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Abstract

During aerospace missions, payloads and subsystems endure extreme dynamic
loads. Pyrotechnic devices, such as those used for stage separation, secondary
structure deployment, or appendage release, produce high-energy transients known
as pyroshocks. These pyroshocks pose a significant threat to electronic components
and can compromise the success of the mission. Qualifying hardware therefore
demands pyroshock testing, typically performed by striking resonant plates with
projectiles or hammers to reproduce the shock response spectrum prescribed in
standards. Because these tests rely on iterative, empirical tuning, experimental
qualification remains time consuming and cost intensive.

State of the art numerical methods can shorten this process by predicting the
responses of resonant plates, but their accuracy hinges on correctly modelling impact
forces and contact durations, which govern the resulting spectral content. After
reviewing contact mechanics and current experimental configurations, this thesis
develops a data-driven ML contact model and a numerical impact velocity predictor
that couples with a pre-existing finite element model of the plate to form a com-
plete digital twin of a pyroshock test bench. Validation against experimental data
shows that these models achieve high fidelity in force,timing and velocity prediction,
indicating strong potential to reduce calibration cycles and diminish qualification
costs.

Lastly the pyroschock testing facility at Politecnico di Torino is finalized with
the dimensioning of the suspension components used for the plate and a proposal
for the design af a safety plate to place behind the resonant one. The experimental
setup is accompanied by the conceptualization of the complete measurement chain
capable of acquiring the data needed to rigorously validate the digital twin and to
study parameter sensitivity in shock testing, laying the groundwork for more efficient,
repeatable, and cost-effective pyroshock qualification tests.



Contents

List of Figures vii

List of Tables x

Nomenclature xii

1 Introduction 1

1.1 Pyroshock test benches . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Impact overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Continuous Approach . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Data-Driven Models . . . . . . . . . . . . . . . . . . . . . 16

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Experimental Setup 20

2.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Frame and resonant plate . . . . . . . . . . . . . . . . . . . 20

2.1.2 Pneumatic Gun . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.3 Safety plate . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Sensors and acquisition . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 35



vi Contents

2.3 Impacting velocity prediction . . . . . . . . . . . . . . . . . . . . . 35

3 Preliminary tests and Design of Experiments 39

3.1 Preliminary tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Complete Design of Experiments . . . . . . . . . . . . . . . . . . . 40

4 Contact Mechanics 43

4.1 Processing of the database . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Selection of Inputs and Outputs of the models . . . . . . . . . . . . 52

4.2.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Contact time prediction . . . . . . . . . . . . . . . . . . . . 57

4.3.2 Force prediction . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Results 65

5.1 Validation of velocity prediction model . . . . . . . . . . . . . . . . 65

5.2 Contact force estimation . . . . . . . . . . . . . . . . . . . . . . . 68

6 Conclusions 76

6.1 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Appendix A Latin Hypercube Sampling Dataset 79

References 84



List of Figures

1.1 Graphical representation of SRS construction . . . . . . . . . . . . 4

1.2 Ordnance pyroshock test . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Out Of Plane Impact Pendulum . . . . . . . . . . . . . . . . . . . . 7

1.3 Bounded Impact Shock Machine . . . . . . . . . . . . . . . . . . . 7

1.5 Mechanical Impulse Pyroshock Simulator . . . . . . . . . . . . . . 8

1.6 Electrodynamic Shaker exciter . . . . . . . . . . . . . . . . . . . . 9

1.7 Force profile obtained by Hunter, Reed and asymmetric von Hann
Models. Obtained with a COR of 2/3 . . . . . . . . . . . . . . . . 16

2.1 Suspension frame and resonant plate . . . . . . . . . . . . . . . . . 22

2.2 Dimensions of the resonant plate . . . . . . . . . . . . . . . . . . . 23

2.3 Pneumatic gun . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Pneumatic Circuit of the pneumatic gun, A: compressor, B: pressure
regulator, C: manual ball valve, D: digital and analog manometer, E:
tank, F: pneumatic ball valve, G: barrel . . . . . . . . . . . . . . . . 26

2.5 Modular bullet design: (a) interchangeable bullet tips; (b) bullet
main body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Ballistic limit velocity for a 1 kg aluminum projectile (d=48 mm)
impacting an aluminum plate. . . . . . . . . . . . . . . . . . . . . . 28

2.7 Ballistic limit velocity for a 1 kg aluminum projectile (d=48 mm)
impacting a steel plate. . . . . . . . . . . . . . . . . . . . . . . . . 29



viii List of Figures

2.8 Measurement chain . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9 Comparison between force measured by a load cell and computed
though acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.10 Load cell array (a) Side view, from left to right: plate on which the
impact take place, load cells, resonant plate (b) . . . . . . . . . . . 33

2.11 Scheme of the pneumatic gun model . . . . . . . . . . . . . . . . . 36

2.12 Mass and pressure influence on exit velocity . . . . . . . . . . . . . 38

4.1 Overview of the methodology . . . . . . . . . . . . . . . . . . . . 43

4.2 Effect of the deconvolution on the acceleration signal in time domain
for a randomly selected impact . . . . . . . . . . . . . . . . . . . . 46

4.3 Proposed methods to isolate the information contained in the experi-
mentally acquired time series . . . . . . . . . . . . . . . . . . . . . 47

4.4 NRMSE between acquired force signal and interpolated one . . . . 49

4.5 Difference between the experimentally acquired and interpolated
force signal, three randomly selected impacts each with different
materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Perceptual differences in contact duration due to different extraction
methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Comparison of automatic and manual extraction - Test number 1 . . 52

4.8 Correlation between the inputs of the ML models . . . . . . . . . . 54

4.9 Steps of the machine learning algorithm to find force evolution in
time domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.10 NRMSE comparison of each of the considered force regression
models. From the top: bilayer, trilayer neural networks, narrow,
medium, wide neural networks, multivariate linear regression, partial
least square regression, gaussian process, support vector regression,
support vector machine kernel, kernel regression. . . . . . . . . . . 60



List of Figures ix

5.1 Measured pressure evolution for test 2. The laser signal is used di-
rectly in volts since only passage time is needed and not the distance
of the object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Comparison of numerical velocity model and actual measurements . 68

5.3 Colormap of the proposed cost function with a generic pulse and
relative tolerances. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Cost function computed for each test . . . . . . . . . . . . . . . . . 72

5.5 Error on impulse of each test . . . . . . . . . . . . . . . . . . . . . 75



List of Tables

2.1 Components used to suspend the plate and relative safety factor . . . 24

3.1 Tank pressure and measured exit velocity for five low pressure tests 40

3.2 Controllable variables and their levels for the DOE . . . . . . . . . 41

4.1 Experimental factor levels . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Material properties used in the study . . . . . . . . . . . . . . . . . 45

4.3 Predictor chosen as inputs for the machine learning models . . . . . 53

4.4 RMSE for each time prediction model . . . . . . . . . . . . . . . . 57

4.5 Mean RMSE and NRMSE of each force regression model . . . . . 61

4.6 Optimized Hyperparameters Gaussian Process for Time prediction
in GPyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 Optimized Hyperparameters Gaussian Process for Force prediction
in GPyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8 Optimized Hyperparameters Gaussian Process for Time prediction -
MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.9 Optimized Hyperparameters Neural Network Force prediction -
MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Comparison of predicted and measured bullet velocities, uncertain-
ties in are computed via Eq. 5.2 . . . . . . . . . . . . . . . . . . . 66

5.2 Mean cost value and RMSE over the entire dataset of each prediction
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



List of Tables xi

5.3 Mean errors between predictions and acquired signals on key physi-
cal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.1 LHS Design of Experiments . . . . . . . . . . . . . . . . . . . . . 80



Nomenclature

Greek Symbols

δ Displacement

λ Zener’s Inelasticity factor

ν Poisson’s Ratio

ρ Density

σy Yielding Strenght

τ Contact Time

ζ Damping Ratio

Subscripts

an Referring to Anelastic Restitution

c Referring to Compression

el Referring to Elastic Compression Phase

i Referring to Initial State before the Impact

max Referring to Maximum Value

p Referring to Impacting Plate

r Referring to Restitution

s Referring to Impacting Sphere or Bullet



Nomenclature xiii

Other Symbols

a Acceleration

E Young’s Modulus

e Coefficient Of Restitution

F Contact Force

K Kernel Function

k Contact Stiffness

m Mass

R Curvature Radius

Ts Sampling period

u Impacting Object speed

ubl Ballistic Limit Velocity

P Impulse

W Work

Acronyms / Abbreviations

BCs Boundary Conditions

COR Coefficient Of Restitution

DOE Design Of Experiments

GA Genetic Algorithm

GPR Gaussian Process Regresssion

GUM Guide to the Expression of Uncertainty in Measurement

ifft Inverse Fast Fourier Transform

LHS Latin Hypercube Sampling



xiv Nomenclature

MIPS Mechanical Impulse Pyroshock Simulator

NNs Neural Networks

NRMSE Normalized Root Mean Square Error

ODE Ordinary Differential Equation

OVAT One Variable At a Time

PLA Polylactic Acid polymer

PLS Partial Least Squares

ReLU Rectified Linear Unit

RMSE Root Mean Square Error

SDOF Single Degree of Freedom

SF Safety Factor

SRS Shock Response Spectrum

SVM Support Vector Machines

tf Transfer Function



Chapter 1

Introduction

In the aerospace sector, explosive charges are widely used to separate stages, release
substructures, or deploy appendages during missions. While these methods ensure
rapid and precise actuation, they also generate intense transient mechanical loads
across the spacecraft. These high-frequency, high-amplitude phenomena, known as
pyroshocks, pose a significant threat to the integrity of sensitive onboard components.

Materials most susceptible to pyroshock induced damage include crystals, ceram-
ics, epoxies, glass envelopes, fine wires, and microelectronics, potentially leading to
catastrophic mission failures [1]. Direct pyroshock testing on spacecraft structures
would yield the most accurate understanding of such loads, but is typically infeasible
due to the uniqueness of flight hardware and the need for validation long before
integration. Consequently, surrogate methods such as resonant plate testing are used
to replicate the spectral content and magnitude of pyroshock events.

According to NASA-STD-7003 [2], pyroshock environments are categorized as
follows:

• Near-field environment: Direct exposure to the explosive event, with acceler-
ations exceeding 10000 g and dominant frequencies above 10 kHz. Ideally no
sensitive components should be mounted in this region.

• Mid-field environment: Characterized by combined wave propagation and
structural resonances, with accelerations between 1000–10000 g and frequency
content in the 3–10 kHz range.
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• Far-field environment: dominated by structural resonances, with accelera-
tions limited to less than 1000g and the majority of the spectrum below 3
kHz

Shocks are typically measured in time domain using accelerometers and, for
easier comparison of severity and frequency content, the Shock Response Spectrum
(SRS) is used.

The SRS, as defined by ISO 18431-4 [3], represents the maximum response
of a set of single degree of freedom (SDOF) mass-damper-spring systems when
subjected to a given acceleration input as illustrated in Figure 1.1. The acceleration
is applied to the base of each oscillator, and the spectrum is constructed from
the maximum responses versus the natural frequency of the oscillators using a
conventional damping value ζ = 5%. While this method facilitates standardization
and comparison, it inherently discards critical information such as signal duration
and phase. The response of each of the SDOF can be computed in many different
ways, analytically the convolution integral can be used:

ÿ(t) =
∫ t

0
ẍ(τ)h(t − τ)dτ (1.1)

Where ẍ(τ) is the generic input and h is the impulse response function. While
effective this approach is computationally heavy, so ISO 18431 provides a way of
using digital filters to significantly reduce this burden. It starts from the transfer
function of a single degree of freedom system when excited by an acceleration.

G(s) =
ÿ(s)
ẍ(s)

=
cs+ k

ms2 + cs+ k
(1.2)

To replace this continuous transfer function the norm adopts a digital filter that limits
at a minimum frequency distortion.

H(z) =
β0 +β1z−1 +β2z−2

1+α1z−1 +α2z−2 (1.3)

Coefficients β are dependent on which type of response is needed, such as accelera-
tion response or velocity response, while α coefficients are always the same. Both
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are defined in the technical standards, in the case of acceleration response:

β0 = 1− e−
ωnT
2Q ·

sin
(

ωn∆t
√

1− 1
4Q2

)
ωn∆t

√
1− 1

4Q2

(1.4)

β1 = 2e−
ωn∆t
2Q ·

sin
(

ωn∆t
√

1− 1
4Q2

)
ωn∆t

√
1− 1

4Q2

− cos

(
ωn∆t

√
1− 1

4Q2

) (1.5)

β2 = e−2 ωn∆t
2Q − e−

ωn∆t
2Q ·

sin
(

ωn∆t
√

1− 1
4Q2

)
ωn∆t

√
1− 1

4Q2

(1.6)

a1 =−2e−
ωn∆t
2Q · cos

(
ωn∆t

√
1− 1

4Q2

)
(1.7)

a2 = e−2 ωn∆t
2Q (1.8)

where:
- ωn =

√
k
m is the natural frequency of an undamped SDOF system

- ωd = ωn
√

1−ζ 2 is the damped natural frequency of a SDOF system
- ζ is the conventional damping coefficient
- ∆t = 1

fs
is the temporal resolution

- Q = 1
2ζ

is the damping factor

The normative also prescribes a recommended frequency resolution of 6 samples
per octave while computing the response using ζ = 5%. The resolution can be
finer if the damping is reduced in order to capture the sharper response better. A
qualitative representation of the creation of a SRS is schematized in Figure 1.1.
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Fig. 1.1 Graphical representation of SRS construction

At Politecnico di Torino a test bench has been designed [4] to use a compressed
air cannon to provide excitation to a resonant plate via bullet impacts. This method
was chosen over explosive charges to enhance repeatability and improve safety
during testing. To optimize the testing procedure, reduce calibration time and costs
of the campaigns a digital twin model of the system was developed. The model
consists of three main components:

1. Resonant plate: simulated using a Finite Element Method (FEM) model, which
incorporates geometry, material properties, and Boundary Conditions (BCs) to
predict the plate Frequency Response Function (FRF).

2. Gas launcher: modeled as a finite volume air tank connected to a barrel through
a valve. The exit velocity of the projectile is estimated using the dynamics of
the projectile and adiabatic expansion.

3. Contact pulse: modeled using a Von Hann window to approximate the shape
and duration of the contact force.

A critical aspect of accurately simulating pyroshock is the definition of the
contact impulse. Even small variations in pulse shape or duration can alter the
resulting spectral content, directly affecting component response.
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In this Chapter an overview of pyroshock phenomena, experimental methods,
and impact modeling approaches is presented to provide the necessary background
before introducing the proposed methodologies in the following Chapters.

1.1 Pyroshock test benches

Over the years, a wide range of excitation methods have been developed for py-
roshock testing, which can be broadly classified into main categories: those that
utilize explosive charges, those that rely on mechanical pulse generation and non
contact methods.

Explosive based techniques represent the most traditional approach to pyroshock
testing. These tests often employ the same pyrotechnic devices used in actual
aerospace systems. Common devices include explosive bolts and explosive nuts,
which are engineered to fracture upon detonation and release mechanical energy.
Configurations utilizing explosive bolts and nuts are widely documented in the
literature [5, 6]. These methods come with significant safety hazards, are non
reusable, and are generally more costly and time consuming. However, when
components sensitive to pyroshock are located in near-field environments, standards
such as [2] require testing to be conducted in flight-like configurations, making
explosive based setups the preferred choice. The usual process is to perform tests on
different scales until full scale is, ideally, achieved [7].
The typical sequence begins with an ordnance test, where a flexible linear charge is
used as shown in Figure 1.2. The correct charge configuration is often optimized by
trial-and-error by adjusting parameters such as padding layers between the charge
and test article. These tests are initially performed on dummy components to avoid
damaging actual hardware, making the process both expensive and time consuming.
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Fig. 1.2 Ordnance pyroshock test

This is followed by a scaled test, where explosive bolts or nuts are used to
reproduce the expected frequency content in a scaled down but more representative
configuration.
Lastly, if the final configuration is particularly complex a full-scale test may be
required, but this occasion is rare.

The standard also allows for high acceleration mechanical impacts if it can be
demonstrated that the resulting shock response spectrum is equivalent to that of
a real pyrotechnic event, motivating the development of mechanical alternatives.
Mechanical methods offer safer, more repeatable, and more controllable means
of generating pyroshock-like events. Among the most commonly used mechanical
systems is the pendulum impactor, which consists of a rigid arm with a ball head that
swings to strike a resonant structure. The impact energy is governed by the pendulum
potential energy, which can be tuned by adjusting its initial angular position and the
mass of the impacting head. Another widely used method is the bounded impact
shock test machine, where a drop table impacts a spring connected fixture. Energy is
adjusted by tuning the drop height, mass, and the stiffness/damping of the springs.
These setups typically produce sinusoidal like shocks with peak accelerations up to
5000 g and frequencies reaching 2 kHz [8].
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H

Fig. 1.4 Out Of Plane Impact Pendulum

Fig. 1.3 Bounded Impact Shock Machine

A key challenge in both systems is avoiding secondary impacts due to rebound.
This requires careful design, such as mechanisms to stop the impacting mass after
initial contact. Both in-plane and out-of-plane impacts can be implemented. In-
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plane impacts involve excitation in the same plane as the primary structural mode
of interest, making them suitable for simulating planar shock propagation. Out-of-
plane impacts, on the other hand, strike the structure from an orthogonal direction,
often exciting bending or torsional modes that are otherwise difficult to activate.
Both configurations have been successfully used in laboratory settings [9, 10] and
commercially.

An alternative is the compressed gas projectile system, in which pressurized
air or nitrogen accelerates a projectile down a barrel to strike the test item or a
resonant fixture [11]. These systems have lower susceptibility to secondary impacts
compared to pendulums. Notably, facilities like Sandia National Laboratories [12]
have developed large scale systems capable of launching projectiles up to 45 kg
through 18 meter barrels, achieving highly controlled and powerful impacts. By
tuning barrel length, pressure level, and projectile mass and the shape of the fixture
and resonant component, the impact energy and shock spectrum can be finely
controlled to match target specifications.
A variation of this principle is the Mechanical Impulse Pyroshock Simulator (MIPS),
where a pneumatic actuator mounted on a gantry drives an end effector into the test
fixture instead of a bullet. While limited to mid-field environments (up to 5000 g, 10
kHz), MIPS systems offer excellent repeatability [7].

Fig. 1.5 Mechanical Impulse Pyroshock Simulator

Simplified mechanical alternatives using commercially available equipment have
been utilized. One such example is the use of nail guns as impulse generators.
Although significantly less complex and lower in energy than custom built gas or
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pendulum systems, nail guns can still deliver mechanical pulses suitable for shock
simulations with excellent repeatability [13, 14].

Another popular testing methodology is the use of electrodynamics shaker that
convert the electrical energy in kinetic energy via a voice coil and a magnetic
armature. Such method is beneficial since it is possible to generate a variety of
signals with great repeatability, giving the most amount of control over the spectrum.
However, shakers are limited in the amount of force and acceleration that they can
produce, with commercially available models that go up to 2000 g at a frequency of
5 kHz [15].

Fig. 1.6 Electrodynamic Shaker exciter

A more recent technique is laser induced excitation, where localized surface
heating creates thermoelastic stresses that generate high frequency waves in the
test fixture. Using this method, Lee et al. [7] achieved peak-to-peak accelerations
of 7000 g at 70 kHz, making it a promising high frequency pyroshock simulation
method.

1.2 Impact overview

Impact is the phenomenon of at least two bodies colliding with each other, typical
characteristics are the short-time frame, the rapid dissipation of energy and high
force exchanged. These phenomena can be analyzed in two different ways:

• The so called discrete method. this method assumes that the configurations of
the bodies remain largely unchanged during the impact. Two distinct moments,
before and after the collision, are defined, and the exchange and dissipation of
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energy are modeled using coefficients such as the Coefficient Of Restitution
(COR) and the impulse ratio [16]. This approach is typically best suited for
rigid body impacts.

• The continuous method. This approach focuses on the continuous interaction
and force exerted during the impact, providing a more realistic representation
of the system behavior. It accounts for elastic and/or plastic deformation of
the bodies and the resulting energy dissipation.

During impact, deformation leads to energy being dissipated through various
mechanisms. A portion of the initial kinetic energy excites vibrations within the
bodies via wave propagation. Notably, energy loss is minimal when the colliding
bodies have similar sizes, as waves can transfer energy back efficiently [17]. In
contrast, significant energy loss occurs when the larger body waves cannot rebound
in time to transfer energy to the smaller body. Other dissipation mechanisms include
permanent deformation, material damping, and the generation of heat and sound.

The energy loss can be quantified thanks to COR, commonly denoted as e.
To respect the conservation of energy, e should always be defined within the range
0 < e ≤ 1 where 1 is perfectly elastic restitution, and 0 is complete energy dissipation.
In some cases, in the presence of chemical reactions for instance, the amount of
energy after the impact can be greater than pre-impact energy, resulting to e higher
than 1. The COR depends on factors such as geometry of the bodies, impacting
velocity and materials properties. Several models have been proposed: Newton [18],
Poisson [19], Stronge [20], Zener [21] and Weir-Tallon [22] provide frameworks for
estimating e.

Despite the complexity of impact dynamics it is possible to define a compression
and a restitution phase for every case. The compression phase goes from the time of
first contact to the instant where maximum deformation is reached and the velocity
of the body is nil; the restitution phase, instead, is the remaining time until the
separation. Typically, the two phases are not symmetrical.

The first to quantify this asymmetry was Newton, who defined COR as the ratio
of the relative velocity after impact to the relative velocity before impact, along the
normal direction. This definition captures the overall energy dissipation during the
collision:

e =
−ur

ui
(1.9)
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where ur is the relative velocity of separation (post-impact) and ui is the relative
velocity of approach (pre-impact).

Subsequently Poisson decided to introduce a COR definition based on the ratio
of impulses during the restitution and compression phases. An impulse is the time
integral of the force acting on a body over the duration of the impact.

e =
Pr

Pc
(1.10)

Where Pr and Pc are the impulses during restitution and compression, respectively.

Both methods lead to inconsistencies when the impact is perfectly elastic, they
produce non nil energy losses along the normal direction. Observing the limitations
of previous definitions, Stronge proposed a COR based on the work done by normal
forces during the compression and restitution phases.

e2 =
Wr

Wc
(1.11)

Where Wr is the work done during the restitution phase, and Wc during the compres-
sion phase.
To address the additional energy loss due to wave propagation in cases where the col-
liding bodies have vastly different dimensions, Stronge further refined his definition:

e2 =
Wr −Ww

Wc
(1.12)

Here, Ww accounts for energy lost due to wave propagation, which is particularly
significant when large bodies collide with much smaller ones.

One of the most widely adopted estimates of the COR is given by Zener. He
characterized an elastic impact of a sphere with a finite thickness plate, using physical
parameters related to geometry and material of impacting bodies.

e = exp(−1.719 ·λ ) (1.13)

Where λ is the inelasticity factor defined as:

λ =
1

4
√

3

(
πρs

ρp

)3/5(2Rs

t

)2
[

u2
i ρp(1−ν2

p)

Ep

]1/10[
1+

Ep(1−ν2
s )

Es(1−ν2
p)

]−2/5

(1.14)



12 Introduction

where:
- ρs,ρs is the density of the sphere and plate material respectively
- Rs is the radius of the sphere
- t is the thickness of the plate
- ui is the impact velocity
- νs,νp is the Poisson ratio of the sphere and plate material respectively
- Es,Ep is the Young modulus of the sphere and plate material respectively

This formulation aligns with real data only in the case of plates thin enough to
allow several wave reflections during the contact time so that a significant portion of
the energy is converted in flexural energy [23].

On the other hand the model proposed by Weir and Tallon is developed for a
body impacting on thick block so the COR is in this case independent of sphere size
and plate thickness.

e =

 3.1

ρ
1/8
s

(
1−ν2

s
Es

+
1−ν2

p
Ep

)−1/2

(σ5
y

u2
i

)1/8

(1.15)

where σy is the yield strength of the material.
Due to the founding assumptions of this model it has been found that, contrary to
Zener’s, the prediction is accurate in case of ratios of thickness/diameter of the
sphere closer to one [23].

1.2.1 Continuous Approach

As previously mentioned, discrete methods can lead to violations of the energy
conservation principle during impacts with friction. Additionally, these methods
often struggle to generalize to complex scenarios, such as impacts involving multiple
bodies.

Continuous contact models offer a solution to these issues by expressing the
impact force as a function of the local indentation of the bodies. The first continuous
model was proposed by Hertz, specifically for elastic contact (unitary coefficient of
restitution, e = 1), where the relationship between force and deformation is nonlinear.
The key assumptions of Hertz’s theory are that the deformed area is small relative to
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the bodies surfaces and that elastic wave propagation is negligible and no friction is
present. The force-indentation relationship is given by:

F(δ ) = kδ
n (1.16)

Where k and n are constant depending on material and geometric parameters of the
bodies, like Young’s modulus E , Poisson’s ratio ν and surface curvature. Because
this model assumes elastic impacts, it is best suited for scenarios involving low
velocities and hard materials. However, both Gugan [24] and Cross [25] demon-
strated that most energy losses during an impact occur after the point of maximum
compression. Consequently, the compression phase can be effectively modeled using
Hertz’s theory even in cases where only about 60% of the kinetic energy is retained.

To account for the behavior of plastic deformation under impact forces, Hertz’s
theory can be modified by introducing the concepts of permanent deformation,
δpermanent , as well as the maximum force and indentation achieved during contact.
The resulting relationship is expressed as:

F(δ ) = Fmax

(
δ −δpermanent

δmax −δpermanent

)n

(1.17)

where:
- Fmax is the maximum force
- δ is the indentation
- δpermanent is the permanent indentation after unloading
- δmax is the maximum indentation during loading
- n is exponent governing the shape of the unloading curve based on material proper-
ties

In subsequent developments, Hunt and Crossley [26] proposed a model to in-
corporate energy dissipation into the force deformation relationship by introducing
nonlinear damping. The force is expressed as:

F(δ ) = bδ̇
n
δ

p + kδ
n (1.18)

It can be noted that damping depends, other than deformation speed, also on inden-
tation. This dependency can be attributed to the fact that the contact surface area
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increases with deformation, which leads to greater energy dissipation since more
material is involved. Assuming low impact velocities the COR can be expressed
as a function of δ̇ and α , which is a parameter related to material, geometry and
kinematics of the impacting bodies, as in Eq. 1.19.

e = 1−αδ̇ (1.19)

Hunt and Crossley also derived the following relationship between the damping
factor b and the contact stiffness k:

b =
3(1− e)

2
δ̇

ui
(1.20)

As shown in [27], substituting equations (1.19) and (1.20) in equation (1.18) it is
possible to obtain:

F(δ ) = kδ
n

[
1+

3(1− e)
2

δ̇

ui

]
(1.21)

Other continuous models instead employ trigonometrical functions to descibe the
force profile during contact. Hunter [28] proposed a half sine pulse, with period τ:

F(t) = Fmaxsin
(

πt
τ

)
, t ∈ [0,τ] (1.22)

where τ is the contact time defined as:

τ = 4.53

[
4
3

ρsπ

(
1−ν2

s
πEs

+
1−ν2

p

πEp

)]2/5

Rsu
−1/5
i (1.23)

Reed [28] modified the model raising the sine function to the power of 3/2
and introducing an analytical formulation to estimate the maximum contact force.
However, the time estimation remains consistent with equation (1.23). The modified
force profile is expressed as:

F(t) = Fmaxsin3/2
(

πt
τ

)
, t ∈ [0,τ] (1.24)
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where the maximum contact force, Fmax, can be expressed as:

Fmax = 1.917ρ
3/5
s

(
1−ν2

s
πEs

+
1−ν2

p

πEp

)−2/5

R2
s u6/5

i (1.25)

Due to the impossibility of obtaining a perfect conservation of energy (COR = 1)
a model has been proposed in [4] that takes into account the partial loss of energy
due to inelastic phenomena. This model separates the impact event into two phases:
compression and restitution. Each phase is characterized by a distinct time duration,
and the force profile is approximated using a von Hann function (also known as a
raised cosine function). This approach allows for more accurate modeling of the
inelastic phenomena during impact.

To create the force signal in the time domain, the first necessary parameter
is the contact time, which can be estimated using Hertz contact theory under the
assumption of a spherical, isotropic, and homogeneous body impacting a plate. For
these conditions, the impact is elastic, and the contact time is expressed as:

τ = 2.9432 ·

15ms

(
1−v2

s
Es

+
1−v2

p
Ep

)
16R1/2

s u2
i


2
5

(1.26)

where ms is the mass, Rs the radius and ui the velocity of the impacting sphere.
Contact time is then divided to describe the compression and restitution phase: as
previously mentioned the first one is completely elastic so its duration can be half of
the perfectly elastic impact τel = τ/2.

In the second phase, permanent deformation makes the duration a function of the
coefficient of restitution e, so Zener’s model (1.14) is used to correct the duration as
τan = eτel .

The second parameter is the maximum force exchanged during contact computed
using the momentum of the impacting body

Fmax =
msui∫ τel

0
1
2

[
1− cos

(
π

t
τel

)]
dt

(1.27)
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To account for the effects of energy dissipation, the final force curve is modeled
as asymmetric.The force profile F(t) is defined as:

F(t) =


Fmax

2

[
1− cos

(
π

t
τel

)]
, t ∈ [0,τel]

Fmax
2

[
1− cos

(
π

t−τel(1−e)
τel

)]
, t ∈ (τel,τel + τan]

(1.28)

In Figure 1.7 three different force profiles normalized in amplitude and duration
are shown to underline the different shapes produced by the Hunter, Reed and the
asymmetric pulse based on the von Hann curve.

Fig. 1.7 Force profile obtained by Hunter, Reed and asymmetric von Hann Models. Obtained
with a COR of 2/3

1.2.2 Data-Driven Models

Over the past decade, continuous progress in Machine Learning (ML) algorithms
has significantly broadened their application in the modeling of complex physical
systems. One of the applications that can benefit is contact mechanics, where tradi-
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tional analytical or numerical approaches can struggle to describe the phenomenon,
especially when large amounts of energy is dissipated.

A notable example of this application can be found in the use of learning models
to characterize the mechanical behavior of additively manufactured structures. In
these studies, the compressive deformation of complex geometries during impact with
a reference aluminum plate was successfully modeled using deep neural networks,
enabling a data-driven understanding of material response [29].

Similarly, ML methods have been applied to the domain of armor design, where
predicting projectile behavior post-impact is critical for both defense and safety
applications. Neural networks have been trained to estimate the residual velocity
of projectiles after penetration of both single layer and multi layer armor systems
[30]. In addition to predictive tasks, ML has been utilized to generate synthetic
yet statistically meaningful datasets for high rate dynamic events, such as vehicular
collisions, blast mitigation scenarios, and shock propagation through electronic
components [31]. These synthetic datasets are especially valuable in scenarios where
physical experimentation is expensive, dangerous, or infeasible.

The utility of machine learning extends beyond impact force prediction to post
impact characterization. For example, models have been developed and validated to
describe damage accumulation in fiber reinforced polymer composites subjected to
compressive impacts [32]. Additionally, ML based frameworks have been applied to
track material degradation and deformation under repeated impact loading [33].In
robotics, ML has been integrated with physics based models to improve the accuracy
of predictions in real world contact scenarios. A notable example is the hybrid
approach presented in [34], where 12 separate models (one for each degree of
freedom of the impacting bodies) were trained and validated using a synthetic dataset
simulating a ball bouncing on a flat surface.

Building on the promising outcomes of these studies, this thesis focuses on
developing ML models trained on experimentally acquired data to predict contact
forces during impact events.
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1.3 Objectives

Despite considerable advances in both analytical and data-driven approaches for
modeling contact mechanics during impact events, the literature presents significant
gaps. Most classical analytical models, including those by Hunter, Reed, and Zener,
assume idealized conditions and often neglect critical factors such as complex ge-
ometries, material heterogeneity, and dynamic dissipative phenomena. Consequently,
they can fail to capture the non-linear behaviors observed in real experimental setups,
particularly in aerospace structures where transient mechanical loads like pyroshocks
are prevalent.

Furthermore, while recent studies have demonstrated the potential of machine
learning frameworks to predict contact forces and damage accumulation, these
models often rely on synthetic, highly simplified test conditions. Those that are
based on experimental data are focused on material characterization through impacts
and not force characterization. The lack of validation against real experimental data,
especially in scenarios involving high frequency, high amplitude shocks, limits their
generalizability and practical application.

To address these gaps, this thesis is structured around the following objectives:

• Development of a Data-Driven Contact Force Model
Assess the feasibility of modeling contact forces in the time domain using a
ML approach. The model will be trained and validated on an experimental
dataset generated through controlled hammer impacts. Its performance will
be compared with classical analytical contact models from the literature,
highlighting potential benefits in terms of generalizability, accuracy, and the
ability to capture non-linear behaviors.

• Design and Implementation of the Experimental Setup
Finalize the test bench at Politecnico di Torino, consisting of a compressed air
gun and a plate resonator, and design a robust measurement chain capable of
capturing transient mechanical phenomena with high fidelity. This includes
precise measurement of impact velocity, chamber pressure, and contact force
to ensure that the acquired data is of sufficient quality for model training and
validation.
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• Validation of the Velocity Prediction Model
Use the test data to validate a velocity prediction model capable of reliably
estimating projectile speed based on input parameters. This reduces the need
for extensive calibration and forms a critical component of the digital twin of
the test system.

Through these objectives, this thesis aims to contribute to the development
models for predicting contact forces in complex impact scenarios. These models
can be integrated into digital twin frameworks reducing the resources required for
experimental campaigns, and enhancing the understanding of systems subjected to
pyroshocks.



Chapter 2

Experimental Setup

The experimental test bench consists in a resonant plate suspended by a frame. The
plate is excited using a compressed air cannon that propels projectiles toward the
plate. In this chapter each component is briefly described and a design for a safety
plate is presented alongside with the measurement chain and a numerical model for
the exit velocity of the bullet.

2.1 Components

2.1.1 Frame and resonant plate

The resonant plate frame is structure which primary task is to suspend the plate
by using chains connected to the horizontal upper member to simulate free-free
conditions, as shown in Figure 2.1. The design is focused on maximizing the size of
the plate that can be suspended in the given dimensions constraint of the laboratory
space, in particular plates made of steel of up to 2000 x 1000 x 50 mm weighing
around 800 kg can be used as resonators. The structure is constructed entirely of
standard structural steel bars (S355) and is bolted to the ground using chemical
anchors and M20 screws, mechanical isolation from the floor is achieved using
rubber mats approximately 6 mm in thickness. In this configuration the structure
can withstand impacts of masses of m = 1 kg traveling at speed up to v = 80 m/s. A
detailed description and a structural analysis of this frame are presented in [35].
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The motion of the plate after impact is restricted using one additional connections
between the plate and the lower section of the steel frame, namely using elastic ropes.
This is particularly important in case of light plates that, due to their lower inertia,
may oscillated with large angular displacements.

Chains are used to suspend the plate, as they offer both support and a simple
means of adjusting its vertical position. By selecting different chain links to attach
the suspended mass, the height of the plate from the floor can be easily modified
in discrete increments of 56 mm, the chain pitch. This setup allows for controlled
variation of the impact position relative to the plate edge, enabling investigation into
how proximity to the boundary influences the contact response.
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Fig. 2.1 Suspension frame and resonant plate

The plate is made out of steel in a diamond-like shape and has a total thickness
of 10 mm. It is fixed to the upper member through two attachment points and it has
a single connection to the lower member as seen in Figure 2.1, meanwhile, in Figure
2.2 the CAD model with the exact dimensions is reported.
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Fig. 2.2 Dimensions of the resonant plate

All critical connections, those that allow suspension of the testing plate are
designed to have a Safety Factor (SF) higher than 3.9, while the ropes used to limit
the angular displacement have SF = 2.3 since in case of failure the consequences
are far less severe. The operational loads considered in Table 2.1 are taken from
a previous work [4] that considered the most crucial impact with momentum of
80 kgm/s and two different plates: a steel one that generates the maximum load
on the chain suspending the plate and a light aluminum plate that, due to large
oscillations after impact, generates the highest load on the constraining ropes.
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Table 2.1 Components used to suspend the plate and relative safety factor

Component Load in operation (N) Maximum Rated Load (N) SF
Chain 7765 80000 10.3
Shackle 7765 31882 4.10
Connecting Links 7765 30901 3.98
Rope 7550 34825 2.3

2.1.2 Pneumatic Gun

The objective of this component is to accelerate the impacting object to the desired
speed in order to excite the plate in the most correct manner. This type of exciter has
been deemed the most appropriate, since it increase the repeatability of the impulse,
reduces the possibility of secondary impacts. The gun is composed of two main
parts, as seen in Figure 2.3: a barrel and a gas chamber. The chamber is a tank of
volume V = 9.5 l certified for pressures up to Pmax = 2 MPa. The barrel is a steel
tube of internal diameter φ = 49 mm and a length of 1560 mm.

The two components are connected by a 50 mm pneumatic ball valve (Effebi
dga083ax00) with an actuation pressure of 0.8 MPa, capable of sealing gasses up to
6.48 MPa . The valve is controlled electronically allowing to set opening times from
0.1 s to 30 s, the controller allows to select a reloading mode that prevents the valve
from opening during reloading procedures for increased safety.

The gun is mounted on a frame using C-shaped clamps. The structure can be
easily moved on casters to control the horizontal impact position and, after regulation,
is it lifted by rubber supports that also allow leveling using threaded rods. The gun
is positioned next to the resonant plate, leaving enough clearance to avoid contact
during oscillation but not enough to allow the projectile to exit the barrel. This
ensure an higher degree of safety for the operators. Furthermore, during any activity
that require the operator to be in the trajectory of the bullet tw0 12 mm pins will be
inserted in the radial holes along the barrel. The same holes, during testing, reduce
the chance of secondary impacts. Once the projectile hits the plate the pneumatic
valve will be closed, the holes allow residual air to exit the barrel without increasing
pressure. If not for this the air downstream of the bullet would behave as a stiffness
in SDOF m-k system.
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Fig. 2.3 Pneumatic gun

The compressed air is generated by a portable compressor, with maximum
operating pressure of 10 MPa and 24 liters in capacity. The pneumatic circuit of the
test bench is composed as follows: the compressor is connected to a pressurized line
with two branches, the first one feeds the pneumatic ball valve. The second branch
is connected to a pressure regulator used to control the feeding pressure of the air
tank. After the regulator a manual two position ball valve is placed to isolate the tank
from the compressor. The pressure in the tank is monitored with a digital pressure
transducer (GENSPEC GS 4002) with built in electronic conditioning. In this way
the air compressor can be set up to deliver 8 bar of pressure, the actuation pressure
of the valve, and the regulator allows to tune the tank pressure in the range 0 - 8 bar
In Figure 2.4 a visual representation of the circuit is shown.
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Fig. 2.4 Pneumatic Circuit of the pneumatic gun, A: compressor, B: pressure regulator, C:
manual ball valve, D: digital and analog manometer, E: tank, F: pneumatic ball valve, G:
barrel

The projectiles used with this pneumatic gun are composed of two modular
components: a main body and an interchangeable front plate. The main body is a
cylindrical element with a fixed diameter of 48 mm, (Figure 2.5b) designed to allow
variation in the overall mass of the projectile by adjusting its length. This enables to
control over the momentum of the impacting body.

On one end of the main body, two threaded M6 holes are machined to enable
secure attachment of the front plate. The front component of the projectile, shown in
Figure 2.5a, is a replaceable cylindrical plate, also featuring two countersunk M6
holes aligned with those on the main body. This modular design serves two main
purposes: it allows for quick and easy replacement of the impact surface, the part
most susceptible to damage, and facilitates flexibility in tuning the impact charac-
teristics by changing the curvature or material of the front plate. By decoupling the
main body from the impact head, this system significantly reduces the manufacturing
and maintenance costs associated with projectile damage or variation.
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(a)

(b)

Fig. 2.5 Modular bullet design: (a) interchangeable bullet tips; (b) bullet main body

2.1.3 Safety plate

Due to the potential catastrophic damages in case of the resonant plate failure a
secondary plate is designed to stop the projectile from exiting the laboratory space.
The design is carried out using the concept of ballistic limit velocity, ubl , which is the
velocity at which projectiles have a 50% probability of penetrating a finite thickness
plate of metal [36]. The model used for calculation depends on the material of the
plate itself. Since the compressed air gun is designed to propels projectiles up to 1 kg
at 80 m/s to guarantee a safety margin all plates are verified to withstand projectiles
of 1 kg traveling at 150 m/s.
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Assuming an sluminum construction, Nishiwaki [37] proposed and validated an
analytical model to predict ballistic limit velocity:

ubl =

(
gP0

ρp

[
exp
(

ρp

2ms
πd2h

)
−1
])1/2

(2.1)

where:
- ρp is the density of the target plate
- h is theplate thickness
- g is the acceleration due to gravity
- ms is the projectile mass (assumed constant)
- d is the projectile diameter
- P0 is the experimental coefficient for aluminum

Using a diameter of 48 mm, close to the inner diameter of the barrel, to achieve a
ballistic limit velocity of 150 m/s a plate thickness of around 10 mm is required.

Fig. 2.6 Ballistic limit velocity for a 1 kg aluminum projectile (d=48 mm) impacting an
aluminum plate.
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Instead, if a steel plate (S355 just like the plate frame) is used, the most conser-
vative model is the one proposed by Forrestal [36] :

ubl =

(
πd2hσs

2ms

)1/2

(2.2)

Where σs is the stress required to open a cyindrical hole in plate based on the work
of Bishop [38]:

σs =
σy

2

(
1+ ln

[
6(1−ν)K
(5−4ν)σy

])
(2.3)

where:
- K is the bulk modulus of the plate
- σy is the yielding strength
- ν is the Poisson’s ratio

To achieve a ballistic limit velocity with a projectile of 48 mm a steel plate of
around 5 mm is necessary.

Fig. 2.7 Ballistic limit velocity for a 1 kg aluminum projectile (d=48 mm) impacting a steel
plate.
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2.2 Sensors and acquisition

In this section all the sensors constituting the measurement chain are described
along-side with the acquisition system. An overview of the entire chain is presented
in Figure 2.8.

Fig. 2.8 Measurement chain

2.2.1 Sensors

To measure the exit velocity of the bullet, a laser displacement sensor (Panasonic
LM10 ANR1215) is employed. The sensor is capable of measuring distances ranging
from 180 mm to 80 mm from its face, with a resolution of 20 µm. It is mounted on a
tripod and positioned so that its beam is directed radially through a small aperture in
the barrel, targeting the inner wall. As the bullet passes through the laser beam, the
measured distance decreases by the bullet diameter. By identifying the time instants
at which the displacement measurement changes and knowing the bullet length, the
bullet velocity can be accurately calculated.

The pressure evolution in the chamber upstream of the valve is measured using
a pressure sensor, GENSPEC GS 4002, capable of reading in the range 0 - 16 bar,
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threaded just before the inlet of the chamber. The sensor is calibrated by using a
reference trusted manometer across three load-unload cycles form 0 bar to 4 bar in
steps of 1 bar, to these points a first order polynomial has been fitted. The obtained
sensitivity is 0.5621 V/bar with an offset of 0.3624 V.

To measure the response of the plate, two PCB Model 350B43 triaxial ac-
celerometers are employed. These sensors have a measurement range of ±10000g,
a nominal sensitivity of approximately 0.5mV/g, and a mass of approximately
27g each. The positioning of the accelerometers is chosen to capture the dynamic
response of the plate accurately.

The peak contact force was estimated from the projectile momentum, assuming
complete transfer of momentum during impact to the plate:

msui =
∫

τ

0
F(t)dt (2.4)

Using a raised sine function F(t) = Fmaxsin2(πt
T ) the maximum force can be ex-

pressed as follows:

Fmax =
2msui

T
=

2msui

τ
(2.5)

Considering the maximum desired speed of 80 m/s a mass of 1 kg and a contact
time of 1 ·10−4 s :

Fmax =
2 ·80 ·1
1 ·10−4 = 1600 kN (2.6)

This estimate is further supported by the machine learning model presented in
Chapter 4, which predicts a peak force of 1520 kN.

These forces can be measured indirectly with accelerometers using a similar
methodology to that described in Chapter 4 Eq. 4.2.

To start an instrumented hammer is used to excite the plate in the point where
the bullet will collide, the response of the plate will be register by one of the
accelerometers. Using the tfestimate in MATLAB it is possible to find the transfer
function between acceleration and force:

tf(Ω) =
a(Ω)

F(Ω)
(2.7)

Using the transfer function it is possible to filter out the dynamic behavior of the
plate and find the acceleration as if the sensor was exactly co-located with the load
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cell. The plate dynamic behavior will be the same even when the excitation is given
by the bullet so using the same tf it is possible to correct the acceleration signal as if
the accelerometer was positioned exactly at the impact location:

acorrected(Ω) =
a(Ω)

tf(Ω)
(2.8)

After this, using Newton’s laws of motion the force can be computed:

F(t) =−mp · ifft(acorrected(Ω)) (2.9)

where:
- mp is the mass of the plate
- ifft is the Inverse Fast Fourier Transform

Indirectly computing force does not introduce significant error on the measure-
ment. Performing the aforementioned procedure on a hammer generated database,
described in details in [39], the error is very small so the measured and computed
force signal are very similar as can be seen in Figure 2.9.

Fig. 2.9 Comparison between force measured by a load cell and computed though acceleration
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As an alternative, instead of using the indirect measurement of force obtained
from the accelerometer signals, a load cell array could be used: this approach both
distributes the load and captures the reaction force over an area rather than a single
point.

Although commercial force sensors with capacities exceeding 1000 kN exist,
a viable solution is based on the use of the Kistler 9107C piezoelectric force sen-
sors [40], which have a nominal measuring range of 700 kN and a sensitivity of
−4.4 pC/N . These sensors are particularly suitable due to their compact form factor
and ease of integration: by connecting multiple sensors in parallel, the output charge
becomes directly proportional to the total force applied to the array.

In the configuration considered here, four sensors are arranged in a square pattern,
with the screw heads positioned on the face opposite to the impact plane. This design
ensures a large and uniform measuring surface (see Figure 2.10), enabling a combined
measurement capacity of up to 2800 kN . To ensure linearity and improve dynamic
response, 20% of the full scale load is reserved for pre-loading the sensors. This
leaves an effective operational range of 2240 kN.

(a) (b)

Fig. 2.10 Load cell array (a) Side view, from left to right: plate on which the impact take
place, load cells, resonant plate (b)
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To apply the required pre-load, four bolted connections are used. The sizing
of these bolts is carried out in accordance with the provisions of Eurocode 3 [41],
specifically the tensile resistance criterion:

Ft,E ≤ Ft,R =
k2 fubAs

γM,2
(2.10)

where:
- Ft,E is the applied tensile force during service,
- Ft,R is the design tensile resistance of the bolt,
- fub is the ultimate tensile strength of the bolt material,
- As is the tensile stress area of the bolt,
- γM,2 is the partial safety factor for resistance of bolts under tension,
- k2 is a factor accounting for countersunk or in plane mounting.

For M20 bolts of strength class 10.9, the ultimate tensile strength is fub =

1000MPa, and the tensile stress area is As = 245mm2. Assuming a safety factor
γM,2 = 1.25 and k2 = 0.9 (screws directly on the component), the resulting design
tensile resistance per bolt is: 176.4 kN. This is more than sufficient for the required
pre-load of 140kN per screw. To complete the threaded connection design, the
tightening torque required to achieve the specified pre-load can be estimated using
the guidelines from VDI 2230 [42]:

T = Fpreload ·
[

0.16S ·0.58d2µg +
Dkm

2
µg
]

(2.11)

where:
- S is the pitch of the screw
- d2 is the pitch diameter
- µg is the coefficient of friction between the screw threads and head and bearing
surfaces
- Dkm is the effective diameter under the bolt head or nut where frictional forces are
transmitted.

Assuming a typical friction coefficient of µg = 0.08 and using standard geometric
values for M20 bolts, the tightening torque required to achieve the desired pre-load
is approximately:

T = 320 Nm (2.12)
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2.2.2 Acquisition

At most, using load cells, a total of 12 acquisition channels are required to acquire
all sensors: six for the accelerometers, and one each for the pressure sensor, the laser,
and the four load cells. The sampling frequency is selected based on the expected
contact duration and the dynamic response of the plate. Given contact times on the
order 10−4 s, a minimum sampling rate of 100 kHz is necessary to ensure at least 10
data points during the contact event, allowing for sufficient temporal resolution of the
contact force. Furthermore, this sampling rate enables accurate capture of frequency
components up to 39 kHz, in accordance with the Nyquist theorem, ensuring that the
dynamic response of the plate is faithfully recorded without aliasing.
To maintain consistency across trials, a trigger logic can be implemented to initiate
data acquisition upon the pressure drop in the pneumatic circuit feeding the valve
opening mechanism.

2.3 Impacting velocity prediction

To achieve a comprehensive digital twin of the test apparatus, it is necessary to
develop a mathematical model capable of predicting the muzzle velocity of the
projectile at the exit of the barrel. Accurately modeling the projectile velocity can
significantly reduce both the calibration time and associated costs during experi-
mental campaigns. An accurate estimate of the impact speed, this model minimizes
the number of physical tests required to fine tune the spectral content of the impact,
potentially eliminating the need for iterative trial and error adjustments.

The compressed air gun is idealized as a system consisting of a finite volume
pressure chamber of volume V0, connected to a straight cylindrical barrel of length
L and diameter d. The projectile, having mass ms, is initially at rest within the
barrel. Upon the release of compressed air at an initial pressure Q0, the projectile
is accelerated along the barrel due to the expansion of the pressurized gas. As the
bullet moves forward, the gas volume increases. A schematic of the model is shown
in Figure 2.11.
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Fig. 2.11 Scheme of the pneumatic gun model

During its motion, the projectile experiences a frictional force resulting from
contact between its outer surface and the inner wall of the barrel. This resistive force
can be modeled as:

f =−µdmsg (2.13)

where:
- µd is the coefficient of dynamic friction between the two materials.
- g is the gravitational constant.

Considering relative pressures, the projectile motion is governed by Newton’s
second law:

ms
d2x(t)

dt2 = Q(t) ·A−µmsg (2.14)

where:
- A = πd2

s /4 is the cross sectional area of the projectile on which the pressure acts.
- x(t) is the projectile position over time.

The expansion of the gas is limited only by the inertia of the bullet and friction,
for this reason it will take a very short time: this will prevent heat exchange to the
surrounding environment and the evolution is therefore considered adiabatic [43].
Assuming air behaving as a perfect gas, the pressure can be expressed as a function
of displacement:

Q(t) =
Q0V γ

0
V (x)γ

=
Q0V γ

0
[V0 +A · x(t)]γ

(2.15)
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where:
- γ = 7/5 is the heat capacity ratio of a perfect diatomic gas.

Combining the pressure evolution equation (2.15) with the equation of motion
(2.14) leads to the following second order Ordinary Differential Equation (ODE):

d2x(t)
dt2 =

Q0V γ

0
[V0 +A · x(t)]γ

· A
ms

−µg (2.16)

To solve this ODE numerically, it is first rewritten as a system of two first order
ODEs by introducing the velocity us =

dx
dt and the acceleration as =

dus
dt .us =

dx
dt

as =
Q0V γ

0
[V0+A·x(t)]γ ·

A
ms

−µg
(2.17)

This system is integrated using MATLAB’s ODE45 solver, with initial conditions:x(0) = 0 m Initial Position

us(0) = 0 m/s Initial Velocity

The numerical integration of motion is terminated as soon as the projectile exits
the barrel using the Events option in the MATLAB ODE solver. To accurately
capture the dynamics of the launch process, especially in cases where the initial
pressure Q0 is high and the launch duration is consequently very short, a fixed
time step of 0.1 ms is employed. This fine temporal resolution ensures that rapid
variations in acceleration, and velocity are adequately resolved.

An important aspect of the modeling is the presence of vent holes along the
barrel. In this setup, six large holes are positioned on the barrel wall at a distance
of x = 0.885 m from the valve. These holes allow the expanding gas to vent into
the atmosphere once the projectile passes this threshold, effectively ceasing further
acceleration. Consequently, the relevant portion of the barrel is limited to the
first 90 cm. The muzzle velocity is therefore defined as the projectile velocity
at us(t)|x=0.885 m, and this value is used for further analyses and validation with
experimental data.

This simplified model does not account for some losses, namely:
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• Blow-by losses due to air moving through the gap existing between the inner
walls of the barrel and the projectile.

• Concentrated pressure drop due to valve.

• Distributed losses in the barrel.

• Aerodynamic drag of the bullet moving through air.

For these reason, other studies introduce a corrective term η reduce the predicted
speed. Starting with the same correction presented in [44] us(t) becomes:

η ·us(t)|x=0.885 m = 0.5 ·us(t)|x=0.885 m (2.18)

The velocity variation for different masses and pressure is reported in Figure 2.12

Fig. 2.12 Mass and pressure influence on exit velocity



Chapter 3

Preliminary tests and Design of
Experiments

The main objective of this chapter is to define a testing strategy that enables the
investigation of how different input parameters influence three main output quantities:
the projectile exit speed, the contact force during impact and the duration of contact.
At the same time, this Design Of Experiments (DOE) will support the creation of a
structured database of pneumatic gun impact events, capturing the effects of input
not present in the database described in Chapter 4: bullet mass and plate mass. In the
following sections the first few tests performed to asses the proper functioning of the
test bench are presented, followed by a comprehensive DOE outlined for future use.

3.1 Preliminary tests

To ensure that components of the pneumatic circuit and the measurement chain are
correctly installed few tests are performed with at low pressures and using a 3D
printed Polylactic Acid (PLA) bullet to reduce at a minimum the risks connected
to the kinetic energy of the bullet. The total mass of the body of the bullet, the two
M6 screws and the bullet tip is ms = 142.8 g and the length is L = 85 mm. During
these test the pressure evolution in the tank and the speed of the bullet are acquired
in order to provide a first validation of the bullet velocity numerical model. In Table
3.1 the tank pressure and the relative speeds are presented:
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Table 3.1 Tank pressure and measured exit velocity for five low pressure tests

Test # Pressure (bar) Speed (m/s)
1 0.2319 10.366
2 0.2651 11.872
3 0.6158 18.973
4 0.4042 13.799
5 0.5784 16.346

3.2 Complete Design of Experiments

DOE is a systematic methodology used to plan and execute tests in a way that
efficiently explores how various input parameters influence system outputs. In this
context, controllable variables refer to parameters that can be deliberately adjusted
during experimentation such as material type, geometry, or air pressure. Each
variable is tested at multiple levels, which are specific values selected to span a
relevant range for example low, medium, and high pressure. DOE enables not only
the evaluation of individual variable effects but also the detection of interactions
between them.

To achieve a complete understanding of variable effects and their interactions, a
full factorial design is proposed. This method evaluates all possible combinations of
the selected variable levels, offering a thorough analysis that outperforms traditional
One Variable At a Time (OVAT) approaches. OVAT fails to reveal interactions
between variables, whereas the factorial approach ensures a more efficient and
insightful exploration of the design space with a lower number of tests.

The controllable variables selected for the tests are: bullet mass, bullet material,
tip radius, plate material, plate mass, anvil plate material, presence of an insulating
layer, and air tank pressure. Each of these eight factors is assessed at three levels to
account for potential non linearities in the system, in accordance with standard DOE
practices [45]. Table 3.2 provides an overview of the factors and their respective
levels. To investigate the dynamics of impact and the resulting contact forces, a
DOE was created involving several physical parameters relevant to the projectile
and target. Each factor was chosen based on its potential influence on the amplitude,
duration, and frequency content of the contact force signal.
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Table 3.2 Controllable variables and their levels for the DOE

Factor Name Low Level Medium Level High Level
Bullet mass (kg) 0.2 0.5 1
Bullet tip PLA aluminum steel
Bullet tip radius (mm) 30 45 60
Plate material aluminum - steel

(Plate mass) (Low) - (High)
Anvil plate material none aluminum steel
Insulator layer none - polymeric
Bullet velocity (m/s) low medium high

Below is a summary of the rationale behind the selected factors and their levels:

• Bullet mass is varied by adjusting the bullet’s body length. It ranges from 0.2
kg to 1.0 kg, the upper limit being defined by the design capacity of the test
bench. The mass of the bullet changes the momentum at impact.

• Bullet material is tested across three variants: PLA, aluminum, and steel.
This selection allows for assessing how tip hardness affects impact behavior
and content in the force spectrum.

• Bullet tip radius is varied from 30 mm to 60 mm to explore how contact
geometry influences key parameters of impact such as contact duration and
maximum force.

• Plate material is tested using steel and aluminum, to examine how the stiffness,
damping and mass characteristics of the target affect wave propagation and
contact force profiles.

• Anvil plate material is set on two levels to see if significant difference in the
response is registered depending on stiffness and damping of the material

• Insulator layer is included since the presence of a damping polymeric material
can be used to change the characteristic of the force profile and ultimately the
SRS of the plate.
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• Air tank pressure is swept across the entire operational range of the com-
pressor. This ensures the experiment spans the full range of impact velocities,
capturing both the lower and upper bounds of the loading conditions.

These choices result in a balanced yet comprehensive DOE, designed to capture the
interplay between material, geometric, and dynamic parameters in the context of
impact mechanics. Due to a dependency between certain variables, specifically, the
insulating layer can only be applied when the anvil plate is present, the total number
of possible configurations is calculated as:

2 ·34 · (3+2) = 810 tests (3.1)

This extensive test matrix is not feasible, particularly given the need for repetitions
to ensure statistical reliability of the acquired data.

To mitigate this, the total number of tests can be reduced using Latin Hypercube
Sampling (LHS), a method known for efficient space filling sampling of the input
space [46]. LHS is especially effective at capturing nonlinear effects even with a
reduced dataset [47]. The number of treatments can be tailored to the available
experimental resources, making LHS particularly convenient.

Unlike full-factorial designs, a LHS does not exhaustively enumerate every
combination of factor levels; instead, a tradeoff between the interaction coverage
and the number of runs must be found. A recommended initial size for DOE with
up to ten parameters is between 10 and 15 times the number of dimensions [48, 49].
This ensures each factor is sampled in many different combinations, making it likely
to detect a interactions between them. For example, given n = 15×d tests across d
dimensions, an n×d matrix is generated, where each dimension is divided into n
equally spaced levels. Each sample is constructed such that each level is used exactly
once per dimension [50]. An intuitive representation is given by Montgomery for a
2D case, which is a Latin Square: this problem is closely related to sudoku in which
each rows and column must contain all the numbers without repetitions. The main
drawback of LHS can be computationally intensive compared to factorial designs,
tools such as MATLAB’s lhsdesign function streamline the process. Using this
function, a reduced yet representative campaign of 105 (15 times the number of
dimensions) tests was generated, the complete design is shown in Appendix A.



Chapter 4

Contact Mechanics

In this chapter, the methodology used to develop a data-driven model based on
experimentally measured impacts is presented. The structure of the chapter follows
the sequence illustrated in Figure 4.1. At first an overview of the main characteristics
of the experimental dataset is presented. Subsequently, the feature extraction process
from each time series,represented by the orange block in Figure 4.1, is described.
This process leads the the creation of a database on which a ML algorithm is trained
and validated (green block) to obtain a fully data-driven contact force model.

Fig. 4.1 Overview of the methodology

A fundamental step in developing any machine learning model is the creation
of a robust and comprehensive dataset that captures the key characteristics of the
physical phenomenon under investigation. In this study the dataset described in
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[39] is used. It comprises pulses generated by an instrumented impact hammer with
interchangeable tips, striking a resonant plate made of Al6061. The plate features
an intentionally irregular geometry, specifically designed to avoid symmetry related
artifacts that could bias the results and compromise the model’s generalizability.
The data used in this study includes force signals recorded by a load cell (Dytran
Dynapulse 5800B4) placed at the front of the hammer, as well as acceleration signals
captured by a charge accelerometer (B&K 8309).

The dataset is designed to comprehensively capture the dynamics of shock
events. To ensure a balanced exploration of all relevant variables, a full factorial
DOE is employed. This method provides an optimal trade off between the total
number of tests and the ability to isolate and analyze the influence of each parameter
independently. Six parameters are systematically varied: the impact position (which
plays a critical role in SRS calculation but has a lesser effect on the mechanics of the
impact itself) hammer speed, hammer tip type, material of the anvil plate, presence
of an insulating layer between hammer and anvil, and the boundary conditions of the
resonant plate. Each of these parameters is tested at multiple levels, as detailed in
Table 4.1.

Table 4.1 Experimental factor levels

Factor Name Low-level Mid-level High-level

Impact position (input) #1 #2 #3

Hammer speed Low - High

Hammer head material Aluminum Delrin Polyurethane

(Radius in mm) (30) (30) (15)

Anvil plate material None Aluminum Steel

Anvil insulator None - Polymeric

Plate boundary conditions Free - Fixed

It is important to note that the hammer speed is controlled manually by the
operator and, therefore, only defined at two nominal levels. This introduces some
variability between tests. To enhance the statistical robustness of the analysis, each of
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the 180 unique configurations is repeated over 10 impacts, resulting in an statistically
significant dataset for model training and validation.

The material properties used in this study, required for modeling and feature
construction, are sourced from the Ansys Granta material database [51]. A summary
of these properties is provided in Table 4.2.

Table 4.2 Material properties used in the study

Material E (GPa) ν (−) ρ (kg/m3) σy (MPa)
Aluminum 69.9 0.33 2700 276
Steel 200 0.30 7800 400
Delrin 3.20 0.35 1410 71.7
Polyurethane 0.03 0.39 1210 51.0

4.1 Processing of the database

First, the input signals are pre-processed to remove noise. Ideally, the accelerometer
signal would directly reflect the dynamics at the impact plane. However, since mount-
ing the sensor directly on the hammer tip is unfeasible, the signal is significantly
influenced by the hammer head structure. After impact, the acceleration information
must travel the length of the hammer head before reaching the sensor. As a result,
even though force and acceleration are acquired synchronously, a measurable delay
between the two signals can still occur. To ensure that this delay is solely due to the
physical distance between the contact plane and the sensor, the wave propagation
time was estimated following the approach in [52]. The propagation velocity of the
compression waves,

uwave =

√
E
ρ

(4.1)

The time required for the wave to reach the back of the hammer is t = 1.24 ·10−5 s,
which is comparable with the sampling period Ts = 1.9531 ·10−5 s, so, discrepancies
of up to 2 samples between force and acceleration have been considered acceptable.

In addition to the delay, the hammer body alters the signal according to its own
dynamic behavior. This behavior can be characterized by estimating the system’s
transfer function (tf) using the MATLAB command tfestimate, with acceleration
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as the output and force as the input. Once the transfer function, tf(Ω), is identified,
the influence of the system can be removed by deconvolving the output signal in the
frequency domain:

aclean(Ω) =
a(Ω)

tf(Ω)
(4.2)

Finally, the cleaned signal is converted back to the time domain using the inverse
Fast Fourier Transform (ifft).

Fig. 4.2 Effect of the deconvolution on the acceleration signal in time domain for a randomly
selected impact

As shown in Figure 4.2, this method effectively removes the bias and post-impact
oscillations introduced by the hammer body. Starting from the blue signal (raw
acceleration) as input, the process yields the orange signal (cleaned acceleration) as
output.

Once the cleaned acceleration signal has been extracted for each of the 180 tests,
the next step is to isolate ten individual pulses per test. To achieve this, two different
approaches are proposed and compared. In both methods, the force signal is used to
identify and segment the full acquisition, as it exhibits less noise after pre-processing.
Meanwhile, the acceleration data is employed to estimate velocity via numerical
integration.

The first approach involves detecting the locations and amplitudes of the ten main
peaks in the force signal. For each peak, a search is conducted to the left and right to
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determine the corresponding time window in which significant activity occurs. This
search continues while the signal amplitude remains above a threshold, specifically,
0.5% of the peak value. When the amplitude falls below this threshold, the first and
last instants of contact are identified. This method is illustrated in Figure 4.3a.

The second approach adopts a “force window” strategy. In this method, all
portions of the time series where the force is below a defined threshold (0.5% of the
peak force) are set to zero. A logical (Boolean) vector is then created to indicate
where the force values are nonzero. By applying the diff function to this vector, the
starting and ending indices of each pulse, corresponding to contact events, can be
identified. This process is illustrated in Figure 4.3b.

(a) While cycles

(b) Logical array

Fig. 4.3 Proposed methods to isolate the information contained in the experimentally acquired
time series

For both methods, a cubic smoothing spline interpolation is applied to each pulse,
as the number of samples during contact is often very limited, particularly when
using the aluminum tip. This occurs despite the sampling period Ts being on the
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order of 10−5 s due to the total contact time being approximately 10−4 s. The spline
interpolation allows for the estimation of force values on a finer time grid, with ten
times the resolution of the original. The same procedure is applied to the acceleration
signal, which significantly improves the accuracy of the estimated impact velocity
through numerical integration.

To verify that the resampling does not introduce significant errors into the analy-
sis, the Root Mean Square Error (RMSE) is computed between the original signal
and the interpolated signal at the original time points.

RMSE =

√
∑

n
i=1(F −Finterpolated)2

n
(4.3)

Where n is the number of samples in the original signal. In addition the RMSE has
been normalized against the range of the signal, in this case since the minimum
force is very close to zero the Normalized RMSE (NRMSE) can be seen almost as a
percentage error between the real and the interpolated data.

NRMSE =
RMSE

Fmax −Fmin
(4.4)

where:
- Fmax = max(F(t))
- Fmin = min(F(t))

As shown in the heatmap in Figure 4.4, no error is introduced by interpolation of
the signals. The error remains very low, consistently below 0.5%, and is primarily
concentrated in the tests conducted with the aluminum hammer tip, where fewer
than 10 samples are often recorded during contact. Notably, a periodic pattern in
the error distribution emerges, corresponding to the changes in hammer tip material
throughout the testing sequence. For example, in the first 18 tests, groups of six tests
show a clear alternation in error magnitude that aligns with the sequence of hammer
materials: initially aluminum, with the fewest samples and highest error, followed by
Delrin, and finally polyurethane (with the most samples and therefore the smallest
discrepancy between the raw and interpolated signals).



4.1 Processing of the database 49

Fig. 4.4 NRMSE between acquired force signal and interpolated one

The effect of interpolation can be clearly visualized by examining the force
signals in the three different cases shown in Figure 4.5. When the number of samples
is low, as with the aluminum hammer tip, the cubic spline interpolation significantly
smooths the pulse, enhancing its definition across the time domain and improving the
accuracy of momentum computation. As the number of samples increases, such as
with Delrin, the benefit of interpolation diminishes. In the case of polyurethane tips,
where sample numbers are the highest, the original signal is already well resolved,
and the effect of interpolation becomes negligible.
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(a) Case a - Aluminum Tip (b) Case b - Delrin Tip

(c) Case c - Polyurethane Tip

Fig. 4.5 Difference between the experimentally acquired and interpolated force signal, three
randomly selected impacts each with different materials

To determine the most appropriate windowing method to continue the analysis,
the results from each approach are compared. The difference in selected contact
duration τ , between the two algorithms is computed as in Eq. 4.5:

Percentage di f f erence =
τwhile − τlogical

τwhile
·100 (4.5)

Tests 1, 40, and 109 exhibit the largest discrepancies, with nearly a 12% difference
in the extracted contact times, as shown in Figure 4.6.
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Fig. 4.6 Perceptual differences in contact duration due to different extraction methods

To establish which of the two methods is better performing the signal acquired in
test number 1 is manually windowed and plotted in Figure 4.7 as a blue dashed line.
In the same graph the portions of signal automatically selected are superimposed:
the continuous red line is the result from the while cycle and the green line is
from the logical operator extraction. It is clear how the red line closes matches the
manually obtained results, meanwhile, the green one gives a short estimate. Under
the assumption that the best performing model in this worse case is the overall best
performing, the while cycle extraction is chosen.
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Fig. 4.7 Comparison of automatic and manual extraction - Test number 1

4.2 Selection of Inputs and Outputs of the models

The objective of this model is to predict the force evolution during contact in the
time domain, effectively creating a digital twin of the experimental test bench. To
achieve this, a set of input parameters must be selected. These parameters should
contain sufficient information to enable the learning models to identify the influence
of each factor contributing to the observed phenomena.

4.2.1 Inputs

As demonstrated by Hertz, key factors influencing contact time and the force ex-
changed between bodies include geometry, material properties, and the kinematic
variables of the impact. The full factorial dataset is designed to capture the influence
of all the factors listed in Table 4.1. Among these, the factors shown in Table 4.3
have been selected as inputs for the machine learning models.
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Table 4.3 Predictor chosen as inputs for the machine learning models

Predictors for Machine Learning models
Bullet Rs Es νs ρs σy,s ui

Plate Ep νp ρp σy,p

Anvil Plate none / aluminum / steel
Polymeric Insulator present / not present
BCs free-free / fixed

The selected material properties of the plate correspond to the first layer of
material that the bullet impacts: aluminum when no anvil plate is used, and steel
or aluminum when the anvil is present. While the presence of the anvil plate is
partially accounted for in the material properties predictor, a separate parameter
is still used to distinguish between the cases of aluminum contact on an anvil or
resonant plate. Although the mass of the impacting body could provide additional
insight, the database was created using only one hammer, so no information is
available regarding the effect of mass variation.

To identify potential redundancies in the set of predictors, the correlation between
them was computed and is presented in Figure 4.8. Young’s modulus, Poisson’s
ratio, and the yield strength of both the plates and hammer tips show the highest
correlations, with values close to ±1. However, these factors are not redundant. This
high correlation arises because only two materials, steel and aluminum, were used in
the study, and these materials exhibit consistent trends: all parameters increase or
decrease together as one moves from one material to the other. With the inclusion
of additional materials with intermediate mechanical properties, the correlations
between these predictors would likely decrease, making it easier to distinguish their
individual contributions.
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Fig. 4.8 Correlation between the inputs of the ML models

4.2.2 Outputs

At first glance, it might seem convenient to characterize each output using a set of
physical quantities, such as maximum force, impulse, contact duration, or time of
contact. However, relying on these parameters alone complicates the problem of
reconstructing the full time evolution of the force signal. One potential approach
would be to predefine a function describing the overall shape of the force curve and
then scale it to fit each specific case. However, this strategy lacks flexibility and
limits the model’s generalization capability. For these reasons, the desired outputs of
this study are time series representing the contact force during impact events. Since
variations in material properties and initial motion conditions lead to differences in
the duration of these time series, it is crucial to apply time normalization. This step
ensures that machine learning models can consistently learn from and effectively
capture key characteristics of the signals, such as their shape and amplitude.
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By resampling each force signal to 20 equidistant points (dividing the contact
event into ventiles), the model can learn the evolution of force over a normalized
cycle, independent of the actual contact duration. Twenty points are deemed the
correct number in order correctly resolve force evolution without a large expansion
from the 13 input parameters. This decoupling of spatial and temporal variability
is a well established practice in fields such as gait analysis1 [53], biological signal
analysis [54], and other applications involving variable length signals.

Once shape and amplitude are modeled independently of time, a second model
can be trained to predict the total contact duration from the same set of input features.
Combining both predictions allows reconstruction of the original time series in
physical time units.

To this end, interpolation of the signals carried out in Section4.1, revealed that the
contact force profiles are well approximated by cubic smoothing splines. These are
functions with continuous first and second derivatives, which minimize a penalized
residual sum of squares [55].

RSS( f , p) =
N

∑
i=1

{yi − f (xi)}2 +(1− p)
∫

f ′′(t)2dt (4.6)

Where p is a smoothing parameter and N is the number of elements of the vectors to
interpolate. In this context, the vector x contain the temporal information, i.e., the
contact duration, while the vector y contains the predicted evolution of contact force
over time. Specifically, y is the 20 element vector output by the machine learning
model, representing the normalized force profile.
Such interpolation can be easily implemented in MATLAB using the function
csaps(x,y,p).

The time vector x is generated starting with the scalar contact time estimation, τ .
To perform the cubic spline interpolation it is necessary to have the same number of
element in x and y: since the points of y are 20 equidistant moments in the contact
duration, the same is applied to the time vector. Using linspace a 20 element vector
spanning from time instant 0 to time τ is generated, thus reconstructing the time axis
in physical units. This step effectively maps the force evolution from normalized
space back into real time.

1The action of walking, involving the coordinated motion of multiple joints and muscles in the
musculoskeletal system
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Figure 4.9 summarizes how the proposed approach involves training two separate
models: a multivariate model to predict the 20 elements force vector, and a univariate
model to estimate the total contact duration used to create a 20 elements time
vector. These two outputs are then combined using the MATLAB function csaps to
reconstruct the complete time resolved force profile.

Fig. 4.9 Steps of the machine learning algorithm to find force evolution in time domain

4.3 Models

Before starting the optimization procedure, some different types of regression are
carried out to see which one yields to the most accurate predictions. The dataset is
divided into training and validation sets to train and assess the performance of each
model. Specifically, 80% of the pulses (1,440 samples) are allocated for training,
while the remaining 20% (360 samples) are reserved for validation. To ensure an
unbiased evaluation, the validation set is constructed by randomly selecting 2 out of
the 10 repetitions from each test. This randomized selection minimizes the risk of
systematic errors, such as operator fatigue or other time dependent effects during the
later repetitions, influencing the results. Furthermore the evaluation is more robust
since the models are tested on every possible combinations of factors of the full
factorial dataset.
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4.3.1 Contact time prediction

Since predicting the contact time is a univariate regression problem, the regression
Learner app in MATLAB was used to train various models and identify the best
performing. The evaluation metric used is absolute error computed between the
actual and predicted contact time τ over the entire validation set and then averaged.

err =
1
n

n

∑
i

|τi,actual − τi,predicted|
τi,actual

(4.7)

Among the tested models presented in Table 4.4, the best performance was
achieved by a decision tree with a minimum leaf size of 36, resulting in an error
of 0.0581 . Decision Trees operate by partitioning the predictor space into a series
of rectangles and assigning a simple output model, typically a constant value, to
each region. While effective, this approach can make the prediction quality highly
sensitive to the training dataset. For this reason, a Gaussian Process Regression
(GPR) model was chosen. GPR yielded the second best error (err = 0.1132), and
offers the added advantage of greater generalization, which is particularly beneficial
given that the same regression type is well suited for the subsequent force prediction
task.

Table 4.4 RMSE for each time prediction model

Rank Model Type err (-)
1 Tree 0.0581
2 Gaussian Process Regression 0.1132
3 Ensemble 0.2292
4 SVM 218.29
5 Kernel 234.79
5 Linear Regression 1536

4.3.2 Force prediction

For what concerns the force vector the selected models include neural networks,
linear regression, Support Vector Machine (SVM) regression, and kernel regression,
also in this case all of them have been trained in MATLAB using built in functions.
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Given a function that has p variables, linear methods approximate the response
f (X), as follows [55]:

f (X) = β0 +
p

∑
j=1

X jβ j (4.8)

where.
- β0 is the bias, the value which f (X) assumes when all inputs are nil.
- X j is the jth predictor variable (feature) in the input vector X .
- β j is the coefficient associated with the jth predictor X j, representing the contribu-
tion of X j to f (X).

As it has been done in this case, the model can be expanded to use combina-
tions of X ,X2,X3 enabling to capture more complex relationships. MATLAB’s
mvregress function was used. Additionally, Partial Least Squares (PLS) Regression
was employed using the plsregress function. PLS Regression identifies correla-
tions between inputs and outputs while simultaneously considering the variance of
both, making it suitable for multivariate regression tasks where predictors are highly
collinear [56].

Since analytical models for contact mechanics are notoriously non-linear , ker-
nel regression and support vector regression were also implemented. Unlike the
aforementioned global methods, kernel regressions, make local regressions, meaning
that training data is stored and predictions are made looking at the closest neighbors
of the given input. To decide the amount of influence of each neighboring point
the kernel function K is used. With the command firtrkernel, K is defined as a
Gaussian function with variance λ :

K =
1
λ

exp
[
−||x− x0||2

2λ

]
(4.9)

where:
- x is the point in the input space where the kernel is evaluated.
- x0 is the center or reference point of the kernel.
- ∥x− x0∥2 is the squared Euclidean distance between x and x0.

Once the weights are established by the kernel, the regression function is com-
puted and optimized using both linear regression through ordinary least squares and
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a Support Vector Machine regression. Another model that provides a local regression
is the GPR, implemented in MATLAB as (fitrgp). GPR particularly indicated to
find and capture complex, non-linear relationships between the inputs. Additionally,
it provides uncertainty estimates on the predictions [57, 58].

It is important to underline that training of the aforementioned kernel models in
MATLAB is limited to univariate cases, for these reasons 20 different models, one
for each element of the force vector, have been trained. While this approach ensure
accurate predictions, it significantly increases the computational time.

The final category of non-linear models selected for this study consists of Neural
Networks (NNs). NNs are powerful tools for capturing non-linear relationships in
data without requiring explicit assumptions about the underlying functional forms
of the relationships between the input features and the output response [59] . This
flexibility makes NNs highly suitable for modeling complex systems. However, one
significant drawback of NNs is their lack of interpretability the internal mechanisms
behind their predictions are often considered a "black box," making it challenging to
explain the rationale behind their outputs in practical applications.

For this study, a total of five different NNs models were trained and validated to
investigate the impact of key hyperparameters on performance. The hyperparameters
explored included the number of perceptrons in each layer and the number of hidden
layers in the architecture. All the trained models utilized the Rectified Linear Unit
(ReLU) activation function, which is commonly used due to its computational
efficiency and ability to mitigate the vanishing gradient problem encountered during
training [60] . Furthermore, this kind of activation is found to yield more accurate
predictions than sigmoid and tanh [61, 62], with the added value of being the most
computational efficient.

The models are evaluated by computing the NRMSE, as defined in Equation (4.4),
for each of the 180 pulses and then averaging the results. Among the initial models,
Gaussian Process Regression yields the highest accuracy, with a mean NRMSE of
approximately 0.0464. The performance of each model across the impact cases
is visualized in Figure 4.10, while Table 4.5 provides a summary of the mean
RMSE and NRMSE values over the entire validation set. From the heat map it is
evident NNs models, especially those with three layers and more neurons per layer,
exhibit consistently low NRMSE values across nearly all test cases. This indicates
enhanced generalization ability across the dataset. Gaussian process regression shows
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consistently small errors, though some periodicity is noticeable, likely due to the
variation in tip material properties. Conversely, the expanded linear regression and
partial least squares regression models show consistently high errors and pronounced
periodicity patterns, highlighting their limited generalization capabilities and inability
to adapt to changes in the dataset.

Fig. 4.10 NRMSE comparison of each of the considered force regression models. From the
top: bilayer, trilayer neural networks, narrow, medium, wide neural networks, multivariate
linear regression, partial least square regression, gaussian process, support vector regression,
support vector machine kernel, kernel regression.
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Table 4.5 Mean RMSE and NRMSE of each force regression model

Rank Regression Type mean RMSE (N) mean NRMSE
1 Gaussian Process 34.624 0.046397
2 Trilayered NN 34.730 0.049030
3 Wide NN 35.645 0.055375
4 Coregional GPR 35.882 0.057832
5 Medium NN 36.831 0.061737
6 Narrow NN 42.106 0.092828
7 Bilayered NN 49.820 0.095664
8 Support Vector 45.911 0.160440
9 Kernel 71.379 0.236350

10 Multivariate Linear 279.91 0.993200
11 Support Vector Kernel 287.40 1.020200
12 Partial Least Square 303.76 1.472600

In this particular application the algorithms are required to produce 20 pieces of
information starting with 13 inputs, according to findings in the literature [63, 64],
gaussian process regression is particularly well suited for problems where the input
dimensionality is lower than the output dimensionality. These findings align with the
results presented in Table 4.5. In particular, since each of the 20 points describing
force evolution is likely correlated to the others, a coregionalization Kernel can be
very effective in making predictions. MATLAB does not support true multivariate
GPR or coregionalization, so, instead of training a separate model for each element
of the output vector, a fully multi output GPR model was implemented and optimized
using the GPyTorchTorch library [65]. In parallel, a NN was also considered, as its
performance (NRMSE = 0.049) closely approaches that of the GPR model.

4.4 Optimization

Following the selection of the most appropriate regression models, a hyperparameter
optimization procedure is performed to improve the performance. Given that three
different models are used, model specific optimizations are employed, with model
specific objective functions.
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The models include:

1. A Neural Network for force prediction combined with a Gaussian Process
regression for time prediction, both developed in MATLAB.

2. A multi output GP regression with a coregional kernel for predicting the force
vector and a single output GP regression for time prediction, both implemented
using the GPyTorchTorch library in Python.

In MATLAB, Bayesian optimization is employed to tune several key hyperpa-
rameters of the GP models. These include the choice of kernel function, which
influences the model’s flexibility in capturing smooth or abrupt variations in the data;
the basis function, which sets the prior mean of the process and can be constant,
linear, or zero; the noise standard deviation (sigma), and the standardization setting,
which determines whether the input features are normalized before training, a step
that often improves numerical stability and convergence, particularly in the presence
of features with differing scales like in this study. The optimization process is limited
to 30 iterations to balance computational efficiency with performance improvement
as suggested by Matlab documentation.

The Python based models rely on the built-in optimization routines provided
by the library. These routines automatically optimize the kernel structure and its
associated parameters, such as:

• Variance, which controls the overall amplitude of the GP prediction.

• Covariance that controls how the output amplitude varies in relation to each
other.

• Lengthscale, determining how quickly the output changes as a function of
inputs.

• Noise, determining the level of confidence of each prediction.

• Standardization is always applied to the training set.

In contrast, the hyperparameters of the NNs are optimized using a Genetic Al-
gorithm (GA). This choice is supported by findings in literature, which highlight
the GA as one of the most effective methods for tuning neural network architectures
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[66]. In this context, several key hyperparameters are subject to optimization. The
number of neurons per layer and the number of hidden layers are adjusted to control
the representational capacity of the network, balancing complexity with generaliza-
tion.The regularization parameter λ is also tuned; this value penalizes overfitting by
constraining the magnitude of the network weights. The number of folds for k-fold
cross validation is set to 5, in this way 288 impacts out of the 1440 of the training set
are used to perform a cross validation, enhancing the robustness of the regression.
The GA itself is configured following standard practice, with an initial population
size of 50 individuals and a maximum of 200 generations, as recommended by
MATLAB documentation but the optimization is stopped at 50 generations since the
solution is already convergent.

A summary for the hyperparameters and the performance of each model after
optimization is reported in the Tables 4.6, 4.7, 4.8, 4.9.

GP regression for Time prediction - GPyTorch
Exponential Quadratic Kernel

Variance = 0.77
Lengthscale = 13

err = 0.0430
Table 4.6 Optimized Hyperparameters Gaussian Process for Time prediction in GPyTorch

GP regression for Force prediction - GPyTorch
RMSE = 35.851 N
NRMSE = 0.048

Table 4.7 Optimized Hyperparameters Gaussian Process for Force prediction in GPyTorch

GP regression for Time prediction - MATLAB
Sigma = 4.25 ·10−4

no Basis function
ARDMatern32 Kernel

Standardization on
err = 0.0430

Table 4.8 Optimized Hyperparameters Gaussian Process for Time prediction - MATLAB
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NN regression for Force prediction - MATLAB
2 hidden layers

144 neurons per layer
Lambda = 0.2009
RMSE = 34.481 N
NRMSE = 0.0479

Table 4.9 Optimized Hyperparameters Neural Network Force prediction - MATLAB



Chapter 5

Results

In this chapter the results of the thesis are presented and discussed starting with the
analysis of the velocity prediction model and continuing on the contact model.

5.1 Validation of velocity prediction model

In this section, the scaled adiabatic expansion model presented in Chapter 2 is
validated by comparing its muzzle velocity predictions to laser measured velocities at
five different chamber pressures. For each test condition, the model predicted velocity
us,predicted is computed and then compared to the corresponding laser measured value
us,measured using the percentage error:

e =
us,measured −us,predicted

us,measured
·100 (5.1)

where a negative e indicates model over prediction. Each measured velocity is
reported with its associated uncertainty, calculated following the Guide to the Ex-
pression of Uncertainty in Measurement (GUM) [67]:

∆us =

√(
∂us

∂L
∆L
)2

+

(
∂us

∂ t
∆t
)2

=

√(
1
t
·∆L

)2

+

(
−L
t2 ·∆t

)2

(5.2)

where:
- us = L/t denotes the measured muzzle velocity.
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- ∆L = 1 mm corresponding to the meter resolution.
- ∆t = 4 ·10−5 s corresponding to the 25 kHz sampling rate used during the experi-
ments.

Table 5.1 summarizes, for each pressure, the laser measured and model predicted
velocities, their uncertainties, and the resulting errors.

Table 5.1 Comparison of predicted and measured bullet velocities, uncertainties in are
computed via Eq. 5.2

Test # Pressure (bar) Measured us (m/s) Predicted us (m/s) e (%)
1 0.2319 10.37 ± 0.13 10.58 -2.1
2 0.2651 11.87 ± 0.15 11.35 4.4
4 0.4042 13.80 ± 0.18 14.13 -2.4
5 0.5784 16.35 ± 0.23 16.98 -3.9
3 0.6158 18.97 ± 0.28 17.53 7.6

The correction factor η = 0.5 introduced in Chapter 2 confines the prediction
error to below 8 %. This reduction in muzzle velocity is primarily attributed to
mass flow rate leakage between the projectile and barrel inner walls. Corner [68]
proposes a dimensionless leakage parameter ψ , where ψ = 0 denotes a perfect seal
and ψ = 1 indicates full blow by of the expanding gases. In conventional firearms,
an interference fit, where a soft metal bullet housing deforms against a hardened
steel bore, minimizes ψ ; however, the pneumatic launcher employed here features a
radial clearance of 0.5 mm and thus operates in a high leakage regime. The ratio of
actual to ideal exit velocity can be approximated as function of ψ:

us

us,no leaks
≈ (1−ψ)0.7 (5.3)

For large leakage systems such as this pneumatic gun, ψ typically lies between
0.4 and 0.6. Substitution into Eq. 5.3 predicts velocity reductions of approximately
30 % to 47 %, in agreement with the experimental measurements and the findings of
Cave [44].

Figure 5.1 presents the chamber pressure trace overlaid with the laser detection
signal. While the laser sensor voltage output can be converted to distance, this
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is unnecessary for the current application. The key requirement is to accurately
determine the time the projectile passes the sensor, not its exact position. Therefore,
the signal is used directly in volts without post-processing.

After impact on the resonant plate, the projectile rebounds slightly, causing the
trapped air to behave as a SDOF mass spring system. In all five tests, despite rebound,
no instances of multiple impacts are observed, underscoring the efficacy of the radial
vent holes in preventing pressure buildup behind the projectile.

Fig. 5.1 Measured pressure evolution for test 2. The laser signal is used directly in volts
since only passage time is needed and not the distance of the object.

Transient negative pressure excursions are observed in the chamber pressure
trace. Such depressions may arise from pressure transducer calibration errors or,
more plausibly, from rapid valve closure. According to Bernoulli’s principle, abrupt
interruption of a high speed flow converts the dynamic head, 1

2 ρ u2
s , into a local

depression, which is register within the tank. The flow induced depression hypothesis
is supported by the close agreement between predicted and laser measured velocities
when applying the same leakage correction factor reported in [44]. Nevertheless,
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additional tests, ideally varying valve opening time, are required to conclusively rule
out instrumentation artifacts.

Figure 5.2 superimposes the experimental velocity data on the model prediction
incorporating η = 0.5. For this limited dataset, the model exhibits high fidelity, with
a mean absolute percentage error of |e|= 4.07%, thereby validating its predictive
capability. It should be noted that the leakage correction parameter η may vary
with barrel wear, slug diameter, and surface finish; consequently, a more extensive
measurement campaign is recommended to optimize and generalize the calibration
of η .

Fig. 5.2 Comparison of numerical velocity model and actual measurements

5.2 Contact force estimation

The results of the optimized contact time an force predicting models are integrated
to reconstruct the complete contact pulse in the time domain. This reconstruction is
achieved using the csaps function, as illustrated in Figure 4.9.
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To evaluate the performance of the prediction pipeline, the reconstructed signals
are compared to the experimentally acquired pulses using a custom designed cost
function. This function quantifies the distance between the predicted and actual
signals by applying a Gaussian penalty that increases with both time and amplitude
discrepancies. Designed to capture differences in shape and timing, this metric
provides a comprehensive measure of prediction accuracy.

cost =
m

∑
i=1

(
1− exp

(
−
[
(τactual,i − τpredicted,i)

2

2σ2
τ

+
(Factual,i −Fpredicted,i)

2

2σ2
F

]))
(5.4)

Where:
- the subscript i signifies each element of the time and force vectors
- m is the number of elements in the vectors
- στ = 0.05(τactual) σF = 0.1max(Factual) are the spreads in time and force based on
the standard deviations of the actual recorded data

A visual representation of this scoring function is provided in Figure 5.3 .
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Fig. 5.3 Colormap of the proposed cost function with a generic pulse and relative tolerances.

For benchmarking purposes, the same cost function is also applied to the analyti-
cal models introduced in Chapter 1 of this thesis, allowing for a direct comparison of
predictive performance across approaches. Other metrics used for evaluation are the
RMSE on the force vector averaged on the entire dataset:

RMSE = mean

(√
∑

n
i=1(F −Finterpolated)2

n

)
(5.5)

the average error computed as in Eq. 5.6:

err =
1
n

n

∑
i

|τi,actual − τi,predicted|
τi,actual

(5.6)

As shown in Table 5.2, the Gaussian Process regression delivers the most accurate
overall prediction when compared to NN. This result is achieved despite a slightly
higher RMSE on the force vector, thanks to a 20% lower error in the time prediction,
which has a larger influence on the overall pulse shape.
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It is important to underline that the errors on time prediction in Table 5.2 and Table
5.3 are exactly the same for both Reed and Hunter model since the relation used to
compute contact time is the same in both cases.

Table 5.2 Mean cost value and RMSE over the entire dataset of each prediction model

Rank Model Cost Force RMSE (N) Time error (-)
1 GPy Gaussian Process 78.02 36.64 0.04
2 Neural network 125.09 35.96 0.05
3 Hann window 462.80 117.68 0.25
4 Hunter 587.58 246.63 0.27
5 Reed 611.57 421.62 0.27

A deeper insight into model behavior can be gained by examining the cost
function values across all 180 tests, presented in Figure 5.4. The three analytical
models, Hann, Hunter, and Reed exhibit a clear periodic degradation in accuracy.
This trend corresponds to variations in the hammer tip material: predictions worsen
progressively as the tip becomes softer and more energy is dissipated during impact.
This behavior underlines the limitations of analytical models in capturing complex,
material dependent dynamics, particularly for highly damped interactions. These
observations are consistent with findings in [39], where a significant drop in accuracy
was observed for polyurethane tips in coefficient of restitution (COR) estimations.
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Fig. 5.4 Cost function computed for each test

To deepen the analysis, several key physical parameters were extracted from
each predicted signal and compared against the corresponding ground truth values:

• Maximum Force Fmax

• Time of Elastic phase τel

• Impulse during Elastic Compression Pel =
∫ τel

0 F(t)dt

• Total Impulse over Contact Duration P =
∫

τ

0 F(t)dt

The error on each of these four parameters is computed as:

error =
1

180
·

180

∑
i=1

|xactual,i − xi|
xactual,i

(5.7)

where:
- xactual,i is the generic parameter evaluated on the acquired signal for the ith test
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- x,i is the generic parameter evaluated on the estimated signal for the ith test

These metrics allow for a more physically meaningful comparison between
models using parameters that are critical in contact mechanics applications.

Table 5.3 Mean errors between predictions and acquired signals on key physical parameters

Model Force error (-) τe error (-) P error (-) Pel error (-)
Neural network 0.0499 0.0628 0.0480 0.0474
GPy Gaussian Process 0.0518 0.0562 0.0308 0.0328
Hann window 0.2578 0.1828 0.1112 0.0237
Hunter 0.5224 0.2598 0.5403 0.5144
Reed 0.8153 0.2598 1.0793 1.1440

The physical parameter comparison in Table 5.3 further reinforces the trends
observed in the scoring analysis. A brief evaluation of each model is presented below
to summarize its predictive strengths and limitations:

The Neural Network model demonstrates excellent predictive performance,
achieving the lowest RMSE in force reconstruction and the lowest error on maximum
force estimate while also maintaining consistent physical plausibility across all
evaluated parameters. Its only slight drawback lies in a marginally higher error in
estimating the elastic contact time compared to the GPy model. Nonetheless, it offers
reliable overall behavior and strong generalization across the dataset.

The GPy Gaussian Process model stands out as the best performing approach
overall. While its force RMSE is slightly higher than that of the neural network, it
compensates with the lowest custom cost and the most accurate prediction of the
elastic contact phase duration, which plays a dominant role in shaping the contact
pulse. Moreover, it maintains excellent physical consistency across all derived
quantities, especially over impulse computation.

While both the gaussian process model and the NN demonstrate good predictive
capabilities, they share a common limitation: the need for a large and diverse dataset
to ensure proper training and validation. This requirement can pose challenges in
scenarios where data collection is costly or time-consuming. Despite this, once
trained, both models offer robust and reliable predictions.
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The Hann Window model shows intermediate performance. While it performs
significantly worse than the data-driven models in terms of RMSE and cost figure, it
still captures the overall shape of the signal better than the other analytical models.
Its physical indicators, particularly the impulse over elastic contact time, is close
to reality, but since the error on the overall impulse is high that means that the
majority of the error is over the restitution phase where, according to Gugan and
Cross [24, 25] the majority of dissipation occurs.

The Hunter model performs poorly, with large errors in both force prediction
and elastic contact time estimation. It also significantly overestimates all physical
quantities, indicating a tendency to misrepresent the energy dissipation in the actual
system.

Finally, the Reed model yields the least accurate predictions. It consistently
produces the highest errors across all evaluation metrics, and its physical predictions,
particularly impulse and power are largely unphysical. This suggests a strong
mismatch between the model assumptions and the dynamics of the experimental
system.

Looking at error on impulse for each of the 180 tests (Figure 5.5) it is clear how
overall the best accuracy and the best consistency across all testing condition is
obtained by the Gaussian Regression Model with a mean error on the validation set
of 3.08 % and a maximum of just 25 % as an outlier.
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Fig. 5.5 Error on impulse of each test

In conclusion, among all the models evaluated, the Gaussian Process regression
model is the most accurate and physically consistent approach for predicting contact
forces and durations. It delivers the lowest overall cost value, maintains low error
levels across all key physical parameters, and exhibits robust performance across a
wide range of test conditions. While the neural network also demonstrates strong
performance, especially in force prediction, the Gaussian Process model’s superior
accuracy in impulse make it the most suitable choice for modeling impact dynamics
in this study.



Chapter 6

Conclusions

This work set out to advance the understanding of impact induced contact forces in
pyroshock events and to complete the commissioning of the Politecnico di Torino
resonant plate test bench. By coupling a data-driven and numerical modelling all
three initial objectives have been achieved, as summarized below.

• Development of a data-driven contact force model
A machine learning algorithm has been trained and validated on an extensive
hammer impact database, enabling accurate reconstruction of the contact force
time history. This model consistently outperformed analytical methods in
RMSE but also in all key parameters such as the peak force, impulse and elas-
tic contact time across variations in impact velocity, geometry, and material
properties of the contacting bodies. This will allow a reduction in calibration
tests reducing the associated costs.
Moreover, the framework generalizes beyond pyroshock applications, provid-
ing a modular foundation for a contact force digital twin adaptable to diverse
engineering scenarios, furthering the state of the art of continuous contact
mechanics.

• Design and Implementation of the experimental setup
A resonant plate test bench was finalized, featuring an adjustable free-free
suspension where all critical components guarantee a safety factor higher than
3.9 under dynamic loading conditions. The projectiles have been designed in
such a way to allow rapid changes in geometry and mechanical properties of
the tip.
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The plate and the pneumatic gun have been instrumented with a robust mea-
surement chain, that allows to capture the response of the plate, but also
acquisition of each parameter that influences the contact between the projectile
and the resonant fixture.
This setup lays a versatile platform for systematic contact mechanics studies
and pyroshock qualification tests.

• Validation of the projectile velocity prediction
An adiabatic expansion model of the pneumatic gun, based on tank volume,
barrel geometry and friction losses was implemented in MATLAB and bench-
marked against low pressure firing. Introducing a correction for blow by
leakages, predicted muzzle velocities agreed within 4% of the measured val-
ues on average, confirming the digital twin capability of reducing down time
associated with calibration.

At the same time, some limitations can be found. Despite its robust performance,
the data-driven contact force model was trained using only a single hammer mass,
which may lead to unreliable predictions when projectiles of substantially different
weight are employed. Likewise, impacts involving aluminum tips, characterized by
very brief contact durations, are represented by a low number of sample due to low
sampling frequency. FInally the model black-box nature: although it reproduces force
waveforms with high fidelity, it offers limited physical insight into how variations in
mass, velocity, or stiffness interact to shape the contact pulse.

On the experimental side, the chain based height adjustment system, while
mechanically simple and strong, permits only discrete suspension increments, which
can reduce fine tuning. Between shots, extracting the projectile from the barrel
requires a long time since it has to be done using very low pressure, slowing test
throughput.

Finally, although the adiabatic-expansion model of the pneumatic gun predicts
muzzle velocity within 4 % of measured values, its reliance on an empirical blow by
correction coefficient necessitates a new calibration campaign whenever projectile
diameter changes partially offsetting the downtime savings.
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6.1 Future directions

Several avenues exist to extend and deepen the present study: The data-driven
prediction algorithm demonstrates strong accuracy, but its generalizability would
benefit from a larger, more diverse set of pneumatic gun impacts involving more
materials, geometries and boundary conditions.

Furthermore, the creation of a complete dataset of pneumatic gun generated im-
pacts, other than being beneficial to deepen the understanding of contact mechanics,
could provide ground truth validation data for extreme conditions that are impossible
to generate manually using a hammer.

Another area of interest is the development of a ML model capable of determining
force evolution and contact duration in a single passage potentially using physics-
based data-driven hybrids modeling methods, allowing to streamline the prediction
workflow and remove any error that can arise with signal reconstruction.

Finally even if the velocity predicting model is already capable to produce
estimates with very good accuracy a more comprehensive validation using tests that
span over different materials and over the entire range of pressure that the gun can
produce could lead to better understanding on the losses that in this work are not
accounted for.

For what concerns the experimental set up the use of a pneumatic valve increases
the complexity of the pneumatic circuit and reduces the ease of opening time control
and actuation. An electrically actuated valve would remove the need for a two branch
pneumatic circuit and programmable discharge timing would enable parametric
studies of valve opening profiles on muzzle velocity..

Finally, the creation of a soft material sabot for the bullet would allow to increase
the efficiency in energy conversion from the potential energy of the compressed air
to the kinetic energy of the bullet, ultimately allowing for higher energy impacts if
needed.



Appendix A

Latin Hypercube Sampling Dataset

This appendix presents the full set of parameters for each of the 105 tests generated
using Latin Hypercube Sampling, as explained in Chapter 3. To enhance the statisti-
cal robustness of the dataset, each test configuration is repeated 10 times, resulting
in a total of 1050 recorded impact events.

The test matrix is inherently randomized due to LHS design, this minimize the
influence of systematic biases, such as operator fatigue or other time dependent
variable that could otherwise affect data consistency across long acquisition sessions,
but setup time increases whenever hardware changes are required. In particular,
swapping resonant plates, using shop cranes or hydraulic hoists, is both time con-
suming and poses safety risks. To minimize these hazards and reduce downtime,
plate material, anvil material, and insulator type are not randomized.

Throughout the experimental campaign, data integrity must be carefully mon-
itored. It is essential to ensure that no acquisition channel exceeds its bandwidth
limitations, and that any corrupted or incomplete recordings are promptly identified
and discarded. These precautions are crucial to maintaining a consistent and reliable
dataset suitable for training and validating data-driven models.
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Table A.1 LHS Design of Experiments
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1 aluminum none none PLA 30.00 1.00 High
2 aluminum none none aluminum 30.00 1.00 Low
3 aluminum none none steel 30.00 0.20 Low
4 aluminum none none PLA 45.00 0.20 High
5 aluminum none none PLA 45.00 0.50 Medium
6 aluminum none none steel 30.00 1.00 Medium
7 aluminum none none PLA 30.00 0.50 Low
8 aluminum none none PLA 30.00 0.20 Low
9 aluminum none none steel 45.00 0.20 Medium

10 aluminum none none steel 30.00 1.00 High
11 aluminum none none aluminum 30.00 1.00 Medium
12 aluminum aluminum none PLA 45.00 1.00 High
13 aluminum aluminum none aluminum 45.00 0.20 High
14 aluminum aluminum none steel 60.00 1.00 High
15 aluminum aluminum none steel 30.00 0.50 High
16 aluminum aluminum none aluminum 45.00 0.20 Medium
17 aluminum aluminum none aluminum 30.00 0.20 Low
18 aluminum aluminum none steel 45.00 1.00 Medium
19 aluminum aluminum none aluminum 45.00 1.00 Low
20 aluminum aluminum none aluminum 60.00 0.20 High
21 aluminum aluminum none aluminum 45.00 0.20 High
22 aluminum aluminum none PLA 30.00 1.00 Medium
23 aluminum aluminum none PLA 45.00 0.20 Medium
24 aluminum aluminum polymeric PLA 60.00 0.20 Low
25 aluminum aluminum polymeric PLA 60.00 1.00 Medium
26 aluminum aluminum polymeric steel 45.00 1.00 Low
27 aluminum aluminum polymeric aluminum 45.00 1.00 Medium
28 aluminum aluminum polymeric steel 30.00 0.50 Low
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29 aluminum aluminum polymeric aluminum 30.00 0.50 Low
30 aluminum aluminum polymeric steel 45.00 0.20 Medium
31 aluminum aluminum polymeric steel 60.00 1.00 Medium
32 aluminum aluminum polymeric PLA 60.00 0.50 High
33 aluminum aluminum polymeric PLA 45.00 1.00 Medium
34 aluminum aluminum polymeric PLA 60.00 0.50 High
35 aluminum steel none PLA 45.00 0.20 High
36 aluminum steel none PLA 45.00 0.50 Medium
37 aluminum steel none PLA 30.00 1.00 Low
38 aluminum steel none aluminum 45.00 0.50 Medium
39 aluminum steel none aluminum 30.00 1.00 Medium
40 aluminum steel none aluminum 30.00 1.00 Low
41 aluminum steel none aluminum 30.00 1.00 High
42 aluminum steel none aluminum 60.00 1.00 Medium
43 aluminum steel none steel 30.00 1.00 Low
44 aluminum steel none PLA 45.00 0.20 Low
45 aluminum steel none PLA 60.00 1.00 Medium
46 aluminum steel none steel 60.00 0.50 High
47 aluminum steel none aluminum 60.00 0.50 Low
48 aluminum steel polymeric PLA 45.00 0.50 High
49 aluminum steel polymeric steel 45.00 1.00 Low
50 aluminum steel polymeric PLA 60.00 0.20 Low
51 aluminum steel polymeric PLA 45.00 0.20 Low
52 aluminum steel polymeric aluminum 60.00 1.00 Low
53 aluminum steel polymeric aluminum 30.00 0.50 High
54 aluminum steel polymeric aluminum 60.00 0.50 High
55 aluminum steel polymeric aluminum 60.00 1.00 Medium
56 aluminum steel polymeric aluminum 60.00 0.50 High
57 aluminum steel polymeric PLA 60.00 1.00 Medium
58 aluminum steel polymeric PLA 60.00 0.20 High
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59 aluminum steel polymeric steel 60.00 0.20 Medium
60 aluminum steel polymeric PLA 30.00 0.20 Low
61 aluminum steel polymeric PLA 60.00 0.50 Medium
62 aluminum steel polymeric PLA 30.00 0.20 High
63 aluminum steel polymeric steel 45.00 1.00 Medium
64 aluminum steel polymeric aluminum 60.00 1.00 High
65 aluminum steel polymeric steel 45.00 1.00 Medium
66 steel none none steel 60.00 0.20 Low
67 steel none none PLA 30.00 0.50 Low
68 steel none none aluminum 45.00 0.20 Low
69 steel none none aluminum 30.00 1.00 High
70 steel none none aluminum 45.00 0.50 Medium
71 steel none none steel 30.00 0.50 Low
72 steel none none PLA 60.00 0.50 Medium
73 steel none none aluminum 30.00 0.50 Low
74 steel none none PLA 45.00 0.50 High
75 steel none none aluminum 30.00 0.20 Low
76 steel none none steel 30.00 0.50 High
77 steel none none PLA 60.00 0.20 Low
78 steel none none PLA 60.00 0.50 Medium
79 steel none none steel 30.00 0.20 Low
80 steel none none aluminum 60.00 0.50 Low
81 steel none none steel 60.00 1.00 Medium
82 steel aluminum none aluminum 45.00 1.00 Low
83 steel aluminum none steel 30.00 0.50 Low
84 steel aluminum none steel 30.00 0.50 Medium
85 steel aluminum none steel 30.00 1.00 High
86 steel aluminum none steel 60.00 0.50 Low
87 steel aluminum none steel 30.00 0.50 High
88 steel aluminum none aluminum 60.00 1.00 Medium
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89 steel aluminum none steel 45.00 0.50 High
90 steel aluminum none aluminum 60.00 0.20 High
91 steel aluminum none aluminum 45.00 0.50 High
92 steel aluminum none steel 45.00 0.50 Low
93 steel aluminum none steel 45.00 0.20 Medium
94 steel aluminum none aluminum 60.00 0.20 High
95 steel aluminum none steel 60.00 0.50 High
96 steel aluminum polymeric steel 60.00 0.50 Low
97 steel aluminum polymeric steel 45.00 0.20 Medium
98 steel aluminum polymeric PLA 60.00 0.20 Medium
99 steel aluminum polymeric steel 45.00 0.50 Medium

100 steel aluminum polymeric steel 45.00 0.20 Low
101 steel aluminum polymeric steel 30.00 0.20 High
102 steel aluminum polymeric PLA 45.00 0.50 High
103 steel aluminum polymeric aluminum 30.00 1.00 High
104 steel aluminum polymeric PLA 45.00 0.50 High
105 steel aluminum polymeric aluminum 45.00 1.00 High
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