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1. Introduction 

1.1 Linearization and linear systems  

As it normally happens, structural engineering studies are portrayed under ideal 

conditions: isotropy, constant section properties and other hypothesis, that 

simplifies the utilised methodologies. Such ideal conditions enable the researcher 

to get a manageable data analysis and to focus on the overall mechanical behaviour 

of the system which is under study. In particular, in structural dynamics engineering 

studies, small displacements or small deformations relative to the static equilibrium 

position are systematically used. Both small displacement and small deformations 

allow to use an effective methodology: the linearization. The linearization is one of 

the most used methods in dynamic analysis. It allows to obtain the solution of 

complex problems with low computational effort, foreseeing the dynamic 

behaviour of a mechanical system.   
To clarify how the linearization works is proposed below an example, contained in 

the book of Benson H. Tongue “Principle of Vibrations” which consider a rotational 

single degree of freedom, a pendulum, from which its equation of motion, the 

mathematical model which describes how such system moves, is calculated. 

 ����� + ����	
��� = 0 

 

(1.1) 

 

Figure 1.1: Pendulum representation and pendulum picture. 

 



 

2 

 

The pendulum equation of motion is nonlinear because it needs higher than first  

power of the dependent variable θ and its derivative. After expanding sin(θ), the 

equation can be solved by applying the linearization method, which consists in 

neglecting all terms that do not depend linearly on θ or its derivatives—that is, terms 

where θ or its derivatives appear with powers higher than one. Below it is showed 

the expansion of the sin function in the nonlinear form (1.2) and the linearized 

equation of motion (1.3). The omitted data result vanishingly small when the 

variable θ is small.  

 �	
��� = � − 13 �� + ⋯ 
(1.2) 

 

 �� + �� � = 0 (1.3) 

In the analysis of the mathematical model of the pendulum dynamics, the 

linearization simplifies the equation of motion and assuming a small-angle 

approximation, valid when the angular displacement remains below 5° from the 

equilibrium position, the resulting oscillation amplitudes can be considered 

physically realistic.. It is noteworthy the power of the tool that makes systems 

linear, indeed allow the equation to become an ordinary differential, so simplifying 

the resolution of mathematical model. 

 

Moreover, the advantages of linearization are those of making a system to be 

modelled as linear. The key characteristics of a linear system are:   

- Linearity: The system must satisfy the principle of superposition, meaning 

that if the input is a linear combination of two signals, the output is also the 

linear combination of the corresponding individual outputs. 

- Homogeneity: This is a specific aspect of linearity. If the input is scaled by 

a factor, the output is also scaled by the same factor. 

- Additivity: The response of the system to the sum of two inputs is equal to 

the sum of the responses to each input individually. 

- Time Invariance: The system's behaviour does not change with time. If the 

input signal is delayed or advanced in time, the output is similarly delayed 

or advanced without any change in shape.  

These characteristics are widely used in dynamics because they allow for a 

generalized and simplified analysis of complex systems. Based on these properties, 

many solution methods have been developed. In effect, linearization results in 

systems that are predictable, scalable, and time-invariant, which greatly simplifies 

the mathematical calculus. Acknowledging that linearization simplifies the 

analysis, it is though necessary to formulate a mathematical model that simulate 

how real systems behave with the aim of being aware of the differences between 

ideal and real-world dynamics. 
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Dynamical system can be modelled as discrete (single or multi degree) or 

continuous. A degree of freedom (DOF) in mechanics and engineering refers to the 

number of independent ways a system can move or the minimum number of 

independent variables needed to define its configuration or motion. The equation of 

motion of a single degree of freedom is retrieved thank to the Newton’s second law, 

characterized by three different parameters:  

- mass (m) 

- stiffness (k) 

- damping (c). 

 
��� + ��� + �� = 0 (1.4) 

The single degree of freedom is characterized by:  

- one mode shape which is how the system moves or deform,  

- a natural frequency at which the system oscillates in the absence of any 

driving force, that is calculated as the square root of the ratio of stiffness 

and mass.  

A n-degree of freedom is a system characterized by n independent variable and thus 

n natural frequencies.  It has n equations of motion, which are ordinary differential 

equations, and are collected in matrices. 

For what concerns continuous systems, they consist of an infinite number of 

particles, hence need an infinite number of ordinary differential equations to 

describe their motion. However, because the distance between two adjacent 

particles is infinitesimal and displacements must be continuous, the motion of a 

continuous system is described by a finite number of displacement variables. 

Dynamics of continuous systems can be expressed in terms of partial differential 

equations with appropriate boundary conditions.  

Moreover, continuous systems are categorized in terms of geometries and loading 

conditions, each of them is described by a precise partial differential equation. They 

are grouped in six categories: cables, bars, beams, membranes, plates and shells.  

Figure 1.2: Single degree of freedom representation. 
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The beam element is a system in which one dimension is larger than the others. It 

often has a straight axis and a prismatic section. Two formulations are famous to 

describe the dynamic behaviour of a beam:  

- Euler-Bernoulli formulation 

- Timoshenko formulation. 

The Euler Bernoulli beam is the simplest approach to describe the flexural 

behaviour of a beam, it considers just bending deformation and translational inertia. 

The Timoshenko beam considers further the rotational inertia of the cross section 

and the shear deformation.   

The mathematical model described in the next chapter, is constituted of Euler-

Bernoulli beam elements. The partial differential equation of an infinitesimal 

section is characterized by two terms coming from the vertical translation and 

moments equilibrium. It is reported below:  

 

 ��
��� ��� ������� + � ������ =  ��, �� 

(1.5) 

Where: 

- ���, ��: is the transverse displacement of the beam at position � and time �, 

- �: is the Young's modulus (material stiffness), 

- ����: is the second moment of area (which may vary along the beam), 

- ��: represents the flexural rigidity of the beam (resistance to bending), 

- μ : is the mass per unit length, 

-  ��, ��: is the external distributed load (force per unit length) as a function 

of space and time 

In the particular case in which the applied force is null and the section is constant 

throughout the beam, the equation is simplified as: 

 

 �� ��$���$� + � ������ = 0 
(1.6) 

 

The equation is then solved using the separation of variable theorem: the variable v 

can be written as the product of one time-depending variable and one spatial-

depending variable. The derivative of the time-dependent variable is simply the 

function multiplied to the negative square of the frequency. A time-dependent 

quantity equals a spatially varying quantity if only they are both equal to a constant: 

 

 ����%%%% − &$���� = 0 (1.7) 
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Where: 

& = '()*�
��+

 

The solution of the equation just showed is the so called eigen-function which 

is composed by four parameters computed through the boundary condition: 

 ���� = a sin�&�� + b cos�&�� + c sinh�&�� + d cosh�&�� 

 

(1.8) 
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1.2 Nonlinear systems 

In dynamics, engineers must predict how systems move and respond to inputs, with 

the goal of replicating real behaviour as closely as possible. This objective does not 

always align with the assumptions of linear modelling. Linearization alone may not 

be sufficient, and understanding nonlinear behaviour is crucial to accurately 

simulate real-world dynamics. 

 

Nonlinear systems are those for which the principle of superposition does not hold. 

The sources of nonlinearities can be material or constitutive, geometric, inertia, 

body forces, or friction. The constitutive nonlinearity occurs when the stress are 

nonlinear functions of the strains, the geometric nonlinearity is associated with 

large deformations in solid resulting in nonlinear strain-displacement relation. The 

inertia nonlinearity may be caused by the presence of concentrated or distributed 

masses. The nonlinear body forces are essentially magnetic and electric forces. The 

friction nonlinearity occurs because the friction force is a nonlinear function of the 

displacement and velocity. 

In particular, geometric nonlinearities are studied in this thesis. When the lateral 

deflection of a beam is large, the axial force plays a significant role in carrying 

transverse loads, and geometric nonlinearities couple the equations governing the 

extension and bending vibrations. Moreover, for an isotropic beam, linear 

formulation shows that the vibrations in the two principal planes are independent 

of each other, and hence a forced motion in one principal plane always remains in 

that plane. But, when the vibration amplitude is large, the motion may become 

nonlinear due to geometric nonlinear coupling between bending in two principal 

planes. [1] 

 

Once the causes are explained, the symptoms or consequences of nonlinear 

behaviors are illustrated. To clearly present the nonlinear symptoms, a nonlinear 

single degree of freedom system is considered. It is studied the undamped harmonic 

response of the SDOF system.  

 

 �5� + �5 + ��5� = 6789: (1.9) 

 

 

 

Figure 1.5: Nonlinear single degree of freedom with cubic stiffness 
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The equation of motion contains cubic stiffness which makes the system nonlinear. 

When subjected to a harmonic input with a frequency Ω, the presence of the cubic 

stiffness generally generates harmonic contributions of the kind 3Ω, 5Ω, … 

Such phenomenon is called harmonic distortion. Experimentally, it appears in the 

frequency spectrum as peaks not only at the excitation frequency but also at higher 

harmonics. Harmonic distortion can significantly affect a system's dynamic 

behaviour. For instance, in a multi-degree-of-freedom (MDOF) system, a mode that 

is not directly excited can be activated by a harmonic of another mode. Similarly, 

closely spaced modes can exchange energy through nonlinear interactions. When 

natural frequencies are commensurable or nearly commensurable, internal 

resonance phenomena may occur, which is a special case of modal interactions. 

Internal resonance makes the system to exchange energy between the internally 

coupled modes. The extent of the interaction and its conditions depend on the linear 

natural frequencies and the nonlinearities of the system.   
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1.3 Vibration Energy Harvesting and the Role of 

Piezoelectric Materials 

Vibration control has long been a key focus in engineering, with passive strategies 

such as vibration absorption and isolation commonly employed to mitigate 

unwanted mechanical oscillations. Traditionally, methods like nonlinear energy 

sinks (NES) are used to dissipate vibrational energy and protect structures. 

However, rather than merely suppressing vibrations, an alternative and increasingly 

attractive approach involves harnessing this energy. This has given rise to the 

concept of vibration energy harvesting (VEH) - a clean and sustainable method for 

converting ambient mechanical vibrations into usable electrical energy. 

VEH technology is particularly well-suited for powering small, low-consumption 

electronic devices such as wireless sensors and embedded systems. By reducing or 

eliminating the need for batteries, VEH contributes to improved energy efficiency 

and environmental sustainability. However, the electrical power harvested from 

environmental vibrations is typically limited, necessitating efficient transduction 

mechanisms and design strategies. 

The most common VEH systems are based on linear resonance principles, where 

the harvester is tuned to match a dominant ambient vibration frequency. When 

properly tuned, these systems operate efficiently, but they suffer from a critical 

limitation: a narrow operational bandwidth. This means they are only effective 

when the excitation frequency closely aligns with their resonant frequency. Any 

deviation can result in a significant drop in energy harvesting performance. 

To overcome this limitation, recent research has explored broadband energy 

harvesting techniques. These methods are designed to capture vibrational energy 

over a wider frequency range, improving adaptability to varying environmental 

conditions. One promising approach involves the use of internal resonance, wherein 

nonlinear interactions between different modes of vibration enable energy transfer 

across frequencies. Although this introduces complexity into the system’s 

frequency response, it also facilitates nonlinear dynamic behavior that can 

substantially broaden the effective bandwidth of the harvester. 

A key enabler of VEH systems—particularly those incorporating nonlinear 

dynamics—is the use of piezoelectric materials. These materials generate an 

electric charge when subjected to mechanical stress, a property known as the 

piezoelectric effect, first discovered by Pierre and Jacques Curie in 1880. 

Remarkably, the reverse effect also exists: applying an electric field can induce a 

mechanical deformation in the material. 

Due to these unique electromechanical coupling properties, piezoelectric materials 

are employed in a wide range of technologies, including sensors, actuators, 

ultrasonic transducers, and medical imaging devices. In the context of VEH, their 

ability to directly convert mechanical vibrations into electrical energy makes them 

particularly valuable. 
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1.4 Thesis structure 

The structure of the thesis is as follows: 

 Chapter 2 explores nonlinear system behavior in detail, providing key 

theoretical tools and examples needed to analyze the system, beyond the 

linear regime. 

 Chapter 3 presents the design and modeling of the system, including the 

construction of a finite element model. 

 Chapters 4–6 detail the experimental procedures, data acquisition 

techniques, and validation strategies employed to confirm theoretical 

predictions. 

 The final chapter offers conclusions and suggests future directions for 

improving VEH designs through advanced modeling, multi-physics 

simulations, and adaptive control. 

This research aims to bridge the gap between idealized models and practical 

engineering applications, showing how nonlinear effects—often considered a 

complication—can instead be leveraged to improve performance in energy 

harvesting systems. 
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2. System design 

The mechanical system that will be utilized in the research is a structure of which 

one of the characteristics is the response with internal resonance caused by 

solicitation. Normally, a linear energy harvester collects ambient vibration energy 

if the input frequency matches its resonance region. Hence, the bandwidth of the 

effective operating frequency is usually limited to a specific range. If the ambient 

vibration frequency slightly deviates from the resonant frequency of the energy 

harvesting device, the resulting power output of harvesters would be reduced 

drastically. [2]  To overcome such problems, the nonlinear studied vibration 

harvester is designed to exhibit an internal resonance which enlarge the operating 

bandwidth, increasing the energy conversion.  

The solicitation at which the structure is subjected is vertical and with a frequency 

of approximately 20 Hz, exciting exactly the second natural frequency. It will be 

described in detail the structure that will be utilized for the research. From the image 

shown below, the design of such object could be obtained, which: 

- Is rectangular  

- Is constituted of aluminum with a density of 2700 ��/�� 

- Is located on an electrodynamic shaker used to test the structure 

- Is 165 mm × 230 mm × 20.5 mm, with a thickness of 0.65 mm.  

Figure 2.1: Picture of the portal frame 
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The structure is instrumented with two accelerometers located in the middle of the 

horizontal beam, as seen in Figure 2.3. The two sensors measure accelerations in 

vertical and horizontal directions.  

 

 

Figure 2.2: System without accelerometers 

Figure 2.3: System with accelerometers 
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The finite element model of the VEH is designed using two different software: 

Solidworks and Ansys APDL. The first software, Solidworks, permits to reproduce 

the portal frame. It is designed also the portal with two accelerometers attached. 

As for Ansys APDL, the following elements are adopted: 

- BEAM188 is the element used to represent the structure, it is a 3D element 

suitable for analysing slender to moderately stubby/thick beam structures. 

The element is based on Timoshenko beam theory which includes shear-

deformation effects.  

- MASS184 is the element used to represent a rigid connection. 

- MASS21 is the element used for representing the accelerometers because is 

a point element.  

The geometry is then divided into small segments on which elements are built. Such 

a step is particularly important because according to the number of segments, and 

hence elements, the result of the simulation will be precise or inaccurate. It is also 

shown a picture that represents and lists the nodes of the model. A specific set of 

nodes will be chosen and for such nodes the displacement will be shown. 
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Figure 2.4: Definition of the elements of the frame 

 

Figure 2.4: Definition of the elements of the frame 

Figure 2.5: Geometry of the frame with nodes numbering (16 elements) 
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2.1 Theoretical linear model 

The structure has been modelled through the Euler-Bernoulli beam 

formulation, which is a simplification of the linear theory of elasticity and is used 

to compute the load-carrying and deflection characteristics of beams. In contrast to 

the Timoshenko formulation, the Euler-Bernoulli formulation neglects the 

contributions of the shear deformation and of the rotary inertia. Neglecting the shear 

contribution is a correct approximation when the beam does not wiggle too much 

or in the low natural frequencies. For what concerns the rotary inertia 

approximation, it is a reasonable assumption when the length of the beam is 10 

times greater than the height. Both requirements are respected since only the first 

two natural frequencies analysed along the experiment and since the U-shaped 

frame beams have a length way greater than the height.  

The U-shaped frame has been built using three Euler-Bernoulli beams attached 

one to the other (the small fillet are neglected in the analytical model) and it has 

two fixed constraints that block the displacements in every direction and every 

rotation. The reason why will be highlighted in the next chapter, though it’s 

important to model the accelerometers: they are easily taken into account by 

imposing a mass in the middle point of the horizontal beam.  

Four boundary conditions are needed to properly solve a Euler-Bernoulli 

equation of motion, four are the parameters that compose the eigenfunction used to 

solve the equation. Then, the resolution of the linear analytical model of the frame 

implies 16 boundaries conditions which are collected below: 

 �<�0, �� = 0�<% �0, �� = 0�$�=$, �� = 0�$%�=$, �� = 0���0, �� = 0�<% �=<, �� = ��% �0, ���>�>�<%%�=<, �� = �>�>��%%�0, �����=�, �� = ���0, ����% �=�, �� = ��% �0, ���>�>��%%�=�, �� = �>�>��%%�0, ���>�>��%%�=�, �� = �:���=�, �� + �>�>��%%�0, �����=�, �� = 0��% �=�, �� = �$% �0, ���>�>��%%�=�, �� = �>�>�$%%�0, ���<�=<, �� = −�$�0, ��

 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

     �>�>�<%%%�=<, �� + �>�>��%%�0, ��= �(>)>�=� + =��+ �:��̈<�=<, �� 

 

(2.16) 
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The determinant of the matrix solving the system of equation is plotted in the figure 

below.  

The mode shapes related to the first two natural frequencies are plotted as well 

below.  

Figure 2.6: Representation of the determinant function of the eigenvalues matrix 

 

Figure 2.7: Picture (1) represents the first mode shape of the frame; 

Picture (2) represents the second mode shape 
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3. Preliminary test and model 

updating 

The outcomes of the experimental measurement are the foundation of the digital 

twin development. Before proceeding to the analysis of the research, it is necessary 

to perform preliminary test on the object. Such preliminary tests are: 

- Random vibration analysis: the illustrated structure is subjected to random 

vibrations to excite all the frequencies and detect the natural ones. 

3.1 Quantification of the uncertainties  

The experimental measurements have revealed that the dynamic response signal of 

the frame is influenced by the presence of the cables that link the accelerometers to 

the analog to digital converter. The procedure adopted for the accelerometers, 

which was to simplify them as mass points, could not be repeated for the cables 

because they are attached all along the structure, affecting the overall damping of 

the frame.  

Even if it does not reflect the reality, the method chosen to model the cable is to 

add a mass to the mass points representing the accelerometers and to vary the model 

parameters, the length, the width or the thickness of the system, until the dynamic 

response of the designed frame is similar to the experimental measurements. The 

method is effective, but it requests several iterations to reach a precise result. 

For the sake of simplicity, the procedure has been applied to the linear model which 

has been tuned in order to have similar natural frequencies with respect to the 

extrapolated from the measurements. Tuning the model to the experimental results 

means to vary the system properties in order to have outputs similar to the ones of 

the physical object with the same input. It helps to understand which properties of 

the system affect to a large scale the dynamic behaviour. 

Table 2 contains a series of simulations or experimental tests where the natural 

frequencies of the first (W₁) and second (W₂) vibration modes of a structure are 

recorded, while varying some physical and geometrical parameters: material 

density, lengths (L₁, L₂), width (w), and thickness (s). All values are expressed in 

SI units. 

Main Observations: 

 Material Density 

The density ranges from 2650 to 2750 ��/�³, which is typical for aluminum. 

An increase in density generally leads to a reduction in the natural frequencies. 
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 Lengths L₁ and L₂ 

Minor dimensional variations were explored: 

o L₁ varies between approximately 0.156 m and 0.168 m 

o L₂ ranges from 0.115 m to 0.125 m 

Even small changes in length significantly affect the frequencies: an increase in 

length (especially L₁) tends to reduce natural frequencies due to the decrease in 

flexural stiffness. 

 

 Width (w) and Thickness (s) 

The width ranges from 0.0185 m to 0.0205 m, while the thickness varies 

between 0.0005 m and 0.0007 m. 

o An increase in thickness results in a clear rise in natural frequencies, 

confirming the high sensitivity of flexural stiffness to thickness variation 

(since the second moment of area I ∝ s·w³ or w·s³ depending on 

orientation). 

o The effect of width variation is less pronounced but still observable. 

Frequency Response: 

 The first mode frequency varies from approximately 11.78 Hz to 15.73 Hz. 

 The second mode spans from 28.55 Hz to 42.86 Hz. 

 The combined effect of geometric and mass variations leads to a maximum 

deviation of up to 35% for the second mode and around 25% for the first, 

highlighting the system’s sensitivity. 

This parametric analysis aims to assess the sensitivity of the system’s dynamic 

behavior to changes in physical and geometrical parameters. These insights are 

fundamental during the model updating phase, helping to align numerical models 

with experimental data. They also support the evaluation of nonlinear structural 

effects, such as internal resonance, which may emerge under specific mass and 

geometry configurations. 
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Density �BCDE� 

L1 �D� L2 �D� w �D� s �D� FG�HI�  FJ�HI�  
2700 0.162 0.12 0.0195 0.0006 14.14 36.74 

2750 0.162 0.12.12 0.0195195 0.0006 14.01 36.40 

2650 0.162 0.12 0.0195 0.0006 14.27 37.08 

2700 0.168 0.120.12 0.0195 0.0006 13.38 36.33 

2700 0. 156 0.12 0.0195 0.0006 14.96 37.14 

2700 0.162 0.125 0.0195 0.0006 13.85 28.55 

2700 0.162 0.115 0.0195 0.0006 14.43 39.48 

2700 0.162 0.12 0.0205 0.0006 14.14 36.74 

2700 0.162 0.12 0.0185 0.0006 14.14 36.74 

2700 0.162 0.12 0.0195 0.0007 15.73 42.86 

2700 0.162 0.12 0.0195 0.0005 11.78 30.61 

Table 1: influence of the frame dimensions on the natural frequencies 
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As said before, after some necessary iterations the results related to the frame 

without sensors are showed below. According to the standard, the percentage error 

has an acceptable range of 0 to 5 % which is respected for both the natural 

frequencies. 

To estimate the mass of the cables an iterative procedure has been portrayed, and 

the results are collected in the table.  

 

As for the system with accelerometers and cables, the results are collected in the 

following table. 

  

Modes Experimental data (Hz) Calculated results (Hz) Error (%) 

1 15.5 15.16 2 

2 42.5 43.9 3 

Table 2: Natural frequencies of the portal frame without accelerometers 

Modes Experimental data (Hz) Calculated results (Hz) Error (%) 

1 9.7 9.95 3 

2 19.7 19.69 0 

Table 3: Natural frequencies of the portal frame with accelerometers 
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3.2 Preliminary test data 

The portal frame is excited through vertical random vibrations using the 

electrodynamic shaker. The graph below presents all the responses of the base 

vertical acceleration with an amplitude of 1.7 �/�� during 60 seconds of 

measurement: 

- The first graph represents the random acceleration to which the model is 

subjected 

- The second graph represents the vertical acceleration of the accelerometer 

cleared by the vertical acceleration of the base of the frame 

- The third graph represents horizontal acceleration.  

Collected data are postprocessed in the frequency domain in terms of 

transmissibility and coherence function. The transmissibility is defined as: 

 T�f� = MNOPNO QRPSTONUVWXPNO QRPSTONUV    
The diagram stands for the vertical transmissibility, the ratio between the base 

acceleration and the vertical acceleration collected by the accelerometer.  

Figure 3.2.1: Diagrams of the base acceleration, of the relative vertical acceleration and of the horizontal 

acceleration 
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While the next diagram stands for horizontal transmissibility, the ratio between the 

base acceleration and the hizontal acceleration collected by the accelerometer.  
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Figure 3.2.2: Graph of the vertical relative transmissibility 

Figure 3.2.3: Graph of the horizontal transmissibility 
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The coherence function is an indicator that quantifies the degree of linear 

correlation between two signals at each frequency. It is particularly valuable in the 

context of systems characterized by input-output relationships. 

The coherence function is mathematically defined as: 

 γ��f� = ∣ Gxy�f� ∣2Gxx�f� ⋅ Gyy�f� 

 

 

Where: 

 G`a� �: Cross-power spectral density between input x(t) and output y(t) 

 G``� �: Auto-power spectral density of input 

 Gaa � �: Auto-power spectral density of output 

 b�� �: Coherence, a function of frequency f 

Coherence takes values in the range: 

0 ≤ γ��f� ≤ 1 

A coherence value of 1 indicates a perfect linear relationship between input and 

output at the given frequency, whereas a value of 0 implies a complete lack of 

correlation, typically suggesting the presence of noise, nonlinearities, or other 

unmodeled dynamics. High coherence signifies that the system behaves in a 

predictable, linear manner, which is advantageous for system identification and 

transfer function modeling. Conversely, low coherence may be indicative of 

measurement noise, nonlinear system behavior, or unrelated external influences. In 

the graph presented below, the coherence associated with the vertical 

transmissibility tends to zero only in correspondence with the second natural 

frequency. This reduction in coherence is likely attributable to nonlinear dynamic 

behavior of the supporting frame structure. 
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Figure 3.2.4: Coherence of the vertical relative transmissibility 

In the case of the coherence of the horizontal transmissibility, the function 

coherence behaves as can be seen in the graph below. 

 

 

Figure 3.2.5: Coherence of the horizontal transmissibility 

The diagram is different from the previous one since there is noise at the beginning, 

approximately to 0, and at the end of the measurement, approximately to 40 Hz, 
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while between 5 and around 35 Hz the coherence tends to 1. In particular, there is 

a peak which tends to 0.7 at around 10 Hz probably caused by nonlinear behaviour. 

The tests are distinguished by increasing the excitation gain, while all other 

parameters are held constant to ensure controlled comparability. For the sake of 

completeness, the five measurements, along with corresponding setup parameters, 

are presented in the table below. The tests are distinguished by increasing the 

excitation gain, while all other parameters are held constant to ensure controlled 

comparability. 

 

Table 4:List of the five measurements 

The parameters are: 

- Type of Excitation 

All measurements utilize random excitation, a broadband input signal that 

excites a wide range of frequencies simultaneously.  

- Sampling Frequency (Fs) 

The sampling rate is consistently set at 512 Hz, which satisfies the Nyquist 

criterion for the specified frequency range (0–50 Hz). 

- Gain Variation 

The gain, corresponding to the amplitude of the excitation signal applied 

to the shaker, is systematically increased from 0.1 V to 0.9 V in steps of 

0.2 V. 

This allows for the investigation of nonlinear effects, such as amplitude-

dependent shifts in resonance frequency, jump phenomena, or internal 

resonances that may emerge at higher excitation levels. The gain 

increment strategy is designed to progressively excite the system without 

introducing damage, starting from linear behavior (low amplitude) toward 

possible nonlinear responses at higher amplitudes. 

- Frequency Range and Duration 

The excitation frequency band is kept constant between 0 Hz and 50 Hz, 

encompassing the expected fundamental and higher vibration modes of the 

structure. Each measurement has a duration of 60 seconds, which offers 

sufficient time to ensure statistical convergence of spectral estimates (e.g., 

Power Spectral Density, Frequency Response Function) while maintaining 

manageable data volumes. 

 

Test nr. Excitation Fs (Hz) Gain 

(V) 

fMin 

(Hz) 

fMax 

(Hz) 

Time length 

(s) 

1° Random 512 0.1 0 50 60 

2° Random 512 0.3 0 50 60 

3° Random 512 0.5 0 50 60 

4° Random 512 0.7 0 50 60 

5° Random 512 0.9 0 50 60 
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Although the data obtained from the preliminary test are precise, they do not 

perfectly represent the actual dynamic behavior of the structure, as they are 

influenced by the measurement devices themselves. Specifically, the frame has an 

approximate mass of 21 grams, while the combined mass of the accelerometers, 

joined by a steel layer and two screws, which is about 15.3 grams. Having said that, 

it becomes necessary to analyze how much and how the weight of the assembled 

accelerometers influence the structural dynamics of the frame when it is subjected 

to the shaker vibration. 

Furthermore, the presence of sensor cables affect the structural dynamic behavior. 

For what concerns the cables, it is crucial to consider their mass but also the 

damping effect. The damping effect refers to the phenomenon where vibrational 

energy is gradually dissipated in a mechanical system, typically resulting in a 

reduction in amplitude over time. 

After taking into account the above considerations, three tests were performed:  

- (i) with the accelerometers and cables installed on the structure  

- (ii) with the accelerometers installed on the structure 

- (iii) with bare frame only.  

A major challenge in these tests lies in the data acquisition method. As solution, it 

is proceeding adopting a video-based methodology, wherein the response of the 

system is recorded according to three setups previously described. Subsequently 

analyzed using markers to track specific points.  

The response signal was extracted using the Digital Image Correlation (DIC) 

technique. While the details of the DIC method are not the focus of this thesis, it 

was fundamental in capturing the structural response without introducing additional 

mass or damping through sensors or cables. 

As anticipated, the results validated the initial hypothesis: the presence of the cables 

significantly influences the dynamic response of the system, notably affecting both 

the natural frequencies and the damping ratios. Finally, the same type of initial 

displacement was applied to the bare frame as in the accelerometer-only case, 

allowing for a comprehensive comparison of all three scenarios. 

For each configuration (frame with accelerometers and cables, frame with 

accelerometers only, and frame only), the response data were processed to extract 

the natural frequencies and damping ratios. This analysis was conducted using the 

Linear Subspace Algorithm, which enables the estimation of modal parameters 

from measured time-domain data. The extracted values are summarized in the table 

below. 

Configuration: 1st 

Natural 

Frequencies 

2nd 

Natural 

Frequencies 

1st 

Damping 

ratio (%) 

2nd 

Damping 

ratio (%) 

Accelerometers+Cables 9.6546  Hz 19.6754  Hz 0.4208 1.9861 

Accelerometers-only 10 Hz 20 Hz - - 

Frame-only 15.5 Hz 42.5 Hz 0.1416 0.1546 

Table 5: list of modal parameters 
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For the case of accelerometers and cables, it has been used the NdB-method, which 

is a method widely adopted for extracting damping coefficients, to confirm the 

correct application of the algorithm cited before. The NdB method is based on the 

equation below and is applied just to the resonance zone of the response function. 

The two frequencies, Ωe and Ωf, are two points chosen because symmetric with 

respect to the axis passing through the natural frequency and distant 
 decibels from 

the peak in correspondence of the natural frequency.  

 

 g = 1√
 − 1 ∗ Ωe − Ωf2jk  
 

 

The procedure has been repeated twice for the two natural frequencies, taking two 

different 
 in order to have the two frequencies points as close as possible to be 

symmetric to the axis. From the first frequency, the one corresponding to the 

horizontal resonance of the system, to the second natural frequency, the one 

corresponding to the vertical resonance, are graphically showed in the pictures 

below, highlighting the chosen points.  

In conclusion, the parameter extraction has been conducted adopting the test 

portrayed with the lowest amplitude since it represents the case where the 

nonlinearities have the lowest effect.  
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Figure 3.2.6: two images of the resonance peaks. It is identified also the 

points to which the NdB method is applied. 
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3.3 Model updating  

The model updating approaches that will be used in this research are::  

- Solidworks model: a model built on the Solidworks platform on which is 

possible performing analysis, such as modal analysis, in order to compare 

the obtained data with the experimental data. 

- Linear Ansys APDL: a model built on the Ansys APDL allow to obtain 

more accurate data which will be compared to the experimental results. 

- Nonlinear Ansys APDL: a model built on Ansys APDL using nonlinear 

elements. 

Solidworks model 

Once the results of the analytical model and of the experimental tests show 

agreement, a model is designed on two different software, SolidWorks and Ansys, 

where nonlinear analysis are conducted. 

Initially, the model is designed on SolidWorks: the software permits to compute 

easily the modal analysis so it offers a valid alternative to Ansys, the software which 

will be adopted in modal analysis and in transient analysis.  

Firstly, the frame only is analysed, then the frame with accelerometers. The sizes 

of the frame are the ones retrieved through iterations. The table below shows the 

data which are compared to the experimental measurements.  

 

 

 

 

 

 

 

 

 

 

Ansys APDL model 

Then, the same type of study is conducted on Ansys APDL. The software Ansys 

APDL is quite different from Solidworks; Ansys APDL is meant for structural 

analysis. In this chapter it is done the modal analysis to catch the vibration 

characteristics of a structure. The first step toward the simulation is the definition 

of the model, keeping in mind that only linear behaviour is valid in a modal analysis 

and material properties can be linear, isotropic or orthotropic, and constant or 

temperature-dependent.  

 Solidworks Experimental 

measurements 

Frame-only 15.57 

Hz 

44.99 

Hz 

15.70 

Hz 

42.70 

Hz 

Frame with 

accelerometers 

9.95 

Hz 

19.65 

Hz 

9.7 Hz 19.7 

Hz 

Table 6: List of natural frequencies obtained by Solidworks and by 

experimental measurements 
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Eventually, the constraints are defined which are simply the two points connected 

to the shaker and then the simulation can be done. The analysis is portrayed with 

models built with different number of elements.  

 

 

 

 

 

 

 

Nonlinear ANSYS model 

The preliminary study, the modal analysis, is the basis for the transient dynamic 

analysis. 

 The transient dynamic analysis is a technique used to determine the dynamic 

response of a structure under the action of any general time-dependent loads. The 

transient dynamic analysis requires more computer resources so it is important to 

reduce the number of elements. The simulation is portrayed according to three 

different models, each of which has a different number of elements. Nonlinear 

structural behaviour arises from a number of causes, which can be grouped into 

these principal categories: changing status, geometric nonlinearities, material 

nonlinearities.  

In this case, the nonlinear geometries are considered. If a structure experiences large 

deformations, its changing geometric configuration can cause the structure to 

respond nonlinearly.  

Firstly, the model used for the transient dynamic analysis a the simplest one, 

meaning that is the one with the lowest number of elements. The model is the one 

used for the modal analysis.  

Secondly, after the definition of the model, it is necessary to establish the initial 

conditions, the conditions at time 0, and then apply the loads which are functions 

of time. The initial conditions for such calculations are: 

- Initial displacement equal to 0, 

- Initial velocity equal to 0, 

Initial acceleration equal to 0. 

Then it is possible to define the load varying time characteristics:  

- The type of load is the vertical displacement 

- It is applied to the base of the portal frame 

- It is a sine wave, starting and ending with a transitory phase 

 Ansys Apdl Experimental 

measurements 

Frame-only 15.441 

Hz 

44.775 

Hz 

15.70 

Hz 

42.70 

Hz 

Frame with 

accelerometers 

9.97 

Hz 

19.92 

Hz 

9.7 Hz 19.7 

Hz 

Table 7: List of natural frequencies obtained by Ansys APDL and by experimental 

measurements 
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For the transient dynamic analysis, it has been chosen a duration of 10 seconds and 

an amplitude of 1 millimetre. Such parameters could change in other simulations. 

The analysis is portrayed on ANSYS APDL, adopting a model with 32 elements.  

It is necessary to establish also the sampling frequency of the input, the base 

displacement, and of the output, the displacement of some nodes of the portal frame. 

Hence, the structure is subjected to a sine wave oscillation applied to the nodes 

located at the base and it is studied the response to such inputs. 

 

  

Figure 3.3.1: Geometry of the frame with numbered nodes (32 elements) 

 

The following results shows what it has been looking for in this thesis: the internal 

resonance. It is clearly visible in the picture: the portal frame subjected to vertical 

displacement starts to vibrate horizontally where at approximately 5 seconds the 

amplitude of oscillation increase. The legend in the picture represents at which 

nodes correspond the line while, using the picture above, it is possible to understand 

which is the node. 

For what concerns the power spectrum density, which is a measure that describes 

how the power of a signal, it is distributed across different frequencies, the picture 

shows several peaks but with low decibels. Even if the value of the peaks is low, it 

is assumed that is present harmonic distortion. 
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Figure 3.3.2: Displacements along x (u) and along y (v) directions 

 

 

Figure 3.3.3: PSDs of both signals: u and v 
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The internal resonance is clearly visible also through an animation of the system. 

Three images at different instant of time are displayed below 

 

 

 

Figure 3.3.4: First sketch of the animation 

Figure 3.3.5: Second sketch of the animation 
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Although internal resonance is observed in one measurement, it is not evident in 

the others. For instance, the images below correspond to a different measurement, 

which differs from the previous one only in terms of the time interval and of the 

number of elements. In this case, the vertical displacement does not influence the 

horizontal response, indicating the absence of internal resonance. Furthermore, the 

power spectral density exhibits peaks solely at the system's natural frequency, 

supporting this observation. 

Figure 3.3.7: Geometry of the frame with numbered nodes (16 elements) 

 

Figure 3.3.6: Third sketch of the animation 
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Figure 3.3.8: Displacements along x (u) and along y (v) directions 

Figure 3.3.9: PSDs of both signals u and v 

 



 

36 

 

Evaluation of the measured data 

The data obtained from both SolidWorks and ANSYS APDL simulations are 

presented below. A significant discrepancy is observed when the portal frame is not 

instrumented with accelerometers, whereas the results for the frame equipped with 

accelerometers align more closely with the experimental measurements. This 

variation is anticipated, as data acquired through Digital Image Correlation (DIC) 

methods tend to be less accurate than those obtained via accelerometers. 

Consequently, greater emphasis is placed on minimizing discrepancies in the 

configuration involving accelerometers, as it provides a more reliable basis for 

comparison with experimental data. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Ansys Apdl Solidworks Experimental 

measurements 

Frame-only 15.441 

Hz 

44.775 

Hz 

15.57 

Hz 

44.99 

Hz 

15.70 

Hz 

42.70 

Hz 

Frame with 

accelerometers 

9.97 

Hz 

19.92 

Hz 

9.95 

Hz 

19.65 

Hz 

9.7  

Hz 

19.7 

Hz 

Table 8: Complete list of natural frequencies from ANSYS APDL, Solidworks and Experimental measurements 
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4. Experimental verification with 

piezoelectric VEH 
The mechanical system has been subjected to: 

- Run up and down at a frequency of 19 Hz 

- Random vibrations 

- Random vibrations using piezoelectric devices  

The experimental setup is shown below: it is used only one piezoelectric device and 

is installed in the lower part of the frame. 

 

 

 

 

 

 

Figure 7.1: Picture of the piezoelectric device installed on the portal frame 
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It is also possible to visualize how the setup is done in the picture below. 

 

 

Figure 4.2: Diagram of the portal frame with mid mass and piezoelectric device 

 

From the mechanical model, object of the research, the measured data are: 

Random vibrations 

The portal frame is subject to two types of random vibrations: the first random 

vibration is characterized by low amplitude while the second is characterized by 

high amplitude of oscillations. 
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Figure 4.3: Diagrams of the base acceleration, of the relative vertical acceleration and of the horizontal 

acceleration 

Moreover, the power spectrum densities of the signals are studied. The peaks of the 

two signals are not coincident because of the effect of nonlinearities, indeed, as 

already explained, large amplitude of oscillation is responsible for the incurrence 

of nonlinear behaviour. 
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Figure 4.4: Diagrams of the PSDs of the base acceleration, of the vertical acceleration and of the horizontal 

acceleration. 

 

For what concern the transmissibility, the following picture shows vertical and 

horizontal acceleration transmissibility for the two excitation levels. 
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Figure 4.5: Diagrams of the vertical and horizontal transmissibility 
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Random vibrations using piezoelectric devices 

The following image describes the base acceleration, the vertical acceleration and 

the horizontal acceleration with a high gain of measurement, a high amplitude of 

oscillation.  

 

 

Figure 4.6: Diagrams of the base acceleration, of the relative vertical acceleration and of the horizontal 

acceleration 
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Unlike the previous case, in the next image it is present also the voltage function, 

thanks to the presence of piezoelectric devices. The voltage has two peaks 

corresponding to the two natural frequencies. 

 

 

Figure 4.7: Diagrams of the PSDs of the voltage signal, of the vertical acceleration and of the horizontal 

acceleration. 
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Finally, both vertical and horizontal transmissibility are plotted in the graph below. 

 

 

  

Figure 4.8 Diagrams of the vertical and horizontal transmissibility. 
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Run up and down of sine at frequency 19 Hz 

The portal frame is subjected to a base acceleration of 2 �/�� and the output of 

piezoelectric system is analysed. 

The first picture shows two graphs: the first represent the base acceleration while 

the second represent the acceleration of the accelerometer positioned at the middle 

of the horizontal beam. The first graph doesn’t need to focus on, it simply represent 

the base acceleration. The second graph is noteworthy since it is evident the 

presence of the internal resonance. In the color blu is visible the vertical motion of 

the accelerometer while in the color orange the horizontal motion. When the frame 

starts to oscillate horizontally, the oscillations of the orange line starts to increase, 

there is visible the internal resonance. 

 

 

Figure 4.9: Diagrams of the base acceleration and of both vertical and horizontal accelerations. 
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Figure 4.10: Diagrams of the PSDs of the voltage, of the vertical acceleration and of the horizontal acceleration 

 

A spectrogram is a visual representation of the frequency spectrum of a signal as it 

varies over time. It shows how the energy or intensity of different frequencies 

changes across time. The spectrograms characteristics: 

 

- The horizontal axis (x-axis) represents time. 

- The vertical axis (y-axis) represents frequency. 

- The colour or brightness of each point indicates the amplitude (intensity) of 

a particular frequency at a particular time 
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Figure 4.11: Spectogram 
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 5. Conclusions and Future Work 

1. Summary and Objectives 

This research was undertaken to investigate the dynamic behavior of a vibration 

energy harvester (VEH) exhibiting nonlinear internal resonance and utilizing 

piezoelectric materials for energy conversion. The study aimed to develop a reliable 

digital twin of the VEH system, combining both linear and nonlinear modeling 

approaches, and to validate these models through experimental measurements. 

Particular attention was given to the influence of measurement instrumentation, 

especially the impact of accelerometers and their associated cabling, on the modal 

properties of the structure. 

The scope of this work included the design and modeling of the VEH using 

SolidWorks and ANSYS APDL, the performance of preliminary modal and 

transient analyses, and the execution of experimental campaigns incorporating both 

traditional accelerometer-based measurements and non-contact Digital Image 

Correlation (DIC) techniques. 

2. Main Findings 

2.1 Internal Resonance and Nonlinear Dynamics 

The study confirmed the presence of internal resonance within the VEH structure, 

specifically a 2:1 modal interaction that broadens the system's effective frequency 

response. This phenomenon was both predicted by nonlinear simulations and 

observed experimentally, particularly under sinusoidal base excitation near 19 Hz. 

The nonlinear coupling between vibration modes enhances energy harvesting 

performance by increasing the bandwidth over which significant power can be 

extracted. 

2.2 Influence of Accelerometers and Cabling 

Experimental and numerical analyses demonstrated that the mass of the 

accelerometers significantly affects the dynamic behavior of the structure. 

Specifically, their addition leads to a measurable reduction in the system's natural 

frequencies. While this mass effect is easily derivable, the influence of the 

connecting cables proved more complex. The cables contribute not only to 

additional mass but also to increased damping, altering both frequency and energy 

dissipation characteristics of the frame. Although simplifications were employed 

(e.g., modeling cables as lumped masses), these do not fully capture the distributed 

and frequency-dependent nature of the cable dynamics. 
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2.3 Experimental Techniques and Data Analysis 

The combined use of accelerometers and DIC enabled a comprehensive assessment 

of VEH’s response. Accelerometers offered precise point measurements of modal 

frequencies and damping ratios, while the DIC system provided displacement data, 

enabling mode shape visualization. Data analysis was performed using linear 

subspace identification algorithms, and damping estimates were further validated 

using the -NdB method. 

3. Reflections on Modeling and Methodology 

The use of finite element models in both SolidWorks and ANSYS APDL was 

instrumental in developing a digital twin of the VEH system. Modal analysis in 

SolidWorks provided a rapid design-validation loop, while ANSYS APDL enabled 

more advanced nonlinear transient simulations. Such simulations were crucial for 

predicting the onset and evolution of internal resonance phenomena. 

Nonetheless, the modeling assumptions, particularly the exclusion of cable 

flexibility and damping, as well as the reliance on linear piezoelectric material 

models—were needed. While the match between simulations and experiments was 

acceptable within the primary frequency range, discrepancies emerged at higher 

frequencies and amplitudes. 

4. Limits 

Several limits emerged during the research: 

 The complex influence of measurement cables was not fully captured by the 

numerical model. Despite iterative mass adjustment strategies, the actual 

damping and inertial effects of cables remain only partially understood. 

 Internal resonance is a dynamic phenomenon that remains at the forefront 

of current research. Due to its nonlinear and complex nature—characterized 

by modal energy transfer, frequency coupling, and amplitude-dependent 

behavior—accurately capturing it in numerical simulations poses 

significant challenges. Commercial finite element software such as ANSYS 

APDL, while highly effective for linear and or mildly nonlinear problems, 

struggles to fully reproduce the intricate dynamics of internal resonance. 

Such limitations arise from the difficulty in modeling strong mode 

interactions and geometric nonlinearities. 

 The experimental setup constrained excitation to a fixed direction (vertical), 

limiting exploration of multi-directional input cases. 
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5. Future Work 

The findings of this thesis suggest several directions for future investigation: 

 Advanced Cable Modeling: Incorporating flexible-body dynamics or 

distributed parameter models to more accurately represent cabling effects. 

 Wireless Sensing: Exploring the use of lightweight or wireless 

accelerometers to reduce mass-loading effects. 

 Control and Adaptivity: Investigating active or passive control strategies 

that exploit internal resonance to optimize harvesting under varying 

excitation conditions. 

 Material Modeling Enhancements: Including nonlinear or hysteretic 

piezoelectric material models to better predict electromechanical coupling 

behavior at higher excitation levels. 

 Software limit: Future work could focus on developing hybrid modeling 

frameworks that couple finite element simulations with reduced-order 

models (ROMs) or machine learning-based surrogate models. These 

approaches could allow more efficient and accurate prediction of complex 

nonlinear behaviors like internal resonance. Additionally, implementing 

user-defined elements or integrating ANSYS APDL with external solvers 

(e.g., MATLAB, Python-based nonlinear dynamic libraries) may offer 

greater flexibility for capturing modal interactions. Experimental validation 

under varying excitation profiles, multi-directional inputs, or under 

operational loads would further support the reliability of these models and 

extend their applicability to real-world energy harvesting systems and 

structural health monitoring platforms. 

6. Concluding Remarks 

This study has demonstrated that internal resonance mechanisms in VEH systems 

can be harnessed to improve performance over a broader frequency spectrum. 

Through the integration of analytical, numerical, and experimental techniques, a 

validated digital twin of the system was developed. The impact of instrumentation, 

particularly sensor mass and cable dynamics, was systematically evaluated, 

highlighting the need for careful experimental design and model calibration. 

The results provide a robust foundation for future research in nonlinear energy 

harvesting systems and digital twin development for adaptive and resilient energy 

solutions. 
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