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Abstract 

 
The increasing demand for wind energy requires reliable predictive maintenance 

strategies to minimise premature failures caused by mechanical phenomena such as wear. 

Therefore, the early detection of failures is essential to improve the efficiency of 

predictive maintenance and ensure continuous electrical energy production.  

Over the last decade, data collected by the Supervisory Control and Data Acquisition 

(SCADA) system has become a common solution, especially due to its easily accessible 

data and cost-effective nature. 

This thesis focuses on developing various machine learning methods to establish an 

anomaly detection strategy, starting with the computation of a regression model, and 

concluding in an anomaly index that enables the assessment of the turbine’s health status. 

Specifically, this approach combines a physical analysis based on the Betz model with a 

machine learning technique, namely Support Vector Regression, to distinguish normal 

behaviour from potential faults. 

Additionally, the advantages and main limitations of a univariate analysis are 

investigated, and a comparison with a multivariate analysis is also performed. The 

workflow performance is evaluated through the application of several performance 

metrics typically used in this field to assess the model’s ability to detect anomalies under 

normal operating conditions. This standardised approach facilitates comparison with 

other techniques as defined in related research. 

Finally, a classification method involving multiclass analysis is conducted, with the 

computation of an additional performance metric: class error. 

An extract of this thesis was also presented during the SURVISHNO 2025 conference in 

Paris, under the title Anomaly Detection in Wind Turbines under Operational Variability 

via SCADA and Residual Analysis. 
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1. Introduction 

 

 

1.1 Overview 

 

Technological advancements and the increasingly pressing energy transition have led 

scientific and engineering communities to search for and develop new solutions. 

Nowadays, due to growing awareness of climate change, newly developed technologies 

are increasingly based on renewable energy sources rather than fossil fuels. Greater 

attention is now paid to electricity production through plants composed of numerous wind 

turbines, photovoltaic panels, hydroelectric turbines, and nuclear reactors. Meanwhile, 

progress in electronics and information technology has provided new tools to ensure 

consistently high performance in the production of energy, along with continuous 

monitoring to reduce unplanned downtime and its associated dead time.   

In this context, the introduction of Artificial Intelligence (AI) algorithms and widespread 

use of Machine Learning (ML) techniques have significantly improved the accuracy of 

predictive maintenance systems, especially for Early Fault Detection, enabling the 

identification of damage and fault conditions before complete system failure occurs.  

Today, a wind turbine is a complex electromechanical system that enables the conversion 

of wind energy into electrical energy. Its complexity arises from the many components 

working together to achieve energy generation. Therefore, understanding and detecting 

anomalies related to any of these components is a challenging task. In practice, each 

component is prone to malfunction or failure due to random events or ageing-related 

degradation, which may cause system interruptions and reduced efficiency. As a result, 

unexpected abnormal behaviour may be detected and subsequently classified as faults or 

failures.  

According to the Global Wind Energy Council, operation and maintenance costs can 

account for 10% to 20% of the total electricity production cost for onshore turbines, and 

up to 20% to 25% for offshore wind turbines. As such, the wind energy industry has a 

strong incentive to enhance the reliability, safety, availability, and productivity of wind 

turbine systems.
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Figure 1.1: Percentage distribution of common failure modes in primary wind turbine components 

The pie chart (Fig. 1.1) illustrates the distribution of typical fault types in wind turbines. 

The main causes of these faults are summarised in Table 1.1. If an unexpected fault is not 

detected in its early stages and no corrective action is taken, it may lead to further, more 

severe failures. 

Table 1.1: Types and causes of faults in wind turbines 

 

 

Condition monitoring systems play a crucial role in assessing the operational health of 

wind turbines. They aim to confirm whether the system is working properly, detect early 

signs of faults or malfunctions, identify the components involved, and assess the severity 

of any anomalies. This enables timely corrective actions, potentially avoiding further 

degradation and ensuring operational safety. In parallel, prognostic techniques aim to 

forecast future failures and estimate the remaining useful life (RUL) of components, thus 

allowing for the planning of maintenance interventions in advance. 
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Over the past decades, a wide range of monitoring approaches have been developed in 

both academic research and industrial applications. These typically rely on continuous 

data acquisition using dedicated sensors, followed by numerical analysis through signal 

processing or machine learning algorithms. A key requirement for any effective 

monitoring strategy is the selection of physical quantities that are highly sensitive to 

mechanical or operational changes, particularly those that occur when a fault arises.  

Among the various techniques available, vibration analysis is widely appreciated for its 

ability to detect faults with high accuracy. In mechanical systems, normal operation 

produces distinct vibration patterns, and any deviation from these patterns could be a 

signal of emerging faults. This characteristic makes vibration analysis an invaluable tool 

for diagnosing system issues.  

Other condition monitoring methods include: 

▪ Acoustic Monitoring: Variations in the sound emitted during operation or testing, 

such as those generated by a hammer impact, can highlight structural defects. 

Airborne sound signals are captured by microphones and pressure sensors, which 

are then processed to locate and analyse the defect.   

▪ Acoustic emission: This involves detecting high-frequency elastic waves 

generated by crack growth or plastic deformation within materials. While this 

method is capable of early damage detection, its application is limited by the 

complexity of sensor placement and signal interpretation. 

▪ Oil debris analysis: Mechanical wear can cause particles to detach and circulate 

within the lubricant. These particles, analysed in terms of quantity, size, shape, 

and composition, can offer insights into internal damage. However, this method 

is not predictive, as it only detects damage after material separation has occurred. 

▪ Performance Analysis: Access to detailed performance data, such as power output 

or efficiency, allows for the evaluation of the system’s condition. For instance, a 

sudden drop in power output could indicate the onset of a fault. Unfortunately, 

such data is not always accessible or sufficiently detailed.  

▪ Thermal Monitoring (Thermography): Temperature measurements can reveal 

abnormal heat generation associated with friction, especially in components like 

bearings nearing the end of their life cycle. Nonetheless, this method often fails 

to detect early-stage faults. 

Among these methods, vibration analysis provides an optimal combination of cost-

effectiveness, sensitivity, and ease of application. It causes little disruption to turbine 

operations while offering fast detection of mechanical irregularities. This supports a shift 

from traditional time-based maintenance (preventive) to condition-based maintenance 

(predictive), which improves reliability, reduces costs, and minimises downtime. 

 



Chapter 1. Introduction 

16 
 

1.2 Comparative Maintenance Strategies 

 

Based on the application, several different maintenance strategies can be adopted. The 

main techniques are briefly summarised below: 

▪ Run-to-break: This is one of the most traditional methods, in which the machine 

continues to operate until it fails. This strategy results in the longest time between 

shutdowns, but when failure occurs, it is commonly catastrophic. The time 

required to repair the machine can be significantly extended, particularly when 

replacing damaged components, which involves design and production stages.   

▪ Time-based Preventive Maintenance: In this approach, maintenance is carried out 

at periodic intervals that are shorter than the expected ‘time-between-failures’. 

Generally, maintenance is scheduled at intervals when 1-2% of machines are 

expected to fail. This method offers several advantages, such as the ability to plan 

maintenance in advance, thereby reducing the risk of catastrophic failure. 

However, its drawbacks include the possibility of unforeseen failures and 

excessive maintenance, which leads to unnecessary component replacements. 

Time-based preventive maintenance is suitable when the failure time can be 

estimated with reasonably accuracy. For instance, certain components experience 

wear or fatigue at a consistent rate, while others, like rolling element bearing show 

significant variation in their performance, resulting estimates where the average 

time to failure may be two or three times longer than the minimum predicted 

value.  

▪ Condition-based Maintenance (CBM): Also known as ‘Predictive Maintenance’, 

this strategy involves predicting machine breakdowns through regular condition 

monitoring. Maintenance is then performed at the optimal time, which offers clear 

advantages over both run-to-break or preventive maintenance. However, it 

requires reliable condition monitoring techniques, capable not only of determining 

the current condition of the machine but also predicting the RUL. Initially, CBM 

achieved the best results in industries where machines were required to operate 

continuously for extended periods, such as in power generation. In these 

industries, machines typically run at a nearly constant speed and under stable 

loads, which reduces the technical challenges related to condition monitoring. 

However, with the advent of more advanced diagnostic techniques, condition 

monitoring has expanded to industries where machines experience more variable 

speeds and loads. For example, wind turbines are equipped with a gearbox that 

allows for adjusting the rotational speed, starting from the low rotor speed 

designed to avoid high centrifugal forces, and scaling up to the mains frequency. 
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As a consequence, CBM is the most widely used maintenance strategy, and its purpose is 

to prevent failures. This can be achieved through the application of diagnostic techniques 

that detect the presence of damage, classify its severity, and provide an estimate of the 

RUL, thereby improving the scheduling of the maintenance operations.  

A typical CBM program includes three main steps, as shown in Fig. 1.2: 

 
Figure 1.2: General workflow adopted in a CBM program 

The data acquisition step consists of collecting fundamental information from a healthy 

system. Typically, this data contains noise, which makes a preprocessing step necessary. 

This step involves data cleaning and the application of normalisation techniques. Next, 

the data processing phase handles the interpretation and management of the collected 

data. Finally, in the maintenance decision-making step, actions are determined based on 

the results of the data analysis. 

 

 

1.3 Diagnostic Definition 

 

In the context of CBM, diagnostics and prognostics are two fundamental pillars. 

Diagnostics refers to the process of fault detection, isolation and identification. 

Specifically, detection involves recognising that something is wrong during system 

monitoring; isolation focuses on localising the faulty component, and identification 

determines the nature and severity of the fault. Conversely, prognostic aims to predict the 

occurrence of faults before they manifest. Consequently, diagnostic actions are typically 

triggered when prognostic models fail or when significant uncertainty exists. 

Maintenance decisions are then based on the health information derived from the 

processing of acquired data. 

It is important to distinguish fault and failure, which are closely related concepts. The 

detection of unexpected or ‘abnormal’ behaviour must be classified into one of these two. 

A fault is defined as an unacceptable deviation of a system or structural parameter from 

normal operating conditions. Failure, on the other hand, occurs when a component or 

system can no longer fulfil its intended function. Both phenomena often result from 
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progressive degradation, such as damage or defects. In particular, according to the 

definitions established by Worden and Dulieu-Barton (2004): 

▪ Fault: A condition in which the structure is no longer able to function properly. If 

quality is defined as the structure’s ability to fulfil its intended purpose, then a 

fault can be interpreted as an unacceptable reduction in quality. 

▪ Damage: The structure operates below satisfactory levels and deviates 

significantly from its ideal state. 

▪ Defect: Related to material properties. All materials, by their nature, contain a 

statistical distribution of defects, classified in material science as point, linear, 

surface, or volumetric defects. 

These terms are inherently linked: a defect may lead to damage, which can in turn cause 

a fault. Moreover, the presence of any of these-defect, damage, or fault-can ultimately 

lead to failure. They can often be detected at an early stage because they alter the dynamic 

characteristic of the system. The amplitude of such changes can serve as an indicator for 

inspection and control. Since diagnostics aims to trace the root cause of malfunction from 

observable effects, vibration measurements are an effective tool for monitoring the health 

of wind turbines.  

However, uncertainty always exists due to confounding factors-external influences that 

may also affect a system’s dynamic response. Two key considerations must be kept in 

mind: 

▪ No sensor is capable of directly measuring damage; rather, only its consequences 

or manifestations on the system’s behaviour can be detected indirectly through 

measurable quantities. 

▪ Alterations in the dynamic characteristic of a system may indeed result from the 

presence of damage but can also be induced by other external or operational 

factors unrelated to structural degradation. 

Wind turbines are particularly susceptible to strong dynamic effects from their 

environment, such as temperature, wind speed, humidity, pressure, etc. (Fig. 1.3), which 

can affect material properties and, consequently, the turbine’s dynamic response. This 

highlights the need for methods capable of filtering out environmental influences to 

isolate changes attributable to actual damage.  
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Figure 1.3: Schematic representation of a damage detection process based on dynamic response 

comparison 

Furthermore, diagnostic extracts information from experimental data collected through 

dedicated sensors. The accuracy of diagnostic analysis depends largely on the quality of 

the collected data. Crucially, the knowledge acquired through condition monitoring 

follows a hierarchical structure, first proposed for first by Rytter in 1933, and later refined 

by Worden and Dulieu-Barton in 2004: 

▪ Detection: A qualitative indication that damage exists 

▪ Localisation: Estimating the probable location of the damage 

▪ Classification: Identifying the type of damage 

▪ Assessment: Quantifying the severity or extent of the damage 

▪ Prediction: Estimating the remaining safe and useful life 

The first four levels fall under diagnostics definition, while the last one is linked to the 

prognostics. The extraction of meaningful knowledge from experimental data in 

condition monitoring typically follows two main approaches: 

▪ Model-based approach: This method is applicable when a solid theoretical 

understanding of the system exists, allowing the development of a mathematical 

or physical model. In this context, damage identification is formulated as an 

inverse problem, where the model parameters are continuously updated using 

newly acquired data. Deviations from nominal parameter values can thus be 

interpreted as indicators of structural damage. 

▪ Data-based (or data-driven) approach: When prior knowledge about the system is 

limited or the system under investigation is highly complex, such as in the case of 

wind turbines, relying on purely analytical models becomes impractical. In such 

scenarios, data-driven methods are employed. These techniques leverage pattern 

recognition and machine learning algorithms to identify underlying regularities in 
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the data, enabling classification and detection of abnormal conditions without 

explicit physical modelling.  

Classic examples of model-based vibration analysis include Single-Degree-Of-Freedom 

(SDOF) and Multi-Degree-Of-Freedom (MDOF) systems (Fig. 1.4), which are simplified 

yet effective representations of structural dynamics. 

      
Figure 1.4: Schematic representation of a SDOF system (left) and a MDOF system (right) 

In this study, the focus is placed on the data-driven approach, which is particularly 

suitable for analysing complex systems through vibration-based monitoring techniques. 

This strategy allows for the identification of early signs of damage by processing sensor-

acquired data, even in the absence of comprehensive physical models.  

 

 

1.4 Vibration Monitoring 

 

Vibration monitoring represents a specific form of condition monitoring that exploits 

vibrational responses to assess the health status of the machine under investigation and, 

to detect anomalies potentially associated with damage. Vibration is inherently a dynamic 

phenomenon which, in conservative systems, arises from the continuous exchange 

between potential and kinetic energy. Over the past decades, vibration analysis has 

emerged as one of the most widely adopted techniques in condition monitoring, primarily 

because each mechanical component exhibits a distinct vibrational signature, that can be 

continuously observed. Deviations from this baseline signature may be indicative of the 

onset of damage. The literature on vibration-based monitoring in wind turbines is 

extensive, given that vibrational signals are highly sensitive indicators to mechanical 

degradations and faults. 

In general, all machines, including wind turbines, generate vibrations during normal 

operations. However, wind turbines are typically installed in geographically exposed 

areas where environmental conditions are highly variable and often sever. As a result, 

these systems are subjected to a wide spectrum of loads, especially dynamic loads, which 

can induce complex vibrational behaviour. Moreover, the structural flexibility of wind 

turbines, coupled with their operation in inherently unsteady environments, often leads to 

significant and persistent vibrational responses. 
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As highlighted in the previous sections, vibration monitoring offers several advantages 

compared to alternative diagnostic approaches. For instance, unlike oil analysis, which 

involves delays due to sampling and laboratory processing, vibration analysis provides 

immediate insights into machine behaviour. Thermography techniques, although widely 

used in contexts such as fault detection in railway vehicle bearings [33], are generally less 

effective for early-stage fault detection in rotating machinery, since temperature 

anomalies tend to manifest only in the later stages of failure. Similarly, acoustic emission 

monitoring may necessitate the acquisition of large datasets to capture sporadic burst 

events associated with incipient damage.  

Wind turbines generate mechanical forces and motions that give rise to vibrations, 

electrical signals, and thermal outputs. These responses justify modelling them as 

mechanical systems with multiple excitation sources and multiple observable outputs, 

thus conforming to a Multiple-Input and Multiple-Output (MIMO) system framework 

(Fig. 1.5). 

 
Figure 1.5: MIMO system 

A central challenge in vibration-based damage detection lies in determining whether the 

observed deviations originate from changes in excitation conditions or from internal 

alterations within the system itself. Accurately establishing this relationship is essential 

to effectively link machine behaviour to damage indicators. Despite the inherent 

complexity of this task in real-world systems, this work adopts vibration monitoring as 

the primary diagnostic technique for the analysis of nacelle vibrations in a wind farm 

located in northern Germany. This choice is motivated by the relative simplicity and cost-

effectiveness of vibration data acquisition compared to other condition monitoring 

approaches. 

 

 

1.5 Anomaly Detection 

 

Anomaly detection plays a crucial role in enabling the maintenance of wind turbines. It 

refers to the process of identifying patterns in data that deviate from expected behaviour. 

These ‘abnormal’ values are commonly called anomalies, outliers, discordant 
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observations, exceptions, peculiarities or contaminants depending on the application 

domain. The concept of detecting outliers in data was first studied in the statistical field 

as early as the 19th century (Edgeworth, 1887). Since then, numerous techniques have 

been developed across various research communities, particularly for the condition-based 

maintenance of industrial machinery health. 

Among the most widely adopted approaches are SCADA-based solutions, especially 

those that incorporate vibration measurements. These methods are favoured due to their 

ability to generate large volumes of data without incurring additional sensor costs.  

SCADA system acquires high-frequency vibration signals from critical components, such 

as the gearbox, nacelle or tower turbine. This data allows for the early detection of fault 

conditions, often before actual failure occurs. Moreover, the large volume of data 

produced necessitates the application of machine learning (ML) techniques. ML 

algorithms tend to perform better with larger datasets, enhancing their ability to 

distinguish between normal and anomalous operating conditions. 

In scientific literature, the terms anomaly detection and novelty detection are often used 

interchangeably, as the underlying methodologies and algorithms employed in both 

contexts share substantial similarities. Nonetheless, a conceptual distinction can be made 

between the two. Anomaly detection is generally concerned with identifying deviations 

or irregularities in data that suggest the presence of known or expected faults. In contrast, 

novelty detection aims to uncover previously unseen or rare events that differ from both 

normal behaviour and any known fault conditions. In novelty detection, the system learns 

a model of normality by training on a lar gest of data samples that represent only the 

normal (positive) class. New observations are them evaluated by comparing them against 

this learned model, and a novelty score is computed to quantify the degree of deviation. 

This score, which may be probabilistic or non-probabilistic in nature, is compared to a 

predefined decision threshold. Observation that exceeds this threshold are classified as 

novel or abnormal, indicating that they significantly diverge from the established notion 

of normality. By contrast, in anomaly detection, the focus is primarily on detecting 

irregularities within operational data that are assumed to be mostly normal. These 

anomalies can take the form of sudden transient, outliers, or subtle deviations that may 

not correspond to a previously defined fault pattern. In the context of rotating machinery 

or wind turbines, such anomalies are particularly important as they may indicate the early 

onset of mechanical damage misalignments, or other forms of degradation that require 

timely intervention. 

In addition, a fundamental aspect of anomaly detection is understanding the nature of the 

anomalies being investigated. Typically, anomalies can be categorised into three main 

types: 

▪ Point Anomalies: This is the simplest and most extensively studied type of 

anomaly. A point anomaly occurs when a single data instance deviates 
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significantly from the rest of the data and is therefore considered anomalous (Fig. 

1.6). 

 
Figure 1.6: Point anomalies examples in a 2-dimensional space: O1, O2 and O3 are isolated 

observations that significantly deviate from the normal data distributions N1 and N2 

▪ Contextual Anomalies: Also known as conditional anomalies, these occur when a 

data instance is anomalous in a specific context but may be normal in another. The 

anomaly is defined by the value of certain behavioural attributes within a 

particular context. For example, in a time series of monthly temperatures, a 

temperature value of 5 °C in winter (at time 𝑡1) may be normal, whereas the same 

value during summer (at time 𝑡2) would be considered anomalous. Contextual 

anomalies are commonly studied in time series and spatial datasets. 

▪ Collective Anomalies: In this case, a group of related data instances is considered 

anomalous when viewed together, although individual instances in the group may 

appear normal. An example is shown in Fig. 1.7, where a wind turbine’s power 

output remains at a consistently low value for an unusually long period, forming 

a collective anomaly. 
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Figure 1.7: Collective anomalies example in wind turbine’s power output. In red is highlighted the 

anomaly 

It is important to note that point anomalies can appear in any dataset, while collective 

anomalies require interrelated data, such as sequence or temporal series. Contextual 

anomalies, on the other hand, depend on the presence of contextual information within 

the data. Moreover, both point and collective anomalies can also be considered contextual 

when analysed within a specific context. Therefore, by integrating contextual attributes, 

problems involving point or collective anomalies can be reframed as contextual anomaly 

detection tasks. 

Another key aspect of any anomaly detection technique is how the detected anomalies 

are presented. Typically, the output falls into one of two categories: 

▪ Scores: These methods assign an anomaly score to each test instance, reflecting 

the degree of abnormality. The result is a ranked list of potential anomalies, 

allowing domain experts to apply a threshold for identifying the most relevant 

ones. 

▪ Labels: In this case, each instance is classified as either normal or anomalous. 

While these binary methods do not provide a flexible way to tune sensitivity, the 

choice of internal parameters in the model can influence the decision boundary. 

 

 

1.6 Machine Learning 

 

The application of anomaly detection techniques to wind turbines can be implemented 

through various methodologies. In recent years, research has demonstrated that 
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disciplines such as statistics, data mining or machine learning are capable of delivering 

highly accurate and effective results. This thesis focuses on the application of supervised 

machine learning methods aimed at detecting anomalies potentially associated with fault 

conditions. To fully understand the adopted workflow, an introductory overview of 

machine learning concepts is necessary. 

ML is a branch of AI concerned with developing algorithms that can automatically 

extracts knowledge from data with minimal human intervention.  To core objective of ML 

is to devise general-purpose techniques capable of being applied across different domains. 

These methods are fundamentally based on three key components: 

▪ Data: ML algorithms are designed to extract meaningful patterns from data 

without requiring explicit domain-specific knowledge. 

▪ Model: A model refers to the algorithm or mathematical structure that processes 

the input data. A well-designed model is expected to generalise effectively to 

previously unseen data, enabling robust pattern recognition. 

▪ Learning: Learning denotes the process of optimising model parameters to 

discover inherent patterns in the data. When this optimisation leads to enhanced 

performance on a specific task, the model is said to have ‘learned’. 

In the ML context, the term algorithm can refer to two distinct but interconnected 

functionalities: 

▪ As a predictor, it makes estimations or decisions based on input data. 

▪ As a trainer, it adjusts its internal parameters in response to data, thereby 

improving its performance, this process is known as training. 

Training a model entails optimising its parameters based on a given dataset and an 

associated utility or loss function, which evaluates the accuracy or effectiveness of the 

model’s predictions. 

Machine learning method are traditionally grouped into three broad categories, as 

illustrated in Fig. 1.8. 

 
Figure 1.8: Machine learning taxonomy 
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Supervised learning aims to predict one or more output variables, also referred to as 

response variable, denoted by 𝒀 = (𝑦1, 𝑦2, … , 𝑦𝑁), from a corresponding set of input or 

predictor variables 𝑿 = (𝑥1, 𝑥2, … , 𝑥𝑁). These predictions rely on a training dataset 

composed of input-output pairs (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁), where the relationship 

between variables is fully known. The goal is to determine a function 𝑓: 𝑿 → 𝒀 that 

accurately maps the inputs to the outputs, minimising the prediction error on unseen data.  

In contrast, unsupervised learning deals with input data that lacks labelled outputs. 

Instead, the focus shifts to discovering hidden patterns or structures in the data, typically 

through techniques such as clustering or dimensionality reduction.  

Moreover, while supervised learning requires a significant amount of labelled data to be 

effective, often making the process expensive and time-consuming, unsupervised 

learning offers a more flexible alternative but may suffer from reduced accuracy, 

especially with previously unseen data. To bridge this gap, semi-supervised learning 

combines both approaches by using a small, labelled dataset along with a larger set of 

unlabelled data. This allows for improved model performance without the full cost of 

manual labelling.  

Semi-Supervised learning can be further divided into two categories: semi-supervised 

classification and semi-supervised clustering. In the field of anomaly detection, the task 

is often tackled as semi-supervised classification problem. Rather than using a traditional 

two-class setup, the focus is place on one-class classification, which aims to detect 

deviations from normal behaviour. These deviations can indicate novel or unexpected 

patterns in the data, potentially associated with system faults or failures. 

 

 

1.6.1 Regression Methods 

 

Regression is a Supervised Learning technique used to determine the best correlation 

between predictors variables (input training data) and predicted values (output data). 

More specifically, this approach involves defining a function 𝑓 that maps input data, 

based on a set of training inputs 𝑥𝑖, to a corresponding output value 𝑓(𝑥)  ∈  ℝ, 

representing the predicted value. These outputs correspond to noisy observations 𝑦𝑖 =

𝑓(𝑥) + 𝜀, where 𝜀 is a random variable accounting for noise in the signal. 

This function aims ono tony to accurately predict the training data but also to generalise 

effectively to new, unseen data. First, a regression involves several key steps, as indicated 

in the following: 

▪ Model selection and parametrisation: For a given dataset, a suitable function that 

must be chosen from a class of candidate functions, such as a polynomial function. 
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The choice includes parameterisation, such as the polynomial degree, to enhance 

prediction accuracy. In addition, selecting an appropriate model also facilitates 

comparisons among alternatives to ensure the simplest explanation of the training 

data. 

▪ Parameter estimation: Once the model regression is selected, a loss (or objective) 

function is defined to quantify the fit. The model parameters are then estimated 

by minimising this function. 

▪ Overfitting: A common issue in regression, overfitting occurs when the model fits 

the training data too closely and fails to generalise. It often arises when the model 

is too complex or overly parameterised relative to the data. 

▪ Modelling uncertainty: Because the dataset represents only a finite sample of 

possible inputs, the model cannot account for all scenarios. As a result, uncertainty 

modelling is needed at test time to provide confidence measures for predictions. 

Linear Regression, one of the simplest and most widely used algorithms in statistics, aims 

to identify the best-fit line between a single into and single output (base problem). Based 

on the least squares method, it assumes a linear parametric form and estimates parameters 

by minimising the sum of squared residuals. This method is computationally efficient and 

performs well when the relationship between variables is approximately linear. However, 

it struggles with complex non-linear relationships, resulting in suboptimal fits when its 

assumptions do not hold. 

In many practical scenarios, the response variable may depend on more than one 

predictor, making simple SISO (Single-Input and Single-Output) regression inadequate. 

This leads to the adoption of more general models, such as: 

▪ MIMO Regression: Multiple-Input and Multiple-Output 

▪ MISO Regression: Multiple-Input and Single-Output 

These models share similar assumptions to SISO linear regression, including the 

following key assumptions: 

▪ Linearity between inputs and outputs 

▪ Multicollinearity lack: Multicollinearity is present when the independent 

variables are not independent of each other 

▪ Normal multivariate: Residuals are normally distributed 

Support Vector Regression (SVR) is the extension of the Support Vector Machine (SVM) 

to regression, as was proposed by Vapnik and his colleagues in 1992. While linear 

regression is usually a parametric model, SVR does not assume a specific parametric form 

but instead relies on kernel functions to project input data into a higher-dimensional 

feature space, where a linear function is then fitted the kernel function represents an inner 

product in this feature space: 
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𝑘(𝑥, 𝑥′) = 〈𝜙(𝑥), 𝜙(𝑥′)〉 

Here, 𝜙 is a mapping from the input space, represented by vectors 𝑥 and 𝑥′,  to a Hilber 

space ℋ, commonly referred to as the feature space. The kernel trick allows these 

computations to be performed implicitly in the feature space without explicitly computing 

𝜙(𝑥). 

SVR uses these kernel functions to learn either linear or non linear mappings, while its 

capacity is controlled by parameters that are independent of the dimensionality of the 

feature space. Similar to SVM classification, the SVR algorithm minimises a convex loss 

function, producing a sparse solution. A crucial aspect of SVR is the use of an 𝜀-intensive 

loss function, which ignores small errors (within a defined threshold), focusing only on 

significant deviations. 

As a result, SVR offers a flexible and robust alternative to traditional regression methods, 

particularly when dealing with non-linear relationships or limited labelled data.  

 

 

1.6.2 Dimensionality Reduction 

 

Dimensionality reduction is a fundamental technique within the scope of unsupervised 

learning, particularly relevant when analysing high-dimensional datasets comprising a 

large number of features. While this abundance of information may enhance data richness, 

it simultaneously increases analytical complexity and the risk of including redundant or 

irrelevant information, such as duplicated or correlated features.  

To address these challenges, dimensional reduction serves as an effective strategy to 

eliminate noise and redundancy, thereby improving both the efficiency and the 

interpretability of subsequent analysis. This process is typically carried out in two stages: 

feature selection and feature extraction. The core idea behind dimensionality reduction is 

to project data samples from a high-dimensional space into a lower-dimensional space 

while preserving the essential structure and information. In mathematical terms, given an  

input vector 𝑿 = {𝑥1, 𝑥2, … , 𝑥𝑛}𝑇, the main purpose is to map it into a lower 

representation 𝒀 = {𝑦1, 𝑦2, . . , 𝑦𝑚}𝑇, through the following relation 𝒀 = 𝑓(𝑿). 

One of the most widely used techniques for linear dimensionality reduction is Principal 

Component Analysis (PCA). Originally introduced by Pearson (1901) for bivariate 

problems and later extended by Hotelling (1933) for multivariate datasets. PCA identifies 

the directions, i.e. principal components, along which the data exhibit the greatest 

variance. In the context of high-dimensional datasets, PCA helps to reduce dimensionality 

by retaining only the most informative linear combinations of the original features. 
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However, PCA is inherently a linear method, which limits its effectiveness when the data 

lie on a non-linear manifold. To overcome this limitation, kernel PCA has been proposed 

as an extension. By employing the kernel trick, the data are implicitly mapped into a 

higher-dimensional feature space where linear separation becomes feasible. In this 

transformed space, PCA is then performed, allowing for non-linear dimensionality 

reduction while still preserving the interpretability and structure of the data.  

 

 

1.6.3 Anomaly Detection in Machine Learning 

 

As has already been introduced, anomaly detection is the process of identifying unusual 

patterns in data that deviate from expected behaviour. A simple method typically consists 

of centring around the definition of a normal behaviour domain for each approach. Any 

data observation that falls outside this normal range is deemed an anomaly. Additionally, 

there can be labels associated with data instances, indicating whether it is classified as 

normal or anomalous. As a result, many anomaly detection methods rely on classification 

techniques.  

Referring to Fig. 1.8, which illustrates the ML taxonomy, anomaly detection techniques 

follow the same classification scheme. 

In supervised anomaly detection, models are trained on datasets that include both normal 

and anomalous labels. The goal is to learn a decision boundary that can accurately 

separate the two classes. In contrast, semi-supervised anomaly detection techniques are 

trained using only data from the normal classes. These methods are particularly useful 

when anomalous data is rare or unavailable, which is often the case in real-world 

industrial scenarios. 

Unsupervised anomaly detection methods do not require labelled data. They rely on the 

assumption that anomalies are rare and significantly different from the majority of data. 

However, if this assumption does not hold, such methods can produce a high rate of false 

alarms. In the supervised approach, anomaly detection can be performed by training a 

classification model using a dataset presenting both anomalous and normal data, 

composed of labelled instances. During the training phase, the model (or classifier) learns 

to distinguish between normal and anomalous conditions based on the provided labels. In 

the testing phase, the trained classifier is then used to predict whether new, unseen data 

instances belong to the normal class or represent anomalies. In the semi-supervised is, 

just a dataset with normal data is needed, so no anomaly examples occur.  

Two main approaches are widely used in anomaly detection: one-class and multi-class 

classification (Fig. 1.9). 
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Figure 1.9: Anomaly detection based on classification approach 

In one-class, the model is trained solely on normal data, assuming that all training 

instances belong to a single class. This approach is commonly implemented using 

techniques such as One-class SVM. Conversely, multi-class involves training the model 

on multiple classes of normal behaviour, enabling it to distinguish among several types 

of normal conditions.  

When labelled data are not available, supervised methods cannot be applied, and an 

unsupervised approach must be used instead. Clustering algorithms are widely adopted 

in this context to group similar instances together. Anomalies are then identified as 

instances that do not conform to the general clustering structures. These clustering-based 

anomaly detection methods typically rely on one or more of the following assumptions: 

▪ Normal instances tend to form well-defined clusters, whereas anomalies do not 

belong to any clusters. Methods such as DBSCAN, ROCK, and Shared Nearest 

Neighbour (SNN) clustering are commonly used in this case. 

▪ Normal instances are located close to the centroid of their nearest cluster, while 

anomalies lie at a greater distance. Techniques like k-means clustering and 

expectation maximisation fall in this category. 

▪ Normal instances belong to large, dense clusters, while anomalies are associated 

with small or sparse clusters. A notable example of this approach is the cluster-

based local outlier factor (CBLOF). 

These methods generally require the computation of distances between pairs of instances. 

In this respect, clustering shares similarities with nearest neighbour-based anomaly 

detection methods, although the latter focus on local neighbourhood structures rather than 

global groupings. 

 

 

1.7  Challenges and Recent Research 

 

While anomaly detection may initially appear to be a straightforward task, its application 

in real-world scenarios is considerably more complex. Various factors must be taken into 

account, highlighting the true challenges involved in its implementation: 
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▪ Defining a region that accurately represents the normal operating behaviour of the 

machine is inherently difficult. Furthermore, the threshold that separates normal 

from anomalous behaviour is often not sharply defined. As a result, numerous data 

points may lie near the boundary, leading to potential misclassification of normal 

and anomalous conditions. 

▪ In many real-world scenarios, the definition of ‘normal behaviour’ is not static but 

varies over time due to external factors such as temperature, humidity, or pressure 

changes-particularly relevant in environments like wind farms. Consequently, a 

model trained on historical data may no longer be representative in future 

conditions. 

▪ The availability of labelled data for training, validation, and especially for testing 

is often limited. In some cases, labels may not be accessible at all, or their 

accuracy may be questionable. 

▪ Real-world data is typically affected by noise, which can closely resemble actual 

anomalies. Moreover, damages or faults may manifest subtly within the data, 

requiring robust preprocessing techniques to effectively isolate and identify them. 

These challenges highlight that anomaly detection is a non-trivial task, highly dependent 

on the specific system under investigation and the quality and characteristics of the 

available data. 

Currently, the research field is highly active in developing advanced algorithms and 

methodologies to improve detection accuracy and overcome the above-mentioned 

limitations. A growing number of studies propose autonomous systems based on adaptive 

machine learning algorithms. Among them, Transfer Learning and Deep Learning 

approaches are widely used due to their excellent performance in complex detection tasks 

[4,6,11]. These methods are capable of monitoring machine health and detecting faults at 

an early stage. However, they come with some drawbacks: they typically require large 

amounts of training data, long training times, and significant computational resources.  

Other commonly used techniques include Support Vector Machine (SVM) [18,15,14], 

Decision Trees [16], and Artificial Neural Networks (ANN) [17]. In recent years, 

alternative strategies have emerged, such as physics-informed deep learning [11,18,14], 

convolutional neural networks (CNN) [8], and hyperparameter optimisation through a 

hierarchical search algorithm [9]. Autoencoder (AE) models have also gained popularity, 

as seen in the works of Cyriana M.A. Roelofs et al. [4] and others [32,6]. These models 

aim to detect as many anomalies as possible by training on carefully prepared datasets.  

Due to the high computational cost of deep learning methods, some researchers have 

focused on developing simpler techniques that still offer good performance while being 

easier to implement and maintain [7]. For example, Sinvaldo R. Moreno et al. [12] 

proposed fault detection models based on power curve analysis. These models monitor 
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turbine performance and detect anomalies caused by factors such as nacelle 

misalignment, wind transducer displacement, or increased blade load due to sensor 

failure. Their approach estimates the ideal power output by considering physical 

parameters such as air density, rotor area, and wind speed, using machine learning models 

solely for health monitoring purposes.  

A hybrid Genetic Algorithm (GA) classifier has been introduced by Sunil Tyagi and S. K. 

Panigrahi [5]. This method combines an Artificial Neural Network (ANN) classifier 

trained with GA-based optimisation (GA-BP) to detect gearbox faults based on vibration 

measurements, demonstrating the effectiveness of integrating different machine learning 

strategies to enhance diagnostic capability.  

Other relevant contributions include the work by Castellani et al. [26], which combines 

Principal Component Analysis with Mahalanobis distance to detect anomalies from tower 

vibration measurements, showing how a novelty index can serve as a key detection tool 

while also reducing false alarms. In another study [25], they apply Support Vector 

Regression (SVR) to monitor the temperature trends of bearings for early fault diagnosis.   

A notable example is the study proposed by Dhiman et al. [31], who applied various 

Support Vector Regression-based methods to monitor gearbox temperature, using feature 

selection and statistical tests on the residuals as anomaly indicators. 

 

 

1.8 Thesis Objectives 

 

The goal of this thesis is to develop an anomaly detection method in order to perform a 

complete diagnostic assessment of the wind turbine under investigation. One of the main 

objectives is to define a strategy that provides a general overview of the machine’s health 

status. This approach should be generalisable to other turbines as well, thanks to the 

ability of the models considered in this thesis to generalise physical behaviour.  

Such a methodology would not only help identify the presence of faults but also 

distinguish between different types of failures and damages, an essential requirement for 

timely and effective planning of predictive maintenance. This is crucial in the context of 

wind energy where continuous electricity production is vital to meet energy demand. 

The proposed diagnostic procedure is based on the selection of a specific physical 

parameter, nacelle vibration, as a reference indicator. Vibrations are highly sensitive to 

physical variations and can be used as a baseline signal, so that any deviations from their 

expected profile can be analysed to determine whether they are due to actual faults or 

simply to variations in environmental or operating conditions (e.g., changes in wind speed 

or ambient temperature), i.e. confounding factors. Vibration monitoring methodologies 
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are widely adopted in the field of diagnostic, and in this work the analysis is primarily 

focused on time-domain features, which are then processed using ML models. 

In summary, after discussing the main advantages and limitations of various early fault 

detection strategies for wind turbines, it becomes essential to develop a solid 

understanding of the functional behaviour of their mechanical and electrical components, 

as well as of power control principles. This knowledge provides the necessary physical 

background for defining the specific objectives of this thesis.  

Moreover, the aim of this work is to integrate physical modelling insights into a machine 

learning framework, with the goal of improving the accuracy and robustness of predictive 

maintenance algorithms. In the next chapter, a concise overview of the main failure modes 

offers valuable context for interpreting the analytical results. Given the complexity of 

wind turbines as electromechanical systems, vibrations caused by mechanical faults serve 

as critical indicators of potential damage. Therefore, understanding the relationship 

between vibration patterns and fault types is fundamental to the development of effective 

vibration-based anomaly detection methods. 

These insights serve as the foundation for the data-driven analysis presented Chapter 4, 

while the detailed methodological framework and proposed approach are introduced in 

Chapter 2. 
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2. Wind Turbines 

 

In this chapter, the operating principles and structural components of wind turbines are 

examined, with a particular focus on their typical failure mechanisms and power control 

strategies. The section also outlines the most common faults observed in real-world 

applications, laying the foundation for the subsequent analysis of condition monitoring 

and anomaly detection.  

 

 

2.1 Wind Turbines Overview 

 

Wind turbines are machines that convert wind energy, which directly dependent on wind 

velocity, into electrical energy. While traditional windmills convert wind energy into 

mechanical energy, modern wind turbine acts as electrical generator connected to various 

types of networks, including battery-charging systems, residential microgrids, isolated 

power systems, and large-scale utility grids, enabling energy storage and distribution.  

The energy conversion process is governed by the principles of aerodynamics. 

Specifically, the blade design creates a pressure differential across the blade surfaces, 

generating lift. This aerodynamic force induces torque on a rotating shaft, which drives a 

generator that transforms mechanical energy into electrical power. This makes wind 

turbine as a key technology for producing electricity from renewable source. However, 

unlike many conventional generators, wind turbines are subject to variability in energy 

production due to the intermittent and irregular nature of wind.  

The most common design today is the Horizontal-Axis Wind Turbine (HAWT), 

characterised by a rotor axis parallel to the ground. These typically feature two or three 

blades and are equipped with an upwind rotor configuration. The selection of specific 

design features depends on various factors, including aerodynamic efficiency, mechanical 

complexity, acoustic emissions, and cost.  

Modern turbines can be further classified according to two main criteria: 

▪ Vertical axis turbines 

▪ Horizontal axis turbines 

▪ Number of rotor blades 

HAWTs are the most widely adopted configuration. They must be oriented to face wind 

direction, in contrasts to VAWTs, which operate with airflow impacting the blades 

tangentially. VAWTs, used more commonly in the previous century, resemble the 

operating principle of classic water wheels. Although, their design tends to be more



Chapter 2. Wind Turbines 

35 
 

 complex, they offer the advantage of   placing the gearbox and generator at ground level, 

simplifying maintenance. However, they are generally less efficient due to their lower 

height, where wind speeds are reduced by the boundary layer effect. In contrast, HAWTs 

position the rotor at the top of a vertical tower, where higher wind speeds are available, 

even though this comes at the cost of greater structural load and potentially stronger 

vibrations due to the increased mass. HAWTs can be further divided based on the rotor’s 

position relative to the wind: 

▪ Upwind rotor 

▪ Downwind rotor 

In upwind turbines, the rotor is placed in front of the tower, facing the wind. This 

configuration helps to avoid the wind shadow created by the tower but requires a yaw 

control system to maintain alignment with wind direction. Conversely, downwind 

turbines position the rotor on the side opposite to the wind. While this configuration can 

eliminate the need for an active yaw system, since the nacelle can rotate passively with 

the wind, it is more prone to fatigue loads due to flow disturbances and dynamic 

interactions with the tower wake. Additionally, gyroscopic loads may arise from passive 

yawing. Upwind rotors typically require stiffer blades to prevent tower strikes, whereas 

downwind rotors can afford more flexibility, which may reduce weight and lower 

structural loads. Despite these potential advantages, the vast majority of modern wind 

turbines employ upwind rotor configurations. 

   
Figure 2.1 :Horizontal axis wind turbines (left) and vertical axis wind turbine (right)
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2.2 Main Components of Wind Turbines 

 

The basic structure of wind turbines is typically divided into five main groups: the rotor, 

the drivetrain, the main frame, the yaw system, and the tower (Fig. 2.2). 

 
Figure 2.2: Horizontal axis wind turbine representation, and its main component groups 

The rotor is the rotating component that extracts wind power and converts it into 

rotational motion. It is consists of the blades, the hub, and aerodynamic control 

mechanisms. 

▪ Blades are devices that convert lift force into torque, which is transmitted to the 

rotor. They must be designed considering both their structural strength and 

aerodynamic performance. In terms of structural strength, they are usually made 

from composite materials such as fiberglass in polyester resin or carbon fibers. 

For vertical-axis turbines, aluminium is a common choice. Furthermore, the 

blades need to be robust enough to endure intense loads that cause significant 

deflections and fatigue phenomena. 

▪ The hub is the part that connects the blades to the main shaft and other drivetrain 

components. It transmits the torque generated by the blades to the low-speed shaft 

and is often where the blade-pitch actuator is located. In horizontal-axis turbines, 

three main types of hub design can be distinguished: rigid hubs, teetering hubs, 

and hinged blade hubs.  

The drivetrain system includes all rotating components of the machine (Fig. 2.4), 

excluding those described in the rotor section.  
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▪ The main shaft, also known as the low-speed or rotor shaft, is the primary rotating 

component that transmits torque from the rotor system to the drivetrain. 

Additionally, it supports the rotor's weight and must be able to withstand bending 

and torque loads. Bearings play a crucial role in supporting the main shaft, 

transferring all reaction loads to the turbine's main frame.  

▪ Gearboxes are used to increase the rotational speed of the input shaft to the 

generator. Wind turbines are large machines that, due to their centrifugal 

resistance, must rotate at low speeds, while the generator system convert 

mechanical energy into electrical energy, which is linked to the grid frequency, 

typically fixed to 50 Hz.  

Gearboxes include torque-transferring components like gears, shafts, bearing, 

seals, and cases. Generally, gearboxes can be classified into two main types: 

parallel-shaft gearboxes and planetary gearboxes (Fig. 2.3). Wind turbines 

operating in industrial settings typically use a three-stage gearbox. 

 
Figure 2.3: Planetary and two stages and gearbox configurations 

▪ The generator ensures the conversion of mechanical energy into electrical energy. 

A converter is used to connect the generator to the AC grid in variable-speed wind 

turbines.  

▪ Brakes are devices employed to stop the rotor or control power output when wind 

speed exceeds a certain threshold. As such, they are also used during emergency 

shutdowns. 

 
Figure 2.4: Drivetrain representation 
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The nacelle is the enclosure housing the main components of the wind turbine, including 

the main frame and the nacelle cover. In particular, the main frame is a structural 

component that supports and connects the gearbox, generator, and brakes. It is a rigid 

structure designed to transmit both operational and reaction loads from the rotor and 

generator to the tower. The nacelle cover, on the other hand, provides protection for the 

turbine's components against weather conditions. 

The tower is designed to support the entire wind turbine structure, including the nacelle 

and the rotor. It is typically made of steel, and its diameter is related to the size of the 

rotor, particularly the length of the blades. As a result, the nacelle is suspended in the air 

by the tower, which also rotates during power control through the yaw mechanism. 

However, the yaw system's operation depends on the turbine’s size, as excessive rotation 

could be dangerous. The yaw mechanism ensures that the rotor aligns with the wind 

direction, especially during full power production, and can also be used to reduce power 

output when wind speeds are too high. 

The tower is subjected to both static and dynamic loads. Static loads are primarily result 

from aerodynamic forces that generate torque, while dynamic loads can cause significant 

vibrational phenomena, particularly in soft towers. In general, the tower's design must 

ensure that its first natural frequency does not coincide with the turbine’s excitation 

frequency, which is related to the rotor frequency or the blade passing frequency. A simple 

method for estimating the tower's natural frequency is to approximate it as a cantilever 

beam with a point mass at the top, as proposed by Baumeister in 1978. 

 

 

2.3 Failure Mechanisms 

 

Diagnosing failures in complex machines is particularly challenging, especially when 

multiple interconnected components are involved. In the case of wind turbines, it is 

essential to accurately identify the affected subsystem and understand the nature of the 

underlying faults. A thorough analysis of the most common failure mechanisms not only 

enhances the interpretation of diagnostic data but also improves the effectiveness of 

machine learning algorithms used for fault detection and predictive maintenance.  

This section provides an overview of the typical failure modes in wind turbines, forming 

the foundation for the subsequent application of advanced diagnostic and analytical 

methodologies.  

The most common failure in wind turbines involve the blades, gearbox, pitch system, and 

yaw system, as schematically illustrated in Fig 2.5. 
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Figure 2.5: Main failure mechanisms in wind turbine 

 

 

2.3.1 Blade Failure 

 

Wind turbine blades are constantly exposed to the external environment, making them 

susceptible to a wide range of environmental stressor. These include high altitudes, 

ultraviolet radiation, heavy rain, freezing rain or ice, snow, lightning, typhoons, as well 

as sand and dust. In addition, mechanical stress resulting from rapid rotation can amplify 

these effects and significantly increase the risk of failure.  

Blade failures can also stem from material defects such as delamination, folding, or 

inadequate curing during the manufacturing process. These flaws compromise the 

structural integrity of the composite materials typically used in blade construction.  

As shown in Fig. 2.5, the most common blade failures can be classified into three main 

categories: fracture and cracking failure, lightning strike damage, and local surface 

abrasion. 

Fracture failures (Fig. 2.7a) occur when a blade breaks into two or more parts. From a 

material science perspective, structural composites inherently contain micro-defects 

introduced during manufacturing. Wind turbine blades are often tapered to improve 

aerodynamic efficiency and reduce weight. However, this design results in a smaller 

cross-sectional area in the mid-span region, which can compromise stiffness and strength. 

Under critical external loads, the blade material initially undergoes elastic deformation, 

storing strain energy. As loading continues, damage mechanisms such as crazing may 

occur, ultimately leading to fracture. 

Another contributing factor is turbulence generated between two successive blades. If the 

spacing between blades is too wide, airflow disturbance can reduce energy capture and 

compromise stability. Conversely, if the spacing is too small, blade interference and 
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excessive turbulence may result, increasing vibration phenomenon and accelerating 

fatigue failure. 

As discussed in the previous section, towers are designed to elevate turbines to altitudes 

that maximise wind energy capture while reducing turbulence. The site selection for a 

wind farm is thus critical, and particular attention is paid to the boundary layer in the 

atmospheric profile (Fig. 2.6). 

 
Figure 2.6: Schematic representation of boundary-layer flow over a region of surface roughness and its 

separation 

The figure shows how wind speed varies with both geographic location and altitude above 

ground level. High-capacity wind turbines often employ taller towers to access more 

stable and higher wind speeds. However, greater height increases exposure to lightning 

strikes (Fig. 2.7b), which frequently impact the lightning receptor and nearby blade 

sections. These events may cause cracks in both the lightning protection system and the 

blade structure itself, often accompanied by visible surface deterioration. 

Local surface abrasions (Fig. 2.7c) is also a common form of damage and typically affects 

the tip and mid-windward sides, as well as the leading and trailing edges of the blade. As 

the blades rotate, they collide with airborne particles such as sand or water droplets. Due 

to the increasing tangential velocity along the blade radius, the leading-edge experiences 

significant erosion, while the trailing edge is more prone to vortex-induced wear. 

Abrasion from gravel may initiate small depressions that evolve into pitting. Water 

accumulation in these pits can raise local humidity, increasing the blade’s vulnerability to 

lightning damage. 

 
Figure 2.7: Real images of wind turbine blades affected by different types of failure: structural fracture, 

lightning damage, and surface abrasion 
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Wind turbines are equipped with a set of uniformly spaced blades mounted on the rotor, 

and their interaction with other structural components induces a periodic excitation of the 

nacelle. Under healthy operating conditions, these interactions are minimal, as the airflow 

from the rotor is appropriately guided to match the angle of any guide vanes. However, 

when a blade is damaged or surface abrasions alter the aerodynamic profile, the angle of 

the fluid flow may deviate from the design conditions. This misalignment leads to more 

impulsive and unbalanced interactions, which manifest as distinct changes in the vibration 

signals. Therefore, blade-related anomalies can be effectively detected through vibration 

monitoring, by analysing variations in vibration amplitude or its frequency content of 

nacelle vibrations. 

 

 

2.3.2 Gearbox Failure 

 

Gearbox malfunctions in wind turbines are commonly attributed to gear-related failures, 

primarily involving the gear teeth. These include corrosion, surface wear, bonding issues, 

and breakage.  

The most typical mechanisms are briefly described below, starting with tooth surface 

corrosion.  

As illustrated in Fig. 2.8, corrosion on the tooth surface may results from either chemical 

or electrical processes. Chemical corrosion is the most frequent form and is usually 

caused by an excessive moisture in the lubricating oil or high humidity inside the gearbox 

casing. Contact pressures exceeding an acceptable threshold, or defects in lubrication that 

impair surface interaction, can initiate corrosion. When direct metal-to-metal contact 

occurs under significant compressive loads, it may lead to a substantial energy loss, 

localised overheating, and, in severe cases, micro-welding of surfaces. This phenomenon 

is known as seizing. 

 
Figure 2.8: Wear corrosion induced by chemical reactions in the lubricating oil 
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Surface wear phenomenon can manifest in several forms, including: 

▪ Micro-pitting 

▪ Macro-pitting 

▪ Spalling 

▪ Fretting wear 

These forms depend on the intensity and origin of compressive stresses. Micro-pitting 

(Fig. 2.9) also referred to as ‘grey spot’, occurs on gear teeth subjected to prolonged heavy 

loads. It is typically the result of incomplete or irregular lubricant film formation, which 

increases friction and promotes localised heating. These conditions accelerate the 

initiation of micro-pits on the tooth surface.  

 
Figure 2.9: Micro-pitting on the gear tooth surface 

In contrast, macro-pitting (Fig. 2.10) involves the development of larger cavities at gear 

contact points due to material fatigue. When material defects are present or gear teeth 

experience strong impacts, high shear stresses can occur from relative sliding. This leads 

to crack nucleation and propagation along the surface of the gear teeth. As gears continue 

to operate, these fatigue cracks may extend, resulting in surface spalling or breakage. 

 
Figure 2.10: Macro-pitting of tooth surface 
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Fretting wear, or ‘black line’ corrosion (Fig. 2.11), often arises from intense metal-to-

metal contact between gear surfaces during extended periods of inactivity, especially 

when lubrication is lacking. Small vibrations and insufficient oil flow contribute to the 

progressive degradation of the surface, which may evolve into pitting and eventual 

cracking under thermal and mechanical stress.  

 
Figure 2.11: Severe fretting corrosion on a gear tooth 

Another degradation mode is tooth surface gluing, which occurs when oil film rupture 

under excessive pressure allows direct metal contact. This failure mode is categorised into 

two types:  

▪ Hot gluing, associated with high sliding speeds and temperatures, causes oil film 

collapse and thermoplastic deformation of gear surfaces. 

▪ Cold gluing, caused by high local pressures under low sliding conditions, leads to 

oil film puncture and adhesive failure between surfaces. 

The final failure mode involves tooth breakage (Fig. 2.12), which can result from material 

fatigue or sudden overloads. This typically occurs when the load surpasses the allowable 

threshold defined by the material properties. Fatigue fractures exhibit three distinct zones: 

▪ Fatigue crack source zone 

▪ Crack extension zone 

▪ Transient fracture zone 

A plastic deformation region is often observed, the extent of which depends on the 

material’s ductility, stiffness, and operating temperature. 
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Figure 2.12: Fractured gear tooth due to overload or fatigue 

 

 

2.3.3 Pitch System Failure 

 

Pitch system failures are relatively common in wind turbines and are typically caused by 

one or more of the following issues: 

▪ Undervoltage in the pitch shaft cabinet battery: This occurs due to battery 

degradation from prolonged use or failure in the charging circuit. In either case, 

the battery voltage drops below the critical threshold, preventing the blades from 

adjusting their pitch angle correctly. 

▪ Abnormal hub sensor data: malfunctions in the data acquisition system from the 

hub may lead to incorrect or delayed pitch adjustments, affecting aerodynamic 

performance. 

▪ Exceeding pitch angle limits: Operational overshoots or improper shutdown 

sequences may cause the blade pitch angle to exceed its upper or lower limits, 

potentially resulting in mechanical stress or aerodynamic instability. 

When a pitch system fault occurs, the wind turbine may no longer regulate the blade 

orientation effectively, leading to suboptimal energy production or even total power loss. 

Additionally, blade misalignment can lead to increased aerodynamic turbulence, 

increasing the likelihood of abnormal vibration patterns. These effects are typically 

observable through nacelle or rotor vibration analysis. 

 

 

2.3.4 Yaw System Failure 

 

The yaw system plays a crucial role in wind turbines, allowing the nacelle to rotate around 

the tower’s vertical axis, thereby ensuring alignment with the wind direction. This 
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alignment is essential for optimising wind energy capture. However, yaw system failures 

are relatively common, primarily due to the mechanical components being subjected to 

continuous stresses, wear, and operational faults. 

Typical failure modes can be classified as follows: 

▪ Abnormal noise: This issue is usually associated to mechanical components such 

as the drive motor, gearbox, yaw ring gear, gear engagement, clearance, bearings, 

and brakes. Failures in these parts often result from lubrication problems. The 

presence of excessive impurities or lubricant degradation can alter the oil’s 

dynamic viscosity, increase friction and cause localised overheating. Since 

material mechanical properties are temperature-dependent, elevated temperature 

can reduce stiffness, making components more susceptible to corrosion and wear. 

Yaw brake failure is typically identified by the presence of cracks in the friction 

discs, incorrect adjustment of the calliper body compensation system, or uneven 

damping torque values. These problems are often caused by excessive braking 

pressure or contamination of the friction surfaces by dust or debris. 

▪ Yaw drive machinery blockage: The yaw drive mechanism may seize due to 

several contributing factors. First, bearing fatigue may result from thermal 

expansion and contraction caused by fluctuating operating temperatures. Because 

the yaw drive is mounted vertically, the lower bearing is subjected t high inertial 

forces from the yaw ring gear. Foreign particles and debris can infiltrate the 

bearing gaps, reducing their functionality. Additionally, the yaw gear is highly 

sensitive to over-torque damage during turbine startup and shutdown. Typical 

examples of such damage include broken teeth in the yaw ring gear and in the yaw 

drive gear, as shown in Fig. 2.13a and Fig. 2.13b, respectively. 

Another common failure involves cracking of the yaw bearing liner, often caused 

by substandard liner materials or improper balancing of the yaw calliper torque. 

▪ Inaccurate yaw positioning: Misalignment in yaw positioning can occur due to 

yaw motor failure, insufficient braking pressure, or inadequate braking torque. 

 
Figure 2.13: Two common failure modes in wind turbine yaw gears: (a) a broken tooth in the yaw ring 

gear; (b) multiple broken in the yaw drive gear 
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2.4 Off-design Power Regulation Methods 

 

As mentioned in the previous section, wind turbines are subjected to strong dynamic loads 

due to their considerable size, requiring constant monitoring and control of the power 

they generate. Without control mechanisms, the rotor speed would increase as the kinetic 

energy of the wind increases. Additionally, the centrifugal forces acting on the machine 

must be considered, highlighting the importance of effective power regulation.  

Wind turbines typically operate within specific wind speed ranges, defined by minimum 

and maximum thresholds: 

▪ Cut-in velocity: 𝑐0,𝑚𝑖𝑛 = 2 ÷ 3 𝑚/𝑠 

▪ Cut-off velocity: 𝑐0,𝑚𝑎𝑥 = 20 ÷ 25 𝑚/𝑠 

When wind speed exceeds the cut-off velocity, a portion of the energy must be dissipated 

to avoid mechanical damage. Conversely, if the wind speed is below the cut-in threshold, 

the energy extracted is insufficient to overcome the internal resistances of the turbine 

components, leading to inefficiencies.  

Moreover, the number of blades plays a crucial role in turbine performance, as it 

influences turbulence generation, which can lead to vibrational phenomena in the nacelle.  

This aspect is quantified by the solidity, defined as: 

 
𝑠 =

𝑇𝑜𝑡𝑎𝑙 𝐵𝑙𝑎𝑑𝑒 𝑆𝑢𝑟𝑓𝑎𝑐𝑒

𝐷𝑖𝑠𝑘 𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟 𝐴𝑟𝑒𝑎
 (2.1) 

 

 
Figure 2.14: Solidity graph 

As shown in Fig. 2.14, turbines with a single blade are typically used for small-scale 

energy generation in local facilities or energy communities, often driven by sustainability 
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goals. For turbines with low solidity, only a small fraction of the air stream interacts with 

the rotor. As a result, the rotor must spin faster to induce sufficient perturbation of the 

airflow, allowing maximum energy extraction.  

There are three main methods used to control power output in off-design conditions: 

▪ Pitch control 

▪ Stall control 

▪ Active stall control 

Pitch control modifies the aerodynamic performance by rotating the blades around their 

longitudinal axis. Specifically, the electrical power output is influenced by the tip-speed 

ratio 𝜆0, which is affected by changes in the tangential velocity. When the generated 

power exceeds the turbine’s maximum allowable limit, typically defined by centrifugal 

constraints, the blades are slightly pitched out of the wind to reduce power. This method 

requires a blade design capable of maintaining the optimal angle across a range of wind 

speeds. Pitch control is often combined with rotor speed regulation to enhance efficiency. 

Stall control reduces power output by exploiting aerodynamic stall. Blade profiles with 

high Reynold numbers tend to stall more easily. As wind speed, and consequently rotor 

speed, increases, the stalled region on the blade surface expands, reducing aerodynamic 

lift. To facilitate this, the blade geometry is designed to induce flow separation on the 

leeward side once the wind exceeds a critical velocity.  

Active stall control is a hybrid approach that combines the previous two methods. At low 

wind speeds, the turbine operates similarly to a pitch-controlled system. At higher speeds, 

however, the blades are deliberately pitched to induce stall and reduce power output, thus 

preventing overspeed and mechanical stress. 
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2.5  Thesis Purposes 

 

The primary objective of this research is to explore and develop effective anomaly 

detection strategies for wind turbines by applying machine learning algorithms applied to 

SCADA data. Specifically, the aim is to accurately predict nacelle vibrations, which serve 

as continuous monitoring indicators of the turbine’s normal operating conditions. By 

establishing precise thresholds, the system is designed to identify anomalies 

corresponding to significant deviations from expected behaviour. 

Anomaly detection is a crucial approach for improving predictive maintenance 

procedures as highlighted on the introduction of this thesis. Although several challenges 

must be addressed before initiating a reliable analysis. The literature is rich in journal 

articles and technical reports that propose a variety of algorithms based on machine 

learning techniques or traditional statistical models, all aimed at overcoming the inherent 

difficulties of this field. The continuous advancement of information and electronic 

technologies offers many advantages, from improved data acquisition and sampling to 

the development of increasingly accurate models. Among the various research 

contributions in the field, the work presented in [31] is taken as the primary reference for 

developing the methodology proposed in this thesis.  

To fulfil the overarching aim, a key goal is the integration of physical modelling with 

data-driven approaches to predict nacelle vibrations, which are used as indicators of 

potential faults in the turbine and form the basis of vibration monitoring systems. More 

specifically, this work aims to develop a regression model that links operational 

parameters, such as wind speed, rotor speed, pitch angle, and others, to nacelle vibrations. 

These vibrations are critical indicators of the mechanical health of the turbine and 

accurately predicting them can help detect deviations from normal behaviour, indicating 

possible malfunctions. 

To this end, a comprehensive approach is adopted. First, the relationship between 

operational parameters and nacelle vibrations is examined through a preliminary 

statistical analysis using a two-input, single-output regression model. Wind turbines 

operate under complex and dynamic conditions and understanding the interplay between 

these parameters is essential to accurately model the behaviour of the nacelle across 

various operational scenarios. 

In addition to the regression model, the methodology integrates physical insights based 

on the Betz model, which describes how wind turbines extract kinetic energy from the 

wind by reducing its velocity and increasing the flow area. This integration of physical 

knowledge into the machine learning process enhances both its accuracy and robustness, 

making it more suitable for real-world applications. 



Chapter 2. Wind Turbines 

49 
 

Furthermore, the proposed methodology includes a detailed residual analysis. After 

training the regression model on data representing normal operating conditions, the 

residuals, defined as the differences between predicted and actual vibration values, are 

examined to identify anomalies. By defining specific thresholds for the residuals, it 

becomes possible to detect potential faults or abnormal behaviour in the turbine’s 

operation.  

The dataset used in this thesis consists of SCADA data collected from multiple wind 

turbines over several months. This dataset, available from Zenodo under the tile ‘Wind 

Turbine SCADA Data for Early Fault Detection’, offers a rich and high-dimensional 

source of information, ideal for developing a robust predictive model. 

The aim of this work is to improve the accuracy of predictive maintenance systems for 

wind turbines, reduce operational costs, and enhance the overall reliability of turbine 

operations. Through a combination of machine learning and physical modelling, this 

research contributes to the advancement of sustainable and efficient wind energy 

technologies, with a focus on early anomaly detection. 
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3. Dataset Description and Initial Preprocessing 

 

To provide a clear overview of the entire work, this chapter presents a detailed description 

of the dataset used for the analysis, including the selected wind turbine and the features 

considered. Furthermore, a brief overview of the typical measurement instruments 

employed during the data acquisition process is provided. The chapter concludes with a 

description of the data cleaning methodology adopted prior to the modelling phase. 

 

 

3.1 Dataset  

 

The dataset used in this thesis was downloaded from Zenodo under the title ‘Wind Turbine 

SCADA Data For Early Fault Detection’, uploaded by Gück et al. [36]. According to the 

Zenodo platform, this dataset was made available recently, and to date, it has not yet been 

widely used in the scientific literature. Therefore, it is expected that this work may provide 

a valuable contribution to the research fields of anomaly detection and condition 

monitoring.  

The corresponding publication introduces high-dimensional data collected from three 

different wind farms located in Portugal and Germany. The complete dataset comprises 

95 individual time series, representing 89 years of SCADA data across 36 wind turbines. 

Furthermore, it includes detailed information about the operational status of the turbines, 

indicating whether they were functioning normally or exhibiting abnormal behaviour. 

These labels are extensively used in this work for performance evaluation of the anomaly 

detection system, using metrics such as accuracy, missed alarms, and false alarms. Each 

labelled event is annotated with a start and end timestamp, along with a textual fault 

description.  

In the field of anomaly detection, data quality and the level of detail are crucial. This is 

not only reflected in the presence of reliable labels but also in the availability of 

documentation that identifies the root cause of each anomaly and whether it is linked to 

a physical failure. The effectiveness of any analysis is strongly dependent on the quality 

and acquisition process of the input data. In wind turbine condition monitoring, SCADA 

data (Supervisory Control and Data Acquisition) are widely used. These systems are 

capable of acquiring extensive data through a network of dedicated sensors, which 

enhances both the monitoring and the autonomous diagnostic functions of wind turbines. 

It continuously logs a wide range of parameters, including environmental, mechanical, 

thermal, and hydraulic data, even under changing ambient conditions. In real-world 
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application, such as in the dataset used for this thesis, SCADA is widely employed to 

identify potential faults at an early stage. This early detection capability plays a key role 

in enabling proactive maintenance strategies and ensuring efficient operation of wind 

farms, with the added benefit of reducing overall maintenance costs. 

Wind farms are typically classified as onshore, offshore, or nearshore, depending on their 

location relative to land or sea (Fig. 3.1). specifically, the three wind farms in this dataset 

are anonymised and referred to as A, B, and C: 

▪ A: Onshore wind farm in Portugal with 5 wind turbines  

▪ B: Offshore wind farm in Germany with 9 wind turbines 

▪ C: Offshore wind farm in Germany with 22 wind turbines 

       
Figure 3.1: Example images of offshore, onshore, and nearshore wind farms 

Wind farm A is based on the EDP-data, sourced from the EDP-platform. This is one of 

the most relevant public datasets in the field of early fault detection, as it includes not 

only SCADA-data, but also fault information. However, despite its popularity, the fault-

related information it provides is relatively limited. Wind farm A includes 22 datasets, 

whereas wind farms B and C together include 73 datasets.  

In this work, the analysis focuses on wind farm C, as discussed in Chapter 1. The main 

objective of this thesis is to develop a method for detecting damage-related anomalies 

based on vibration monitoring. Among the three wind farms, only wind farm C includes 

vibration measurements, making it the only suitable source for the analysis. It provides 

58 datasets in total. Each dataset is provided as a .csv file, where columns represent 

features and rows represent time series data points.  

Each time series includes five key descriptive columns: a row ID, a timestamp, an asset 

ID identifying the turbine, and a status-ID indicating the turbine’s operational condition 

at each time point. Table 3.1 presents an overview of the three wind farms, including the 

number of turbines, datasets, and whether these datasets represent normal or abnormal 

behaviour. 
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Table 3.1: Wind farms overview 

 Wind Farm A Wind Farm B Wind Farm C 

Turbines 5 9 22 

Datasets 22 15 58 

Anomaly Events 11 6 27 

Normal Behaviour 11 9 31 

Regarding labels, the data is annotated on two levels. The first level concerns the so-

called event labels, which are assigned at the dataset level. If a dataset contains an 

anomaly event within the defined prediction timeframe, it is labelled as anomalous; 

otherwise, it is labelled as normal. These anomaly labels have been established either 

through direct feedback from wind farm operators or through documented faults found in 

service reports and fault logbooks. Conversely, the labels identifying normal behaviour 

have been defined based on a of operator feedback, manual inspections of the data, and 

expert knowledge.  

In the specific case of wind farm A, the start of each anomaly event was determined using 

the EDP fault logbook, which provides the fault timestamps but not additional contextual 

information. For wind farms B and C, the identification of anomaly event starts was more 

detailed and was carried out through a combination of data analysis, operator feedback, 

service report documentation, and expert evaluation. Although there is a possibility that 

the actual onset of certain anomalies might differ slightly from the annotated ones, it is 

considered highly unlikely that the recorded events begin prematurely. If anything, the 

annotated start-times are more likely to be later than the actual fault onset.   

The second level of labelling is performed at the timestamp level and involves the 

assignment of a status-ID to each data point in the time series. For wind farms B and C, 

these labels were derived from the original operating modes provided by the wind farm 

operators, combined with information extracted from service reports. For wind farm A, 

however, such detailed operational data were not available, and therefore the status-ID 

values were assigned based on EDP fault logbook. In this context, for each fault recorded, 

the 14 days prior to the fault were labelled with status-ID 4, indicating a fault condition 

(Table 3.2), while the 3 days following the fault timestamp were labelled with status-ID 

3, corresponding to the service mode.  



 Chapter 3. Dataset Description and Initial Preprocessing 

53 
 

Table 3.2: Description of status-ID labels 

Status Description 

0 Normal operation without limitations 

1 Derated power generation (with power 

restriction) 

2 Turbine is idling and waiting to operate 

again 

3 Turbine is in service mode (service team 

on the site) 

4 Turbine is down due to a fault or other 

reasons 

5 Other operational states (e.g., system test, 

setup, ice build-up, emergency power) 

These status labels are particularly useful for determining whether a specific data point 

reflects normal or abnormal turbine behaviour. 

 

 

3.2  Data Acquisition 

 

Condition monitoring systems consist of a combination of sensors and signal processing 

units that continuously provide information about the condition of components through 

techniques such as vibration analysis, acoustics, oil analysis, and performance or thermal 

monitoring. The data acquisition process is generally not straightforward, as it usually 

involves multiple stages, as illustrated in Fig. 3.2. 

 
Figure 3.2: Block diagram of the overall data acquisition workflow 

 
 



 Chapter 3. Dataset Description and Initial Preprocessing 

54 
 

3.2.1 Generation of Dynamic Input 

 

The first phase of data acquisition is excitation, which initiates the generation of a 

dynamic response. A dynamic input is required to induce this response, specifically, a 

load with a frequency excitation higher than the first natural frequency of the structure. 

Typically, in controlled experiments, such as applying a shaker to a beam, the input can 

be managed to investigate vibration modes across different frequencies. When the 

excitation is both controlled and recorded, the output can be normalised to the input and 

analysed in the frequency domain as a Frequency Response Function (FRF), a system-

invariant measure independent of excitation amplitude. 

In wind turbine applications, the excitation is largely dependent on environmental 

conditions, such as wind speed, temperature, humidity, and others, or internal system 

dynamics. In these cases, the input cannot be directly controlled, and it is not possible to 

determine a priori which phenomena contribute to vibration. Nevertheless, in this work, 

several physical parameters are selected as input variables to build the input matrix for 

training the SVR model: 

▪ Wind speed 

▪ Ambient temperature 

▪ Pitch angle 

▪ Position rotor blade axis 

▪ Gearbox oil temperature 

▪ Rotor speed gearbox main shaft 

▪ Axis rotor bearing inner ring temperature 

Each of these physical parameters can be measured by variety dedicated sensors. These 

sensors are often evaluated based on criteria such as cost, size, mass, reliability, stability, 

and dynamic performance (e.g., frequency resolution, bandwidth, sensitivity). Sensors 

can be classified as contact sensors (e.g., piezoelectric, piezoresistive, capacitive), or non-

contact sensors (e.g., acoustic emission, strain gauges, accelerometers). Additionally, 

sensors can be categorised by the number of physical quantities that can measure, as some 

are multi-functional.  

The following subsection shows an overview of the sensors used for each input parameter 

in this study. 
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3.2.2 Sensor Instrumentation and Conditioning 

 

Wind speed can be measured using sonic anemometers, which detect three-dimensional 

wind vectors, temperature, and surfaces fluxes. These devices can measure wind speed 

form 0 to  60 𝑚/𝑠 at sampling rates up to 100 𝐻𝑧. A widely used model is the Campbell 

Scientific CSAT3 shown in Fig. 3.3. Alternatively, wind speed profiles can be obtained 

by mounting simple anemometers at various tower heights. There are three main types of 

anemometers, as depicted in Fig. 3.3. 

    

Figure 3.3: Images of cup anemometers, propeller anemometers, and sonic anemometers 

All types are low power (≤ 1 𝑊) and suitable for continous monitoring. Guidelines for 

installing cup anemometers on towers are found in the International Electrotechnical 

Commission (IEC) 61400-12-1 (2005), which serves as the standard for wind resource 

assessment and high-quality monitoring. Cup anemometers measure wind speed by 

detecting the rotational speed of multiple cups mounted on a vertical axis. The rotation, 

induced by the wind, is converted into an electrical signal through an encoder. Propeller 

anemometers operate similarly, employing a propeller attached to an aerodynamic body 

to detect wind-induced rotation. In contrast, sonic anemometers determine wind speed by 

measuring the time of flight or phase shift of ultrasonic pulses transmitted between pairs 

of transducers. The wind affects the propagation time of the sound wave, allowing the 

device to infer the wind speed along a defined path, typically no longer than 20 cm. 

depending on the configuration, sonic anemometers can perform measurements in one, 

two, or three spatial dimensions. 

Meteorological variables, such as ambient temperature, are typically measured near 

ground level using thermometers, barometers, and hygrometers mounted at standard 

reference heights of 2 or 10 meters. Although, sonic anemometers can also estimate air 

temperature, but the readings they provide are influenced by both temperature and 

humidity, representing not a direct temperature value but rather a derived parameter. 

Therefore, for accurate measurements of ambient air temperature, dedicated 

thermometric instruments are preferred. 
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The pitch angle is commonly measured using absolute rotary encoder mounted on the 

pitch gear. These sensors provide angular measurements with a typical accuracy of ±0.1°. 

In wind turbines equipped with hydraulic pitch systems, linear encoders may also be 

employed to track actuator displacement, offering comparable precision. 

The rotor speed gearbox the main shaft (including rotor speed) is measurable, can also 

be measured using absolute rotary encoders or proximity sensors. These sensors are 

capable of detecting motion over a complete rotational cycle (0 ÷ 360°), though some 

may require resetting or re-referencing after each full revolution, depending on the system 

configuration. 

The inner ring temperature of the rotor bearing is typically monitored using self-adhesive 

temperature sensor, affixed to the bearing’s internal surface and secured with axial epoxy 

resin. In contrast, the gearbox oil temperature is usually measured at the oil sump, where 

thermal equilibrium is representative of system-wide lubrication conditions. 

The primary output variable of the present study, such as nacelle vibration, can be 

characterised through different physical quantities: displacement, velocity and 

acceleration. Among the available transducers, only a subset is practically suitable for 

continuous monitoring in wind turbine applications: 

▪ Proximity probes (relative displacement): non-contact sensors such as capacitive, 

inductive, eddy current, magnetic, and Hall-effect devices that measure the 

distance between the probe tip and the target surface. 

▪ Optical displacement sensors: non-contact systems including laser interferometer,  

Triangulation sensors, time-of-flight lasers and chromatic confocal devices, all of 

which infer position by analysing reflected light. 

▪ Velocity transducers: contact sensors of a coil mounted on a seismic mass and 

suspended in the field of a permanent magnet; the relative motion induces a 

voltage proportional to the velocity.  

▪ Accelerometers: contact transducers based on piezoelectric crystals housed 

against a seismic mass; mechanical strain within the crystal generates an electric 

charge proportional to the applied acceleration. 

In vibration monitoring applications, accelerometers are the most widely adopted, due to 

their high sensitivity, broad frequency response, and robustness. The sensors generate an 

analogue voltage signal, which is then conditioned and forwarded to the digital 

acquisition system. For instance, piezoelectric accelerometers produce an electrical 

charge proportional to the applied acceleration. In most practical applications, this charge 

is converted into a calibrated voltage using an integrated charge-amplifier circuit 

employing precision operational amplifiers. Conversely, cup anemometers translate the 

wind-driven rotation of the cups into an electrical voltage via a potentiometer mounted 
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on the vane, whose resistance changes with the vane’s angular position. In both cases, the 

raw analogue signal is subsequently conditioned, through amplification, filtering, and, 

where applicable, frequency-to-voltage or current conversion, before being fed into the 

analogue-to-digital-converter. 

In the present work, the wind farm under analysis is an offshore installation located in 

Germany, and vibration signals were acquired using accelerometers mounted on the 

nacelle. 

 

 

3.2.3 Data Transmission and Digital Acquisition 

 

The acquisition system relies on a continuous data stream from the field sensors to a 

central data logger or controller. To ensure efficient turbine operation, it is crucial that the 

acquired data are accurate, timely, and minimally distorted. Two main communication 

types are commonly employed: 

▪ Wired transmission: based on copper conductors or optical fibers, capable of 

transmitting analogue or digital signals with high reliability and low latency. 

▪ Wireless transmission: utilises radio frequency (RF) or optical electromagnetic 

waves and is especially useful in scenarios where cable installation is impractical. 

Among wired technologies, the RS-485 interface is widely adopted in wind turbine 

automation due to its long-range capability, high noise immunity, and multidrop support. 

Wired solutions offer real-time diagnostics and greater stability, whereas wireless 

alternative are preferred for remote or rotating parts where cable routing is problematic.  

A commonly used digital acquisition platform in wind turbines is the SCADA system, i.e. 

Supervisory Control and Data Acquisition. SCADA systems continuously monitor and 

store hundreds of variables, offering insights into the operational health of the turbine. 

While the data are usually made available to end-users as 10-minute averages, the actual 

sampling frequency can reach several hertz, enabling more detailed offline analysis. 

 

 

3.2.4 Analog-to-Digital Conversion 

 

Digital signals offer several advantages over analogue ones, particularly in terms of 

storage and robustness. Digital data can be easily archived and accessed without the need 

for bulky physical media, and it is inherently more resistant to noise. Unlike analogue 

signals, which are vulnerable to degradation and interference, digital signals stored on 
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electronic media such as hard drives, solid-state drives, or flash memory remain stable 

over time. Moreover, digital formats support compression techniques that allow for a 

significant reduction in data volume without compromising the integrity of the 

information.  

A key step in digital signal processing is the conversion of analogue outputs from sensors 

into digital format, a process that requires discretisation in both time and amplitude. This 

conversion depends on two primary parameters: the sampling frequency and the 

amplitude range. 

▪ Sampling frequency: The system captures signal values at uniform time intervals, 

where each sample corresponds to a time step ∆𝑡 = 1/𝑓𝑠. To avoid aliasing, i.e. 

a phenomenon where higher frequency components are misrepresented in the 

sampled signal, an analogue anti-alias filter is typically applied before sampling. 

This filter restricts the signal’s frequency content to a cutoff frequency 𝑓𝑐, 

generally chosen such that the sampling rate 𝑓𝑠 = 2.56𝑓𝑐. This ensures 

compliance with the Nyquist criterion, which dictates that 𝑓𝑁𝑦 = 𝑓𝑠/2. While 

increasing 𝑓𝑠 improves temporal resolution, it also results in larger datasets and 

higher storage demands. 

▪ Amplitude range 𝐸 and Bit Depth 𝐵: During quantisation process, the continuous 

amplitude of the analogue signal is approximated to the nearest discrete level. 

The resolution of this process, denoted as ∆𝐴, depends on the amplitude range 

and the number of bits used by the analogue-to-digital converter (ADC), 

following the relation ∆𝐴 = 𝐸/(2𝐵 − 1). Optimising the range 𝐸 allows for 

enhanced resolution while also avoiding saturation caused by amplitudes 

exceeding the limits. Additionally, the choice between DC and AC coupling must 

be considered. When the signal’s mean value carries no significant information, 

AC coupling can be used to eliminate it, making more efficient use of the ADC’s 

dynamic range. 

Once converted, the digital signal is ready to be stored within the data acquisition system 

for further analysis for monitoring.  

 

 

3.3  Features Selection  

 

The initial preprocessing phase typically consists of selection a set of statistical features. 

The health status of a wind turbine is assessed based on the identification of ‘abnormal’ 

variations in some of the selected features, which may be associated with the presence of 

potential damage or malfunction. 



 Chapter 3. Dataset Description and Initial Preprocessing 

59 
 

In this case, the datasets corresponding to the three wind farms do not contain raw data, 

but rather precomputed time features. This is likely because industrial SCADA systems 

generally store data as statistical features at a fixed sampling resolution, typically, as in 

this case, every 10 minutes.  

For each measured physical parameter, the following features have been extracted: 

average (mean value), maximum, minimum, and standard deviation. The total number of 

features for each wind farm is summarised in Table 3.3: 

Table 3.3: Total number of features per wind farm 

 Wind Farm A Wind Farm B Wind Farm C 

Features 86 257 957 

In signal analysis, statistical features are widely used to characterised signals from both a 

probabilistic and a time-domain perspective. Some of these features, such as the average 

and the standard deviation, are directly related to the signal’s probability distribution. 

Others, like maximum and minimum values, are purely descriptive and reflect the signal’s 

variation range over the observed time window. 

To formalise the probabilistic interpretation, let us consider a discrete random variable 

𝑥(𝑘) associated with the experiment 𝑘. The Probability Density Function (PDF) of the 

variable is defined as: 

 
𝑝(𝑥) = lim

∆𝑥→0
(

𝑃𝑟𝑜𝑏[𝑥 < 𝑥(𝑘) ≤ 𝑥 + ∆𝑥

∆𝑥
) (3.1) 

This function describes the probability that a value of 𝑥(𝑘) is within the interval 

(𝑥, 𝑥 + ∆𝑥]. Among the most commonly used PDF is the Gaussian (or normal) 

distribution, which is also considered in this work. It is defined as: 

 
𝑝(𝑥) =

1

𝜎𝑥√2𝜋
𝑒

−
1
2

(
𝑥−𝜇𝑥

𝜎𝑥
)

2

 (3.2) 

as illustrated in Fig. 3.5. 

When dealing with a random process, i.e. a set of all possible sample functions {𝑥(𝑡)} 

consisting of 𝑁 distinc realisation 𝑥𝑘(𝑡), the following statistical features can be defined: 

➢ Average 

The mean represents the expected value of the signal and provides a measure of 

its central tendency. It is calculated as. 
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𝜇𝑥 = 𝐸[𝑥(𝑡)] = lim
𝑁→∞

∑ 𝑥𝑘(𝑡)

𝑁

𝑘=1

 (3.3) 

 

➢ Standard Deviation 

The standard deviation quantifies the dispersion of the signal around its mean and 

is defined as the square root of the variance 

 𝑉𝑎𝑟(𝑥(𝑡)) = 𝐸[(𝑥𝑘(𝑡) − 𝜇𝑥)2] 

𝜎𝑥 = √𝑉𝑎𝑟(𝑥(𝑡)) 

(3.4) 

When the mean is zero, the standard deviation equals the Root Mean Square value 

(RMS). In general, their relationship is: 

 𝜎𝑥
2 = 𝑅𝑀𝑆2 − 𝜇𝑥

2 (3.5) 

For stationary zero-mean process, the standard deviation corresponds to the 

signal’s average power. 

While the maximum and minimum values are not statistical moments but rather 

descriptive indicators of the signal’s amplitude range over a specific time interval:  

➢ Maximum 

 max(𝑥(𝑡)) = max
1≤𝑘≤𝑁

𝑥𝑘(𝑡) (3.6) 

➢ Minimum 

 min(𝑥(𝑡)) = min
1≤𝑘≤𝑁

𝑥𝑘(𝑡) (3.7) 

Although not directly linked to the underlying probability distribution, the mean value 

and standard deviation are widely used to characterise the extremal behaviour of a signal 

over time. The mean provides a measure of the signal’s central tendency, while the 

standard deviation quantifies its variability. In particular, when standard deviation 

increases, the values of the signal tend to be more dispersed and are more likely to deviate 

significantly from the mean. For signals that are approximately symmetric, the mean 

represents the centre of symmetry, and the spread of the values around it is governed by 

the standard deviation (Fig. 3.5). 
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Figure 3.4: Comparison between two normal distributions with different standard deviations 

In this thesis, the Gaussian distribution is considered in several stages of the analysis. Its 

first application occurs during the initial statistical assessment, where a Quantile-Quantile 

plot (QQplot) of the residuals is used to verify whether their distribution follows a normal 

one, or exhibits heavy-tailed, non-linearities or asymmetries. The second application 

concerns the comparison between the distributions associated with healthy data and those 

corresponding to damaged conditions, in order to evaluate how well the two classes are 

separated (Fig. 3.6). 

 
Figure 3.5: Comparison between healthy and damaged distributions 
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The statistical features selected for this analysis include all four described previously. 

However, particular attention has been paid to vibration signals, for which only the 

standard deviation was retained. This choice is motivated by its intrinsic energetic 

significance: in the case of stationary zero-mean processes, the autocorrelation function 

at lag zero is given by: 

 
𝑅𝑥𝑥(𝜏 = 0) = lim

𝑇→∞

1

𝑇
∫ 𝑥𝑘

2(𝑡)𝑑𝑡
𝑇/2

−𝑇/2

 (3.8) 

This quantity represents the energy of the signal, and coincides to the standard deviation, 

when the mean is zero. Hence, for vibration data, the standard deviation is not only 

statistically meaningful but also physically relevant, as it provides a direct measure of the 

signal’s energy content. 

In addition, in the context of machine learning, certain issues must be addressed to ensure 

robust generalisation between the training and testing phases. One critical challenge is 

the data shift, i.e. when the data distribution changes across different wind turbines. When 

this occurs, the model’s predictive capability degrades, leading to an increase in false 

positive and missed detections, which do not reflect the actual health status of the 

machine. In the case of vibration data, incorporating the mean value can exacerbate this 

issue, as illustrated in Fig. 3.7, which shows vibration output predicted by Support Vector 

Regression (SVR) model, applied to a turbine different from the one used during training 

phase.  

 
Figure 3.6: Support Vector Regression test on a turbine different from the one used for training phase 
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3.4  Data Cleaning 

 

After feature selection, data cleaning is the next essential step. Starting from the extracted 

time-series features of the various physical parameters contained in the dataset, the main 

objective is to train an SVR model using data from a health turbine. In this context, a 

commonly technique for identifying potential outliers is based on the median and the 

median absolute deviation (MAD), which are both robust to non-Gaussian distribution 

and extreme values. The threshold for outlier detection is defined as: 

 𝜀 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥(𝑡)) ± 𝐾 ∙ 𝑀𝐴𝐷(𝑥(𝑡)) (3.9) 

This formulation allows for the definition of upper and lower bounds, beyond which any 

data point can be classified as an outlier. While a typical choice for the constant 𝐾 is 3, 

in this work a more conservative value of 𝐾 = 4.5 has been adopted (Fig. 3.8). This 

adjustment is intended to prevent the loss of potentially relevant information, especially 

given the non-stationary nature of data recorded from wind turbines. 

 
Figure 3.7: Time series of the mean nacelle vibration filtered using MAD-based thresholding. The 

highlighted anomaly is excluded by the threshold, resulting in the final extracted signal (blue line) 

A more detailed discussion of the complete methodology adopted for the development of 

the anomaly detection system, is presented in chapter 4.
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4. Methodology 

 

This chapter outlines the methodology used to develop an anomaly detection model for 

wind turbines, based on nacelle vibration data. It presents the main steps of the data 

processing pipeline, the integration of a physics-based wind power estimation through 

Betz’s law, and the use of SVR for modelling. All implementation steps were carried out 

in MATLAB, combining theoretical models and practical tools to address the detection 

of pitch related faults. 

 

 

4.1 Method Overview 

 

As introduced in Chapter 1, condition monitoring methods based on data-driven 

approaches require a preliminary phase of data preprocessing. This step is crucial to 

ensure that the input data is adequately prepared for the analysis, as it allows for the 

reduction of noise and the enhancement of meaningful information within the dataset. 

In this thesis, the dataset already includes a set of predefined features, as described in 

Chapter 3. Therefore, the preprocessing phase is mainly focused on cleaning these 

features to reduce measurement errors and inconsistencies that might affect the model’s 

accuracy. The general workflow developed for this study is shown in Fig. 4.1, and it 

consists of several stages before the actual anomaly detection task is carried out.  

 
Figure 4.1: General Workflow including preprocessing Steps 

The preprocessing phase begins with a data cleaning procedure, which is applied to the 

available features, in order to minimise the influence of outliers and noise. Once the data
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is cleaned, a statistical analysis is performed on a Multiple-Input and Single-Output 

(MISO) regression model, initially using two input variables and one output. This step is 

intended to gain insight into the operational behaviour of the wind turbine and to identify 

which physical parameters are most relevant for vibration signal, measured on the nacelle. 

At the same time, it helps in reducing the dimensionality of the problem by discarding 

variables with weak correlations.  

In recent years, increasing attention has been given to the integration of physical 

knowledge into machine learning models, in order to improve their interpretability and 

generalisation capabilities. In this context, a theoretical model based on Betz’s law is 

introduced. This model provides a first estimate of the power extracted from the wind and 

transferred to the turbine rotor, accounting for the non linear effects related to wind-

turbine interactions. 

The approach used here includes two main steps: 

▪ First, a physical formulation of wind power is established, where wind speed is 

raised to the third power, and the remaining variables in the Betz equation are 

approximated through reasonable engineering assumptions. 

▪ Then, a regression model is trained using this estimated power as one of the input 

features, enabling the model to capture the underlying physics while learning from 

the data. 

After these steps, a full input matrix is constructed, initially composed of 32 features. 

However, since the objective is to train a SVR model, a Principal Component Analysis 

(PCA) is applied to reduce the dimensionality of the input space and improve 

computational efficiency. This results in a reduced matrix with 3 principal components, 

which retains most of the variance of the original dataset. 

Once preprocessing is completed, the analysis proceeds through two approaches: a 

univariate method based on residuals and a multivariate strategy involving multiple 

accelerometers. 

Before training the SVR models, two wind turbines are selected for the analysis, as 

illustrated in Fig. 4.2, and summarised in Table 4.1. 

Table 4.1: Representation of wind turbines considered during analysis 

Wind Turbine Wind Turbine Status Use 

WT53 Healthy Training 

WT53 Healthy Validation 

WT35 Damaged: Pitch-failure Test 
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Figure 4.2: Offshore wind farm and selected turbines 

Turbine WT53, which operates under healthy conditions, is used both for training and 

validation, by splitting the dataset into two subsets. The second subset is used for 

validation purposes, in order to assess the model’s ability to predict vibration levels, 

measured in terms of standard deviation. For the test phase, turbine WT35 is used, which 

has been affected by a pitch failure. This type of damage is of particular interest because 

it increases turbulence due to the incorrect blade angle regulation, and as a result, leads 

to increased structural vibrations, which can be detected by sensors placed inside the 

nacelle.  

The time ranges used for training, validation, and testing are detailed in Fig. 4.3 and Table 

4.2. 

 
Figure 4.3: Time segmentation of the dataset 

Table 4.2: Time periods for each phase 

Time Domain Use 

30/09/2022 Start Training 

04/08/2023 End Training 

01/09/2023 Start Validation 

15/10/2023 End Validation 

15/10/2022 Start Test 

30/01/2023 End Test 

WT53 WT35 
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Two separate approaches are then used to analyse the data. In the univariate analysis, a 

single SVR model is trained using the training data from WT53. The model predictions 

are then compared to the actual values, and the residuals (i.e., the differences between 

predicted and observed standard deviations) are used as an anomaly detection indicator. 

In the multivariate analysis, four SVR models are trained, one for each of the four 

accelerometers installed at different positions in the nacelle (Fig. 4.4). these models are 

then used as a base for two anomaly detection techniques: the Mahalanobis distance and 

the One-Class Support Vector Machine (SVM). 

   
Figure 4.4: Approximate location of accelerometers and reference frame definition 

Finally, the performance of the proposed anomaly detection methods is evaluated using 

various metrics commonly adopted in condition monitoring: accuracy, missed alarms, 

false alarms, F-score, and the ROC curve, from which the Area Under the Curve (AUC) 

is calculated. 

In the remainder of this chapter, all the mathematical models used in this study will be 

described in detail. Some of them have been implemented directly through their defining 

equations, while others have been configured using built-in MATLAB functions by 

appropriately setting their parameters.
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4.2 Betz Model 

 

A simple yet fundamental model that describes how power output can be derived from 

wind energy input is the Betz model [41]. Albert Betz, an engineer who earned his PhD 

at the University of Göttingen, a key centre for the development of aerodynamics, 

proposed a physical framework that abstracts from the technological details of wind 

turbines. In this model, a wind turbine is idealised as an actuator disc that generates a 

pressure discontinuity when impacted by a flowing fluid, thereby extracting energy from 

the wind. 

This analysis is based on the following idealised assumptions: 

➢ The fluid flow is homogeneous, incompressible, and steady 

➢ There is no frictional drag 

➢ The turbine has an infinite number of blades 

➢ Thrust is uniformly distributed over the disc or rotor area 

➢ The wake is non-rotating 

➢ Static pressure far upstream and downstream of the rotor is equal to the 

undisturbed ambient pressure 

The core concept is that the turbine extracts kinetic energy from the wind by reducing its 

velocity, which in turn causes the flow tube to expand, as illustrated in Fig. 4.5. 

 
Figure 4.5: Representation of the actuator disc generating a pressure discontinuity for power extraction 

Starting from the definition of the theoretical power output 𝑃𝑡 of a wind turbine, given by 

(4.1): 

 
𝑃𝑡 =

1

2
𝑀̇(𝑐0

2 − 𝑐𝑢
2) (4.1) 

Where 𝑃𝑡 is the power output, 𝑀̇ is the mass flow rate, 𝑐0 is the upstream wind speed and 

𝑐𝑢 is the downstream wind speed. In line with the scientific practice of that era, when 

numerical calculators were not yet available, equation (4.1) is reformulated using a 

dimensionless variable known as the axial induction factor (or interference factor), 

defined as: 
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𝑎 =

1

2
(

𝑐0 − 𝑐𝑢

𝑐0
) (4.2) 

Combining equations (4.1) and (4.2), one obtains: 

 𝑃𝑡 = 2𝜌𝐴𝑐0
3𝑎(1 − 𝑎)2 (4.3) 

Thus, power output is expressed as a function of both the axial induction factor and the 

cube of the wind speed 𝑐0, as well as the rotor area 𝐴. 

In addition, another dimensionless parameter is introduced: the power coefficient 𝐶𝑝, 

which quantifies the rotor performance in terms of power extraction efficiency, defined 

as: 

 
𝐶𝑝 =

𝑃𝑡

1
2 𝜌𝐴𝑐0

3
= 4𝑎(1 − 𝑎)2 (4.4) 

From this expression, the power output can also be rewritten as: 

 
𝑃𝑡 =

1

2
𝜌𝐴𝐶𝑝𝑐0

3 (4.5) 

In this model, the power coefficient 𝐶𝑝 represents the fraction of kinetic wind energy that 

can be extracted by the rotor. When expressed purely in terms of the axial induction factor, 

𝐶𝑝 forms a quadratic function that reaches its maximum at the same point as the power 

output. This ideal behaviour of a wind turbine is depicted in Fig. 4.6. 

 
Figure 4.6: Power Coefficient 𝐶𝑝 as a function of the axial induction factor 
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The model is not valid for values of 𝑎 > 0.5, since this would imply 𝑐𝑢 > 𝑐0, which is 

physically unrealistic. The Betz limit, therefore, corresponds to the maximum achievable 

value of the power coefficient: 

 𝐶𝑝 = 0.59 (4.6) 

This represents the theoretical upper limit of power extraction efficiency for an ideal rotor. 

In this thesis, as illustrated in Fig. 4.1, two distinct approaches were adopted: 

▪ In a first analysis, equation (4.5) was used by fixing all the physical variables 

expect for wind speed, which comes from the measured data and elevated to the 

third power 

▪ In a second analysis, a third-order polynomial regression model was developed to 

estimate the coefficients of equation (4.5), based on real wind turbine power 

output data, in order to improve regression analysis and anomaly detection 

performances 

The main objective of these analyses was to improve the predictive capabilities of the 

SVR model and thereby enhance the performance of the anomaly detection framework. 

In the following section, a general formulation of linear regression will be presented. This 

model was first used in the statistical analysis and subsequently adapted to a non-linear 

polynomial regressor for estimating the coefficients in equation (4.5). 

 

 

4.3 Linear Regression Models 

 

This section presents two distinct regression approaches adopted within the proposed 

methodology, each serving a specific purpose in modelling the wind turbine system. 

First, a general statistical regression is employed to explore the relationship between the 

turbine’s operating variables and output quantities such as nacelle vibration and power 

production. This analysis provides insights into the most relevant parameters under both 

normal and faulty operating conditions. Additionally, a Quantile-Quantile plot (QQplot) 

is applied to the residuals to verify the normality assumption required for subsequent 

application of the Mahalanobis distance, which relies on normally distributed data. 

Second, a regression model based on the Betz equation is developed specifically to model 

the relationship between wind speed and power output. Two formulations of the Betz-

based model are considered: the traditional theoretical approach, which assumes power 

output is proportional to the cube of wind speed according to (4.5), and a more flexible 

data-driven approach, where coefficients {𝛽𝑖} associated with different wind speed 

features are estimated via non-linear regression directly from the dataset. These estimated 



Chapter 4. Methodology 

71 
 

coefficients are then used to enrich the input matrix of a Support Vector Regression (SVR) 

model by multiplying them with their corresponding wind speed features, thus embedding 

a data-refined physical model within the SVR training process. 

The two Betz-based formulations are compared in terms of their impact on the SVR 

model’s performance, specifically evaluating whether data-driven coefficients estimation 

improves prediction accuracy and anomaly detection compared to relying on fixed 

theoretical assumptions. This comparison allows a critical assessment of whether simple 

idealised models or tailored data-informed relationships better capture the turbine’s actual 

behaviour. 

As introduced in previous chapters, linear regression is a fundamental tool for the initial 

statistical analysis of a MISO system, enabling the study of the relationships between 

multiple physical parameters and a single dependent variable, such as the wind turbine’s 

power output. Alongside this, a third-order polynomial regression model is employed to 

estimate the electrical power generated by the turbine, based on the Betz equation.  

Let {𝑦} ∈ ℝ𝑁𝑥1 denote the output vector (target or dependent variable), and [𝑋] ∈ ℝ𝑁𝑥𝑀 

the input matrix of predictors (independent variables), where 𝑁 is the number of 

observations, and 𝑀 is the number of features. Using matrix notation, the variables 

involved in a linear regression model are defined as follows: 

[𝑋] = (

1 𝑥12 … 𝑥𝑁1

⋮ ⋮ 𝑥𝑖𝑗 ⋮

1 𝑥𝑁2 … 𝑥𝑁𝑀

) , {𝑦} = (

𝑦1

⋮

𝑦𝑁

) , {𝛽} = (

𝛽1

𝛽2

⋮

𝛽
𝑀

) , {𝜀} = (

𝜀1

⋮

𝜀𝑁

) 

The linear regression model is defined as: 

 {𝑦} = [𝑋]{𝛽} + {𝜀} (4.7) 

The regression function expresses the expected relationship between the target and the 

predictors, which is generally unknown. Thus, the main objective is to estimate this 

relationship by determining the unknown parameter vector {𝛽}. A standard approach to 

solving this model is the least squares method, in which the regression coefficients are 

estimated by minimising the error vector {𝜀}, i.e. the sum of squared residuals. The least 

squares cost function is given by:  

 𝑆(𝛽0, 𝛽1, … , 𝛽𝑀) = {𝜀}𝑇{𝜀} = ({𝑦} − [𝑋]{𝛽})𝑇({𝑦} − [𝑋]{𝛽}) (4.8) 

To find the minimum, the partial derivatives with respect to the regression coefficients 

are set to zero: 
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 𝜕𝑆

𝜕𝛽
𝑖

|
𝛽0,𝛽1,…,𝛽𝑀

= 0 (4.9) 

This leads to the normal equation: 

 [𝑋]𝑇[𝑋]{𝛽} = [𝑋]𝑇{𝑦} (4.10) 

Solving for {𝛽} yields the least squares estimate: 

 {𝛽} = ([𝑋]𝑇[𝑋])−1[𝑋]𝑇{𝑦} (4.11) 

The predicted values are then obtained by: 

 {𝑦̂} = [𝑋]{𝛽} = [𝑋]([𝑋]𝑇[𝑋])−1[𝑋]𝑇{𝑦} = [𝐻]{𝑦} (4.12) 

Here, the matrix [𝐻] is defined as: 

[𝐻] = [𝑋]([𝑋]𝑇[𝑋])−1[𝑋]𝑇 

The residuals, representing the differences between the predicted and actual values, are 

computed as: 

 {𝑟} = {𝑦̂} − {𝑦} = ([𝐼] − [𝐻]){𝑦} (4.13) 

These residuals provide a measure of how well the model fits the data. However, they do 

not directly quantify the prediction error, which is why performance metrics such as the 

coefficient of determination 𝑅2, mean absolute error 𝑀𝐴𝐸, and root mean square error 

𝑅𝑀𝑆𝐸 are also used. These are discussed in the following sections. 

As illustrated in Fig. 4.7 [44], a typical example of a two-input, single-output linear 

regression is shown. This example depicts a regression plane fitted to the data points, 

where the vertical lines represent the residuals as defined in equation (4.13). The sum of 

the squared lengths of these lines is minimised in the least squares approach. 
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Figure 4.7: Example of a MISO regression model with two predictors 

In the second part of this analysis, a third-order polynomial regression model is applied 

to evaluate the physical coefficients related to equation (4.5), derived from the Betz 

model. The objective is to estimate the output power generated by the turbine, considering 

wind speed as the main input. Based on the reference equation, the third-order regression 

model is formulated as: 

 {𝑃𝑡} = {𝛽0} + {𝛽1}[𝑐0] + {𝛽2}[𝑐0
2] + {𝛽3}[𝑐0

3] (4.14) 

Here, {𝛽𝑖} ∈ ℝ𝑁𝑥1 are regression coefficient vectors, and [𝑐0] ∈ ℝ𝑁𝑥4 represents the wind 

speed matrix, whose four columns correspond to extracted features: maximum, minimum, 

average, and standard deviation of the wind speed. 

The coefficients {𝛽𝑖} derived from this model are used to improve the SVR by multiplying 

them with their corresponding wind speed features within the input matrix. Specifically, 

the resulting features are then added to the input matrix, which also includes other turbine 

operating parameters. This approach allows the integration of Betz-based physical 

insights by approximating the wind power transmitted as excitation to the dynamical 

system. 

Both the linear statistical regression and the non linear Betz-based regression are 

independently evaluated using performance metrics such as 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 to assess 

their effectiveness in capturing the system’s underlying behaviour. 
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4.4 Principal Component Analysis 

 

After conducting a comprehensive statistical analysis and understanding the operational 

behaviour of the wind turbine and its correlation with various physical parameters, the 

input matrix of the wind turbine was constructed. Specifically, all the features derived 

from the variables discussed in Chapter 3 were included. The final input dataset, 

incorporating all relevant statistical descriptors, resulted in a 32-dimensional matrix: 

[𝑋] ∈ ℝ𝑁𝑥32 

However, working with such a high-dimensional matrix can be computationally 

intensive, especially during the training of the SVR model. To address this, PCA was 

applied to reduce the dimensionality of the input space while retaining most of the original 

information through variance preservation. 

PCA is a classic technique introduced by Karl Pearson in 1901 to determine the best-

fitting lower-dimensional subspace that captures the structure of a dataset in a high-

dimensional Euclidean space. Over the years, it has been widely used across various 

fields. Fundamentally, PCA transforms a dataset composed of potentially correlated 

variables into a new set of uncorrelated variables known as Principal Components (PCs) 

[24]. This transformation is achieved through an orthogonal rotation of the coordinate 

axes based on the directions of maximum variance.  

Broadly speaking, PCA aims to identify a lower-dimensional subspace that effectively 

captures the essential structure of the original dataset while retaining as much information 

as possible. Practically, this means finding a linear transformation that projects the data 

into a new coordinate system, where the axes, defined by the PCs, are uncorrelated and 

ordered according to the variance they capture. The first principal component corresponds 

to the direction along which the data exhibit the greatest variance, and subsequent 

components are defined orthogonally to the previous ones, each capturing the next highest 

variance. 

Mathematically, the linear transformation performed by PCA can be interpreted as a 

rotation of the original coordinate system. This rotation is determined by computing the 

eigen-decomposition of the covariance matrix of the input data. The resulting 

transformation matrix contains the eigenvectors of the covariance matrix as columns, 

sorted according to the magnitude of their corresponding eigenvalues in descending order. 

Thus, PCA is fundamentally an unsupervised learning technique that relies solely on the 

internal structure of the data. 

Before applying PCA, it is essential to normalise the dataset. Several approaches can be 

found in the literature, such as subtracting the mean from each variable (centering 

approach). In this work, z-score normalisation has been adopted, defined as follows: 
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[𝑋𝑛𝑜𝑟𝑚] =

[𝑋] − {𝜇𝑇𝑟𝑎𝑖𝑛}

{𝜎𝑇𝑟𝑎𝑖𝑛}
 (4.15) 

Here, {𝜇𝑇𝑟𝑎𝑖𝑛} and {𝜎𝑇𝑟𝑎𝑖𝑛} denote the mean and standard deviation computed from the 

training set. These values are then used to normalise both the validation and test datasets, 

ensuring that no data leakage occurs across the phases. 

At this point, the normalised input matrix  [𝑋𝑛𝑜𝑟𝑚] consists of 𝑁 observations and 32 

features and is ready for PCA and for training the SVR model. The covariance matrix of 

the normalised data is computed using the standard formula: 

 
[Σ] =

1

𝑁 − 1
∙ [𝑋𝑛𝑜𝑟𝑚][𝑋𝑛𝑜𝑟𝑚]𝑇 (4.16) 

PCA is then carried out by solving the following eigenvalue problem: 

 [Σ][𝑉] = [𝑉][𝜆] (4.17) 

In this expression, [𝑉] is an orthogonal matrix, whose columns are the eigenvectors 𝑣𝑗 , 

while [𝜆] is a diagonal matrix containing the corresponding eigenvalues 𝜆𝑗, arranged in 

decreasing order of magnitude. 

The matrix of eigenvectors [𝑉] can be used as a linear transformation to decorrelate the 

dataset, effectively rotating the coordinate system toward the principal directions of the 

data: 

 [𝑍] = [𝑉]𝑇[𝑋𝑛𝑜𝑟𝑚] (4.18) 

If the eigenvectors in [𝑉] are normalised (i.e., 𝑣𝑖 ∙ 𝑣𝑗 = 1), this transform is a pure 

rotation. In that case, the variance of each new variable  𝑧𝑗 is equal to the corresponding 

eigenvalue 𝜆𝑗: 

 𝜎𝑗
2 = 𝑣𝑎𝑟(𝑧𝑗) = 𝜆𝑗  (4.19) 

Thus, the diagonal matrix [𝜆] also represents the covariance matrix of the transformed 

dataset [𝑍], confirming that this is the traditional PCA approach.  

From a geometric standpoint, PCA can be linked to the representation of an ellipsoid 

centred at the origin, associated with any positive-definite matrix such as the covariance 

matrix [Σ]. This ellipsoid is defined by: 

 [𝑋]𝑇[Σ]−1[𝑋] = 1 (4.20) 

The principal axes of this ellipsoid are aligned with the eigenvectors of [Σ]−1, and the 

corresponding eigenvalues are the reciprocals of the squares of the semi-axis’s length. 
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Since the eigenvectors of [Σ] and [Σ]−1 are the same, and the eigenvalues are reciprocal, 

the equation of the ellipsoid can be expressed in terms of the PCA-transformed data:  

 [𝑋]𝑇[Σ]−1[𝑋] = [𝑍]𝑇[𝑉]𝑇[Σ]−1[𝑉][𝑍] = 

= [𝑍]𝑇[𝜆]−1[𝑍] = ∑
𝑧𝑗

2

𝜆𝑗𝑗
= 1 

(4.21) 

This represents the equation of an ellipsoid whose semi-axes have lengths equal to: 

√𝜆𝑗 = 𝜎𝑗  

In this thesis, after solving the eigenvalue problem, it was necessary to determine the 

number of principal components required to retain at least 90% of the total variance. This 

was done by computing the explained variance (EV), which quantifies the proportion of 

the total variance captured by each principal component: 

 
𝜋𝑗 =

𝜆𝑗

∑ 𝜆𝑖
𝑁
𝑖=1

=
𝜆𝑗

𝑡𝑟([Σ])
 (4.22) 

Here, 𝑡𝑟([Σ]) denotes the trace of the covariance matrix. The cumulative explained 

variance over a subset N of components can be expressed as a percentage of the total: 

 ∑ 𝜋𝑗 × 100%

𝑗∈𝑁

  

In this work, retaining 90% of the total variance resulted in a reduction of the original 

32-dimensional input space to only three principal components. 

 

 

4.5 Support Vector Regression 

 

SVR extends the classic SVM [45], originally developed for classification problems, to 

the regression domain. As repeatedly emphasised throughout this thesis, the main 

objective is to train this model on data from a healthy wind turbine. This allows, through 

residual analysis (univariate), the development of a diagnostic framework for assessing 

the turbine’s health status. 

The maximal margin algorithm underlying SVR is based on a non-linear function that is 

learned using a linear learning machine in a kernel-induced feature space. The model 

complexity is controlled by a regularisation parameter that does not depend on the 
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dimensionality of the space. As in classification problems, the learning algorithm 

minimises a convex functional, and the resulting solution is sparse. 

A key feature of SVR, similar to SVM, is the use of a loss function that ignores errors 

within a certain margin from the true target value. This is known as the 𝜀-insensitive loss 

function, illustrated in Fig. 4.8. 

 
Figure 4.8: Example of an 𝜀-insensitive band for a one-dimensional linear regression problem 

In Fig. 4.8, the variables 𝜉 are introduced to quantify the cost of errors on training points 

that fall outside the 𝜀-band. These values are zero for all points within the band. For many 

reasonable choices of the loss function, the solution corresponds to the minimum of a 

convex functional. 

This section presents the mathematical formulation of the regression method 

implemented in MATLAB through a dedicated function, along with a general overview 

of the parameters that must be tuned to achieve optimal regression performance. SVR, 

like SVM, is formulated through a Lagrangian function, whose minimisation leads to the 

so-called Support Vector Expansion in kernel space. Specifically, SVR is solved through 

its dual formulation, where the following variables are introduced: 

𝛼𝑖
(∗)

= {𝛼𝑖 , 𝛼𝑖
∗} 

The mapping into the kernel space is expressed as: 

𝜙: 𝑋 → 𝐹 

where 𝐹 is the feature space. According to the Boser and Guyon approach, only the inner 

product is required: 

𝑘(𝑥, 𝑥′) = 〈𝜙(𝑥), 𝜙(𝑥′)〉 
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Furthermore, the Lagrangian for SVR is defined as: 

 

ℒ = −
1

2
∑ (𝛼𝑖 − 𝑎𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝑘(𝑥𝑖, 𝑥𝑗)

𝑁

𝑖,𝑗=1

− 𝜀 ∑(𝛼𝑖 + 𝛼𝑖
∗) +

𝑁

𝑖=1

+ ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)

𝑁

𝑖=1

 

(4.23) 

subject to the constraints: 

 

∑(𝛼𝑖
∗ − 𝛼𝑖) = 0

𝑁

𝑖=1

, 𝛼𝑖
(∗)

∈ [0, 𝐶] (4.24) 

So that, the support vector weight is easily computed: 

 

𝑤 = ∑(𝛼𝑖
∗ − 𝛼𝑖)𝜙(𝑥𝑖)

𝑁

𝑖=1

 (4.25) 

And finally, the predicted output is given by: 

 

𝑓(𝑥) = ∑(𝛼𝑖
∗ − 𝛼𝑖)𝑘(𝑥𝑖, 𝑥)

𝑁

𝑖=1

+ 𝑏 (4.26) 

As in SVM, it is unnecessary to compute a large set of basis functions 

𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑁(𝑥). Instead, only the kernel function 𝑘(𝑥𝑖, 𝑥) needs to be evaluated at 

the training and prediction points.  

In this work, a Gaussian kernel is used, defined as: 

 
𝑘(𝑥, 𝑥′) = exp (−

‖𝑥 − 𝑥′‖2

2𝜎2
) = exp(−𝛾‖𝑥 − 𝑥′‖2) (4.27) 

The kernel function maps the data into a high-dimensional feature space, where the only 

required operation is the inner product. 

After selecting an appropriate kernel, here the Gaussian kernel, which is widely used in 

this context-several parameters must be tuned to optimise the model performance. These 

include: 

▪ 𝛾: the kernel scale parameter 

▪ 𝐶: the box constraint, which controls the trade-off between model complexity and 

training error 

▪ 𝜀: defines the margin of tolerance, meaning the SVR model attempts to fit the data 

within a deviation of 𝜀 from the true values without penalising those deviations. 
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From a computational perspective, SVR can be implemented using different solvers. In 

this work, Sequential Minimal Optimisation (SMO) is employed, a commonly used 

algorithm for solving SVM problems. SMO breaks the optimisation problem into a series 

of smaller subproblems involving only two variables at a time. At each iteration, Lagrange 

multipliers are selected and solved analytically using the method described in Appendix. 

Moreover, given the high computational cost of SVR, a reduced input matrix is used 

during the training phase to reduce runtime. As with the regression models used during 

the preprocessing phase, performance is continuously monitored using standard 

evaluation metrics, which are detailed in the following section. 

In Table 4.3 is summarised the parameter values used to control the training phase of the 

SVR model. 

Table 4.3: Values of SVR model parameters used during analysis 

𝜺 𝑪 Num. 

Iterations 

𝜸 = 𝝈√𝟐 Solver 

0.01 1 25500 15 SMO 

 

 

4.6 Regression Metrics Performance 

 

After training the SVR model using data collected under healthy operation conditions of 

the wind turbine, the same model was validated by applying it to a set of data that had 

never encountered before. The evaluation of its predictive capability can be performed 

through various approaches; however, for this analysis, the following statistical metrics 

were selected due to their widespread use and interpretability: 

▪ Coefficient of determination 𝑅2: 

The coefficient of determination, typically indicated as 𝑅2, is a statistical index 

used to assess how well the predicted values align with the actual data. It 

represents the proportion of the total variance in the observed values that can be 

explained by the model. This metric is calculated by first determining the Sum of 

Squared Errors (SSE), which quantifies the discrepancy between the predicted and 

the measured values, and the Total Sum of Squares (SS), which expresses the total 

variability present in the target variable. 

 

𝑆𝑆𝐸 = ∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝑁

𝑖=1

, 𝑆𝑆 = ∑(𝑦𝑖 − 𝜇𝑦)
2

𝑁

𝑖=1
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The coefficient is then computed as: 

 
𝑅2 = 1 −

𝑆𝑆𝐸

𝑆𝑆
 (4.28) 

where 𝑦̂𝑖 represents the predicted value obtained from the model, 𝑦𝑖 the actual 

measured value, and 𝜇𝑦 the mean of the measured values. The values of 𝑅2 lies in 

the interval (−∞, 1], where 1 represents a perfect prediction. Thus, higher values 

of 𝑅2 indicate a better fit between the model predictions and actual data. 

▪ Root Mean Square Error (RMSE): 

The RMSE is another widely adopted metric and is defined as the square root of 

the Mean Squared Error (MSE). It provides an estimation of the standard deviation 

of the prediction errors, assuming they are normally distributed. The RMSE is 

computed as follows: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦̂𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

 (4.29) 

This metric is particularly sensitive to larger errors, making it a robust choice 

when such deviations need to be emphasised in the performance assessment. 

▪ Mean Absolute Error (MAE): 

The MAE measures the average absolute differences between predicted values 

and actual observations. It is the arithmetic mean of the absolute residuals and is 

expressed as: 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦̂𝑖 − 𝑦𝑖|

𝑁

𝑖=1

 (4.30) 

This index can be interpreted as the average magnitude of the errors without 

considering their direction. MAE is conceptually related to Manhattan distance 

and is generally appropriate when the error distribution can be assumed to be 

normal. To verify this assumption, a QQplot of the residuals is also generated 

during statistical analysis. The QQplot allows for visual comparison of the 

residual distribution against a theoretical normal distribution. If the plotted points 

closely follow the reference line, it confirms the validity of applying MAE in the 

evaluation. 

All the metrics discussed above provide different perspectives on the regression 

performance. In particular, RMSE is not bound to any specific assumption about the error 
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distribution, making it a more universally applicable metric. Conversely, MAE becomes 

more informative when the residuals exhibit a Gaussian distribution. Using both RMSE 

and MAE together, along with 𝑅2, enables a comprehensive and balanced assessment of 

the model’s ability to generalise the underlying physical behaviour, especially with regard 

to the nacelle’s vibration dynamics. 

 

 

4.7 Anomaly detection methods 

 

This section outlines the methodology adopted for selecting and implementing tools for 

anomaly detection. As depicted in Fig. 4.1, two distinct strategies were employed and 

subsequently compared. 

The first approach is a univariate analysis in which a single SVR model is trained. The 

input matrix is first reduced using PCA, as described in Equation (4.18), and the model 

is used to estimate the standard deviation of vibration signals (Fig. 4.9). 

 
Figure 4.9: Illustration of the univariate anomaly detection process using a single SVR model 

During the testing phase, the same trained model is applied to a dataset containing a pitch-

failure event (refer to Table 4.1), and the residuals, chosen as anomaly indicator, are 

calculated according to Equation (4.31): 

 𝑟𝑖 = 𝑦̂𝑖 − 𝑦𝑖 (4.31) 

This residual reflects the difference between the predicted and actual vibration standard 

deviation. A significant deviation may indicate the presence of a fault, as the SVR model 

fails to generalise due to abnormal operating conditions. However, such discrepancies 

might not exclusively signify damage, they could also result from external environment 

changes such as wind speed or temperature fluctuations. Furthermore, the univariate 

approach, relying on a single output signal, may be prone to a higher rate of false 

positives. Nevertheless, leveraging the standard deviation of the vibration signal, which 

captures its energy content, can enhance robustness to such confounding factors. 
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In addition to residuals analysis, the statistical distribution of the healthy and faulty 

dataset is compared. This comparison aids in determining a threshold value for the 

residuals. Any test data point with a residual exceeding this threshold can be classified as 

anomalous. 

The second method, designed to offer a more comprehensive and reliable detection 

scheme, involves a multivariate analysis. In this case, four separate SVR models are 

trained simultaneously, as shown in Fig. 4.10. 

 
Figure 4.10: Multivariate anomaly detection approach using four trained SVR models 

This method enables the use of more advanced anomaly scoring techniques. In particular, 

two techniques were selected in this work: the Mahalanobis Distance (MD), and the One-

Class Support Vector Machine (OCSVM). Both methods are designed to produce a scalar 

score capable of distinguishing between healthy and faulty operating conditions. 

The MD, introduced by Indian statistician P.C. Mahalanobis, is a statistical measure used 

for outlier and anomaly detection. Unlike Euclidean distance, which simply calculates the 

straight-line distance between two points, MD accounts for the correlations between 

variables. Given a multivariate data point [𝑋], a mean vector {𝜇} = 𝐸([𝑋]), and a 

covariance matrix [𝑆], as defined in (4.16), the Mahalanobis distance is defined as: 

 𝐷([𝑋], {𝜇}) = √([𝑋] − {𝜇})𝑇[𝑆]−1([𝑋] − {𝜇}) (4.32) 

If [𝑆] is the identity matrix, this metric simplifies to the Euclidean distance. In this work, 

the mean and covariance matrix are computed from the training residuals matrix. The 

Mahalanobis distance is then calculated on the test set residuals using these statistics. If 

the computed distance exceeds a pre-established threshold, the point is classified as 

anomalous. 

Notably, MD is robust to quasi-linear confounding factors, making it a valuable method 

for separating anomalies from normal behaviour. 

A second scoring method, used as an alternative to the MD, involves to the application of 

OCSVM. This approach, originally proposed by Schölkopf et al. (1999), was specifically 

designed to adapt the Support Vector Machine methodology to the one-class classification 

problem. 
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The core idea is to map the input data into a high-dimensional feature space through a 

kernel function and then treat the origin as the only member of a ‘negative’ class. The 

goal is to identify a decision boundary that separates the majority of data points 

(belonging to the ‘normal’ class) from the origin with maximum margin. 

Formally, given a dataset with an underlying pdf 𝑝(𝑥), the problem is framed as 

identifying a simple subset 𝑆 in the feature space such that the probability of a test point 

falling outside 𝑆 is bounded by a predefined value 𝑣 ∈ (0,1). In other words, points lying 

outside 𝑆 are considered as anomalies. 

The OCSVM algorithm aims to learn a decision function 𝑓(𝑥), which outputs +1 for 

inputs that lie within the learned boundary (i.e., inside 𝑆), and -1 for those outside it (i.e., 

in the complement 𝑆̅ [46]: 

 
𝑓(𝑥) = {

+1   𝑖𝑓 𝑥 ∈ 𝑆

−1   𝑖𝑓 𝑥 ∈ 𝑆̅ (4.33) 

A visual representation of this concept is shown in Fig. 4.11, where the data points are 

separated from the origin in the kernel-induced space. 

 
Figure 4.11: One-class SVM classification scheme. The origin is treated as the sole representative of the 

negative class 

In this study, the residuals obtained from the training phase of the regression models are 

used as input for training the OCSVM. Let 𝜙: 𝑋 → 𝐻 denote the kernel map that 

transforms the residuals vectors into the feature space 𝐻. The inner products between 

transformed data points are computed using a Gram matrix, defined as: 

 𝐺(𝑥𝑖 , 𝑥𝑗) = 〈𝜙(𝑥𝑖), 𝜙(𝑥𝑗)〉 (4.34) 

In the present work, a linear kernel is adopted, so the Gram matrix simplifies to: 
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𝐺(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗   

The OCSVM problem is then formulated as the following quadratic optimisation 

problem: 

 

min
1

2
‖𝑤‖2 +

1

𝑣𝑁
∑ 𝜉𝑖 − 𝜌

𝑁

𝑖=1

 (4.35) 

Subject to the constraints: 

 (𝑤𝑇 ∙ 𝜙(𝑥𝑖)) ≥ 𝜌 − 𝜉𝑖, 𝑖 = 1,2, … , 𝑁,   𝜉𝑖 ≥ 0 (4.36) 

Here, 𝑤 and 𝜌 define the decision boundary, while 𝜉𝑖 are slack variables allowing for 

some margin of error in classification. Once the optimisation problem is solved, the 

resulting decision function is computed: 

 𝑓(𝑥) = 𝑠𝑖𝑔𝑛 ((𝑤 ∙ 𝜙(𝑥𝑖)) − 𝜌) (4.37) 

The decision function returns +1 for most of the training samples, which lie within the 

region 𝑆, and -1 for those identified as outliers. This makes OCSVM a powerful tool for 

detecting anomalies in systems where only data from normal operation are available 

during training.   

 

 

4.8 Classification models adopted for multi-class analysis 

 

The final part of this work is based on the implementation of a multi-class analysis 

involving two different methods for classifying both healthy and faulty conditions. In this 

framework, four turbines from the same wind farm have been considered, each one 

affected by a different type of anomaly related to a fault condition. The goal is to assess 

the model’s ability to distinguish between different types of damage during classification. 

This evaluation is carried out by means of a specific performance metric, namely the 

Class Error, computed from the confusion matrix, as discussed in the following 

paragraph. 

The final analysis is performed using the residuals obtained from the trained SVR model. 

Specifically, the residuals of the vibration data resulting from the multivariate analysis, 

identified as the most accurate model as discussed in the next chapter, are considered. A 

label vector is built by distinguishing between the normal operating condition and the 

different types of damage. 
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Although the process of assembling the final dataset from the SVR output and the 

structure of the associated labels is discussed in the next chapter, this paragraph focuses 

on the mathematical formulation of the classification methods adopted in this work. In 

particular, two classification techniques have been implemented: 

▪ LDA: Linear Discriminant Analysis 

▪ QDA: Quadratic Discriminant Analysis 

In addition, a cross-validation procedure has been applied. The constructed dataset is 

divided into k-folds: for each iteration, one-fold is used as the validation set, while the 

remaining k-1 folds constitute the training set. This technique ensures that the entire 

dataset is used both for training and validation, and it allows to evaluate the generalisation 

capability of the classifiers. 

The classification process is based on decision theory, which aims to determine the 

posterior probability Pr(𝑄|𝑋) of a class 𝑄 given the observation 𝑋 [21]. Let 𝑓𝑖(𝑥) denote 

the class-conditional density of 𝑋 in class 𝑄 = 𝑖, and let 𝜈𝑖 be the prior probability of 

class 𝑖, where ∑ 𝑣𝑖
𝐼
𝑖=1 = 1. Applying Bayes’ theorem, it is possible to obtain: 

 

 
Pr(𝑄 = 𝑖|𝑋 = 𝑥) =

𝑓𝑖(𝑥)𝜈𝑖

∑ 𝑓𝑙(𝑥)𝜈𝑙
𝐼
𝑙=1

 (4.38) 

 

Both LDA and QDA are based on the assumption of Gaussian class-conditional densities, 

defined as: 

 

 
𝑓𝑖(𝑥) =

1

(2𝜋)𝑝/2|𝑆𝑖|1/2
exp (−

1

2
(𝑥 − 𝜇𝑖)

𝑇Σ𝑖
−1(𝑥 − 𝜇𝑖)) (4.39) 

 

LDA corresponds to the particular scenario in which all classes are assumed to share the 

same covariance matrix, denoted as Σ𝑖 = Σ for each class 𝑖. Under this condition, the 

classification rule between any two classes, 𝑖 and 𝑙, can be derived by analysing the log-

ration of their posterior probabilities. By applying Bayes’ theorem under the assumption 

of Gaussian class-conditional densities, this log-ratio simplifies to: 

 

 
log (

Pr(𝑄 = 𝑖 |𝑋 = 𝑥)

Pr(𝑄 = 𝑙|𝑋 = 𝑥)
) = log

𝜈𝑖

𝜈𝑙
−

1

2
(𝜇𝑖 + 𝜇𝑙)

𝑇Σ−1(𝜇𝑖 − 𝜇𝑙) + 

+𝑥𝑇Σ−1(𝜇𝑖 − 𝜇𝑙) 

(4.40) 

 

This expression is linear in 𝑥, as the shared covariance matrix causes both the 

normalisation terms and the quadratic components in the exponentials to cancel. As a 

result, the decision boundary between any two classes is defined by a linear function, and, 
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in a 𝑝-dimensional feature space, this corresponds to a hyperplane. Consequently, all 

classes boundaries in LDA are linear and partition the space ℝ𝑝 into regions separated by 

hyperplanes (Fig. 4.12). 

 
Figure 4.12: Left-Three Gaussian distribution are shown, each characterised by a different mean but 

sharing a common covariance structure. The dashed lines denote the optimal pairwise decision surfaces 

derived from Bayes theory, while the solid lines represent the overall multi-class separation regions. 

Right-A sample of 30 observations per distribution is presented, alongside the linear boundaries 

estimated through LDA 

From equation (4.40), it is possible to define the linear discriminant function for each 

class 𝑖 as: 

 

 
𝛿𝑖(𝑥) = 𝑥𝑇Σ−1𝜇𝑖 −

1

2
𝜇𝑖

𝑇Σ−1𝜇𝑖 + log 𝜈𝑖 (4.41) 

 

Since the true parameters 𝜈𝑖 , 𝜇𝑖 and Σ are unknown in practice, they must be estimated 

from the training data. The standard estimators are: 

▪ 𝜈̂𝑖 = 𝑁𝑖/𝑁, where 𝑁𝑖 is the number of samples in class 𝑖, and 𝑁 is the total number 

of observations 

▪ 𝜇̂𝑖 = ∑
𝑥𝑖

𝑁𝑘
𝑗𝑛=𝑖  is the predicted mean for class 𝑖 

▪ Σ̂ = ∑ ∑ (𝑥𝑖 − 𝜇̂𝑖)(𝑥𝑖 − 𝜇̂𝑖)
𝑇/(𝑁 − 𝐾) 𝑗𝑛=𝑘

𝐾
𝑖=1 is the predicted within-class 

covariance matrix 

In particular, a sample is assigned for instance to class 2 rather than class 1, when the 

following inequality is satisfied: 

 

 
𝑥𝑇Σ̂−1(𝜇̂2 − 𝜇̂1) >

1

2
𝜇̂2Σ̂−1𝜇̂2 −

1

2
𝜇̂1Σ̂−1𝜇̂1 + log (

𝑁1

𝑁
) − log (

𝑁2

𝑁
) (4.42) 
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The second classification method considered in this work is QDA. Unlike LDA, QDA 

does not assume that the covariance matrices are equal across classes. Each class 𝑖 is 

associated with its own covariance matrix Σ𝑖. As a result, the quadratic term in the 

exponent of the Gaussian distribution is retained (4.39), leading to the following non-

linear discriminant function: 

 

 
𝛿𝑖(𝑥) = −

1

2
log|Σ𝑖| −

1

2
(𝑥 − 𝜇𝑖)

𝑇Σ𝑖
−1(𝑥 − 𝜇𝑖) + log 𝜈𝑖 (4.43) 

 

The decision boundary between any two classes 𝑖 and 𝑙 is thus described by a quadratic 

equation, defined by the set {𝑥: 𝛿𝑖(𝑥) = 𝛿𝑙(𝑥)}. This allows QDA to capture more 

complex and curved decision boundaries, which may be more suitable in cases where 

class covariance structures differ significantly. 

 
Figure 4.13: Comparison of classification boundaries generated by two different approaches. The plot on 

the left shows the result of applying LDA after expanding the input features through a quadratic 

transformation, leading to non-linear decision boundaries. The plot on the right illustrates the decision 

surfaces obtained with QDA, which naturally accommodates class-specific covariance structures. In both 

cases, the separation between the three classes is evident, although QDA provides inherently curved 

boundaries without the need for feature expansion 

 

 

4.9 Metrics Performance Anomaly Detection 

 

To conclude the analysis, it is important to assess whether the anomaly scores derived 

from the trained model are truly effective in identifying anomalous behaviour. This is 

typically done by evaluating how well the model performs when a threshold, determined 

based on the distribution of anomaly scores in the training data, is applied to distinguish 

between normal and anomalous instances. 
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A standard approach to such evaluation involves the use of the confusion matrix, which 

provides a structured summary of prediction outcomes in a binary classification context 

[48]. Specifically, it categorises the results as follows: 

▪ True positives (TP): anomalous instances correctly identified as anomalies 

▪ False positives (FP): normal points incorrectly flagged as anomalies 

▪ False negatives (FN): anomalies that the model fails to detect 

▪ True negatives (TN): normal points accurately classified as normal 

These four values, also referred to as count-based metrics, form the basis for a range of 

evaluation indicators (Fig. 4.14), which are used in this thesis to quantitatively measure 

model performance. 

 
Figure 4.14: Confusion matrix representation 

The first metric considered is Accuracy (𝐴𝐶𝐶), which represents the proportion of all 

correct predictions (both anomalies and normal points) over the total number of samples: 

 
𝐴𝐶𝐶 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 (4.37) 

While accuracy provides a general overview, it can be misleading in highly imbalanced 

dataset, which is often the case in anomaly detection. 

To better capture the model’s performance in identifying rare events, Recall (𝑅𝐸𝐶), also 

known as True Positive Rate or Sensitivity, is employed. Recall quantifies the proportion 

of actual anomalies that are successfully detected: 

 
𝑅𝐸𝐶 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4.38) 

A high recall means that few anomalies go undetected, although it may come at the cost 

of increased false positives. 

In contrast, Precision (𝑃) focuses on the quality of the predictions made as anomalies, and 

is defined as the fraction of predicted anomalies that are actually anomalous: 
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𝑃 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4.39) 

A high precision indicates that most anomaly alerts are valid, even if some actual 

anomalies are missed. 

To strike a balance between these two aspects, the F-score is used. It is the harmonic mean 

of precision and recall, combining them into a single value: 

 
𝐹 =

2𝑃 ∙ 𝑅𝐸𝐶

𝑃 + 𝑅𝐸𝐶
 (4.40) 

Depending on the application, one might prioritise precision over recall (or vice versa), 

which can be adjusted through the 𝐹𝛽-score: 

 
𝐹𝛽 =

(1 + 𝛽2)𝑃 ∙ 𝑅𝐸𝐶

𝑅𝐸𝐶 + 𝛽2𝑃
 (4.41) 

The parameter 𝛽 allows the analyst to express how much more importance should be 

given to recall relative to precision. For example, 𝛽 > 1 favours recall, while 𝛽 < 1 

favours precision. 

The metrics discussed so far are evaluated at a fixed threshold, but in many cases, one 

seeks to analyse how model performance changes across a range of thresholds. To this 

end, Receiver Operating Characteristics (ROC) analysis is particularly useful. The ROC 

curve is a plot of recall against the False Positive Rate (FPR) for varying threshold values, 

offering a global view of classification behaviour (Fig. 4.15). 

To summarise the ROC performance in a single scalar, the Area Under the Curve (AUC) 

is computed. In this work, the AUC-ROC has been adopted as an additional indicator of 

the model’s ability to discriminate between normal and anomalous conditions across all 

possible thresholds. A higher AUC value indicates more reliable and robust anomaly 

detection, and this metric has become a common standard in research for evaluating 

detection systems. 
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Figure 4.15: Example of a ROC curve comparing the performance of two anomaly detectors, labelled A 

(blue curve) and B (green curve). The plot illustrates the trade-off between true positive rate and false 

positive rate across different threshold values, highlighting the relative detection capabilities of each 

model 

Additionally, to the binary class analysis conducted in this work, the final stage of this 

thesis focuses on performing a multi-class classification. In this framework, beyond the 

categories previously defined in the confusion matrix, an additional category, known as 

Class Error, is introduced (Table 4.4).  

Table 4.4: Generic confusion matrix for multi-class classification, where the class k=0 corresponds to the 

healthy or reference state, while classes k=1… N represent different categories of damage 

 True 

Class 0 

True 

Class 1 

True 

Class … 

True 

Class k 

True 

Class … 

True 

Class N 

Predicted 

Class 0 

𝑇𝑁0 𝐹𝑁1 𝐹𝑁… 𝐹𝑁𝑘 𝐹𝑁… 𝐹𝑁𝑁 

Predicted 

Class 1 

𝐹𝑃1 𝑇𝑃1 𝐶𝐸1,… 𝐶𝐸1,𝑘 𝐶𝐸1,… 𝐶𝐸1,𝑁 

Predicted 

Class … 

𝐹𝑃… 𝐶𝐸…,1 𝑇𝑃… 𝐶𝐸…,𝑘 𝐶𝐸… 𝐶𝐸…,𝑁 

Predicted 

Class k 

𝐹𝑃𝑘 𝐶𝐸𝑘,1 𝐶𝐸𝑘,… 𝑇𝑃𝑘 𝐶𝐸𝑘,… 𝐶𝐸𝑘,𝑁 

Predicted 

Class … 

𝐹𝑃… 𝐶𝐸…,1 𝐶𝐸… 𝐶𝐸…,𝑘 𝑇𝑃… 𝐶𝐸…,𝑁 
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Predicted 

Class N 

𝐹𝑃𝑁 𝐶𝐸𝑁,1 𝐶𝐸𝑁,… 𝐶𝐸𝑁,𝑘 𝐶𝐸𝑁,… 𝑇𝑃𝑁 

 

Within this framework, the Class Error quantifies the proportion of samples that, although 

correctly detected as anomalous, have been misclassified into an incorrect damage 

category. This metric effectively measures the precision of the model in distinguishing 

among different fault types. 

Formally, the Class Error Rate (CER) is defined as: 

 

 
𝐶𝐸𝑅 =

𝐶𝐸

𝑇𝐶
 (4.42) 

 

Where CE corresponds to the number of misclassified samples located outside the main 

diagonal of the confusion matrix, and TC denotes the total number of samples classified.  

The CER thus provides a quantitative assessment of the model’s ability to discriminate 

between multiple fault categories. This capability is particularly crucial in the context of 

continuous monitoring for wind farms, where numerous turbines must be supervised 

concurrently. In such scenarios, it is essential not only to differentiate normal operating 

states from anomalous conditions but also to accurately identify the specific type of 

damage affecting each turbine, enabling more targeted maintenance interventions and 

enhanced operational reliability. 

A final performance metric is also computed in this work, to compare the classification 

results of QDA and LDA. This metric, referred to as the Performance Index (PI), 

combines the information provided by the accuracy, MA, FA and CER, allowing the 

evaluation to be condensed into a single scalar value, as defined in equation (4.43). 

 𝑃𝐼 = 𝐴𝐶𝐶 ∙ (1 − 𝑀𝐴) ∙ (1 − 𝐹𝐴) ∙ (1 − 𝐶𝐸𝑅) (4.43) 
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5. Results  

 

As outlined in Chapter 4 and illustrated in Fig. 4.1, the methodology developed in this 

thesis follows a structured sequence of operations aimed at implementing a robust 

anomaly detection strategy for wind turbine monitoring. This chapter presents the results 

obtained from the application of the proposed models and provides a critical analysis of 

their effectiveness. 

The first part of the chapter focuses on the preprocessing phase, which includes a 

statistical analysis of the dataset and a discussion of the potential influence of the Betz 

model introduced earlier. This section is intended to verify the consistency of the input 

data and to provide physical insight into the variables employed in the subsequent 

learning phase. 

The second part is devoted to the regression models, with an emphasis on performance 

evaluation across the training, validation, and test sets. The metrics introduced in Chapter 

4 are applied here to quantify the predictive capability of the models and to evaluate their 

robustness under varying operating conditions. 

Following this, a first anomaly detection analysis is conducted using a univariate 

approach based on the residuals obtained from the regression model. Special attention is 

given to the interpretation of performance metrics, in order to assess the model’s 

sensitivity in detecting deviations from normal behaviour. 

The third section presents a multivariate analysis and compares it with the previous 

univariate model, highlighting differences in terms of predictive accuracy and diagnostic 

capability, as well as discussing the associated limitations and trade-offs. 

Finally, a classification analysis is introduced. A cross-validation procedure is applied 

involving additional turbines, with the goal of assessing the model’s ability to not only 

detect the presence of anomalies, but also to identify the specific type of fault, thus 

evaluating its generalisation potential. 

 

 

5.1 Statistical Analysis  

 

The preprocessing phase represents one of the most critical and delicate steps in the 

development of any machine learning framework, as it provides the necessary 

understanding of the dataset and establishes the foundation on which the entire 

methodology is built. As introduced in Chapter 3, a preliminary data cleaning procedure 
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was carried out to remove any irregularities or anomalies that could compromise the 

training process and, consequently, the accuracy of the model. 

The first goal of this phase is to perform a statistical analysis aimed at identifying the 

main correlations between physical parameters and two key output variables: the nacelle 

vibration signal and the electrical power produced by the turbine. The power output is 

particularly relevant not only to gain a basic understanding of turbine behaviour, 

especially during the power control phase, but also to model the aerodynamic input 

applied by wind to the system, in terms of converted mechanical energy. 

In all analyses where wind speed is considered, a cubic dependency has been explicitly 

included in accordance with the Betz theory. This formulation was used to approximate 

the aerodynamic power transmitted from the wind to the turbine, which acts as a physical 

input to the dynamic system. By incorporating this relationship, it is possible to estimate 

the amount of energy transferred from the airflow to the rotor and drivetrain, thus 

allowing for a more physically consistent modelling of the turbine’s operating conditions.  

The analysis initially focuses on identifying the best-fitting regression plane using a 

MISO regression. Various physical variables were selected from the dataset, excluding 

electrical signals in favour of mechanical ones, in line with the nature of the measured 

vibration signal. Several combinations of input variables were tested, and the RMSE and 

MAE were computed to evaluate the average deviation of the experimental data from the 

regression plane. In addition, QQ-plots were used to investigate the statistical distribution 

of residuals. 

The most relevant results obtained through the regression analysis are shown in Fig. 5.1 

to 5.5, where the vibration data is plotted against different combinations of physical 

parameters in three-dimensional spaces. 
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Figure 5.1: Acceleration vs wind speed and ambient temperature (top), and QQ-plot of residuals (bottom) 

 
Figure 5.2: Acceleration vs power output and wind speed, QQ-plot residuals 
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Figure 5.3: Acceleration vs wind speed and gearbox oil temperature, and QQ-plot residuals 

 

 
Figure 5.4: Acceleration vs wind speed and inner ring bearing temperature, and QQ-plot residuals 
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Figure 5.5: Acceleration vs wind speed and pitch angle, and QQ-plot residuals 

Table 5.1: Summary of regression performance metrics (target: mean nacelle vibration signal) 

 Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 

RMSE [%] 2.2 9.3 2.5 2.5 2.3 

MAE [%] 1.7 7.5 2.00 2.00 1.9 

 

Table 5.1 shows a good agreement between the regression plane and the experimental 

data, indicating a strong correlation between the nacelle vibration data and the selected 

physical parameters: power output, pitch angle, ambient temperature, wind speed, 

gearbox oil temperature, and inner ring bearing temperature. This conclusion is further 

supported by the error metrics (RMSE and MAE), which remain below 10% for all 

considered combinations. The values confirm the relevant and physical consistency of the 

selected input variables. 

In particular, the use of the cubic dependency of wind speed, derived from the Betz model 

to approximate the aerodynamic power transmitted to the system, has proven to be 

effective. The results demonstrate that this assumption leads to accurate regressions, 

reinforcing the physical validity of this approach for modelling the wind’s contribution to 

the turbine dynamics. 

Moreover, the QQ-plot analysis highlights an additional aspect related to the statistical 

distribution of the residuals. Given the importance of residuals analysis in this work, 

particularly in the anomaly detection phase, it is observed that the residuals tend to follow 
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an approximately normal distribution, despite the slightly divergent tails. This behaviour 

may suggest the presence of nonlinear effects that are not fully captured by the linear 

regression model. The effectiveness of the data cleaning process is also evident: the 

removal of these non linearities has prevented distortion in both error metrics and 

residuals distributions, as shown in Fig. 5.6. 

 
Figure 5.6: Acceleration vs wind speed and inner ring bearing temperature. Red circle indicate 

discontinuity caused by the presence of outliers in the dataset 

From a physical standpoint, the following observations can be made regarding the 

turbine’s behaviour under normal operating conditions: 

▪ The turbine produces electrical power within a wind speed range of approximately 

2 ÷ 28 𝑚/𝑠, corresponding to the cut-in and cut-off thresholds. Below or above 

this interval, the turbine does not generate power, as shown in Fig. 5.7. The 

maximum power output, reached at around 25 𝑚/𝑠, is approximately 1 𝑘𝑊, 

which classifies the turbine as a small-scale unit. This behaviour is confirmed by 

Fig. 5.2, where vibration data are absent beyond 30 𝑚/𝑠 of wind speed, indicating 

no data sampling was conducted above this limit. 

▪ Fig. 5.2 further shows a decrease in nacelle vibrations as power output increases, 

a trend that coincides with the increase in wind speed, consistent with the Betz 

model. This highlights a key aspect of the turbine’s power control strategy, which 

involves adjusting blade pitch to optimise aerodynamic efficiency and reduce 

turbulence-induced vibrations, thus limiting losses in aerodynamic performance. 
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Additionally, Fig. 5.6 reveals a reduction in vibration as the pitch angle increases. 

As discussed in Chapter 2, pitch failure is a common fault condition; based on 

these results, it can be expected that vibration amplitudes would increase when 

the turbine loses its capability to optimise its aerodynamic profile to meet the 

required power output. However, it should also be noted that stall control can 

significantly influence the vibration signals at the nacelle, and therefore a 

thorough cross-analysis is necessary before declaring a fault condition. 

 
Figure 5.7: Power output vs wind speed and ambient temperature 

▪ Fig. 5.3 and 5.4 show that, under normal operating conditions, the gearbox oil 

temperature and the inner ring bearing temperature of the main shaft remain 

within specific ranges. These parameters are crucial for condition monitoring, as 

even small temperature deviations may indicate malfunctions caused by 

phenomena such as wear or fatigue within the gearbox. Given their importance, 

these variables were included in the input matrix used during the SVR training 

phase. Consequently, during testing, anomalies detected in these parameters 

contribute to decreased predictive performance of the regressor, serving as an 

indicator of potential faults. 
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5.2 Univariate Analysis 

 

A univariate analysis involves the development of a regression model in which a single 

output variable is predicted from a given set of input features. The main objective in this 

phase is to train the SVR model using an input matrix composed of the most influential 

physical parameters affecting the dynamic behaviour of the wind turbine, as reported in 

Table 5.2. 

Table 5.2: Physical parameters used in SVR 

Physical Variable Symbol 

Wind speed 𝑐0 

Ambient 

Temperature 

𝑇𝑎 

Pitch Angle 𝛼 

Gearbox Oil 

Temperature 

𝑇𝑜𝑖𝑙 

Rotor Blade Axis 

Position 

𝛽 

Rotor Speed 𝜔𝑟 

Bearing Inner Ring 

Temperature 

𝑇𝑖𝑛𝑏 

Rotor Speed 

Gearbox Main-shaft 

𝜔𝑔 

 

From the combination of these parameters and their statistical descriptors, i.e. maximum, 

minimum, mean and standard deviation, a matrix [𝑋] ∈ ℝ𝑁×32 is constructed, where 𝑁 

is the number of observations. As previously emphasised throughout this thesis, particular 

attention is given to the physical interpretation provided by the Betz theory, as introduced 

in equation (4.5). In this context, wind speed is not only used as a direct feature but also 

transformed to reflect its cubic relationship with aerodynamic power, in line with 

fundamental energy conversion principles. 

The rationale behind this transformation is to enhance the physical consistency of the 

input representation. Specifically, it allows the model to better approximate the 

aerodynamic power transferred from the wind to the turbine, an input that acts as a forcing 

term in the dynamic system and is closely linked to the vibration response observed at the 

nacelle. This assumption is strongly supported by the statistical analysis presented earlier, 
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which showed a clear correlation between nacelle vibration levels and wind speed, further 

highlighting the role of turbulence and unsteady aerodynamic effects in the excitation of 

structural vibrations. 

The coefficient used in equation (4.5) to estimate wind power are summarised in Table 

5.3. 

 

Table 5.3: Coefficients assumed for aerodynamic power computation (Betz law) 

Data Values 

𝜌 [𝑘𝑔/𝑚3] 1.23 

𝐶𝑝 0.40 

𝐴 [𝑚2] 15 

 

These parameters are selected based on the results of the previous analysis and relevant 

physical considerations. The air density 𝜌 is assumed constant, as the wind is treated as 

an incompressible fluid. The power coefficient 𝐶𝑝 is chosen according to the theoretical 

upper limit defined by the Betz law. The swept area 𝐴 corresponds to that of a small-scale 

turbine, as justified by the observed maximum power output of approximately 1 𝑘𝑊. 

Furthermore, due to the low rotational speed of the rotor (and consequently of the blades), 

centrifugal effects and structural deformation are assumed to be negligible in this phase, 

reinforcing the assumption of moderate dynamic loads and stable operating conditions. 

By combining these constants with the cube of the wind speed, a new feature is derived 

and included in the input matrix. This feature is intended to more accurately represent the 

dynamic excitation induced by wind energy, and to strengthen the link between the 

aerodynamic input and the turbine’s dynamic response in terms of vibration. 

Before proceeding with the training phase, a PCA was applied to reduce the 

dimensionality of the input matrix. This step is essential to lower the computational 

complexity, especially during the kernel transformation inherent to the SVR algorithm 

when projecting data into the higher-dimensional Hilbert space. 

  

 
 

5.2.1 PCA Results 

 

PCA was applied to reduce the dimensionality of the original input matrix, which includes 

32 monitored features. This technique constructs new uncorrelated variables, known as 

principal components, as linear combinations of the original features, ordered by 

decreasing variance. The transformation maximises the retained variance and minimises 
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the redundancy and noise within the dataset by solving an eigenvalue decomposition of 

the covariance matrix. 

Due to the high dimensionality of the original feature space, direct visualisation is not 

feasible. As introduced in Chapter 4, the cumulative explained variance curve was 

adopted to determine the optimal number of principal components to retain. Fig. 5.8 

shows the proportion of total variance explained as a function of the number of 

components. A threshold of 90% was selected, which balances dimensionality reduction 

with information preservation. This led to the retention of the first three principal 

components, effectively projecting the original 32-dimensional input space onto a 3-

dimensional subspace, while maintaining the majority of its informational content. 

 

 
Figure 5.8: Cumulative explained variance and number of principal components. The red marker 

indicates the selected 90% threshold 

This transformation yields a compact and decorrelated input matrix, improving both 

interpretability and computational efficiency. In particular, the reduction from 32 to 3 

dimensions decreases the model complexity and helps to mitigate overfitting risks in 

subsequent regression tasks. 

From a computational standpoint, the analysis was executed on an Intel® Core™ i7-

6500U CPU @ 2.50 GHz. Under this configuration, the training time of the SVR model 

using 3 principal components was approximately 140 seconds. Although increasing the 

number of retained components can potentially improve prediction accuracy, it results in 

higher computational costs during the training phase. Therefore, a trade-off between 

performance and efficiency must be considered. 
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It is important to underline that the objective of this work is not to maximise prediction 

accuracy, but to develop a generalised and interpretable model capable of characterising 

the behaviour of a wind turbine under normal operating conditions. Such a model can 

then be transferred to other turbines for anomaly detection and diagnostic purposes, 

enhancing the robustness of the fault detection framework across different systems. 

 

 

5.2.2 SVR Results: Training, Validation and Test 

 

The SVR model was initially trained on the healthy wind turbine WT53 (see Table 4.1), 

using a time series of approximately 11 months (see Table 4.2). The input matrix was the 

3-dimensional reduced dataset obtained from the PCA transformation, as described in 

Section 5.2.1. The SVR hyperparameters, such as the solver type, regularisation constant 

C, kernel scale, and the width of the 𝜀-insensitive tube, were tuned to enhance the 

generalisation capability of the model (see Table 4.3).  

In Fig. 5.9 two plots are shown based on the SVR results obtained during the training 

phase. Specifically, the first plot illustrates the model’s predicted output, i.e. longitudinal 

nacelle vibration, as a function of the measured data points, while the second is the QQ-

plot of the residuals.  

The QQ-plot is particular important, as it provides a direct graphical representation of 

whether certain non linearities have not been adequately captured by the SVR. As a 

consequence, upper and lower bounds are computed based on the maximum 

perpendicular distance between the residual distribution and the reference normal 

distribution of the training set. 
 

𝜅 = 𝑟 ± max(𝑑) 
 

Where 𝑟 is the residual distribution plot into the QQ-plot, and 𝑑 = |𝑄 − 𝑟|/√2. These 

limits are particularly considered during the validation phase of the SVR model, where 

unseen data are used to assess its generalisation capability. 
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Figure 5.9: Top: predicted vs measured nacelle vibration. Bottom: residual distribution confirming near-

normal behaviour 

Fig. 5.10 presents the time-domain comparison between the predicted output and actual 

vibration data, demonstrating good agreement during the training and validation phases. 

The second subplot shows the residuals over time, highlighting the presence of a non-

zero error due to model limitations and the inherent variability in the real-world data. 

 
Figure 5.10: Top: time-domain predicted and measured vibration values. Bottom: residuals over time. 

The missing data are caused by the application of label filtering 
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The model was tuned iteratively by comparing training and validation performances, 

primarily based on the metrics reported in Table 5.4. Notably, some residuals are 

undefined, resulting from missing or discarded points in the dataset due to label filtering. 

As discussed in Chapter 3, only normal operating conditions (label 0 links to a healthy 

status of the turbine) were retained during training and validation, leading to the exclusion 

of some SCADA data labelled as fault conditions.  

 
Figure 5.11: Validation results. Top Plot: Predicted value and Measured value representation. Bottom 

Plot: Residuals QQ-plot  

 
Figure 5.12: Validation results. Top Plot: Predicted and measured values plotted in the time domain. 

Bottom Plot: Residuals time series plot. Missing data are caused by the application of label filtering 
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Table 5.4: Performance metrics results concerning training and validation phases 

Use 𝑹𝟐 [%] 𝑹𝑴𝑺𝑬 [%] 𝑴𝑨𝑬 [%] 

Training 64.1 1.5 1.1 

Validation 55.4 1.4 1.0 

 

A notable difference highlighted in Table 5.4 concerns the reduction of the coefficient of 

determination 𝑅2 between the training and validation phases. This index, defined in 

Equation (4.28), is strongly affected by the behaviour of the residuals, as it quantifies the 

proportion of variance in the output that is explained by the model. Therefore, any 

degradation in model’s predictive capability is directly reflected in a decrease in 𝑅2, due 

to its inverse proportionality to the residual variance. 

Specifically, an increase in the magnitude of the residuals leads to a decrease in 𝑅2, 

indicating a diminished ability of the regressor to capture the underlying structure of the 

output signal. Ideally, 𝑅2 = 1 represents a perfect fit between the predicted and actual 

outputs, implying that the model residuals are null. However, such an ideal condition 

typically corresponds to a situation where the model has learned the training data too 

precisely, possibly even memorising noise or irrelevant fluctuations, making it incapable 

of generalising accurately to new, unseen data. For this reason, this work aims to identify 

an optimal trade-off ensures both a satisfactory fit to the training data and robust 

generalisation capability.  

A highly complex model is capable of following minimal variation within the training 

dataset, and if such variations are generated by stochastic noise or uncontrolled 

disturbances, the model tends to incorporate this noise into its structure. As a result, it 

becomes unable to generalise when exposed to new data, leading to significantly larger 

residuals and thus poor performance in real-world applications. Due to the inherent 

presence of noise and, more generally, nonlinearities affecting the physical system, it is 

practically impossible for any model to produce a zero-residual fit across all operational 

instances. Therefore, a certain level of systematic error must be expected and tolerated.  

The selection of model complexity is thus a crucial aspect to control in order to minimise 

the residuals without overfitting. If the model is too simple, it will fail to capture essential 

dynamics, leading to underfitting. Conversely, a model that is too complex may achieve 

artificially low residuals during training but perform poorly under operational variability, 

even when the system is fault-free, this is known as overfitting. As a consequence, the 

goal in this preliminary phase is to identify a condition of optimal model complexity, i.e. 

a compromise between underfitting and overfitting, that enables accurate yet 

generalisable predictions. 

At this stage, it becomes necessary to test the model on a dataset corresponding to a wind 

turbine that exhibits a fault condition. As specified in Chapter 3, the faulty data are 
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characterised by a high quality description provided in the datasets downloaded from 

Zenodo. Each dataset includes specific labels (as defined by the Status-ID, see Table 3.2) 

that clearly distinguish between normal and anomalous operating conditions. In 

particular, the test phase considers turbine WT35, which is affected by a pitch failure 

fault. From the statistical analysis of the available signals, it has been observed that 

turbulence can play a significant role in amplifying nacelle vibrations. This is particularly 

relevant in the context of pitch failure, where the pitch motor loses its ability to rotate the 

blades toward the optimal angle. Such failure compromises the aerodynamic regulation 

mechanism, preventing the turbine from aligning the blades effectively to capture the 

maximum available kinetic energy from the wind. The result is not only a reduction in 

power conversion efficiency, but also a higher dispersion of unutilised energy, which 

excites the nacelle structure and intensifies its dynamic response.  

The results of this test are illustrated in Fig. 5.12 and 5.13, while the corresponding 

performance metrics are reported in Table 5.5. 

 

 
Figure 5.13: Test results. The first plot shows the predicted vibration values against the measured ones. 

Red markers are used to highlight data points associated with fault conditions 
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Figure 5.14: Test results. Time-domain representation of predicted, measured (top), and residual values 

(bottom). Faulty intervals are highlighted in red across different time windows 

Table 5.5: Performance metrics: Test phase results 

Use 𝑹𝟐 [%] 𝑹𝑴𝑺𝑬 [%] 𝑴𝑨𝑬 [%] 

Test -40.3 2.3 1.7 

From the results shown in Table 5.5, it can be observed that although both RMSE and 

MAE remain relatively low, suggesting that the average prediction error is not excessively 

large, the coefficient of determination 𝑅2 takes a negative value. This indicates that the 

model’s prediction during the test phase is less accurate than a naive model predicting the 

mean of the training outputs. In practical terms, a negative 𝑅2 value reveals that the model 

fails to generalise under the altered operational conditions, and its predictions are 

significantly affected by error when the system deviates from the healthy regime it was 

trained on. 

The central objective at this point is to determine whether such behaviour is indicative of 

a genuine failure condition or simply a consequence of insufficient model accuracy. To 

this end, the methodology adopted involves the definition of both lower and upper 

residual thresholds, derived from the statistical distribution of residuals observed during 

the training phase. This concept is further illustrated in Fig. 5.14. 
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Figure 5.15: The first plot compares the predicted output with the measured outputs across training, 

validation, and test datasets, where the predicted values are shown in red. The second plot represents the 

residuals computed in the time domain, while the third plot the statistical distribution of these residuals. 

Residuals exceeding predefined thresholds, derived from the training distribution, are highlighted in black 

and classified as potential damaged points. 

The analysis of the results presented in Fig. 5.14 reveals a distinct separation between the 

distributions of residuals associated with normal and potentially faulty operating 

conditions. The blue distribution corresponds to the residuals computed during the 

training phase, which were derived exclusively from healthy turbine states (label 0). This 

distribution serves as a statistical reference for what is expected under nominal behaviour.  

Conversely, the black-marked residuals correspond to test data points that exceed the 

upper or lower thresholds defined by the statistical limits of the blue training distribution. 

These points are flagged as anomalous because their prediction errors fall outside the 

confidence interval established during model training. The separation between these two 

distributions suggests that the model, trained only on healthy data, is capable of 

recognising deviations indicative of abnormal system dynamics, even in the absence of 

explicit fault labels during training.  

This observation forms the basis for the residual-based anomaly detection strategy 

adopted in this work. The method assumes that, under healthy operating conditions, the 
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model’s prediction errors (residuals) remain confined within statistically defined bounds. 

Therefore, any significant deviation beyond these thresholds is interpreted as a possible 

symptom of a structural anomaly or incipient failure in the system, such as the pitch 

failure considered in this study. 

The validity and robustness of this detection framework, including the choice of 

thresholds, the false positive/false negative trade-off, and the relationship between 

residual distribution shifts and physical degradation phenomena, will be further examined 

in the following paragraph. There, a systematic evaluation of the anomaly detection 

strategy is conducted, aiming to quantify its performance and to confirm the model’s 

ability to detect early-stage faults based solely on residual analysis. 

 

 

5.2.3 Performance Evaluation of Univariate-Based Anomaly Detection 

 

This paragraph presents the final results related to the anomaly detection strategy 

developed in the initial phase of this work, based on a univariate residual analysis. 

Specifically, the threshold selected from the empirical residual distribution, obtained 

during the training phase under healthy operating conditions, enables a manual but 

effective classification of normal data points in contrast to damaged ones. The purpose of 

this approach is to verify whether the model is intrinsically capable of learning this 

distinction solely through the analysis of residuals. At this stage, the availability of 

labelled data in the test set plays a crucial role in validating the effectiveness of the 

proposed method. 
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Figure 5.16: The second and third plots represent the residuals computed from the regression model in the 

time domain. Red dots indicate the true (labelled) damage points, while black dots correspond to the 

detected anomalies based on residual thresholding 

As shown in Fig. 5.15, the points labelled as damaged, corresponding to a pitch-failure 

event, are compared with those identified by the model through the residual-based 

anomaly detection strategy. It is evident that the SVR model, enhanced by the use of a 

Gaussian kernel, is able to capture the underlying nonlinear behaviour of the system and 

distinguish between healthy and faulty conditions, even though the model has never been 

trained with faulty data. This provides clear evidence that SVR can serve as an effective 

tool within model-based anomaly detection framework, especially for predictive 

maintenance applications in wind energy systems. The major advantage lies in its capacity 

to monitor the health state of a turbine without requiring interruptions in power 

production, thereby supporting continuous operation and enabling early intervention in 

the case of incipient failures. 

To quantitatively validate the residual-based detection method, a series of performance 

metrics were computed. This enables a direct comparison with other approaches found in 

the current state of the art. These metrics, introduced in Chapter 4, are derived from the 

confusion matrix and include accuracy, precision, recall, specificity, F-score, and the rates 

of false and missed alarms. The corresponding values are reported in Table 5.6, while Fig. 

5.16 illustrates the ROC-curve associated with the variation of the decision threshold. 
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Figure 5.17: ROC curve. The red circle indicates the optimal operating point selected based on Youden’s 

index (the “knee” of the curve). The blue circle represents the threshold defined from the residual 

distribution of the training set 

 

Table 5.6: Performance metrics for different threshold values applied to residuals 

Threshold Accuracy 

[%] 

Missed 

Alarms 

[%] 

False 

Alarms 

[%] 

Precision Specificity Recall F-

score 

Blue Circle 88.76 10.92 0.32 0.91 0.89 0.24 0.26 

Red Circle 83.55 5.12 11.32 0.45 0.94 0.64 0.62 

 

As shown in Table 5.6, both thresholding strategies yield high overall accuracy, exceeding 

83%. The “blue circle” threshold, derived from the training residual distribution, 

prioritises minimising false alarms (FA), a relevant objective in contexts where false 

positives incur operational or economic costs. In contrast, the “red circle” threshold, 

chosen at the knee of the ROC curve via Youden’s index, seeks to balance false alarms 

(FA) and missed alarms (MA), achieving a significantly higher recall (64%), but at the 

cost of increased FA (11.32%). 

In the context of wind turbine condition monitoring, minimising missed alarms is often 

more critical than minimising false alarms. A missed detection of a developing fault can 

lead to serious mechanical failures, unplanned shutdowns, increased downtime, and 
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elevated maintenance costs. For this reason, even though the blue-circle threshold yields 

the best performance in terms of specificity and low FA, the red-circle threshold is 

preferred, as it ensures a lower rate of missed faults (MA<5%), while maintaining FA 

below 15%. 

A further insight comes from the F-score, which is the harmonic mean of recall and 

precision. In this work, a custom 𝛽-wieghted version of the F-score is adopted to 

emphasise recall, since missing an anomaly in a critical system like a wind turbine poses 

a significant risk. The best compromise is again achieved at the red-circle point, where 

the F-score reaches 0.62, indicating a moderate but promising detection capability. 

Nonetheless, the performance is not yet optimal. The current detection approach, while 

functional, still leaves room for improvement, particularly in enhancing the separability 

of fault vs healthy patterns and reducing false positives without sacrificing recall. The 

next paragraph explores strategies to improve these aspects through more advanced or 

multivariate models. 

In addition to the SVR model trained to predict nacelle vibrations, a second SVR model 

was developed in this work with the objective of predicting the active power output 

produced by the wind turbine. The rationale behind this attempt was to investigate 

whether power data, being an essential performance indicator, could serve as an additional 

anomaly detection metric. However, several critical issues emerged, primarily related to 

the high sensitivity of power output to internal and external fluctuations, as highlighted 

in Fig. 5.17. 
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Figure 5.18: Predicted power output obtained using a secondary SVR model. In the bottom plot, black 

dots are referred to anomalies classified by the model, for data points that exceed the upper and lower 

thresholds 

As observed in Fig. 5.17, the model exhibits larger prediction errors, with residuals 

distribute across a wide range of values, even during periods classified as healthy by the 

reference labels. This residual behaviour is not correlated with the fault labels and does 

not follow a distinguishable pattern associated with the known pitch-failure condition. As 

a consequence, the corresponding ROC-curve (Fig. 5.18) reveals a low AUC, indicating 

that the model is unable to reliably separate normal from faulty operating states. 



Chapter 5: Results 

114 
 

 
Figure 5.19: ROC-curve obtained from the SVR model trained on power output residuals 

This experimental attempt was aimed at exploring whether the residuals of power output 

prediction could function as an effective anomaly indicator. However, power and 

efficiency metrics are inherently difficult to model with high reliability due to the intrinsic 

complexity of wind turbine systems. Even small deviations from the nominal operating 

conditions, originating from mechanical, electrical, or aerodynamic subsystems, can lead 

to abrupt and nonlinear variations in power generation. Moreover, such deviations may 

not necessarily correspond to a physical fault, but instead reflect momentary disturbances, 

control system interventions, or grid-related constraints. 

In particular, the SCADA system tends to record zero power output when a system-wide 

error is detected, such as protective shutdown or trip condition. These zero values 

introduce discontinuities and further degrade the accuracy of the regression model. As a 

result, the model frequently identifies false anomalies, i.e. operating conditions flagged 

as faulty by the residuals, despite the turbine functioning correctly.  

The quantitative performance of this second model is summarised in Table 5.7. The AUC 

value of 0.25 confirms that the model performs worse than random guessing, and the false 

alarm rate exceeds 25%, as seen from the blue-circle threshold, rendering this approach 

unsuitable for effective anomaly detection in its current form. 
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Table 5.7: Performance metrics of the anomaly detection model 

Threshold Accuracy 

[%] 

Missed 

Alarms 

[%] 

False 

Alarms 

[%] 

Blue Circle 71.1 3.4 25.1 

Given these limitations, and the risk of introducing a high number of false positives, it is 

concluded that power output is not a reliable variable for residual-based anomaly 

detection within the proposed framework. Therefore, in the remainder of the analysis, 

only vibration signals will be used as the primary monitoring variable for fault detection 

purposes, due to their higher sensitivity and correlation with structural anomalies. 

 

 

5.3 Linear Regression Power-Wind Speed  

 

Before proceeding with the multivariate analysis, as introduced in Fig. 4.1 and motivated 

by the limitations discussed in Chapter 4, a complementary analysis has been carried out 

alongside the assumptions based on the Betz model coefficients. This analysis is part of 

the broader preprocessing strategy, and its primary objective is to model, in a simplified 

yet informative manner, the relationship between wind speed and generated power, with 

the aim of refining both regression accuracy and anomaly detection effectiveness. 

The motivation behind this approach stems from the lack of detailed design information 

about the wind turbine under investigation. In fact, no direct information is available 

regarding its rotor diameter, efficiency, or power coefficient 𝐶𝑝, all of which would be 

required for a physics-based model. As a result, all functional insights have been inferred 

from statistical analysis of SCADA data, an approach that is inherently subject to 

systematic measurement uncertainties and limitations related to operational variability. 

Instead of assuming specific geometric parameters or ideal performance coefficients, a 

simple linear regression model, based on a third order polynomial function, has been 

developed to estimate the slope of the power-wind speed curve, as outlined in Equation 

(4.14). This estimated slope, denoted as {𝛽𝑖}, is then intended to be included as a new 

feature within the input matrix, where each term is multiplied by the corresponding power 

of wind speed, up to the third order, thereby contributing to the improvement of the final 

multivariate prediction model. The polynomial order was selected by considering the 

main dependencies described by the Betz formula, which relates power output to wind 

speed. 
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Figure 5.20: Comparison between predicted and measured power output responses in the time domain 

using the linear regression model 

From the results illustrated in Fig. 5.19, it is evident that the predicted power output 

matches the measured values reasonably well, suggesting a satisfactory performance of 

the linear model. This is further supported by the coefficient of determination, with a 

value of 𝑅2 = 0.74, indicating that the model is capable of explaining approximately 74% 

of the variance in the observed data. Although this does not reflect a perfect fit, it confirms 

that the cubic formulation is sufficiently adaptable to the actual data to be used for further 

anomaly-related investigations. 

The detailed results for all three phases (training, validation, and test) are reported in 

Table 5.8. 

Table 5.8: Performance metrics of the linear regression model using the Betz-based formulation 

Use 𝑹𝟐 [%] 𝑹𝑴𝑺𝑬 [%] 𝑴𝑨𝑬 [%] 

Training 64.5 1.5 1.1 

Validation 58.8 1.4 0.9 

Test -63.9 2.3 1.8 

 

From these metrics, one can observe a consistent performance between the training and 

validation phases, with 𝑅2 values exceeding 50% and very low error percentages. 
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However, a notable drop in performance is observed during the test phase, where the 

coefficient of determination becomes negative. This reflects the model’s inability to 

generalise to unseen data when fault conditions are present, which, paradoxically, 

becomes an advantage in anomaly detection. 

Indeed, the increase in residuals during faulty conditions enhances the distinguishability 

between normal and abnormal states, which is beneficial for a residual-based detection 

framework. The corresponding ROC curve shown in Fig. 5.20 confirms this behaviour. 

 

 
Figure 5.21: ROC-curve representation for the linear regression model. The red marker indicates the 

optimal threshold, while the blue marker represents the threshold derived from the residual distribution 

during training 

The separation between false alarms and true positives along the ROC curve validates the 

hypothesis that even a simple linear model, if sufficiently correlated to physical 

behaviour, can provide a valuable indicator for fault detection purposes, especially when 

detailed turbine-specific information is not available. 

 

 

 

 



Chapter 5: Results 

118 
 

Table 5.9: Performance metrics of the anomaly detection model based on third-degree polynomial 

regression 

Threshold Accuracy 

[%] 

Missed 

Alarms 

[%] 

False 

Alarms 

[%] 

Precision Specificity Recall F-

score 

Blue Circle 87.3 12.1 0.7 0.8 0.9 0.3 0.2 

Red Circle 82.2 8.9 8.9 0.4 0.9 0.4 0.4 

 

From the analysis of Table 5.9, it can observe that this approach yields moderate 

classification performance in terms of anomaly detection. Although the ROC curve shows 

an acceptable separation between classes, the F-score values are significantly lower than 

those obtained in the previous univariate analysis where the regression was derived 

directly from the assumed Betz formulation. Specifically, even when adjusting the 

operating threshold to balance the trade-off between missed alarms and false alarms, the 

maximum F-score does not exceed 0.38, indicating a limited capability to simultaneously 

achieve both high sensitivity and precision. 

This performance gap can be interpreted as a consequence of the regression model’s 

reduced physical interpretability and the increased variability introduced by directly 

estimating the coefficients from noisy SCADA data, without enforcing physical 

constraints.in contrast, the Betz-inspired model, although idealised, provides a more 

stable baseline for univariate anomaly detection, as it encodes prior aerodynamic 

knowledge and inherently respects the cubic law of power extraction. 

As a result, it can be concluded that, for the specific case of univariate analysis, the direct 

application of Betz’s law yields more robust and reliable anomaly performances. 

Nevertheless, these findings also reinforce the notion that univariate models alone are 

insufficient to fully capture the complexity of fault-related dynamics in wind turbines. 

Therefore, in the following paragraph, a multivariate analysis is proposed, incorporating 

multiple output variables and capturing higher-dimensional interactions among features. 

This step is intended to improve the model’s generalisation capability, enhance sensitivity 

to early fault signatures, and reduce the limitations encountered with single-variable 

approaches. 
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5.4 Multivariate Analysis 

 

The multivariate analysis has been conducted by training four distinct SVR models, each 

developed to learn the healthy operational behaviour of wind turbine WT53. Each model 

is designed to predict one of the four vibration signals acquired from the accelerometers 

mounted on the nacelle. As introduced in Fig. 4.10, the objective at this stage is to define 

a new anomaly index, different from that used in the univariate analysis. In particular, 

residuals obtained from the individual SVR regressors are aggregated into a single 

multivariate residual vector, which is then used as a comprehensive anomaly indicator. 

Two distinct approaches are adopted to evaluate this index: Mahalanobis distance and 

One-class SVM. These methods follow the same underlying principle used in the 

univariate approach: any observation whose index exceeds a defined threshold is 

classified as anomalous. 

The motivation behind the dual-model strategy lies in their different mathematical 

foundations and operational sensitivities, offering complementary advantages in anomaly 

detection. As in the univariate case, the input matrices were constructed in two alternative 

ways: by incorporating the theoretical coefficients derived from the Betz model, and by 

including the empirically derived {𝛽𝑖} coefficients from the polynomial regression of the 

power-wind speed relationship (as described in the preprocessing section). 

Fig. 5.21 shows the anomaly index computed via the Mahalanobis distance across 

training, validation, and test datasets. The true failure period of the damaged turbine 

WT35 is highlighted in red. Visually, a clear separation is observable between healthy 

and faulty data points, although some isolated exceedances of the threshold occur even 

during the training phase. These may be attributed to systematic noise or data 

uncertainties inherently present in SCADA systems. 
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Figure 5.22: Mahalanobis distance plot. Red markers denote the labelled fault data corresponding to the 

true failure period of WT35 

The multivariate analysis, derived from the four-sampling vibration signal (as discussed 

in Chapter 4), provides a richer representation of the system’s dynamic behaviour. This is 

particularly beneficial when computing the Mahalanobis distance, which not only 

accounts for the magnitude of the residuals but also incorporates their covariance 

structure. Specifically, as shown in Equation (4.32), Mahalanobis distance is computed 

starting from the covariance matrix of the healthy data points, and this approach enhances 

sensitivity to correlated anomalies in multiple signals. From a physical standpoint, 

increasing the number of vibration signals (i.e., using multiple accelerometers positioned 

on the nacelle) enables the detection of a wider range of vibrational modes and localised 

structural responses, improving the model’s fault detection capability. These 

improvements are substantiated by the performance metrics reported in Table 5.10. 

The first evaluation is based on the Betz-derived input configuration. Fig. 5.22 and 5.23 

show the ROC curves corresponding to the Mahalanobis distance and One-class SVM 

respectively. While Mahalanobis distance is based on the computation of the covariance 

matrix linked to the training residuals (healthy data), also One-class SVM method is 

especially suitable in this context because the training set includes only healthy data. It 

identifies anomalies in the test data by detecting points that deviate significantly from the 
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training data distribution, i.e. by learning a boundary that encloses the nominal 

operational regime. 

 
Figure 5.23: ROC curve computed from Mahalanobis distance anomaly index 

 
Figure 5.24: ROC curve computed from One-class SVM score 
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The main improvement over the univariate analysis is evident when applying the 

Mahalanobis distance, which achieves an AUC of 0.95. This indicates that the model 

possesses excellent discriminative capability, with at least a 95% probability of assigning 

a higher anomaly score to a positive instance than to a negative one when comparing 

randomly selected samples. The result obtained using the One-class SVM is slightly lower 

than that of the Mahalanobis distance, which may be attributed to the continuous 

operation of the turbine: when an anomaly arises, maintenance is typically performed 

immediately. This behaviour influences the dataset structure, resulting in a predominance 

of normal data and a limited number of faulty instances, thereby making the distinction 

between the two classes less pronounced. In addition, this difference is not attributable to 

the linearity of OCSVM, as the use of a Gaussian kernel did not leads to improved results 

(Fig. 5.27), and this suggest that the limitation lies in the intrinsic characteristic of the 

OCSVM, which defines a decision boundary that may be overly sensitive to anomalies 

or to the class imbalance present in the dataset.  

Moreover, the One-class SVM defines a hyperplane to separate normal from anomalous 

data. In this context, where class overlap exists, this separation becomes more 

challenging. In contrast, Mahalanobis distance measures how far a point lies from the 

distribution of normal data, considering both the mean and the covariance structure of the 

training data (healthy data points). This makes it particularly suitable when classes are 

partially overlapping, as anomalies, though not sharply distinct, are progressively more 

distant from the nominal condition and thus more easily detectable. 

Table 5.10: Performance metrics-Multivariate anomaly detection models 

Anomaly 

index 

Accuracy 

[%] 

Missed 

Alarms 

[%] 

False 

Alarms 

[%] 

Precision Specificity Recall F-

score 

Mahalanobis 88.3 1.9 9.9 0.6 1.0 0.9 0.8 

One-class 

SVM 

80.6 5.3 14.1 0.4 0.9 0.6 0.6 

 

The improvement over the univariate model is evident, especially for Mahalanobis 

distance, which achieves a MA rate below 2%, while keeping FA below 10%. 

Furthermore, the Recall increases significantly, resulting in a notable improvement in the 

F-score. 

Having established the performance of both Mahalanobis and One-class SVM under 

Betz-based inputs, it is now relevant to investigate how the regression-based feature 

affects model behaviour in the multivariate case. 
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Figs. 5.25, 5.26 and Table 5.11 report the results obtained by employing the {𝛽𝑖} 

coefficients derived from the regression model of the power-wind speed relationship. 

 
Figure 5.25: ROC-curve obtained using Mahalanobis distance based on the residuals of the Multivariate 

SVR model 

 
Figure 5.26: ROC-curve obtained using the OCSVM with a linear kernel 
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Figure 5.27: ROC-curve obtained using the OCSVM with a Gaussian kernel. The AUC value below 0.5 

indicates that the model fails to correctly distinguish between normal and anomalous instances, possibly 

assigning higher anomaly scores to healthy data 

A reduction in the AUC derived from Mahalanobis distance is observed, while an increase 

in the AUC for the One-class SVM is noted. Table 5.11 further highlights a key 

observation: both MA and FA decrease, with a concurrent improvement in Precision and 

Accuracy. This suggests that a more detailed preprocessing, particularly the regression-

based modelling of the power-wind speed curve, enhances the model’s diagnostic 

capability. Even the One-class SVM achieves more accurate results, highlighting the 

added value of including a feature that better characterises the physical behaviour of the 

turbine. 

Interestingly, this improvement is not observed in the univariate analysis, where model 

performance seems to decrease. This may be explained by the fact that in the multivariate 

case, the inclusion of additional outputs allows for a more comprehensive representation 

of the nacelle’s dynamic behaviour under varying load conditions. As such, the 

regression-based feature helps to capture variance that would otherwise remain 

unexplained. Conversely, in the univariate model, where only a single output is 

considered, the added feature may introduce noise or irrelevant information, offering 

limited contribution to anomaly detection. 
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Table 5.11: Performance metrics-Multivariate analysis results 

Anomaly 

index 

Accuracy 

[%] 

Missed 

Alarms 

[%] 

False 

Alarms 

[%] 

Precision Specificity Recall F-

score 

Mahalanobis 94.1 2.7 3.1 0.8 1.0 0.8 0.8 

One-class 

SVM 

81.3 4.4 14.3 0.4 0.9 0.7 0.7 

 

In conclusion, the multivariate analysis yields more robust and reliable results compared 

to the univariate approach, mainly because it leverages the correlation structure among 

variables. The Mahalanobis distance, in particular, evaluates how far each data point 

deviates from the expected normal condition, while accounting for the interdependencies 

among variables through the covariance matrix. This enables the detection of subtle 

anomalies that may remain below threshold in a univariate context. Furthermore, 

multivariate analysis inherently reduces the impact of noise and confounding factors, 

increasing the discriminative power of the model. In a unidimensional space, normal and 

anomalous data may be overlapped and therefore difficult to separate, whereas in a 

higher-dimensional feature space, the separation becomes clearer. 

With regard to the two approaches adopted during the preprocessing phase, namely, the 

direct application of the Betz hypothesis through its analytical formulation, and the 

regression model used to represent the power-wind speed relationship, a significant effect 

can be observed from this analysis. In the multivariate framework, the regression 

coefficients prove to be more informative as an additional feature when compared to the 

Betz-based formulation, which is derived from ideal assumptions. The regression-based 

feature allows for a more accurate separation between normal and anomalous operating 

conditions, improving the discriminative capability of the model. 

In the univariate analysis, where residuals are used directly as the anomaly index, the 

inclusion of the regression-derived feature leads to an increased AUC, meaning that the 

model improves its ability to correctly rank normal and anomalous samples. Conversely, 

the use of the Betz formulation enables the detection of a greater number of anomalies, 

as evidenced by the higher Recall and the lowest MA rate, despite the cost of a higher FA 

rate. This outcome may be attributed to the nature of the residual distribution: the 

regression-based approach, being empirically driven, may introduce higher variance or 

noise, whereas the Betz formulation, by relying on a simplified physical law, generates 

residuals with smaller deviations and a more regular distribution. 

This increased variance observed with the regression-based input is effectively captured 

by the Mahalanobis distance in the multivariate analysis, which takes into account the 

covariance structure of the data. As a result, it enhances the ability to distinguish between 

normal and anomalous states, especially when class boundaries are not sharply defined. 
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Therefore, while both features offer complementary advantages, the regression-based 

input provides greater flexibility and better integration within a multivariate diagnostic 

framework, especially when the objective is to maximise anomaly separability in real-

world operational data. 

 

 

5.5 Classification Results 

 

The final paragraph presents the results of the classification process, developed on top of 

the multivariate anomaly detection framework. In this final paragraph, it will be shown 

the results obtained from a multi-class analysis, involving four different wind turbines, as 

summarised in Table 5.12.  

To construct the training set for classification, a matrix was assembled by collecting the 

residuals obtained from the four SVR models, previously trained on the healthy operating 

behaviour of wind turbine WT53. Each column of the matrix corresponds to the residuals 

from one SVR model, and includes data from the training, validation, and test phases 

related to turbine WT35, which is affected by a known fault (Pitch-failure). Additionally, 

residuals from a third turbine (WT15), affected by a different failure, were appended to 

the same structure. This turbine exhibited distinct fault conditions, involving a P20 brake 

disc grounding role and a P20 cover lightning main cabinet hub, both of which can induce 

dynamic imbalances or localised resonant responses, clearly detectable through vibration 

measurements. The fourth turbine considered is WT52, which is affected by a carbon 

brush defect and an issue in the hydraulic system accumulator. Both faults can 

significantly increase nacelle vibrations, as they involve mechanical components located 

within the same housing. 

In this analysis, since each wind turbine is affected by a different type of anomaly and 

maintenance interventions are typically carried out in a timely manner, the dataset 

contains more normal data than anomalous data. Furthermore, the duration of each fault 

varies from turbine to turbine, contributing to class imbalance. As a result, the final 

dataset is considered unbalanced, which may affect the performance and reliability of 

classification results. 

The resulting dataset therefore includes four distinct operating conditions, as shown in 

Table 5.12. 
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Table 5.12: Overview wind turbines under analysis and classes identification 

Turbine Class Status 

WT53 0 Normal behaviour 

WT35 1 Pitch-failure 

WT15 2 P20 brake disc grounding 

role and P20 cover lightning 

main cabinet hub 

WT52 3 Carbon brush defect 

(spinner) and hydraulic 

system accumulators’ issue 

 

The final residual matrix consists of four columns, each representing one SVR model and 

rows corresponding to the different time-series segments from each class (Fig. 5.26). This 

multivariate residual space serves as the input feature domain for classification.  

Two supervised classification methods were applied: 

▪ Linear Discriminant Analysis (LDA) 

▪ Quadratic Discriminant Analysis (QDA) 

 
Figure 5.28: Classification scheme 

To ensure a robust estimation of generalisation performance, a 10-fold cross-validation 

was implemented across the entire dataset (Fig. 5.27). The classification performance was 

then assessed using a confusion matrix, enabling the computation of class-errors and 

overall accuracy, as defined in Chapter 4. 

 
Figure 5.29: Visual representation of the 10-fold cross-validation applied to the residual dataset used for 

training and evaluating the classification models 
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The structure of the confusion matrix in this four-class scenario is reported in Table 5.13. 

 

Table 5.13: Confusion matrix structure 

 True Class 0 True Class 1 True Class 2 True Class 3 

Predicted Class 

0 

𝑇𝑁0 𝐹𝑁1 𝐹𝑁2 𝐹𝑁3 

Predicted Class 

1 

𝐹𝑃1 𝑇𝑃1 𝐶𝐸12 𝐶𝐸13 

Predicted Class 

2 

𝐹𝑃2 𝐶𝐸21 𝑇𝑃2 𝐶𝐸23 

Predicted Class 

3 

𝐹𝑃3 𝐶𝐸31 𝐶𝐸32 𝑇𝑃3 

 

Table 5.14: Confusion matrix result starting from QDA 

61894 661 448 167 

446 1743 6 26 

448 4 373 3 

571 81 12 2601 

Table 5.15: Confusion matrix result starting from LDA 

62942 133 95 0 

770 1431 7 13 

722 15 91 0 

810 14 0 2441 

Table 5.16: Performance Metrics-Classification results 

Classification 

method 

Accuracy 

[%] 

MA 

[%] 

FA 

[%] 

Precision Recall F-

score 

Class-

Error 

[%] 

Performance 

Index [%] 

LDA 96.3 3.3 0.3 0.9 0.6 0.9 1.2 91.7 

QDA 95.9 2.1 1.8 0.8 0.8 0.8 2.7 89.7 
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From the results presented in Tables 5.14, 5.15 and 5.16, it is evident that LDA shows 

better overall performance than QDA, achieving higher accuracy, F-score, and 

performance index. Despite QDA achieving a marginally lower MA, LDA exhibits a 

lower FA, higher precision, and a better balance between detection sensitivity and class 

separation. This performance difference can be attributed to the underlying assumptions 

of the two algorithms (see Chapter 4). LDA assumes homoscedasticity, meaning that all 

classes share the same covariance matrix, which leads to linear decision boundaries in the 

feature space. QDA, on the other hand, estimates a separate covariance matrix for each 

class, allowing for curved and non linear decision surfaces. While this flexibility can be 

beneficial when class distributions are highly non linear, it may also lead to overfitting or 

degraded performance in the presence of noise, limited data, or weakly separable classes. 

As a result, QDA is more suitable when class distributions are non-linearly separable, as 

in the case of real-world fault detection where failure modes can manifest in different, 

complex ways. Moreover, while LDA constructs hyperplanes to separate classes, QDA 

incorporates quadratic terms, allowing for hyper-ellipsoid, hyper-paraboloid, or even 

hypersphere boundaries. However, in this specific case, such flexibility does not improve 

the model’s ability to capture subtle variations in the residual patterns induced by different 

fault types. In fact, the residual space derived from multivariate SVR models appears to 

be sufficiently linearly separable making LDA more effective. 

In conclusion, the classification framework built upon the residuals of the multivariate 

SVR models, enhanced through a physics-informed preprocessing step, proves to be 

effective not only in detecting anomalies, but also in discriminating between failure 

modes. The integration of model-based diagnostics with statistical classification 

techniques offers a powerful approach to fault identification in wind turbines, enabling 

early and interpretable failure detection under real-world operating conditions.
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6. Final Remarks and Future Work 

 

The main objective of this thesis was to develop and validate anomaly detection methods 

for wind turbines through vibration monitoring techniques, addressing the challenges 

posed by confounding factors inherent in their operational conditions. The proposed 

approach integrates physical modelling, specifically the Betz theory, with both univariate 

and multivariate regression models based on SVR. Anomaly indices were computed using 

residuals in the univariate case, and through Mahalanobis distance and One-class SVM 

scores in the multivariate setting. The final stage of the analysis included a classification 

task, employing both Linear Discriminant Analysis and Quadratic Discriminant Analysis. 

The core idea of the proposed architecture was to model the normal operational behaviour 

of a wind turbine using SVR, with input features including key physical parameters, such 

as wind speed, pitch angle, gearbox temperature, rotor speed, and many others, and output 

features represented by nacelle vibrations, acquired using four accelerometers placed at 

different points of the nacelle. These vibration signals were used as indicators of potential 

abnormal behaviour. 

Two anomaly detection strategies were evaluated. The first was a univariate method, 

based on residuals and thresholding techniques informed by training data distributions 

and ROC curve analysis. The second, multivariate approach relied on the Mahalanobis 

distance, incorporating the full covariance structure of residuals linked to the healthy data. 

While the univariate approach yielded satisfactory results, particularly when vibration 

signals were used as output instead of power produced by the turbine, multivariate 

analysis demonstrated superior performance in terms of robustness and classification 

accuracy, especially under varying operating conditions with multiple changing 

parameters. 

The incorporation of the Betz theory proved valuable by introducing physically 

meaningful features into the SVR model. Specifically, a regression-based approach that 

models the wind speed-power relationship as a cubic polynomial, referencing the 

theoretical form suggested by the Betz limit, significantly enhanced anomaly detection in 

the multivariate case. This contributed to high classification accuracy and clearer 

separation between normal and faulty conditions. 

A further key contribution of this work is the application of discriminant analysis to define 

class boundaries. The comparison between LDA and QDA showed that QDA outperforms 

LDA, providing lower FA rates, higher Recall, and reduced class-error. This is mainly 

due to QDA’s ability to model class-specific covariance structures and define non-linear 

decision boundaries.
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The results presented in this thesis confirm that incorporating physical knowledge into 

machine learning models enhances their diagnostic capabilities. The methodology 

developed offers a promising framework for vibration-based condition monitoring and 

fault detection in wind turbines, potentially contributing to more effective predictive 

maintenance strategies and improved reliability of wind energy systems. 

 

 

Future Work 

 

This thesis represents one of the few studies applying machine learning techniques to this 

particular dataset, which contains a wealth of information from three different wind 

farms. The dataset includes detailed failure conditions for both mechanical and electrical 

components, as well as various labels that accurately reflect the operational states of the 

turbines. While the methodology proposed here has proven effective, several avenues 

remain open for further research and improvement. 

First, other regression techniques beyond SVR could be explored. A comprehensive 

comparison among different models is necessary to fully assess the risk of overfitting and 

to ensure that the chosen approach generalises well across various operating conditions. 

Ultimately, the goal of any diagnostic framework in this context is to develop anomaly 

detection strategies that are capable of generalising the physical and operational 

behaviour of the machine, so that the same methodology can be applied to other turbines 

in different locations. This would enable scalable, real-time condition monitoring across 

entire fleets, particularly critical in industrial and renewable energy sectors such as wind 

energy. 

One of the most important challenges in the field of anomaly detection lies in the ability 

of algorithms of identify faults independently of operational and environmental 

variability. These fluctuations can alter the natural dynamic response of a system and may 

lead to false positives. Therefore, model generalisation is essential: the algorithm must 

learn the intrinsic characteristics of the system under normal conditions, rather than 

simply memorising specific data patterns. 

A key component of any anomaly detection system is the threshold used to discriminate 

between normal and anomalous data. The use of static threshold, as implemented in this 

work, may lead to false alarms during transient or other non-fault related conditions, 

especially if changes in environmental or operational parameters are not accounted for. 

As a future improvement, adaptive thresholding techniques could be introduced to 

account for temporal variations, seasonality, and other non-stationary behaviour in the 

data. 
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Although the SVR model offers flexibility and strong regression performance, it does not 

explicitly model time-dependent behaviours, which are often crucial in fault evolution, 

particularly in vibration signals. The tuning of the SVR hyperparameters, especially the 

penalty parameter 𝐶 plays a critical role in balancing the trade-off between model 

complexity and error tolerance 𝜀. A more rigorous hyperparameter optimisation, e.g. 

through grid search combined with k-fold cross-validation on both penalty parameter and 

error tolerance could enhance model performance and mitigate risks of overfitting or 

underfitting. 

In addition, other machine learning paradigms could be explored. Neural Networks, for 

instance, provide a fundamentally different modelling approach compared to SVR, 

offering advantages in learning non-linear and hierarchical feature representations. 

Autoencoders, in particular, have also shown promise in anomaly detection by 

compressing input data into a latent space and reconstructing it through a non-linear 

activation function (e.g. sigmoid function). Deviations between input and reconstruction 

can then be used as a powerful anomaly indicator. 

Given the electromechanical complexity of wind turbines, integrating electrical variables 

alongside mechanical ones could provide a more holistic view of system health, 

potentially improving early fault detection performance. This fusion of heterogeneous 

data sources remains a promising direction for future research. 

Ultimately, the key challenge ahead is to reduce MA to ensure uninterrupted energy 

production and to enhance predictive maintenance strategies. This would enable early 

fault identification and proactive intervention, thereby minimise costly downtime and 

extend the operational lifespan of wind turbine systems.



  

133 
 



 

134 
 

Publication 

 

Paper Conference SURVISHNO 2025 

▪ Marco Gerbino, Alessandro Paolo Daga, Luca Viale, Alessandro Fasana, Luigi 

Garibaldi. Anomaly Detection in Wind Turbines under Operational Variability via 

SCADA and Residual Analysis. Surveillance, Vibrations, Shock and Noise, 

Institut Supérieur de Mécanique de Paris [ISAE-SUPMÉCA], May 2025, Paris, 

France. 

 

References 

 

[1] Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & 

Flynn, D. & Barnes, Mike & Keane, John & Nenadic, Goran. (2018). Machine 

learning methods for wind turbine condition monitoring: A review. Renewable 

Energy. 133. 10.1016/j.renene.2018.10.047. 

[2] Jon Urmeneta, Juan Izquierdo, Urko Leturiondo. A methodology for performance 

assessment at system level—Identification of operating regimes and anomaly 

detection in wind turbines. Renewable Energy, Volume 205, 2023, Pages 281-292, 

ISSN 0960-1481, https://doi.org/10.1016/j.renene.2023.01.035. 

[3] Phong B. Dao, Tomasz Barszcz, Wieslaw J. Staszewski. Anomaly detection of 

wind turbines based on stationarity analysis of SCADA data. Renewable Energy, 

Volume 232, 2024, 121076, ISSN 0960-1481. 

https://doi.org/10.1016/j.renene.2024.121076. 

[4] Roelofs, Cyriana & Gück, Christian & Faulstich, S. (2024). Transfer learning 

applications for autoencoder-based anomaly detection in wind turbines. Energy 

and AI. 17. 100373. 10.1016/j.egyai.2024.100373. 

[5] Tyagi, S., & Panigrahi, S. K. (2017). A Hybrid Genetic Algorithm and Back-

Propagation Classifier for Gearbox Fault Diagnosis. Applied Artificial 

Intelligence, 31(7–8), 593–612. https://doi.org/10.1080/08839514.2017.1413066 

[6] Conradi Hoffmann, J. L., Horstmann, L. P., Martínez Lucena, M., Medeiros de 

Araujo, G., Fröhlich, A. A., & Nishioka, M. H. N. (2021). Anomaly Detection on 

Wind Turbines Based on a Deep Learning Analysis of Vibration Signals. Applied 

Artificial Intelligence, 35(12), 893–913. 

https://doi.org/10.1080/08839514.2021.1966879. 

[7] Chesterman, X., Verstraeten, T., Daems, P.-J., Nowe, A., & Helsen, 

J. (2021). Condition Monitoring of Wind Turbines and Extraction of Healthy 

Training Data Using an Ensemble of Advanced Statistical Anomaly Detection 

https://doi.org/10.1016/j.renene.2023.01.035
https://doi.org/10.1016/j.renene.2024.121076
https://doi.org/10.1080/08839514.2017.1413066
https://doi.org/10.1080/08839514.2021.1966879


 

135 
 

Models. In Proceedings of the Annual Conference of the PHM Society PHM 

Society. https://doi.org/10.36001/phmconf.2021.v13i1.2980 

[8] Jun Zhan, Chengkun Wu, Xiandong Ma, Canqun Yang, Qiucheng Miao, Shilin 

Wang. Abnormal vibration detection of wind turbine based on temporal 

convolution network and multivariate coefficient of variation. Mechanical 

Systems and Signal Processing, Volume 174, 2022, 109082, ISSN 0888-3270. 

https://doi.org/10.1016/j.ymssp.2022.109082. 

[9] Zhang, Yan & Liu, Wenyi & Wang, Xin & Shaheer, Mirza. (2022). A novel 

hierarchical hyper-parameter search algorithm based on greedy strategy for wind 

turbine fault diagnosis. Expert Systems with Applications. 202. 117473. 

10.1016/j.eswa.2022.117473. 

[10] Marti-Puig, Pere & Blanco-M, Alejandro & Cárdenas, Juan & Cusido, Jordi & 

Solé-Casals, Jordi. (2019). Feature Selection Algorithms for Wind Turbine Failure 

Prediction. Energies. 12. 453. 10.3390/en12030453. 

[11] Schröder, L.; Dimitrov, N.K.; Verelst, D.R.; Sørensen, J.A. Using Transfer 

Learning to Build Physics-Informed Machine Learning Models for Improved 

Wind Farm Monitoring. Energies 2022, 15, 558. 

https://doi.org/10.3390/en15020558. 

[12] Moreno, S.R., Coelho, L.d.S., Ayala, H.V.H. and Mariani, V.C. (2020), Wind 

turbines anomaly detection based on power curves and ensemble learning. IET 

Renew. Power Gener., 14: 4086-4093. https://doi.org/10.1049/iet-rpg.2020.0224. 

[13] Pandit, R.; Kolios, A. SCADA Data-Based Support Vector Machine Wind Turbine 

Power Curve Uncertainty Estimation and Its Comparative Studies. Appl. 

Sci. 2020, 10, 8685. https://doi.org/10.3390/app10238685 

[14] Zhang S, Robinson E, Basu M. Wind turbine condition monitoring based on three 

fitted performance curves. Wind Energy. 2024; 27(5): 429-446. 

doi:10.1002/we.2859 

[15] Vidal, Y.; Pozo, F.; Tutivén, C. Wind Turbine Multi-Fault Detection and 

Classification Based on SCADA Data. Energies 2018, 11, 3018. 

https://doi.org/10.3390/en11113018 

[16] Abdallah, Imad & Dertimanis, Vasilis & Mylonas, Charilaos & Tatsis, 

Konstantinos & Chatzi, Eleni & Dervilis, Nikolaos & Worden, Keith & Maguire, 

A. (2018). Fault diagnosis of wind turbine structures using decision tree learning 

algorithms with big data. 10.1201/9781351174664-382. 

[17] Bangalore, Pramod and Lina Bertling Tjernberg. “An Artificial Neural Network 

Approach for Early Fault Detection of Gearbox Bearings.” IEEE Transactions on 

Smart Grid 6 (2015): 980-987. 

[18] Pandit R, Astolfi D, Hong J, Infield D, Santos M. SCADA data for wind turbine 

data-driven condition/performance monitoring: A review on state-of-art, 

https://doi.org/10.36001/phmconf.2021.v13i1.2980
https://doi.org/10.1016/j.ymssp.2022.109082
https://doi.org/10.3390/en15020558
https://doi.org/10.1049/iet-rpg.2020.0224
https://doi.org/10.3390/app10238685
https://doi.org/10.1002/we.2859
https://doi.org/10.3390/en11113018


 

136 
 

challenges and future trends. Wind Engineering. 2022;47(2):422-441. 

doi:10.1177/0309524X221124031 

[19] Viale, L.; Daga, A.P.; Fasana, A.; Garibaldi, L. From Novelty Detection to a 

Genetic Algorithm Optimized Classification for the Diagnosis of a SCADA-

Equipped Complex Machine. Machines 2022, 10, 270. 

https://doi.org/10.3390/machines10040270 

[20] Chandola, Varun & Banerjee, Arindam & Kumar, Vipin. (2009). Anomaly 

Detection: A Survey. ACM Comput. Surv. 41. 10.1145/1541880.1541882. 

[21] The Elements of Statistical Learning. T. Hastie, R. Tibshirani, and J. 

Friedman. Springer Series in Statistics Springer New York Inc., New York, NY, 

USA, (2001). 

[22] Deisenroth, M. P., Faisal, A. A., & Ong, C. S. (2020). Mathematics for Machine 

Learning. Cambridge: Cambridge University Press. 

[23] Tchakoua, P.; Wamkeue, R.; Ouhrouche, M.; Slaoui-Hasnaoui, F.; Tameghe, T.A.; 

Ekemb, G. Wind Turbine Condition Monitoring: State-of-the-Art Review, New 

Trends, and Future Challenges. Energies 2014, 7, 2595-2630. 

https://doi.org/10.3390/en7042595. 

[24] Daga, A. P., Fasana, A., Garibaldi, L., & Marchesiello, S. (2020). On the use of 

PCA for Diagnostics via Novelty Detection: interpretation, practical application 

notes and recommendation for use. PHM Society European Conference, 5(1), 13. 

https://doi.org/10.36001/phme.2020.v5i1.1241. 

[25] Natili, F.; Daga, A.P.; Castellani, F.; Garibaldi, L. Multi-Scale Wind Turbine 

Bearings Supervision Techniques Using Industrial SCADA and Vibration 

Data. Appl. Sci. 2021, 11, 6785. https://doi.org/10.3390/app11156785. 

[26] Castellani, F.; Garibaldi, L.; Daga, A.P.; Astolfi, D.; Natili, F. Diagnosis of Faulty 

Wind Turbine Bearings Using Tower Vibration 

Measurements. Energies 2020, 13, 1474. https://doi.org/10.3390/en13061474. 

[27] Marco A.F. Pimentel, David A. Clifton, Lei Clifton, Lionel Tarassenko. A review 

of novelty detection. Signal Processing, Volume 99, 2014, Pages 215-249, ISSN 

0165-1684. https://doi.org/10.1016/j.sigpro.2013.12.026. 

[28] Viale, L.; Daga, A.P.; Fasana, A.; Garibaldi, L. From Novelty Detection to a 

Genetic Algorithm Optimized Classification for the Diagnosis of a SCADA-

Equipped Complex Machine. Machines 2022, 10, 270. 

https://doi.org/10.3390/machines10040270. 

[29] Vibration Monitoring: Gearbox identification and faults detection / Daga, 

ALESSANDRO PAOLO. - (2019 Oct 17), pp. 1-262. 

[30] Fasana, A., & Marchesiello, S. (2006). Meccanica delle vibrazioni. Ed. CLUT. 

[31] Dhiman, H.S.; Deb, D.; Carroll, J.; Muresan, V.; Unguresan, M.-L. Wind Turbine 

Gearbox Condition Monitoring Based on Class of Support Vector Regression 

https://doi.org/10.1177/0309524X221124031
https://doi.org/10.3390/machines10040270
https://www.bibsonomy.org/person/1d585aea274f2b9b228fc1629bc273644/author/0
https://www.bibsonomy.org/person/1d585aea274f2b9b228fc1629bc273644/author/1
https://www.bibsonomy.org/person/1d585aea274f2b9b228fc1629bc273644/author/2
https://www.bibsonomy.org/person/1d585aea274f2b9b228fc1629bc273644/author/2
https://doi.org/10.3390/en7042595
https://doi.org/10.36001/phme.2020.v5i1.1241
https://doi.org/10.3390/app11156785
https://doi.org/10.3390/en13061474
https://doi.org/10.1016/j.sigpro.2013.12.026
https://doi.org/10.3390/machines10040270


 

137 
 

Models and Residual Analysis. Sensors 2020, 20, 6742. 

https://doi.org/10.3390/s20236742. 

[32] Gück, C.; Roelofs, C.M.A.; Faulstich, S. CARE to Compare: A Real-World 

Benchmark Dataset for Early Fault Detection in Wind Turbine 

Data. Data 2024, 9, 138. https://doi.org/10.3390/data9120138. 

[33] Randall, R.B. (2010). Vibration-based Condition Monitoring: Industrial, 

Aerospace and Automotive Applications. Vibration-based Condition Monitoring: 

Industrial, Aerospace and Automotive Applications. 10.1002/9780470977668. 

[34] Thomas Hofmann. Bernhard Schölkopf. Alexander J. Smola. "Kernel methods in 

machine learning." Ann. Statist. 36 (3) 1171 - 1220, June 

2008. https://doi.org/10.1214/009053607000000677. 

[35] Gück, C., & Roelofs, C. (2024). Wind Turbine SCADA Data for Early Fault 

Detection (v1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10958775. 

[36] Fazylova, A.; Tultayev, B.; Iliev, T.; Stoyanov, I.; Kabasheva, M.; Kosunalp, S. 

Experimental Study of an Industrial Data Transmission Network in the Automatic 

Control System of a Wind Turbine. Machines 2024, 12, 746. 

https://doi.org/10.3390/machines12110746. 

[37] Lundquist, Julie K., Clifton, Andrew J., Dana, Scott, Huskey, Arlinda, Moriarty, 

Patrick J., Van Dam, Jeroen J., & Herges, Tommy (2019). Wind Energy 

Instrumentation Atlas. https://doi.org/10.2172/1513195. 

[38] Keller, Jonathan & Wallen, Robb. (2016). Gearbox Reliability Collaborative 

Phase 3 Gearbox 3 Test Plan. 

[39]  Upadhyay, Dhaval & Sampalli, Srinivas. (2019). SCADA (Supervisory Control 

and Data Acquisition) Systems: Vulnerability Assessment and Security 

Recommendations. Computers & Security. 89. 101666. 

10.1016/j.cose.2019.101666. 

[40]  García Márquez, Fausto Pedro & Tobias, Andrew & Pinar Pérez, Jesús María & 

Papaelias, Mayorkinos. (2012). Condition Monitoring of Wind Turbines: 

Techniques and Methods. Renewable Energy. 46. 169–178. 

10.1016/j.renene.2012.03.003. 

[41] Jenkins, N., Burton, A., Sharpe, D., & Bossanyi, E. (2001). Wind Energy 

Handbook. John Wiley & Sons Ltd. 

[42] Manwell, J.F., McGowan, J.G. and Rogers, A.L. (2009) Wind Energy Explained: 

Theory, Design and Application. Wiley, Chichester. 

https://doi.org/10.1002/9781119994367 

[43] Schaarup, J. (Ed.) (2002). Guidelines for design of wind turbines. 2. ed. Risø 

National Laboratory. 

[44] Puntanen, Simo. (2013). Handbook of Regression Analysis by Samprit Chatterjee, 

Jeffrey S. Simonoff. International Statistical Review. 81. 10.1111/insr.12020_22. 

https://doi.org/10.3390/s20236742
https://doi.org/10.3390/data9120138
https://doi.org/10.1214/009053607000000677
https://doi.org/10.5281/zenodo.10958775
https://doi.org/10.2172/1513195
https://doi.org/10.1002/9781119994367


 

138 
 

[45] 1. Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and 

Other Kernel-Based Learning Methods. Cambridge University Press; 2000. 

[46] Larry M. Manevitz and Malik Yousef. 2002. One-class svms for document 

classification. J. Mach. Learn. Res. 2 (3/1/2002), 139–154. 

[47] Ghorbani, Hamid. (2019). MAHALANOBIS DISTANCE AND ITS 

APPLICATION FOR DETECTING MULTIVARIATE OUTLIERS. Facta 

Universitatis Series Mathematics and Informatics. 34. 583. 

10.22190/FUMI1903583G. 

[48] Sørbø, S., Ruocco, M. Navigating the metric maze: a taxonomy of evaluation 

metrics for anomaly detection in time series. Data Min Knowl Disc 38, 1027–1068 

(2024). https://doi.org/10.1007/s10618-023-00988-8. 

[49] Chicco, D., Warrens, M.J. and Jurman, G. (2021) The Coefficient of 

Determination R-Squared Is More Informative than SMAPE, MAE, MAPE, MSE 

and RMSE in Regression Analysis Evaluation. PeerJ Computer Science, 7, e623. 

https://doi.org/10.7717/peerj-cs.623 

[50] I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and recent 

developments,” Philosophical Transactions of the Royal Society A: Mathematical, 

Physical and Engineering Sciences, vol. 374, no. 2065, Apr. 2016. 

[51]  Hodson, T. O.: Root-mean-square error (RMSE) or mean absolute error (MAE): 

when to use them or not, Geosci. Model Dev., 15, 5481–5487, 

https://doi.org/10.5194/gmd-15-5481-2022, 2022. 

[52] Chai, T. and Draxler, R. R.: Root mean square error (RMSE) or mean absolute 

error (MAE)? – Arguments against avoiding RMSE in the literature, Geosci. 

Model Dev., 7, 1247–1250, https://doi.org/10.5194/gmd-7-1247-2014, 2014.

https://doi.org/10.7717/peerj-cs.623

