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Abstract 

Stockbridge dampers are widely used in overhead transmission lines to mitigate aeolian 

vibrations and protect conductors from fatigue failure. This research addresses the limitations 

of linear damping models in accurately representing the dynamic behavior of Stockbridge 

dampers, utilizing Bouc-Wen non-linear damping, and captures experimentally observed 

vibrations. A novel approach is proposed to develop a nonlinear model of Stockbridge dampers 

using neural networks to learn complex nonlinear relationships and genetic algorithms for 

parameter optimization. The objectives of this research are to improve the accuracy of damper 

performance prediction, enhance design optimization strategies, and gain deeper insights into 

the damper's complex dynamics. The methodology involves analyzing similar SDOF and 

MDOF systems and exercising nonlinear properties, and applying optimization to validate the 

approach, developing a neural network model that accounts for nonlinearities and 3D motion, 

validated against experimental data and finite element analysis results. Genetic algorithms will 

be used to optimize model parameters and explore potential improvements in damper design. 

The expected outcomes of this research include a more accurate and reliable tool for analyzing 

and designing Stockbridge dampers, resulting in enhanced vibration mitigation in slender 

structures, such as overhead power lines and cable-stay bridges.  
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1 Introduction 

Stockbridge dampers play a crucial role in mitigating wind-induced vibrations on slender 

structures such as overhead power lines and cable-stay bridges. These vibrations, particularly 

aeolian vibrations, can lead to fatigue failure in conductors, thereby necessitating effective 

damping solutions to ensure the longevity and reliability of these critical infrastructures. The 

Stockbridge damper has been widely adopted across various cable-supported structures for its 

ability to dissipate energy and reduce vibration amplitudes. Aeolian vibration, a significant 

concern for overhead lines, occurs primarily in the vertical plane due to alternating vortex 

shedding caused by wind flow. This type of vibration is a principal cause of failure in conductor 

strands, making the effective application of Stockbridge dampers essential. Since their 

invention in the 1920s, Stockbridge dampers have remained a relevant and effective solution 

for controlling these vibrations[1], [2]. 

Aeolian vibration is a specific type of wind-induced oscillation that affects cylindrical 

structures such as overhead power line conductors. This phenomenon arises from the flow of 

wind across the conductor, which disrupts the airflow and causes the alternating shedding of 

vortices on the leeward (downwind) side. These shed vortices, known as Karman vortices, 

create fluctuating pressure zones around the conductor, resulting in periodic forces that induce 

vibration. Typically, aeolian vibrations are characterized by high frequencies, ranging from 3 

to 50 Hertz with a wind speed of 1-7 m/s, and small amplitudes, measured in millimeters to 

centimeters[3]. The frequency of these vibrations is directly related to the wind speed and 

inversely proportional to the diameter of the conductor, a relationship that can be approximated 

by the Strouhal formula: 𝑓 = 𝑆𝑡 ∗ 𝑉/𝐷, where 'f' is the frequency, 'St' is the Strouhal number 

(an empirical constant), 'V' is the wind speed, and 'D' is the conductor diameter. This formula 

reveals that for a given wind speed, conductors with smaller diameters are more prone to 

experiencing higher frequency vibrations compared to larger conductors[2], [4].    

Aeolian vibrations pose a significant concern for the structural integrity of overhead power 

lines. The continuous, high-frequency oscillations induce repetitive bending stresses in the 

conductor strands, particularly at support points where the conductor is clamped to towers and 

insulators. Over time, these cyclic stresses can lead to fatigue failure of the conductor strands, 

which can compromise the mechanical strength and electrical conductivity of the power line. 

Additionally, aeolian vibrations can cause wear and tear on insulators and other hardware 

components, potentially leading to electrical faults and increased maintenance costs[3].  

1.1 Limitations of Linear Damping Models for Stockbridge Dampers 

Linear viscous damping models, which typically assume that the damping force is directly 

proportional to the velocity of the vibrating object, often prove inadequate in accurately 

representing the behavior of Stockbridge dampers. The dynamic behavior of Stockbridge 

dampers involves several sources of nonlinearity that deviate significantly from this linear 

assumption. While linear models may provide acceptable results in some cases, they often fall 

short, particularly those involving complex interactions within a Stockbridge damper. 

Simplified linear models, such as mass-spring-viscous damper systems, have been shown to 

yield poor results when predicting the forced response of these devices[5].    

One of the primary sources of nonlinearity in Stockbridge dampers is the friction that occurs 

between the individual strands of the messenger cable. This friction, which is the principal 
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mechanism through which the damper dissipates energy, exhibits nonlinear characteristics. 

These characteristics include stick-slip behavior, where the friction force changes abruptly 

depending on whether the surfaces are sliding or stuck, and a dependence on the amplitude of 

vibration. It has been noted that the high efficiency of Stockbridge dampers can be attributed 

to this nonlinear behavior. To better represent this, more complex models incorporating 

distributed Jenkin elements, which consist of linear springs and Coulomb friction elements 

arranged in parallel, have been used. The dynamic response of Stockbridge dampers is indeed 

markedly nonlinear and hysteretic due to this frictional dissipation of energy localized on the 

contact surfaces between adjacent wires of the messenger cable[5], [6]. 

Geometric nonlinearities also play a significant role in the behavior of Stockbridge dampers. 

During vibration, the messenger cable undergoes large deflections and stretching, which 

introduce nonlinearities in its stiffness[5], [6]. The relationship between the applied force and 

the resulting deformation becomes non-proportional, especially at larger vibration amplitudes. 

This geometric elongation and the resulting nonlinear stiffness are crucial aspects that linear 

models often neglect. Furthermore, the bending stiffness of the messenger cable might not be 

uniform along its length, exhibiting a "boundary layer like transition" in the end zones, which 

significantly affects the overall behavior of the damper.    

Material nonlinearities can also contribute to the complex dynamics of Stockbridge dampers. 

The messenger cable, being a stranded structure, and the materials used in its construction may 

exhibit nonlinear material properties under dynamic loading conditions. Experimental data has 

shown that parameters like flexural stiffness and the loss factor of the messenger cable are not 

constant but depend on the frequency of excitation, indicating nonlinear material behavior[6].    

The use of linear models can lead to several inaccuracies in predicting the performance of 

Stockbridge dampers. These models may fail to accurately predict the resonant frequencies of 

the damper, which are critical for its effectiveness. They may also provide incorrect damping 

ratios, leading to an overestimation or underestimation of the damper's ability to dissipate 

energy. The overall effectiveness of the damper across a range of vibration amplitudes and 

frequencies is also poorly captured by linear representations. Experimental observations have 

revealed a strong nonlinear behavior, where the natural frequencies and impedance curves of 

the damper vary significantly with the amplitude of the excitation[2], [6]. Linear analytical 

models have been acknowledged as insufficient to fully understand the response of 

transmission line conductors in the presence of Stockbridge dampers. Comparisons between 

linear analytical models and experimental results have shown that the mode frequencies 

predicted by linear models can be significantly lower than those observed experimentally and 

do not reflect the dependence on the driving velocity, highlighting the shortcomings of such 

approaches. Several research efforts have specifically addressed these limitations, advocating 

for the development and application of nonlinear models to better predict the dynamic response 

of Stockbridge dampers.    

1.2 Neural Network Modelling of Nonlinear Dynamic Systems 

Neural networks (NNs) have emerged as powerful and versatile tools for modeling complex 

nonlinear relationships in various engineering disciplines, including the analysis of dynamic 

systems. Their inherent ability to learn intricate patterns directly from data makes them 

particularly well-suited for capturing the nonlinear behavior often exhibited by real-world 

systems, where traditional linear models may prove inadequate. The strength of NNs lies in 
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their capacity to approximate complex nonlinear mappings and adapt to the nonlinearities 

present in the behavior patterns of a system[7], [8], [9], [10]. 

One of the key advantages of neural networks is their ability to capture nonlinear behavior that 

traditional linear models often fail to represent. For instance, in Stockbridge dampers, damping 

and stiffness characteristics are not constant but can vary significantly with the amplitude of 

vibration. Linear models, with their fixed parameters, cannot account for such amplitude-

dependent behavior. However, neural networks can be trained to learn these complex 

relationships from experimental or high-fidelity simulation data, providing a more accurate 

representation of the system's dynamics. Studies have shown that parameters like the natural 

frequency and flexural stiffness of a Stockbridge damper can depend on the amplitude of the 

base excitation, a nonlinearity that can be effectively modeled using techniques like the Bouc-

Wen hysteretic model, which can be implemented within a neural network framework.    

Various types of neural network architectures are suitable for modeling dynamic systems, each 

with its own strengths and applications. Feedforward neural networks (FFNNs) are a 

fundamental type capable of learning complex mappings between inputs and outputs. 

Recurrent neural networks (RNNs), particularly their variants like Long Short-Term Memory 

(LSTM) networks, are designed to process sequential data and can capture temporal 

dependencies in dynamic systems, making them suitable for modeling time-varying behavior. 

Convolutional neural networks (CNNs), while initially developed for image processing, can 

also be adapted for dynamic system modeling, especially when dealing with multi-dimensional 

data or when feature extraction from time-series is required. The choice of the appropriate 

neural network architecture often depends on the specific characteristics of the dynamic system 

being modeled and the nature of the available data[9]. 

The application of neural networks in the context of vibration damping has garnered increasing 

attention. Researchers have explored using NNs for nonlinear modal identification in 

dynamical systems, aiming to extract nonlinear normal modes that provide a comprehensive 

representation of the system's dynamics. Physics-informed neural networks (PINNs) represent 

a particularly promising approach, where known physical laws, such as the governing 

differential equations of motion, are incorporated into the neural network's training process[9]. 

This integration of physics can improve the accuracy and generalization capabilities of the 

models, especially for nonlinear structural systems where damping is a crucial factor. Deep 

learning techniques, including neural networks, are also being used to generate reduced-order 

models of complex systems, including vibratory systems, for efficient simulation and 

optimization.    

Neural networks offer several advantages for modeling dynamic systems. Their ability to learn 

complex patterns from data allows them to capture intricate nonlinearities that might be 

difficult to model using traditional analytical methods. They can also handle noisy data to some 

extent and have the potential to generalize to unseen conditions, making the trained models 

useful for prediction and analysis beyond the specific data they were trained on. The data-

driven nature of neural networks enables them to model system behavior directly from 

observed data, without requiring explicit knowledge of the underlying physical equations in all 

cases.    
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1.3 Genetic Algorithms for Optimization in Structural Dynamics 

Genetic algorithms (GAs) are powerful stochastic optimization techniques inspired by the 

principles of natural selection and genetics. These algorithms have proven to be highly effective 

in solving complex optimization problems across various engineering domains, including 

structural dynamics. GAs work by maintaining a population of potential solutions, which are 

iteratively improved through processes analogous to natural selection, crossover, and mutation, 

ultimately converging towards an optimal or near-optimal solution[11].    

In the context of Stockbridge dampers, genetic algorithms can be effectively utilized to 

optimize various design parameters to enhance their vibration damping performance. These 

parameters can include the mass distribution of the damper weights, the length and material 

properties of the messenger cable, and even the overall geometry of the damper. The objective 

of such optimization can be to maximize the attenuation of vibrations in the conductor, 

minimize the cost of the damper materials, or achieve a balance between multiple performance 

criteria. For example, studies have proposed using GAs to find the optimal parameters that lead 

to maximum vibration reduction across the expected range of wind-induced frequencies. The 

mass of the damper weights and the length of the messenger cable have been identified as key 

variables influencing vibration attenuation, making them suitable parameters for optimization 

using GAs. Furthermore, GAs have been applied to the design of asymmetric Stockbridge 

dampers to improve their efficiency in mitigating wind-induced vibrations by optimizing their 

multiple resonance frequencies[12].    

Genetic algorithms offer several advantages that make them well-suited for optimization 

problems in structural dynamics. They can effectively handle complex and discontinuous 

design spaces, which are often encountered in structural optimization. Unlike gradient-based 

methods, GAs do not require gradient information of the objective function, making them 

applicable to a wider range of problems, including those where the objective function is not 

smooth or differentiable. Their population-based search strategy increases the likelihood of 

finding globally optimal or near-optimal solutions, rather than getting stuck in local optima.    

The integration of genetic algorithms with other computational methods, such as finite element 

analysis (FEA) and neural networks, has proven to be particularly powerful for tackling 

complex engineering problems. For example, GAs can be used to find the optimal set of design 

parameters that are then evaluated using a detailed FEA model. Similarly, GAs can be 

employed to optimize the architecture and training parameters of neural networks for specific 

applications. These hybrid approaches leverage the strengths of each method, resulting in more 

effective optimization and model identification strategies.    

1.4 Scope and contributions 

1.4.1 Use of nonlinear damping model; Bouc-Wen model in Stockbridge dampers 

This thesis addresses the limitations of linear simulation models for Stockbridge dampers by 

introducing a novel nonlinear modeling approach based on the Bouc-Wen model. Traditional 

linear models often fall short in accurately capturing key dynamic behaviors of these dampers, 

such as the softening and hardening responses observed under varying excitation amplitudes. 

Additionally, they tend to exhibit significant inaccuracies near the system’s natural frequencies 

and in the lower frequency range, where nonlinear effects become more pronounced. By 

incorporating the Bouc-Wen model—a widely used framework for representing hysteretic 
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nonlinearities—we aim to overcome these shortcomings and provide a more realistic and 

predictive simulation of the damper’s dynamic response. This approach enables a better 

understanding of the energy dissipation mechanisms and contributes to more accurate design 

and analysis of vibration mitigation systems in overhead power lines. 

1.4.2 Formulation of a NN-based parameter estimator for Bouc-Wen nonlinearities 

Replacing traditional Genetic Algorithm (GA) optimization with Neural Network Optimization 

(NNO) results in more accurate and efficient optimization outcomes. NNO acts as a surrogate 

model that integrates an Artificial Neural Network (ANN) with a Genetic Algorithm, 

combining the strengths of both approaches. The ANN is trained to approximate the objective 

function, allowing the optimizer to explore the design space much faster than evaluating the 

full model at every iteration. This hybrid approach addresses several common issues associated 

with standalone GA methods, such as long computation times, a high chance of becoming 

trapped in local optima, and convergence instability. By using the ANN as a predictive model, 

the NNO guides the search process more intelligently, significantly reducing the number of 

expensive function evaluations while improving the likelihood of finding a global optimum. 

This makes it especially valuable for complex, computationally intensive engineering problems 

like those encountered in modeling and optimizing Stockbridge dampers. 
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2 Literature Review 

The mitigation of unwanted vibrations is a critical aspect of mechanical and structural 

engineering, ensuring the stability, safety, and extended lifespan of a wide array of systems. 

From intricate machinery to expansive infrastructure, the demand for effective damping 

solutions has grown in tandem with advancements in technology and construction. This 

literature review aims to provide a comprehensive exploration of the evolution of damping 

devices, the conventional design methodologies employed for various types of dampers, a 

focused examination of Stockbridge dampers utilized in overhead power lines, and an in-depth 

analysis of nonlinear hysteresis models, with particular attention to the Bouc-Wen model and 

its extensions, as well as the application of cubic stiffness elements in representing nonlinear 

structural behavior.  

2.1 Stockbridge Dampers 

The Stockbridge damper, a specific type of tuned mass damper, was invented in the 1920s by 

George H. Stockbridge, an engineer working for Southern California Edison. Its invention was 

a direct response to the problem of fatigue failures observed in overhead transmission lines 

caused by wind-induced vibrations, particularly Aeolian vibrations. Over the years, the basic 

design of the Stockbridge damper has undergone several evolutions to enhance its efficiency 

and broaden the range of vibration frequencies it can effectively address. Early Stockbridge 

dampers were considered "2-Response" designs, featuring equal weights and messenger cable 

lengths, which resulted in two primary resonant frequencies. Modern designs have largely 

replaced the original concrete blocks with metal bell-shaped weights, often hollow, with the 

damper cable fixed internally to the distal end to allow for relative motion. A significant 

advancement was the development of asymmetric Stockbridge dampers, also known as 4-R 

dampers, which utilize unequal weights and messenger cable lengths to generate four distinct 

resonant frequencies[4]. This increased number of resonant frequencies provides more 

comprehensive coverage across the spectrum of Aeolian vibration frequencies, improving the 

damper's overall effectiveness. 

Stockbridge dampers function as tuned mass dampers specifically engineered to suppress 

Aeolian vibrations, which are high-frequency, low-amplitude oscillations that occur in 

overhead power lines due to wind passing over the conductors. These vibrations, if left 

unchecked, can lead to damaging stress fatigue in the conductor strands, ultimately causing 

failure. The design of a Stockbridge damper involves several key parameters that are carefully 

considered to ensure effective vibration mitigation. The mass of the weights, often referred to 

as hammerheads, significantly influences the damper's resonant frequencies and its capacity to 

dissipate energy. Modern Stockbridge dampers frequently employ unequal weights to achieve 

multiple resonant frequencies, thereby broadening the range of vibrations that can be 

effectively damped. The length of the messenger cable, the flexible steel strand connecting the 

weights to the central clamp, determines the stiffness of the damper and consequently its 

resonant frequencies. Asymmetric dampers are characterized by unequal lengths of the 

messenger cable on either side of the clamp. The material properties of the messenger cable 

are also crucial, with steel being the standard choice, often in a specific strand configuration 

like 19-strand, which enhances inter-strand friction and thus the energy dissipation capability 

of the damper. The clamp is designed to securely attach the damper to the conductor, ensuring 

efficient transfer of vibration energy from the power line to the damper. Tuning is a critical 
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aspect of Stockbridge damper design, involving the careful selection of the mass of the weights 

and the length of the messenger cable to match the mechanical impedance of the damper to that 

of the specific power line being protected, across the relevant frequency range of Aeolian 

vibrations (typically 3 to 150 Hz). In some cases, a degree of detuning, where the damper's 

natural frequency is intentionally slightly different from the cable's, is employed to maintain 

effectiveness under varying cable tension forces caused by temperature changes and loads. In 

the application of Stockbridge dampers to overhead power lines, their placement is typically at 

anti-nodes, which are points of maximum displacement along the vibrating conductor, located 

near the suspension clamps[4]. Often, two dampers are installed per span, though longer spans 

may require more.  

Several authors have examined the dynamics of the Stockbridge damper. The common 

approach is to experimentally determine its impedance curve[13], [14], [15], [16]. Another 

approach is to model the Stockbridge damper as a two degree-of-freedom system[1], [17].  

An attempt to depart from the conventional way of modeling the Stockbridge damper was 

reported in Refs. [18], [19]. The messenger cable was modeled as an Euler–Bernoulli beam 

and the counterweight was modeled as mass with a rotatory inertia. Both studies omitted the 

geometric nonlinearity of the messenger cable and employed the finite element method. 

The current study presents an analytical model that accounts for the nonlinearity of the 

messenger cable. Numerous authors (see Refs. [20], [21], [22], [23], [24]) have examined the 

nonlinear vibration of beams with attached mass or spring mass. However, these investigations 

are limited to cases with end support. 

2.2 Nonlinear Hysteresis Models 

While linear viscous damping models have historically been prevalent in engineering analysis 

due to their mathematical simplicity, they often fall short in accurately representing the energy 

dissipation mechanisms in many real-world systems, particularly when subjected to higher 

levels of excitation or when dealing with materials exhibiting complex behaviors. These linear 

models may lead to inaccurate predictions, either underestimating or overestimating peak 

responses, miscalculating transient behaviors, and failing to capture unique characteristics 

present in actual systems. Many real-world systems exhibit damping that is not constant but 

rather depends on the amplitude and frequency of vibration, aspects that linear models with 

fixed damping coefficients cannot adequately address. This necessitates the use of more 

sophisticated nonlinear models to accurately predict and analyze the dynamic behavior of such 

systems. Hysteresis, a phenomenon characterized by a memory-dependent, multi-valued 

relationship between force and deformation, plays a crucial role in the damping of many 

materials and devices. In hysteretic damping, the restoring force not only depends on the 

instantaneous deformation but also on the history of that deformation. This type of damping 

often arises from internal friction within materials during cyclic loading, resulting in a phase 

lag between the applied stress and the resulting strain, and a dissipation of energy over each 

cycle of vibration. To accurately represent the intricate shapes of hysteresis loops observed in 

various damping devices and materials, including phenomena like softening, hardening, and 

pinching, nonlinear hysteresis models are essential. These models provide a more realistic 

depiction of the energy dissipation processes in systems where linear damping assumptions are 

no longer valid.    
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The Bouc-Wen model stands as a prominent nonlinear hysteretic model, first introduced by 

Robert Bouc in 1967 and later generalized by Yi-Kwei Wen in 1976[25]. This model has gained 

significant popularity due to its versatility in analytically capturing a wide range of hysteretic 

patterns and its mathematical tractability, allowing for smooth transitions between elastic and 

post-elastic behaviors. The Bouc-Wen model and its subsequent variants and extensions have 

found extensive applications in structural control, particularly in modeling the behavior of 

magneto-rheological dampers, base-isolation devices used in buildings, and various other types 

of damping devices. The mathematical formulation of the Bouc-Wen model often expresses 

the restoring force of a single-degree-of-freedom system as a combination of a linear elastic 

component and a nonlinear hysteretic component. The hysteretic component, denoted by the 

variable z, is governed by a first-order nonlinear differential equation that captures the memory-

dependent nature of hysteresis. A common form of this equation is (𝑧̇ = 𝐴 𝑥̇ − 𝛽|𝑥̇||𝑧|𝜈−1 𝑧 −

 𝛾 𝑥̇|𝑧|𝜈), although variations exist with slightly different parameterizations[25], [26]. Several 

key parameters within the Bouc-Wen model dictate the shape and characteristics of the 

resulting hysteresis loop. Parameter A controls the amplitude or scale of the hysteresis loop and 

is often normalized to 1 to eliminate redundancy in the parameter set. The parameters β and γ 

primarily govern the shape and geometry of the hysteresis loop, including the transition 

between elastic and plastic behavior regimes. Their ratio influences the degree of hardening or 

softening exhibited by the system. To ensure uniqueness of the parameters, a constraint such 

as (β + γ = 1) is often imposed. The positive exponent “n” controls the smoothness of the 

transition from the elastic to the post-elastic region of the hysteresis loop. Higher values of n 

result in a more abrupt transition, approximating the bilinear behavior often seen in plasticity 

models. Another parameter, α, often appears in the equation for the restoring force and 

represents the ratio of the post-yield stiffness to the pre-yield stiffness of the system[25], [26], 

[27]. 

In nonlinear structural behavior, cubic stiffness elements play a significant role in modeling 

systems where the stiffness is not constant but varies with the amplitude of deformation. In 

contrast to the linear relationship between restoring force and displacement (𝐹 = 𝑘 𝑥), a cubic 

stiffness element introduces a term proportional to the cube of the displacement (𝑘3𝑥
3), 

resulting in a nonlinear restoring force equation: (𝐹 = 𝑘1𝑥 + 𝑘3𝑥
3). This type of nonlinearity 

is often employed to represent geometric nonlinearities, particularly the stiffening effect 

observed in structural elements like beams and plates undergoing large deflections due to in-

plane stretching of their mid-surfaces. The presence of cubic stiffness can lead to the 

phenomenon of amplitude-dependent natural frequencies, where the frequency of vibration 

changes as the amplitude of motion varies. Systems incorporating cubic stiffness may also 

exhibit jump resonance, characterized by sudden changes in vibration amplitude as the 

excitation frequency is swept through the system's natural frequency range. The sign of the 

cubic stiffness coefficient 𝑘3 determines whether the system exhibits hardening or softening 

spring behavior. A positive value 𝑘3> 0 indicates a hardening spring, where the restoring force 

increases more rapidly than in a linear spring at larger displacements, leading to an increase in 

effective stiffness and typically causing the resonance peak in the frequency response to bend 

towards higher frequencies. Conversely, a negative value 𝑘3 < 0 signifies a softening spring, 

where the restoring force increases less rapidly with displacement, resulting in a decrease in 

effective stiffness at larger amplitudes and causing the resonance peak to bend towards lower 

frequencies. The nonlinear behavior introduced by cubic stiffness elements can significantly 

interact with the damping mechanisms present in the system. The amplitude-dependent 
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frequency can shift the system's resonance relative to the excitation frequency, thereby 

influencing the level of vibration and the amount of energy dissipated by any dampers present. 

In systems where cubic stiffness is significant, linear viscous damping models may not be 

adequate to accurately represent the energy dissipation. Instead, nonlinear damping models, 

which may include terms proportional to higher powers of velocity (e.g., cubic damping), might 

be necessary to capture the complex interplay between the nonlinear stiffness and damping 

forces. Therefore, cubic stiffness elements are essential for accurately modeling the nonlinear 

dynamic behavior of many structural and mechanical systems, particularly those experiencing 

large deformations or exhibiting hardening or softening spring characteristics and 

understanding their interaction with damping is crucial for designing effective vibration control 

strategies.    
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3 Neural Network Optimization: A Surrogate-Based Approach  

3.1 Introduction 

Optimization problems are fundamental across a vast spectrum of scientific and engineering 

disciplines, ranging from designing efficient algorithms to developing novel materials and 

controlling complex systems. While numerous traditional optimization methods exist, a 

significant challenge arises when dealing with objective functions that are computationally 

expensive to evaluate, particularly in the context of nonlinear least-squares problems. The 

increasing complexity of models and simulations in various fields often leads to objective 

functions where a single evaluation can consume substantial computational resources, 

rendering direct optimization via traditional methods impractical due to the prohibitive number 

of evaluations required for convergence. Nonlinear least-squares problems, which aim to 

minimize the sum of squared differences between observed and predicted values, are prevalent 

in areas such as data fitting, parameter estimation, and model calibration. These problems are 

inherently nonlinear and can possess intricate landscapes with multiple local minima, further 

complicating the optimization process. Traditional optimization algorithms, especially those 

relying on gradient information, can struggle with such complexities and the associated high 

computational costs. To address these limitations, more advanced techniques have emerged, 

one of the most promising being Neural Network Optimization (NNO). NNO represents a 

surrogate-based approach that leverages the power of Artificial Neural Networks (ANNs) and 

optimization algorithms, such as Genetic Algorithms (GAs), to efficiently tackle these 

challenging optimization problems. This report aims to provide a detailed explanation of the 

NNO technique, elucidating its underlying principles, step-by-step process, advantages, 

limitations, and potential applications across various domains.    

3.2 Fundamentals of Neural Network Optimization (NNO) 

The Neural Network Optimization (NNO) algorithm offers a strategy for solving complex 

optimization problems, especially nonlinear least-squares problems, where evaluating the 

objective function is computationally demanding. At its core, NNO employs an Artificial 

Neural Network (ANN) as a surrogate model, effectively a computationally cheaper stand-in, 

to approximate the behavior of the expensive objective function (OBJFUN). Instead of directly 

minimizing the OBJFUN, which can involve complex simulations or interactions with external 

software, NNO utilizes a faster optimization method, often a Genetic Algorithm (GA), to find 

the minimum of the trained ANN. The rationale behind this approach is that by optimizing the 

computationally efficient ANN, the algorithm can explore the solution space more extensively 

within a given computational budget, thereby increasing the likelihood of finding a good 

solution for the original OBJFUN. A key characteristic of NNO is its iterative nature. The ANN 

is not a static approximation; it is progressively refined through a series of steps involving 

evaluations of the real objective function at promising points identified by the optimization of 

the ANN. This iterative refinement allows the surrogate model to become more accurate over 

time, guiding the optimization process towards the true minimum of the OBJFUN. The 

effectiveness of NNO is predicated on the ANN's ability to learn and generalize the complex 

relationships inherent in the OBJFUN. Genetic Algorithms are particularly well-suited for 

optimizing ANNs due to their capacity to handle non-differentiable functions and navigate 

large, complex search spaces, which are typical features of the parameter space of neural 

networks.  
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Figure 3.1 (a) Schematic of Neural Network (NN) (b) Schematic of a single neuron 

3.3 Step-by-Step Explanation of the NNO Process 

The Neural Network Optimization (NNO) algorithm follows a well-defined iterative process 

to find the minimum of a computationally expensive objective function. The optimization 

procedure goes as follows: 

I. An initial set of training data is produced based on OBJFUN 

II. The ANN is trained based on the above data set. 

III. The ANN is used as an objective function in GA and is minimized. 

IV. OBJFUN is evaluated at the optimum solution that is found by GA. 

V. This extra data is added at the initial set of training data, thus extending the data by 

one additional OBJFUN function evaluation. 

VI. Replace the initial training data with the extended training data 

VII. Continue with step II above 

3.3.1 Initial Data Collection 

The process starts with the evaluation of the actual objective function (OBJFUN) at a small, 

carefully selected set of initial input values. This initial sampling is crucial as it generates the 

first training dataset that the Artificial Neural Network (ANN) will learn from. The selection 

of these initial data points is important to provide the ANN with a foundational understanding 

of the OBJFUN's behavior across the relevant input space. The quality and distribution of this 

initial data significantly influence the ANN's initial accuracy and the efficiency of the 

subsequent optimization process. If these initial samples fail to represent the key characteristics 

of the OBJFUN, the ANN might learn an inaccurate approximation, potentially leading the 

optimization towards less promising areas.    

3.3.2 ANN Training 

Once the initial dataset is collected, it is used to train the Artificial Neural Network (ANN). 

The primary goal of this training phase is for the ANN to learn the underlying mapping between 

the input values and the corresponding output values produced by the objective function 

(OBJFUN). This essentially creates a computationally cheaper approximation of the 

OBJFUN's behavior. The training process involves adjusting the internal parameters of the 

ANN, namely its weights and biases, to minimize the prediction error on the training data. Key 
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aspects of ANN training include selecting an appropriate ANN architecture (e.g., feedforward, 

convolutional, recurrent) based on the nature of the OBJFUN , choosing suitable activation 

functions for the neurons, defining a loss function to quantify the discrepancy between the 

ANN's predictions and the actual OBJFUN outputs, and selecting an optimization algorithm 

(e.g., gradient descent, Adam, RMSprop) to update the ANN's parameters during training. It is 

also crucial to employ validation techniques, such as splitting the data into training and 

validation sets, to monitor the ANN's performance on unseen data and prevent overfitting, 

which occurs when the ANN learns the training data too well but fails to generalize to new 

inputs. The choice of ANN architecture should align with the complexity and characteristics of 

the objective function being approximated.    

3.3.3 Optimization with ANN 

Instead of directly minimizing the computationally expensive OBJFUN, the algorithm 

proceeds to use a faster optimization method, typically a Genetic Algorithm (GA), to find the 

minimum of the trained ANN. Genetic Algorithms are population-based metaheuristic 

optimization techniques inspired by natural selection. They work by initializing a population 

of candidate solutions, evaluating their fitness using a fitness function (in NNO, this is the 

output of the ANN for a given input), selecting the fittest individuals to become parents, 

applying crossover to create new offspring, and introducing mutations to maintain diversity. In 

the context of NNO, the GA explores different input values and uses the ANN to quickly 

estimate the corresponding output, efficiently searching for input values that lead to the 

minimum output according to the ANN surrogate. The use of GA is advantageous here because 

it can handle non-differentiable and discontinuous functions, which the ANN might represent, 

and it is effective in exploring large and complex search spaces, reducing the risk of getting 

trapped in local minima. The choice of GA parameters, such as population size, mutation rate, 

and crossover rate, can significantly influence the GA's performance in finding the minimum 

of the ANN. By utilizing the ANN as a proxy, the GA can perform many more evaluations of 

potential solutions compared to directly evaluating the OBJFUN, leading to a more thorough 

exploration of the search space within a given computational budget.    

3.3.4 Validation with Real Function 

Once the Genetic Algorithm (GA) identifies a potential optimal solution (a set of input values) 

based on the Artificial Neural Network's (ANN) predictions, this solution is then used to 

evaluate the actual objective function (OBJFUN). This validation step is crucial to verify how 

well the ANN's prediction matches the true output value of the OBJFUN at the identified input. 

It helps to ensure that the optimization process remains aligned with the true objective and that 

the ANN's approximation is reasonably accurate in the vicinity of the promising solution found 

by optimizing the surrogate. The discrepancy between the ANN's prediction and the actual 

OBJFUN value at the validated point provides important information about the accuracy of the 

surrogate model in the region of interest.    

3.3.5 Data Augmentation 

The newly evaluated data point, consisting of the input found by the GA and its corresponding 

output from the OBJFUN, is then added to the existing training dataset. This data augmentation 

process expands the information that the ANN has learned about the OBJFUN's behavior, 

particularly in regions of the input space that the optimization process has deemed promising. 

By including a real evaluation of the OBJFUN at a point identified as potentially optimal by 
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the GA using the ANN surrogate, the augmented dataset can help improve the ANN's 

representation of the objective function in critical areas of the search space where the true 

minimum might lie. This targeted addition of data points is a form of active learning, focusing 

computational effort on improving the surrogate model's accuracy in relevant regions.    

3.3.6 Iterative Refinement 

Following data augmentation, the algorithm repeats the process from step 2. The ANN is 

retrained using the expanded dataset, which now includes the newly acquired information about 

OBJFUN’s behavior. This retrained ANN has the potential to be a more accurate representation 

of the OBJFUN, especially in the regions of the search space being actively explored. The 

Genetic Algorithm (GA) then minimizes this updated ANN, and the best solution found is again 

validated by evaluating the real OBJFUN. This iterative cycle of retraining the ANN with 

augmented data and optimizing it with the GA continues, gradually refining the ANN's 

approximation of the OBJFUN and guiding the optimization process towards the true minimum 

of the objective function. The feedback loop between optimizing the ANN and evaluating the 

OBJFUN allows the algorithm to adapt and improve its search over time, focusing 

computational effort on the most promising areas of the search space.    

 

Figure 3.2 Methodology implemented 
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3.4 The Role of Artificial Neural Networks in NNO 

Artificial Neural Networks (ANNs) are particularly well-suited for serving as surrogate models 

in optimization due to their inherent capabilities in learning and approximating complex, 

nonlinear relationships between inputs and outputs. This is achieved without requiring explicit 

knowledge of the underlying mathematical form of the objective function, making them 

invaluable when dealing with "black-box" functions derived from complex simulations or 

third-party software. The universal approximation theorem provides a theoretical basis for this, 

suggesting that ANNs with sufficient complexity can approximate any continuous function to 

a desired degree of accuracy. In the context of Neural Network Optimization (NNO), various 

types of ANN architecture can be employed depending on the characteristics of the objective 

function and the problem domain. Feedforward neural networks, also known as Multi-Layer 

Perceptrons (MLPs), are a common choice for general regression tasks. For problems where 

the input has a grid-like structure, such as spatial parameters, Convolutional Neural Networks 

(CNNs) can be effective due to their ability to learn hierarchical features. In cases involving 

sequential input data or objective functions with memory, Recurrent Neural Networks (RNNs) 

might be more appropriate. The selection of the most suitable ANN architecture is a critical 

step in NNO, as the complexity and structure of the ANN should be sufficient to capture the 

OBJFUN's behavior accurately without leading to overfitting, especially given the typically 

limited amount of initial training data. The flexibility offered by the diverse range of ANN 

architectures allows NNO to be adapted to a wide variety of optimization problems with 

varying degrees of complexity and data structures. However, the training process is equally 

critical, and the quality of the resulting surrogate model directly impacts the performance of 

the overall NNO algorithm. Factors such as the size and representativeness of the training data, 

the choice of architecture and training algorithm, and hyperparameter tuning all play a 

significant role in determining the accuracy and reliability of the ANN surrogate.    

3.5 The Role of Genetic Algorithms in NNO 

Genetic Algorithms (GAs) are a class of population-based metaheuristic optimization 

techniques inspired by the process of natural selection and genetic evolution. In the context of 

Neural Network Optimization (NNO), GA plays a crucial role in efficiently searching for the 

minimum of the Artificial Neural Network (ANN) surrogate. A GA operates on a population of 

candidate solutions, often represented as vectors of parameters called chromosomes. Each 

chromosome is evaluated based on its fitness, which in NNO is typically the output of the 

trained ANN for the corresponding input vector. The algorithm then proceeds through an 

iterative process of selection, crossover, and mutation to evolve the population towards better 

solutions. Selection involves choosing individuals with higher fitness (lower ANN output in 

minimization) to become parents for the next generation, using methods like roulette wheel 

selection or tournament selection. Crossover, or recombination, combines the genetic 

information of two selected parents to create new offspring by exchanging parts of their 

chromosomes, using techniques such as one-point or two-point crossover. Mutation introduces 

small random changes to the genes (parameters) of the offspring to maintain diversity in the 

population and explore new regions of the search space, often using operators like bit-flip or 

Gaussian mutation. The use of GAs for optimizing the ANN surrogate in NNO offers several 

advantages. Notably, GAs can effectively handle non-differentiable and discontinuous 

objective functions, which the ANN might represent. They are also adept at exploring large and 

complex search spaces, reducing the risk of getting trapped in local minima, a common issue 
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with gradient-based methods. Furthermore, the inherent parallelism of GAs, where the fitness 

of everyone in the population can be evaluated independently, allows for potential speedups in 

computation. The stochastic nature of GAs contributes to a more robust search, especially in 

the presence of multiple local optima in the ANN's representation of the OBJFUN. However, 

the effectiveness of the GA in NNO is highly dependent on the appropriate selection of its 

parameters, such as population size, crossover rate, and mutation rate, which control the crucial 

balance between exploration and exploitation of the search space.    

3.6 Advantages of the NNO Technique 

The Neural Network Optimization (NNO) technique offers several compelling advantages for 

tackling complex optimization problems, particularly those involving computationally 

expensive objective functions: 

• Reduced Computational Cost: The most significant benefit of NNO is the substantial 

reduction in the number of evaluations required for the computationally expensive real 

objective function (OBJFUN). The Genetic Algorithm (GA), which drives the 

optimization process, primarily interacts with the much faster Artificial Neural Network 

(ANN) surrogate. This allows for a far greater number of candidate solutions to be 

explored within a given computational budget compared to directly optimizing the 

OBJFUN.    

• Efficient Exploration of Solution Space: The utilization of a Genetic Algorithm (GA) 

enables a broad and efficient exploration of the potentially vast and complex solution 

space. GA is known for their ability to avoid getting trapped in local optima, increasing 

the likelihood of finding a global or near-global optimum, especially in problems where 

the objective function landscape is rugged and contains multiple local minima.    

• Applicability to Complex Problems: NNO is particularly well-suited for optimization 

problems where the objective function exhibits characteristics that make traditional 

methods struggle. This includes cases where the OBJFUN is nonlinear, non-

differentiable, discontinuous, or involves complex simulations or interactions with 

third-party software, making direct gradient-based optimization challenging or even 

infeasible.    

• Iterative Refinement: The iterative nature of NNO, where the ANN surrogate is 

continuously trained and refined based on evaluations of the real objective function at 

promising points identified by the GA, leads to improved accuracy of the surrogate 

model in the regions of interest. This iterative process can result in better convergence 

towards the true optimum over time as the ANN becomes a more faithful representation 

of the OBJFUN.    

The ability of NNO to significantly reduce the computational burden associated with expensive 

objective function evaluations makes it a practical approach for problems that would otherwise 

be intractable. The synergistic combination of ANNs for efficient function approximation and 

GAs for robust global search leverages the strengths of both techniques, providing a powerful 

framework for tackling complex optimization challenges.    
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3.7 Limitations and Considerations 

While the Neural Network Optimization (NNO) technique offers significant advantages, it also 

has certain limitations and considerations that need to be considered when applying it to 

optimization problems: 

• Accuracy of the ANN Surrogate: The success of NNO is highly dependent on the 

Artificial Neural Network's (ANN) ability to accurately approximate the objective 

function (OBJFUN). If the ANN surrogate is not a faithful representation of the 

OBJFUN, the optimum found by optimizing the ANN might not correspond to the true 

optimum of the OBJFUN.    

• Choice of ANN Architecture and Training: Selecting an appropriate ANN architecture 

and training effectively can be a challenging process that often requires domain 

expertise and experimentation. Factors such as the number of layers and neurons, the 

choice of activation functions, and the training algorithm and its hyperparameters need 

to be carefully considered to ensure the ANN learns the underlying relationships in the 

data without overfitting or underfitting.    

• Choice of GA Parameters: The performance of the Genetic Algorithm (GA) within 

NNO is sensitive to the selection of its parameters, including population size, mutation 

rate, crossover rate, and selection method. Poorly chosen parameters can lead to slow 

convergence, premature convergence to local optima of the ANN, or inefficient 

exploration of the search space.    

• Computational Cost of Initial Sampling and ANN Training: Although NNO aims to 

reduce the overall computational cost, the initial data collection phase, which involves 

evaluating the real OBJFUN at a set of initial points, and the subsequent training of the 

ANN can still be computationally intensive, especially for high-dimensional problems 

or when a large amount of initial data is required to train an accurate surrogate.    

• Convergence Criteria: Determining when the NNO algorithm has converged to a 

satisfactory solution can be less straightforward compared to some traditional 

optimization methods. Surrogate optimization techniques might require different 

stopping criteria, such as a maximum number of iterations or function evaluations, or 

monitoring the improvement in the best solution over time.    

• Potential for Local Optima: While Genetic Algorithms are generally better at avoiding 

local optima than gradient-based methods, there is still a possibility that the NNO 

process might converge to a local minimum of the objective function if the ANN 

surrogate is not sufficiently accurate in representing the global landscape of the 

OBJFUN or if the GA's search is not exhaustive enough. 

There exists a trade-off between the complexity and accuracy of the ANN surrogate and the 

computational resources required to train it. Furthermore, the performance of NNO can be 

influenced by the specific characteristics of the objective function, such as its dimensionality, 

degree of nonlinearity, and the presence of noise.    
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4 Theoretical Background 

To gain a clear understanding of the system's behavior, we begin by modeling a single-degree-

of-freedom (SDOF) system incorporating the Bouc-Wen hysteresis model to account for 

nonlinearities. This preliminary step allows us to explore the fundamental dynamics introduced 

by nonlinear behavior and to study how the Bouc-Wen parameters influence the system's 

response. Through this analysis, we aim to calibrate the model parameters to match 

experimental data as closely as possible, thereby validating the effectiveness of the chosen 

nonlinear formulation. 

Once the SDOF model is established and understood, we proceed to test the Neural Network 

Optimization (NNO). We implement NNO on the simplified system to evaluate its performance 

in parameter identification and optimization. This phase is crucial to understand how the NNO 

behaves with nonlinear dynamic systems and to determine the appropriate configuration of the 

optimization’s hyperparameters for robust and accurate convergence. 

After successfully validating both the nonlinear model and the optimization technique on the 

SDOF system, we advanced to a more realistic two-degree-of-freedom (2DOF) model. This 

enhanced model better represents the actual dynamics of a Stockbridge damper, especially in 

capturing the coupled motion of the messenger cable and the damper mass. In addition to the 

Bouc-Wen nonlinearity, we also introduce a cubic stiffness term to more accurately replicate 

the nonlinear restoring forces observed in practice. This final step allows us to simulate the 

real-world behavior of the damper with higher reliability. 

4.1 Single Degree of Freedom System 

 

Figure 4.1 Schematic of SDOF system 

The vibrations of a single-degree-of-freedom Bouc-Wen system, i.e. a Bouc-Wen oscillator 

with a single mass, is shown in Figure 4.1, and governed by Newtons law of dynamics written 

in the form 

𝑚𝑙  𝑦̈(𝑡) + 𝑟(𝑦, 𝑦̇) + 𝑧(𝑦, 𝑦̇) = 𝑢(𝑡) 

where 𝑚𝑙 is the mass constant, 𝑦 the displacement, 𝑢 the external force, and where an over-dot 

indicates a derivative with respect to the time variable 𝑡. The total restoring force in the system 

is composed of a static nonlinear term 𝑟(𝑦, 𝑦̇), which only depends on the instantaneous values 
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of the displacement 𝑦(𝑡) and velocity 𝑦̇(𝑡), and of a dynamic, i.e. history-dependent, nonlinear 

term 𝑧(𝑦, 𝑦̇), which encodes the hysteretic memory of the system. In the present study, the 

static restoring force contribution is assumed to be linear, that is 

𝑟(𝑦, 𝑦̇) = 𝑘𝑙  𝑦 + 𝑐𝑙 𝑦̇ 

where 𝑘𝑙 and 𝑐𝑙 are the linear stiffness and viscous damping coefficient, respectively. This 

linear term acts as a baseline model to contrast the additional nonlinear effects introduced by 

𝑧(𝑦, 𝑦̇). In practical systems, this might represent the basic mechanical response without 

considering internal friction or hysteresis. The hysteretic force 𝑧(𝑦, 𝑦̇) obeys the first-order 

differential equation 

𝑧̇(𝑦, 𝑦̇) = 𝛼 𝑦̇ + 𝛽(𝛾 |𝑦̇| |𝑧|𝜈−1 𝑧 + 𝛿 𝑦̇ |𝑧|𝜈) 

where the five Bouc-Wen parameters 𝛼, 𝛽, 𝛾, 𝛿 and 𝜈 are used to tune the shape and the 

smoothness of the system hysteresis loop. 

The Bouc-Wen model introduces a first-order differential equation for z, allowing it to 

represent complex hysteresis loops seen in mechanical systems. The parameters have distinct 

effects: 

• 𝛼 scales the direct input effect. 

• 𝛽, 𝛾, and 𝛿 together shape the nonlinearity and rate of energy dissipation. 

• 𝜈 controls the smoothness of the hysteresis transition. Low values result in rounded 

loops; high values approach ideal elasto-plastic behavior. 

Physical parameters and the experimental data are being implemented from [28]. Table 4.1 lists 

the values of the physical parameters selected in this study. The linear modal parameters 

deduced from 𝑚𝑙, 𝑘𝑙 and 𝑐𝑙 are given in Table 4.2. Figure 4.2 (a) illustrates the existence of a 

non-degenerate loop in the system input-output plane for quasi-static forcing conditions. In 

comparison, by setting the parameter 𝛽 to 0, linear behavior is retrieved in Figure 4.2 (b).  

Parameters 𝑚𝑙 𝑐𝑙 𝑘𝑙 𝛼 𝛽 𝛾 𝛿 𝜈 

Value 2 10 5e4 5e4 1e3 0.8 -1.1 1 

Table 4.1 Physical parameters 

Parameters 
Natural frequency 

𝜔0 (𝐻𝑧) 
Damping ratio 𝜁 (%) 

Value 35.59 1.12 

Table 4.2 Modal parameters 

Physically, the hysteretic term 𝑧(𝑦, 𝑦̇) captures energy dissipation mechanisms not explainable 

by pure viscous damping—such as inter-strand friction in cables or micro-slipping. This makes 

it highly suitable for modeling devices like Stockbridge dampers where such effects are 

dominant. 

The Bouc-Wen model is chosen for its balance between mathematical tractability and flexibility 

in capturing diverse hysteretic behaviors. It allows for easy tuning to replicate experimental 
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loops and is integrable with numerical solvers like the Newmark method, making it well-suited 

for both simulation and optimization. 

 

Figure 4.2 Hysteresis loop in the system input-output plane (a) non-degenerate loop obtained for the parameters in Table 1; 

(b) linear behavior retrieved when setting the parameter to 0. 

The excitation 𝑢(𝑡) in these two figures is a sine wave with a frequency of 1 Hz and an 

amplitude of 120 N. The response exhibits no initial condition transients as it depicted over 10 

cycles in the steady state. The input excitation and the output signal regarding the Bouc-Wen 

model is as it is seen in the Figure 4.3. 
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Figure 4.3 Top: Sine input excitation. Bottom: Output displacement 

The Bouc-Wen dynamics in Equations. (1) and (3) can be effectively integrated in time using 

a Newmark method. Newmark integration relies on one-step-ahead approximations of the 

velocity and displacement fields obtained by applying Taylor expansion and numerical 

quadrature techniques. Denoting by h the integration time step, these approximation relations 

write 

𝑦̇(𝑡 + ℎ) = 𝑦̇(𝑡) + (1 − 𝑎) ℎ 𝑦̈(𝑡) + 𝑎 ℎ 𝑦̈(𝑡 + ℎ) 

𝑦(𝑡 + ℎ) = 𝑦(𝑡) + ℎ 𝑦̇(𝑡) + (0.5 − 𝑏)ℎ2 𝑦̈(𝑡) + 𝑏 ℎ2𝑦̈(𝑡 + ℎ) 

Parameters a and b are typically set to 0.5 and 0.25, respectively. Equations. (4) are herein 

enriched with an integration formula for the variable 𝑧(𝑡), which takes the form 

𝑧(𝑡 + ℎ) = 𝑧(𝑡) + (1 − 𝑐) ℎ 𝑧̇(𝑡) + 𝑐 ℎ 𝑧̇(𝑡 + ℎ) 

where c, similarly to a, is set to 0.5. Based on Equations. (4) and (5), a Newmark scheme 

proceeds in two steps. First, predictions of 𝑦̇(𝑡 + ℎ), 𝑦(𝑡 + ℎ) and 𝑧(𝑡 + ℎ) are calculated 

assuming 𝑦̈(𝑡 + ℎ) = 0 and 𝑧(𝑡 + ℎ) = 0. Second, the initial predictors are corrected via 

Newton-Raphson iterations to satisfy the dynamic equilibria in Equations. (1) and (3). 

4.1.1 Results of the System in Case of Sine Sweep Excitation 

The excitation 𝑢(𝑡) in this case is a sine sweep with the same amplitude as the sine excitation 

(A=120 N). The starting and ending frequency are respectively 0 Hz and 60 Hz and the sweep 

rate is chosen 0.5 Hz/s. 

The physical parameters of the system stay the same as the previous model. 

Figure 4.4 and Figure 4.5 respectively show excitation and the result displacement over time 

and instant frequency. 
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Figure 4.4 Sine sweep input and output displacement in time domain 

 

Figure 4.5 Sine sweep input and output displacement in instant frequency domain 

Figure 4.6 is a spectrogram of the signal y, representing how the signal's frequency content 

evolves over time. The x-axis shows time in minutes, the y-axis shows frequency in Hertz (Hz), 

and the color scale represents power intensity in decibels per Hertz (dB/Hz), with yellow 

indicating higher power and dark blue representing lower power. 

There are several clear, increasing-frequency bands over time, suggesting frequency 

components that grow linearly because of the chirp signal. 

Harmonics are visible above this main band, reinforcing the presence of structured, periodic 

components in the signal. 
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Overall, this spectrogram reveals non-stationary behavior with time-varying frequencies and 

consistent harmonic structures. 

 

Figure 4.6 Spectrum of signal y 

Hysteresis loop in the system input-output plane is shown in Figure 4.7 in the different 

frequency ranges.  

 

Figure 4.7  Hysteresis loop in the system input-output plane in different frequencies. Left to right: 1 Hz, 14 Hz, 28 Hz, 41 Hz, 

and 54 Hz 

Figure 4.8 is the representation of the resultant PSD of the system. 
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Figure 4.8 PSD of displacement 

 

4.2 Two Degree of Freedom System 

After validating the nonlinear dynamic response using a single-degree-of-freedom model, a 

more realistic two-degree-of-freedom (2DOF) system is introduced to approximate the 

dynamics of a real Stockbridge damper more closely. This model allows investigation of 

coupled mass interactions, distributed damping, and nonlinear stiffness, mimicking the 

interaction between the messenger cable and the weights. 

Two-degree-of-freedom system is analyzed in four different configurations:  

• Bouc-Wen damper at the second DOF 

• Bouc-Wen damper between the first and second DOF 

• Bouc-Wen damper and the cubic stiffness damper at the second DOF 

• Bouc-Wen damper and the cubic stiffness damper between the first and second DOF 

The four configurations aim to systematically examine how the location and type of 

nonlinearity (Bouc-Wen hysteresis and cubic stiffness) affect the system’s vibrational response. 

Each setup highlights different energy dissipation and stiffness behaviors, which are key to 

optimizing damper design. 

The system consists of: 

• Two masses: 𝑚1 and 𝑚2 

• Linear stiffness elements: 𝑘1, 𝑘2, 𝑘12 

• Proportional viscous damping elements: 𝑐1, 𝑐2, 𝑐12 

• A Bouc-Wen hysteretic damper  

• A cubic stiffness spring  

• An external force f(t) applied to 𝑚1 
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The governing equations of motion for the system are given by: 

𝑀𝑦̈ + 𝐶𝑣𝑦̇ + 𝐾𝑦 + 𝐹𝑛𝑙 = 𝐹 

where: 

• M is the mass matrix. 

• 𝐶𝑣 is the proportional viscous damping matrix. 

• K is the linear stiffness matrix. 

• 𝐹𝑛𝑙 is the vector of nonlinear forces. 

• F is the external force vector. 

The displacement, velocity, and acceleration vectors are defined as: 

𝑦 = [
𝑦1

𝑦2
], 𝑦̇ = [

𝑦̇1

𝑦̇2
], 𝑦̈ = [

𝑦̈1

𝑦̈2
] 

The external force is: 

𝐹 = [
𝐹(𝑡)
0

] 

The Bouc-Wen model introduces hysteretic effects in the force-displacement relationship of 

the damper. The force contribution from the Bouc-Wen damper, z, is given by: 

𝐹𝐵𝑊 = 𝑧 

where z is the hysteretic variable governed by: 

𝑧̇ = 𝛼𝑦̇ − 𝛽(𝛾|𝑦̇||𝑧|𝜈−1𝑧 + 𝛿𝑦̇|𝑧|𝜈) 

The cubic stiffness nonlinearity contributes a restoring force of the form: 

𝐹𝑐𝑢𝑏𝑖𝑐 = 𝑘𝑛𝑙𝑦2
3 

where 𝑘𝑛𝑙 is the coefficient of nonlinear stiffness. 

The nonlinear force vector is expressed as: 

𝐹𝑁𝐿 = ∑𝜇𝑗  𝐿𝑗  𝑔𝑗

2

𝑗=1

 

where: 

• 𝜇𝑗 are coefficients of nonlinear functions. 

• 𝐿𝑗 are Boolean vectors defining the location of the nonlinearities. 

• 𝑔𝑗 represent nonlinear basis functions. 

For this system: 

𝐹𝑁𝐿 = [
0

𝐹𝐵𝑊 + 𝐹𝑐𝑢𝑏𝑖𝑐
] 
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Physical and Bouc-Wen parameters chosen to showcase the characteristics of the system are in 

Table 4.3 and Table 4.4. All these parameters carefully have been chosen and tuned only to 

check the nonlinearity characteristics and there is no experimental validation. 

 

Parameters 𝑚1 𝑚2 𝑘1 𝑘2 𝑘12 𝑐1 𝑐2 𝑐12 

values 0.5 kg 1 kg 
2000 

N/m 

5000 

N/m 

500 

N/m 
5 N.s/m 2 N.s/m 1 N.s/m 

Table 4.3 physical parameters of 2DoF system 

 

Parameters 𝛼 𝛽 𝛾 𝛿 𝜈 𝑘𝑛𝑙 

values 500 10 0.8 -1.1 2 1000 

Table 4.4 Nonlinear parameters of 2DoF system 

 

4.2.1 Bouc-Wen damper at the end 

In this configuration, the Bouc-Wen nonlinear damper is attached between the second mass and 

ground. This mimics a scenario where the nonlinearity primarily affects the outer mass (similar 

to the weight of a Stockbridge damper), and the system dissipates energy only at one end as it 

is seen in Figure 4.9. 

 

Figure 4.9 Schematic of 2dof system with nonlinear damping at the end 

In this case nonlinear force would be: 

𝐹𝑁𝐿 = [
0

𝐹𝐵𝑊
] 

The results of the first configuration are in Figure 4.10: 
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Figure 4.10 Displacements of first configuration of 2DoF system 

The results in Figure 4.10 show how localized damping affects the second mass. The first mass 

exhibits larger oscillations due to its indirect coupling to the nonlinearity. This configuration 

helps isolate the contribution of boundary-localized hysteresis. 

4.2.2 Bouc-Wen damper in the middle 

In this case, the Bouc-Wen damper is placed between the two masses, modeling internal 

hysteresis that affects both degrees of freedom symmetrically as in Figure 4.11. 

 

Figure 4.11 Schematic of 2dof system with nonlinear damping in the middle 

The nonlinear force would change accordingly: 

𝐹𝑁𝐿 = [
𝐹𝐵𝑊

𝐹𝐵𝑊
] 

Figure 4.12 represents the output of the system in this case. 



31 

 

 

Figure 4.12 Displacements of the system in 2nd Configuration 

As seen in Figure 3.12, both masses now experience direct damping forces. The system 

exhibits more balanced displacement profiles. This configuration simulates internal frictional 

behavior in the messenger cable between two vibrating weights and is expected to lead to 

more efficient energy dissipation. 

4.2.3 Bouc-Wen damper and the cubic stiffness damper in the end 

This configuration adds a nonlinear stiffness term (cubic spring) in parallel with the Bouc-Wen 

damper at the end. It mimics geometric stiffening effects, such as large deformations of the 

messenger cable, acting alongside hysteretic damping.  

The schematic of the system is as in Figure 4.9 but the nonlinear force is different in this case 

and the cubic stiffness damper would be added to the nonlinear force: 

𝐹𝑁𝐿 = [
0

𝐹𝐵𝑊 + 𝐹𝑐𝑢𝑏𝑖𝑐
] 

Figure 4.13 shows the results of the system in this configuration. 
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Figure 4.13 Displacements of the system in 3rd Configuration 

Figure 3.13 shows the impact of geometric nonlinearity: increased resistance to large 

displacements and amplitude-dependent behavior. Combined with the hysteretic damper, the 

response is more complex, with possible hardening or softening effects depending on the 

excitation level. 

4.2.4 Bouc-Wen damper and the cubic stiffness damper in the middle 

The most complex case introduces both Bouc-Wen damping and cubic stiffness between the 

two masses, simulating nonlinear interactions internal to the damper structure—such as 

friction, material hysteresis, and geometric softening/hardening—all acting on both masses. 

In the last case we have the system in Figure 4.11 with an addition of the cubic stiffness damper. 

So, the nonlinear force would be: 

𝐹𝑁𝐿 = [
𝐹𝐵𝑊 + 𝐹𝑐𝑢𝑏𝑖𝑐

𝐹𝐵𝑊 + 𝐹𝑐𝑢𝑏𝑖𝑐
] 

As the nonlinear force is in the middle, it is acting on both masses, and the resulting 

displacements would be as in Figure 4.14. 
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Figure 4.14 Displacements of the system in 4th Configuration 

As shown in Figure 3.14, both masses are heavily influenced by the combined nonlinearities. 

This configuration demonstrates the full coupled dynamics of a nonlinear damper and is the 

most representative of real Stockbridge damper behavior. 

 

4.3 Optimization of SDOF Bouc-Wen Parameters 

The goal of this section is to assess the accuracy and efficiency of the proposed Neural Network 

Optimization (NNO) technique in estimating the Bouc-Wen model parameters for a single-

degree-of-freedom (SDOF) nonlinear dynamic system. Using synthetic 'experimental' data 

from literature as a reference, the optimization process seeks to minimize the difference 

between the simulated system response and the reference response, measured in terms of the 

Power Spectral Density (PSD). 

Physical parameters of the Bouc-Wen system in [28] are taken as our experimental model that 

our optimized data should be close to this data, and their relative difference (relative error) is 

the cost function for this optimization. 

𝑒𝑟𝑟𝑜𝑟𝑉𝑒𝑐 =
𝑃𝑆𝐷 − 𝐸𝑥𝑝_𝑃𝑆𝐷

𝐸𝑥𝑝_𝑃𝑆𝐷
 

NNO parameters are mentioned in the Table 4.5. 
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Parameters Definition Value 

nVar 
Number of design 

variables 
4 

initSim 

Number of Abaqus 

analyses for initial 

training of the neural 

network 

5 

hiddenSizes 
Number and size of 

hidden layers 
15 

Psize Population size 10 

funTol 

Termination 

tolerance of error 

between target and 

simulated curve 

0.0005 

maxSim 
Maximum number of 

iterations 
60 

XTol Stall tolerance for X 0.001 

YTol Stall tolerance for Y 0.001 
Table 4.5 NNO parameters 

Design variables and their boundaries are in Table 4.6. 

Variables LB UB 

𝛼 49900 50100 

𝛽 900 1100 

𝛾 0.1 1 

𝛿 -3 -0.1 

Table 4.6 Design variables and their boundaries 

The NNO process follows a surrogate-based optimization framework: 

• Initial Data Generation: A small number of simulations are run using different Bouc-

Wen parameters to train the initial ANN surrogate model. 

• ANN Training: The ANN learns the mapping between Bouc-Wen parameters and PSD 

output. 

• Optimization: The GA operates on the ANN surrogate to find promising parameter 

sets. 

• Validation & Refinement: Promising candidates are evaluated with the full dynamic 

model, and the new data is used to retrain the ANN (active learning loop). 

• Convergence Check: The process continues until convergence criteria are met (low 

error between simulated and target PSD). 

The results of optimization and their comparison with the training data set variables are in Table 

4.7. 
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Design parameters J.P. Noel variables Optimized values 

𝛼 50000 50026 

𝛽 1000 1020 

𝛾 0.8 0.76 

𝛿 -1.1 -1.14 

Table 4.7 Experimental and optimized values 

The results show that the optimized parameters are remarkably close to the reference values 

from [28], with relative errors of less than 5% across all variables. This close agreement 

demonstrates that the NNO technique can effectively recover the original system parameters, 

even with a limited number of high-fidelity simulations. 

Figure 4.15 shows a comparison of the Power Spectral Density (PSD) between the two models. 

The dominant peak frequency and overall shape of the PSD curves align well, indicating that 

the energy distribution across frequency components is preserved by the optimized model. This 

suggests good dynamic fidelity. 

 

Figure 4.15 Comparison of the PSDs between experimental and optimized data 

And the accuracy of the optimized model is shown in Figure 4.16 which is a representation of 

the displacement. The time-domain displacement signals show strong agreement in both 

amplitude and phase, further confirming the accuracy of the parameter identification. 
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Figure 4.16 Displacement comparison of experimental and optimized data 

The objective function error and the error of NNO during optimization are respectively in 

Figure 4.17 and Figure 4.18. The objective function error in Figure 4.17 decreases consistently, 

showing stable convergence. The ANN error in Figure 4.18 also decreases, indicating that the 

surrogate model becomes increasingly accurate as more samples are added. 

 

Figure 4.17 Evolution of the objective function during the NNO process. 
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Figure 4.18 ANN error during optimization 

One limitation of this approach is the use of simulated data as the optimization target. While it 

allows controlled benchmarking, real-world experimental data may include noise, bias, and 

unmodeled dynamics. Therefore, future validation with physical experiments is recommended 

to assess robustness in practice. 

Additionally, the optimization space was bound narrowly around known values. In a real 

scenario with less prior knowledge, the search space would need to be broader, potentially 

increasing the number of simulations required. 

These results validate the NNO framework as a viable and efficient technique for nonlinear 

parameter identification in dynamic systems. Its ability to closely approximate complex 

hysteretic behavior with limited simulation data makes it particularly suitable for 

computationally expensive systems such as finite element models of Stockbridge dampers. 
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5 Stockbridge Damper Modeling 

A Stockbridge damper is a specifically designed mechanical device that functions as a tuned 

mass damper, primarily employed to suppress wind-induced vibrations, particularly aeolian 

vibrations, in overhead power lines and other slender structures. Its characteristic dumbbell 

shape is formed by two weights that are rigidly attached to the ends of a short, flexible cable, 

known as the messenger cable. This messenger cable is then clamped at its midpoint to the 

main overhead conductor. The primary application of Stockbridge dampers is in overhead 

power transmission and distribution lines, where they play a crucial role in mitigating the 

damaging effects of aeolian vibrations, thereby preventing fatigue failure and extending the 

lifespan of the conductors.    

 

Figure 5.1 Aeolian Vibration 
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Beyond power lines, Stockbridge dampers find applications in other slender structures that are 

susceptible to wind-induced vibrations. These include cable-stayed bridges, where they help to 

dampen oscillations in the support cables; long cantilevered signs, preventing damage from 

wind-induced oscillations; radio mast guywires, where they reduce vibrations in the supporting 

cables; and even light poles, where they help prevent oscillations through resonance.  

5.1 Geometry & Mechanics 

The Stockbridge damper's effectiveness stems from its specific structural design and the 

interplay between its key components. These components include the messenger cable, the 

weights, and the clamp, each serving a distinct role in the vibration damping mechanism. 

5.1.1 The Messenger Cable 

The messenger cable is a crucial element of the Stockbridge damper, typically consisting of a 

short length of flexible, multi-stranded cable. The most common material for the messenger 

cable is galvanized steel, chosen for its high tensile strength, which allows it to withstand the 

bending stresses induced by vibrations, and its inherent flexibility, which enables the necessary 

oscillatory motion relative to the conductor. In environments with high levels of humidity or 

corrosive agents, some designs utilize stainless steel messenger cables for enhanced resistance 

to degradation. The primary function of the messenger cable is to connect the weights to the 

central clamp, facilitating their oscillatory movement in response to vibrations in the main 

conductor. The flexibility and stiffness characteristics of the messenger cable are critical design 

parameters, as they directly influence the resonant frequencies of the damper, allowing it to be 

tuned to effectively counteract specific vibration frequencies on the power line. A key aspect 

of the messenger cable's role in damping is the inter-strand friction that occurs within the multi-

stranded construction as the cable flexes. This friction converts the mechanical energy of the 

vibration into heat, which is then dissipated into the environment, effectively reducing the 

amplitude of the oscillations. Furthermore, the length of the messenger cable is a significant 

factor in determining the damper's resonant frequencies, requiring careful consideration during 

the design process to ensure optimal performance.    

 

5.1.2 The Weights 

The Stockbridge damper features two weights that are attached to the ends of the messenger 

cable. These weights play a critical role by providing inertia to the damper system and by 

contributing to the creation of resonant frequencies that are designed to counteract the 

vibrations in the overhead conductor. The design of the weights has evolved significantly since 

the initial invention of the Stockbridge damper, which utilized concrete blocks as the inertial 

masses. Modern dampers typically employ metal weights made from materials such as 

galvanized steel, cast iron, or aluminum. These materials offer improved durability and 

performance compared to concrete. The shape of the weights has also undergone refinement. 

Many modern designs feature bell-shaped weights, which are often hollow and allow for some 

relative motion between the weight and the messenger cable. Some of these bell-shaped 

weights incorporate an asymmetric mass distribution, enabling the damper to oscillate in 

multiple frequency modes and ranges, thus providing more effective damping across a broader 

spectrum of aeolian vibration frequencies.  



41 

 

5.1.3 The Clamp 

The clamp is the central component of the Stockbridge damper that provides a rigid connection 

between the messenger cable and the overhead conductor. It is typically manufactured from 

aluminum alloy due to its favorable strength-to-weight ratio and excellent resistance to 

corrosion, which is essential for long-term performance in outdoor installations. Depending on 

the manufacturer and specific design, the clamp may be produced using either forging or 

casting techniques. The most common method of attaching the clamp to the conductor involves 

a bolted mechanism, often utilizing galvanized steel bolts for their strength and corrosion 

resistance. Some designs also incorporate stainless steel safety plates for added security. To 

ensure that the clamp remains tightly secured to the conductor despite temperature fluctuations 

and current load cycling, aluminum clamping bolts are sometimes employed. For ease of 

installation and to ensure consistent clamping force, some Stockbridge dampers are equipped 

with breakaway bolts, which are designed to shear off at a predetermined torque level, 

eliminating the need for specialized torque wrenches. A secure and reliable grip of the clamp 

on the conductor is paramount, as it ensures efficient transfer of vibrations from the conductor 

to the damper's messenger cable and weights. In addition to bolted clamps, some manufacturers 

offer Stockbridge dampers with helical rod attachments as an alternative method for securing 

the damper to the conductor.    

5.2 Finite Element Model 

The previous work on Stockbridge dampers elaborates on the development of a finite element 

model (FEM) for the Stockbridge damper, a crucial component in mitigating vibrations in 

overhead power lines. The FEM provides a mathematical representation of the damper's 

dynamic behavior, enabling accurate analysis and prediction of its response to various forces 

and conditions. 

The FEM development has been previously done by [29]. 

The model is constructed using a systematic procedure, which can be broken down into the 

following key steps: 

• Identification of Inertial and Stiffness Contributions: This initial step involves a 

thorough definition of all the parameters that govern the dynamic behavior of the 

Stockbridge damper. These parameters encompass both inertial properties (related to 

mass and its distribution) and stiffness properties (related to the damper's resistance to 

deformation).     

• Distribution of Inertial and Stiffness Properties with Shape Functions: Once the 

parameters are identified, their inertial and stiffness characteristics must be assigned 

throughout the model. This is achieved using shape functions, which are mathematical 

functions that describe how displacement varies within each element of the finite 

element mesh. These shape functions allow for the approximation of continuous 

displacement fields using discrete element values. The properties are initially defined 

in a local coordinate frame specific to each element.     

• Projection (Rotation) of Local Matrices into Global Reference Frame: Finite element 

analysis involves multiple coordinate systems. The element-level matrices, formulated 

in local coordinate systems, need to be transformed into a common global reference 

frame. This transformation, often involving rotation matrices, ensures that all element 
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matrices are expressed in a consistent coordinate system before they can be assembled.  

However, in this case, since the local and global reference frames are aligned 

(horizontal), the rotation matrix becomes an identity matrix, simplifying the 

transformation.     

• Assembly: The final step involves combining the individual element matrices (mass 

and stiffness) into a single global matrix representing the entire Stockbridge damper 

system. This assembly process follows specific rules based on the connectivity of the 

elements, resulting in a larger matrix that captures the overall dynamic behavior of the 

structure.     

5.2.1 Scheme of the Damper (FEM) 

The Stockbridge damper is modeled as a simplified system consisting of a three-node Euler-

Bernoulli beam.  This beam represents the messenger cable, and it is connected to lumped 

masses (representing the end masses and the clamp) through rigid links.  To simplify the 

analysis, the motion is assumed to be constrained to the vertical plane, neglecting any 

horizontal displacement. Consequently, each node in the model possesses two degrees of 

freedom (2DOF): vertical displacement and rotation.  This representation results in a 6-DOF 

system for the Stockbridge damper.     

• 𝑥1, 𝑥𝑐, and 𝑥2 represent the vertical displacements of the nodes.     

• 𝜑1, 𝜑𝑐, and 𝜑2 represent the rotational displacements of the nodes.     

The dynamic behavior of the Stockbridge damper is governed by several key parameters:     

• 𝑚1 and 𝑚2: The masses of the end weights.     

• 𝑚𝑐: The mass of the clamp.     

• 𝜇: The linear density of the messenger cable (kg/m).     

• 𝐽𝐺1 and 𝐽𝐺2: The moments of inertia of the end masses about their respective centers of 

mass.     

• 𝐽𝐺𝐶: The moment of inertia of the clamp about its center of mass.     

• 𝐸𝐼: The flexural rigidity of the messenger wire (Nm²). This is the product of the Young's 

modulus (E, in N/m²) and the area moment of inertia (I, in m⁴) of the wire's cross-

section.     

• 𝑎1, 𝑎2, and 𝑎𝑐:: The distances between the rotation axis and the center of mass of the 

end masses and the clamp, respectively.     

• 𝐿1 and 𝐿2: The free lengths of the messenger cable between the clamp and the 

attachment points of the end masses.     

 

5.2.2 Final Matrices 

After the FEM development [29] the mass and stiffness matrices for each element are as below: 

[𝑀𝑤𝑖𝑟𝑒,𝑒1] =
𝜇𝑙𝑒1

420

[
 
 
 
 
 

156 22𝑙𝑒1 54 −13𝑙𝑒1 0 0

22𝑙𝑒1 4𝑙𝑒1
2 13𝑙𝑒1 −3𝑙𝑒1

2 0 0
54 13𝑙𝑒1 156 −22𝑙𝑒1 0 0

−13𝑙𝑒1 −3𝑙𝑒1
2 −22𝑙𝑒1 4𝑙𝑒1

2 0 0
0 0 0 0 0 0
0 0 0 0 0 0]
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[𝑀𝐿𝑢𝑚𝑝,𝑒1] =

[
 
 
 
 
 

𝑚1 𝑚1𝑎1

𝑚1𝑎1 𝐽𝐺1 + 𝑚1𝑎1
2 ⋯ 0

⋮
𝑚𝑐 𝑚𝑐𝑎𝑐

𝑚𝑐𝑎𝑐 𝐽𝐺𝐶 + 𝑚𝑐𝑎𝑐
2 ⋮

0 ⋯
0 0
0 0]

 
 
 
 
 

 

[𝑀1] = [𝑀𝑤𝑖𝑟𝑒,𝑒1] + [𝑀𝐿𝑢𝑚𝑝,𝑒1] 

[𝑀𝑤𝑖𝑟𝑒,𝑒2] =
𝜇𝑙𝑒2

420

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 156 22𝑙𝑒2 54 −13𝑙𝑒2

0 0 22𝑙𝑒2 4𝑙𝑒2
2 13𝑙𝑒2 −3𝑙𝑒2

2

0 0 54 13𝑙𝑒2 156 −22𝑙𝑒2

0 0 −13𝑙𝑒2 −3𝑙𝑒2
2 −22𝑙𝑒2 4𝑙𝑒2

2 ]
 
 
 
 
 

 

[𝑀𝐿𝑢𝑚𝑝,𝑒1] =

[
 
 
 
 
 
0 0
0 0

⋯ 0

⋮
0 0
0 0

⋮

0 ⋯
𝑚2 𝑚2𝑎2

𝑚2𝑎2 𝐽𝐺2 + 𝑚2𝑎2
2]
 
 
 
 
 

 

[𝑀2] = [𝑀𝑤𝑖𝑟𝑒,𝑒2] + [𝑀𝐿𝑢𝑚𝑝,𝑒2] 

 

[𝐾𝑤𝑖𝑟𝑒,𝑒1] = 𝐸𝐼

[
 
 
 
 
 
 

12/𝑙𝑒1
3 6/𝑙𝑒1

2 −12/𝑙𝑒1
3 6/𝑙𝑒1

2 0 0

6/𝑙𝑒1
2 4/𝑙𝑒1 −6/𝑙𝑒1

2 2/𝑙𝑒1 0 0

−12/𝑙𝑒1
3 −6/𝑙𝑒1

2 12/𝑙𝑒1
3 −6/𝑙𝑒1

2 0 0

6/𝑙𝑒1
2 2/𝑙𝑒1 −6/𝑙𝑒1

2 4𝑙𝑒1 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 
 

 

 

[𝐾𝑤𝑖𝑟𝑒,𝑒2] = 𝐸𝐼

[
 
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 12/𝑙𝑒2

3 6/𝑙𝑒2
2 −12/𝑙𝑒2

3 6/𝑙𝑒2
2

0 0 6/𝑙𝑒2
2 4/𝑙𝑒2 −6/𝑙𝑒2

2 2/𝑙𝑒2

0 0 −12/𝑙𝑒2
3 −6/𝑙𝑒2

2 12/𝑙𝑒2
3 −6/𝑙𝑒2

2

0 0 6/𝑙𝑒2
2 2/𝑙𝑒2 −6/𝑙𝑒2

2 4𝑙𝑒2 ]
 
 
 
 
 
 

 

[𝐾] = [𝐾𝑤𝑖𝑟𝑒,𝑒1] + [𝐾𝑤𝑖𝑟𝑒,𝑒2] 
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5.3 Equations of Motion and Adapting Bouc-Wen to Stockbridge Dampers 

After testing the Bouc-Wen damping and Cubic Stiffness and Newmark Integration method 

and NNO on SDOF and MDOF systems we Move on the initial problem of modeling of the 

Stockbridge damper. 

The dynamic behavior of a Stockbridge damper can be modeled using second-order nonlinear 

differential equations, capturing both the linear and nonlinear forces acting on the system. 

These forces arise from mass inertia, linear elastic and damping characteristics, and nonlinear 

hysteretic and geometric effects. The generalized equation of motion is given by: 

𝑀 𝑦̈(𝑡) + 𝑟(𝑦, 𝑦̇) + 𝐹𝑁𝐿(𝑦, 𝑦̇) = 𝑢(𝑡) 

where 𝑀 is the mass matrix, 𝑦(𝑡) is the displacement vector, 𝑦̇(𝑡) and 𝑦̈(𝑡) represent velocity 

and acceleration respectively, 𝑟(𝑦, 𝑦̇) is the linear restoring force, 𝐹𝑁𝐿(𝑦, 𝑦̇) is the nonlinear 

force contribution, and 𝑢(𝑡) is the external excitation (e.g., wind-induced vibration or cable 

motion). 

The linear restoring force is composed of both elastic and viscous terms: 

𝑟(𝑦, 𝑦̇) = 𝐾 𝑦 + 𝐶 𝑦̇ 

where is the stiffness matrix 𝐾 and 𝐶 is the damping matrix. These account for the standard 

linear spring-damper behavior of the damper arms. 

To capture the nonlinear behavior, particularly the complex hysteresis observed in Stockbridge 

dampers, a combination of geometric and hysteretic nonlinear forces is included: 

𝐹𝑁𝐿(𝑦, 𝑦̇) = 𝐹𝐵𝑊(𝑦, 𝑦̇) + 𝐹𝐶𝑆(𝑦) 

Here, 𝐹𝐶𝑆(𝑦) represents a cubic stiffness component introduced to account for geometric 

nonlinearities and stiffness hardening/softening effects: 

𝐹𝐶𝑆(𝑦) = 𝐾𝐶𝑆 𝑦(𝑡)3 

where 𝐾𝐶𝑆 is a nonlinear stiffness coefficient. 

The term 𝐹𝐵𝑤(𝑦, 𝑦̇) incorporates hysteretic behavior via the Bouc-Wen model[25], [26], which 

is widely used to describe the rate-independent hysteresis in mechanical systems: 

𝐹𝐵𝑤(𝑦, 𝑦̇) = 𝛼 𝑦(𝑡) + (1 − 𝛼) 𝐷 𝑧(𝑡) 

In this formulation, 𝛼 is a weighting factor between the linear and hysteretic contributions, 𝐷  

is a scaling parameter, and 𝑧(𝑡) is the internal hysteretic variable governed by the Bouc-Wen 

differential equation: 

𝑧̇ = 𝐷−1(𝐴 𝑥̇ − 𝛽|𝑥̇||𝑧|𝜈−1 𝑧 −  𝛾 𝑥̇|𝑧|𝜈) 

The parameters 𝐴, 𝛽, 𝛾, and 𝜈 control the shape and behavior of the hysteresis loop. 

Specifically: 

• 𝐴 defines the linear contribution to the rate of change of z 

• 𝛽 and 𝛾 control the nonlinear interaction between the velocity and the hysteretic force, 

• 𝜈 shapes the smoothness or sharpness of the hysteretic transition. 



45 

 

This formulation allows the model to adapt to the energy dissipation and memory-dependent 

behavior observed in experimental Stockbridge damper responses, making it suitable for 

accurate simulation and design optimization. 

 

5.4 Experimental Data 

The prototype is tested on an electromagnetic shaker. Its clamp is fixed on the base of the shaker 

at the prescribed tightening torque. The test consists of feeding an excitation profile to the 

device (i.e., the shaker base) in terms of amplitude over a specific range of frequencies. The 

shaker is governed in closed loops by a certified control software and the adopted sensors are 

all calibrated: the entire test bench is called DTS (Damper testing system). The logged signals 

are post processed by the same software that can produce many types of diagrams like dynamic 

stiffness, power dissipation, and impedance.  

The displacement of the clamp is logged thanks to an accelerometer solid with the shaker base. 

The damper's response in terms of force is logged with two load cells. 

The following experimental data are extracted from [29]. 

The acquired experimental data are in the case of sweep up excitation, and the displacements 

of the base and both masses have been measured and are in Figure 5.2. 

 

Figure 5.2 Sweep up input and output displacements of the mass 1 and 2 

Figure 5.3 illustrates the PSDs of both masses which are being used to optimize the nonlinear 

model. 
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Figure 5.3 PSD of end masses of Stockbridge damper 

Figure 5.4 and Figure 5.5 are representations of input-output characteristics, and displacement-

velocity of the masses in the peak frequencies of the displacement shown in Figure 5.2. 

 

 

Figure 5.4 Hysteresis loop in the system input-output plane at 10 Hz 
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Figure 5.5 Hysteresis loop in the system input-output plane at 17 Hz 
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5.5 Results of Optimization 

The optimization process was carried out in four distinct stages, using Power Spectral Density 

(PSD) as the performance metric to guide and evaluate the results. PSD analysis allowed us to 

quantify the vibrational response of the system across a range of frequencies, making it a 

suitable objective function for optimizing dynamic performance. We began by optimizing a 

single mass parameter at a time—first one, then the other—while keeping the rest of the 

configuration fixed. This helped isolate the influence of each mass on the system’s frequency 

response. After optimizing the masses individually, we performed joint optimization on both 

masses simultaneously to capture any interaction effects. This stage was repeated several times 

to ensure stability and repeatability of the solutions. Finally, to benchmark the effectiveness of 

our Neural Network Optimization (NNO) method, we applied a Genetic Algorithm (GA) to the 

same problem and compared the results. The comparison provided valuable insight into the 

relative strengths of each optimization technique, especially in terms of how effectively they 

minimized the PSD across the frequency range of interest. 

5.5.1 Optimization of Mass 1 

To carry out the optimization of mass 1, a total of eight parameters were considered. These 

parameters, listed in the Table 5.1, were selected based on their influence on the dynamic 

behavior of the system and their relevance to the vibrational response captured through Power 

Spectral Density (PSD). Each parameter plays a specific role, either directly affecting the mass 

properties or indirectly shaping the system's frequency response characteristics. By tuning 

these parameters, we aimed to minimize the PSD within a target frequency range, thereby 

improving the system's performance under dynamic loading conditions. 

Parameters Definition Lower bound Upper bound 

𝐴 Bouc-Wen parameter1 1 10 

𝛽 Bouc-Wen parameter 0.1 5 

𝛾 Bouc-Wen parameter 0 2 

𝛼 Bouc-Wen parameter 0 1 

𝐸𝑚𝐽𝑚 Flexural stiffness 8 20 

𝑘_𝑐𝑠(1) Cubic stiffness -5e9 -0.1e9 

𝛼_𝑝𝑑 
Proportional damping 

coefficient 
5 20 

𝛽_𝑝𝑑 
Proportional damping 

coefficient 
1e-3 10e-3 

Table 5.1 Design parameters 

 

 

 

 
1 Nondimensional parameters, which control the shape and the size of the hysteresis loop 
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The NNO parameters are mentioned in Table 5.2. 

Parameters Definition Value 

nVar Number of design variables 8 

initSim 

Number of Abaqus analyses for 

initial training of the neural 

network 

15 

hiddenSizes 
Number and size of hidden 

layers 
8 

Psize Population size 25 

funTol 

Termination tolerance of error 

between target and simulated 

curve 

0.001 

maxSim Maximum number of iterations 60 

XTol Stall tolerance for X 0.04 

YTol Stall tolerance for Y 0.05 
Table 5.2 NNO parameters 

For mass 1 we get the following results after optimization: 

Parameters Optimized value 

𝐴 4.9371 

𝛽 3.9989 

𝛾 1.1511 

𝛼 0.5895 

𝐸𝑚𝐽𝑚 14.8458 

𝑘_𝑐𝑠(1) -2.9384 e9 

𝛼_𝑝𝑑 5.187 

𝛽_𝑝𝑑 1.6875 e-3 

Table 5.3 Optimized results of mass 1 

The results of the optimization of mass 1 are shown in Figure 5.6, and its comparison with 

experimental data is shown in Figure 5.7. As clearly visible, we have successfully replicated 

the vibration of mass 1 with very high accuracy, however the model is unable to replicate mass 

2 accurately and the results are off by a high margin. 
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Figure 5.6 Displacements of mass 1 (blue) and mass 2 (black) after optimization 

 

 

Figure 5.7 Comparison of the displacements of experimental data (red) and optimized data (blue) 

As previously mentioned, the optimization has been carried out by using the vector of PSDs as 

our cost function. However, as the error vectors are very long and computationally heavy and 

not possible to work with, we only choose the most important part of the vector, which is the 

PSD between the frequencies of about 9 and 11.5 Hz.  
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Figure 5.8 PSDs of experimental and optimized data in range of 9 to 11.5 Hz 

Although we have used only the peak of the PSD to do the optimization, as is shown in Figure 

5.9, the rest of the PSD excellently matches the experimental data. The error for mass one is 

approximately 3.28 percent. 

 

Figure 5.9 PSDs of experimental and optimized data of mass 1 

 

5.5.2 Optimization of Mass 2 

The same procedure has been done for mass 2. The only difference is the cubic stiffness 

argument that has been used. The parameters used are listed in the table. 
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Parameters Definition Lower bound Upper bound 

𝐴 Bouc-Wen parameter 1 10 

𝛽 Bouc-Wen parameter 0.1 5 

𝛾 Bouc-Wen parameter 0 2 

𝛼 Bouc-Wen parameter 0 1 

𝐸𝑚𝐽𝑚 Flexural stiffness 8 20 

𝑘_𝑐𝑠(3) Cubic stiffness -20e9 -3e9 

𝛼_𝑝𝑑 
Proportional damping 

coefficient 
5 20 

𝛽_𝑝𝑑 
Proportional damping 

coefficient 
1e-3 10e-3 

Table 5.4 Design parameters 

The optimization parameters are as mass 1, which are listed in the table. 

At the end of the optimization, we get the following results: 

Parameters Optimized value 

𝐴 4.0824 

𝛽 0.3717 

𝛾 1.674 

𝛼 0.9545 

𝐸𝑚𝐽𝑚 8.2099 

𝑘_𝑐𝑠(3) -3.045 e9 

𝛼_𝑝𝑑 7.4522 

𝛽_𝑝𝑑 2.3011 e-3 

Table 5.5 Optimized results of mass 2 

This time we have been able to match the signal for mass 2 with the experimental data and in 

Figure 5.11 is shown that mass 1 vibrations are not close to the experimental data and we only 

can see the accuracy of results in mass 2. 
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Figure 5.10 Displacements of mass 1 (blue) and mass 2 (black) after optimization 

 

 

Figure 5.11 Comparison of the displacements of experimental data (red) and optimized data (blue) 

In the case of mass 2, the range of the PSD that is being used is between 15.5 to 18 Hz (peak 

of the PSD). The error in the case of optimization of mass 2 is approximately 4.14 percent. 



54 

 

 

Figure 5.12 PSDs of experimental and optimized data in the range of 15.5 to 18 Hz 

 

 

Figure 5.13 PSDs of experimental and optimized data of mass 2 

 

5.5.3 Optimization of the Stockbridge Damper 

In the third stage of the optimization, we try to optimize the whole system simultaneously. 

Design parameters and their boundaries are as mentioned in the Table 5.6. 
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Parameters Definition Lower bound Upper bound 

𝐴 Bouc-Wen parameter 1 15 

𝛽 Bouc-Wen parameter 0.1 5 

𝛾 Bouc-Wen parameter -3 3 

𝛼 Bouc-Wen parameter 0 1 

𝐸𝑚𝐽𝑚 Flexural stiffness 7 20 

𝑘_𝑐𝑠(1) Cubic stiffness -2.5e9 -0.1e9 

𝑘_𝑐𝑠(2) Cubic stiffness -18e9 -5e9 

𝛼_𝑝𝑑 
Proportional damping 

coefficient 
5 15 

𝛽_𝑝𝑑 
Proportional damping 

coefficient 
0.1 e-3 5 e-3 

Table 5.6 Design parameters 

The NNO parameters are mentioned in the Table 5.7. 

Parameters Definition Value 

nVar Number of design variables 9 

initSim 

Number of Abaqus analyses 

for initial training of the 

neural network 

18 

hiddenSizes 
Number and size of hidden 

layers 
9 

Psize Population size 30 

funTol 

Termination tolerance of 

error between target and 

simulated curve 

0.005 

maxSim 
Maximum number of 

iterations 
60 

XTol Stall tolerance for X 0.05 

YTol Stall tolerance for Y 0.05 
Table 5.7 NNO parameters 

To be assured of reliability of the model and the optimization technique, the optimization has 

been done twice and the results of both are in Table 5.8. 
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Parameters Results of optimization 1 Results of optimization 2 

𝐴 6.0 6.5771 

𝛽 1.1916 1.5162 

𝛾 0.8677 1.5568 

𝛼 0.8406 0.6978 

𝐸𝑚𝐽𝑚 10.0583 9.7385 

𝑘_𝑐𝑠(1) -0.25 e9 -0.4763 e9 

𝑘_𝑐𝑠(2) -13.1766 e9 -15.0288 e9 

𝛼_𝑝𝑑 9.9513 8.3236 

𝛽_𝑝𝑑 1.1026 e-3 1.0362 e-3 

Table 5.8 Results of optimizations 

The optimization errors in case 1 for mass 1 and mass 2 respectively are 4.4% and 1.4%. And 

in case 2 are 5.2% and 5.4% respectively. 

The results of the optimization and their comparisons are in the figures. 

 

Figure 5.14 Displacements of the masses in Case 1 
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Figure 5.15 Displacements of the masses in Case 2 

 

 

Figure 5.16 Comparison of Experimental and optimized data in Case 1 
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Figure 5.17 Comparison of Experimental and Optimized Data in Case 2 

The range of PSDs that optimization has been carried on for mass 1 is approximately from 9 to 

11.5 Hz and for mass 2 around 15.5 to 18 Hz. 

 

Figure 5.18 Peak of PSD of mass 1 in the range of 9 to 11.5 Hz in Case 1 
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Figure 5.19 Peak of PSD of mass 1 in the range of 9 to 11.5 Hz in Case 2 

 

 

Figure 5.20 Peak of PSD of mass 2 in the range of 15.5 to 18 Hz in Case 1 
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Figure 5.21 Peak of PSD of mass 2 in the range of 15.5 to 18 Hz in Case 2 

 

 

Figure 5.22 Experimental and optimized PSDs of mass 1 in Case 1 
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Figure 5.23 Experimental and optimized PSDs of mass 1 in Case 2 

 

 

Figure 5.24 Experimental and optimized PSDs of mass 2 in Case 1 
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Figure 5.25 Experimental and optimized PSDs of mass 2 in Case 2 
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Figure 5.26 Objective function errors, Top: case 1, Bottom: case 2 
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Figure 5.27 ANN error, Top: case 1, Bottom: case 2 

 

5.5.4 Comparison of Genetics and NNO 

The optimization process was carried out multiple times using the Genetic Algorithm (GA) to 

compare its performance with the Neural Network Optimization (NNO) approach. The results 

obtained from GA and NNO showed noticeable differences, both in terms of accuracy and 

computational efficiency. One of the most significant distinctions between the two methods 

was the time required for optimization. Specifically, the GA took approximately 1.5 times 

longer than the NNO to complete the optimization process when applied to a model with only 

six Bouc-Wen parameters. 
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This difference in computational efficiency became even more pronounced when attempting 

to scale the problem. While the NNO successfully handled an extended version of the model 

involving nine Bouc-Wen parameters, replicating the same optimization using GA proved 

impracticable. The system failed to complete the task due to the significantly higher 

computational load. This highlights a major limitation of GA in handling high-dimensional 

optimization problems compared to the more scalable and efficient NNO method. 

Optimization variables which are the Bouc-Wen parameters, and their values are mentioned in 

Table 5.9. 

Parameters Results of GA  

𝐴 6.4096 

𝛽 0.6463 

𝛾 0.4153 

𝛼 0.5011 

D 0.9277 

K0 0.6967 

Table 5.9 Optimization variables and their values 

 

Figure 5.28 Displacements of the Stockbridge Dampers 

As it is seen in Figure 5.29 although the displacements of the optimized data are close to the 

experimental ones, they lack the accuracy of the NNO in the previous section in Figure 5.16. 
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Figure 5.29 Comparison of the Displacements of the Experimental and Optimized data 

 

Figure 5.30 PSD of the optimized data 

Figure 5.31 and Figure 5.33 show the comparison of experimental and optimized PSDs and 

shows the inaccuracy of the data. Figure 5.32 and Figure 5.34 show this comparison in a 

broader range and it is clear that they lack the accuracy of the NNO. 
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Figure 5.31 Peak of PSD of mass 1 in the range of 9 to 11.5 Hz 

 

 

Figure 5.32 Experimental and optimized PSDs of mass 1 
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Figure 5.33 Peak of PSD of mass 2 in the range of 15.5 to 18 Hz 

 

 

Figure 5.34 Experimental and optimized PSDs of mass 2 
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