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Abstract

Inference problems defined on random graphs can be studied by using statistical physics methods
of disordered systems. In particular, these methods allows us to find the phase transitions charac-
terizing the feasibility of said problems. A largely unexplored setting of Bayesian inference is that
of structured signal, as most theoretical work studies models where the signal is made up of i.i.d.
components. We study the planted spin glass model in the case of structured signal using the cavity
method and compare the results with those obtained by performing inference via Belief Propagation
on generated instances of the problem. We present the results in the form of a phase diagram, in
which we can distinguish two phases: one in which inference is impossible and one where inference is
easy.
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I Introduction

An inference problem consists of reconstructing a signal, law or pattern from partial and/or noisy obser-
vations (or data). In Bayesian inference, this task is achieved by weighting a prior belief on the signal with
the likelihood of data. Inference problems appear ubiquitously in many scientific areas involving data
analysis, such as signal processing [1], artificial intelligence [2], computational biology [3] and epidemiol-
ogy [4, 5]. A central question in Bayesian inference is to assess under which conditions the information
contained in the observations is enough to reconstruct the signal. Such an information-theoretic point
of view should also be complemented by an algorithmic perspective: understanding what are the most
efficient algorithms, and what is the best performance achievable computationally.

Although some recent efforts have focused on the theoretical study of structured datasets [6, 7, 8], most
theoretical work on Bayesian Inference model inputs as i.i.d. component-wise draws from some probability
distribution. Despite providing valuable insights, these approaches are blind to the structure of real-world
data, where one cannot assume that randomness enters in an uncorrelated way. Determining whether the
presence of structure in the signal will be beneficial or detrimental to the inference process is a priori an
open question and will depend on the particular problem to be considered. While it might make inference
easier, as the knowledge of some structure in the signal can help to restrict the search to a smaller space,
it might as well make the problem harder from an algorithmic viewpoint, as observed in [5, 9] when an
ergodicity breaking phenomenon prevents numerical methods (such as Simulated Annealing, or message-
passing approaches) to provide a reasonable approximation of the posterior probability distribution of
the signal given the data. In many problems of interest, the signal to reconstruct and the observations
are high-dimensional objects, making the theoretical analysis challenging. In such settings, tools from
statistical physics, in particular the replica and cavity methods [10, 11], led to a detailed description of the
information-theoretical and algorithmic limits in many Bayesian inference problems [12, 13], predicting
important properties of inference problems, in particular computational-to-statistical gaps, i.e. regimes
where reconstructing the signal is information-theoretically possible although no efficient algorithm exists.
Many of these theoretical predictions were confirmed rigorously later on [14, 15].

Of particular interest are minimal - analytically tractable - models, in which the signal’s structure can
be introduced in a controlled way and its effects on the inference task can be quantified precisely. One
such example is the planted spin glass, whose theoretical and computational limits are well understood
in the case of unstructured signal [16]. This study focuses on this model, by studying its information-
theoretic and algorithmic properties in the case in which signal and observations are structured, focusing
on the Bayes optimal setting in which the parameters are known. We provide a quantitative analysis of
the feasibility of the inference task in the form of a phase diagram depending on the two parameters of
the model: κ which quantifies the structure of the signal and β quantifying the signal-to-noise ratio. The
analysis is comprised of both a theoretical and a numerical part: in the former we studied the properties of
the posterior distribution in typical realizations of the inference problem, focusing on the thermodynamic
limit in order to use the Replica Symmetric cavity method, while in the latter we performed numerical
resolutions of the cavity equations and compared with the results obtained by running Belief Propagation
on finite size instances of the problem. From analytical calculations we were able to find a phase diagram
in accordance to the numeric results. In particular, we can distinguish two regions (or phases): easy
and impossible. In the former inference is information-theoretically possible, and an algorithm such as
Belief Propagation is able to achieve the optimal performance achieved with a perfect knowledge of the
posterior probability distribution. In the latter, inference better than random guessing from the prior
probability distribution is not possible, even with perfect knowledge of the posterior distribution. We
are able to reproduce the critical value βc separating the easy and impossible phases, respectively β > βc
and β < βc, for the unstructured signal, i.e. when κ = 0, and we show that βc decreases when the
signal is structured. This supports our intuition that introducing structure in this model aids inference.
Notable exceptiona are given by the cases of values of κ lower than −κKS and higher than κc. In the
former the system exhibits an RS to RSB transition, indicating that the inference problem may be hard,
i.e. still informational-theoretically feasible but without any algorithm able to find the signal faster than
exponential time. In the latter, the critical value βc increases with κ, eventually becoming larger than
its value for κ = 0, implying that inference is impeded by the structure of the signal.

The thesis is organized as follows. In Section II we define the model under study. In Section III we
present the Belief Propagation algorithm which can be applied to single instances of our inference problem,
while in Section IV we derive the cavity equations obtained from the replica-symmetric cavity method for
a random ensemble of instances. In Section V we compute analytically the phase diagram of the problem
by studying the stability of the trivial fixed point of the cavity equations. The main results are presented
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in Section VI. By solving numerically the cavity equations with different initial conditions we are able
to predict both the information-theoretical optimal performance and the algorithmic performance and
we recover the phase diagram computed analytically. We then compare the results with those obtained
from the BP algorithm on single instances in order to have numerical confirmations of our predictions.
Finally, we discuss the results and present our perspectives in Section VII.

II Planted Spin glass model

A The model

We consider the planted spin glass model defined on a graph G = (V,E). To each node i ∈ V = {1, . . . , N}
we assign a spin variable si ∈ {±1} in such a way that the planted configuration s = {si}i=1,...,N as a
whole is sampled from the Ising model with coupling constant κ :

Pκ(s) =
1

Z(G, κ)

∏
(i,j)∈E

eκsisj (1)

For each edge (i, j) we define the couplings Jij ∈ {±1}. These are the observations of our inference
problem and are drawn from the probability distribution

P (Jij |si, sj) = ρδ(Jij − sisj) + (1− ρ)δ(Jij + sisj) (2)

The couplings tell us whether the spins si and sj are aligned with a probability ρ that the information
they give us is truthful. It is easy to see that ρ = 1 (and ρ = 0 by symmetry) corresponds to the
noiseless case in which all observations are truthful, while ρ = 1/2 corresponds to the case in which the
observations are pure noise and give no information at all about the signal.

Without loss of generality we can define the parameter β:

β =
1

2
ln

(
ρ

1− ρ

)
(3)

which allows us to write the probability distribution for sampling the couplings in a way more similar to
the Ising model:

Pβ(Jij |si, sj) =
eβJijsisj

2 coshβ
(4)

and therefore

Pβ(J |s) =
∏
ij∈E

eβJijsisj

2 cosh(β)
(5)

The inference task is that of reconstructing the planted configuration s, i.e. our signal, starting from
the couplings J , i.e. our observations. The signal is sampled from the probability distribution (1) and
will therefore be structured: the spins si of the planted configuration s are not independent. An example
of unstructured signal is the following

P (s) =

N∏
i=1

(
1

2
δ(si − 1) +

1

2
δ(si + 1)

)
(6)

which is the one used in [16].

B Bayesian inference and Bayes optimality

To perform this task we utilize the approach of Bayesian inference. Using Bayes’ rule we are able to write
the posterior distribution of the planted configuration:

Pβ,κ(σ|J) =
Pβ(J |σ)Pκ(σ)

P (J)
(7)

in which we identify
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• the prior Pκ(σ) which reflects our belief of what the planted configuration should be before receiving
any information from the observations;

• the likelihood Pβ(J |σ) which gives us the compatibility of the observed couplings J with a given
configuration σ.

Substituting (1) and (5) into the expression we can write the posterior as

Pβ,κ(σ|J) =
∏

ij∈E ψij(σi, σj)

Z(κ, β,G, J)
(8)

where

ψij(σi, σj) = e(βJij+κ)σiσj (9)

The parameters The meaning of the two parameters is quite clear: κ quantifies the structure in
the signal, while β quantifies the signal-to-noise ratio.

It is important to touch briefly upon the role which κ and the signal’s structure play in the inference
task. Let us first of all consider the case of κ > 0, i.e. the ferromagnetic Ising model. It is known [17]
that for random c-regular graphs a ferromagnetic phase transition occurs at

κc = atanh

(
1

c− 1

)
(10)

In the ferromagnetic phase the planted configuration has non vanishing magnetization and one is able
to obtain, even without any information from the observations (β = 0), a better result than simply
guessing randomly each spin with probability one half. This can be done by simply guessing all spins
to be equal to each other. One could therefore say that the inference has become easier. However this
improved performance comes from the prior (1) and not the likelihood (5). If one defines successful
inference as the posterior (8) containing more information than the prior (1), an increase of κ, which
amounts to an increase structure of the signal, does not aid inference. On the contrary, one might be
led to believe the opposite: most of the information contained in the posterior comes from the prior and
a larger signal-to-noise ratio β is needed to balance it with the knowledge coming from the observations
Jij . The extreme case corresponds to κ → ∞ in which all spins of the planted configuration have the
same value. The inference task becomes trivial: the observations give us no additional information and
to guess the planted one simply guesses with probability one half what will be the values of all the spins.

Moving our focus to the anti-ferromagnetic case, κ < 0, an RS to RSB phase transition occurs at

−κKS = − atanh

(
1√
c− 1

)
(11)

as discussed in [18]. Not much can be said intuitively on the implications on the inference problem. The
consequence of most relevance is the fact that in this regime the replica-symmetric cavity method is not
suitable anymore.

Finally, even if we restrict ourselves to the RS paramagnetic phase of the planted configuration,
κ ∈ [−κKS, κc], we show in Section V that the structure aids the inference process: the critical value of β
separating the easy, for β > βc and impossible, for β < βc, phases is at its highest when κ = 0 as shown
in Figure 2a.

Bayes optimality It is important to note that there are two possible settings which we can
consider: the case in which the parameters κ and β are known when performing the inference task and
the one in which they are not. In the latter case the parameters need to be estimated, while in the former
the parameters κ and β used in the posterior probability are the same as the true parameters used to
generate the observations. This is called Bayes optimal setting and is the one which we will focus on.

Let f be a generic function, σ, σ1, σ2 three independent samples generated from the posterior (8) and
s the planted configuration. In the Bayes optimal setting the following expectation values coincide

E[f(σ1, σ2)] = E[f(σ, s)]. (12)

In other words, when taking expectation values there is no statistical difference between the planted
configuration s and a configuration sampled from the posterior distribution. This property is called
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Nishimori condition. This equality can be easily proven for our model

E[f(σ1, σ2)] =
∑

σ1,σ2,J

f(σ1, σ2)Pβ,κ(σ1|J)Pβ,κ(σ2|J)P (J) (13)

E[f(σ, s)] =
∑
σ,s,J

f(σ, s)Pβ,κ(σ|J)Pβ(J |s)Pκ(s)

=
∑
σ,s,J

f(σ, s)Pβ,κ(σ|J)Pβ,κ(s|J)P (J) (14)

This property is of particular interest because it was conjectured that the Nishimori condition implied
the absence of an RSB phase [16]. This equality can be applied for any function f(σ, σ′) of two config-
urations, in particular it can be applied for any moment of the overlap. When all the moments of two
random variables coincide, it holds that their probability distributions coincide. When considering an
unstructured signal, the spin glass presents a gauge invariance, which can be used to show that the over-
lap O(s, σ) between the planted configuration and a configuration sampled from the posterior coincides
with the magnetization, a quantity which is argued to be self-averaging. In particular by applying the
gauge transformation

σisi → σ̃i, Jijsisj → J̃ij , (15)

the overlap becomes

O(s, σ) =
1

N

∑
i

σ̃i = m (16)

One can therefore argue that the overlap O(σ, σ′) is self-averaging and therefore has a trivial probability
distribution, which in turn implies the absence of a replica symmetry breaking phase. A complementary
argument in favor of the absence of an RSB (or spin glass) phase was presented by Montanary in [19], in
which he proved rigorously that in sparse systems in the Bayes optimal setting two points correlations
decay, which does not occur in the spin glass phase. It is important to note that both these arguments
have been made when studying systems in which the signal is not structured: it is not clear that in
such cases the overlap O(s, σ) is self averaging. Finally, it is important to note that this conjecture only
applies to static replica symmetry breaking and does not exclude the presence of the dynamical one-step
replica symmetry breaking phase (d1RSB). In this phase, however, the marginals obtained through the
belief propagation algorithm, presented in Section III, exactly describe the marginals of the d1RSB phase,
which is what is of main interest in Bayesian inference in the optimall setting.

C Ensemble averages

The objective is to estimate how well an inferred configuration computed from the knowledge of the
posterior (8), approximates the planted configuration s in a typical instance. To do so, we introduce a
random ensemble of instances, called the planted ensemble. To create an instance we sample a random
graph from the random c-regular ensemble and then we follow the steps in Section II.A to generate the
planted configuration and the couplings.

Random c-regular graphs, along with graphs from other ensembles, have the following crucial property:
in the thermodynamic limit they converge locally to trees. This is particularly important because it allows
us to utilize the cavity method to study the typical properties of the posterior.

D Overlaps and Estimator

To quantify feasibility of the inference task we are now going to introduce the estimator and other
quantities used in the results section.

Maximum Mean Overlap estimator To quantify how well an estimator has managed to infer
the planted configuration we look at the fraction of variables the two have in agreement, the overlap.

We therefore define the overlap between the planted configuration s and an estimator σ̂ as

O(s, σ̂) =
1

N

∑
i=1

δ(si, σ̂i) (17)

When considering the case of a single instance of the inference problem, the planted configuration is
not known. We consider instead the best Bayesian estimate, the Mean Overlap, obtained by averaging
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over the posterior distribution

MO(σ̂) =
1

N

∑
σ

Pβ,κ(σ|J)
N∑
i=1

δσi,σ̂i (18)

The Maximum Mean Overlap estimator is the one maximizing such quantity and is achieved for

σ̂i
MMO = argmax

σi

µi(σi) (19)

where µi(σi) is the marginal distribution of node i. The overlap between the MMO estimator and the
planted configuration provides a quantitative estimation of the accuracy of the estimator. Furthermore,
when averaging over the disorder Es,J [O(s, σ̂)] we obtain information regarding the feasibility of the
problem.

In the case of unstructured signal, when this quantity is equal to one half inference is impossible: the
estimator is effectively guessing each spin randomly. For values different than 0.5 inference is feasible.

In the case of structured signal however, the planted configuration undergoes a ferromagnetic tran-
sition. For κ > κc, one can obtain values of the overlap (17) different than 0.5 by simply guessing all
the spins to be the same. To quantify whether the posterior probability (8) gives us any additional
information with respect to the prior probability (1) we need to define a new overlap.

More formally, for κ > κc the marginal probability of the prior probability (1) becomes, for random
regular graphs, equal to

bi(si) =
1 + siγ(κ)

2
(20)

where γ(κ) is the non-vanishing magnetization. We define the random estimator as

σ̂r
i = argmax

σi

bi(σi) (21)

Its overlap with the planted configuration is

O(s, σ̂r) =
1

N

∑
i=1

δ(si, σ̂
r
i ) =

1 + γ(κ)

2
(22)

We can now define the rescaled overlap between the planted configuration s and an estimator σ̂ as

Õ(s, σ̂) =
O(s, σ̂)−O(s, σ̂r)

1−O(s, σ̂r)
(23)

where the denominator is such that the rescaled overlap is equal to zero when O(s, σ̂) = O(s, σ̂r) and
equal to one when O(s, σ̂) = 1.

We can use this definition to distinguish when the inference problem is feasible or not. When the
average over the disorder Es,J [Õ(s, σ̂)] is equal to zero inference is not possible: perfect knowledge of the
posterior gives us the same result as randomly guessing from the prior. When instead this quantity is
greater than zero inference is feasible. It is important to note that the rescaled overlap can, in principle,
also be negative: this would correspond to the case in which an estimator performs worse than the random
estimator (21) obtained with the knowledge of the prior. We can ignore this case as the posterior (8)
always contains the information stored in the prior (1).

It is important to note that for κ < κc overlap and rescaled overlap are equivalent: it can be easily
shown that O(s, σ̂r) = 1/2 which implies Õ(s, σ̂) = 2O(s, σ̂)− 1.

Nishimori conditions Let us consider the overlap between two arbitrary configurations

O(σ, σ′) =
1

N

N∑
i=1

δ(σi, σ
′
i) (24)

Similarly to (23) we define the rescaled overlap

Õ(σ, σ′) =
O(σ, σ′)−Or(σ, σ′)

1−Or(σ, σ′)
(25)
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with respect to the average over the prior (1):

Or(σ, σ′) =
1

N

∑
σ

Pκ(σ)Pκ(σ
′)

N∑
i=1

δσi,σ′
i
=

1 + γ2(κ)

2
(26)

Let us consider the average over the posterior of the rescaled overlap between two configurations
sampled from the posterior and the rescaled overlap between a configuration sampled from the posterior
and the planted configuration:

Eσ,σ′ [Õ(σ, σ′)] =
∑
σ,σ′

Pβ,κ(σ|J)Pβ,κ(σ
′|J) Õ(σ, σ′) (27)

Eσ,s[Õ(σ, s)] =
∑
σ,s

Pβ,κ(σ|J)Pκ(s) Õ(σ, s) (28)

We denote the first by “rescaled overlap config” and the second by “rescaled overlap planted”.
In the Bayes optimal setting their average over the disorder must coincide (Nishimori condition):

EJ,σ,σ′ [Õ(σ, σ′)] = EJ,σ,s[Õ(σ, s)] (29)

We will use this property when performing numerical simulations to check whether they satisfy these
conditions or not.

III Belief Propagation

In order to utilize the Maximum Mean Overlap estimator (19) we need to compute the marginals of the
posterior distribution (8).

Suppose the graph G taken in consideration is a tree, one can calculate exactly both the partition
function Z(κ, β,G, J) and the marginals of the posterior through Belief Propagation (BP).

We define the message νi→j(σi) as the marginal probability distribution of σi when the edge i→ j is
removed. When the graph is a tree, it can be shown that the messages obey the following rule:

νi→j(σi) =
1

Zi→j

∏
k∈∂i\j

∑
σk

ψik(σi, σk)νk→i(σk) (30)

where ∂i denotes the neighboring nodes of i and Zi→j is the normalization factor

Zi→j =
∑
σi

∏
k∈∂i\j

∑
σk

ψik(σi, σk)νk→i(σk) (31)

Let us define the shorthand notation

νi→j(σi) = fBP
(
{νk→i, Jik}k∈∂i\j

)
(32)

where we explicited the dependence on the couplings Jik, present in the factors ψik.
From these messages we can obtain the marginal probability of spin σi in the full graph:

µi(σi) =
1

Zi

∏
k∈∂i

∑
σk

ψik(σi, σk)νk→i(σk) (33)

Finally, let us define the Bethe free entropy

ϕB =
1

N

∑
i∈V

lnZi −
1

N

∑
(i,j)∈E

lnZij (34)

where
Zi =

∑
σi

∏
k∈∂i

∑
σk

ψik(σi, σk)νk→i(σk) and Zij =
∑
σi,σk

ψij(σi, σj)νi→j(σi)νj→i(σj) (35)

When the graph is a tree the fixed point of the BP equations is unique, the resulting marginals are
correct and the Bethe free entropy coincides with the free entropy ϕ = 1

N lnZ.
In our specific case we assume the graph G to be sampled from the regular random graph ensemble

with small enough degree c. In the thermodynamic limit, sparse random graphs are locally tree like. In
these conditions one can still run the Belief Propagation algorithm and expect it to converge.
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A Generating the planted configuration

One major consequence of the structure of the planted configuration appears when generating one on a
given graph G. One naive way of doing it would be the following: randomly choose a node i of the graph,
assign to si a value taken from the uniform distribution P (si) = 1/2 and then sampling all other spins
following the conditional probability

P (s′|s) = eκss
′

2 coshκ
(36)

However, in the ferromagnetic phase (κ > κc) the system presents two equilibrium states with oppo-
site, non-vanishing, magnetization. When following this procedure, the generated planted configuration
has vanishing magnetization: by not expliciting in which of the two states the system finds itself in, we
are effectively averaging over both them.

We can solve this problem by recurring once again to BP. In this case however, whether we are working
with a tree or not matters. Let us start by considering the former.

We introduce the “planted messages” mi→j(si), which satisfy the BP equations

mi→j(si) = gBP({mk→i}k∈∂i\j) (37)

where

gBP({mk→i}k∈∂i\j) =

∏
k∈∂i\j

∑
sk
eκsiskmk→i(sk)∑

si

∏
k∈∂i\j

∑
sk
eκsiskmk→i(sk)

, (38)

Now, when sampling the first spin si we do so by using the marginal probability

bi(si) =

∏
j∈∂i

∑
sj
eκsisjmj→i(sj)∑

si

∏
j∈∂i

∑
sj
eκsisjmj→i(sj)

(39)

which depends solely on the incoming messages mj→i. We can sequentially sample all other spins by
using

bk(sk|si) =
∑
s∂i\k

∏
j∈∂i

eκsisjmj→i(sj)∑
sj
eκsisjmj→i(sj)

=
eκsiskmk→i(sk)∑
sk
eκsiskmk→i(sk)

(40)

starting with the neighbors of spin si, then sampling the spins at distance n = 2 and recursively reaching
the leaves of the graph. When the system is in the paramagnetic phase, mi→j(si) = 1/2, this procedure
coincides with the one introduced at the beginning. When the system is instead in the ferromagnetic phase
this is not the case and the message tells us whether the system has positive or negative magnetization.

When the graph is not a tree, and thus has loops, the algorithm does not explore all edges of the
graph, resulting in wrong values of the correlation between neighboring spins.

In this case we can resort to BP-guided decimation [20]. We randomly choose a node i in the graph
and sample the spin si using the marginal of the prior probability (1). In particular, we use Belief
Propagation’s estimate (39). We define the two sets

S = {i ∈ V : si fixed} and R = V \S (41)

We then choose randomly a node j among the remaining nodes R and sample sj following the marginal
probability of Pκ({sk}k∈R)|{sk}k∈S). To estimate this marginal probability we run BP again, this time
adding for each i ∈ V a factor node enforcing the value si. We add j to S and repeat the procedure until
S = V .

This procedure is correct if one is able to exactly compute the marginal probabilities. In that case
the procedure is equivalent to decomposing the prior (1) using the chain rule. In BP-guided decimation
we compute these marginals using Belief Propagation, leading to a good approximation.

The pseudo-code is shown in Algorithm 1.

IV Replica-symmetric cavity method

Consider the following thought experiment: suppose to generate a graph G from the random c-regular
graph ensemble, sample the planted configuration s from the prior probability (1) and the couplings J
from the likelihood probability (5) and to find the fixed point of the Belief Propagation equation; suppose
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Algorithm 1 BP-guided decimation

Input: Graph G
Initialize BP messags {νi→j}
Initialize list of undecided spins U = {i ∈ V }
while U ̸= ∅ do

run BP until it converges
draw i from U
compute marginal bi(si)
sample spin s∗i ∼ bi(si)
remove i from U
fix mi→j(si) = δ(si − s∗i )

end while
Output: planted configuration s∗

i0

j1 j2

j0

Figure 1: 2-ary regular tree of depth 3, rooted in i0 → j0

then to randomly choose an edge i→ j. The resulting message νi→j associated to this edge is a random
variable with probability distribution P (νi→j).

The replica-symmetric cavity method assumes the following: in the thermodynamic limit a solution
to the BP equations exists; this solution approximates well the marginals of the model and the messages
in this solution are distributed according to a density evolution equation. This entails that the message
νi→j converges in distribution to a random variable ν, whose probability distribution P (ν) satisfies a
fixed point equation

P (ν) = FRS(P (ν)) (42)

called distributional cavity equation or cavity equation in short.

A Replica-symmetric distributional cavity equations for the prior probability

In this section we illustrate how to obtain the cavity equations for the prior probability (1) by retracing
the steps shown in [21].

Let m
(t)
i0→j0

be the message sent by the BP algorithm at iteration t along the edge (i0, j0). Let us

assume that the initial messages ν
(0)
i0→j0

are i.i.d. random variables with distributions independent of N .

Let us introduce the directed neighborhood of radius t of a directed edge i0 → j0, denoted by Bi0j0(t).
This is the subgraph of G made up of all the nodes which can be reached from i0 by a non-reversing path
of length at most t, when edge (i0, j0) is removed.

Because G is sampled from the random c-regular graph ensemble, in the thermodynamic limitN → ∞,
the neighborhood Bi0j0(t) converges in distribution to Tt, a c-ary regular tree of depth t (see Figure 1).

The message m
(t)
i0→j0

is a function of the graph G and the initial conditions
{
m

(0)
i→j

}
. However the

dependence on G only occurs on through the directed neighborhood Bi0→j0(t+1), while the dependence

10



on the initial condition is only through the messages

m
(0)
Bi0j0

(t) =
{
m

(0)
k→l : (kl) ∈ Bi0j0(t)

}
(43)

Consider the case in which the neighborhood of (i0, j0) really is a regular c-ary random tree Tt+1.
We define m(t) as the message passed through the root edge of this tree after t BP iterations. Since

Bi0→j0(t+ 1) converges in distribution to the tree Tt+1, we find that m
(t)
i0→j0

d−→ m(t) as N → ∞. Let us
now consider an edge k → l at a distance d from the root and directed towards it. The directed sub-tree
rooted in k → l will be a c-ary tree of depth t−d+1. The message passed through it after t−d iterations
is distributed as m(t−d). This implies that, for consistency reasons, the probability distribution P (m(t))
satisfies the following distributional equation

P (m(t)) =

ˆ d∏
i=1

dmi P (m
(t−1)
i )δ

[
m(t) − gBP

({
m

(t−1)
i

}
i=1,...,d

)]
(44)

where mi are independent copies of m(t−1) and d = c− 1.
The cavity equation is obtained by substituting P (m(t)) with the fixed point P (m):

P (m) =

ˆ d∏
i=1

dmi P (mi)δ
[
m− gBP

(
{mi}i=1,...,d

)]
(45)

We will refer to it in the following as planted cavity equation.

B Replica-symmetric distributional cavity equations for the posterior prob-
ability

Applying the replica-symmetric cavity method directly to our posterior distribution (8) is not as straight-
forward since the BP equation (30) depends on the couplings variables J . In particular, these random
variable are not independent, but are instead sampled from the probability distribution

P (J) =
∑
s

Pβ(J |s)Pκ(s) (46)

Let us consider the message νi→j of an edge (i, j) ∈ G, where G is a generic graph: it will depend on
the incoming messages {νk→i}k∈∂i\j and the couplings {Jik}k∈∂i\j . As previously stated, the couplings
are correlated. However, this is not true anymore when conditioning on si. Furthermore, it is important
to introduce the planted messages mi→j in order to sequentially sample the planted spins, as discussed
in Section IV.A. We can therefore write

P (νi→j) =
∑
si

ˆ
dmi→j P (νi→j |si,mi→j)P (si|mi→j)P (mi→j) (47)

and look for a cavity equation of P (νi→j |si,mi→j)P (mi→j), since we will show in the following that
P (si|mi→j) simplifies.

We start by considering the message ν
(t)
i0→j0

going from node i0 to j0 at iteration t of the BP algorithm

and by assuming that the initial messages ν(0) are i.i.d. random variables. The message ν
(t)
i0→j0

will depend
on the couplings

JBi0j0
(t) = {Jkl : (kl) ∈ Bi0j0(t)} (48)

and the initial messages

ν
(0)
Bi0j0

(t) =
{
ν
(0)
k→l : (kl) ∈ Bi0j0(t)

}
(49)

where Bi0j0(t) is the neighborhood of i0 → j0 of depth t.
Similarly to before, the neighborhood Bi0j0(t) converges in distribution to Tt, a c-ary tree of depth t.

It follows that ν
(t)
i0→j0

d−→ ν(t) where ν(t) is an N -independent random variable.

The random variable ν(t) will depend on JTt
, ν

(0)
Tt

=
{
ν
(0)
k→l : k leaf of Tt

}
, in particular:

ν(t) = f(JTt
, ν

(0)
Tt

) (50)
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where f is some function that can be computed by recursively applying (30) starting from the leaves of
the tree Tt.

Therefore, the probability distribution P (ν(t)) must satisfy

P (ν
(t)
i0→j0

) =
∑
JTt

ˆ
dν

(0)
Tt
P (JTt

, ν
(0)
Tt

)δ
[
ν
(t)
i0→j0

− f(JTt
, ν

(0)
Tt

)
]

=
∑
sTt

∑
JTt

ˆ
dν

(0)
Tt
P (JTt

|sTt
)P (sTt

)P (ν
(0)
Tt

)δ
[
ν
(t)
i0→j0

− f(JTt
, ν

(0)
Tt

)
]

(51)

(52)

Because Tt is a tree, we can sample sTt
sequentially, as shown in Section IV.A, and introduce the

messages of the planted configurationmi→j . Since we considering a random graph instance these messages
are now random variables and the probabilities (33) and (40) become

bi(si) = P (si|{mj→i}j∈∂i) and bk(sk|si) = P (sk|si,mk→i) (53)

We can explicit the dependence of our message νi0→j0 from the planted spin si0 and the message

mi0→j0 by expressing P (ν
(t)
i0→j0

) as a marginal probability, as done in (47).
Introducing the messages of the planted configuration defined on the tree Tt in the r.h.s we can write

P (ν
(t)
i0→j0

|si0 ,mi0→j0)P (si0 |mi0→j0)P (mi0→j0) =

¨
dmTt

dν
(0)
Tt

∑
sTt\i0

∑
JTt

×

× P (JTt
,mTt

, sTt\i0 |si0 ,mi0→j0)P (si0 |mi0→j0)P (mi0→j0)P (ν
(0)
Tt

)δ
[
ν
(t)
i0→j0

− f(JTt
, ν

(0)
Tt

)
]

(54)

We can remove P (si0 |mi0→j0) from both sides and obtain

P (ν
(t)
i0→j0

|si0 ,mi0→j0)P (mi0→j0) =

¨
dmTt

dν
(0)
Tt

∑
sTt\i0

∑
JTt

P (JTt
|sTt

)P (sTt\i0 |si0 ,mi0→j0 ,mTt
)P (mTt

)×

× P (ν
(0)
Tt

)δ
[
mi0→j0 − gBP({mj→i0}j∈∂i0\j0)

]
δ
[
ν
(t)
i0→j0

− f(JTt
, ν

(0)
Tt

)
]

(55)

Introducing the BP equation (30) and exploiting the fact that Tt is a tree we can write

δ
(
ν
(t)
i0→j0

− f(JTt
, ν

(0)
Tt

)
)
=∑

{
ν
(t−1)
j→i0

}
j∈∂i0\j0

δ

(
ν
(t)
i0→j0

− fBP

({
ν
(t−1)
j→i0

, Ji0,j

}
j∈∂i0\j0

)) ∏
j∈i0\j0

δ
(
ν
(t−1)
j→i0

− f(JTj
, ν

(0)
Tj

)
)
(56)

P (JTt
|sTt

) =
∏

j∈∂i0\j0

P (Ji0,j |si0 , sj)P (JTj
|sTj

) (57)

P (sTt\i0 |si0 ,mi0→j0 ,mTt
) =

∏
j∈∂i0\j0

P (sTj\j |sj ,mj→i0 ,mTj
)P (sj |mj→i0 , si0) (58)

P (mTt
) =

∏
j∈∂i0\j0

δ
[
mj→i0 − gBP({mk→j}k∈∂j\i0)

]
P (mTj

) (59)

We therefore obtain the RS distributional cavity equation for the random regular graph

P (ν|s,m)P (m) =

ˆ d∏
i=1

dmi P (mi)δ
[
m− gBP

(
{mi}i=1,...,d

)]
×

×
∑

s1,...,sd

∑
J1,...,Jd

d∏
i=1

P (Ji|s, si)P (si|s,mi)

ˆ d∏
i=1

dνi P (νi|si,mi)δ
[
ν − fBP

(
{νi, Ji}i=1,...,d

)]
(60)

where d = c− 1. We define the shorthand notation

P (ν|s,m)P (m) = FRS(P (ν|s,m)P (m)) (61)
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It easy to see that by integrating over ν on both sides we obtain the planted cavity equation (45).

As mentioned before, for κ < κc the planted configuration is in the paramagnetic state and all planted
messages are mi→j(si) = 1/2. When this is the case, the dependence of P (ν|s,m) on the messages m is
trivial and the distributional cavity equation can be simplified to

P (ν|s) =
d∏

i=1

(∑
si

∑
Ji

P (Ji|s, si)P (si|s)
ˆ

dνi P (νi|si)

)
δ
[
ν − fBP

(
{νi, Ji}i=1,...,d

)]
(62)

Finally, let us calculate the joint probability P (µ, s, b) as it will be useful when calculating replica-
symmetric estimates of the observables.

Consider the marginals µi and bi of node i. From (30) and (38) we know them to depend, respectively,
on ν∂i = {νj→i : j ∈ ∂i}, J∂i = {Jij : j ∈ ∂i}, and m∂i = {mj→i : j ∈ ∂i}. The joint probability will
therefore be

P (µi, si, bi) =
∑

ν∂i,J∂i

ˆ
dm∂i P (ν∂i, si,m∂i, J∂i)δ[µi − h1(ν∂i, J∂i)]δ[bi − h2(m∂i)] (63)

where h1 and h2 are shorthand notations for the (33) and (39) respectively. Following a similar procedure
as before we obtain

P (µi, si, bi) =
∑

s∂i,ν∂i,J∂i

ˆ
dm∂i δ[µi − h1(ν∂i)]δ[bi − h2(m∂i)]bi×

×
∏
j∈∂i

P (νj→i|mj→i, sj)P (Jj,i|sj , si)P (sj |mj→i, si)P (mj→i) (64)

and therefore

P (µ, s, b) =
∑

s1,...,sd

∑
J1,...,Jc

ˆ ( c∏
i=1

dmi dνi P (νi|mi, si)P (mi)P (Ji|s, si)P (si|s,mi)

)
×

× δ[µ− h1({νi, Ji}i=1,...,c)]δ[b− h2({mi}i=1,...,c)]b(s) (65)

C Replica symmetric estimates of the observables

Let us now present how to obtain RS estimates of the observables of interest: the free entropy and the
overlaps defined in Section IV.D.

The RS prediction of the free entropy is obtained by averaging the Bethe free entropy (34) over the
message distribution and can be shown (see Appendix A) to be equal to

ϕRS = ERS[lnZi] +
c

2
ERS[lnZij ] (66)

where

ERS[lnZi] =
∑
s

[
c∏

k=1

∑
sk

¨
dνk dmk P (νk|sk,mk)P (mk)P (Jk|s, sk,mk)P (sk|s,mk)

]
b(s) lnZi (67)

ERS[lnZi] =
∏
k=i,j

(∑
sk

ˆ
dmk dνk P (νk, |sk,mk)P (mk)

)
P (Jij |si, sj)P (sj |si,mj)b(si) lnZij (68)

with Zi and Zij defined in (35).

The overlaps defined in Section IV.D are calculated in a similar manner, so we can focus on only one
of the three. We consider the overlap between two configurations sampled from the posterior (8). It can
easily be shown that the overlap depends on the marginals

EJ,σ,σ′ [O(σ, σ′)] =
1

N

N∑
i=1

∑
σi

∑
J

P (J)µ2
i (σi) (69)
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From (33) we know that the marginal µi is a function of the incoming messages νj→i, which in turn are
functions of the couplings J and the initial messages ν(0). Therefore we can write

P (µi) =
∑
J

ˆ
dν(0) P (ν(0))P (J)δ[µi − f̃(ν(0), J)] (70)

Expanding this probability distribution we can write the expectation value in function of (65)

EJ,σ,σ′ [O(σ, σ′)] =
∑
s

¨
dµdb P (µ, s, b)

∑
σ

µ2(σ) (71)

Similarly we obtain

Es,J,σ[O(σ, s)] =

¨
dbdµ

∑
s

P (µ, s, b)µ(s) (72)

Es,J [O(s, σ̂)] =

¨
dbdµ

∑
s

P (µ, s, b)δ(s, σ̂) (73)

D Population dynamics

The distributional cavity equation (60) cannot be solved analytically and therefore one must use numerical
methods to estimate the probability distribution of the random variables ν and m. One example is the
population dynamics algorithm.

The idea is to approximate the distribution P (ν|s,m)P (m) with a sample, called population, of N
i.i.d. copies of ν and m. As previously stated in Section IV.B, we condition the messages on the value
of the planted spins. Therefore, for each element νi of the population we associate two elements ν+i and
ν−i , one for each the two values the planted spin si can take.

Our population will therefore consist of N i.i.d. copies ν+i , ν
−
i ,mi with i = 1, . . . , N .

In the thermodynamic limit N → ∞ the empirical distributions of the population converges to the
actual distribution:

P (ν|s,m)P (m) ≃ 1

N

N∑
i=1

δ(ν − ν
(s)
i )δ(m−mi) (74)

The population is then used to iteratively solve the cavity equation (60) by interpreting it as an
update equation

P (t+1)(ν|s,m)P (t+1)(m) = FRS

({
P (t)(νi|si,mi)P

(t)(mi)
}
i=1,...,d

)
(75)

The pseudo code of the algorithm is shown in Algorithm 2.
Before solving (60) in such a way, we solved the planted cavity equation (45) by running the population

dynamics algorithm only on the population {mi} which we then used to initialize the combined population{
ν+i , ν

−
i ,mi

}
.

E Interpretation of the cavity equation and link with inference

In Section IV.D we defined the feasibility of the inference problem in function of the overlap between the
MMO estimator and the planted configuration, distinguishing between two cases: feasible and impossible.
Further distinctions can be made for the feasible case. In particular one can distinguish between: easy,
hard and hybrid-hard inference[22].

We define the accuracy a of an estimation procedure as the measure of the additional information
it exploits in the posterior distribution with respect to the prior. This quantity is non-negative and
a = 0 corresponds to the case in which the inference problem is not feasible, i.e. the posterior gives no
additional information with respect to the prior. The rescaled overlap (23) satisfies such requirements:

a(β, κ) = Õ
(
s, σ̂MMO

)
(76)

To define the three regimes, let us consider the BP algorithm, in particular let us define the initial
condition for the messages as follows

νi→j(σi) =

{
δ(σi, si) with probability ε

mi→j(σi) with probability 1− ε
(77)
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Algorithm 2 Population dynamics

Input: population size N , max number of iterations T , parameters β, κ

Initialize populations
{
ν
(s,0)
i

}
,
{
m

(0)
i

}
for t = 1, . . . , T do

for i = 1, . . . , N do
for s = 1, 2 do

draw j(1), . . . , j(c)
i.i.d.∼ Unif{1, . . . , N}

set m
(t)
i = gBP

({
m

(t−1)
j(k)

}
k=1,...,c−1

)
sample si ∼ bi(si)
sample sj(k) ∼ Pκ∗(sj(k)|s,mj(k)) ∀k ∈ 1, . . . , c
sample Jj(k) ∼ P (J |sj(k), s) ∀k ∈ 1, . . . , c

set ν
(s,t)
i = fBP

({
ν
(sj(k),t−1)

j(k) , Jj(k)

}
k=1,...,c−1

)
calculate ERS[lnZ

(t)
i ],E[O(t)(σ, σ′)],E[O(t)(σ, s)],E[O(t)(σ̂, s)]

sample j ∼ Unif{1, . . . , N}
sample sj ∼ Pκ∗(sj |si,mj)
sample Jij ∼ P (J |si, sj)
calculate ERS[lnZ

(t)
ij ]

end for
end for

end for
Output:

{
ν
(s,T )
i

}
,
{
m

(T )
i

}
,
{
ERS[ϕ(t)],E[O(t)(σ, σ′)],E[O(t)(σ, s)],E[O(t)(σ̂, s)]

}
t=1,...,T

Two cases are of particular interest: the informed ε = 1 and the uninformed ε→ 0 initial conditions.
When both conditions lead to the same solution inference is easy, otherwise we are in one of the two hard
cases.

We define a∗(β, κ) as the information-theoretical optimal accuracy and aalg(β, κ) as the accuracy
obtained by the most efficient algorithm (BP in our case) starting only from the knowledge of the prior.

We characterize these quantities using the cavity equations. In particular, let us define the initial
conditions used to iteratively solve the cavity equations in a similar way to (77):

P (ν|s,m) = εδ(ν − δs,·) + (1− ε)δ(ν −m) (78)

The uninformed initial condition (ε → 0) allows us to compute the algorithmic accuracy aalg(β, κ),
while the information-theoretical optimal accuracy a∗(β, κ) is described by the fixed point of the cavity
equation (60). It might be that several non-trivial fixed points exist, in such cases the one describing the
optimal accuracy is the one with highest free entropy. In our case such a fixed point is obtained with the
informed initial condition (ε = 1). This can be justified intuitively as this initial condition corresponds
to the cases in which the messages are already correct with respect to the planted configuration.

Following these definitions we can define the easy, hard, hybrid-hard and impossible phases as follows:

• easy: a∗(β, κ) = aalg(β, κ) > 0

• hard: a∗(β, κ) > aalg(β, κ) = 0

• hybrid-hard: a∗(β, κ) > aalg(β, κ) > 0

• impossible: a∗(β, κ) = aalg(β, κ) = 0

V Stability analysis of the paramagnetic solution

Let us focus on the region κ ∈ [−κKS, κc]. In this region the cavity equation (60) admits the trivial
paramagnetic fixed point

P (ν) = δ[ν − ν̄] with ν̄(σ) =
1

2
(79)

Such a fixed point gives vanishing rescaled overlap (23).
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This fixed point is the one found by the BP algorithm when the initial condition (77) is completely
uninformed, i.e. ε = 0. We wish to study its stability with respect to a small perturbation: if this is the
case, any initial condition close to ε = 0 leads to the trivial fixed point and therefore this will be the only
solution the BP algorithm will be able to find.

We can study the stability by considering a distribution P (ν|s) solution of the RS equations close to
the paramagnetic one:

νk→i(σk) =
1

2
+ εk→i(σk) (80)

where εk→i(σk) is a small perturbation such that
∑

σk
εk→i(σk) = 0. Introducing this expression in the

BP equation (30) and keeping only linear terms in ε we find

νi→j(σi) =
1

2
+
∑

k∈∂i\j

∑
σk

1

2 cosh (βJik + κ)
e(βJik+κ)σiσkεk→i(σk) (81)

Let us now calculate the first moment of the distance between the paramagnetic solution and the
perturbed solution:

Ms(σ) =

ˆ
dν P (ν|s)

(
ν(σ)− 1

2

)
(82)

This quantity quantifies the distance of the RS solution P (ν|s) from the trivial fixed point. Our goal
is to determine how this quantity evolves under the iterations of recursively solving the cavity equation
(75). In particular, we want to know in which conditions this distance grows for each iteration.

Introducing the RS equation (62) and utilizing the normalization condition
∑

σMs(σ) = 0 we find

Ms(+) = d
∑
J

tanh (βJ + κ)

4 coshκ coshβ

∑
s′

e(βJ+κ)s′sMs′(+) (83)

where d = c− 1.
For simplicity of notation let us define Ms(+) ≡Ms. We can write this in the form of a linear system

M (t+1) = AM (t) (84)

where

M =

(
M+

M−

)
, A =

(
a b
b a

)
(85)

and

a = (c− 1)
∑
J

tanh (βJ + κ)

4 coshκ coshβ
eβJ+κ, b = (c− 1)

∑
J

tanh (βJ + κ)

4 coshκ coshβ
e−(βJ+κ). (86)

The paramagnetic fixed point will be stable if and only if both the eigenvalues are smaller than one.
It is easily shown that the eigenvalues are

λ1 = (c− 1) tanhκ λ2 = (c− 1)
tanh (β + κ) sinh (β + κ) + tanh (β − κ) sinh (β − κ)

coshκ coshβ
(87)

which implies

κ < atanh

(
1

c− 1

)
and (c− 1)

tanh (β + κ) sinh (β + κ) + tanh (β − κ) sinh (β − κ)

coshκ coshβ
< 1 (88)

The resulting phase diagram is shown in Figure 2a. The blue line corresponds to

κ = atanh

(
1

c− 1

)
(89)

while the red one corresponds to

(c− 1)
tanh (β + κ) sinh (β + κ) + tanh (β − κ) sinh (β − κ)

coshκ coshβ
= 1 (90)

By fixing κ = 0 we recover the critical value of β in the case of the unstructured signal[16]:

βc(κ = 0) = atanh

(
1√
c− 1

)
(91)
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The region delimited by the full lines is the one in which the trivial, paramagnetic, solution is stable.
From this diagram it is clear to see that βc(κ) decreases as the absolute value of κ increases, showing
that the fact that the signal is structured aids inference.

In the first condition we can identify the critical value κc previously discussed in Section V.B. For all
κ > κc, the paramagnetic fixed point is not stable. In this regime, the definition of Ms(σ) given in (82)
is not optimal as it doesn’t tell us whether the probability distribution of the messages ν differs from
the trivial paramagnetic fixed point because meaningful inference has been done or simply because we
know that the planted configuration has non-vanishing magnetization. A possible solution would be to
substitute 1/2 with (1 + σγ(κ))/2 where γ(κ) is the magnetization.

(a) Phase diagram of the stability of the paramagnetic
fixed point. The blue line corresponds to (89), while
the red line corresponds to (90). The region inside the
full lines is where both eigenvalues are smaller than 1
and the paramagnetic fixed point is stable.

(b) Phase diagram of the feasibility of the inference
problem, obtained by numerically solving the cavity
equation (60). Regions 1 and 3 correspond to the im-
possible phase. Regions 2 and 4 correspond to the easy
phase. In regions 1 and 2 the planted configuration is
in a paramagnetic state. In regions 3 and 4 the planted
configuration is in a ferromagnetic phase, while in re-
gion 5 it is in a RSB phase.

Figure 2: Analytical and numerical phase diagrams

VI Numerical results

In this section we present the results of the numerical analysis of the feasibility of the inference task for
the planted spin glass with structured signal. As stated previously, we focus on the Bayes optimal setting
in which the parameters are known and do not need to be inferred. In particular, we solve numerically
the replica-symmetric distributional cavity equation (60) and compare the results with those obtained by
running the Belief Propagation algorithm on generated instances of the inference problem.

We use the population dynamics algorithm presented in Section VI.D to numerically solve the RS
cavity equation. First of all, we initialize a population of N = 105 planted BP messages and perform a
fixed number of iterations plantedmaxiter=500. We subsequently initialize the population of BP messages
following (78) and perform a fixed number of iterations maxiter=1000. Each simulation is performed
twice: once with the informed (ε = 1) initial condition, in order to obtain the information-theoretical
optimal performance, and once with the uninformed initial condition (ε = 0.001), to obtain the optimal
algorithmic performance.

We generate instances of the inference problem by generating a random regular graph of N = 104

nodes, sampling a planted configuration using BP-guided decimation (see Section VI.A) and then sam-
pling the observations (see Section VI.A). The messages are initialized following (77) and the BP algorithm
is iterated until all messages satisfy the same convergence criterion of not differing by more than 10−6
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(a) κ = 0

(b) κ = 0.4

Figure 3: Phase transition (1 → 2) with respect to β for κ = 0 and κ = 0.4. i: plot of free entropy. ii:
plot of “overlap estimator” (17), and “overlap config”, i.e. the overlap (24) between two configurations
sampled from the posterior (8). iii: plot of accuracy (76), i.e. “rescaled overlap estimator” (23), and
“rescaled overlap config” (27). iv: plot of Nishimori condition, obtained by comparing “overlap config”
and “overlap planted”, i.e. the overlap (24) between a configuration sampled from the posterior (8) and
the planted configuration. The population dynamics result are illustrated by the straight lines, while
the circles and triangles correspond to the Belief propagation results obtained with ε = 0.001 and ε = 1
respectively. The vertical dashed line is the critical value βc obtained with (90).

from the value at the previous iteration. Once again each is simulation is performed twice, once for ε = 1
and once for ε = 0.001.

We calculate the free entropy (34), the overlaps and the rescaled overlaps (23)(27)(28). To obtain
an average over different finite size instances, for each set of parameters κ, β, we generate 10 finite-size
instances and average the results. The results obtained with Belief Propagation coincide with those
obtained with population dynamics, confirming our analytical findings.

Figure 2b shows the phase diagram obtained with the population dynamics algorithm. We can
distinguish 5 regions: regions 1 and 2 correspond to κ ∈ [−κKS, κc] and are divided by the critical line
(90), region 3 and 4 correspond to κ > κc, obtained with (89), while region 5 corresponds to κ < −κKS.
Comparing with Figure 2a we see that the two coincide in the region κ ∈ [−κKS, κc], i.e. where the cavity
equation (60) admits the paramagnetic trivial fixed point.

In regions 1 and 2, the planted configuration is in the paramagnetic phase and has vanishing magne-
tization. In both regions the overlaps are equivalent to their rescaled counterparts, as shown in Section
VI.D. In region 1 the population dynamics algorithm is only able to find the trivial solution, for both
initial conditions: the optimal accuracy a∗(β, κ) and the algorithmic accuracy aalg(β, κ) coincide and are
both zero. This corresponds to the impossible phase. In region 2 the population dynamics algorithm
is able to find a non-trivial solution for both initial conditions: the optimal accuracy a∗(β, κ) and the
algorithmic accuracy aalg(β, κ) coincide and are both different from zero. This corresponds to the easy
phase.

Figure 3, Figure 4, Figure 5 and Figure 6 show the transitions between the different regions. Each
figure has four plots displaying, from left to right: the free entropy, the “overlap estimator” (17) and the
“overlap config”, i.e. the overlap (24) between two configurations sampled from the posterior (8), the
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(a) β = 0

(b) β = 0.5

Figure 4: Transition between regions 1 and 3 with respect to κ for β = 0 and β = 0.5. i: plot of free
entropy. ii: plot of “overlap estimator” (17), and “overlap config”, i.e. the overlap (24) between two
configurations sampled from the posterior (8). iii: plot of accuracy (76), i.e. “rescaled overlap estimator”
(23), and “rescaled overlap config” (27). iv: plot of Nishimori condition, obtained by comparing “overlap
config” and “overlap planted”, i.e. the overlap (24) between a configuration sampled from the posterior
(8) and the planted configuration. The population dynamics result are illustrated by the straight lines,
while the circles and triangles correspond to the Belief propagation results obtained with ε = 0.001 and
ε = 1 respectively. The vertical dashed line is the critical value κc (89).

accuracy (76), denoted by “recaled overlap estimator”, and the “rescaled overlap config” (27), and the
difference between said overlap with the “overlap planted” (28). All plots feature the quantities obtained
with the BP algorithm with both initial conditions and population dynamics. In order not to clutter the
plots, in the case of population dynamics, only the estimates for ε = 1 are shown, since ε = 0.001 leads
to the same fixed point. The BP results are in good agreement with those of population dynamics. In
all figures the population dynamics results are independent of the initial condition, therefore the optimal
accuracy a∗(β, κ) and the algorithmic accuracy aalg(β, κ) coincide. Furthermore, the Nishimori condition
is always satisfied.

Figure 3a and Figure 3b show the phase transition with respect to β for κ = 0 and κ = 0.4 respectively.
The plots are similar, the only difference being the value of βc(κ). The same holds for all plots of the
phase transition occurring between regions 1 and 2. Plots for other values of κ are present in Appendix B.
Plot iii shows that the rescaled overlap (23) (in the plot denoted as “rescaled overlap estimator”) is zero
for β up to a critical value βc after which it becomes finite. This corresponds to the easy phase. The
phase transition is between an impossible and an easy phase and is of the second order, as shown in the
free energy plot. For κ = 0, i.e. the case in which the signal is not structured, we are able to recover the
known value βc = atanh( 1√

c−1
) separating the two phases, as shown in Figure 3a. From plot ii and iii we

see that the overlaps and their rescaled counterparts are equivalent since the planted configuration is in
the paramagnetic state.

For values of κ in regions 3 and 4, i.e. κ > κc, the planted configuration is in the ferromagnetic phase
and has non-vanishing magnetization: the overlaps (17) (24) and the rescaled overlaps (23) (25) are not
equivalent.

Figure 4a and Figure 4b show the transition between regions 1 and 3 with respect to κ for β = 0 and
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β = 0.5 respectively. The accuracy is vanishing for values of κ smaller and larger than κc, for all different
values of β: regions 1 and 3 both correspond to the impossible phase. For κ > κc the overlaps become
larger than 0.5. However, this does not correspond to the presence of an easy phase, which instead
corresponds to the rescaled overlaps being larger than zero. As previously mentioned, the overlaps being
larger than 0.5 is caused by the planted configuration being in the ferromagnetic phase, while the rescaled
overlaps being vanishing is caused by the posterior distribution not adding any information to what is
already known in the prior. Therefore the critical value κc does not correspond to a phase transition of
the feasibility of the inference problem (inference is impossible in both regions 1 and 3), but only to a
phase transition of the planted configuration. For increasing values of β the “overlap config” increases
slightly after κc, slowly going back to zero as κ increases. Furthermore, the height of the “bump” increases
with the value of β. This can be explained intuitively by the marginal of the posterior µi(σi) being more
polarized than the marginal of the prior bi(σi) for values of κ close to κc due to the effect of β ̸= 0. As
κ increases, with fixed β, the effect of the likelihood on the posterior diminishes with respect to that of
the prior, and µi converges to bi.

Figure 5a displays the transition region 1 → region 4 → region 3 with respect to β for κ = 0.7.
Regions 1 and 3 correspond to the impossible phase, while region 4 corresponds to the easy phase. The
phase transition between 1 and 4 is of the first order, while the phase transition between 4 and 3 is of
second order, as can be seen in the free entropy plot i. In region 1 the overlaps and rescaled overlaps are
equivalent, which is not true for regions 3 and 4.

Figure 5b displays the transition region 2 → region 4 → region 3 with respect to β for κ = 0.9. The
accuracy is non vanishing for all values of κ except for κ = 0.9, which corresponds to region 3. Regions
2 and 4 both correspond to the easy phase, their only difference being the fact that in the former the
overlap and rescaled overlaps are equivalent and in the latter they are not. Similarly to Figure 4, no
phase transition occurs between the two regions, except the ferromagnetic phase transition of the planted
configuration.

Finally, Figure 6a and Figure 6b display the phase transition with respect to β for κ = 0.6 and κ = 0.9
respectively. The plots are similar, the only difference being the value of βc(κ). The same holds for all
plots of the phase transition occurring between regions 3 and 4. Plots for other values of κ are present
in Appendix B. Once again, the two regions correspond respectively to the hard and easy phases and
the transition is of second order. Furthermore, Figure 6b shows that the critical value βc dividing the
impossible (β < βc) and easy (β > βc) phases is larger than βc(κ = 0) = atanh( 1√

c−1
).

With the definition of the rescaled overlap (23) one is able to make the distinction between feasible (in
this case easy) and impossible inference, however for κ = 0.9, the non-rescaled “overlap estimator” and
“overlap config” are both very close to 1. The inference problem is trivial: all the spins of the planted
configuration are equal and therefore the signal can be recovered with the prior (1) alone.
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(a) β = 0.7

(b) β = 0.9

Figure 5: Transitions 1 → 4 → 3, and 2 → 4 → 3, with respect to β for κ = 0.7 and κ = 0.9 respectively.
i: plot of free entropy. ii: plot of “overlap estimator” (17), and “overlap config”, i.e. the overlap (24)
between two configurations sampled from the posterior (8). iii: plot of accuracy (76), i.e. “rescaled
overlap estimator” (23), and “rescaled overlap config” (27). iv: plot of Nishimori condition, obtained by
comparing “overlap config” and “overlap planted”, i.e. the overlap (24) between a configuration sampled
from the posterior (8) and the planted configuration. The population dynamics result are illustrated by
the straight lines, while the circles and triangles correspond to the Belief propagation results obtained
with ε = 0.001 and ε = 1 respectively. The vertical dashed line is the critical value κc (89).
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(a) κ = 0.6

(b) κ = 0.9

Figure 6: Phase transition with respect to β for κ = 0.7 and κ = 0.9. i: plot of free entropy. ii: plot of
“overlap estimator” (17), and “overlap config”, i.e. the overlap (24) between two configurations sampled
from the posterior (8). iii: plot of accuracy (76), i.e. “rescaled overlap estimator” (23), and “rescaled
overlap config” (27). iv: plot of Nishimori condition, obtained by comparing “overlap config” and “overlap
planted”, i.e. the overlap (24) between a configuration sampled from the posterior (8) and the planted
configuration. The population dynamics result are illustrated by the straight lines, while the circles and
triangles correspond to the Belief propagation results obtained with ε = 0.001 and ε = 1 respectively.
The vertical dashed line is the critical value βc dividing the two phases, which was found numerically.
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VII Discussion

In this thesis, we study the feasibility of inferring the signal of the planted spin glass in the case in which
said signal is structured. Using the Replica Symmetric cavity method, we predict the phase diagram
of the inference problem and we give quantitative predictions of the Maximum Mean Overlap (MMO)
estimator for the different regions of the phase diagram. We show that these predictions are in good
agreement with the results obtained on finite size instances.

We show that the introduction of the structure in the signal influences the inference problem. In
particular, we show that for κ ∈ [−κKS, κc] the structure aids inference: for all non-zero values of κ in
this range, the associated critical value βc(κ), dividing the impossible (β < βc) and the feasible (β > βc)
phases, is lower than the critical value of the unstructured signal βc(κ = 0), value we recovered in ac-
cordance with [16]. This implies that when introducing structure in our model, a lower signal-to-noise
ratio is needed to be able to successfully perform the inference task, with respect to the unstructured
case. We show that the feasible phase corresponds to an easy phase, in which inference is informational-
theoretically possible and that an algorithm is able to replicate the performance obtained with a perfect
knowledge of the posterior probability distribution. The phase transition is therefore between an im-
possible phase and an easy phase, and is of second order. We compute analytically βc(κ) by studying
the stability of the trivial fixed point of the cavity equation, which we find to be in agreement with the
numerical simulations.

We show that the structure causes phase transitions in the signal, i.e. the planted configuration. In
particular, we recover the critical value κc, corresponding to the paramagnetic-to-ferromagnetic phase
transition, and −κKS, corresponding to the RS-to-RSB phase transition.

The ferromagnetic transition causes the planted configuration to have non-vanishing magnetization:
we introduce a rescaled overlap to take into account this magnetization and compare the information
between the prior and the posterior. Furthermore, inference becomes trivial for κ → ∞. We show that
in this regime a second order phase transition between impossible and easy phase occurs. We show this
by solving numerically the cavity equation and calculating the accuracy. The presence of structure in the
signal aids inference up to certain value κ∗: for all larger values of κ, the critical value βc is larger than
βc(κ = 0) = atanh( 1√

c−1
). A stability study similar to that presented in this thesis could be performed

in order to compute analytically βc for κ > κc. In particular by changing the definition of the mean
distance Ms(σ).

The implications of the RSB phase transition are, a priori, difficult to state and the RS cavity method
cannot be used. To study the inference problem in this regime the 1RSB formalism should be introduced.

The two main technical difficulties addressed in this thesis occur when applying the cavity method
framework to the considered model: the correlated nature of the signal and, as a consequence of the
observations, is in contradiction with the assumptions of said method. By introducing messages of the
planted configuration and by conditioning the messages of the posterior on such messages and on the
planted spins, we were able to circumvent these issues and apply the replica-symmetric cavity method.
The method presented in this thesis can also be applied to the case in which the coupling constant κ of
the planted configuration is not homogeneous or other more complicated models, such as models defined
on hypergraphs in which more than 2 spins interact at the same time.
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A RS free entropy

Let us consider the two terms separately. The first term can be written as

ERS[lnZi] =
∑
Jc

ˆ c∏
k=1

dνk P (νc, Jc) lnZi (92)

where νc = {νi : i = 1, . . . , c}, Jc = {Ji : i = 1, . . . , c} and c is the degree of the random regular graph.
Focusing on the probability:

P (νc, Jc) =
∑
s,sc

ˆ c∏
k=1

dmk P (νc, Jc|s, sc,mc)P (s, sc,mc) (93)

=
∑
s,sc

ˆ c∏
k=1

dmk P (νc|s, sc,mc)P (Jc|s, sc,mc)P (s, sc,mc) (94)

=
∑
s,sc

ˆ c∏
k=1

dmk P (νc|sc,mc)P (Jc|s, sc,mc)P (sc|s,mc)P (s|mc)P (mc) (95)

=
∑
s

[
c∏

k=1

∑
sk

ˆ
dmk P (νk|sk,mk)P (mk)P (Jk|s, sk,mk)P (sk|s,mk)

]
P (s|mc) (96)

=
∑
s

[
c∏

k=1

∑
sk

ˆ
dmk P (νk|sk,mk)P (mk)P (Jk|s, sk,mk)P (sk|s,mk)

]
b(s) (97)

Therefore

ERS[lnZi] =
∑
s

[
c∏

k=1

∑
sk

¨
dνk dmk P (νk|sk,mk)P (mk)P (Jk|s, sk,mk)P (sk|s,mk)

]
b(s) lnZi (98)

The second term can be written as

ERS[lnZij ] =
∑
Jij

ˆ
dνi dνj P (νi, νj , Jij) lnZij (99)

Focusing on the probability:

P (νi, νj , Jij) =
∑
si,sj

ˆ
dmi dmj P (νi, νj , Jij |si, sj ,mi,mj)P (si, sj ,mi,mj) (100)

=
∑
si,sj

ˆ
dmi dmj P (νi, νj |si, sj ,mi,mj)P (Jij |si, sj)P (si, sj |mi,mj)P (mi)P (mj) (101)

=
∑
si,sj

ˆ
dmi dmj P (νi, |si,mi)P (mi)P (νj |sj ,mj)P (mj)P (Jij |si, sj)P (sj |si,mj)b(si)

(102)

Therefore

ERS[lnZi] =
∑
si,sj

ˆ
dmi dmj dνi dνj P (νi, |si,mi)P (mi)P (νj |sj ,mj)P (mj)P (Jij |si, sj)P (sj |si,mj)b(si) lnZij

(103)
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B Plots

(a) κ = 0

(b) κ = 0.2

(c) κ = 0.4

(d) κ = −0.2

(e) κ = −0.4

26



(a) β = 0

(b) β = 0.2

(c) β = 0.5

(d) β = 0.7

(e) β = 0.9
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(a) κ = 0.6

(b) κ = 0.7

(c) κ = 0.8

(d) κ = 0.9

(e) κ = 1.0
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