dependent natural frequency 𝜔𝜔𝑟𝑟(|𝑋𝑋|) and 
modal loss factor 𝜂𝜂𝑟𝑟(|𝑋𝑋|) or damping ratio 𝜁𝜁𝑟𝑟(|𝑋𝑋|), which are defined as: 

  𝜔𝜔𝑟𝑟2(|𝑋𝑋|) =
𝑘𝑘𝑟𝑟(|𝑋𝑋|)
𝑚𝑚𝑟𝑟

 

𝑐𝑐𝑟𝑟(|𝑋𝑋|)
𝑚𝑚𝑟𝑟

= 2𝜁𝜁𝑟𝑟(|𝑋𝑋|)𝜔𝜔𝑟𝑟(|𝑋𝑋|) = 𝜂𝜂𝑟𝑟(|𝑋𝑋|)
𝜔𝜔𝑟𝑟2(|𝑋𝑋|)

𝜔𝜔  

(4. 7) 

  

Figure 4.1: Scheme of the system - Receptance 
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Substituting (4.7) in (4.6), we get the following formulations for receptance: 

− For the hysteretic damping model: 

𝐻𝐻(𝜔𝜔) =
1/𝑚𝑚𝑟𝑟

−𝜔𝜔2 + 𝜔𝜔𝑟𝑟2(|𝑋𝑋|) + 𝑗𝑗𝜂𝜂𝑟𝑟(|𝑋𝑋|)𝜔𝜔𝑟𝑟2(|𝑋𝑋|) (4. 8) 

− For the viscous damping model: 

𝐻𝐻(𝜔𝜔) =
1/𝑚𝑚𝑟𝑟

−𝜔𝜔2 + 𝜔𝜔𝑟𝑟2(|𝑋𝑋|) + 𝑗𝑗2𝜁𝜁𝑟𝑟(|𝑋𝑋|)𝜔𝜔𝑟𝑟(|𝑋𝑋|)𝜔𝜔 (4. 9) 

The natural frequency 𝜔𝜔𝑟𝑟(|𝑋𝑋|) and modal loss factor 𝜂𝜂𝑟𝑟(|𝑋𝑋|) or damping ratio 𝜁𝜁𝑟𝑟(|𝑋𝑋|) 
relative to a particular vibration amplitude are extracted with the following procedure. 

The key idea is to pick two frequency points 𝜔𝜔1 and 𝜔𝜔2 located on either side of the 
resonance peak, such that the system exhibits the same response amplitude |𝑋𝑋| at both 
frequencies. 
In practice, the measured data points typically do not exhibit identical response amplitudes 
and therefore it is necessary to interpolate the response curve in order to obtain a set of 
frequency points on either side of the resonance with equal amplitude. 
4.1.1.1 Hysteretic damping case 

If we consider the receptance at two points with the same |𝑋𝑋|: 

𝐻𝐻(𝜔𝜔1) =
1/𝑚𝑚𝑟𝑟

𝜔𝜔𝑟𝑟2 − 𝜔𝜔12 + 𝑗𝑗𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2
= 𝑅𝑅1 + 𝑗𝑗𝐼𝐼1 

𝐻𝐻(𝜔𝜔2) =
1/𝑚𝑚𝑟𝑟

𝜔𝜔𝑟𝑟2 − 𝜔𝜔22 + 𝑗𝑗𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2
= 𝑅𝑅2 + 𝑗𝑗𝐼𝐼2 

(4. 10) 

The selected points can be visualized in the Figure 4.2: 

By equating the numerators of (4.10), we obtain: 
(𝑅𝑅1 + 𝑗𝑗𝐼𝐼1)(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2 + 𝑗𝑗𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2) = (𝑅𝑅2 + 𝑗𝑗𝐼𝐼2)(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2 + 𝑗𝑗𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2) (4. 11) 

  

Figure 4.2: Equal displacement amplitude points 
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Expanding the products of (4.11): 
[𝑅𝑅1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝐼𝐼1𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2] + 𝑗𝑗[𝑅𝑅1𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2 + 𝐼𝐼1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1
2)] = 

[𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) − 𝐼𝐼2𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2] + 𝑗𝑗[𝑅𝑅2𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2 + 𝐼𝐼2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2

2)] 
(4. 12) 

By equating the real part and imaginary parts of (4.12): 

�𝑅𝑅1
(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝐼𝐼1𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2 = 𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) − 𝐼𝐼2𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2

𝑅𝑅1𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2 + 𝐼𝐼1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1
2) = 𝑅𝑅2𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2 + 𝐼𝐼2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2

2) (4. 13) 

Rewriting (4.13): 

�𝑅𝑅1
(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) = (𝐼𝐼1 − 𝐼𝐼2)𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2

(𝑅𝑅1 − 𝑅𝑅2)𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2 = 𝐼𝐼2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) − 𝐼𝐼1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) (4. 14) 

Solving for the term 𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2: 

𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2 =
𝑅𝑅1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2)

𝐼𝐼1 − 𝐼𝐼2
=
𝐼𝐼2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2

2) − 𝐼𝐼1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1
2)

𝑅𝑅1 − 𝑅𝑅2
 (4. 15) 

By reworking (4.15): 
[𝑅𝑅1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2)](𝑅𝑅1 − 𝑅𝑅2) = [𝐼𝐼2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2

2) − 𝐼𝐼1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1
2)](𝐼𝐼1 − 𝐼𝐼2) (4. 16) 

Expanding the products of (4.16): 

𝑅𝑅12(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1
2) − 𝑅𝑅1𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2

2) − 𝑅𝑅1𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1
2) + 𝑅𝑅22(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2

2) = 

𝐼𝐼1𝐼𝐼2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) − 𝐼𝐼12(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝐼𝐼22(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) + 𝐼𝐼1𝐼𝐼2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) 
(4. 17) 

Bringing all the terms to the left-hand side: 
(𝑅𝑅12 − 𝑅𝑅1𝑅𝑅2 + 𝐼𝐼12 − 𝐼𝐼1𝐼𝐼2)(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) + (𝑅𝑅22 − 𝑅𝑅1𝑅𝑅2 + 𝐼𝐼22 − 𝐼𝐼1𝐼𝐼2)(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) = 0 (4. 18) 

Leaving only the terms related to 𝜔𝜔𝑟𝑟2 to the left-hand side: 
(𝑅𝑅12 + 𝐼𝐼12 + 𝑅𝑅22 + 𝐼𝐼22 − 2𝑅𝑅1𝑅𝑅2 − 2𝐼𝐼1𝐼𝐼2)𝜔𝜔𝑟𝑟2 = 

= (𝑅𝑅12 − 𝑅𝑅1𝑅𝑅2 + 𝐼𝐼12 − 𝐼𝐼1𝐼𝐼2)𝜔𝜔1
2 + (𝑅𝑅22 − 𝑅𝑅1𝑅𝑅2 + 𝐼𝐼22 − 𝐼𝐼1𝐼𝐼2)𝜔𝜔2

2 
(4. 19) 

Solving for 𝜔𝜔𝑟𝑟2: 

𝜔𝜔𝑟𝑟2 =
(𝑅𝑅12 − 𝑅𝑅1𝑅𝑅2 + 𝐼𝐼12 − 𝐼𝐼1𝐼𝐼2)𝜔𝜔1

2 + (𝑅𝑅22 − 𝑅𝑅1𝑅𝑅2 + 𝐼𝐼22 − 𝐼𝐼1𝐼𝐼2)𝜔𝜔2
2

(𝑅𝑅12 + 𝐼𝐼12 + 𝑅𝑅22 + 𝐼𝐼22 − 2𝑅𝑅1𝑅𝑅2 − 2𝐼𝐼1𝐼𝐼2)  (4. 20) 

Rewriting the denominator of (4.20): 
(𝑅𝑅12 + 𝐼𝐼12 + 𝑅𝑅22 + 𝐼𝐼22 − 2𝑅𝑅1𝑅𝑅2 − 2𝐼𝐼1𝐼𝐼2) = (𝑅𝑅2 − 𝑅𝑅1)2 + (𝐼𝐼2 − 𝐼𝐼1)2 (4. 21) 

Rewriting the numerator of (4.20): 
(𝑅𝑅12 − 𝑅𝑅1𝑅𝑅2 + 𝐼𝐼12 − 𝐼𝐼1𝐼𝐼2)𝜔𝜔1

2 + (𝑅𝑅22 − 𝑅𝑅1𝑅𝑅2 + 𝐼𝐼22 − 𝐼𝐼1𝐼𝐼2)𝜔𝜔2
2 = 

= (𝑅𝑅2 − 𝑅𝑅1)(𝑅𝑅2𝜔𝜔2
2 − 𝑅𝑅1𝜔𝜔1

2) + (𝐼𝐼2 − 𝐼𝐼1)(𝐼𝐼2𝜔𝜔2
2 − 𝐼𝐼1𝜔𝜔1

2) 
(4. 22) 
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We finally get the expression of 𝜔𝜔𝑟𝑟2: 

𝜔𝜔𝑟𝑟2(|𝑋𝑋|) =
(𝑅𝑅2 − 𝑅𝑅1)(𝑅𝑅2𝜔𝜔2

2 − 𝑅𝑅1𝜔𝜔1
2) + (𝐼𝐼2 − 𝐼𝐼1)(𝐼𝐼2𝜔𝜔2

2 − 𝐼𝐼1𝜔𝜔1
2)

(𝑅𝑅2 − 𝑅𝑅1)2 + (𝐼𝐼2 − 𝐼𝐼1)2  (4. 23) 

Recalling the equation (4.15), we can write: 

𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2(𝐼𝐼1 − 𝐼𝐼2) = 𝑅𝑅1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1
2) − 𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2

2) (4. 24) 

By reworking (4.24): 

𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2(𝐼𝐼1 − 𝐼𝐼2) = 𝑅𝑅2𝜔𝜔2
2 − 𝑅𝑅1𝜔𝜔1

2 − (𝑅𝑅2 − 𝑅𝑅1)𝜔𝜔𝑟𝑟2 (4. 25) 

By substituting in (4.25) the expression (4.23): 

𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2(𝐼𝐼1 − 𝐼𝐼2) = 𝑅𝑅2𝜔𝜔2
2 − 𝑅𝑅1𝜔𝜔1

2 −
(𝑅𝑅2−𝑅𝑅1)2�𝑅𝑅2𝜔𝜔2

2−𝑅𝑅1𝜔𝜔1
2�+(𝑅𝑅2−𝑅𝑅1)(𝐼𝐼2−𝐼𝐼1)�𝐼𝐼2𝜔𝜔2

2−𝐼𝐼1𝜔𝜔1
2�

(𝑅𝑅2−𝑅𝑅1)2+(𝐼𝐼2−𝐼𝐼1)2    (4. 26) 

By reworking (4.26): 

𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2 =
−(𝐼𝐼2 − 𝐼𝐼1)(𝑅𝑅2𝜔𝜔2

2 − 𝑅𝑅1𝜔𝜔1
2) + (𝑅𝑅2 − 𝑅𝑅1)(𝐼𝐼2𝜔𝜔2

2 − 𝐼𝐼1𝜔𝜔1
2)

(𝑅𝑅2 − 𝑅𝑅1)2 + (𝐼𝐼2 − 𝐼𝐼1)2  (4. 27) 

We finally obtain the expression 𝜂𝜂𝑟𝑟: 

𝜂𝜂𝑟𝑟(|𝑋𝑋|) =
−(𝐼𝐼2 − 𝐼𝐼1)(𝑅𝑅2𝜔𝜔2

2 − 𝑅𝑅1𝜔𝜔1
2) + (𝑅𝑅2 − 𝑅𝑅1)(𝐼𝐼2𝜔𝜔2

2 − 𝐼𝐼1𝜔𝜔1
2)

𝜔𝜔𝑟𝑟2[(𝑅𝑅2 − 𝑅𝑅1)2 + (𝐼𝐼2 − 𝐼𝐼1)2]  (4. 28) 

4.1.1.2 Viscous damping case 

If we consider the receptance at two points with the same |𝑋𝑋|: 

𝐻𝐻(𝜔𝜔1) =
1/𝑚𝑚𝑟𝑟

𝜔𝜔𝑟𝑟2 − 𝜔𝜔12 + 𝑗𝑗2𝜁𝜁𝑟𝑟𝜔𝜔𝑟𝑟𝜔𝜔
= 𝑅𝑅1 + 𝑗𝑗𝐼𝐼1 

𝐻𝐻(𝜔𝜔2) =
1/𝑚𝑚𝑟𝑟

𝜔𝜔𝑟𝑟2 − 𝜔𝜔22 + 𝑗𝑗2𝜁𝜁𝑟𝑟𝜔𝜔𝑟𝑟𝜔𝜔
= 𝑅𝑅2 + 𝑗𝑗𝐼𝐼2 

(4. 29) 

By equating the numerators of (4.29), we obtain: 
(𝑅𝑅1 + 𝑗𝑗𝐼𝐼1)(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2 + 𝑗𝑗2𝜁𝜁𝑟𝑟𝜔𝜔1𝜔𝜔𝑟𝑟) = (𝑅𝑅2 + 𝑗𝑗𝐼𝐼2)(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2 + 𝑗𝑗2𝜁𝜁𝑟𝑟𝜔𝜔2𝜔𝜔𝑟𝑟) (4. 30) 

Expanding the products of (4.30): 
[𝑅𝑅1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝐼𝐼12𝜁𝜁𝑟𝑟𝜔𝜔1𝜔𝜔𝑟𝑟] + 𝑗𝑗[𝑅𝑅12𝜁𝜁𝑟𝑟𝜔𝜔2𝜔𝜔𝑟𝑟 + 𝐼𝐼1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1
2)] = 

[𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) − 𝐼𝐼22𝜁𝜁𝑟𝑟𝜔𝜔2𝜔𝜔𝑟𝑟] + 𝑗𝑗[𝑅𝑅22𝜁𝜁𝑟𝑟𝜔𝜔2𝜔𝜔𝑟𝑟 + 𝐼𝐼2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2

2)] 
(4. 31) 

By equating the real part and imaginary parts of (4.31): 

�𝑅𝑅1
(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝐼𝐼12𝜁𝜁𝑟𝑟𝜔𝜔1𝜔𝜔𝑟𝑟 = 𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) − 𝐼𝐼22𝜁𝜁𝑟𝑟𝜔𝜔2𝜔𝜔𝑟𝑟

𝑅𝑅12𝜁𝜁𝑟𝑟𝜔𝜔1𝜔𝜔𝑟𝑟 + 𝐼𝐼1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1
2) = 𝑅𝑅22𝜁𝜁𝑟𝑟𝜔𝜔2𝜔𝜔𝑟𝑟 + 𝐼𝐼2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2

2) (4. 32) 
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Rewriting (4.32): 

�𝑅𝑅1
(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) = (𝐼𝐼1𝜔𝜔1 − 𝐼𝐼2𝜔𝜔2)2𝜁𝜁𝑟𝑟𝜔𝜔𝑟𝑟

(𝑅𝑅1𝜔𝜔1 − 𝑅𝑅2𝜔𝜔2)2𝜁𝜁𝑟𝑟𝜔𝜔𝑟𝑟 = 𝐼𝐼2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) − 𝐼𝐼1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) (4. 33) 

Solving for the term 2𝜁𝜁𝑟𝑟𝜔𝜔𝑟𝑟: 

2𝜁𝜁𝑟𝑟𝜔𝜔𝑟𝑟 =
𝑅𝑅1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2)

𝐼𝐼1𝜔𝜔1 − 𝐼𝐼2𝜔𝜔2
=
𝐼𝐼2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2

2) − 𝐼𝐼1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1
2)

𝑅𝑅1𝜔𝜔1 − 𝑅𝑅2𝜔𝜔2
  (4. 34) 

By reworking (4.34): 
[𝑅𝑅1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2)](𝑅𝑅1𝜔𝜔1 − 𝑅𝑅2𝜔𝜔2) =

= [𝐼𝐼2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) − 𝐼𝐼1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2)](𝐼𝐼1𝜔𝜔1 − 𝐼𝐼2𝜔𝜔2) 
(4. 35) 

Expanding the products of (4.35): 

𝑅𝑅12𝜔𝜔1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1
2) − 𝑅𝑅1𝑅𝑅2𝜔𝜔1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2

2) − 𝑅𝑅1𝑅𝑅2𝜔𝜔2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1
2) + 𝑅𝑅22𝜔𝜔2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2

2) = 

= 𝐼𝐼1𝐼𝐼2𝜔𝜔1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) − 𝐼𝐼12𝜔𝜔1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝐼𝐼22𝜔𝜔2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) + 𝐼𝐼1𝐼𝐼2𝜔𝜔2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) 
(4. 36) 

Bringing all the terms to the left-hand side: 
(𝑅𝑅12𝜔𝜔1 − 𝑅𝑅1𝑅𝑅2𝜔𝜔2 + 𝐼𝐼12𝜔𝜔1 − 𝐼𝐼1𝐼𝐼2𝜔𝜔2)(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) + 

+(𝑅𝑅22𝜔𝜔2 − 𝑅𝑅1𝑅𝑅2𝜔𝜔1 + 𝐼𝐼22𝜔𝜔2 − 𝐼𝐼1𝐼𝐼2𝜔𝜔1)(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) = 0 

(4. 37) 

Leving only the terms related to 𝜔𝜔𝑟𝑟2 to the left-hand side: 
(𝑅𝑅12𝜔𝜔1 + 𝐼𝐼12𝜔𝜔1 + 𝑅𝑅22𝜔𝜔2 + 𝐼𝐼22𝜔𝜔2 − 𝑅𝑅1𝑅𝑅2𝜔𝜔1 − 𝑅𝑅1𝑅𝑅2𝜔𝜔2 − 𝐼𝐼1𝐼𝐼2𝜔𝜔1 − 𝐼𝐼1𝐼𝐼2𝜔𝜔2)𝜔𝜔𝑟𝑟2 = 

= (𝑅𝑅12𝜔𝜔1 − 𝑅𝑅1𝑅𝑅2𝜔𝜔2 + 𝐼𝐼12𝜔𝜔1 − 𝐼𝐼1𝐼𝐼2𝜔𝜔2)𝜔𝜔1
2 + (𝑅𝑅22𝜔𝜔2 − 𝑅𝑅1𝑅𝑅2𝜔𝜔1 + 𝐼𝐼22𝜔𝜔2 − 𝐼𝐼1𝐼𝐼2𝜔𝜔1)𝜔𝜔2

2 
(4. 38) 

Solving for 𝜔𝜔𝑟𝑟2: 

𝜔𝜔𝑟𝑟2(|𝑋𝑋|) = �𝑅𝑅12𝜔𝜔1−𝑅𝑅1𝑅𝑅2𝜔𝜔2+𝐼𝐼12𝜔𝜔1−𝐼𝐼1𝐼𝐼2𝜔𝜔2�𝜔𝜔1
2+�𝑅𝑅22𝜔𝜔2−𝑅𝑅1𝑅𝑅2𝜔𝜔1+𝐼𝐼22𝜔𝜔2−𝐼𝐼1𝐼𝐼2𝜔𝜔1�𝜔𝜔2

2

𝑅𝑅12𝜔𝜔1+𝐼𝐼12𝜔𝜔1+𝑅𝑅22𝜔𝜔2+𝐼𝐼22𝜔𝜔2−𝑅𝑅1𝑅𝑅2(𝜔𝜔1+𝜔𝜔2)−𝐼𝐼1𝐼𝐼2(𝜔𝜔1+𝜔𝜔2)   (4. 39) 

Rewriting the denominator of (4.39) 

𝑅𝑅12𝜔𝜔1 + 𝐼𝐼12𝜔𝜔1 + 𝑅𝑅22𝜔𝜔2 + 𝐼𝐼22𝜔𝜔2 − 𝑅𝑅1𝑅𝑅2(𝜔𝜔1 + 𝜔𝜔2) − 𝐼𝐼1𝐼𝐼2(𝜔𝜔1 + 𝜔𝜔2) = 

= (𝑅𝑅12 − 𝑅𝑅1𝑅𝑅2 + 𝐼𝐼12 − 𝐼𝐼1𝐼𝐼2)𝜔𝜔1 + (𝑅𝑅22 − 𝑅𝑅1𝑅𝑅2 + 𝐼𝐼22 − 𝐼𝐼1𝐼𝐼2)𝜔𝜔2 
(4. 40) 

We finally get the expression of 𝜔𝜔𝑟𝑟2: 

𝜔𝜔𝑟𝑟2(|𝑋𝑋|) = �𝑅𝑅12𝜔𝜔1−𝑅𝑅1𝑅𝑅2𝜔𝜔2+𝐼𝐼12𝜔𝜔1−𝐼𝐼1𝐼𝐼2𝜔𝜔2�𝜔𝜔1
2+�𝑅𝑅22𝜔𝜔2−𝑅𝑅1𝑅𝑅2𝜔𝜔1+𝐼𝐼22𝜔𝜔2−𝐼𝐼1𝐼𝐼2𝜔𝜔1�𝜔𝜔2

2

�𝑅𝑅12−𝑅𝑅1𝑅𝑅2+𝐼𝐼12−𝐼𝐼1𝐼𝐼2�𝜔𝜔1+�𝑅𝑅22−𝑅𝑅1𝑅𝑅2+𝐼𝐼22−𝐼𝐼1𝐼𝐼2�𝜔𝜔2
  (4. 41) 

Recalling the equation (4.34): 

2𝜁𝜁𝑟𝑟𝜔𝜔𝑟𝑟 =
𝑅𝑅1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2)

𝐼𝐼1𝜔𝜔1 − 𝐼𝐼2𝜔𝜔2
 (4. 42) 
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We finally obtain the expression 𝜁𝜁𝑟𝑟: 

𝜁𝜁𝑟𝑟(|𝑋𝑋|) =
𝑅𝑅1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2)

2𝜔𝜔𝑟𝑟(𝐼𝐼1𝜔𝜔1 − 𝐼𝐼2𝜔𝜔2)  (4. 43) 

The modal parameters 𝜔𝜔𝑟𝑟2(|𝑋𝑋|) and 𝜂𝜂(|𝑋𝑋|) or 𝜁𝜁(|𝑋𝑋|) can be converted into modal stiffness 
𝑘𝑘(|𝑋𝑋|) and modal damping 𝑐𝑐(|𝑋𝑋|) functions, using: 

− The modal mass, which is calculated interpolating the real part of the inverse of the 
receptance function with a second degree polynomial: 

𝐻𝐻−1(𝜔𝜔) = 𝑘𝑘𝑟𝑟 − 𝑚𝑚𝑟𝑟𝜔𝜔2 + 𝑗𝑗𝑐𝑐𝑟𝑟𝜔𝜔 (4. 44) 

− The relationships between the modal stiffness, modal damping, the natural frequency 
and the loss factor (or damping ratio): 

𝑘𝑘𝑟𝑟(|𝑋𝑋|) = 𝜔𝜔𝑟𝑟2(|𝑋𝑋|)𝑚𝑚𝑟𝑟 

𝑐𝑐𝑟𝑟(|𝑋𝑋|) = 2𝜁𝜁𝑟𝑟(|𝑋𝑋|)𝑚𝑚𝑟𝑟𝜔𝜔𝑟𝑟(|𝑋𝑋|) 

𝑐𝑐𝑟𝑟(|𝑋𝑋|) = 𝜂𝜂𝑟𝑟(|𝑋𝑋|)𝑚𝑚𝑟𝑟
𝜔𝜔𝑟𝑟2(|𝑋𝑋|)

𝜔𝜔 ≃ 𝜂𝜂𝑟𝑟(|𝑋𝑋|)𝑚𝑚𝜔𝜔𝑟𝑟(|𝑋𝑋|) 

(4. 45) 

4.1.2 Transmissibility case 
In many practical applications, structures are tested through base excitation, which leads to 
the measurement of transmissibilities instead of receptances. If the transmissibility of the 
system is known instead of its receptance, the CONCERTO method can still be applied, with 
some modifications as described in [7]. 
Compared to the receptance case, the main limitation is that the modal mass cannot be 
determined, as it cannot be computed from the inverse of the transmissibility. 
As a consequence, the modal stiffness and modal damping cannot be evaluated. Only the 
modal frequency and the modal loss factor (or modal damping ratio) can be extracted. 

In [6] and [7], the adopted approach is based on a SDOF approximation. 
Under this assumption, the transmissibility can be expressed as: 

𝑇𝑇(𝜔𝜔) =
𝜔𝜔𝑟𝑟2 + 𝑗𝑗𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2

𝜔𝜔𝑟𝑟2 − 𝜔𝜔2 + 𝑗𝑗𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2
 (4. 46) 

One of the objectives of this work was to predict the system response in terms of 
transmissibility under different loading conditions, by employing a method (described later) 
to reconstruct the nonlinear transmissibility. In this context, it is essential to extract not only 
the modal frequency and modal damping, but also the modal constant. 

In the case of SDOF approximation, the modal constant is given by: 

𝐴𝐴𝑟𝑟 + 𝑖𝑖𝐵𝐵𝑟𝑟 = 𝜔𝜔𝑟𝑟2 + 𝑗𝑗𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2 (4. 47) 

So, the modal constant depends only on the modal properties. 
  



33 

It is evident that applying this method to a more complex system would result in a rough 
approximation of the modal constant, as the influence of the mode shapes is neglected. 
For this reason, a more general formulation is required. 

To begin, we examine the behavior of a two degree of freedom (2DOF) system subjected to 
base excitation. 

Using either a Newtonian or energy-based approach, the equations of motion for the system 
can be derived as: 

�𝑚𝑚1 0
0 𝑚𝑚2

� �𝑦̈𝑦1𝑦̈𝑦2
� + �𝑐𝑐1 + 𝑐𝑐2 −𝑐𝑐2

−𝑐𝑐2 𝑐𝑐2
� �𝑦̇𝑦1𝑦̇𝑦2

� + �𝑘𝑘1 + 𝑘𝑘2 −𝑘𝑘2
−𝑘𝑘2 𝑘𝑘2

� �
𝑦𝑦1
𝑦𝑦2� = �𝑐𝑐1𝑏̇𝑏 + 𝑘𝑘1𝑏𝑏

0
� (4. 48) 

In a more compact form, (4.48) can be written as: 

[𝑚𝑚](𝑦̈𝑦) + [𝑐𝑐](𝑦̇𝑦) + [𝑘𝑘](𝑦𝑦) = �𝑐𝑐1𝑏̇𝑏 + 𝑘𝑘1𝑏𝑏
0

� (4. 49) 

Applying the modal transformation and pre-multiplying (4.49) by the modal matrix yields: 

[𝛹𝛹]𝑇𝑇[𝑚𝑚][𝛹𝛹](𝜂̈𝜂) + [𝛹𝛹]𝑇𝑇[𝑐𝑐][𝛹𝛹](𝜂̇𝜂) + [𝛹𝛹]𝑇𝑇[𝑘𝑘]𝛹𝛹](𝜂𝜂) = [𝛹𝛹]𝑇𝑇 �𝑐𝑐1𝑏̇𝑏 + 𝑘𝑘1𝑏𝑏
0

� (4. 50) 

Equation (4.50) leads to the following expression: 

[𝑀𝑀𝑟𝑟](𝜂̈𝜂) + [𝐶𝐶𝑟𝑟](𝜂̇𝜂) + [𝐾𝐾𝑟𝑟](𝜂𝜂) = [𝛹𝛹]𝑇𝑇 �𝑐𝑐1𝑏̇𝑏 + 𝑘𝑘1𝑏𝑏
0

� (4. 51) 

Given that the system is subjected to base excitation with a sinusoidal input: 

(𝑏𝑏) = (𝐵𝐵0)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
(𝜂𝜂) = (𝜂𝜂0)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 

(4. 52) 

By substituting (4.52) in the (4.51), we obtain 

(−𝜔𝜔2[𝑀𝑀𝑟𝑟] + 𝑖𝑖𝑖𝑖[𝐶𝐶𝑟𝑟] + [𝐾𝐾𝑟𝑟])(𝜂𝜂0) = [Ψ]𝑇𝑇 �𝑐𝑐1𝑖𝑖𝑖𝑖𝐵𝐵0 + 𝑘𝑘1𝐵𝐵0
0 � = [Ψ]𝑇𝑇 �𝑐𝑐1𝑖𝑖𝑖𝑖 + 𝑘𝑘1

0 �𝐵𝐵0 (4. 53) 

  

Figure 4.3: Scheme of a 2DOFs system - Transmissibility 
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Returning to physical coordinates: 

(𝑌𝑌0) = �
(𝜓𝜓𝑟𝑟)𝑇𝑇 �𝑐𝑐1𝑖𝑖𝑖𝑖 + 𝑘𝑘1

0
�𝐵𝐵0(𝜓𝜓𝑟𝑟)

𝑘𝑘𝑟𝑟 − 𝜔𝜔2𝑚𝑚𝑟𝑟 + 𝑖𝑖𝑖𝑖𝑐𝑐𝑟𝑟

𝑛𝑛

𝑟𝑟=1

 (4. 54) 

Expanding the modal vectors explicitly 

(𝑌𝑌0) = �
(𝜓𝜓1𝑟𝑟 𝜓𝜓2𝑟𝑟)𝑇𝑇 �𝑐𝑐1𝑖𝑖𝑖𝑖 + 𝑘𝑘1

0
�𝐵𝐵0 �

𝜓𝜓1𝑟𝑟
𝜓𝜓2𝑟𝑟

�

𝑘𝑘𝑟𝑟 − 𝜔𝜔2𝑚𝑚𝑟𝑟 + 𝑖𝑖𝑖𝑖𝑐𝑐𝑟𝑟

𝑛𝑛

𝑟𝑟=1

 (4. 55) 

Carrying out the calculations: 

(𝑌𝑌0) = �
𝐵𝐵0 �

𝜓𝜓1𝑟𝑟(𝑐𝑐1𝑖𝑖𝑖𝑖 + 𝑘𝑘1)𝜓𝜓1𝑟𝑟
𝜓𝜓1𝑟𝑟(𝑐𝑐1𝑖𝑖𝑖𝑖 + 𝑘𝑘1)𝜓𝜓2𝑟𝑟

�

𝑘𝑘𝑟𝑟 − 𝜔𝜔2𝑚𝑚𝑟𝑟 + 𝑖𝑖𝑖𝑖𝑐𝑐𝑟𝑟

𝑛𝑛

𝑟𝑟=1

 
(4. 56) 

Expressing the individual components explicitly: 

𝑌𝑌10 = �
𝐵𝐵0𝜓𝜓1𝑟𝑟(𝑐𝑐1𝑖𝑖𝑖𝑖 + 𝑘𝑘1)𝜓𝜓1𝑟𝑟
𝑘𝑘𝑟𝑟 − 𝜔𝜔2𝑚𝑚𝑟𝑟 + 𝑖𝑖𝑖𝑖𝑐𝑐𝑟𝑟

𝑛𝑛

𝑟𝑟=1

 

𝑌𝑌20 = �
𝐵𝐵0𝜓𝜓1𝑟𝑟(𝑐𝑐1𝑖𝑖𝑖𝑖 + 𝑘𝑘1)𝜓𝜓2𝑟𝑟
𝑘𝑘𝑟𝑟 − 𝜔𝜔2𝑚𝑚𝑟𝑟 + 𝑖𝑖𝑖𝑖𝑐𝑐𝑟𝑟

𝑛𝑛

𝑟𝑟=1

 

(4. 57) 

The transmissibilities related to the two DOFs can be written as: 

𝑇𝑇1(𝜔𝜔) =
𝑌𝑌10
𝐵𝐵0

= �
𝜓𝜓1𝑟𝑟(𝑐𝑐1𝑖𝑖𝑖𝑖 + 𝑘𝑘1)𝜓𝜓1𝑟𝑟
𝑘𝑘𝑟𝑟 − 𝜔𝜔2𝑚𝑚𝑟𝑟 + 𝑖𝑖𝑖𝑖𝑐𝑐𝑟𝑟

𝑛𝑛

𝑟𝑟=1

= �
𝜙𝜙1𝑟𝑟(𝑐𝑐1𝑖𝑖𝑖𝑖 + 𝑘𝑘1)𝜙𝜙1𝑟𝑟
𝜔𝜔𝑟𝑟2 − 𝜔𝜔2 + 𝑖𝑖𝑖𝑖𝑐𝑐𝑟𝑟

𝑚𝑚𝑟𝑟

𝑛𝑛

𝑟𝑟=1

 

𝑇𝑇2(𝜔𝜔) =
𝑌𝑌20
𝐵𝐵0

= �
𝜓𝜓1𝑟𝑟(𝑐𝑐1𝑖𝑖𝑖𝑖 + 𝑘𝑘1)𝜓𝜓2𝑟𝑟
𝑘𝑘𝑟𝑟 − 𝜔𝜔2𝑚𝑚𝑟𝑟 + 𝑖𝑖𝑖𝑖𝑐𝑐𝑟𝑟

𝑛𝑛

𝑟𝑟=1

= �
𝜙𝜙1𝑟𝑟(𝑐𝑐1𝑖𝑖𝑖𝑖 + 𝑘𝑘1)𝜙𝜙2𝑟𝑟
𝜔𝜔𝑟𝑟2 − 𝜔𝜔2 + 𝑖𝑖𝑖𝑖𝑐𝑐𝑟𝑟

𝑚𝑚𝑟𝑟

𝑛𝑛

𝑟𝑟=1

 

(4. 58) 

Where 𝑐𝑐1 can be expressed as: 

− For the hysteretic damping model: 

𝑐𝑐1 =
𝜂𝜂1𝑘𝑘1
𝜔𝜔  (4. 59) 

In this case, the term 𝑐𝑐1𝜔𝜔 is constant 
− For the viscous damping model: 

𝑐𝑐1 = 2𝜁𝜁1𝑚𝑚𝜔𝜔𝑟𝑟 (4. 60) 

In this case, the term 𝑐𝑐1𝜔𝜔 is dependent by 𝜔𝜔 
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If we consider a generic multi degree of freedom (MDOF) nonlinear system and neglect the 
contributions from all modes except the dominant one, the transmissibility for a generic DOF 
with respect to the base motion can be expressed as: 

− For the hysteretic damping model: 

𝑇𝑇(𝜔𝜔) =
𝐴𝐴𝑟𝑟(|𝑌𝑌 − 𝐵𝐵|) + 𝑖𝑖𝐵𝐵𝑟𝑟(|𝑌𝑌 − 𝐵𝐵|)

𝜔𝜔𝑟𝑟2(|𝑌𝑌 − 𝐵𝐵|) − 𝜔𝜔2 + 𝑖𝑖𝜂𝜂𝑟𝑟(|𝑌𝑌 − 𝐵𝐵|)𝜔𝜔𝑟𝑟2(|𝑌𝑌 − 𝐵𝐵|) (4. 61) 

− For the viscous damping model: 

𝑇𝑇(𝜔𝜔) =
𝐴𝐴𝑟𝑟(|𝑌𝑌 − 𝐵𝐵|) + 𝑖𝑖𝐵𝐵𝑟𝑟,𝑛𝑛(|𝑌𝑌 − 𝐵𝐵|)𝜔𝜔

𝜔𝜔𝑟𝑟2(|𝑌𝑌 − 𝐵𝐵|) −𝜔𝜔2 + 𝑖𝑖2𝜁𝜁𝑟𝑟(|𝑌𝑌 − 𝐵𝐵|)𝜔𝜔𝑟𝑟(|𝑌𝑌 − 𝐵𝐵|)𝜔𝜔 (4. 62) 

Where 𝐵𝐵𝑟𝑟,𝑛𝑛 is the imaginary part of the modal constant normalized by the frequency. 

The resulting formulations are more general than the one presented in [7]. While only a 
single mode is still considered, the modal constant is not directly computed from the modal 
properties. 
4.1.2.1 Hysteretic damping case 

If we consider the transmissibility at two points with the same |𝑌𝑌 − 𝐵𝐵|: 

𝑇𝑇(𝜔𝜔1) =
𝐴𝐴𝑟𝑟 + 𝑖𝑖𝐵𝐵𝑟𝑟

𝜔𝜔𝑟𝑟2 − 𝜔𝜔12 + 𝑗𝑗𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2
= 𝑅𝑅1 + 𝑗𝑗𝐼𝐼1 

𝑇𝑇(𝜔𝜔2) =
𝐴𝐴𝑟𝑟 + 𝑖𝑖𝐵𝐵𝑟𝑟

𝜔𝜔𝑟𝑟2 − 𝜔𝜔22 + 𝑗𝑗𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2
= 𝑅𝑅2 + 𝑗𝑗𝐼𝐼2 

(4. 63) 

The selected points can be visualized in the Figure 4.4. 

By equating the numerators of (4.63), we obtain: 
(𝑅𝑅1 + 𝑗𝑗𝐼𝐼1)(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2 + 𝑗𝑗𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2) = (𝑅𝑅2 + 𝑗𝑗𝐼𝐼2)(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2 + 𝑗𝑗𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2) (4. 64) 

From this point onward, the derivation follows the same steps as in the receptance case. 
The resulting formulations are identical, with the only difference being that R and I now 
refer to the real and imaginary parts of the transmissibility. 
  

Figure 4.4: Equal displacement amplitude points 
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We therefore obtain: 

 𝜔𝜔𝑟𝑟2(|𝑌𝑌 − 𝐵𝐵|) =
(𝑅𝑅2 − 𝑅𝑅1)(𝑅𝑅2𝜔𝜔2

2 − 𝑅𝑅1𝜔𝜔1
2) + (𝐼𝐼2 − 𝐼𝐼1)(𝐼𝐼2𝜔𝜔2

2 − 𝐼𝐼1𝜔𝜔1
2)

(𝑅𝑅2 − 𝑅𝑅1)2 + (𝐼𝐼2 − 𝐼𝐼1)2   

𝜂𝜂𝑟𝑟(|𝑌𝑌 − 𝐵𝐵|) =
−(𝐼𝐼2 − 𝐼𝐼1)(𝑅𝑅2𝜔𝜔2

2 − 𝑅𝑅1𝜔𝜔1
2) + (𝑅𝑅2 − 𝑅𝑅1)(𝐼𝐼2𝜔𝜔2

2 − 𝐼𝐼1𝜔𝜔1
2)

𝜔𝜔𝑟𝑟2[(𝑅𝑅2 − 𝑅𝑅1)2 + (𝐼𝐼2 − 𝐼𝐼1)2]  

𝐴𝐴𝑟𝑟(|𝑌𝑌 − 𝐵𝐵|) = 𝑅𝑅1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1
2) − 𝐼𝐼1𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2 = 𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2

2) − 𝐼𝐼2𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2 
𝐵𝐵𝑟𝑟(|𝑌𝑌 − 𝐵𝐵|) = 𝐼𝐼1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) + 𝑅𝑅1𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2 = 𝐼𝐼2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) + 𝑅𝑅2𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2 

(4. 65) 

4.1.2.2 Viscous damping case 

If we consider the transmissibility at two points with the same |𝑌𝑌 − 𝐵𝐵|: 

𝑇𝑇(𝜔𝜔1) =
𝐴𝐴𝑟𝑟 + 𝑖𝑖𝐵𝐵𝑟𝑟,𝑛𝑛𝜔𝜔1

𝜔𝜔𝑟𝑟2 − 𝜔𝜔12 + 𝑗𝑗2𝜁𝜁𝑟𝑟𝜔𝜔𝑟𝑟𝜔𝜔1
= 𝑅𝑅1 + 𝑗𝑗𝐼𝐼1 

𝑇𝑇(𝜔𝜔2) =
𝐴𝐴𝑟𝑟 + 𝑖𝑖𝐵𝐵𝑟𝑟,𝑛𝑛𝜔𝜔2

𝜔𝜔𝑟𝑟2 − 𝜔𝜔22 + 𝑗𝑗2𝜁𝜁𝑟𝑟𝜔𝜔𝑟𝑟𝜔𝜔2
= 𝑅𝑅2 + 𝑗𝑗𝐼𝐼2 

(4. 66) 

By multiplying the denominators of (4.66) with the complex value of the transmissibilities: 

𝐴𝐴𝑟𝑟 + 𝑖𝑖𝐵𝐵𝑟𝑟,𝑛𝑛𝜔𝜔1 = (𝑅𝑅1 + 𝑗𝑗𝐼𝐼1)(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1
2 + 𝑗𝑗2𝜁𝜁𝑟𝑟𝜔𝜔𝑟𝑟𝜔𝜔1) 

𝐴𝐴𝑟𝑟 + 𝑖𝑖𝐵𝐵𝑟𝑟,𝑛𝑛𝜔𝜔2 = (𝑅𝑅2 + 𝑗𝑗𝐼𝐼2)(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2 + 𝑗𝑗2𝜁𝜁𝑟𝑟𝜔𝜔𝑟𝑟𝜔𝜔2) 

(4. 67) 

We get the expression of 𝐴𝐴𝑟𝑟 and 𝐵𝐵𝑟𝑟,𝑛𝑛: 

𝐴𝐴𝑟𝑟(|𝑌𝑌 − 𝐵𝐵|) = 𝑅𝑅1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1
2) − 𝐼𝐼12𝜁𝜁𝑟𝑟𝜔𝜔1𝜔𝜔𝑟𝑟 = 𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2

2) − 𝐼𝐼22𝜁𝜁𝑟𝑟𝜔𝜔2𝜔𝜔𝑟𝑟 

𝐵𝐵𝑟𝑟,𝑛𝑛(|𝑌𝑌 − 𝐵𝐵|) =
𝑅𝑅12𝜁𝜁𝑟𝑟𝜔𝜔1𝜔𝜔𝑟𝑟 + 𝐼𝐼1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2)
𝜔𝜔1

=
𝑅𝑅22𝜁𝜁𝑟𝑟𝜔𝜔2𝜔𝜔𝑟𝑟 + 𝐼𝐼2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2

2)
𝜔𝜔2

 
(4. 68) 

By equating the different expressions of 𝐴𝐴𝑟𝑟 and 𝐵𝐵𝑟𝑟,𝑛𝑛: 

�
𝑅𝑅1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝐼𝐼12𝜁𝜁𝑟𝑟𝜔𝜔1𝜔𝜔𝑟𝑟 = 𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) − 𝐼𝐼22𝜁𝜁𝑟𝑟𝜔𝜔2𝜔𝜔𝑟𝑟

𝑅𝑅1
𝜔𝜔2

𝜔𝜔1
2𝜁𝜁𝑟𝑟𝜔𝜔1𝜔𝜔𝑟𝑟 + 𝐼𝐼1

𝜔𝜔2

𝜔𝜔1
(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) = 𝑅𝑅22𝜁𝜁𝑟𝑟𝜔𝜔2𝜔𝜔𝑟𝑟 + 𝐼𝐼2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) (4. 69) 

Rewriting the expressions: 

�
𝑅𝑅1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) = (𝐼𝐼1𝜔𝜔1 − 𝐼𝐼2𝜔𝜔2)2𝜁𝜁𝑟𝑟𝜔𝜔𝑟𝑟

�𝑅𝑅1
𝜔𝜔2

𝜔𝜔1
𝜔𝜔1 − 𝑅𝑅2𝜔𝜔2� 2𝜁𝜁𝑟𝑟𝜔𝜔𝑟𝑟 = 𝐼𝐼2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2

2) − 𝐼𝐼1
𝜔𝜔2

𝜔𝜔1
(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) (4. 70) 

Solving for the 2𝜁𝜁𝑟𝑟𝜔𝜔𝑟𝑟: 

2𝜁𝜁𝑟𝑟𝜔𝜔𝑟𝑟 =
𝑅𝑅1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2)

𝐼𝐼1𝜔𝜔1 − 𝐼𝐼2𝜔𝜔2
=
𝐼𝐼2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2

2) − 𝐼𝐼1
𝜔𝜔2
𝜔𝜔1

(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1
2)

𝑅𝑅1
𝜔𝜔2
𝜔𝜔1

𝜔𝜔1 − 𝑅𝑅2𝜔𝜔2
 (4. 71) 
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Reworking (4.71): 
[𝑅𝑅1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2)](𝑅𝑅1𝜔𝜔2 − 𝑅𝑅2𝜔𝜔2) =

= �𝐼𝐼2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) − 𝐼𝐼1

𝜔𝜔2

𝜔𝜔1
(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2)� (𝐼𝐼1𝜔𝜔1 − 𝐼𝐼2𝜔𝜔2) 
(4. 72) 

Expanding the products of (4.72): 

𝑅𝑅12𝜔𝜔2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1
2) − 𝑅𝑅1𝜔𝜔2𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2

2) − 𝑅𝑅1𝑅𝑅2𝜔𝜔2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1
2) + 𝑅𝑅22𝜔𝜔2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2

2) 

= 𝐼𝐼1𝐼𝐼2𝜔𝜔1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) − 𝐼𝐼12𝜔𝜔2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝐼𝐼22𝜔𝜔2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) + 𝐼𝐼1𝐼𝐼2

𝜔𝜔2
2

𝜔𝜔1
(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) 
(4. 73) 

Bringing all the terms to the left-hand side: 

�𝑅𝑅12𝜔𝜔2 − 𝑅𝑅1𝑅𝑅2𝜔𝜔2 + 𝐼𝐼12𝜔𝜔2 − 𝐼𝐼1𝐼𝐼2
𝜔𝜔2
2

𝜔𝜔1
� (𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2)

+ (𝑅𝑅22𝜔𝜔2 − 𝑅𝑅1𝜔𝜔2𝑅𝑅2 + 𝐼𝐼22𝜔𝜔2 − 𝐼𝐼1𝐼𝐼2𝜔𝜔1)(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2) = 0 

(4. 74) 

Leaving only the terms related to 𝜔𝜔𝑟𝑟2 to the left-hand side: 

�𝑅𝑅12𝜔𝜔2 + 𝐼𝐼12𝜔𝜔2 + 𝑅𝑅22𝜔𝜔2 + 𝐼𝐼22𝜔𝜔2 − 𝑅𝑅1𝜔𝜔2𝑅𝑅2 − 𝑅𝑅1𝑅𝑅2𝜔𝜔2 − 𝐼𝐼1𝐼𝐼2𝜔𝜔1 − 𝐼𝐼1𝐼𝐼2
𝜔𝜔2
2

𝜔𝜔1
�𝜔𝜔𝑟𝑟2 = 

�𝑅𝑅12𝜔𝜔2 − 𝑅𝑅1𝑅𝑅2𝜔𝜔2 + 𝐼𝐼12𝜔𝜔2 − 𝐼𝐼1𝐼𝐼2
𝜔𝜔2
2

𝜔𝜔1
�𝜔𝜔1

2 + (𝑅𝑅22𝜔𝜔2 − 𝑅𝑅1𝜔𝜔2𝑅𝑅2 + 𝐼𝐼22𝜔𝜔2 − 𝐼𝐼1𝐼𝐼2𝜔𝜔1)𝜔𝜔2
2  

(4. 75) 

We finally obtain the expression of 𝜔𝜔𝑟𝑟2: 

𝜔𝜔𝑟𝑟2(|𝑌𝑌 − 𝐵𝐵|) =
�𝑅𝑅12𝜔𝜔2−𝑅𝑅1𝑅𝑅2𝜔𝜔2+𝐼𝐼12𝜔𝜔2−𝐼𝐼1𝐼𝐼2

𝜔𝜔2
2

𝜔𝜔1
�𝜔𝜔1

2+�𝑅𝑅22𝜔𝜔2−𝑅𝑅1𝑅𝑅2𝜔𝜔2+𝐼𝐼22𝜔𝜔2−𝐼𝐼1𝐼𝐼2𝜔𝜔1�𝜔𝜔2
2

𝑅𝑅12𝜔𝜔2+𝐼𝐼12𝜔𝜔2+𝑅𝑅22𝜔𝜔2+𝐼𝐼22𝜔𝜔2−2𝑅𝑅1𝑅𝑅2𝜔𝜔2−𝐼𝐼1𝐼𝐼2𝜔𝜔1−𝐼𝐼1𝐼𝐼2
𝜔𝜔2
2

𝜔𝜔1

  (4. 76) 

Recalling the equation (4.71): 

2𝜁𝜁𝑟𝑟𝜔𝜔𝑟𝑟 =
𝑅𝑅1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2)

𝐼𝐼1𝜔𝜔1 − 𝐼𝐼2𝜔𝜔2
 (4. 77) 

We finally obtain the expression of 𝜁𝜁𝑟𝑟: 

𝜁𝜁𝑟𝑟(|𝑌𝑌 − 𝐵𝐵|) =
𝑅𝑅1(𝜔𝜔𝑟𝑟2 − 𝜔𝜔1

2) − 𝑅𝑅2(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2
2)

2𝜔𝜔𝑟𝑟(𝐼𝐼1𝜔𝜔1 − 𝐼𝐼2𝜔𝜔2)   (4. 78) 
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4.2 Modified-Dobson method 
The extraction method described in [8] falls within the category of Single-Degree-of-
Freedom (SDOF) modal analysis techniques. It is based on the line-fit method using 
Dobson's formulation, originally developed for linear systems. 

A Frequency Response Function (𝐹𝐹𝐹𝐹𝐹𝐹), either transmissibility or receptance, can be 
represented either as the sum of contributions from 𝑁𝑁 modes or, alternatively, as a single 
dominant mode 𝑟𝑟 with an added constant residual term. 
In the case of hysteretic damping, the FRF can be expressed as: 

𝐹𝐹𝐹𝐹𝐹𝐹(𝜔𝜔) = �
𝑟𝑟𝐴𝐴𝑖𝑖𝑖𝑖

𝜔𝜔𝑟𝑟2 − 𝜔𝜔2 + 𝑖𝑖𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2

𝑁𝑁

𝑟𝑟=1

=
𝑟𝑟𝐴𝐴𝑖𝑖𝑖𝑖

𝜔𝜔𝑟𝑟2 − 𝜔𝜔2 + 𝑖𝑖𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2
+ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

𝑟𝑟𝐴𝐴𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑟𝑟 + 𝑖𝑖𝐵𝐵𝑟𝑟 

(4. 79) 

The Dobson method introduces a new parameter: the pseudo drive frequency Ω, which is 
used to create a pseudo frequency response function 𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖(𝛺𝛺) near the resonance. 
To isolate the contribution of mode 𝑟𝑟 and account for the residual effects on the response, 
two transfer functions are subtracted, resulting in: 

𝐹𝐹𝐹𝐹𝐹𝐹(𝜔𝜔) − 𝐹𝐹𝐹𝐹𝐹𝐹(𝛺𝛺) =
𝐴𝐴𝑟𝑟 + 𝑖𝑖𝐵𝐵𝑟𝑟

𝜔𝜔𝑟𝑟2 − 𝜔𝜔2 + 𝑖𝑖𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2
−

𝐴𝐴𝑟𝑟 + 𝑖𝑖𝐵𝐵𝑟𝑟
𝜔𝜔𝑟𝑟2 − 𝛺𝛺2 + 𝑖𝑖𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2

 (4. 80) 

Equation (4.80) can be rewritten as: 

𝐹𝐹𝐹𝐹𝐹𝐹(𝜔𝜔) − 𝐹𝐹𝐹𝐹𝐹𝐹(𝛺𝛺) = (𝐴𝐴𝑟𝑟 + 𝑖𝑖𝐵𝐵𝑟𝑟) � 𝜔𝜔2−𝛺𝛺2

�𝜔𝜔𝑟𝑟
2−𝜔𝜔2��𝜔𝜔𝑟𝑟

2−𝛺𝛺2�−𝜂𝜂𝑟𝑟2𝜔𝜔𝑟𝑟
4+𝑖𝑖𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟

2�2𝜔𝜔𝑟𝑟
2−𝜔𝜔2−𝛺𝛺2�

�  (4. 81) 

We can define the delta function as: 

𝛥𝛥(𝜔𝜔) =
𝜔𝜔2 − 𝛺𝛺2

𝐹𝐹𝐹𝐹𝐹𝐹(𝜔𝜔) − 𝐹𝐹𝐹𝐹𝐹𝐹(𝛺𝛺) (4. 82) 

By working on equation (4.82), we obtain: 

𝛥𝛥(𝜔𝜔) =
𝐴𝐴𝑟𝑟 − 𝑖𝑖𝐵𝐵𝑟𝑟
𝐴𝐴𝑟𝑟2 + 𝐵𝐵𝑟𝑟2

[(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2)(𝜔𝜔𝑟𝑟2 − 𝛺𝛺2) − 𝜂𝜂𝑟𝑟2𝜔𝜔𝑟𝑟4 + 𝑖𝑖𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2(2𝜔𝜔𝑟𝑟2 − 𝜔𝜔2 − 𝛺𝛺2)] (4. 83) 

The “fixing” frequency Ω is swept across the entire drive frequency vector 𝜔𝜔, generating a 
square matrix [Δ] of values, where zeroes on the diagonal must be excluded. 

The next step involves separating the real and imaginary parts of the delta function and 
plotting them against the squared frequency 𝜔𝜔2 as described by the following equations: 

𝑅𝑅𝑅𝑅(𝛥𝛥) = 𝐴𝐴𝑟𝑟
𝐴𝐴𝑟𝑟2+𝐵𝐵𝑟𝑟2

[(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2)(𝜔𝜔𝑟𝑟2 − 𝛺𝛺2) − 𝜂𝜂𝑟𝑟2𝜔𝜔𝑟𝑟4] + 𝐵𝐵𝑟𝑟
𝐴𝐴𝑟𝑟2+𝐵𝐵𝑟𝑟2

[𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2(2𝜔𝜔𝑟𝑟2 − 𝜔𝜔2 − 𝛺𝛺2)]  

𝐼𝐼𝐼𝐼(𝛥𝛥) = 𝐴𝐴𝑟𝑟
𝐴𝐴𝑟𝑟2+𝐵𝐵𝑟𝑟2

[𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2(2𝜔𝜔𝑟𝑟2 − 𝜔𝜔2 − 𝛺𝛺2)] − 𝐵𝐵𝑟𝑟
𝐴𝐴𝑟𝑟2+𝐵𝐵𝑟𝑟2

[(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2)(𝜔𝜔𝑟𝑟2 − 𝛺𝛺2) − 𝜂𝜂𝑟𝑟2𝜔𝜔𝑟𝑟4]  
(4. 84) 
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The real and imaginary components of Δ(𝜔𝜔) can be expressed as quadratic functions of 𝜔𝜔: 

𝑅𝑅𝑅𝑅�𝛥𝛥(𝜔𝜔)� = 𝑚𝑚𝑅𝑅𝜔𝜔2 + 𝑐𝑐𝑅𝑅 

𝐼𝐼𝐼𝐼�𝛥𝛥(𝜔𝜔)� = 𝑚𝑚𝐼𝐼𝜔𝜔2 + 𝑐𝑐𝐼𝐼 
(4. 85) 

To obtain the coefficients 𝑚𝑚𝑅𝑅 and 𝑚𝑚𝐼𝐼, (4.84) and (4.85) are equated: 

𝑚𝑚𝑅𝑅 = −
1

𝐴𝐴𝑟𝑟2 + 𝐵𝐵𝑟𝑟2
[𝐴𝐴𝑟𝑟(𝜔𝜔𝑟𝑟2 − 𝛺𝛺2) + 𝐵𝐵𝑟𝑟𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2] 

𝑚𝑚𝐼𝐼 =
1

𝐴𝐴𝑟𝑟2 + 𝐵𝐵𝑟𝑟2
[𝐵𝐵𝑟𝑟(𝜔𝜔𝑟𝑟2 − 𝛺𝛺2) − 𝐴𝐴𝑟𝑟𝜂𝜂𝑟𝑟𝜔𝜔𝑟𝑟2] 

(4. 86) 

The coefficients 𝑚𝑚𝑅𝑅 and 𝑚𝑚𝐼𝐼 in (4.86) can be expressed as quadratic functions of Ω: 

𝑚𝑚𝑅𝑅 = 𝑛𝑛𝑅𝑅𝛺𝛺2 + 𝑑𝑑𝑅𝑅 

𝑚𝑚𝐼𝐼 = 𝑛𝑛𝐼𝐼𝛺𝛺2 + 𝑑𝑑𝐼𝐼  
(4. 87) 

The obtain coefficients in (4.87) are obtained by equating (4.86) and (4.87): 

𝑛𝑛𝑅𝑅 =
𝐴𝐴𝑟𝑟

𝐴𝐴𝑟𝑟2 + 𝐵𝐵𝑟𝑟2
 

𝑑𝑑𝑅𝑅 = −
(𝐴𝐴𝑟𝑟 + 𝐵𝐵𝑟𝑟𝜂𝜂𝑟𝑟)𝜔𝜔𝑟𝑟2

𝐴𝐴𝑟𝑟2 + 𝐵𝐵𝑟𝑟2
 

𝑛𝑛𝐼𝐼 = −
𝐵𝐵𝑟𝑟

𝐴𝐴𝑟𝑟2 + 𝐵𝐵𝑟𝑟2
 

𝑑𝑑𝐼𝐼 = −
(𝐴𝐴𝑟𝑟𝜂𝜂𝑟𝑟 − 𝐵𝐵𝑟𝑟)𝜔𝜔𝑟𝑟2

𝐴𝐴𝑟𝑟2 + 𝐵𝐵𝑟𝑟2
 

(4. 88) 

Finally, the constants derived from (4.88) can be used to extract the four modal parameters: 
𝜔𝜔𝑟𝑟2, 𝜂𝜂𝑟𝑟 ,𝐴𝐴𝑟𝑟 ,𝐵𝐵𝑟𝑟. As previously discussed, these modal parameters are a function of the 
displacement amplitude |𝑍𝑍|, where: 

− |𝑍𝑍| = |𝑋𝑋| in the case of receptances 
− |𝑍𝑍| = |𝑌𝑌 − 𝐵𝐵| in the case of trasmissibilities 

From the first and third equations of (4.88), we obtain: 

𝐴𝐴𝑟𝑟2 + 𝐵𝐵𝑟𝑟2 =
1

𝑛𝑛𝑅𝑅2 + 𝑛𝑛𝐼𝐼2
 (4. 89) 

By substituting Equation (4.89) into the first equation of (4.88), we derive: 

𝐴𝐴𝑟𝑟(|𝑍𝑍|) =
𝑛𝑛𝑅𝑅

𝑛𝑛𝑅𝑅2 + 𝑛𝑛𝐼𝐼2
 (4. 90) 

By substituting Equation (4.89) into the third equation of (4.88), we obtain: 

𝐵𝐵𝑟𝑟(|𝑍𝑍|)  = −
𝑛𝑛𝐼𝐼

𝑛𝑛𝑅𝑅2 + 𝑛𝑛𝐼𝐼2
 (4. 91) 
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Using the second and fourth equations of (4.88), we derive: 

𝜂𝜂𝑟𝑟 =
𝑑𝑑𝐼𝐼𝐴𝐴𝑟𝑟 + 𝑑𝑑𝑅𝑅𝐵𝐵𝑟𝑟
𝑑𝑑𝑅𝑅𝐴𝐴𝑟𝑟 − 𝑑𝑑𝐼𝐼𝐵𝐵𝑟𝑟

 (4. 92) 

By substituting (4.90) and (4.91) into (4.92), we obtain: 

𝜂𝜂𝑟𝑟(|𝑍𝑍|) =
𝑑𝑑𝐼𝐼𝑛𝑛𝑅𝑅 − 𝑑𝑑𝑅𝑅𝑛𝑛𝐼𝐼
𝑑𝑑𝑅𝑅𝑛𝑛𝑅𝑅 + 𝑑𝑑𝐼𝐼𝑛𝑛𝐼𝐼

 (4.92) 

Finally, substituting (4.92) into either the second or fourth equation of (4.88), we derive: 

𝜔𝜔𝑟𝑟2(|𝑍𝑍|) = −
𝑑𝑑𝑅𝑅𝑛𝑛𝑅𝑅 + 𝑑𝑑𝐼𝐼𝑛𝑛𝐼𝐼
𝑛𝑛𝑅𝑅2 + 𝑛𝑛𝐼𝐼2

 (4. 93) 

If we want to obtain the damping ratio, we can use the following approximation: 

𝜁𝜁(|𝑍𝑍|) ≈
𝜂𝜂
2 (4. 94) 

The discussion now transitions to the Modified-Dobson method, which extends the 
applicability of the Dobson method to nonlinear systems. 

One can think of a nonlinear FRF that originates from an underlying linear response, 
becoming increasingly nonlinear as the Nyquist circle is swept and then progressively more 
linear again as the origin is approached. 

Two frequency points, referred to as fixers, are selected at the lowest amplitude of the FRF, 
where the system response can be assumed to be linear. A third point, known as the sweeper, 
is chosen at a desired amplitude of the receptance, forming a triplet of frequency points. This 
triplet defines a Nyquist circle that represents an equivalent linear system for the selected 
receptance amplitude, as illustrated in Figure 4.5. 

By applying the Dobson method to the triplet, the four modal parameters 𝜔𝜔𝑟𝑟2, 𝜂𝜂𝑟𝑟 ,𝐴𝐴𝑟𝑟,𝐵𝐵𝑟𝑟 can 
be extracted. By sweeping the third frequency between the two reference points of the FRF, 
it’s possible to track how the modal parameters transition from linear to nonlinear vibrations. 
Essentially, this process deconstructs a nonlinear FRF into a sequence of linear ones, each 
associated with different amplitude levels. In Figure 4.5 we can see the transmissibility of a 
linearized system corresponding to a certain displacement amplitude.  

Figure 4.5: Nyquist Diagram and T magnitude of the 
equivalent linear system 
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The Modified-Dobson method is effective for resonances that are well-separated, as (4.80) 
eliminates residuals from neighbouring modes. However, it becomes less reliable as modes 
converge, due to two primary challenges. First, the fixers are chosen at an amplitude 
associated with linear vibrations, but as the modes get closer, the likelihood of including 
nonlinear residuals at the reference points increases. Second, the sweeper traverses the 
frequency range between the fixers, thus incorporating varying residuals with each iteration. 
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5 Validation 
This chapter focuses on verifying the proposed methods by applying them to both simulated 
and experimental reference systems, before proceeding to the deployable reflector data. 
Initial tests are carried out on single and two-degree-of-freedom systems with known types 
of nonlinearities to evaluate consistency and accuracy. Experimental validation follows. 

To this end, two approaches are employed: 

− Analytical expressions for equivalent stiffness and damping are compared with the 
values extracted from the numerical systems. 

− The New Method (NM) is used to reconstruct the nonlinear FRFs and compare them 
with the original ones. This approach is applied in the case of experimental systems. 

5.1 Analytical stiffness and damping functions 
The goal is to derive expressions for the parameters 𝑘𝑘𝑟𝑟,𝑒𝑒𝑒𝑒 and 𝑐𝑐𝑟𝑟,𝑒𝑒𝑒𝑒, which represent 
equivalent stiffness and damping coefficients that account for both linear and nonlinear 
contributions. These parameters appear in the equation of motion as follows: 

𝑚𝑚𝑥̈𝑥 + 𝑐𝑐𝑒𝑒𝑒𝑒(|𝑋𝑋|)𝑥̇𝑥 + 𝑘𝑘𝑒𝑒𝑒𝑒(|𝑋𝑋|)𝑥𝑥 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝜔𝜔𝜔𝜔) (5. 1) 

In this formulation, the system is excited by an external force. 
If, instead, the excitation is applied at the base, the proposed expressions remain valid, but 
the absolute coordinate must be replaced with the relative one. 

The parameters are derived using the first-order approximation of the Harmonic Balance 
(HB) method. 

5.1.1 Cubic stiffness and quadratic damping case 
We consider an SDOF system governed by the following equation of motion: 

 𝑚𝑚𝑥̈𝑥 + 𝑐𝑐𝑥̇𝑥 + 𝑐𝑐𝑛𝑛𝑛𝑛|𝑥̇𝑥|𝑥̇𝑥 + 𝑘𝑘𝑘𝑘 + 𝑘𝑘𝑛𝑛𝑛𝑛𝑥𝑥3 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝜔𝜔𝜔𝜔) (5. 2) 

We assume the response to be harmonic at the excitation frequency 𝜔𝜔: 

𝑥𝑥 = |𝑋𝑋|𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔 + 𝜙𝜙) = 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋(𝜔𝜔𝜔𝜔) (5. 3) 

This leads to: 

𝑥𝑥3 = �|𝑋𝑋|𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔 + 𝜙𝜙)�3 = |𝑋𝑋|3𝑠𝑠𝑠𝑠𝑛𝑛3(𝜔𝜔𝜔𝜔 + 𝜙𝜙) (5. 4) 

Using the trigonometric identity: 

𝑠𝑠𝑠𝑠𝑛𝑛3(𝜔𝜔𝜔𝜔 + 𝜙𝜙) =
3
4 𝑠𝑠𝑠𝑠𝑠𝑠

(𝜔𝜔𝜔𝜔 + 𝜙𝜙) −
1
4 𝑠𝑠𝑠𝑠𝑠𝑠

�3(𝜔𝜔𝜔𝜔 + 𝜙𝜙)� (5. 5) 

Substituting (5.5) into (5.4) and approximating to the first harmonic, we obtain: 

𝑥𝑥3 = |𝑋𝑋|3 �
3
4 𝑠𝑠𝑠𝑠𝑠𝑠

(𝜔𝜔𝜔𝜔 + 𝜙𝜙) −
1
4 𝑠𝑠𝑠𝑠𝑠𝑠

�3(𝜔𝜔𝜔𝜔 + 𝜙𝜙)�� ≅
3
4

|𝑋𝑋|3𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔 + 𝜙𝜙) (5. 6) 
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The cubic stiffness term then becomes: 

𝑘𝑘𝑛𝑛𝑛𝑛𝑥𝑥3 ≅ 𝑘𝑘𝑛𝑛𝑛𝑛
3
4

|𝑋𝑋|3𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔 + 𝜙𝜙) = �
3
4𝑘𝑘𝑛𝑛𝑛𝑛

|𝑋𝑋|2� 𝑥𝑥 (5. 7) 

Therefore, the total stiffness contribution is: 

𝑘𝑘𝑘𝑘 + 𝑘𝑘𝑛𝑛𝑛𝑛𝑥𝑥3 ≅ 𝑘𝑘𝑘𝑘 + �
3
4𝑘𝑘𝑛𝑛𝑛𝑛

|𝑋𝑋|2� 𝑥𝑥 ≅ �𝑘𝑘 +
3
4𝑘𝑘𝑛𝑛𝑛𝑛

|𝑋𝑋|2� 𝑥𝑥 (5. 8) 

Recalling (5.1), we finally obtain: 

𝑘𝑘𝑒𝑒𝑒𝑒(|𝑋𝑋|) ≅ 𝑘𝑘 +
3
4 𝑘𝑘𝑛𝑛𝑛𝑛

|𝑋𝑋|2 (5. 9) 

We can express the velocity as: 

𝑥̇𝑥 = |𝑋𝑋|𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝜔𝜔𝜔𝜔 + 𝜙𝜙) (5. 10) 

This leads to: 
|𝑥̇𝑥|𝑥̇𝑥 = |𝑋𝑋|2𝜔𝜔2|𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔 + 𝜙𝜙)|𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔 + 𝜙𝜙) (5. 11) 

Expanding the product |𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔 + 𝜙𝜙)|𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔 + 𝜙𝜙) into a Fourier series: 

|𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔 + 𝜙𝜙)|𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔 + 𝜙𝜙) = �[𝑎𝑎𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝑛𝑛) + 𝑏𝑏𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛𝑛𝑛)]
∞

𝑛𝑛=0

 (5. 12) 

Approximating the product with its first harmonic: 

|𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔 + 𝜙𝜙)|𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔 + 𝜙𝜙) ≅
8

3𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐
(𝜔𝜔𝜔𝜔 + 𝜙𝜙) (5. 13) 

Substituting (5.13) into (5.11), we obtain: 

|𝑥̇𝑥|𝑥̇𝑥 ≅ |𝑋𝑋|2𝜔𝜔2 �
8

3𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐
(𝜔𝜔𝜔𝜔)� (5. 14) 

The quadratic damping term then becomes: 

𝑐𝑐𝑛𝑛𝑛𝑛|𝑥̇𝑥|𝑥̇𝑥 ≅ 𝑐𝑐𝑛𝑛𝑛𝑛|𝑋𝑋|𝑋𝑋𝜔𝜔2 �
8

3𝜋𝜋 𝑐𝑐𝑐𝑐𝑐𝑐
(𝜔𝜔𝜔𝜔)� =

8
3𝜋𝜋 𝑐𝑐𝑛𝑛𝑛𝑛

|𝑋𝑋|𝜔𝜔𝑥̇𝑥 (5. 15) 

Therefore, the total damping contribution is: 

𝑐𝑐𝑥̇𝑥 + 𝑐𝑐𝑛𝑛𝑛𝑛|𝑥̇𝑥|𝑥̇𝑥 ≅ 𝑐𝑐𝑥̇𝑥 +
8

3𝜋𝜋 𝑐𝑐𝑛𝑛𝑛𝑛
|𝑋𝑋|𝜔𝜔𝑥̇𝑥 ≅ �𝑐𝑐 +

8
3𝜋𝜋 𝑐𝑐𝑛𝑛𝑛𝑛

|𝑋𝑋|𝜔𝜔� 𝑥̇𝑥 (5. 16) 

Recalling (5.1), we finally obtain: 

𝑐𝑐𝑒𝑒𝑒𝑒(|𝑋𝑋|) ≅ 𝑐𝑐 +
8

3𝜋𝜋 𝑐𝑐𝑛𝑛𝑛𝑛
|𝑋𝑋|𝜔𝜔 ≅ 𝑐𝑐 +

8
3𝜋𝜋 𝑐𝑐𝑛𝑛𝑛𝑛

|𝑋𝑋|𝜔𝜔𝑟𝑟 (5. 17) 
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5.1.2 Coulomb damping case 
We consider an SDOF system governed by the following equation of motion: 

𝑚𝑚𝑥̈𝑥 + 𝑐𝑐𝑥̇𝑥 + 𝐹𝐹𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥) + 𝑘𝑘𝑘𝑘 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝜔𝜔𝜔𝜔) (5. 18) 

To derive 𝑐𝑐𝑒𝑒𝑒𝑒, we equate the energy dissipated per cycle by the Coulomb friction force to 
the energy dissipated per cycle by an equivalent viscous damping force. 

The energy dissipated per cycle due to Coulomb damping is given by: 

𝐸𝐸𝐹𝐹𝑓𝑓 = 𝐹𝐹𝑓𝑓 � |𝑥̇𝑥|𝑑𝑑𝑑𝑑
𝑇𝑇

0
 (5. 19) 

We know that: 
|𝑥̇𝑥| = |𝑋𝑋|𝜔𝜔|𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔 + 𝜙𝜙)| (5. 20) 

Substituting (5.20) into (5.19), we obtain: 

𝐸𝐸𝐹𝐹𝑓𝑓 = 𝐹𝐹𝑓𝑓|𝑋𝑋|𝜔𝜔� |𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔 + 𝜙𝜙)|𝑑𝑑𝑑𝑑
𝑇𝑇

0
= 𝐹𝐹𝑓𝑓|𝑋𝑋|𝜔𝜔

4
𝜔𝜔 = 4𝐹𝐹𝑓𝑓|𝑋𝑋| (5. 21) 

The energy dissipated per cycle by the equivalent viscous damping force is given by: 

𝐸𝐸𝑑𝑑 = 𝑐𝑐𝑒𝑒𝑒𝑒 � 𝑥̇𝑥(𝑡𝑡)2𝑑𝑑𝑑𝑑
𝑇𝑇

0
 (5. 22) 

We know that: 

𝑥̇𝑥(𝑡𝑡)2 = |𝑋𝑋|2𝜔𝜔2 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜔𝜔𝜔𝜔 + 𝜙𝜙) (5. 23) 

Substituting (5.23) into (5.22), we obtain: 

𝐸𝐸𝑑𝑑 = 𝑐𝑐𝑒𝑒𝑒𝑒|𝑋𝑋|2𝜔𝜔2 � 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜔𝜔𝜔𝜔 + 𝜙𝜙)𝑑𝑑𝑑𝑑
𝑇𝑇

0
= 𝑐𝑐𝑒𝑒𝑒𝑒|𝑋𝑋|2𝜔𝜔2 𝜋𝜋

𝜔𝜔 = 𝑐𝑐𝑒𝑒𝑒𝑒|𝑋𝑋|2𝜔𝜔𝜔𝜔 (5. 24) 

Equating (5.21) and (5.24) yields: 

4𝐹𝐹𝑓𝑓|𝑋𝑋| = 𝑐𝑐𝑒𝑒𝑒𝑒|𝑋𝑋|2𝜔𝜔𝜔𝜔 (5. 25) 

Solving for 𝑐𝑐𝑟𝑟,𝑒𝑒𝑒𝑒𝑥̇𝑥: 

𝑐𝑐𝑒𝑒𝑒𝑒𝑥̇𝑥 =
4𝐹𝐹𝑓𝑓

|𝑋𝑋|𝜔𝜔𝜔𝜔 𝑥̇𝑥 (5. 26) 

Including the linear damping term, we get the final expression: 

𝑐𝑐𝑒𝑒𝑒𝑒 = 𝑐𝑐 +
4𝐹𝐹𝑓𝑓

|𝑋𝑋|𝜔𝜔𝜔𝜔 ≅ 𝑐𝑐 +
4𝐹𝐹𝑓𝑓

|𝑋𝑋|𝜔𝜔𝑟𝑟𝜋𝜋
 (5. 27) 
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5.2 New Method (NM) 
This method, described in [8], can be used to generate a nonlinear FRF from a series of linear 
FRFs, each characterized by a specific displacement amplitude |𝑍𝑍|: 

− |𝑍𝑍| = |𝑋𝑋| in the case of receptances 
− |𝑍𝑍| = |𝑌𝑌 − 𝐵𝐵| in the case of transmissibilities 

Once the modal parameters have been evaluated as a function of the displacement amplitude 
|𝑍𝑍|, they can be fitted using a polynomial function. 

𝜔𝜔𝑟𝑟(|𝑍𝑍|) = 𝜔𝜔𝑛𝑛|𝑍𝑍|𝑛𝑛 + ⋯+ 𝜔𝜔1|𝑍𝑍| + 𝜔𝜔0 
𝜂𝜂𝑟𝑟(|𝑍𝑍|) = 𝜂𝜂𝑛𝑛|𝑍𝑍|𝑛𝑛 + ⋯+ 𝜂𝜂1|𝑍𝑍| + 𝜂𝜂0 
𝐴𝐴𝑟𝑟(|𝑍𝑍|) = 𝐴𝐴𝑛𝑛|𝑍𝑍|𝑛𝑛 + ⋯+ 𝐴𝐴1|𝑍𝑍| + 𝐴𝐴0 
𝐵𝐵𝑟𝑟(|𝑍𝑍|) = 𝐵𝐵𝑛𝑛|𝑍𝑍|𝑛𝑛 + ⋯+ 𝐵𝐵1|𝑍𝑍| + 𝐵𝐵0 

(5. 28) 

The subscript 𝑟𝑟 refers to the r-th mode, which is the predominant mode at the frequency span 
considered in the analysis.  
The degree of the polynomial functions 𝑛𝑛 should be chosen appropriately. 

These functions can be used to generate the experimental nonlinear Frequency Response 
Surface (FRS), which can be expressed as: 

𝐹𝐹𝐹𝐹𝐹𝐹(𝜔𝜔, |𝑍𝑍|) =
𝐴𝐴𝑟𝑟(|𝑍𝑍|) + 𝑖𝑖𝐵𝐵𝑟𝑟(|𝑍𝑍|)

𝜔𝜔𝑟𝑟2(|𝑍𝑍|) −𝜔𝜔2 + 𝑖𝑖𝜂𝜂𝑟𝑟(|𝑍𝑍|)𝜔𝜔𝑟𝑟2(|𝑍𝑍|) (5. 29) 

The nonlinear FRF is obtained by intersecting the FRS with: 

− A force plane relative to the input force if the case of receptances 
− A displacement plane relative to the input displacement at the base if the case of 

transmissibilities 

An example in the case of transmissibilities is shown in Figure 5.1.  

  

Figure 5.1: Intersection between the FRS and the Displacement Plane 
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5.3 Validation with numerical data 
To assess the effectiveness of the nonlinear identification methods, CONCERTO and 
Modified Dobson, they are applied to numerical data generated from simulated systems. 
These systems are designed to exhibit distinct types of structural nonlinearities commonly 
encountered in practice. Specifically, the following cases are analyzed: 

− Cubic stiffness nonlinearity 
− Quadratic damping nonlinearity 
− Coulomb damping 

For each configuration, frequency response data is computed numerically and analyzed 
using both identification methods. The results obtained are subsequently compared to 
reference solutions computed analytically using the Harmonic Balance (HB) method. 
This comparison provides a benchmark to validate the accuracy and robustness of the 
proposed identification approach in the presence of different nonlinear effects. 

It is important to note that, although transmissibilities were used instead of receptances in 
this validation phase, it was still possible to extract the equivalent stiffness and damping 
functions since the mass of the system is known a priori in the numerical simulations. 
As a result, the nonlinear stiffness and damping functions can be extracted and compared to 
the analytical reference solutions. 

To further validate their applicability in realistic scenarios, additive noise was introduced 
into the time-domain simulation data.  
This allowed the assessment of the robustness of both methods when processing noisy 
signals, reflecting conditions similar to those encountered in experimental measurements. 
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5.3.1 SDOF - Cubic stiffness and quadratic damping – Results 
The system under investigation is a Single-Degree-of-Freedom (SDOF) system with base 
excitation, governed by the following equation of motion: 

𝑚𝑚𝑦̈𝑦 + 𝑐𝑐�𝑦̇𝑦 − 𝑏̇𝑏� + 𝑐𝑐𝑛𝑛𝑛𝑛�𝑦̇𝑦 − 𝑏̇𝑏��𝑦̇𝑦 − 𝑏̇𝑏� + 𝑘𝑘(𝑦𝑦 − 𝑏𝑏) + 𝑘𝑘𝑛𝑛𝑛𝑛(𝑦𝑦 − 𝑏𝑏)3 = 0 (5. 30) 

Where 𝑦𝑦 represents the absolute displacement, while b represents the base motion. 
Figure 5.2 presents the results obtained using CONCERTO, comparing them with the 
corresponding analytical values. 
The comparison confirms the high accuracy of the method overall; however, the damping 
function shows a higher relative error at lower displacement levels. 
 

  

  

Figure 5.2: SDOF - Cubic stiffness and quadratic damping - CONCERTO 

To evaluate the method’s robustness to noise, artificial noise was added to the time-domain 
response of the system. Since the noise was introduced randomly, the identification 
procedure was repeated on multiple datasets for each noise level. 
The root mean square (RMS) of the identification error was then computed to quantify the 
impact of noise. The results are summarized below. 
 

Noise level Stiffness RMS error (95% CI) Damping RMS error (95% CI) 

10% (2.91 ⋅ 10−2 ± 3.07 ⋅ 10−4)% (3.60 ± 1.05 ⋅ 10−2)% 

8% (2.89 ⋅ 10−2 ± 2.07 ⋅ 10−4)% (3.60 ± 5.92 ⋅ 10−3)% 

6% (2.89 ⋅ 10−2 ± 1.17 ⋅ 10−4)% (3.60 ± 4.26 ⋅ 10−3)% 
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Figure 5.3 presents the results obtained using Modified Dobson, comparing them with the 
corresponding analytical values. 
The comparison confirms the high accuracy of the method overall; however, the damping 
function shows a higher relative error at higher displacement levels. 

 

  

 

 

 

 

To evaluate the method’s robustness to noise, artificial noise was added to the time-domain 
response of the system. Since the noise was introduced randomly, the identification 
procedure was repeated on multiple datasets for each noise level. 
The root mean square (RMS) of the identification error was then computed to quantify the 
impact of noise. The results are summarized below. 

 

Noise level Stiffness RMS error (95% CI) Damping RMS error (95% CI) 

10% (1.22 ⋅ 10−1 ± 1.23 ⋅ 10−3)% (7.93 ± 8.35 ⋅ 10−2)% 

8% (1.24 ⋅ 10−1 ± 1.29 ⋅ 10−3)% (7.95 ± 6.34 ⋅ 10−2)% 

6% (1.23 ⋅ 10−1 ± 1.21 ⋅ 10−3)% (7.81 ± 7.99 ⋅ 10−2)% 
  

Figure 5.3: SDOF - Cubic stiffness and quadratic damping - Modified Dobson 
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5.3.2 SDOF - Coulomb damping - Results 
The system under investigation is a Single-Degree-of-Freedom (SDOF) system with base 
excitation, governed by the following equation of motion: 

𝑚𝑚𝑦̈𝑦 + 𝐹𝐹𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑦̇𝑦 − 𝑏̇𝑏� + 𝑐𝑐�𝑦̇𝑦 − 𝑏̇𝑏� + 𝑘𝑘(𝑦𝑦 − 𝑏𝑏) = 0 (5. 31) 

In this case only the damping contribution is analyzed, as the stiffness term is purely linear. 

Figure 5.4 presents the results obtained using CONCERTO, comparing them with the 
corresponding analytical values.  
The comparison confirms the high accuracy of the method, showing excellent agreement 
with the analytical solution, with a low relative error. 

 

  

To evaluate the method’s robustness to noise, artificial noise was added to the time-domain 
response of the system. Since the noise was introduced randomly, the identification 
procedure was repeated on multiple datasets for each noise level. 
The root mean square (RMS) of the identification error was then computed to quantify the 
impact of noise. The results are summarized below. 

 

Noise level Damping RMS error (95% CI) 

10% (1.01 ⋅ 10−1 ± 1.05 ⋅ 10−2)% 

8% (9.50 ⋅ 10−2 ± 4.81 ⋅ 10−3)% 

6% (9.12 ⋅ 10−2 ± 3.56 ⋅ 10−3)% 
 
  

Figure 5.4: SDOF- Coulomb damping - CONCERTO 



50 

Figure 5.5 presents the results obtained using Modified Dobson, comparing them with the 
corresponding analytical values. 
The comparison shows an agreement with the analytical solution, although the associated 
errors are higher compared to those observed with the CONCERTO method. 

 

 

 

 

 

 

To evaluate the method’s robustness to noise, artificial noise was added to the time-domain 
response of the system. Since the noise was introduced randomly, the identification 
procedure was repeated on multiple datasets for each noise level. 
The root mean square (RMS) of the identification error was then computed to quantify the 
impact of noise. The results are summarized below: 

 

Noise level Damping RMS error (95% CI) 

10% (3.83 ± 3.38 ⋅ 10−2)% 

8% (3.85 ± 3.69 ⋅ 10−2)% 

6% (3.85 ± 2.77 ⋅ 10−2)% 

 
  

Figure 5.5: SDOF - Coulomb damping - Modified Dobson 
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5.3.3 2DOFs - Cubic stiffness and quadratic damping - Results 
To evaluate the CONCERTO method’s reliability in the presence of multiple vibration 
modes, we consider a two-degree-of-freedom (2DOFs) system subjected to base excitation, 
as illustrated in Figure 5.6. In this configuration, the elements 𝑘𝑘1 and 𝑐𝑐1 exhibit nonlinear 
behavior (cubic stiffness and quadratic damping), while 𝑘𝑘2 and 𝑐𝑐2 are linear. 

The dynamic response of the system is governed by the following set of coupled differential 
equations: 

�
𝑚𝑚1𝑦̈𝑦1 + 𝑐𝑐1�𝑦̇𝑦1 − 𝑏̇𝑏� + 𝑐𝑐𝑛𝑛𝑛𝑛,1�𝑦̇𝑦1 − 𝑏̇𝑏��𝑦̇𝑦1 − 𝑏̇𝑏� − 𝑐𝑐2(𝑦̇𝑦2 − 𝑦̇𝑦1) +

+𝑘𝑘1(𝑦𝑦1 − 𝑏𝑏) + 𝑘𝑘𝑛𝑛𝑛𝑛,1(𝑦𝑦1 − 𝑏𝑏)3 − 𝑘𝑘2(𝑦𝑦2 − 𝑦𝑦1) = 0
𝑚𝑚2𝑦̈𝑦2 + 𝑐𝑐2(𝑦̇𝑦2 − 𝑦̇𝑦1) + 𝑘𝑘2(𝑦𝑦2 − 𝑦𝑦1) = 0

 (5. 32) 

By substituting the analytical expressions for the equivalent stiffness and damping functions, 
derived using the first-order harmonic balance approximation, (5.32) becomes: 

⎩
⎪
⎨

⎪
⎧𝑚𝑚1𝑦̈𝑦1 + �𝑐𝑐1 +

8
3𝜋𝜋 𝑐𝑐𝑛𝑛𝑛𝑛

|𝑌𝑌1 − 𝐵𝐵|𝜔𝜔𝑟𝑟� �𝑦̇𝑦1 − 𝑏̇𝑏� − 𝑐𝑐2(𝑦̇𝑦2 − 𝑦̇𝑦1) +

+ �𝑘𝑘1 +
3
4𝑘𝑘𝑛𝑛𝑛𝑛,1

|𝑌𝑌1 − 𝐵𝐵|2� (𝑦𝑦1 − 𝑏𝑏) − 𝑘𝑘2(𝑦𝑦2 − 𝑦𝑦1) = 0

𝑚𝑚2𝑦̈𝑦2 + 𝑐𝑐2(𝑦̇𝑦2 − 𝑦̇𝑦1) + 𝑘𝑘2(𝑦𝑦2 − 𝑦𝑦1) = 0

 (5. 33) 

We can express (5.33) in compact matrix form as: 

�𝑚𝑚1 0
0 𝑚𝑚2

�  �𝑦̈𝑦1𝑦̈𝑦2
� + �𝑐𝑐1 +

8
3𝜋𝜋 𝑐𝑐𝑛𝑛𝑛𝑛

|𝑌𝑌1 − 𝐵𝐵|𝜔𝜔𝑟𝑟 + 𝑐𝑐2 −𝑐𝑐2
−𝑐𝑐2 𝑐𝑐2

� �𝑦̇𝑦1𝑦̇𝑦2
� 

+ �𝑘𝑘1 +
3
4 𝑘𝑘𝑛𝑛𝑛𝑛,1

|𝑌𝑌1 − 𝐵𝐵|2 + 𝑘𝑘2 −𝑘𝑘2
−𝑘𝑘2 𝑘𝑘2

� �
𝑦𝑦1
𝑦𝑦2� = 

= ��𝑐𝑐1 +
8

3𝜋𝜋 𝑐𝑐𝑛𝑛𝑛𝑛
|𝑌𝑌1 − 𝐵𝐵|𝜔𝜔𝑟𝑟� 𝑏̇𝑏 + �𝑘𝑘1 +

3
4𝑘𝑘𝑛𝑛𝑛𝑛,1

|𝑌𝑌1 − 𝐵𝐵|2� 𝑏𝑏

0
� 

(5. 34) 

Figure 5.6: Scheme of a 2DOF system 
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From (5.34), we can identify the system matrices: 

[𝐾𝐾] = �𝑘𝑘1 +
3
4 𝑘𝑘𝑛𝑛𝑛𝑛,1

|𝑌𝑌1 − 𝐵𝐵|2 + 𝑘𝑘2 −𝑘𝑘2
−𝑘𝑘2 𝑘𝑘2

� 

 [𝐶𝐶] = �𝑐𝑐1 +
8

3𝜋𝜋 𝑐𝑐𝑛𝑛𝑛𝑛
|𝑌𝑌1 − 𝐵𝐵|𝜔𝜔𝑟𝑟 + 𝑐𝑐2 −𝑐𝑐2
−𝑐𝑐2 𝑐𝑐2

�     [𝑀𝑀] = �𝑚𝑚1 0
0 𝑚𝑚2

� 

(5. 35) 

By solving the eigenvalue problem (EVP), we obtain the diagonal matrix [Λ], containing the 
squared natural frequencies and the modal matrix [Φ]. 
This allows us to compute the analytical modal mass, stiffness, and damping matrices as: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑚𝑚𝑟𝑟) = [𝛷𝛷]𝑇𝑇[𝑀𝑀][𝛷𝛷] 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑘𝑘𝑟𝑟) = [𝛷𝛷]𝑇𝑇[𝐾𝐾][𝛷𝛷] 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐𝑟𝑟) = [𝛷𝛷]𝑇𝑇[𝐶𝐶][𝛷𝛷] 

(5. 36) 

Repeating the procedure for different values of |𝑌𝑌1 − 𝐵𝐵| yields the analytical trends of modal 
stiffness and damping over the displacement range selected. 

To evaluate the robustness of the method, a parametric analysis was conducted by varying 
the values of 𝑘𝑘2 and 𝑚𝑚2, keeping the remaining parameters unchanged. 
The extracted modal parameters were subsequently validated against analytical values. 

If 𝑘𝑘2 = 10 𝑘𝑘1 and 𝑚𝑚2 = 𝑚𝑚1, the natural frequencies of the linear system are: 

� 𝜔𝜔1 = 7.03 𝐻𝐻𝐻𝐻
𝜔𝜔2 = 45.59 𝐻𝐻𝐻𝐻 → 𝜔𝜔2 − 𝜔𝜔1 = 38.56 𝐻𝐻𝐻𝐻 

This gives us a measure of the distance between the two modes. 

Figure 5.7 presents the results obtained by applying the CONCERTO method, showing a 
comparison between the extracted parameters and the analytical reference values. 

 

  

The plots confirm the accuracy of the method in identifying both equivalent stiffness and 
damping functions. Quantitatively, the root mean square (RMS) errors are: 

− Stiffness RMS error: 7.90 ⋅ 10−3 % 
− Damping RMS error: 3.58 ⋅ 10−1 % 

Figure 5.7: 2DOFs - 𝑘𝑘2 = 10 𝑘𝑘1, 𝑚𝑚2 = 𝑚𝑚1 
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If 𝑘𝑘2 = 0.5 𝑘𝑘1 and 𝑚𝑚2 = 0.5 𝑚𝑚1, the natural frequencies of the linear system are: 

� 𝜔𝜔1 = 7.12 𝐻𝐻𝐻𝐻
𝜔𝜔2 = 14.24 𝐻𝐻𝐻𝐻 → 𝜔𝜔2 − 𝜔𝜔1 = 7.12 𝐻𝐻𝐻𝐻 

Figure 5.8 presents the results obtained by applying the CONCERTO method, showing a 
comparison between the extracted parameters and the analytical reference values. 

 

The plots confirm the accuracy of the method in identifying both equivalent stiffness and 
damping functions. Quantitatively, the root mean square (RMS) errors are: 

− Stiffness RMS error: 6.49 ⋅ 10−2 % 
− Damping RMS error: 7.33 ⋅ 10−1 % 

 

If 𝑘𝑘2 = 0.2 𝑘𝑘1 and 𝑚𝑚2 = 0.2𝑚𝑚1, the natural frequencies of the linear system are: 

� 𝜔𝜔1 = 8.06 𝐻𝐻𝐻𝐻
𝜔𝜔2 = 12.57 𝐻𝐻𝐻𝐻 → 𝜔𝜔2 − 𝜔𝜔1 = 4.50 𝐻𝐻𝐻𝐻 

Figure 5.9 presents the results obtained by applying the CONCERTO method, showing a 
comparison between the extracted parameters and the analytical reference values. 

 

  

  

  

Figure 5.8: 2DOFs - 𝑘𝑘2 = 0.5 𝑘𝑘1, 𝑚𝑚2 = 0.5 𝑚𝑚1 

Figure 5.9: 2DOFs - 𝑘𝑘2 = 0.2 𝑘𝑘1, 𝑚𝑚2 = 0.2 𝑚𝑚1 
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The plots confirm the accuracy of the method in identifying both equivalent stiffness and 
damping functions. Quantitatively, the root mean square (RMS) errors are: 

− Stiffness RMS error: 5.63 ⋅ 10−2 % 
− Damping RMS error: 1.16 % 

 

These results confirm the reliability of the CONCERTO method in identifying nonlinear 
modal parameters, even in systems with multiple degrees of freedom. 
Furthermore, it is observed that as the two vibration modes approach each other in frequency, 
the root mean square (RMS) error increases accordingly, indicating a reduced identifiability 
due to modal interaction. 
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5.4 Validation with experimental data 
In this section, the CONCERTO and Modified Dobson methods are applied to experimental 
data in order to evaluate their effectiveness in identifying nonlinear dynamic characteristics 
in real-world systems. 
The aim is to assess the practical applicability of these two frequency-domain identification 
techniques under realistic conditions, including measurement noise and non-ideal excitation. 

Starting from the measured responses, the modal parameter functions (modal frequency, 
modal damping ratio and modal constants) are extracted using each method. 
These amplitude-dependent parameters are then used to reconstruct the nonlinear Frequency 
Response Function (FRF) of the system using the New Method (NM). 

The reconstructed FRFs are compared to those directly obtained from experimental 
measurements, allowing for a detailed assessment of the accuracy, consistency and 
robustness of each method. 

It is important to note that the two experimental systems considered differ not only in 
configuration but also in the type of frequency response data available: 

− In Experimental System 1, the structure is excited at the base and the measured 
quantity is the transmissibility 

− In Experimental System 2 the input force and output acceleration are both measured, 
thus allowing access to the receptance 

5.4.1 Experimental System - 1 
The first experimental case involves a mechanical system subjected to base excitation 
through a sine sweep with increasing frequency. 

Three excitation levels are considered, corresponding to increasing RMS values of the base 
acceleration. These different levels of excitation are the following: 

− Level 1: Base acceleration RMS: 0.34 𝑚𝑚/𝑠𝑠2 
− Level 2: Base acceleration RMS: 1.40 𝑚𝑚/𝑠𝑠2 
− Level 3: Base acceleration RMS: 3.10 𝑚𝑚/𝑠𝑠2 

For each level, modal parameters are extracted using both the CONCERTO and Modified 
Dobson methods. These parameters are subsequently used to reconstruct the nonlinear 
transmissibility function, which is then compared to the reference curve obtained directly 
from experimental measurements. In this case the modal parameters are evaluated as a 
function of the displacement amplitude |𝑌𝑌 − 𝐵𝐵|. 
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5.4.1.1 CONCERTO Results 

The following figures report the modal parameters extracted using the CONCERTO method 
for Experimental System−1 under increasing excitation levels. 
Each figure displays the evolution of the natural frequency and the modal damping ratio as 
a function of the response displacement amplitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The natural frequency systematically decreases with increasing displacement amplitude, 
revealing a robust and repeatable softening stiffness behavior. 
The modal damping ratio shows a consistent growth with displacement amplitude.  

Figure 5.11: Experimental MDOF 1 - Level 2 - Modal parameters - CONCERTO 

Figure 5.12: Experimental MDOF 1- Level 3 - Modal parameters - CONCERTO 

Figure 5.10: Experimental MDOF 1 - Level 1 - Modal parameters - CONCERTO 
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The following figures present the comparison between the nonlinear FRFs reconstructed 
using the CONCERTO method and the original experimental FRFs for the three excitation 
levels tested on the Experimental MDOF−1 system. 

 

 
 
 

 

 
 
 

 
 
 
 

 
As the excitation level increases, some discrepancies become more noticeable: 

− At Level 1: the match between the two curves is good, both in amplitude and shape, 
indicating a high degree of accuracy in identifying weakly nonlinear behavior. 

− At Level 2: a slight divergence begins to appear, particularly in the post-resonant 
region, where the reconstructed FRF tends to overestimate the response amplitude. 

− At Level 3: the discrepancy becomes more pronounced. 

Figure 5.15: Experimental MDOF 1 - Level 3 - FRF comparison - CONCERTO 

Figure 5.13: Experimental MDOF 1 - Level 1 - FRF comparison - CONCERTO 

Figure 5.14: Experimental MDOF 1 - Level 2 - FRF comparison - CONCERTO 
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These trends suggest that while the CONCERTO method remains effective across all levels, 
its accuracy slightly deteriorates as the nonlinearities become more significant. 
Such behavior is typical in nonlinear identification problems, where stronger nonlinear 
effects tend to challenge the precision of the estimation process. 
Nonetheless, the results confirm the robustness of the method and its overall suitability for 
nonlinear modal identification, particularly under low-to-moderate excitation conditions. 

Figure 5.16 presents the results obtained from the CONCERTO method at all three excitation 
levels. The plots are shown together to illustrate the global system behavior, highlighting 
how the natural frequency and damping ratio evolve as functions of displacement amplitude. 

 

 
 
 

 

The trends observed across the different excitation levels exhibit a consistent qualitative 
behavior: the natural frequency decreases, while the damping ratio increases with growing 
displacement amplitude. This confirms the presence of softening stiffness and amplitude-
dependent damping in the system. 

However, despite this consistent evolution, the absolute values of the identified parameters 
reveal some discrepancies across the different excitation levels, particularly in the 
overlapping displacement regions. These mismatches may be attributed to the influence of 
strong nonlinearities, especially at higher excitation levels, which could violate the 
assumptions underlying the identification method. 

Further investigation is required to understand whether these differences are due to modeling 
limitations, measurement uncertainty or additional unmodeled nonlinear effects. 

 

 
  

Figure 5.16: Experimental MDOF 1 - Levels combined - CONCERTO 
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Figure 5.17: Experimental MDOF 1 - Level 1 - Modal parameters - Modified Dobson 

Figure 5.19: Experimental MDOF 1- Level 3 - Modal parameters - Modified Dobson 

Figure 5.18: Experimental MDOF 1 - Level 2 - Modal parameters - Modified Dobson 

5.4.1.2 Modified Dobson Results 

The following figures report the modal parameters extracted using the Modified Dobson 
method for Experimental System−1 under increasing excitation levels. 
Each figure displays the evolution of the natural frequency and the modal damping ratio as 
a function of the response displacement amplitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
The natural frequency systematically decreases with increasing displacement, revealing a 
robust and repeatable softening stiffness behavior. 
The modal damping ratio shows a consistent growth with displacement amplitude.  
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The following figures present the comparison between the nonlinear FRFs reconstructed 
using the Modified Dobson method and the original experimental FRFs for the three 
excitation levels tested on the Experimental MDOF−1 system. 

 

 
 
 

 
 
 
 

 

 
 
 

 

As the excitation level increases, some discrepancies become more noticeable: 

− At Level 1: the agreement is good, especially near the peak, with minor deviations 
observed in the tails of the curve. 

− At Level 2: characterized by evident discrepancies. 
− At Level 3: the differences become less pronounced.  

Figure 5.20: Experimental MDOF 1 - Level 1 - FRF comparison - Modified Dobson 

Figure 5.21: Experimental MDOF 1 - Level 2 - FRF comparison - Modified Dobson 

Figure 5.22: Experimental MDOF 1 - Level 3 - FRF comparison - Modified Dobson 
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These trends suggest that while the Modified Dobson method remains effective across all 
levels, its accuracy slightly deteriorates as the nonlinearities become more significant. 
Such behavior is typical in nonlinear identification problems, where stronger nonlinear 
effects tend to challenge the precision of the estimation process. 
Nonetheless, the results confirm the robustness of the method and its overall suitability for 
nonlinear modal identification, particularly under low-to-moderate excitation conditions. 

Figure 5.23 presents the results obtained from the Modified Dobson method at all three 
excitation levels. The plots are shown together to illustrate the global system behavior, 
highlighting how the natural frequency and damping ratio evolve as functions of 
displacement amplitude. 

 

 
 

 

The trends observed across the different excitation levels exhibit a consistent qualitative 
behavior: the natural frequency decreases, while the damping ratio increases with growing 
displacement amplitude. This confirms the presence of softening stiffness and amplitude-
dependent damping in the system. 

However, despite this consistent evolution, the absolute values of the identified parameters 
reveal some discrepancies across the different excitation levels, particularly in the 
overlapping displacement regions. These mismatches may be attributed to the influence of 
strong nonlinearities, especially at higher excitation levels, which could violate the 
assumptions underlying the identification method. 

Further investigation is required to understand whether these differences are due to modeling 
limitations, measurement uncertainty or additional unmodeled nonlinear effects. 

 

 
  

Figure 5.23: Experimental MDOF 1 - Levels combined - Modified Dobson 
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5.4.2 Experimental system - 2 
In this second experimental setup, the system is excited directly by a force input and the 
receptance is measured. This configuration differs from Experimental System 1, in which 
the measured quantity was the transmissibility under base excitation. 

Three different excitation levels are considered, each characterized by a distinct RMS value 
of the excitation force These different levels are used to evaluate the sensitivity of the 
methods to amplitude-dependent nonlinear effects: 

− Level 1: excitation force RMS =  1 𝑚𝑚𝑚𝑚 
− Level 2: excitation force RMS =  2 𝑚𝑚𝑚𝑚 
− Level 3: excitation force RMS =  2.7 𝑚𝑚𝑚𝑚 

For each level, modal parameters are extracted using both the CONCERTO and Modified 
Dobson methods. These parameters are subsequently used to reconstruct the nonlinear 
receptance function, which is then compared to the reference curve obtained directly from 
experimental measurements. In this case the modal parameters are evaluated as a function 
of the displacement amplitude 𝑋𝑋. 
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5.4.2.1 CONCERTO Results 

The following figures report the modal parameters extracted using the CONCERTO method 
for Experimental System−2 under increasing excitation levels. 
Each figure displays the evolution of the natural frequency and the modal damping ratio as 
a function of the response displacement amplitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Except for the Level 1, the natural frequency exhibits an increasing trend with the growth of 
displacement amplitude, suggesting a typical hardening behavior. 
The damping ratio shows more variability across all levels: the values fluctuate significantly, 
especially at higher amplitudes.  

Figure 5.24: Experimental MDOF 2 - Level 1 - Modal parameters - CONCERTO 

Figure 5.25: Experimental MDOF 2 - Level 2 - Modal parameters - CONCERTO 

Figure 5.26: Experimental MDOF 2 - Level 3 - Modal parameters - CONCERTO 
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The following figures present the comparison between the nonlinear FRFs reconstructed 
using the CONCERTO method and the original experimental FRFs for the three excitation 
levels tested on the Experimental MDOF−2 system. 

 

 
 
 

 

 
 
 

 

 
 
 

 
In all cases, the reconstructed curves align remarkably well with the experimental data. 
The overlap is especially tight near the resonance peak, indicating that the method accurately 
captures the dynamic behavior of the system in presence of nonlinearities. 
  

Figure 5.27: Experimental MDOF 2 -Level 1 - FRF comparison - CONCERTO 

Figure 5.28: Experimental MDOF 2- Level 2 - FRF comparison - CONCERTO 

Figure 5.29: Experimental MDOF 2 - Level 3 - FRF comparison - CONCERTO 
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Figure 5.30. presents the results obtained from the CONCERTO method at all three 
excitation levels. The plots are shown together to illustrate the global system behavior, 
highlighting how the natural frequency and damping ratio evolve as functions of 
displacement amplitude. 

 

 
 
 
 
 
 

 

The trends observed across the different excitation levels exhibit a consistent qualitative 
behavior: the natural frequency increase with growing displacement amplitude, while the 
damping ratio plot reveals a more irregular pattern. 

The absolute values of the identified parameters reveal some discrepancies across the 
different excitation levels, particularly in the overlapping displacement regions. 
Further investigation is required to understand whether these differences are due to modeling 
limitations, measurement uncertainty or additional unmodeled nonlinear effects. 

 
  

Figure 5.30: Experimental MDOF 2 - Levels combined - CONCERTO 
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Figure 5.33: Experimental MDOF 2 - Level 3 - Modal parameters - Modified Dobson 

5.4.2.2 Modified Dobson Results 

The following figures report the modal parameters extracted using the Modified Dobson 
method for Experimental System−2 under increasing excitation levels. 
Each figure displays the evolution of the natural frequency and the modal damping ratio as 
a function of the response displacement amplitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The natural frequency systematically increases with increasing displacement, revealing a 
robust and repeatable hardening stiffness behavior. 
The modal damping ratio shows a decrease with displacement amplitude in the first two 
levels, while it shows an increase in the highest level.  

Figure 5.31: Experimental MDOF 2 - Level 1 - Modal parameters - Modified Dobson 

Figure 5.32: Experimental MDOF 2 - Level 2 - Modal parameters - Modified Dobson 



67 

The following figures present the comparison between the nonlinear FRFs reconstructed 
using the Modified Dobson method and the original experimental FRFs for the three 
excitation levels tested on the Experimental MDOF−2 system. 
 

 
 
 

 

 
 
 

 

 
 
 

 
 
In all cases, the reconstructed curves align remarkably well with the experimental data. 
The overlap is especially tight near the resonance peak, indicating that the method accurately 
captures the dynamic behavior of the system in presence of nonlinearities.  

Figure 5.34: Experimental MDOF 2 - Level 1 - FRF comparison - Modified Dobson 
 

Figure 5.35: Experimental MDOF 2 - Level 2 - FRF comparison - Modified Dobson 

Figure 5.36: Experimental MDOF 2 - Level 3 - FRF comparison - Modified Dobson 
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Figure 5.37 presents the results obtained from the Modified Dobson method at all three 
excitation levels. The plots are shown together to illustrate the global system behavior, 
highlighting how the natural frequency and damping ratio evolve as functions of 
displacement amplitude. 

 

 
 
 
 
 
 

 
 
 

Figure 5.37: Experimental MDOF 2 - Levels combined - Modified Dobson  

The trends observed across the different excitation levels exhibit a consistent qualitative 
behavior: the natural frequency increase with growing displacement amplitude, while the 
damping ratio plot reveals a more irregular pattern. 

The absolute values of the identified parameters reveal some discrepancies across the 
different excitation levels, particularly in the overlapping displacement regions. 
Further investigation is required to understand whether these differences are due to modeling 
limitations, measurement uncertainty or additional unmodeled nonlinear effects. 
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5.5 Comparison between the two methods 
This section compares the two parameter extraction methods (CONCERTO and Modified 
Dobson) by analyzing the evolution of the modal parameters as functions of displacement 
amplitude for both experimental systems. 

For Experimental MDOF System 1, Figure 5.38 shows the trends of natural frequency and 
modal damping ratio across the three excitation levels for both methods. 

Overall, both methods exhibit a consistent decreasing trend in natural frequency as 
displacement increases, which is indicative of softening behavior. 
Similarly, both methods capture a general increase in modal damping ratio with 
displacement amplitude, highlighting the presence of amplitude-dependent damping effects. 

 

 

For Experimental MDOF System 2, as illustrated in Figure 5.39, both identification methods 
capture a consistent increasing trend in natural frequency with growing displacement 
amplitude, which is indicative of a hardening-type nonlinear behavior. 
In contrast, the damping ratio does not exhibit a clearly defined pattern, suggesting a more 
complex or irregular dependence on displacement, possibly influenced by measurement 
noise or unmodeled nonlinear effects. 

 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

Figure 5.38: Experimental MDOF 1 – Comparison between methods 

Figure 5.39: Experimental MDOF 2 – Comparison between methods 
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6 LEOB 
The data analyzed in this section refers to the structure under investigation: the Large 
Deployable Reflector for Earth Observation (LEOB).  
This structure exhibits complex mechanical behavior due to its lightweight construction, 
large dimensions, and a deployable architecture involving mechanical joints. 
The presence of joints and potential contact interfaces introduces significant nonlinearities 
that complicate both numerical modeling and experimental testing. 

6.1 LEOB Testing 
The data analyzed originates from a qualification vibration test campaign, whose primary 
objective is to verify that the hardware can withstand the specified vibration environment, 
which is considered as one of the critical functions. 
All three axes were tested in both the vertical and horizontal configurations of the shaker. 
In particular, the system was excited by a sine vibration induced by two electrodynamics 
shakers working together in the push-pull mode for vertical and horizontal configuration. 

Figure 6.1 represents a schematic sketch of LEOB test configuration where the coordinate 
system is defined. 

X axis tests have been performed in vertical configuration of shaker with head expander, 
while Y and Z axes tests have been performed in horizontal slip table configuration of the 
shaker. 

The sensors employed are accelerometers and their scope is twofold: 

− Control and monitor the vibration levels and input spectrum (pilots) 
− Measure the acceleration response (nonpilots) 

The system was subjected to four sine test types, characterized by different frequency range 
and levels: 

− resonance search, 
− low-level sine, 
− intermediate-level sine, 
− full-level sine. 

The Resonance Search is a sinusoidal excitation that is conducted at the beginning of the test 
sequence and after every sine to check the integrity of the structure.  

Figure 6.1: LEOB Stylized sketch 
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We can see the definition of the different types in the Table 6.1 and Table 6.2. 
 

Excitation type Frequency [Hz] Acceleration or Displacement Sweep Rate 

Resonance Search 5 – 2000 0.5g 2 oct./min 

Low-level sine 
(35% of full level) 

5 – 10.2 ± 10 mm 
2 oct./min 

10.2 – 120 4.2 g 

Intermediate-level sine 
(70% of full level) 

5 – 14.4 ± 10 mm 
2 oct./min 

14.4 – 120 8.4 g 

Full-level sine 
5 – 17.3 ± 10 mm 

2 oct./min 
17.3 – 120 12 g 

Table 6.1 – Test for Z axis 

 

Excitation type Frequency [Hz] Acceleration or Displacement Sweep Rate 

Resonance Search 5 – 2000 0.5g 2 oct./min 

Low-level sine 
(35% of full level) 

5 – 9.3 ± 10 mm 
2 oct./min 

9.3 – 120 3.5 g 

Intermediate -level sine 
(70% of full level) 

5 – 13.2 ± 10 mm 
2 oct./min 

13.2 – 120 7 g 

Full -level sine 
5 – 15.8 ± 10 mm 

2 oct./min 
15.8 – 120 10 g 

Table 6.2 – Test for X and Y axes 

The input spectrum is not constant across the frequency range, but it’s notched; in Table 6.3 
we can see some characteristics of the notched input. 
 

 X axis Y axis Z axis 

Excitation type Frequency 
range 

Lowest 
level 

Frequency 
range 

Lowest 
level 

Frequency 
range 

Lowest 
level 

Low-level sine 35.2 – 120 1 38.1 – 120 1 33.1 – 120 0.6 

Intermediate-
level sine 34.8 – 120 2.1 38.0 – 120 2 33 – 120 1.2 

High-Level 
sine 35.2-120 3 30-120 2.9 28-120 1.8 

Table 6.3 – Notched input 
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6.1.1 Data analysis 
The structure was instrumented with several triaxial sensors and was excited sequentially 
along all three axes. As a result, the total number of recorded responses (including auto and 
cross responses) was quite large. 

A limited set of responses was selected for analysis, focusing on those that exhibited the 
most significant shifts in modal frequency and amplitude. This selection was based on plots 
comparing the transmissibilities obtained under different excitation types. 

The selected responses are: 

− Sine Z excitation: S4Z, S8Y, S12X 
− Sine Y excitation: S15X, S18Y 
− Sine X excitation: S14X 

For each of these responses, the modal frequency, damping ratio and modal constant were 
calculated across the four test conditions. 

To validate the extracted parameters, the nonlinear transmissibilities were reconstructed for 
each test type. 
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6.1.2 Sine Z – S4Z 
6.1.2.1 CONCERTO Results 

  

Figure 6.2: S4Z Modal parameters CONCERTO 

The natural frequency remains consistent across the four excitation levels. 
The modal damping ratio is relatively consistent for the three sine excitation levels but shows 
higher values for the resonance search. 

 

  

Figure 6.3: S4Z FRFs RS CONCERTO Figure 6.4: S4Z FRFs LL CONCERTO 

  

Figure 6.5: S4Z FRFs IL CONCERTO Figure 6.6: S4Z FRFs HL CONCERTO 

There is an excellent agreement between the original and the reconstructed nonlinear FRFs 
across all four excitation levels.  
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6.1.2.2 Modified Dobson Results 

  

Figure 6.7: S4Z Modal parameters Modified Dobson 

The natural frequency remains consistent across the three sine excitation levels but shows a 
mismatch between the resonance search and the low level sine. 
The modal damping ratio is relatively consistent for the three sine excitation levels but shows 
higher values for the resonance search. 

 

  

Figure 6.8: S4Z FRFs RS Modified Dobson Figure 6.9: S4Z FRFs LL Modified Dobson 

  

Figure 6.10: S4Z FRFs IL Modified Dobson Figure 6.11: S4Z FRFs HL Modified Dobson 

There is a strong agreement between the original and the reconstructed nonlinear FRFs 
across all four excitation levels. 
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6.1.3 Sine Z – S8Y 
6.1.3.1 CONCERTO Results 

  

Figure 6.12: S8Y Modal parameters CONCERTO 

The natural frequency remains fairly consistent across the three sine excitation levels but 
shows a mismatch between the resonance search and the low level sine. 
As for the modal damping ratio, the overall trend appears similar across the different 
excitation levels, though the slope varies. 

 

  

Figure 6.13: S8Y FRFs RS CONCERTO Figure 6.14: S8Y FRFs LL CONCERTO 

  

Figure 6.15: S8Y FRFs IL CONCERTO Figure 6.16: S8Y FRFs HL CONCERTO 

Near the resonance peak, there is a strong correlation between the original and the 
reconstructed nonlinear FRFs across all four excitation levels.  
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6.1.3.2 Modified Dobson Results 

  

Figure 6.17: S8Y Modal parameters Modified Dobson 

The natural frequency remains consistent across the three sine excitation levels but shows a 
mismatch between the resonance search and the low level sine. 
The modal damping ratio is relatively consistent for the three sine excitation levels but shows 
higher values for the resonance search. 

 

 

 

Figure 6.18: S8Y FRFs RS Modified Dobson Figure 6.19: S8Y FRFs LL Modified Dobson 

  

Figure 6.20: S8Y FRFs IL Modified Dobson Figure 6.21: S8Y FRFs HL Modified Dobson 

Near the resonance peak, there is a fairly good correlation between the original and the 
reconstructed nonlinear FRFs across all four excitation levels. 
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6.1.4 Sine Z – S12X 
6.1.4.1 CONCERTO Results 

  

Figure 6.22: S12X Modal parameters CONCERTO 

The natural frequency remains consistent across the three sine excitation levels but shows a 
mismatch between the resonance search and the low level sine. 
As for the modal damping ratio, the overall trend appears similar across the different 
excitation levels, though the slope varies. 

 

  

Figure 6.23: S12X FRFs RS CONCERTO Figure 6.24: S12X FRFs LL CONCERTO 

  

Figure 6.25: S12X FRFs IL CONCERTO Figure 6.26: S12X FRFs HL CONCERTO 

Near the resonance peak, there is a good correlation between the original and the 
reconstructed nonlinear FRFs across all four excitation levels.  
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6.1.4.2 Modified Dobson Results 

  

Figure 6.27: S12X Modal parameters Modified Dobson 

The natural frequency remains consistent across the three sine excitation levels but shows a 
mismatch between the resonance search and the low level sine. 
As for the modal damping ratio, the overall trend appears similar across the different 
excitation levels, though the slope varies. 

 

  

Figure 6.28: S12X FRFs RS Modified Dobson Figure 6.29: S12X FRFs LL Modified Dobson 

  

Figure 6.30: S12X FRFs IL Modified Dobson Figure 6.31: S12X FRFs HL Modified Dobson 

Near the resonance peak, there is a fairly good correlation between the original and the 
reconstructed nonlinear FRFs across all four excitation levels.  
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6.1.5 Sine Y– S15X 
6.1.5.1 CONCERTO Results 

  

Figure 6.32: S15X Modal parameters CONCERTO 

The natural frequency overall trend is quite consistent across the excitation levels. 
As for the modal damping ratio, no overall trend can be identified. 

 

  

Figure 6.33: S15X FRFs RS CONCERTO Figure 6.34: S15X FRFs LL CONCERTO 

  

Figure 6.35: S15X FRFs IL CONCERTO Figure 6.36: S15X FRFs HL CONCERTO 

Near the resonance peak, there is a fairly good correlation between the original and the 
reconstructed nonlinear FRFs across all four excitation levels. 
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6.1.5.2 Modified Dobson Results 

  

Figure 6.37: S15X Modal parameters Modified Dobson 

The natural frequency overall trend is quite consistent across the excitation levels. 
As for the modal damping ratio, no overall trend can be identified. 

 

  

Figure 6.38: S15X FRFs RS Modified Dobson Figure 6.39: S15X FRFs LL Modified Dobson 

  

Figure 6.40: S15X FRFs IL Modified Dobson Figure 6.41: S15X FRFs HL Modified Dobson 

Near the resonance peak, there is a discrete correlation between the original and the 
reconstructed nonlinear FRFs across all four excitation levels. 
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6.1.6 Sine Y– S18Y 
6.1.6.1 CONCERTO Results 

  

Figure 6.42: S18Y Modal parameters CONCERTO 

For the natural frequency and modal damping ratio, the overall trend appears similar across 
the different excitation levels, though the slope varies. 

 

  

Figure 6.43: S18Y FRFs RS CONCERTO Figure 6.44: S18Y FRFs LL CONCERTO 

  

Figure 6.45: S18Y FRFs IL CONCERTO Figure 6.46: S18Y FRFs HL CONCERTO 

Near the resonance peak, there is a discrete correlation between the original and the 
reconstructed nonlinear FRFs across all four excitation levels. 
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6.1.6.2 Modified Dobson Results 

  

Figure 6.47: S18Y Modal parameters Modified Dobson 

The natural frequency remains consistent across the three sine excitation levels but shows a 
mismatch between the intermediate and high level sine. 
As for the modal damping ratio, the overall trend appears similar across the different 
excitation levels, though the slope varies. 

 

  

Figure 6.48: S18Y FRFs RS Modified Dobson Figure 6.49: S18Y FRFs LL Modified Dobson 

  

Figure 6.50: S18Y FRFs IL Modified Dobson Figure 6.51: S18Y FRFs HL Modified Dobson 

Near the resonance peak, there is a discrete correlation between the original and the 
reconstructed nonlinear FRFs across all four excitation levels, although there is an evident 
amplitude mismatch for the first three levels.  
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6.1.7 Sine X– S14X 
6.1.7.1 CONCERTO Results 

  

Figure 6.52: S14X Modal parameters CONCERTO 

The natural frequency remains consistent across the four sine excitation levels. 
As for the modal damping ratio, no overall trend can be identified. 

 

  

Figure 6.53: S14X FRFs RS CONCERTO Figure 6.54: S14X FRFs LL CONCERTO 

  

Figure 6.55: S14X FRFs IL CONCERTO Figure 6.56: S14X FRFs HL CONCERTO 

Near the resonance peak, there is a discrete correlation between the original and the 
reconstructed nonlinear FRFs across all four excitation levels. 
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6.1.7.2 Modified Dobson Results 

  

Figure 6.57: S14X Modal parameters Modified Dobson 

The natural frequency remains consistent across the four sine excitation levels. 
As for the modal damping ratio, no overall trend can be identified. 

 

  

Figure 6.58: S14X FRFs RS Modified Dobson Figure 6.59: S14X FRFs LL Modified Dobson 

  

Figure 6.60: S14X FRFs IL Modified Dobson Figure 6.61: S14X FRFs HL Modified Dobson 

Near the resonance peak, there is a discrete correlation between the original and the 
reconstructed nonlinear FRFs across all four excitation levels. 
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6.2 Comparison between methods 

6.2.1 Sine Z – S4Z 

 
 
 
 

 

Figure 6.62: S4Z Comparison 

The natural frequency is consistent between the two methods. 
As for the modal damping ratio, it tends to be higher for the Modified Dobson method. 

6.2.2 Sine Z – S8Y 

 
 
 
 

 

Figure 6.63: S8Y Comparison 

The CONCERTO method yielded higher values for the natural frequency. 
As for the modal damping ratio, it is quite consistent between the two methods. 
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6.2.3 Sine Z – S12X 

 
 
 

 

Figure 6.64: S12X Comparison 

The natural frequency tends to be higher for the CONCERTO method. 
As for the modal damping ratio, it is quite consistent between the two methods. 

6.2.4 Sine Y – S15X 

  

Figure 6.65: S15X Comparison 

The natural frequency is quite consistent between the two methods, especially for the higher 
levels of excitation. As for the modal damping ratio, it is quite different for the two methods. 
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6.2.5 Sine Y – S18Y 

  

Figure 6.66: S18Y Comparison 

The natural frequency and the modal damping ratio both tend to be higher for the 
CONCERTO method. 

6.2.6 Sine X – S14X 

  

Figure 6.67: S14X Comparison 

The natural frequency tends to be higher for the CONCERTO method. 
As for the modal damping ratio, it tends to be higher for the Modified Dobson method. 

 

 
  



88 

7 Frequency and amplitude shift prediction 
As discussed in Chapter 2, notching the sine input spectrum at resonance frequencies is 
crucial to prevent excessive amplification caused by the vibration absorber effect. 

To effectively implement this notching strategy, it is beneficial to predict the transmissibility 
at different excitation levels, as this can provide valuable insight into how the system 
responds under varying load conditions. 

In the following sections, the predictive capability of the proposed methods is evaluated by 
considering one of the previously analyzed sensors. 
The data from each of the four excitation levels were used to estimate the system response 
at the remaining levels. The four levels considered in the analysis are summarized below: 

− Resonance Search (RS) 
− Low Level Sine (LL) 
− Intermediate Level Sine (IL) 
− High Level Sine (HL) 

A confusion matrix was employed to assess prediction accuracy. The columns indicate the 
excitation levels used as input for the prediction, whereas the rows represent the target 
excitation levels being estimated. 

To evaluate the discrepancy between analytical and experimental transmissibilities, the FRF 
RMS error is used. This parameter quantifies the relative difference between the amplitude 
levels of two FRFs, one derived from the data extracted and the other from experimental 
data. It is defined as follows: 

𝐹𝐹𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 100 ⋅ �
1
𝑁𝑁
� �

|𝛼𝛼𝑅𝑅(𝑖𝑖)| − |𝛼𝛼𝑃𝑃(𝑖𝑖)|
|𝛼𝛼𝑅𝑅(𝑖𝑖)| �

2𝑁𝑁

𝑖𝑖=1
 

Where: 

− |𝛼𝛼𝑅𝑅(i)|: amplitude of the measured FRF at the i-th frequency point 
− |𝛼𝛼P(i)|: amplitude of the predicted FRF at the i-th frequency point 
− 𝑁𝑁: number of samples used 
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7.1 Sine Z – S4Z 

7.1.1 CONCERTO 
The table below shows the confusion matrix results for the selected sensor, obtained when 
the CONCERTO method is applied. 

     P 
R 

 

RS LL IL HL 

RS 7.78 11.31 17.18 19.08 

LL 19.27 15.80 14.81 16.55 

IL 15.53 13.41 15.23 13.39 

HL 24.24 15.58 15.61 11.98 

In general, the elements on the main diagonal tend to have lower error values than the off-
diagonal elements. However, this trend is not consistent across all cases. 
In the plots below, the four extreme cases are shown. It is evident that the errors are generally 
higher in extrapolation cases compared to interpolation cases. 

 

 
 
 
 
 
 
 

 

  

Figure 7.1: CONCERTO – P=1, R=1 

Figure 7.4: CONCERTO – P=4, R=4 

Figure 7.2: CONCERTO – P=4, R=1 

Figure 7.3: CONCERTO – P=1, R=4 
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7.1.2 Modified Dobson 
The table below shows the confusion matrix for the selected sensor when the Modified 
Dobson method is applied. 

     P 
R 

 

RS LL IL HL 

RS 21.95 20.40 15.33 27.45 

LL 19.04 31.36 25.81 22.41 

IL 55.26 55.63 29.28 19.22 

HL 54.66 77.37 31.91 19.24 

In general, the elements on the main diagonal tend to have lower error values than the off-
diagonal elements. However, this trend is not consistent across all cases. 
In the plots below, the four extreme cases are shown. It is evident that the errors are generally 
higher in extrapolation cases compared to interpolation cases. 

 

  

  

 
  

Figure 7.5: Modified Dobson – P=1, R=1 

Figure 7.8: Modified Dobson – P=4, R=4 

Figure 7.6: Modified Dobson – P=4, R=1 

Figure 7.7: Modified Dobson – P=1, R=4 
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Conclusions 
The analysis in this thesis has successfully quantified the influence of nonlinear effects on 
the dynamic behavior of large deployable antennas, applied directly to test data from the 
LEOB structure. 

A primary result of this work is the detailed characterization of the LEOB's nonlinear 
dynamics, which demonstrated the structure's clear dependence of its modal parameters on 
vibration amplitude. The application of the CONCERTO and Modified-Dobson methods 
enabled the precise measurement of these effects, namely: 

− A softening behavior, indicated by a decreasing natural frequency with increasing 
displacement. 

− An increase in modal damping as the response amplitude increases. 

The fidelity of this approach was validated by the reconstructed Frequency Response 
Functions (FRFs), which showed strong agreement with the experimental data, especially in 
the vicinity of the resonances. This confirms that the single-mode, equivalent linearized 
models can effectively replicate the system's nonlinear response for given excitation levels. 

However, the predictive approach used in this thesis demonstrated significant limitations in 
accurately forecasting the system's response across different test levels. 

Future work should therefore focus on enhancing the ability to predict transmissibilities. 
A promising path for this would be to implement more advanced methodologies, such as the 
specific nonlinear Finite Element (FE) model updating techniques detailed by [9]. 
These methods build upon the general framework of model updating, for which [10] provide 
a foundational reference, could lead to a more robust predictive capability. 
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