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Abstract

Anderson localization is a fundamental phenomenon in condensed matter physics
that describes the suppression of wave propagation due to disorder-induced inter-
ference effects. The Bethe lattice solution is the only known exact solution to the An-
derson localization problem. A recent proposal by Filoche and Mayboroda claims
to predict the position of the mobility edge in Anderson localization for systems in
finite dimensions. This framework, that they called “Localization Landscape The-
ory", introduces a function called localization landscape whose inverse acts as an
effective potential, identifying regions where quantum states are spatially confined.
The main claim of Filoche and Mayboroda’s work is that the Anderson transition
occurs when the regions with effective potential energy lower than the eigenstate
energy percolate through the lattice—thus interpreting Anderson localization as a
percolation transition. In this work we derive and solve numerically the equations
determining the transition according to the localization landscape percolation on the
Bethe lattice, showing that this framework is not able to reproduce the critical prop-
erties of Anderson localization on a generic lattice.
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Introduction

Anderson localization is a fundamental phenomenon in condensed matter physics,
first predicted by P.W. Anderson in 1958 [1]. It describes how wave propagation can
be suppressed due to disorder. For electronic transport in disordered media, inter-
ference between multiple scattering paths can completely localize electronic wave-
functions, preventing transport. This effect is particularly strong in low-dimensional
systems, where even infinitesimal disorder may localize all eigenstates. The transi-
tion between localized and extended states is characterized by a critical curve in pa-
rameter space called the mobility edge, which separates insulating and conducting
behaviors [2].

Anderson localization has been observed in various physical systems [2]. For
instance, ultrasound waves can localize in elastic networks [3], and electromagnetic
waves in disordered crystalline lattices [4].

Research on Anderson localization has extensively examined the tight-binding
model on Bethe lattices, where exact solutions provide insights into localization
properties of real disordered materials [5–8]. The density of states and mobility edge
dependence on disorder strength have been analyzed using techniques like the cav-
ity method [9] and population dynamics [10].

The “Localization Landscape Theory", introduced by M. Filoche and S. May-
boroda in 2012 [11], provides a method to predict the spatial distribution of local-
ized states in quantum disordered systems without directly solving the Schrödinger
equation. The theory introduces a localization landscape u(x). In the tight-binding
approximation, this landscape takes a discretized form u, represented in the occu-
pation number basis where states are indexed by electron occupancy at each site.
Each component ui corresponds to a lattice site i. The localization landscape satis-
fies a differential equation similar to the Schrödinger equation but with a uniform
right-hand side, which in the occupation number basis reads

Ĥu = 1, (1)

where Ĥ is the Hamiltonian operator and 1 is a vector with all entries equal to 1.
Section 1.4 will briefly outline the derivation of this theory.

A central claim of [11] is that this framework provides a way to predict the spa-
tial distribution of localized states using effective potentials 1/ui. The crests of the
effective potential define confinement regions for eigenstates, offering a way to un-
derstand localization without explicit eigenfunction computation. According to this
proposal, the sets of nearest-neighboring sites with effective potential below E, de-
termine the regions of the lattice where an electron with energy E is classically con-
fined. If a macroscopic (“giant") cluster of this kind exists, electrons could classically
percolate through the lattice, indicating that the system is in the delocalized phase.

To date, the Localization Landscape Theory has only been tested numerically for
the Anderson model on a cubic lattice of limited size (N = 50), leaving uncertainties
due to finite-size effects [12]. For this reason the aim of this work has been to derive



2 INTRODUCTION

and solve numerically the equations determining the critical properties of the local-
ization landscape percolation problem for the Anderson model on the only lattice
where the exact solution of Anderson localization is known, i.e. the Bethe lattice.
The aim was to put the Localization Landscape Theory to the test and characterize
its possible limits of validity.

In Sec. 1, after summarizing some fundamental results about Anderson localiza-
tion and percolation theory, we present a sketch of the derivation of Localization
Landscape Theory for the discrete lattice case. In Sec. 2.1 we derive the equations
for the localization landscape u on the Bethe lattice. Sections 2.2 and 2.3 contain our
derivation of the equations that determine the critical properties of the localization
landscape percolation problem and of Anderson localization on the Bethe lattice.
We then provide in Sec. 3 important analytical results derived from these equations
in the high-connectivity limit. Finally, Sec. 4 compares these results of Anderson
localization’s critical properties with those from the “Localization Landscape The-
ory”, in order to evaluate how well the theory predicts the actual Anderson critical
properties.
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Chapter 1

Preliminaries

In this section we summarize some important definitions and results that will be
useful later.

1.1 Random Regular Graphs

Random regular graphs are an important class of random graphs in which each node
has exactly the same degree K + 1, ensuring uniform connectivity across the net-
work. They are random in the sense that a random regular graph with N vertices
is a graph drawn uniformly from the set of all the graphs with N nodes and fixed
degree [13, 14]. These graphs serve as useful models of space in statistical physics
since in the thermodynamic limit they represent the infinite dimensional limit for
Euclidean lattices, while preserving a finite local connectivity. In contrast, the usual
mean-field approximation performed making the graph fully connected, has infinite
connectivity in the thermodynamic limit, and loses the notion of distance, since all
pairs of sites are connected by a path of length 1. Moreover, for the Anderson local-
ization problem one cannot observe the localization transition in the fully-connected
geometry [15].

An important feature of random regular graphs is that they are locally tree-like.
In fact, it can be shown that the typical size of loops grows as lnN/lnK, and this
implies that, asymptotically, systems defined on a random regular graph are well
described by their behavior on a Bethe lattice, i.e. an infinite tree with fixed con-
nectivity [13, 14]. The most important properties of the Bethe lattice, which add to
the ones of the random regular graph, are the ones descending from its infinite-tree
structure:

• It is translational invariant,

• Conditioning on one of the vertices, the K + 1 branches of the remaining graph
become statistically independent [16],

• There is only one simple path between two vertices.

These properties simplify the analytic calculations needed to find equations for the
critical behavior.

1.2 Anderson Localization

Anderson localization was originally studied in the context of electronic transport,
but has since been observed in many other condensed matter systems [2–4]. This
phenomenon occurs when disorder in a system leads to the suppression of wave
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FIGURE 1.1: Left: schematic representation of a Bethe lattice (centered on a reference
site i), i.e. an infinite tree with fixed coordination number K + 1. The grey regions
indicate the subtrees rooted at the nearest neighbors of i. Right: representation of the
same structure with site i removed. After removing the edge connecting i to a given
subtree, the disconnected subtree is itself an infinite tree with the same coordination
number K + 1, except at the root (the nearest neighbor of i), which has coordination
K. Under the assumption that site-dependent quantities depend explicitly only on
the nearest neighbors, conditioning on site i makes the neighboring subtrees statisti-
cally independent. This follows directly from the global Markov property of factor
graphs [16]. These decoupled subtrees are referred to as cavity subtrees, or cavity
lattices. Conditioning on a site thus allows one to express local observables on the
Bethe lattice in terms of conditionally independent quantities defined at the roots of

the cavity lattices.

propagation. In particular, for electronic transport it can be explained as the transi-
tion of the eigenstates of the electronic Hamiltonian from being extended, i.e. hav-
ing non-zero amplitude on the whole lattice, to being localized on particular sites,
i.e. having exponentially decaying amplitude with the distance from a site. The ef-
fect arises from the interference between multiple scattering paths in the disordered
potential, which can completely inhibit electronic transport and turn what would
normally be a conducting material into an insulator [2]. One of the most important
models in the description of Anderson localization is the tight binding Anderson
model [1], the Hamiltonian of which reads

Ĥ = ∑
i

ϵi ĉ†
i ĉi − t ∑

⟨i,j⟩

(
ĉ†

i ĉj + ĉ†
j ĉi

)
= ∑

i
ϵi|i⟩⟨i| − t ∑

⟨i,j⟩
(|i⟩⟨j|+ |j⟩⟨i|) , (1.1)

where ĉ†
i and ĉi are the creation and annihilation operators at site i in the second-

quantization formalism (the kets |i⟩, in the first-quantization representation, identify
the quantum states where an electron is localized on a site i), ϵi is the on-site disorder
potential, drawn from the uniform distribution

γs(ϵ) =

{
1/W if ϵ ∈ [−W/2, W/2] ,
0 else,

(1.2)

t is the hopping amplitude between neighboring sites, and ∑⟨i,j⟩ denotes the sum
over nearest-neighboring pairs. A key mathematical tool for analyzing localization
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properties is the resolvent (or Green’s function), defined as

Ĝ(z) = (zI − Ĥ)−1, (1.3)

where Ĥ is the Hamiltonian of the system, and z = E − iα is a complex number
whose imaginary part is useful for regularization reasons. The imaginary part of the
diagonal elements of Ĝ(z), i.e.

Gii(z) = ⟨i|Ĝ(z)|i⟩ , (1.4)

is directly related to the local density of states, while its decay properties characterize
the spatial extent of wavefunctions. The local density of states at site i and energy E
is given in terms of the imaginary part of the Green’s function as

ρi(E) = ∑
n
|ψ(n)

i |2δ(E − En) =
1
π

ImGii(E − i0+), (1.5)

where Gii(E − iα) is the diagonal element of the advanced Green’s function (the
distiction between “advanced" and “retarderd" Green’s functions comes from the
choice of z = E ± iα with α > 0 in Eq. (1.3)). The expression of ρi in terms of Gii is a
well-known result, and the derivation can be found in Ref. [17].

The local densities of states are the key parameters needed to identify the tran-
sition, since in the localized phase ρi(E) is exponentially small in O(N) sites, and of
O(1) in O(1) sites, while in the delocalized phase ρi(E) is non-zero on O(N) sites,
allowing for transport. Another important order parameter for the transition is the
“Inverse Participation Ratio" or IPR, which is defined as

I2(E) = E

[
∑n ∑i

∣∣ψ(n)
i

∣∣4δ(En − E)
∑n δ(En − E)

]
= E

[
lim

α→0+

α ∑i |Gii(E − iα)|2

∑i ImGii(E − iα)

]
, (1.6)

and is essentially a measure of the average inverse volume occupied by an eigen-
state. In the delocalized phase I2(E) ∼ O(1/N), while in the localized one I2(E) ∼
O(1). Finally, the last quantity that we are interested in is the eigenstate correlation
function, which is defined as

Cloc(|i − j| ; E) = E

[
∑n
∣∣ψ(n)

i

∣∣2∣∣ψ(n)
j

∣∣2δ(En − E)

∑n δ(En − E)

]
= E

[
lim

α→0+

α|Gij(E − iα)|2

∑i ImGii(E − iα)

]
,

(1.7)
and it represents the average correlation between the amplitude of an eigenstates

on two sites at distance |i − j|. The expectation values in Eqs. (1.6),(1.7) are taken
over the disorder variables ϵi. The algebraic steps leading to the final expression
in Eq. (1.6) are detailed in Ref. [18], and the last term in Eq. (1.7) is derived in an
analogous way. From Eqs. (1.5),(1.6),(1.7) it is evident that the critical properties of
Anderson localization on a generic lattice are fully determined by Ĝ(z). The advan-
tage of working with the Bethe lattice is that the computation of the components of
Gij(z) is much simpler thanks to the cavity method. The final result for the diagonal
elements is

Gii(z) =
1

z − ϵi − t2 ∑k∈∂i Gk→i(z)
, (1.8)

where the symbol ∂i represents the set of nearest neighbors of site i, and the terms
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Gi→j(z) are the cavity Green’s functions on site i in the absence of site j. They sat-
isfy an analogous recursion relation, which is the so-called cavity equation for the
Green’s function:

Gi→j(z) =
1

z − ϵi − t2 ∑k∈∂i\j Gk→i(z)
, (1.9)

where ∂i\ j is a shorthand notation for ∂i\{j} and “\" is the symbol of difference
between sets. The derivation of Eqs. (1.8) and (1.9) is very similar to the one that we
will present in Sec. 2.1, and can be found in Ref. [6].

The most important quantity determining the position of the mobility edge is
the imaginary part of the Green’s function, entering in the local density of states.
The interpretation of the real part of the Green’s function has remained elusive. The
“Localization Landscape Theory" could give it an interpretation. In fact, as we will
show in Sec. 2.1, the localization landscape u is directly related to Re[Gii(2t

√
K +

W/2 − iα)].

1.3 Percolation on the Bethe lattice

Percolation is a fundamental physical phenomenon describing the formation of con-
nected regions (or “clusters") in a disordered medium as a function of increasing
connectivity. In everyday life, a simple example of percolation is the flow of water
inside a coffee filter. Depending on the structure of available paths inside the filter,
the water will either be able to percolate through the material, seeping from one side
to the other, or end up stuck in a “non-percolating path".

This effect can be described using many mathematical models. This rich theo-
retical framework is known as percolation theory [19]. Applications of percolation
theory comprehend: percolation of particles through membranes in chemistry and
biology [20, 21], contact networks in epidemiology [22, 23], and as we have antici-
pated in the introduction, electronic transport in disordered media [12].

In the most general case the percolation model is defined on a graph G = (V, E).
Here V is the set of N “vertices” (or “sites”) and E is the set of “edges” (or “bonds”)
of the graph. The two classical models for percolation are:

• Site percolation: We consider a graph where all the bonds in the set E are ac-
tive but the sites can be “occupied” or “not occupied”, independently, with
probabilities q or 1 − q;

• Bond percolation: In a similar way, one considers that all the sites as occupied,
and takes each bond in E to be “active” with probability q or “inactive” with
probability 1 − q.

In both models a path in the graph is defined as a set of active bonds connecting oc-
cupied sites. A set of all occupied sites connected by a path is called a cluster, and the
“size” of a cluster is defined as the number of sites that it contains. In the thermody-
namic limit, as q increases past a critical threshold qc (different for the 2 percolation
types), a “giant” (i.e. containing O(N) sites) cluster appears, allowing long-range
transport, i.e. the existence of a path “from one side to the other” of the graph.
Below qc, only small, finite clusters exist. The percolation transition is a “phase tran-
sition”, but unlike conventional statistical physics phase transitions, it does not rely
on an underlying Hamiltonian, making its critical behavior an interesting subject of
study of pure geometric origin.

The percolation problem can be slightly modified by considering both site occu-
pation and bond activation as random, creating a site-bond percolation problem. In
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order to apply the results of percolation theory in a more flexible way to the An-
derson localization problem, we start by obtaining the site-bond percolation critical
curve in terms of the independent control parameters q and qB. The fundamental
quantities for this problem are defined as

q = Pr{Oi = 1} , qB = Pr{Ai,j = 1}, (1.10)

p(q, qB) = Pr{site i belongs to the giant cluster}, (1.11)

where

Oi =

{
1 if site i is occupied
0 else

Ai,j =

{
1 if bond (i, j) is active
0 else

(1.12)

On the Bethe lattice p(q, qB) should be translational invariant, and thus indepen-
dent of the particular site. This quantity can be computed recursively on the graph
as follows:

p(q, qB) = q Pr
{
∃j ∈ ∂i in the giant cluster, Ai,j = 1

}
=

= q
K+1

∑
l=1

Pr
{

Ai,jk = 1 for at least a k ∈ {1, . . . , l}
}︸ ︷︷ ︸

[1 − (1 − qB)
l ]

Pr
{
{j1, . . . , jl} ∈ ∂i are in the infinite cluster

}︸ ︷︷ ︸
(K+1

l )pcav(q, qB)
l [1 − pcav(q, qB)]

K+1−l

,

= q
[
1 − (1 − pcav(q, qB)qB)

K+1
]

, (1.13)

where ∂i is the set of nearest neighbors of i, and pcav(q, qB) is the cavity percolation
probability, and it is defined in the same way as p(q, qB) but on a lattice where one
of the branches connected to site i has been removed. As mentioned in the caption
of Fig. 1.1, this modified lattice (one of the subtrees in the right image of this figure)
is the so-called cavity lattice. The cavity percolation probability can be computed in
an analogous way, i.e.

pcav(q, qB) = q[1 − (1 − pcav(q, qB)qB)
K]. (1.14)

The percolation transition occurs when the solution of this recursive equation be-
comes non-zero. This means that we can find the expression for the critical curve in
the plane (q, qB) by expanding the right-hand-side of Eq. (1.14) for pcav small. The
result is

qqB = 1/K, (1.15)

in analogy with the critical threshold for site percolation on the Bethe lattice [19]
with occupation probability qqB. The critical curve is a hyperbola and is symmetric
in the exchange of q and qB even though the cavity equation (1.14) is not. Two quan-
tities that will be useful later to describe the percolation transition described by the
localization landscape framework will be the two-point correlation function, and the
average cluster size.

The correlation function Cp(r) for a percolation problem on the Bethe lattice is
defined as the probability that two sites at distance r belong to the same cluster.
Denoting as 0, . . . , r the sites along a simple path of length r on the lattice we have

Cp(r) ≡ Pr{O0 = 1, A0,1 = 1, . . . , Ar−1,r = 1, Or = 1} . (1.16)

The average cluster size S represents the average size of the connected compo-
nent in the lattice to which a generic occupied site belongs. This can be computed
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directly from the correlation function, by observing that the average number of sites
at distance r belonging to the same cluster as site i is (K + 1)Kr−1Cp(r)/q (the factor
1/q is needed to condition the probability on the occupation of the reference site).
Therefore, the average number of sites belonging to the same cluster of site i, regard-
less of their distance, will be just

S = 1 +
∞

∑
r=1

(K + 1)Kr−1 Cp(r)
q

. (1.17)

Note that these two definitions are independent of the criterion that we choose for
the site occupation (as long as q is defined as the probability of a generic site to be
occupied). Therefore, they are completely general, and they can be used for any
kind of correlated or uncorrelated percolation problem on the Bethe lattice. For the
site-bond percolation problem the correlation function is just

Cp(r) = q(qqB)
r =

q
Kr e−r/ξp , (1.18)

with
ξp = − 1

ln KqqB
, (1.19)

which represents the correlation length of the problem, and as expected diverges
at criticality as ξp ∼ |qqB − 1/K|−ν (and ν = 1). The average cluster size follows
directly from Eq. (1.17), also diverges at criticality with a power law (S ∼ |qqB −
1/K|−γ with γ = 1), and reads

S =
1 + qqB

1 − KqqB
. (1.20)
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1.4 “Localization Landscape Theory”

In this section we will summarize the main ideas and derivations of “Localization
Landscape Theory” in the discrete lattice case. As we will see in Sec. 4 some of the
hypothesis of this proposal will be contradicted by our results, but in the following
we will describe the framework as it has been introduced in Refs. [11, 12, 24].

According to the latter references, the localization landscape defines regions where
the eigenstates are confined, and the transition to delocalization can be understood
as a “percolation” of the classically allowed regions throughout the system. More-
over, the inverse of the localization landscape represents an effective potential; there-
fore, electrons with energy E are classically confined to regions where 1/ui < E. The
delocalization transition should then occur when the set of classically allowed sites
ΩE = {i|1/ui ≤ E} forms a connected path spanning the system. This percolation
approach provides an alternative interpretation of the Anderson transition, where
the mobility edge, traditionally understood as the energy separating localized and
delocalized states, could be determined as the critical curve of this classical percola-
tion problem.

The definition of the set ΩE follows from the following argument. We start by
defining the localization landscape u as the solution of Eq. (1). We want to show that
the quantity 1̂/u ≡ ∑i

1
ui
|i⟩⟨i| represent an effective potential. From now on we will

work with a positive definite Hamiltonian to simplify calculations, but the result
can be easily mapped to the case of the original Hamiltonian. In the usual Ander-
son tight-binding Hamiltonian the spectrum is symmetric, and it has been shown
in Refs. [25, 26] that on the Bethe lattice the energies E take values in the interval
[−2t

√
K −W/2, 2t

√
K +W/2]. So, in order to make Ĥ positive definite we just need

to translate all the random on-site energies ϵi by the fixed amount 2t
√

K + W/2.
After this translation, the spectrum of the Hamiltonian takes values in the interval
[0, 4t

√
K +W]. The functional form of the Hamiltonian in Eq. (1.1) remains the same

as long as we define the on-site energies as random variables ε i = ϵi + 2t
√

K +W/2,
i.e. drawn uniformly from [2t

√
K, 2t

√
K + W]. Therefore, the probability distribu-

tion of the ε i’s is

γ(ε) = γs(ε − 2t
√

K − W/2) =

{
1/W if ε ∈ [2t

√
K, 2t

√
K + W],

0 else,
(1.21)

where γs is the one in Eq. (1.2). Working now with this Hamiltonian, the equation
that defines u can be written in terms of the Green’s function as

G−1u = 1. (1.22)

The latter follows from Eq. (1) by defining G = Ĥ−1. Then, by multiplying on the
left by G we obtain

ui = ∑
j
Gij. (1.23)

Having translated the diagonal elements, the Hamiltonian now falls in the class of
non-singular M-matrices. A non-singular M-matrix is defined as a non-singular real
valued square matrix whose off-diagonal elements are non-positive, and whose in-
verse exists and is non-negative. The result known as “M-matrix eigenvalue crite-
rion” states that if a non-singular real valued matrix has non-positive off-diagonal
terms and all eigenvalues with positive real-parts then it is a non-singular M-matrix.
For this reason, the Green’s function exists and all its entries are non-negative. This
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FIGURE 1.2: Sketch of the inequality of Eq. (1.26). The amplitude of all eigenfunctions
is bounded by a quantity proportional to the localization landscape. Therefore, wher-
ever the localization landscape is small the amplitude of the eigenfunctions must be
small too, signaling that the valleys of the localization landscape should delimit the

regions where the eigenfunctions have non-zero amplitude.

also implies that the components of u are all non-negative. Thus, summarizing

Gij ≥ 0 ∀ i, j and ui ≥ 0 ∀ i. (1.24)

A direct consequence of this is that we can find an equation to show that the
eigenstates of the Hamiltonian are confined inside domains delimited by the val-
leys of the localization landscape u. Now, let |ψ⟩ be an eigenstate of the Hamilto-
nian with energy E (decomposed in the lattice sites basis as |ψ⟩ = ∑i ψi|i⟩). Using
Eqs. (1.23),(1.24) we can write

|ψi| ≡ |⟨i|ψ⟩| = |⟨i|H−1H|ψ⟩| = E
∣∣∣⟨i|H−1|ψ⟩

∣∣∣ = E ∑
j
(H−1)ij︸ ︷︷ ︸
Gij≥0

|ψj|

≤ E max
i

|ψi|︸ ︷︷ ︸
||ψi ||∞

∑
j
Gij︸ ︷︷ ︸

ui

= Eui||ψ||∞. (1.25)

Thus,
|ψi|

||ψ||∞
≤ Eui. (1.26)

This equation is the discrete version of Eq. (3) in [11], and the derivation that we
have shown is analogous to the one in the appendix of [11], with the only differ-
ence that in this case we work with discrete quantities. The direct consequence of
Eq. (1.26) is that the amplitudes of the eigenfunctions are bounded by the localiza-
tion landscape. Therefore, the eigenstates must be confined within the basins de-
limited by the valleys of the localization landscape (i.e. by the crests of the effective
potential), as sketched in Fig. 1.2.
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In the following we derive an equation that, according to [24] should explicitly
highlight the role of 1̂/u as an effective potential:

⟨i|Ĥ|ψ⟩ = (Ĥψ)i = ε iψi − t ∑
j∈∂ii

ψj = (ε i − t(K + 1))ψi − t ∑
j∈∂i

(ψj − ψi)

= φi

[
(ε i − t(K + 1))ui − t ∑

j∈∂i
(uj − ui)

]
︸ ︷︷ ︸

(Ĥu)i=1

−t ∑
j∈∂i

uj(φj − φi)

= φi − t ∑
j∈∂i

uj(φj − φi). (1.27)

In the second line we have introduced the variables φi = ψi/ui, and we have added
and subtracted uj φi to the expression. By definition, ⟨i|Ĥ|ψ⟩ = Eψi = Eui φi, which
means that

−t ∑
j∈∂i

uj

ui
(φj − φi) +

1
ui

φi = Eφi. (1.28)

This equation represents the discrete version of

− t
u2∇ · (u2∇φ) +

1
u

φ = Eφ, (1.29)

which is an equation of Schröedinger type for φ with potential 1̂/u. It is the analog
of Eq. (5) in [27]. The proof of the equivalence between Eqs. (1.28) and (1.29) is
written in App. A. This equation tells us that 1̂/u is the potential for the Schröedinger
equation of a modified wavefunction, and, as we argue in Sec. 4, this could break
the interpretation that [12] uses to define the percolation problem. One last result
that gives credit to the effective potential interpretation, is that the energy of any
quantum state (not necessarily an eigenstate) is always greater or equal than the
effective potential energy ⟨ψ|1̂/u|ψ⟩. In fact,

⟨ψ|Ĥ|ψ⟩ = ∑
i

ψi(Ĥψ)i = ∑
i

ui φ
2
i − t ∑

i
∑
j∈∂i

uiuj(φj − φi)

= ∑
i

ui φ
2
i − 2t ∑

⟨i,j⟩
uiuj(φj − φi) = ∑

i
ui φ

2
i + t ∑

⟨i,j⟩
uiuj(φj − φi)

2

= ∑
i

ψ2
i

ui︸ ︷︷ ︸
⟨ψ| ˆ1/u|ψ⟩

+t ∑
⟨i,j⟩

uiuj

(
ψj

uj
− ψi

ui

)2

≥ ⟨ψ|1̂/u|ψ⟩. (1.30)

In the first equality of the second line we have used ∑i ∑j∈∂i = 2 ∑⟨i,j⟩. In the next
equality we have rewritten one of the two copies of the sum over nearest-neighbors
exchanging the indices i and j. The last inequality follows from the fact that all the
components of u are non-negative, as stated in Eq. (1.24). Equation (1.30), is the
same as Eq. (5) in [12], and represents the discrete version of Eq. (6) in [27].

The interpretation of 1̂/u as an effective potential implies that classically an elec-
tron with energy E can only occupy the set of sites i where 1/ui < E, i.e. where
the effective potential energy is smaller than the energy of the electron. The main
hypothesis of [12] is that, given this effective potential, this classical argument holds
in general. Therefore, we can define the set of allowed sites as ΩE = {i|1/ui ≤ E},
and then study the statistical properties of the localization landscape to compute the
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mobility edge as the critical curve for the percolation of the set ΩE.
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Chapter 2

Theoretical framework on the
Bethe lattice

In this section we present the theoretical framework that we developed to study
the localization landscape percolation problem on the Bethe lattice, and we summa-
rize the well known solution of Anderson localization on the Bethe lattice. We start
in Sec. 2.1 by deriving the cavity equations determining the fundamental physical
quantities at stake, then (in Sec. 2.2)we present the localization landscape percola-
tion problem and the equations that have to be solved to determine all its critical
properties.

2.1 Cavity Analysis

In this section we derive the set of coupled equations that let us compute the local-
ization landscape on a generic site i of the Bethe lattice as a function of independent
cavity quantities defined on the subtrees rooted in the nearest neighbors of i. We
present two different derivations, one based on the cavity method (used in a formu-
lation implemented via Gaussian integrals which is explained in detail in Ref. [28]),
which is completely self-contained, and another one which takes advantage of some
known results for the Green’s function of Anderson localization on the Bethe lattice.
We start by presenting the self-contained derivation.

2.1.1 Derivation with auxiliary fields

The elements of the Green’s function can be written as expectation values with a
Gaussian measure as:

Gij = E[xixj] =
1
Z

∫
Dx xixj e−S0[x] , (2.1)

where
S0[x] =

1
2 ∑

i
ε ix2

i − t ∑
⟨i,j⟩

xixj =
1
2

xtĤx =
1
2

xtG−1x , (2.2)

and
Z =

∫
Dx e−S0[x]. (2.3)

This expression for the Green’s functions is justified by the fact that, as we have
written in Sec. 1.4, the Hamiltonian is positive definite, so e−S0[x]/Z is a properly
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normalized Gaussian measure. The integral defining the localization landscape fol-
lows from Eqs. (1.23) and (2.1), and reads

ui =

∫
Dx xi(∑j xj) e−S0[x]

Z
. (2.4)

In order to compute this object, it is convenient to add a source term to the action
that couples linearly to the field x:

SJ [x] = S0[x]− J ∑
j

xj =⇒ ui =
∂E[xi]

∂J

∣∣∣∣
J=0

. (2.5)

In absence of the source term, all the variables xi have zero mean, and their marginal
distributions are just Gaussians centered in zero. In order to compute E[xi] we need
to find the cavity equations of the system in presence of the source term that breaks
the parity of the marginal distribution. The most general form for the marginal dis-
tribution on a given site is

µi(xi) ∝ e−
x2

i
2Gii

+ξixi . (2.6)

This is a direct consequence of the Gaussian measure e−S0[x]/Z. Analogously, for the
cavity lattice we can write the marginal on site i (root of the branch Bi→j) as

µi→j(xi) ∝ e
− x2

i
2Gi→j

+ξi→jxi . (2.7)

To find the recursion relations for the Green’s function Gii and the field ξi, we
have to write the marginal on site i as the integral of the full measure e−S0[x]/Z
over all the variables {xk}k ̸=i. Since the only variables coupled to xi in S0[x] are
the nearest neighbors {xk}k∈∂i, the marginal on site i can be rewritten as an integral
over {xk}k∈∂i of the terms in e−S0[x] which depend on xi, weighted with the joint
probability distribution of {xk}k∈∂i. Moreover, since {xk}k∈∂i are decoupled in S0[x],
the joint probability distribution is separable as the product of the cavity marginals
on each nearest neighbor in absence of i. The resulting equation is

µi(xi) = e−
1
2 εix2

i +Jxi

∫
∏
k∈∂i

[dxk µk→i(xk)] etxi ∑k∈∂i xk ∝ e−
1
2 εix2

i +Jxi+
1
2 ∑k∈∂i(ξk→i+txi)

2Gk→i .

(2.8)
Analogously, for the marginal on site i in the cavity lattice we have

µi→j(xi) = e−
1
2 εix2

i +Jxi

∫
∏

k∈∂i\j
[dxk µk→i(xk)] etxi ∑k∈∂i\j xk ∝ e−

1
2 εix2

i +Jxi+
1
2 ∑k∈∂i\j(ξk→i+txi)

2Gk→i .

(2.9)
Enforcing in Eqs. (2.8) and (2.9) the functional forms of Eqs. (2.6) and (2.7), one im-
mediately obtains

G−1
ii = ε i − t2 ∑

k∈∂i
Gk→i , (2.10)

ξi = J + t ∑
k∈∂i

Gk→iξk→i , (2.11)

G−1
i→j = ε i − t2 ∑

k∈∂i\j
Gk→i , (2.12)

ξi→j = J + t ∑
k∈∂i\j

Gk→iξk→i . (2.13)
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It is convenient to introduce the rescaled fields ηi→j such that Jηi→j = ξi→j, in
terms of which the second and fourth equation read

ηi = 1 + t ∑
k∈∂i

Gk→iηk→i , ηi→j = 1 + t ∑
k∈∂i\j

Gk→iηk→i , (2.14)

which is now completely independent of the value of the source J.
The last step is to express ⟨xi⟩ in terms of the cavity fields. Since we know its

marginal distribution (2.6) we just need to compute

⟨xi⟩ =
∫

dxi xiµi(xi) = Gii Jηi , (2.15)

Finally, taking the derivative with respect to the source J, we get

ui = Giiηi . (2.16)

i

Gii, ηi, ui

1

2

K

Full lattice - K + 1 neighboring branches

K + 1
k

1

2

K

Cavity lattice in absence of i - branch Bk→i

Gk→i

i

Gii, ηi, ui

ηk→i

FIGURE 2.1: Left: Schematic representation of a Bethe lattice centered on a reference
site i. Gii and ui, are the on-site quantities associated with this site. Right: The cav-
ity subtree Bk→i, rooted at a nearest neighbor k ∈ ∂i, obtained after removing site
i from the lattice. The on-site quantities at i depend only on the cavity quantities

{Gk→i, uk→i}k∈∂i, computed from the neighboring cavity subtrees {Bk→i}k∈∂i.

2.1.2 Derivation with u alone

We can check that the previous result is correct by computing the ui recursively using
the standard cavity method on a tree (see Ref. [16]). Starting from Eq. (1.23) we have

ui = Gii + ∑
k∈∂i

∑
j∈Bk→i

Gij, (2.17)

where Bk→i ≡ {j | j belongs to the subtree rooted at k ∈ ∂i after the removal of site i}.
The second sum can be written as:

∑
j∈Bk→i

Gij = Gik + ∑
j∈Bk→i\k

Gij. (2.18)

We can write a Green’s function G0r, where 0 and r are two sites on the Bethe lattice
connected by a path of length r, using the following equations (whose derivation is
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summarized in App. B):

G0r = G00

r

∏
s=1

tGs→s−1 = Grr

r−1

∏
s=0

tGs→s+1. (2.19)

Here the cavity Green’s functions in the product are the ones connecting the sites
along the path going from site r to site 0 (in the first equality) or vice versa (in the
second). The recursive equations defining the normal and cavity Green’s functions
appearing in the formula are the ones of Eqs. (2.10) and (2.12), and their derivation
analogous to the one in Sec. 2.1, with the only differences that we have to take J = 0
in the action (2.5), and ξi, ξi→j = 0 in the ansatz for the normal and cavity measures
(2.6) and (2.7).

Using Eq. (2.19) in Eq. (2.18), and after some algebra we obtain

ui = Gii + t ∑
k∈∂i

Gi→kuk→i , ui→j = Gii + t ∑
k∈∂i\j

Gi→kuk→i , (2.20)

where we have defined
uk→i ≡ ∑

j∈Bk→i

Gkj . (2.21)

The detailed steps to obtain Eqs. (2.20) are given in App. C, where we also show that
by defining

ui→j = Giiηi→j , (2.22)

Eqs. (2.20) become equivalent to Eqs. (2.14).
As we can see, Eqs. (2.20) depend both on the normal and the cavity Green’s

functions, so Eqs. (2.10), (2.12), (2.20) represent a set of coupled recursive equations
that can be solved self-consistently. Still, for the computation of the percolation crit-
ical curve it is more useful to work with the set of equations (2.10), (2.12) and (2.14)
as it will be explained in the next section.

2.2 Localization landscape percolation equations

In this section we are going to derive the fundamental equation determining the
critical behavior of our percolation problem. We start by deriving in Sec. 2.2.1 the
cavity equation governing the probability that a generic site belongs to an infinite
cluster, then in Sec. 2.2.2 we show how this equation and the cavity equations of Sec.
2.1 can be recast into a self-consistent distributional equation. Finally, in Sec. 2.2.3
we derive the expressions for the correlation function and the average cluster size.

2.2.1 Cavity analysis for the percolation probability

In order to study the percolation problem at energy E, one has to consider the stan-
dard cavity equation for the random site percolation on the Bethe lattice, where the
probability of a node being occupied is replaced by the condition ui > 1/E. In this
setting we have to define

pi ≡ Pr{site i belong to the giant cluster}. (2.23)

These probabilities are the analogues of p(q, qB) in the site-bond percolation prob-
lem of Sec. 1.3, but now, since the value of the localization landscape on a site i is
correlated to the ones of its nearest neighboring sites, the probability of a site being
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occupied is site dependent. The recursive equations read

pi = θ(ui > 1/E)
[
1 − ∏

k∈∂i
(1 − pk→i)

]
, (2.24)

pi→j = θ(ui > 1/E)
[
1 − ∏

k∈∂i\j
(1 − pk→i)

]
. (2.25)

From now on we will refer to the pi’s as the percolation probabilities. A funda-
mental observation is that {pk→i}k∈∂i\j in Eq. (2.24) are not statistically independent,
because for each of them we need to compute the θ(uk > 1/E)’s, which depend also
on quantities on site i. For this reason it is useful to switch to a different set of cavity
variables that we define as

p̄i→j ≡ Pr{cavity site i (in absence of j) belong to the giant cluster if occupied}

=
pi→j

θ(uk − 1/E)
. (2.26)

In terms of these variables Eqs. (2.24) become

pi = θ(ui > 1/E)
[
1 − ∏

k∈∂i

(
1 − θ(uk > 1/E) p̄k→i

)]
, (2.27)

p̄i→j = 1 − ∏
k∈∂i\j

(
1 − θ(uk − 1/E) p̄k→i

)
. (2.28)

Since in the non-percolating phase all these probabilities must be exactly zero, close
to the percolation critical curve we can linearize the second equation above, which
becomes

p̄i→j = ∑
k∈∂i/j

θ(uk − 1/E) p̄k→i . (2.29)

Here uk = Gkkηk (see Eq. (2.16)), and it can be computed in terms of independent
cavity variables once we realize that

G−1
kk = G−1

k→i − t2Gi→k, ηk = ηk→i + tGi→kηi→k, (2.30)

and
G−1

i→k = ε i − t2 ∑
m∈∂i\k

Gm→i , ηi→k = 1 + t ∑
m∈∂i\k

Gm→iηm→i , (2.31)

which follow from Eqs. (2.12). The final expression for the localization landscape for
a site k ∈ ∂i \ j is

uk =

(
G−1

k→i −
t2

ε i − t2 ∑m∈∂k\i Gm→i

)−1(
ηk→i + tGk→i

1 + t ∑m∈∂k\i Gm→iηm→i

ε i − t2 ∑m∈∂k\i Gm→i

)
≡ Uk({Gk→i, ηk→i}k∈∂i). (2.32)

2.2.2 Self-consistent distributional equation

We can now exploit the statistical independence of the cavity variables by observing
that, after averaging over disorder, the Hamiltonian becomes translational invari-
ant. Therefore, the joint probability distribution of on-site variables must be the
same on every site (and the same must hold for the cavity variables). This means
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that we can write a recursive equation that relates the joint probability distribu-
tion of Gi→j, ηi→j, p̄i→j on a cavity site, to independent copies of itself. In other
words, Gi→j, ηi→j, p̄i→j are written in terms of independent sets of cavity variables
{Gk→i, ηk→i, p̄k→i}k∈∂i drawn from the same probability distribution P(g, η, p̄). Be-
cause of translational invariance P(g, η, p̄) must also be the probability distribution
of Gi→j, ηi→j, p̄i→j themselves. Therefore, using all the cavity equations defining
the cavity variables, i.e. Eqs. (2.12), (2.14), (2.29) and (2.32), we can write the self-
consistent distributional equation defining P(g, η, p̄) as

P(g, η, p̄) =
∫

dε γ(ε)

[ K+1

∏
k=1

dgkdηkdp̄k P(gk, ηk, p̄k)

]
δ

(
g − 1

ε − t2 ∑K
k=0 gk

)
× δ

(
η − 1 − t

K

∑
k=1

gkηk

)
δ

(
p̄ −

K

∑
k=1

θ
(

Uk
(
{gk, ηk}k≤K+1

)
− 1/E

)
p̄k

)
.

(2.33)

Equation (2.33) can be solved using population dynamics, which is a standard
numerical technique used to solve self-consistent distributional equations (it will
be explained more in detail in App. D). This equation holds close to criticality. If
one wants to obtain the distribution for a generic pair (E, W), the equation must be
solved exchanging the delta function enforcing Eq. (2.29) with a delta enforcing the
relation on the right in Eqs. (2.28).

Now, the critical curve of this percolation problem will be identified by the points
in the (E, W)-plane where p̄i→j passes from having zero to non-zero expectation
value. The comparison between the critical curve obtained with this method, and
the one for Anderson localization will be done in Sec. 4.

2.2.3 Correlation function and average cluster size

From the definition in Eq. (1.16), considering all bonds as active, the correlation func-
tion becomes

Cp(r) = Pr{O0 = 1, . . . , Or = 1} = E

[ r

∏
i=0

Oi

]
. (2.34)

Here the occupation variables Oi are the ones defined in Eq. (1.12), and the occupa-
tion condition is given by ui > 1/E, thus

Oi =

{
1 if ui > 1/E
0 otherwise

(2.35)

Now, since the correlation function can be written as an expectation value, and the
random quantities in Eq. (2.34) depend only on the set of independent cavity quan-
tities

{
(Gk→i, ηk→i) | i ∈ {0, . . . , r} , k ∈ ∂{0, . . . , r}}, given the joint probability dis-

tribution P(g, η, p̄) we can compute explicitly Cp(r). The expected scaling of the
correlation function for large distances is Cp(r) ∼ e−r/ξp /Kr. The procedure for the
numerical computation of Cp(r) and ξp is explained in App. E. After obtaining the
correlation function, the average cluster size follows directly from Eq. (1.17), where
q = Pr{Oi = 1} can be computed numerically from P(g, η, p̄).

In Sec. 4 we present the results of the numerical computation of the percolation
correlation length ξp and the inverse average cluster size 1/S, comparing them with
the Anderson correlation length ξloc and the IPR, that represent in some sense their
counterparts in the Anderson Localization problem.
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2.3 Anderson localization equations

In this section, we begin by summarizing the derivation of the equation that de-
termines the Anderson localization transition on the Bethe lattice, whose numerical
solution will be presented in Sec. 4. Then we give a sketch of the derivation of its
related integral eigenvalue equation. This equation can be compared with Eq. (3.36),
which represents its counterpart in the localization landscape percolation problem.
This comparison will let us highlight the difference between the localization and the
localization landscape percolation transitions on the Bethe lattice. The derivation
presented in this section is a summary of the one in Ref.[18], with the only difference
that now we consider the case with finite energy E.

2.3.1 Self-consistent distributional equation

For the Anderson localization solution, we work with the Hamiltonian with statisti-
cally symmetric spectrum, given in Eq. (1.1). For this system, it is well known that
at the mobility edge, the local density of states ρi switches from being non-zero on
O(N) sites in the delocalized phase, to being exponentially small on O(N) sites but
O(1) on O(1) sites in the localized phase. As anticipated in Sec. 1.2, the local density
of states is proportional to the imaginary part of Gii(E − i0+), where Gii(z) is the
Green’s function defined by Eqs. (1.3) and (1.4). Therefore we can identify the mo-
bility edge as the curve in the (E, W)-plane where the Green’s functions transition
from having zero to non-zero average imaginary part.

As in the percolation problem, we can work directly with the cavity quantities
Gi→j(z), taking z = E − iα where α ≪ 1 serves as a regularization parameter. From
now on, to lighten the notation, we will write Gi→j without explicit z-dependence.
We decompose the cavity Green’s function in the localized phase as

Gi→j = GR
i→j + iαG I

i→j. (2.36)

Here, since in the localized phase Im[G(E − iα)] is linear in α for α ≪ 1, we have
taken out a factor α from the imaginary part.

The cavity equation (1.9) can be separated into real and imaginary parts. By
expanding for small α, and retaining the leading order, we obtain the two cavity
equations governing the critical properties of the system:

(GR
i→j)

−1 = E − ϵi − t2 ∑
k∈∂i\j

GR
k→i, (2.37)

G I
i→j = t2(GR

i→j)
2 ∑

k∈∂i\j
G I

k→i. (2.38)

As in the percolation case, these cavity equations can be recast into a distribu-
tional equation for the joint distribution P(g, ĝ) of GR

i→j and G I
i→j, which reads

P(g, ĝ) =
∫

dϵ γs(ϵ)

[ K

∏
k=1

dgkdĝk P(gk, ĝk)

]
δ

(
g− 1

E − ϵ − t2 ∑k gk

)
δ

(
ĝ− t2g2 ∑

k
ĝk

)
,

(2.39)
where the disorder distribution γs is the one in Eq. (1.2).
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2.3.2 Solution through linear stability

Equation (2.39) can be rewritten as an integral eigenvalue equation using the follow-
ing procedure.

Starting from Eq. (2.39), we use the integral representation of the delta function
for the variable ĝ, which reads

δ

(
ĝ − t2g2 ∑

k
gk

)
=
∫ ∞

−∞

dλ

2π
e−iλ(g−t2g2 ∑k gk) , (2.40)

to take the Fourier transform of the distributions on the right-hand side by integrat-
ing explicitly over all the gk’s. The result is

P(g, ĝ) =
∫

dϵ γs(ϵ)

[ K

∏
k=1

dgkdĝk P̂(gk, λt2g2)

]
δ

(
g − 1

E − ϵ − t2 ∑k gk

)
. (2.41)

Then, Fourier transforming over ĝ on both sides, we obtain

P̂(g, λ) =
∫

dϵ γs(ϵ)

[ K

∏
k=1

dgk P̂(gk, λt2g2)

]
δ

(
g − 1

E − ϵ − t2 ∑k gk

)
. (2.42)

Next, we expand the characteristic function around the solution with zero imag-
inary part to lowest order in λ, assuming in the most general case a tail exponent β
for the distribution:

P̂(g, λ) ≈ P(g) + f (g)|λ|β , (2.43)

which gives

f (g) =
∫

dg′ Kβ
loc(g, g′) f (g′) . (2.44)

Here, the kernel Kβ
loc is

Kβ
loc(g, g′) = K|tg|2β

∫
dϵdg̃ γs(ϵ)Rloc(g̃)δ

(
g − 1

E − ϵ − t2(g̃ + g′)

)
, (2.45)

where

Rloc(g̃) =
∫ [ K−1

∏
k=1

dgk P(gk)

]
δ

( K−1

∑
k=1

gk − g̃
)

. (2.46)

The function Rloc represent the distribution of the sum of K − 1 real parts, and it
can be evaluated numerically by computing the marginal distribution of the GR

i→j’s
through population dynamics (see App. D), and sampling from it sums of K − 1
variables.

Given this equation, the critical curve will be identified by the curve in the (E, W)-
plane where the top eigenvalue of the kernel is equal to one. In the localized phase,
the only stable solution of the self-consistent distributional equation (2.39) must be
the one with zero imaginary part of the Green’s function, thus any perturbation f (g)
of this solution must vanish under iteration of the integral operator. On the other
hand, in the delocalized phase the opposite must occur: any perturbation of the lat-
ter distribution must explode under iteration. If the top eigenvalue of Kloc is smaller
than 1, decomposing the perturbation f on the eigenbasis of Kloc, all components
will vanish under iteration, conversely, if the top eigenvalue is greater than 1, all
perturbations non-orthogonal to the eigenfunctions with eigenvalue greater than 1
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will explode. Thus, the curve in parameter’s space that separates these two regions
is exactly the one where the maximum eigenvalue of the kernel is equal to one.

This integral operator can be diagonalized numerically with high precision, as it
has been done in Refs. [29] and [30] for E = 0. Because of the high computational
cost of this procedure, in order to obtain the full curve (sacrificing accuracy) we used
the technique of Ref. [18]. This method will be explained in detail in App. E, and
the resulting phase diagram will be presented in Sec. 4.

The integral eigenvalue equation (2.44) is fundamentally different from its coun-
terpart in the localization landscape percolation problem. In Sec. 3.5.1, we will show
this explicitly in the high-connectivity limit. This difference suggests that the critical
behavior in Anderson localization may differ from the one of localization landscape
percolation. A detailed comparison of their critical properties will be presented in
Sec. 4.
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Chapter 3

Results for percolation in the limit
of high-connectivity

The high-connectivity limit represents the limit in which K ≫ 1. In this regime
many of the fundamental quantities describing the transition can be obtained either
analytically, with few approximations, or with small numerical effort. Moreover,
many of these results are very good approximations for low values of K (like the
marginal distributions in Sec. 3.1 for the cavity Green’s functions and the cavity
localization landscapes), making the high-connectivity limit the perfect regime to
study the main features of the transition without relying on numerical simulations.

The main idea behind the high-connectivity limit is that normal and cavity vari-
ables can be considered to be statistically equivalent, i.e.

Gii
d
= Gi→j , ηi

d
= ηi→j , ui

d
= ui→j

d
= Gi→jηi→j , pi

d
= pi→j ∀i, ∀j ∈ ∂i , (3.1)

where the symbol d
= represents the equality in distribution. This is because recursive

equations for normal and cavity variables differ by just one of the O(K) terms inside
sums of the type ∑k∈∂i or ∑k∈∂i\j, and according to large deviation theory, under the
hypothesis that cavity variables are random variables with finite mean and variance,
we can safely neglect one of the terms in the sums.

As we explained in Sec. 2.2 the sets of cavity variables {Gk→i, ηk→i, pk→i}k∈∂i\j are
not independent in the general case, because for each of the pk→i one has to compute
uk, and all the uk’s are statistically dependent, since they depend on the quantities on

their common neighbor i. Now, since uk
d
= Gk→iηk→i, the cavity percolation proba-

bilities become independent cavity variables. For this reason, the three fundamental
cavity equations that determine the transition in the high-connectivity limit are

G−1
i→j = ε i − t2 ∑

k∈∂i\j
Gk→i , (3.2)

ηi→j = 1 + t ∑
k∈∂i\j

Gk→iηk→i , (3.3)

pi→j = θ(Gi→jηi→j > 1/E) ∑
k∈∂i\j

pk→i , (3.4)

where the last one have been obtained by expanding Eq. (2.25) for small cavity per-
colation probabilities close to the critical curve. The self-consistent distributional
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equation that we have to solve is much simpler compared to Eq. (2.33), and reads

P(g, η, p) =
∫

dε γ(ε)
∫ [ K

∏
k=1

dgkdηkdpk P(gk, ηk, pk)

]
δ

(
g − 1

ε − t2 ∑k gk

)
× δ

(
η − 1 − t ∑

k
gkηk

)
δ

(
p − θ(gη − 1/E)∑

k
pk

)
. (3.5)

In Sec. 3.1 we will show that the marginal distributions of Gi→j, ηi→j and ui→j ad-
mit thin-tailed solutions, and that these solutions are very close to the ones obtained
with population dynamics simulations also for K ∼ O(1). In Sec. 3.2 we show nu-
merically that the joint distribution P(g, η) can effectively be approximated with the
product of their marginals. In Sec. 3.3 we will derive a lower bound for the critical
disorder. Next, in Sec. 3.4 we will compute the critical curve in the independent-site
approximation, by considering the localization landscapes as independent random
variables drawn from their marginal distribution. Finally, in Sec. 3.5 we present the
derivations and numerical solutions of some of the equations determining the phase
diagram in the high-connectivity limit.

3.1 Marginals

In order to obtain a self consistent solution for the marginal distribution of the cav-
ity Green’s function Pg(g) =

∫
dηdp P(g, η, p), we observe that Eq. (2.12) is closed,

therefore it can be solved independently from the other cavity equations. If K is big
enough, assuming that Pg has finite mean and variance, in Eq. (2.12) we can approx-
imate the sum over nearest neighbors of site i in absence of j as

∑
k∈∂i\j

Gk→i ≈ Kµg +
√

Kσ2
gY, (3.6)

where
Y ∼ N (0, 1), µg = E[Gk→i], σ2

g = V[Gk→i]. (3.7)

This follows directly from the central limit theorem. Now, the roughest approxima-
tion that we can make in Eq. (2.12) amounts to neglecting the gaussian fluctuations.
In this limit the probability distribution of the cavity Green’s functions is simply
obtained by changing variables in the probability distribution of ε i, i.e. the one of
Eq. (1.21). Thus, the probability distribution of the cavity Green’s functions in this
approximation is

Qg(g; µg) =


1

Wg2 if g ∈ Dg ≡
[

1
2t
√

K−t2Kµg+W
, 1

2t
√

K−t2Kµg

]
0 else.

(3.8)

From this expression, µg and σ2
g are easily obtained self-consistently solving

µg =
1

W
ln

∣∣∣∣∣1 + W
2t
√

K − t2Kµg

∣∣∣∣∣ , (3.9)
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and computing

σ2
g =

1
(2t

√
K − t2Kµg)(2t

√
K − t2Kµg + W)

− µ2
g. (3.10)

From numerical simulations with population dynamics we have observed that the
distribution is quite accurate in mean and variance already for K > 4 and for all
values of W. A more precise expression for the probability distribution of the cavity
Green’s functions can be found keeping the Gaussian fluctuations. Starting from

G−1
i→j ≈ ε − t2

(
Kµg +

√
Kσ2

gY
)

, (3.11)

we obtain

Pg(g; µg, σ2
g) =

1
Wg2

∫ 2t
√

K+W

2t
√

K
dεN

(
ε ; Kt2µg + 1/g , Kt4σ2

g

)
, (3.12)

where again mean and variance have to be obtained solving self-consistently the
coupled equations

µg =
∫

dg Pg(g ; µg, σ2
g)g , σ2

g =
∫

dg Pg(g ; µg, σ2
g)(g − µg)

2 . (3.13)

We compute now the marginal distribution of the cavity rescaled fields by em-
ploying a similar approximation. We assume that

ηi→j ≈ 1 + t
(

KE[Gk→iηk→i] +
√

KV[Gk→iηk→i]Y
)

, with Y ∼ N (y ; 0, 1) , (3.14)

We will argue later that this gaussian approximation does not hold even in high-
connectivity if the disorder is too high, but as we will see it is accurate enough to
obtain a very good estimate of the marginal of the cavity localization landscapes also
in low-connectivity. This is due to the fact that the distribution of the cavity Green’s
function is highly asymmetric in the strong disorder regime. For this reason, the
asymmetry propagates to the distribution of the cavity rescaled fields, that loses its
Gaussian shape.

In principle ηk→i and Gk→i are not independent, therefore computing the expec-
tation value and the variance of their product is not trivial. However, for high-
connectivity, we can argue that they are weakly correlated. Therefore, we will use a
mean-field approximation, considering them as independent, i.e.

P(g, η) =
∫

dp P(g, η, p) ≈ Pg(g)Pη(η). (3.15)

(this will be ckecked in the next section). This implies that the mean and variance in
Eq. (3.14) now read

E[Gk→iηk→i] = µgµη , V[Gk→iηk→i] = σ2
g σ2

η + σ2
g µ2

η + σ2
η µ2

g . (3.16)

where
µη = E[ηk→i] , σ2

η = V[ηk→i] . (3.17)

This implies that the probability distribution of the cavity rescaled fields is

Pη(η; µη , σ2
η) = N (η ; µη , σ2

η) , (3.18)
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with

µη =
1

1 − Ktµg
, σ2

η =
Kt2σ2

g

[1 − Kt2(σ2
g + µ2

g)](1 − Ktµg)2 . (3.19)

These expressions have been obtained by enforcing that both sides of Eqs. (3.14)
have the same mean and variance.

The mean-field approximation in the derivation of Pη simplifies also the com-
putation of the marginal distribution of the cavity localization landscapes, which

follows directly from Eq. (3.15) and from the fact that now ui→j
d
= Gi→jηi→j. The

result is

Pu(u) =
∫

dg P(g , η = u/g)
∣∣∣∣d(u/g)

du

∣∣∣∣ = ∫ dg
|g| Pg(g)Pη(u/g)

=
∫

dg Pg(g)N (u ; gµη , g2σ2
η). (3.20)

We can observe that ui→j is exactly the quantity whose mean and variance have

FIGURE 3.1: Marginal distributions of cavity Green’s functions and cavity localiza-
tion landscapes for K = 5, t = 1, and W = 6. Left: The probability distributions
of Gi→j. Light blue histogram: empirical distribution of the cavity Green’s functions
obtained with population dynamics with N = 5 × 105 sites. Red line: probability
distribution in Eq. (3.12) with parameters µg and σ2

g computed solving by iteration
the self consistent Eqs. (3.13). Blue line: rougher approximation for the probability
distribution given in Eq. (3.8) with µg computed self-consistently iterating Eq. (3.9).
Right: Probability distribution of ui→j. Light blue histogram: empirical distribution
obtained using population dynamics for N = 5 × 105 sites. Red line: probability dis-
tribution Pu in Eq. (3.20), with parameters µu and σ2

u obtained self-consistently from
Eqs. (3.21).

been computed in Eqs. (3.16). Thus, using the results of equations (3.19) we have

µu = µηµg =
µg

1 − Ktµg
, σ2

u =
σ2

η

Kt2 =
σ2

g

[1 − Kt2(σ2
g + µ2

g)](1 − Ktµg)2 . (3.21)

In Fig. 3.1 we plotted the distribution Pu(u), and the empirical distribution of ui→j =
Gi→jηi→j from population dynamics simulations.
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3.2 Joint distribution P(g, η)

The joint probability distribution of the cavity Green’s function and the cavity aux-
iliary fields P(g, η) is the one satisfying the self-consistent distributional equation

P(g, η) =
∫

dε γ(ε)

[ K

∏
k=1

dgkdηk P(gk, ηk)

]
δ

(
g − 1

ε − t2 ∑k gk

)
δ

(
η − 1 − t ∑

k
gkηk

)
.

(3.22)
As we have anticipated in the previous section, we can check that P(g, η) is well
approximated by the product of the two marginals Pg(g) and Pη(η) as in Eq. (3.15)
using numerics. The quality of the approximation can be quantified by computing
the mutual information.

The mutual information of two continuous random variables X, Y distributed
with P is defined as

I(X, Y) ≡
∫

dxdy P(x, y) log2
P(x, y)

P(x)P(x)
, (3.23)

and it represents the information theoretical measure of the dependence of two ran-
dom variables. More precisely, it is the information about the variable X that one
obtains after measuring Y, quantified in terms of Shannon’s entropy. The mutual in-
formation of two random variables is always greater or equal then zero. I(X, Y) = 0
corresponds to the case in which X and Y are statistically independent.

The estimation of the mutual information can be done using population dynam-
ics (see App. D). Assuming that the population of N pairs of cavity Green’s functions
and cavity rescaled fields represents a set of N samples drawn from the exact distri-
bution, we can compute I(Gi→j, ηi→j) empirically through the procedure devised in
Ref. [31] (we will not present explicitly the procedure in this work). We computed
the mutual information with K = 5, t = 1 for many values of W in the range that
will be used later to compute the critical curve. The results are plotted in Fig. 3.2.
As we can see from the plot, the mutual information is of O(10−2 bits) or less for the
analyzed range of disorder, indicating that the mean-field approximation describes
the real distribution with good accuracy for this set of parameters. Moreover, it has
been checked that for a fixed value of the disorder, the mutual information decreases
as K increases, signaling that the mean-field approximation improves increasing K.

In Fig. 3.3 we represented the colormap plots of the histograms of the joint prob-
ability distribution P(g, η), and its mean-field approximation Pg(g)Pη(η). The first
one has been computed numerically through population dynamics, while the sec-
ond one has been obtained by shuffling the g-variables between the pairs (g, η) in
the latter distribution, erasing the dependencies of the two variables. As we can see
from the plots the two distributions are qualitatively similar. The main difference
between the two is that the tails of the distributions have a slightly different shape
in the (g, η) plane. This is due to the fact that the values that ηi→j can take once Gi→j
is given are restricted by the coupled equations (3.2) and (3.3). As revealed from the
mutual information measurements, this feature does not result in significant effects
on the global dependency of the two variables. A result, as we have been able to
check numerically for some points in the (E, W)-plane, is that the phase diagram
computed using the population dynamics joint distribution, appears indistinguish-
able from the one obtained with the mean-field distribution. The phase diagrams
obtained in the high-connectivity limit will be presented in Sec. 3.6.
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FIGURE 3.2: Mutual information of cavity Green’s functions and cavity auxiliary
fields. The mutual information, computed numerically following the procedure de-
vised in Ref. [31], is plotted for many values of the disorder strength above the lower
critical disorder Wmin

c (see Sec. 3.3) for K = 5, t = 1. As it can be seen from the plot,
the mutual information decreases monotonically with W, remaining always below
3.5 · 10−2 bits. This indicates that the mean-field approximation of Eq. (3.15) repre-

sents the exact joint distribution with good accuracy.

FIGURE 3.3: Plots of P(g, η) and its mean-field approximation for K = 5, t = 1 and
W = 6. Left: plot of the histogram of the joint probability distribution obtained
through population dynamics (see App. D) with N = 107. Right: plot of the mean
field approximation obtained by shuffling the cavity Green’s functions of the pairs
(g, η) in the histogram on the left. As it can be seen from the plot, the main quali-
tative differences are in the tails of the distribution, and they’re due to the fact that
for extreme values of Gi→j the set of values that ηi→j can take are restricted by Eqs.

(3.2),(3.3).
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3.3 Lower bound for the critical disorder

It is important to observe that in order to be physically meaningful, the cavity rescaled
fields must be non-negative (the opposite would imply that the localization land-
scapes are negative, which is impossible according to Eq. (1.24)). Thus, Eqs. (3.19)
must be valid only in the regime where

µη > 0 ⇐⇒ µg <
1

Kt
. (3.24)

From Eq. (3.8) we can easily argue that µg is a decreasing function of the disorder.
Moreover, for W → 0, µg → 1

t
√

K
> 1

Kt . Therefore, there must be a minimum value

of the disorder Wmin
c such that µg = 1

Kt , and below which the localization landscapes
are not defined. As predicted, in numerical simulations we see that below this min-
imal disorder the recursion for the cavity rescaled fields has no fixed point, because
the distribution of the ηi→j’s keeps shifting to the right indefinitely, signaling that
there is no solution with finite, positive, cavity rescaled fields. In this regime, the
effective potentials 1/ui are all equal to zero, which means that for any value of E
the system will always be in the percolating (delocalized) phase. Using Eq. (3.9), we
can approximate the value of the minimum critical disorder as the one solving the
self consistent equation

Wmin
c = Kt ln

∣∣∣∣∣1 + Wmin
c

t(2
√

K − 1)

∣∣∣∣∣ . (3.25)

3.4 Critical curve in the independent-site approximation

The percolation problem can be solved in an approximate way by considering the
ui as independent. In this approximation we need to compute the probability that
on a given site i the localization landscape ui is greater than a fixed value 1/E. This
probability will be taken as the occupation probability of site i. Then, using the
solution found in Sec. 1.3 for the uncorrelated percolation critical curve, we will be
able to find the critical energy Ec(W) for our system as the Ec(W) such that at a given
disorder W,

qc ≡ Pr{ui > 1/Ec(W)} = 1/K. (3.26)

The probability Pr{ui > 1/E} can be computed in the high-connectivity limit
using the assumption that ui→j and ui are statistically equivalent, i.e. that the latter
probability can be computed using the marginal distribution of Eq. (3.20). Thus,

q = Pr{ui > 1/E} =
∫

du Pu(u)θ(u − 1/E) . (3.27)

The critical curve computed in this way has been plotted in Fig. 3.4 with a solid red
line.

3.5 Exact critical curve in the high-connectivity limit

As anticipated at the beginning of section Sec. 3, in the following subsections we
derive the equations that describe the critical curve in the high-connectivity limit in
two different ways. The first one is based on defining an integral eigenvalue equa-
tion analogous to the one that we derived in Sec. 2.3.2. This derivation is important
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to understand that the equations describing this percolation transition are funda-
mentally different from the ones describing the localization transition. The second
method is more straight-forward, and it is based on enforcing that the average clus-
ter size diverges at the transition.

3.5.1 Solution through linear stability

Following the same idea of [5], we start from the self-consistent distributional equa-
tion (2.33). Using the integral representation of the Dirac delta

δ

(
p − θ(gη − 1/E)∑

k
pk

)
=
∫ ∞

−∞

dλ

2π
e−iλ(p−θ(gη−1/E)∑k pk) , (3.28)

we can rewrite

P(g, η, p) =
∫ dλ

2π
e−iλp

∫
dε γ(ε)

∫ [ K

∏
k=1

dgkdηkdpk P̂
(

gk, ηk, θ(gη − 1/E)λ
)]

× δ

(
g − 1

ε − t2 ∑k gk

)
δ

(
η − 1 − t ∑

k
gkηk

)
. (3.29)

Then, taking the Fourier transform of the latter we derive

P̂(g, η, λ) =
∫

dε γ(ε)
∫ [ K

∏
k=1

dgkdηk P̂
(

gk, ηk, θ(gη − 1/E)λ
)]

× δ

(
g − 1

ε − t2 ∑k gk

)
δ

(
η − 1 − t ∑

k
gkηk

)
. (3.30)

The theta function in the argument of the characteristic function of the distribution
distinguishes between two cases. For gη > 1/E we have to solve the integral equa-
tion

P̂(g, η, λ) =
∫

dε γ(ε)
∫ [ K

∏
k=1

dgkdηk P̂
(

gk, ηk, λ
)]

δ

(
g− 1

ε − t2 ∑k gk

)
δ

(
η − 1− t ∑

k
gkηk

)
,

(3.31)
while for gη < 1/E we simply have

P̂
(

gk, ηk, θ(gη − 1/E)λ
)
= P̂

(
gk, ηk, 0

)
= P

(
gk, ηk

)
, (3.32)

thus
P(g, η, p) = P(g, η)δ(p), (3.33)

In order to find an equation for the critical curve, we are interested in finding
a solution for the probability distribution that admits a finite expectation value of
the cavity percolation probability. Since its distribution necessarily has finite mean
and variance (because p ∈ [0, 1]), we can assume that at criticality the characteristic
function for gη > 1/E can be expanded in powers of λ, and that the term of the
smallest order is exactly of order one:

P̂(g, η, λ) = P(g, η) + iλ f (g, η) + O(λ2). (3.34)



3.5. Exact critical curve in the high-connectivity limit 31

Substituting in the integral Eq. (3.31), and discarding terms of order higher than one
we obtain a self consistent equation for f (g, η) that reads

f (g, η) = K
∫

dε γ(ε) dg′dη′ f (g′, η′)

[ K−1

∏
k=1

dηkdgk P(gk, ηk)

]
× δ

(
g − 1

ε − t2
(

g′ + ∑K−1
k=1 gk

))δ

(
η − 1 − t

(
g′η′ +

K−1

∑
k=1

gkηk

))
, (3.35)

and can be recast as

f (g, η) =
∫

dg′dη′ Kp(g, η, g′, η′) f (g′, η′), (3.36)

with

Kp(g, η; g′, η′) =
∫

dεdg̃dũ γ(ε)Rp(g̃, ũ)δ
(

g− 1
ε − t2(g′ + g̃)

)
δ

(
η − 1− t

(
g′η′+ ũ

))
,

(3.37)
where we have introduced the joint probability distribution of the sums ∑K−1

k=1 gk and
∑K−1

k=1 gkηk:

Rp(g̃, ũ) ≡
∫ [ K−1

∏
k=1

dgkdηk P(gk, ηk)

]
δ

( K−1

∑
k=1

gk − g̃
)

δ

( K−1

∑
k=1

gkηk − ũ
)

. (3.38)

Performing the integrals over the tilde variables, the kernel simplifies to

Kp(g, η; g′, η′) =
K

g2 t3

∫
dε γ(ε)Rp

(
−g′ − 1 − εg

gt2 , −g′η′ − 1 − η

t

)
. (3.39)

Now, in the non-percolating phase, the solution with zero percolation probability,
i.e. P(g, η, p) = P(g, η)δ(p), is the stable one. This means that any infinitesimal
perturbation of its characteristic function, under iteration of the recursive equation
defining P̂(g, η, λ) will vanish. Instead, in the percolating phase, we expect that the
first-order perturbative term will increase under iteration. Accordingly, the critical
curve will be identified as the curve in the space of parameters where the first order
correction remains stable under iteration, i.e. where the kernel Kp has top eigenvalue
equal to 1 (following exactly the same argument at the end of Sec. 2.3.2). The integral
operator can be computed numerically, using population dynamics to evaluate the
distribution Rp(g̃, ũ), and it can be diagonalized numerically to obtain the critical
curve with very high precision. This method is highly computationally expensive,
therefore in order to compute the critical curve in the high-connectivity limit we
used a completely different technique that we present in the next section.

3.5.2 Solution through the divergence of the average cluster size

An alternative method to determine the critical curve involves deriving an expres-
sion for the average cluster size S and identifying the values (E, W) for which S
diverges.

In the general case, a cluster consists of a connected component of lattice sites i
where ui > 1/E. The statistical dependence between ui and uk (for k ∈ ∂i) is com-
plex, but in the high-connectivity limit the problem simplifies significantly. Here,

we can treat uk
d
= uk→i

d
= Gk→iηk→i, effectively breaking the mutual dependence
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between sites i and k: ui depends on all its neighbors, while uk→i depends on all its
neighbors except i.

In this high-connectivity limit, we can replace the occupation variable Oi from
Eq. (2.35) with

Oi→j =

{
1 if ui→j > 1/E
0 otherwise

. (3.40)

By substituting in the definition of Eq. (2.34) the set of occupation variables {O1, . . . , Or}
with {O1→0, . . . , Or→r−1}, we can factorize Eq. (2.34) as

Cp(r) = Pr{O0 = 1, O1→0 = 1, . . . , Or→r−1 = 1}

=

[
r

∏
s=2

Pr{Os→s−1 = 1 | Os−1→s−2 = 1}
]

Pr{O1→0 = 1 | O0 = 1}Pr{O0 = 1} .

(3.41)

Due to translational invariance, the conditional probability that a site is occupied
given that one of its nearest neighbors is occupied is independent of the specific pair
of sites. Thus, we define

q̄ ≡ Pr{Ok→i = 1 | Oi→j = 1} ∀i, ∀j ∈ ∂i, ∀k ∈ ∂i \ j . (3.42)

Similarly, the last factor of Eq. (3.41) is given by the unconditional occupation prob-
ability q ≡ Pr{Oi = 1} . Using these definitions, Cp(r) takes the form

Cp(r) = qq̄r =
q

Kr e−r/ξp , (3.43)

where the correlation length is given by

ξp = − 1
ln Kq̄

. (3.44)

As in the independent-site percolation problem (Sec. 1.3), the correlation function
decays exponentially, so the average cluster size, defined in Eq. (1.17), simplifies to

S =
1 + q̄

1 − Kq̄
. (3.45)

We immediately see that S diverges when

q̄ = q̄c = 1/K. (3.46)

This condition is analogous to that of the independent percolation problem, except
that the occupation probability is now conditioned on the occupation of a neighbor-
ing site. By numerically evaluating the pairs (E, W) that satisfy q̄ = 1/K, we obtain
the critical curve. The numerical procedure to compute q̄ is explained in detail in
App. E.

3.6 Results for the phase diagrams

Figure 3.4 presents the two phase diagrams obtained in the high connectivity limit
using both the independent-site approximation condition (Eq. 3.26), and the exact
condition (Eq. 3.46). It should be noted that the correct computation of the exact
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curve for a given parameter pair (K, t) requires sampling from the joint distribution
P(g, η), as this properly accounts for correlations between cavity Green’s functions
and rescaled fields. However, we have observed numerically in Sec. 3.2 that the
mean-field approximation of Eq. (3.15) describes with good accuracy the joint dis-
tribution P(g, η). For this reason, the exact curve was computed by sampling from
the self-consistent marginal distributions derived in Sec. 3.1, reducing significantly
the computational time. As anticipated in Sec. 3.2, we have checked that the curve
obtained this way shows an excellent agreement with the points obtained using the
joint distribution computed via population dynamics. The numerical procedures
employed are described in detail in App. E.

Another remark is that, even though the high-connectivity equations are correct
only for K ≫ 1, many of the probability distributions of Sec. 3.1 are accurate already
for K = 5, for example the marginals of the cavity localization landscapes and the
cavity Green’s functions (see Fig. 3.1). For this reason, we plot the two curves for
K = 5 (solid black line in Fig. 3.4), arguing that the one obtained with the exact
high-connectivity condition properly describes many important features of the real
curve for K = 5, even though we are neglecting the influence of one neighbor out of
six. Moreover, the Bethe lattice with K = 5 represent the Bethe approximation of the
solution for the cubic lattice, allowing direct comparison of our phase diagram with
the one obtained numerically in Ref. [12].

The first observation for the phase diagrams is that the independent-site curve
deviates significantly from the exact one, this indicates that the correlations between
nearest neighboring sites are fundamental to describe the physics of the system, and
neglecting them leads to wrong results.

Next, comparing the image on the right in Fig. 3.4 with the phase diagram com-
puted by Filoche in Ref. [12], we see that the results are qualitatively similar, with
the only difference that on the Bethe lattice the spectral boundary prevents the curve
from reaching zero disorder (see Sec. 3.3). The plot on the right has been obtained
from the black curve in the left image by translating the energies of a quantity
−2t

√
K − W/2, in order to get back to the Hamiltonian with statistically symmet-

ric spectrum, and sending E → −E (employing this symmetry) to visualize only
the positive-energy part of the phase diagram (which is symmetric with respect to
the W axis). For this reason, in the right image the percolating and non-percolating
phases are exchanged. It is interesting to notice that the lower bound for the critical
disorder derived in Sec. 3.3, predicts with high accuracy the value of the disorder
where the critical curves cease to exist.

Now, what we aim to do is to understand if the localization landscape percolation
on the Bethe lattice is able to describe the Anderson transition. To do so, the high-
connectivity solution is not enough, in fact the computational time needed to obtain
the mobility edge for Anderson localization is very high for high K, therefore it is
much faster to compute both the Anderson and percolation critical curves for K = 2.
Therefore, for the percolation transition we need to use the general equations given
in Sec. 2.2, exact for any value of the connectivity.
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FIGURE 3.4: Percolation phase diagrams for K = 5 and t = 1. Top: positive definite
Hamiltonian defined at the beginning of Sec. 1.4. Red curve: critical curve separating
percolating and non-percolating phases for high-connectivity in the independent-site
approximation (Eq. 3.26). Black line: exact critical curve in the high-connectivity limit
(Eq. 3.46). Dashed line: upper bound of the spectrum, i.e. Emax(W) = 4t

√
K +W (see

Sec. 1.4). Dotted line: analytically predicted lower critical disorder (Eq. 1.26). Bottom:
Hamiltonian with the statistically symmetric spectrum of (Eq. 1.1). Black curve: high-
connectivity curve obtained from the black curve of the top image as described in Sec.

3.6.
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Chapter 4

Comparison of the transitions

In this section we compare the results for the critical properties of Anderson localiza-
tion computed through the numerical solution of Eq. (2.39), and the ones obtained
with Eq. (2.33) introduced in Sec. 2.2 for the percolation problem.

4.1 IPR vs 1/S

As mentioned in Sec. 1.2, the IPR is a measure of the inverse volume occupied by
an eigenfunction, for this reason its natural counterpart in the localization landscape
percolation problem is the inverse of the average cluster size 1/S. Both of them can
be computed numerically sampling from the joint probability distributions P(g, ĝ)
and P(g, η) =

∫
dp̄ P(g, η, p̄) respectively. P(g, ĝ) is the one satisfying Eq. (2.39). The

detailed numerical procedure, optimized for the computation of Anderson localiza-
tion IPR and Cloc, is the one explained in Ref. [18], which actually uses the distri-
bution P(Re[1/Gii], Im[1/Gii]), but it will not be described in this text. P(g, η, p̄) is
the one in Eq. (2.33), where after integrating over p̄, the delta function relative to p̄
disappears, resulting again in the expression of Eq. (3.22). The detailed procedure
for the numerical computations are devised in App. E.

As we can see in the plot on the left of Fig. 4.1, the IPR and the inverse average
cluster size 1/S have completely different behaviors, one jumps from zero to a finite
value at criticality, while the other grows linearly from zero. The critical behavior of
the IPR on the Bethe lattice has not been completely understood. Even though it is
well known that it jumps at the transition, the critical exponent has not been estab-
lished yet. In the plot we fitted the six points closest to the transition to a square root
law (following the conjecture of Ref. [18]), obtaining a good agreement very close
to criticality. However, the error bars (that we have not plotted) are large, therefore
we cannot state anything about the critical exponent of the IPR. The inverse aver-
age cluster size appears to follow a linear growth starting from zero at criticality.
The critical exponent of 1/S for the standard site-percolation on the Bethe lattice is
known exactly, and is γ = 1. This behavior is apparently well satisfied also further
from criticality by the localization landscape percolation datapoints. Here, the error
bars are much smaller than the ones of the IPR, thus we can say with higher confi-
dence that the 1/S in the localization landscape percolation problem has the same
critical exponent as the standard site percolation.

4.2 Correlation lengths

The correlation functions for Anderson localization and the localization landscape
percolation problem, defined in Sec. 1 in Eqs. (1.16) and (1.7) respectively, can be
compared close to criticality by computing numerically their respective correlation
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lengths ξloc and ξp. The two correlation lengths are computed by fitting the func-
tional form of their asymptotic behavior (i.e. C(r) ∼ e−r/ξ/Kr for r ≫ 1) to the
correlations functions computed numerically. The computation for the Anderson lo-
calization correlation function have been done following the procedure in Ref. [18],
while for the percolation correlation function the numerical methods are explained
in detail in App. E. As we see from the plot on the right of Fig. 4.1, both the correla-
tion lengths diverge at criticality with the same power law (as we expect, since the
critical exponent of the correlation length is ν = 1 for both Anderson localization and
site percolation on the Bethe lattice) but with a different prefactor, indicating that the
two quantities are not equivalent. The error bars for Anderson data are again much
bigger than the ones of localization landscape percolation. As it is evident from
the plot on the right, the agreement of the Anderson data with the expected critical
behavior is slightly worse, but this is most likely due to the lower accuracy of the
measurements.

FIGURE 4.1: Critical behaviors of the IPR, 1/S, ξloc and ξp. The datapoints have
been computed numerically around the critical energy for parameters W = 1.5, K =
2, t = 1. W = 1.5 is one of the disorder values where the critical energies of the two
problems are the closest. The Anderson and percolation results are plotted w.r.t. two
different x-axes, which differ only by a translation that makes the two critical energies
match. The Anderson points and curves (in blue) are related to the blue x-axis on top
of the plots, while the percolation points and curves (in black) follow the black x-axis
on bottom. Left: IPR and 1/S vs E. It is well known that the IPR on the Bethe lattice
jumps from zero to a finite value at the transition. The first six points immediately
on the left of the Anderson localization transition has been fitted to a square root
law, following the conjecture for the critical behavior of the IPR in Ref. [18]. The
inverse average cluster size 1/S has been fitted to a line, since the critical exponent
of 1/S for site percolation on the Bethe lattice is ν = 1. Right: ξloc and ξp vs E. Both
the correlation length of Anderson and the one of localization landscape percolation
appear to diverge with critical exponent ν = 1. This is in agreement with the known

results for Anderson localization and site percolation on the Bethe lattice.

4.3 Transitions

In Fig. 4.2 we plot the critical curves of the Anderson localization (blue line) and
localization landscape percolation (black line) problems. The transition curves have
been obtained with similar numerical procedures. For Anderson localization, as
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anticipated in Sec. 2.3.1, we searched for the values of (E, W) where that the ex-
pectation value of the imaginary part of the Green’s function for the statistically
symmetric Hamiltonian of Eq. 1.1 passes from being zero (in the localized phase)
to non-zero (in the delocalized phase). To do this, we followed the procedure de-
vised in Ref. [18] to compute the expectation value of the imaginary part of the
Green’s function for many values of E (fixing the disorder W), searching for the crit-
ical energy where this becomes non-zero. For the localization landscape percolation
instead, fixing the value of the disorder W, we computed the joint probability dis-
tribution P(g, η, p̄) that satisfies Eq. (2.33) via population dynamics for many values
of E in the non-percolating phase, searching for the critical energy Ec(W) where∫

dgdηdp̄ P(g, η, p̄) p̂ becomes non zero, and averaging over many realizations of the
measurement. The two critical curves are very different as it is evident from the plot.
This indicates that for the Bethe lattice the localization landscape framework cannot
predict the position of the mobility edge. This is a very important result, because
it shows that despite the apparently good results of localization landscape percola-
tion on the cubic lattice, obtained numerically by Filoche in [12], this proposal fails
to accurately predict the mobility edge’s position on arbitrary lattices. It is interest-
ing to notice that the lower critical disorder for the percolation transition, derived in
the high-connectivity limit, predicts with very high accuracy the position where the
percolation critical curve touches the spectral boundary, ceasing to exist.

FIGURE 4.2: Phase diagram of the Anderson model for K + 1 = 3 in the (E, W) plane
(positive energy region). The spectrum is statistically symmetric, therefore there is
a symmetric phase diagram for negative energies. Black dashed line: upper bound
of the spectrum, defined by Esym

max = 2t
√

K + W/2 (as mentioned in Sec. 1.4). Blue
line: mobility edge marking the critical curve for Anderson localization on the Bethe
lattice, obtained by identifying the (E, W) values where the imaginary part of the
Green’s function transitions from zero to finite expectation value. Green dots: perco-
lation critical curve obtained, searching for the curve where E[ p̄i→j] transitions from
being zero to non-zero. Black dotted line: lower bound for the critical disorder pre-

dicted by the high-connectivity limit solution (see Sec. 3.3).
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4.4 Discussion

According to inequality (1.26), the localization landscape should represent an upper
bound to the amplitude of the eigenfunctions. For this reason, one expects that the
critical energy predicted by the localization landscape framework should be an up-
per bound for Ec(W) of Anderson localization, and this is exactly what has been ob-
served numerically on the cubic lattice by Filoche in [12]. What we found instead is
that the localization landscape percolation and Anderson localization critical curves
cross, indicating that the Anderson localized phase is not a subregion of the perco-
lating phase for the Bethe lattice.

We believe that the result of Filoche should not be expected in general when
using the localization landscape percolation approach to obtain the critical curve.
In Ref. [12], it is argued that the inverse localization landscape has the interpreta-
tion of an effective potential, and this is the property that motivates the choice of
using a percolation approach with the occupation condition given by 1/ui < E. Ac-
cording to this effective potential interpretation, one would expect that the region in
the phase diagram where the effective potential basins percolate through the lattice
could be interpreted as the part of the Anderson localization phase diagram where
delocalization can be described classically, and that the delocalized phase would ex-
tend further once quantum tunneling of electrons through effective potential barriers
is allowed. This means that, if one defines the percolation in this way, the expected
outcome should be the opposite of the one described in the previous paragraph.

We believe that this contradiction derives from employing the effective poten-
tial interpretation to define the percolation problem. The reason for the failure of
localization landscape percolation in describing the upper bound to Ec(W) of An-
derson localization on a generic lattice could be the fact that the inverse localization
landscape is the potential of a Schrödinger equation for the function φ(x) (Eq. 1.29),
not for the electronic wavefunctions, and this could cause it to lose its property of
classically confining the electrons.

This can be understood by looking at the fundamental inequality of “Localiza-
tion Landscape Theory”, i.e., Eq. (1.26). Since the maximum value of its l.h.s. is 1, we
realize that the condition 1/ui < E, which we used for percolation, actually indicates
whether the maximum of an eigenfunction can be at site i or not. This means that in
the percolation approach we have considered as unoccupied all the sites where an
eigenstate cannot be at its maximum, not those that are classically allowed.

If one wanted to compute the true classically allowed regions, the exact potential
to be used would have been the disordered potential ϵi of Anderson localization, but
since localization is a strongly quantum phenomenon, the bound produced by the
occupation condition ϵi < E is not useful for describing the phase diagram.

In conclusion, we think that the main flaw in this approach is in the mapping of
the exact result of Eq. (1.26) in the localization landscape percolation problem that
we have studied. Thus, even though the localization landscape percolation approach
seems to work on a Euclidean lattice, in order to actually describe the upper bound
defined by “Localization Landscape Theory” on a generic lattice, one should define
a more rigorous criterion employing directly inequality (1.26).
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Conclusion

In this work we performed a detailed comparison between the critical behavior pre-
dicted by the percolation problem defined using “Localization Landscape Theory”
and the exact results for Anderson localization on the Bethe lattice. While the lo-
calization landscape framework provides an appealing physical picture, in which
the delocalization transition is interpreted as a percolation of classically allowed re-
gions, we have shown that this analogy fails to reproduce the true critical properties
of the Anderson transition for the Bethe lattice. This indicates that, despite the ap-
parently good results observed numerically on the cubic lattice [12], the framework
is not suited to describe the Anderson localization phenomenon on a generic lattice.

Specifically, we derived the self-consistent equations governing the percolation
probability of the set ΩE = {i | 1/ui ≤ E} on the Bethe lattice, and solved them
both analytically in the high-connectivity limit and numerically through population
dynamics in the general case. The resulting critical curve Ec(W), obtained from the
percolation of the landscape valleys, does not match the known mobility edge de-
rived from the Anderson localization exact solution on the Bethe lattice. Moreover,
the comparison between the correlation length ξp and average cluster size S in the
localization landscape framework, and their Anderson counterparts ξloc and IPR,
show significant discrepancies in scaling behavior near criticality. We believe that
the discrepancy derives from the intrinsic differences in the nature of the two transi-
tions. Anderson localization is governed by quantum interference and the behavior
of the imaginary part of the Green’s function, while the localization landscape perco-
lation transition is not only entirely classical, but also obtained through an approxi-
mate interpretation of the inverse localization landscape as an effective potential for
electrons.

Although the “effective potential” captures regions of localization, the statistical
percolation properties of the regions where 1/ui > E are not sufficient to reproduce
the critical curve and universality class of the Anderson transition. Moreover, con-
trarily to what it was believed, it cannot even provide an upper bound to Anderson
localization’s critical energies Ec(W), since the two critical curves cross.

A posteriori, we believe that this percolation problem is not able to effectively
make use of the fundamental inequality of “Localization Landscape Theory” (Eq.
1.26), since the effective potential percolation problem is defined employing the ap-
proximate interpretation of 1/ui as an effective potential. However, that with a more
rigorous approach, it could be possible to define from “Localization Landscape The-
ory” a percolation problem whose solution could represent an actual upper bound
to the Anderson localization critical energies on a generic lattice.

Finally, we conclude that the localization landscape percolation framework should
be used with caution while studying localization on finite-dimensional systems.
However, this does not disqualify “Localization Landscape Theory” as a proposal
that has the potential to be able to derive important results for the understanding of
Anderson transition, if applied rigorously.
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Appendix A

Discrete limit

We can easily recover Eq. (1.28) from Eq. (1.29) in the case of an hyper-cubic lattice
in d-dimensions by writing the spatial derivatives of f (x) as:

∂ f
∂xα

≈ f (x + eα)− f (x)
1

, (A.1)

∂2 f
∂x2

α

≈ f (x + eα) + f (x − eα)− 2 f (x)
12 . (A.2)

Here we have taken the lattice constant equal to 1. Now the first term of Eq. (1.29)
becomes:

− t
u2∇ · (u2∇φ) = −t

d

∑
α=1

(
2
u

∂u
∂xα

∂φ

∂xα
+

∂2φ

∂x2
α

)
=

= −t
d

∑
α=1

[
2

u(x)

(
u(x + eα)− u(x)

)(
φ(x + eα)− φ(x)

)
+ φ(x + eα) + φ(x − eα)− 2φ(x)

]
=

= − t
2 ∑

j∈∂i

[
2
ui
(uj − ui)(φj − φi) + 2(φj − φi)

]
=

= −t ∑
j∈∂i

uj

ui
(φj − φi). (A.3)

In the third line we have used that for an hyper-cubic lattice the nearest neighbors
of a site in position x are positioned in x ± eff for α = 1, . . . , d.
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Appendix B

Green’s function chain rules

In this section we summarize the main steps to derive the chain rules of Eqs. (2.19).
As for the derivation of Sec. 2.1, we use the cavity method. To compute the quantity
G0r = ⟨0|Ĝ|r⟩, where 0 and r are two sites in the Bethe lattice at distance r, we start
from Eq. (2.1), writing

G0r =
1
Z

∫
Dx x0xre−S0[x] . (B.1)

After integrating out all the variables that are not on the unique simple path on the
lattice connecting site 0 and site r, the integral can be written in terms of the normal
and cavity marginals of Eqs. (2.6),(2.7), that in absence of the field J read

µi(xi) ∝ e−
x2

i
2Gii , (B.2)

µi→j(xi) ∝ e
− x2

i
2Gi→j . (B.3)

Thus, we have

G0r =
∫ r−1

∏
s=0

[dxs µs→s+1(xs)] dxr µr(xr)x0xret ∑r−1
s=0 xsxs+1

=
∫ r−1

∏
s=1

[dxs µs→s+1(xs)] dxr µr(xr)(tG0→1x1)xret ∑r−1
s=1 xsxs+1

= tG0→1G1r = · · · =
[ r−1

∏
s=0

tGs→s+1

]
Grr .

(B.4)

Here in the second line we have explicitly computed the Gaussian integral∫
dx0µ0→1(x0)etx0x1 = tG0→1x1 . (B.5)

In the last line we have just repeated the same integration procedure for all s.
The other version of the chain rule can be obtained in an analogous way by using

the latter formula to compute the matrix element Gr0, and by noticing that Gij = Gji.
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Appendix C

Algebraic steps in the derivation
with u alone

Starting from Eq. (2.18) we use Eqs. (2.19) to write

Gik = tGi→kGkk,

Gij = Gjj ∏
(s,s′)∈pij

tGs→s′ = tGi→k Gjj ∏
(s,s′)∈pkj

tGs→s′︸ ︷︷ ︸
Gkj

= tGi→kGkj,

where pij ≡ {directed path connecting site i and site j}. Plugging these into Eq. (2.17)
we immediately obtain Eq. (2.20) This solution is equivalent to the one of Sec. 2.1.1,
in fact if we take

ui→j = Giiηi→j, (C.1)

we obtain again the recursive Eqs. (2.20):

ui = Giiηi = Gii + t ∑
k∈∂i

Giiηk→iGk→i = Gii + t ∑
k∈∂i

Gi→kuk→i , (C.2)

ui→j = Giiηi→j = Gii + t ∑
k∈∂i\j

Giiηk→iGk→i = Gii + t ∑
k∈∂i\j

Gi→kuk→i . (C.3)

Here the second equalities in the two equations follow from Eqs. (2.19), indeed,

GiitGk→iηk→i = Gikηk→i = GkktGi→kηk→i = tGi→kuk→i . (C.4)

Conversely, it is easy to check that by defining ηi = ui/Gii and ηi→j = ui→j/Gii we
can recover Eqs. (2.14) from Eqs. (2.20).
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Appendix D

Population dynamics algorithm

The population dynamics algorithm is a method used to solve self-consistent dis-
tributional equations. It is accurately described in the context of message-passing
algorithms on random graphical models in Ref. [16]. Here, we present a modified
version of the algorithm, which has also been used to solve the Bethe lattice spin-
glass problem in Ref. [32].

Consider a Bethe lattice with connectivity K + 1 and the cavity equation that re-
lates a cavity variable X to K independent copies of itself on the nearest neighboring
sites {Xk}k=1,...,K, along with a random variable drawn from a distribution γ:

X = Ψ ({Xk}k=1,...,K ; Y) . (D.1)

It is important to note that the variables in this equation are not necessarily scalars.
For example, in the set of cavity equations given by Eqs. (2.12), (2.14), and the equa-
tion on the right in (2.27), we will have X = (Gi→j, ηi→j, p̄i→j), and {Xk}k=1,...,K =
{Gk→i, ηk→i, p̄k→i}k=1,...,K.

We aim to find the probability distribution P such that, when {Xk}k=1,...,K are
independent random variables drawn from P, the equality in Eq. (D.1) holds in dis-
tribution. This means P is the solution to the equation

P(x) =
∫

dy γ(y)
[ K

∏
k=1

dxk P(xk)

]
δ

(
x − Ψ ({xk}k=1,...,K ; y)

)
. (D.2)

The algorithm is based on defining a “pool” (or “population”) of N variables
{Xi}i=1,...,N , each initialized independently by drawing from an initial distribution.
We select an integer T as the number of iterations. The empirical distribution of
{X(t)

i }i=1,...,N at iteration t is denoted P̃(t). At each iteration step t, we sample a
variable y(t) from γ and randomly select K + 1 indices {i0, . . . , iK} from {1, . . . , N}.
We then replace X(t−1)

i0
in the population with

X(t)
i0

= Ψ
(
{X(t−1)

ik
}k=1,...,K ; y(t)

)
, (D.3)

while keeping all other variables unchanged.
Assuming Eq. (D.2) has a solution, it can be argued that for sufficiently large T

and N, the empirical distribution P̃(T) will be a good approximation of P.
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Appendix E

Numerical evaluations through
Montecarlo sampling from P(g, η)

In this appendix we summarize the method that we have used to compute numer-
ically many of the quantities related to the localization landscape percolation. All
the following procedures have in common that they involve the sampling of pairs of
cavity Green’s functions and cavity rescaled fields from the P(g, η) that solves

P(g, η) =
∫

dε γ(ε)

[ K

∏
k=1

dgkdηk P(gk, ηk)

]
δ

(
g − 1

ε − t2 ∑k gk

)
δ

(
η − 1 − t ∑

k
gkηk

)
.

(E.1)
P(g, η) is computed via population dynamics (App. D). As argued at the end of
Sec. 3, with a negligible error we can substitute P(g, η) with the product Pg(g)Pη(η)
where the marginal distributions Pg(g) and Pη(η) are the ones derived in Sec. 3.1.
This avoids repeated population dynamics simulations when varying W. Numeri-
cally, we found that the Pearson correlation coefficient r ∼ O(10−2) and the mutual
information is of O(10−2bits) for the parameter ranges that we used, confirming that
the approximation in Eq. (3.15) introduces negligible errors.

E.1 Computation of q and q̄

The occupation probability q for the localization landscape percolation problem can
be written as

q = Pr{Oi = 1} = E[Oi] , (E.2)

and it can be computed explicitly through Montecarlo sampling:

q =
1
M

M

∑
m=1

O(m)
i , (E.3)

where for each sample m we draw {G(m)
k→i, η

(m)
k→i}k∈∂i\j from from P(g, η) to compute

the occupation variable O(m)
i . Alternatively, having the analytical expression of the

marginal distribution of ui→j (see Eq. (3.20)), in the high connectivity limit we can
just compute q =

∫
du Pu(u)θ(u − 1/E).

The conditional probability q̄ from Eq. (3.42) can be computed by rewriting it as

q̄ =
Pr{Ok→i = 1, Oi→j = 1}

Pr{Oi→j = 1} =
E[Ok→iOi→j]

E[Oi→j]
. (E.4)
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Again, the expectation values of this expression can be evaluated using Montecarlo
sampling, i.e.

q̄ =
∑M

m=1 O(m)
i→jO

(m)
k→i

∑M
m=1 O(m)

i→j

d
=

1
K

∑M
m=1 O(m)

i→j ∑k∈∂i\j O(m)
k→i

∑M
m=1 O(m)

i→j

, (E.5)

where for each of the M samples, {G(m)
k→i, η

(m)
k→i}k∈∂i\j are drawn from P(g, η) to com-

pute the occupation variables O(m)
i→j and {O(m)

k→i}k∈∂i (defined from Eq. (3.40)). The
last equality in Eq. (E.5) follows from the statistical equivalence of the variables
{Ok→i}k∈∂i.

E.2 Computation of Cp(r) and S

From the definition of correlation function in Eq. (1.16), by taking all bonds as active,
and for a given distance r, one can write

Cp(r) = Pr{O0 = 1, . . . , Or = 1} = E

[ r

∏
s=0

Os

]
, (E.6)

thus,

Cp(r) =
1
M

M

∑
m=1

r

∏
s=0

O(m)
s , (E.7)

where the Os are the ones defined in Eq. (1.12), and the occupation condition for
a site s is us > 1/E. Each us is computed in terms of the on-site Green’s function
and the rescaled field as us = Gssηs, where Gss and ηs are computed as functions
of their cavity counterparts on the nearest-neighboring sites of the path between
site 0 and site r (i.e.

{
(Gk→i, ηk→i) | i ∈ {0, . . . , r} , k ∈ ∂{0, . . . , r}}) according to

Eq. (2.12) and equation on the right in (2.14). Thus, in order to compute a sample
of ∏r

s=0 O(m)
s , we just need to draw K(r + 1) + 2 iid pairs of cavity Green’s functions

and cavity rescaled fields from P(g, η). The correlation length of Cp(r) is evaluated
by fitting the functional form e−r/ξp /Kr to the curve Cp(r) in the non-percolating
phase, computed for r ≫ 1.

For the computation of S we just use the definition in Eq. (1.17). Therefore, we
need to compute the correlation function Cp(r) up to a cutoff distance rmax and per-
form explicitly the sum in Eq. (1.17).
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