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ABSTRACT

This study combines custom rules with multiple deep learning predictive models to develop a 

program that rapidly outputs optimal window configurations meeting lighting requirements 

based on input building features. The 2D building layout images are first converted into 

corresponding textual feature information. The designed programme can quickly predict the 

optimal window configuration after reading this information. At the same time, it can specify 

the number of  windows to be opened in a room and the orientation of  the windows by limiting 

the amount of  input data. It solves the problem with most of  the current automatic building 

layout generation models that the generated layouts lack window information and are not 

suitable for actual design, reducing their reference value in terms of  building performance. 

The challenges encountered in this study include how to quickly collect a sufficient number of  

compliant and highly accurate building layout datasets using professional lighting simulation 

software, and how to train the prediction model with a small number of  datasets so that it can 

accurately predict window configurations under highly complex building conditions. To address 

these issues, this study created a program on the Grasshopper platform (a visual programming 

plug-in for the 3D modelling software Rhino) for performing automated lighting simulations and 

acquiring high-precision simulation datasets. At the same time, by combining custom rules with 

multiple deep learning predictive models, the program achieves accurate predictions of  window 

configurations under complex architectural conditions, rather than relying on a single predictive 

model. This approach significantly improves prediction accuracy and demonstrates the ability 

to handle complex architectural conditions, even with a small dataset.

Keywords: Automated building layout generation, Optimal Window Size, Window-to-wall ratio 

(WWR), Multi-objective optimization, RPLAN Dataset, Lighting simulation, Deep Learning 

Predictive Modeling, Multi-Model AI Solutions



INTRODUCTION

Space layout design is a critical phase in architectural design, and automatic space layout 

generation has shown great potential in the design process. Significant progress has been made 

in automated layout generation using deep learning, especially in the automatic design of  

residential floor plans. Many deep learning models excel in accuracy and diversity, accuracy in 

the sense that, when inputting constraints, the model generates building plans that are correct 

and essentially contain that information based on those constraints, and diversity in the sense 

that, when fine-tuning the input constraints each time, the model generates a different building 

plan that isn't a simple search-and-replicate of  multiple datasets. 

However, these models have many shortcomings in practical applications. One of  the major 

problems is that the generated floor plans of  homes often lack window information, which 

requires users to manually configure the number and size of  windows in each room according 

to their preferences. From the perspective of  the user community, this leads to two main 

consequences. For users without architectural expertise, such floor plans lacking windows are 

difficult to use directly. Furthermore, due to the lack of  expertise, manually configured window 

layouts may not result in optimal lighting. On the other hand, for users with architectural 

expertise, these models can often be used as a reference for the initial floor plan design. If  

users are provided with a floor plan from the start that already contains a correctly configured 

window layout, they can effectively avoid the hassle of  having to repeatedly adjust the building 

layout to solve lighting problems later on.

There are a number of  ways to configure windows in a building plan, which can generally be 

categorised as manual configuration by professionals, using lighting simulation software and 

using machine learning predictive models.

Each of  these methods has its own advantages and disadvantages. First, having professionals 

manually design the window configuration of  building plans can indeed ensure that the 

configured layout avoids basic errors. However, its disadvantage is that it is difficult to find 

enough professionals with rich architectural knowledge. In addition, the manual configuration 

method cannot efficiently process a large number of  building plans at the same time.

Second, using lighting simulation software offers the advantage of  obtaining lighting results 

calculated with precision. However, when applied to a large number of  building layouts or 

complex designs, it requires a significant amount of  time to process.

Lastly, employing machine learning prediction models enables results to be generated at a very 

high speed and allows for the continuous processing of  large volumes of  building floor plans. 

The disadvantage, however, is that the predictive models need to be retrained for each condition 



as building performance is influenced by factors such as environment and materials. Retraining 

such models for complex building conditions requires a large and accurate dataset and redesign 

of  the model structure. Both data collection and model design are time-consuming and there is 

no guarantee that the resulting models will be highly accurate.

Based on the limitation that current automatically generated building layouts lack window 

configurations, we chose to use a deep learning predictive model. This approach can be directly 

integrated with such layout generation models. After generating building layouts, relevant 

building information can be extracted directly from these layouts to predict the corresponding 

window configurations, which can then be added directly to the layout.

Our study consists of  the following steps. First, the RPLAN dataset (a large image dataset) 

was processed by converting the image data into JSON files containing detailed building 

information. In this step, additional code was implemented to successfully extract more 

comprehensive building details. These details are crucial for subsequent model visualisation, 

multi-objective optimisation tasks and predictive model training.

The JSON file is then imported into the Grasshopper platform of  the Rhino software to generate 

the corresponding 3D model. These 3D models can be combined with the ClimateStudio lighting 

simulation plug-in and can perform lighting simulation. Then, we set multiple conflicting 

lighting indicators as optimization parameters for the multi-objective optimization software. 

When the multi-objective optimization software is running, it will continuously change the size 

of  each window in the window room until the lighting balance of  the room reaches the optimal 

effect. After the calculation is completed, we will use a custom table to record the final results. 

These recorded window size parameters and building layout information will be used to be the 

new dataset.

During the training phase of  the deep learning prediction model. In our initial attempts to use 

a single model to predict the window size, we found that a single model did not perform well on 

complex, small datasets. In our research, after iterative adjustments, we used an approach that 

combines custom rules with multiple deep learning predictive models to predict the optimal 

window size for the input building layout. The accuracy of  this approach was significantly 

improved.

Our research contributions can be summarized as follows:

1. A method was developed to rapidly and automatically visualize a building floor plan dataset 

and perform multi-objective optimization to obtain window configuration data that achieves 

optimal lighting performance. Raw graphical floor plan data is challenging to use directly 

for lighting simulations and multi-objective optimization. Therefore, we first converted the 

graphical data into textual information, which was subsequently visualized and imported into 



lighting simulation software. Additionally, a method combining the minimum window size with 

minimal window size variation parameters was proposed for multi-objective optimization. This 

approach significantly reduced the runtime of  the optimization process and avoided unnecessary 

computations caused by minor variations in window parameters.

2. We first tried to use a single model to predict the size of  each window in the room, but we 

found that the single model did not perform well on limited datasets. And it could not predict 

complex changes in building layouts. After many attempts, we decided to build a predict 

program. This program combine custom rules and multiple deep learning prediction models to 

predict the optimal window size for the input building layout. After validating the accurary. We 

found that this method significantly improved the prediction accuracy.

Finally, the figure below(Figure 1) is the basic framework of  our entire research.

Figure 1. Research Framework (drawn by the author)
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Part l Background

1.1 Related Concepts

1.1.1 Machine Learning

Machine learning is typically classified into supervised learning, unsupervised learning, semi-

supervised learning, and reinforcement learning, alongside approaches such as deep learning, 

transfer learning, and ensemble learning[1]. Our research focuses primarily on supervised 

learning, which involves learning a function that maps inputs to outputs based on labeled data. 

This process uses training examples to infer a function that fits the given input-output pairs[2]. 

Supervised learning is applied when there are specific objectives to achieve based on a predefined 

set of  inputs[3]. In contrast to supervised learning, unsupervised learning does not require 

labeled datasets and does not require human intervention, i.e. a data-driven process[2]. This is 

widely used for extracting generative features, identifying meaningful trends and structures, 

groupings in results, and exploratory purposes. The most common unsupervised learning tasks 

include clustering, density estimation, feature learning, dimensionality reduction, finding 

association rules, anomaly detection, etc.

1.1.2 Generative Artificial Intelligence (AI)

Generative artificial intelligence (GenAI) refers to artificial intelligence models that generate 

high-quality text, images, and other content based on various types of  input data [4]. One of  

the most important features of  generative artificial intelligence (GenAI) is that it can input 

multimodal data. It is able to generate output from multiple types of  data input (such as text, 

speech, audio, video, and images) [5]. GenAI can operate in an unsupervised or semi-supervised 

framework and generate new results by changing the input distribution [6]. This ability is very 

important in applications such as image and video generation, sequence modeling, and speech 

enhancement [7].

Complex generative models are usually trained on large datasets using clue-based methods, 

which leads to poor learning [8] or even zero learning [9]. However, combining reinforcement 

learning with human feedback (RLHF) with these models (such as ChatGPT) has significantly 

improved the learning effect of  the model [10].

Our research focuses on generative adversarial networks (GANs). It was first proposed by Ian 

Goodfellow in 2014. The main principle of  this technology is to convert noise vectors into 

samples through a single generative process. In GAN, the two main parts are the generator and 

the discriminator. The task of  the generator is to generate images from random noise, while 

the task of  the discriminator is to identify the similarity between the images generated by the 

generator and the real images. Once the discriminator determines that the image generated by 

the generator is fake, the generator will be improved again, generate new images, and input 

them into the discriminator for judgment again [11].
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Since the introduction of  GANs, various models have been developed based on this approach. 

For example, Isola et al. proposed Pix2Pix in 2018, an algorithm that generates images 

conditioned on other images, known as image-to-image translation or conditional GAN (cGAN)

[12].

1.1.3 Self-attention Mechanism

Self-attention (sometimes referred to as internal attention) is an attentional mechanism that 

relates different positions in a single sequence to compute a representation of  that sequence 

[13]. In simple terms, self-attention can be understood as an algorithm that helps the model 

understand the important relationships between different parts of  the input data. Its main 

function is to dynamically assign "attention weights" to each element in the data, thereby 

comparing all the elements in it to determine which parts are more important.

The most important feature of  the self-attention mechanism is that it can pay attention to 

global associations. For example, in sentence translation, the connection between two words 

that are far apart can also be captured. This ability is particularly important for processing 

continuous data such as text or time series. Because of  this feature, the self-attention 

mechanism has become a basic technology for modern algorithms such as Transformer.

Our research also takes advantage of  this feature of  the self-attention mechanism and 

introduces it into the model to improve the accuracy of  the model when allocating different 

window sizes in the room.

1.1.4 The Relationship Between Window Configuration and Daylighting in Architecture

When designing a building plan, architects often consider the building environment to ensure 

that performance requirements such as ventilation, energy efficiency and lighting are met. The 

location and size of  windows are particularly important in influencing the daylighting and 

energy performance of  a building. In this study, we focus on daylighting in residential spaces, 

examining how different window configurations affect daylighting.

Much research has been conducted on architectural windows and lighting.Ignacio Acosta et 

al. evaluated visual comfort and energy savings by quantifying lighting metrics for various 

windows in residential rooms. Their results showed that daylight autonomy increased with the 

size of  the glazing surface and the reflectivity of  surfaces near the back of  the room, while the 

effect near the façade was negligible. In addition, the relationship between energy consumption 

and window shape was not significant. Higher positioned windows resulted in higher illuminance 

at the back of  the room compared to centrally positioned windows [14].

Similarly, Liu et al. analysed illuminance distribution and daylight glare for different window 

configurations. Their study showed that the maximum illuminance decreased by 2148 lx and 
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the minimum illuminance gradually increased by 93 lx when the sill height was increased 

from 0.8 m to 1.6 m. Rectangular windows produced the most glare, while ribbon and arched 

windows produced the least. In addition, glass transmittance is an important factor. The higher 

the transmittance, the higher the luminance, but the more severe the glare. Therefore, careful 

consideration is needed in determining the appropriate glass transmittance [15].
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1.1.5 Multi-Objective Optimization

Multi-objective optimisation requires balancing multiple conflicting objectives. Multi-objective 

evolutionary algorithms (MOEA) have become an important method for solving balancing 

problems in evolutionary computation. Due to conflicts between objectives, multi-objective 

optimisation problems (MOPs) usually do not have a single optimal solution. Instead, they 

produce a set of  Pareto-optimal (P-O) solutions that balance the objectives. The classical 

approach to solving MOPs is to transform them into single-objective problems using aggregation 

functions to obtain P-O solutions. Commonly used techniques include the weighted summation 

method, the Tchebycheff  method, and the Min-Max method, but these methods have limitations 

in correctly assigning weights and dealing with concave Pareto bounds (PFs). On the contrary, 

evolutionary algorithms (EA) can generate approximate solutions that satisfy practical 

requirements [16].

The heuristic search capability of  EA combined with group-based exploration and information 

exchange among individuals helps to find multiple P-O solutions in a single run, overcoming 

the limitations of  traditional methods.The main goals of  MOEA are (1) convergence: to find 

solutions close to the PF, (2) diversity: to ensure that the solutions are well-distributed, and (3) 

coverage: to cover the entire PF [17].

Although multi-objective optimisation has the advantage of  considering multiple factors at the 

same time, practical applications may be inefficient if  the parameters are not adjusted to meet 

practical needs. For example, in this study, if  the base unit is not set for variations in window 

size, the algorithm may waste time repeatedly calculating small differences, such as between 1.21 

m, 1.22 m and 1.23 m, without adding real value. For example, if  the minimum standard size is 

1.2 metres, it is irrelevant to calculate whether a 1.3 metre window would provide better light, 

as in practice it would not be adjusted for such small increments.

1.2 Automatic Generation of  Layout Models and Datasets

1.2.1 House-GAN++

Now, many researches have utilized deep learning models to quickly and automatically generate 

building floor layouts. The fundamental principle of  such models is that inputting constraints 

related to the floor plan and using these inputs to generate corresponding layouts that meet 

the specified constraints. Taking the representative model House-GAN++ as an example, the 

following content introduces the basic principles of  these models and the issues researchers have 

been addressing. More importantly, our research highlights a critical problem: the generated 

building floor plans often lack of  window configurations.

House-GAN++ builds on the original House-GAN model(Figure 2), which was first proposed by 

Nelson Nauata et al. in the paper “House-GAN: Relationally Generative Adversarial Network 

for Graphically Constrained House Layout Generation.”The model structure of  House-GAN is 
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shown in Fig. 1, where the generator in the model is based on a Convolutional Message Passing 

Network (Conv-MPN) designed to generate room layouts based on noise vectors and bubble 

maps. The input bubble diagram is represented as a graph structure, where each node represents 

a room, and edges indicate spatial adjacency between rooms. For each room, the model receives 

a 128-dimensional noise vector and a 10-dimensional room type vector, which are combined into 

a 138-dimensional feature. This feature is then expanded through a linear layer into an initial 

8×8×16 feature tensor. The Conv-MPN module uses the adjacency information in the bubble 

diagram to perform message passing between neighboring nodes, thereby aggregating and 

updating room features. Through two rounds of  convolutional message passing and upsampling, 

the feature tensor is expanded to 32×32×16, ensuring that adjacent rooms become more similar 

in the feature space, ultimately producing a 32×32×1 mask for each room.

During the mask generation process, the message passing mechanism of  Conv-MPN effectively 

exploits the adjacency in the bubble map, thereby enhancing the feature similarity between 

adjacent room masks. After that, the model enters the testing phase, during which the added 

thresholding process ensures that adjacent rooms meet the distance constraint, and the 

boundary detection and post-processing adjustment strategy ensures that the spatial distance 

between adjacent rooms is within 8 pixels to avoid room overlap. The final room mask is 

thresholded and fitted into the corresponding orthogonal rectangle to form a complete room 

layout [18].

16. Gong, M., et al. "EA Applications in Multi-

Objective Optimization." Journal of  Software 

20 (2009): 271-289.

17. Trivedi, A., et al. "MOEA Goals and 

Ap p l i c at i o n s . "  I E E E  Tr a n s a c t i o n s  o n 

Evolutionary Computation 21 (2017): 440-462.

18. Nauata, Nelson & Chang, Kai-Hung & 

Cheng, Chin-Yi & Mori, Greg & Furukawa, 

Yasutaka. (2020). House-GAN: Relational 

Generative Adversarial Networks for Graph-

Constrained House Layout Generation. 

10.1007/978-3-030-58452-8_10.
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(a) Input bubble diagram (b) Generated room masks

House layout 
discriminator

House layout 
generator Real/Fake

(c) Real floorplan (d) Real room masks

Condition Segment Flag Noise+type Noise+type Noise+type House layout

Conv
MPNBubble Diagram

Figure 2[18]

Figure Note: Adapted from "House-GAN: Relational Generative Adversarial Networks for 

Graph-Constrained House Layout Generation" by Nauata, Nelson, et al., 2020.

Figure 3 [19]

Figure Note: Adapted from "House-GAN++: Generative Adversarial Layout Refinement 

Network towards Intelligent Computational Agent for Professional Architects" by Nauata, 

Nelson & Hosseini, Sepidehsadat & Chang, Kai-Hung & Chu, Hang & Cheng, Chin-Yi & 

Furukawa, Yasutaka., 2021.
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Condition Segment Flag Noise+type Noise+type Noise+type House layout

Conv
MPNBubble Diagram

However, House-GAN faces challenges when dealing with simpler or more complex input 

connections. When inputting basic neighborhood relationships, the model may generate layouts 

with incorrect connections due to the lack of  sufficient detail in the input data to accurately 

constrain the layout. Conversely, if  the inputs are very complex adjacencies, the model may 

miss rooms or misrepresent adjacencies due to a lack of  comparable examples in the training 

dataset. It can also be seen that the room layouts generated by House-GAN do not have door 

connections between them because there is no feature information for doors in the dataset and 

no information about doors is encoded.

House-GAN++ is an upgraded version of  House-GAN. It addresses these limitations with several 

key improvements and uses a new dataset called ‘RPLAN’.The RPLAN dataset is pre-processed 

with a series of  codes that extract building layout information from images by segmenting image 

channels and analysing pixel features. This information is stored in the form of  a dictionary 

and includes details such as room types, room and door locations, edges that define rooms, and 

connections between rooms through doors. In Section 3, we will continue to explain in detail 

how we extract the required building information from images.

In other parts, House-GAN++ is similar to House-GAN. House-GAN++ is still based on the 

convolutional message passing network (Conv-MPN) in House-GAN and uses the relationship 

graph structure of  the bubble chart (as shown in Figure 3). This graph structure represents the 

spatial and functional relationships between rooms. Each node corresponds to a room and each 

edge represents the adjacent relationship between two spaces.

19. Nauata, Nelson & Hosseini, Sepidehsadat 

& Chang, Kai-Hung & Chu, Hang & Cheng, 

Chin-Yi & Furukawa, Yasutaka. (2021). 

House-GAN++: Generative Adversarial 

L ayo u t  Re f i n e m e n t  N e t w o rk  t ow a r d s 

I n t e l l i g e n t  C o m p u t a t i o n a l  A g e n t  fo r 

Professional Architects. 13627-13636. 10.1109/

CVPR46437.2021.01342.
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The model introduces three significant architectural improvements over its predecessor: First, 

edges, in addition to nodes, carry features related to the generation of  doors, which enables more 

detailed modeling of  room connections and architectural elements. Second, each node and edge 

in the graph is provided with a 2D segmentation mask as an additional input constraint, along 

with a new loss function that helps guide the generation process towards producing realistic and 

functional layouts. Lastly, the Conv-MPN feature pooling mechanism is reformulated to allow 

feature exchange between nodes and edges, enhancing the network's ability to capture complex 

spatial relationships and improve overall layout coherence.

Together, these improvements lead to a more flexible and accurate model for generating realistic 

building layouts, resulting in better control of  room relationships and architectural constraints 

during the generation process. It is worth noting that since the edges in the graph not only 

indicate connections between rooms, but also include information about the shape and location 

of  doors, the building layout generated by House-GAN++ itself  contains details about interior 

doors.

During the generation process, the model takes as input information about the constraints 

during training, (e.g., the connectivity between rooms and information about the location of  the 

rooms) thus generating a house layout diagram in which each room is represented as an axis-

aligned rectangle. In practice, there is an additional step of  converting the bubble chart into 

the corresponding model input information. The bubble diagram is represented as a graph, with 

nodes signifying rooms and their types, and edges indicating spatial adjacency. 

Despite the promising results of  House-GAN++ in terms of  both accuracy and diversity, its 

practical use for architects remains limited. Most importantly, these models are mainly used 

as an early reference tool for generating preliminary building layouts. However, the layouts 

generated by these models often lack window configurations, which have a significant impact on 

the building's daylighting, energy efficiency, and ventilation performance. In addition, the lack 

of  window configurations may cause a series of  problems in the later design of  the building, and 

may require repeated modifications and adjustments to the building layout in the later stages of  

the design.

In addition, with sustainability gaining prominence in architecture, residential projects 

now need to consider factors such as energy efficiency and natural lighting. This presents a 

challenge: energy and lighting analyses often reveal that better results can be achieved, which 

requires changes to the layout. These changes require re-running the simulation, which does 

not guarantee the best results, so adjustments need to be made iteratively based on simulation 

feedback. In this case, automatic modelling of  floor plans does not significantly improve the 

efficiency of  the building design process.
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Additionally, the generated layouts typically lack window placements, making it difficult to 

incorporate environmental factors. In residential buildings, having windows on all sides is 

impractical, so without windows in the generated layouts, there are no suitable parameters for 

assessing the design quality in different environmental contexts. However, if  the generated 

layouts include windows optimized for lighting, it becomes possible to evaluate the designs 

based on the total window area in key rooms. This would allow for more efficient assessments 

under specific environmental constraints and facilitate regenerating new layouts until the design 

requirements are met.

1.2.2 RPLAN Dataset

Collecting a sufficient quantity of  accurate datasets is a crucial step in training our window size 

prediction model. In our research, we chose to base our dataset on the building layouts from the 

House-GAN++ dataset. Using a combination of  daylighting simulation software and multi-

objective optimization algorithms, we generated window configurations for these layouts. The 

House-GAN++ dataset itself  provides a large variety of  diverse building layouts. Furthermore, 

once our window size prediction program is complete, it can be directly integrated with House-

GAN++ or similar automated layout generation models to efficiently post-process the building 

layouts they produce.

The House-GAN++ paper utilized a dataset called RPLAN, compiled by Wenming Wu et al. 

The RPLAN dataset was first introduced in their paper, "Data-Driven Interior Plan Generation 

for Residential Buildings," where they proposed a novel technique for automatically generating 

floor plans for residential buildings based on a given boundary[20]. This large-scale dataset 

consists of  over 80,000 real residential floor plans, represented as vector graphics with labeled 

rooms and walls. Each image measures 256x256 pixels, with the green channel storing data 

about door locations, room outlines and functions, as well as the coordinates and adjacency 

relationships between different rooms. At the same time, as we have been discussing RPLAN 

dataset includes information about doors, rooms, and walls but does not provide details on 

window placements. 

20. Wu, Wenming, Xiao-Ming Fu, Rui Tang, 

Yuhan Wang, Yu-Hao Qi, and Ligang Liu. 

"Data-Driven Interior Plan Generation for 

Residential Buildings." ACM Transactions on 

Graphics 38, no. 6 (2019): Article 234. https://

doi.org/10.1145/3355089.3356556.
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2.1 Application of  Multi-objective Optimisation Algorithms in Architectural and Urban Design 

Areas

2.1.1 Selection of  Multi-objective Optimisation Algorithms

Because of  the nature of  multi-objective optimization algorithms that can optimize multiple 

objectives at the same time, it is well suited to the urban design and architectural design process 

that requires the coordination of  multiple external factors at the same time. Therefore, many 

researchers have tried to combine multi-objective optimisation algorithms with building physics, 

urban environment and urban form design. 

For the use of  multi-objective optimisation, we first need to consider the choice of  algorithm. 

Ever since John Holland first proposed the genetic algorithm (GA) in 1975, evolutionary 

algorithms based on biological simulations have been deeply studied. A GA has many 

advantages, including parallelism, no need for a derivation or other auxiliary knowledge, the 

obtainment of  multiple solutions concurrently, and an easy implementation. It is considered 

an effective method for solving a multi-object optimization. The “vector evaluation multi-

objective genetic algorithm,” originally proposed by Schaffer, is a non-Pareto method[21]. 

Later, a new algorithm, i.e., the non-dominated sorting genetic algorithm (NSGA), based on 

the Pareto optimal concept[22], was proposed by Srinivas and Deb. It can search within the 

feasible region using both parallel and combined methods to find the Pareto solution. Based on 

previous research, Deb et al. proposed the non-dominated sorting genetic algorithm with the 

elite strategy (NSGA-II), which takes a step further in searching the efficiency and diversity 

of  the Pareto solution set[23]. Thereafter, in higher-dimensional multi-objective optimization 

problems, the performance of  NSGA-II in the diversity of  the solution sets will become 

dramatically worse. In addition, Deb proposed an improved NSGA-II, called NSGA-III, in 

2014[24]. Before the genetic iteration cycle begins, NSGA-III calculates a reference surface, and 

selects more scattered points for the next generation through the distribution of  the solution, 

which makes the genetic algorithm more robust in solving high dimensional target optimization 

problems.

For light and energy optimisation in building performance, NSGA-II is sufficient to obtain very 

accurate results, so even though NSGA-II has been proposed for many years, in recent years 

multi-objective optimisation algorithms for building performance have mainly used NSGA-II or 

NSGA-III.

For example, in the paper "A Multi-Objective Optimization Methodology for Window Design 

Considering Energy Consumption, Thermal Environment, and Visual Performance," Yingni 

Zhai et al. proposed a similar approach to determine the optimal Window-to-Wall Ratio (WWR). 

Their study used energy consumption, indoor thermal conditions, and visual comfort as 
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objectives for optimization. By employing the NSGA-II algorithm, they identified the optimal 

window-to-wall ratio (WWR)  by varying the window-to-wall ratio (WWR)  of  test rooms. 

These parameters were chosen due to their conflicting relationships; for instance, larger windows 

can improve visual comfort by allowing more daylight but may also lead to excessive heat 

gain or loss, affecting thermal conditions and energy use. However, the study only considered 

daylight illuminance below 500 lux as a target parameter for visual comfort[25].

Qiyan Zhang and colleagues used MOEAs to optimise the layout of  urban plots constrained 

by environmental factors, aiming to improve natural ventilation by balancing architectural 

and environmental metrics. Their study focuses on two metrics: wind field and frontal area 

index (FAI). They conducted two experiments: the first optimised the volumetric layout using 

the NSGA-II algorithm without considering functional configurations, aiming to minimise 

summer airflow resistance ((λf_summer) and maximise winter airflow ((λf_winter). The second 

experiment combines the volumetric and functional layouts and uses the NSGA-III algorithm 

to minimise (λf_summer, maximise (λf_winter and maximise the distribution score ((λd) [26].

In our study, in the multi-objective optimisation section, we specify our objective: to resize the 

windows in order to change the window-to-wall ratio (WWR) of  the wall where the windows 

are located. By resizing all the windows in the room, we aim to achieve optimal daylight 

performance. However, in order to effectively implement multi-objective optimisation, we need 

to further define the performance metrics and design parameters that are of  interest during the 

optimisation process. Therefore, we review recent research on the application of  multi-objective 

optimisation algorithms in architecture.

In his paper entitled ‘Finding optimal window-to-wall ratios for office buildings in different 

European climates and their impact on the total energy saving potential’, Francesco Goia 

provides an in-depth analysis of  the impact of  various window-to-wall ratios (WWRs) and 

shading strategies on the energy efficiency of  a building in different orientations and climates. 

His study tested the optimal shading activation fluxes for four building orientations, followed 

by a paired assessment (north-south and east-west) to determine the optimal window-to-wall 

ratio (WWR) and the optimal shading strategy. The aim was to determine the optimal design 

parameters for different building configurations and environmental conditions [27].

Sana Sayadi and co-authors investigated optimal window-to-wall ratio (WWR)  configurations 

across seven different climates using the Köppen-Geiger climate classification. The optimal 

window-to-wall ratio (WWR) was determined by minimizing the total annual energy 

consumption (cooling, heating, and lighting). Using standardized test rooms, they evaluated 

the effects of  overhangs and automatic blinds on window-to-wall ratio (WWR) optimization 

for buildings with integrated automatic lighting control. Additionally, they examined three 

different window types with various U-values to assess their influence on energy consumption 
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and window-to-wall ratio (WWR). The optimal window-to-wall ratio (WWR) ranges for each 

climate, orientation, and window type were identified based on these factors[28]. 

Milad Showkatbakhsh and colleagues propose a methodology for applying Multi-Objective 

Evolutionary Algorithms (MOEAs) to address urban design complexity caused by conflicting 

design objectives. The research focuses on balancing design objectives through a multi-

objective optimisation algorithm that aims to avoid the subjectivity and rigidity associated 

with preference-based choices in the design process. This approach consists of  three main steps: 

firstly, defining the design problem; secondly, applying the algorithm; and thirdly, selecting the 

optimal solution from the generated design alternatives. To this end, the study introduces a 

data-driven selection mechanism that combines objective and subjective factors to select the 

optimal solution and tests it in a morphological intervention in urban interstitial spaces. The 

results show that the framework is not only scalable and adaptable, but also provides effective 

support to designers in selecting the optimal solution generated by MOEAs, addressing common 

challenges in applying MOEAs in design [29].

Fatemeh Rezaei and colleagues applied a multi-objective algorithm to enhance thermal and 

visual comfort in office buildings. They used the percentage of  people dissatisfied (PPD) and 

annual average glare discomfort probability (DGP) as metrics, considering factors such as 

window-to-wall ratio (WWR) , shading control strategies, viewing angles, glazing transmittance, 

light shelf  length, and height. For each orientation, they determined the maximum and 

minimum values of  PPD and DGP, along with the corresponding decision variables[30].

The above study demonstrates the application of  multi-objective optimisation in construction, 

where a number of  performance metrics and design parameters are often used. These cases show 

that to optimise building parameters using multi-objective optimisation, at least one pair of  

conflicting objectives must be selected. The algorithm then finds a balanced solution by weighing 

the conflicting parameters. However, these methods cannot be directly applied to our study. Our 

dataset consists of  real-world building layouts, where the number of  windows in each room may 

not correspond to a single orientation, as tested in the studies described above. Instead, our goal 

is to simultaneously find the optimal window-to-wall ratio (WWR) for all windows in a room, 

taking into account different window numbers and orientations. Obviously, it is not feasible to 

use a single orientation for all windows. In addition, different rooms in a building may not allow 

windows on all surfaces or only on some parts of  the walls. As a result, window-to-wall ratios 

(WWR) obtained for similar configurations may vary significantly due to differences in total 

window area. This problem is particularly common in the living rooms in the dataset.
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2.2 Predicting Building Performance Using Deep Learning Models

For predictive models, in addition to data collection, it is also very important to choose the right 

type and structure of  predictive models. The type and structure of  predictive models have an 

important impact on the prediction accuracy and efficiency of  the model.

We review recent studies on the use of  machine learning models to quickly predict building 

performance results to confirm the model type and structure we will try in our study. In the 

studies we selected, researchers have demonstrated the effectiveness of  machine learning 

models in predicting building performance, and these models have high prediction accuracy and 

efficiency.

For example, Yuhao Zhou et al. proposed a meta-modelling workflow for predicting building 

heat loads in the early design phase. Their model used building characteristics, weather 

parameters, and operating schedules as inputs to accurately predict hourly cooling and heating 

loads throughout the year [31]. In their study, the researchers chose as many parameters related 

to heat load as possible, which requires an in-depth understanding of  heat load dynamics. This 

approach is also very inspiring for our study. By using our own expertise, we can carefully select 

and pre-process relevant features. This will allow the model to better understand the graphical 

data it is dealing with and ultimately produce more accurate results.

Similarly, Lei Lei and colleagues proposed a deep learning model for predicting building energy 

consumption. Their method integrates Entropy Weighted K-means (EWKM, a fast and efficient 

clustering method for high-dimensional data), Random Forest algorithm, Sparrow Search 

Algorithm (SSA), and Bi-directional Long and Short-Term Memory Network (BiLSTM) to 

achieve high accuracy and reliability. They also introduced a feature selection method (EWKM-

RF) that combines EWKM with Random Forest to classify and select the factors affecting 

energy consumption [32].The EWKM-RF method is effective in identifying key factors affecting 

energy consumption in buildings, which reduces the dimensionality of  the data and improves 

the overall computational efficiency of  the prediction model. We draw inspiration from this 

study in terms of  feature processing and loss function design. When dealing with a large number 

of  features, appropriate algorithms can be used to select the most relevant features and ensure 

that the model focuses on the factors that are most closely related to the results.

Kaoutar Jraida and colleagues used machine learning models to predict the contribution of  

phase change materials (PCMs) to the reduction of  total energy consumption in cities. After 

comparing various models including ANN, DT, SVM, ELM, GB, RF, TB, GLRM, GPR, LR, 

GAM, KRRM, and LRR, they found that the SVM model consistently outperformed all other 

models and was able to successfully predict the hourly network output of  buildings [33]. 

Although our study will not compare so many machine learning models, Kaoutar Jraida's study 

provides us with an important revelation: when designing a model structure, we can confirm the 
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final model structure by comparing the effectiveness of  different machine learning models.

Finally, one thing that needs special attention is that the number of  datasets in our study is 

very different from that in the previous studies. Our dataset is relatively small. Each dataset 

sample comes from the dataset collection procedure we set up. Although we have significantly 

improved the collection efficiency by using various methods, the data collection process is 

still time-consuming. Therefore, it is not feasible to use tens of  thousands of  samples to train 

prediction models like the previous studies. In order to break through this limitation, our 

approach includes comprehensively comparing the performance of  multiple prediction models 

and integrating custom rules with a series of  interrelated models. Finally, this method was used 

to form a high-precision window size prediction procedure. After verification, we found that this 

method has a huge improvement in accuracy over predictions using a single prediction model.

31. Zhou, Yuhao, Yumin Liang, Yiqun Pan, 

Xiaolei Yuan, Yurong Xie, and Wenqi Jia. 
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Part lll Research Methods

3.1 Preprocessing of  RPLAN Datasets

This study differs from the above studies in that our dataset is relatively small. Each dataset 

sample comes from a combined multi-objective optimisation and illumination simulation 

process. Although the framework we designed greatly improves efficiency, the data collection 

process is still time-consuming. Therefore, it is challenging for us to use tens of  thousands of  

samples to train the prediction model, as demonstrated in the previously mentioned studies. To 

address this limitation, our approach consists of  comprehensively comparing the performance 

of  multiple predictive models and integrating custom rules with a range of  predictive models. 

This approach results in a highly accurate window size prediction procedure specifically tailored 

to make efficient use of  the limited available dataset.

In the previous pre-processing method, the preprocessed RPLAN dataset consists of  a series of  

corresponding JSON files[19], containing building information structured in lists labeled "room_

type," "boxes," "edges," and "ed_rm." 

Convert the png image in the RPLAN dataset to the corresponding json file, mainly through the 

information of  each pixel in the ‘1’ and ‘2’ channels of  the image, through the following code 

to print the image's channel ‘1 ’, print img_room_type to generate a 256x256 two-dimensional 

matrix, it can be found that each pixel in the room has a specific value to fill, for the gap inside 

the room, represented by the value ‘16’. The space outside the plane of  the building is filled with 

the value ‘13’, the value ‘15’ is used to represent the door to the outside of  the building, and the 

value ‘17’ represents the door connecting the rooms internally(as shown in Figure 4).

Figure 4. Extracting building plan information from images (drawn by the author)
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Figure 5. Extracting building plan information from images (drawn by the author)

The function of  img_room_number is to encode the pixels belonging to the room locations 

with the corresponding numbers. The sorting code is unordered, but it fills all the pixels of  the 

room with the number ‘n’ from the number ‘1’ up to the last room n, so it is possible to know 

how many rooms there are by the maximum number n in the matrix of  img_room_number. 

Therefore, the maximum number n of  the matrix in the img_room_number matrix tells us how 

many rooms there are(as shown in Figure 5).

Based on the above information, the rough idea of  image preprocessing is:

1. According to img_room_number, there are many rooms in the image, and then each room is 

put into a 256x256 2-bit matrix, and according to the room pixel position information obtained 

from img_room_number, the corresponding room pixel value is obtained from img_room_type, 

and relying on this approach, each room in img_room_type is extracted individually in order to 

complete the extraction of  room_type list information. By this way, each room in img_room_

type is extracted individually in turn, and the extraction of  room_type list information is 

completed.

2. After individually extracting each room, internal sector and external sector in img_room_

type in turn, set up a function to extract the coordinates of  their corners to extract the list 

of  ‘boxes’ and ‘edges’, the difference between the two lists is that the former only extracts the 

diagonal points of  the graphic and treats the graphic as a rectangle only, while the latter takes 

into account all the corner points of  the graphic. The difference between these two lists is that 

the former only extracts the corners of  the graph and treats it as a rectangle, while the latter 

takes all the corners of  the graph into account and generates the coordinates of  each edge in 

order.

3. Finally, according to the room, internal department and external department index 
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information, to generate a list of  ‘ed_rm’ information.

In this format, ‘room_type’ assigns different numbers to represent the various room types, while 

‘box’ provides the coordinates of  the lower left and upper right corners of  each room. The “side” 

list describes the start and end coordinates of  each segment, which are associated with the room 

types on either side. However, rooms can only be connected by internal segments. For example, 

[[162.0, 59.0, 162.0, 115.0, 3, 0]] indicates that the edge starts at (162.0, 59.0) and ends at (162.0, 

115.0). The numbers [3, 0] indicate that this edge is associated with a room of  type ‘3’ and has 

no adjacent rooms of  type ‘0’.

Finally, the ‘ed_rm’ list represents the indexes of  the rooms on either side of  each side, 

corresponding to the ‘room_type’ index. As mentioned earlier, connections only occur through 

inner sectors. When there is only one element in the list, it means that the edge is not connected 

to other edges through the inner sector. For example, [[0], [0, 6], [0], [0]] indicates that all edges 

connected to the room with index ‘0’ (the first room) are associated with nearby edges. If  only 

one element appears in the list, it means that the specified edge is isolated from other edges by 

internal sectors(as shown in Figure 6).

{"room_type": [3, 8, 3, 4, 2, 4, 1, 7, 17, 17, 17, 17, 17, 17, 15], "boxes": [[162.0, 59.0, 201.0, 115.0], [55.0, 144.0, 96.0, 
197.0], [55.0, 59.0, 95.0, 113.0], [186.0, 119.0, 201.0, 140.0], [162.0, 172.0, 201.0, 197.0], [162.0, 144.0, 201.0, 168.0], 
[55.0, 59.0, 182.0, 140.0], [100.0, 144.0, 158.0, 197.0], [82.0, 141.0, 94.0, 143.0], [164.0, 116.0, 176.0, 118.0], [80.0, 114.0, 
92.0, 116.0], [165.0, 141.0, 173.0, 143.0], [159.0, 175.0, 161.0, 195.0], [105.0, 141.0, 155.0, 143.0], [52.0, 123.0, 54.0, 
135.0]], "edges": [[162.0, 59.0, 162.0, 115.0, 3, 0], [162.0, 115.0, 201.0, 115.0, 3, 1], [201.0, 115.0, 201.0, 59.0, 3, 0], 
[201.0, 59.0, 162.0, 59.0, 3, 0], [55.0, 144.0, 55.0, 197.0, 8, 0], [55.0, 197.0, 96.0, 197.0, 8, 0], [96.0, 197.0, 96.0, 144.0, 8, 
0], [96.0, 144.0, 55.0, 144.0, 8, 1], [55.0, 59.0, 55.0, 113.0, 3, 0], [55.0, 113.0, 95.0, 113.0, 3, 1], [95.0, 113.0, 95.0, 59.0, 3, 
0], [95.0, 59.0, 55.0, 59.0, 3, 0], [186.0, 119.0, 186.0, 140.0, 4, 0], [186.0, 140.0, 201.0, 140.0, 4, 0], [201.0, 140.0, 201.0, 
119.0, 4, 0], [201.0, 119.0, 186.0, 119.0, 4, 0], [162.0, 172.0, 162.0, 197.0, 2, 7], [162.0, 197.0, 201.0, 197.0, 2, 0], [201.0, 
197.0, 201.0, 172.0, 2, 0], [201.0, 172.0, 162.0, 172.0, 2, 0], [162.0, 144.0, 162.0, 168.0, 4, 0], [162.0, 168.0, 201.0, 168.0, 
4, 0], [201.0, 168.0, 201.0, 144.0, 4, 0], [201.0, 144.0, 162.0, 144.0, 4, 1], [99.0, 59.0, 99.0, 117.0, 1, 0], [99.0, 117.0, 55.0, 
117.0, 1, 3], [55.0, 117.0, 55.0, 140.0, 1, 0], [55.0, 140.0, 182.0, 140.0, 1, 7], [182.0, 140.0, 182.0, 119.0, 1, 0], [182.0, 
119.0, 158.0, 119.0, 1, 3], [158.0, 119.0, 158.0, 59.0, 1, 0], [158.0, 59.0, 99.0, 59.0, 1, 0], [100.0, 144.0, 100.0, 197.0, 7, 0], 
[100.0, 197.0, 158.0, 197.0, 7, 0], [158.0, 197.0, 158.0, 144.0, 7, 2], [158.0, 144.0, 100.0, 144.0, 7, 1], [82.0, 141.0, 82.0, 
143.0, 17, 0], [82.0, 143.0, 94.0, 143.0, 17, 8], [94.0, 143.0, 94.0, 141.0, 17, 0], [94.0, 141.0, 82.0, 141.0, 17, 1], [164.0, 
116.0, 164.0, 118.0, 17, 0], [164.0, 118.0, 176.0, 118.0, 17, 1], [176.0, 118.0, 176.0, 116.0, 17, 0], [176.0, 116.0, 164.0, 
116.0, 17, 3], [80.0, 114.0, 80.0, 116.0, 17, 0], [80.0, 116.0, 92.0, 116.0, 17, 1], [92.0, 116.0, 92.0, 114.0, 17, 0], [92.0, 114.0, 
80.0, 114.0, 17, 3], [165.0, 141.0, 165.0, 143.0, 17, 0], [165.0, 143.0, 173.0, 143.0, 17, 4], [173.0, 143.0, 173.0, 141.0, 17, 
0], [173.0, 141.0, 165.0, 141.0, 17, 1], [159.0, 175.0, 159.0, 195.0, 17, 7], [159.0, 195.0, 161.0, 195.0, 17, 0], [161.0, 195.0, 
161.0, 175.0, 17, 2], [161.0, 175.0, 159.0, 175.0, 17, 0], [105.0, 141.0, 105.0, 143.0, 17, 0], [105.0, 143.0, 155.0, 143.0, 17, 
7], [155.0, 143.0, 155.0, 141.0, 17, 0], [155.0, 141.0, 105.0, 141.0, 17, 1], [52.0, 123.0, 52.0, 135.0, 15, 0], [52.0, 135.0, 
54.0, 135.0, 15, 0], [54.0, 135.0, 54.0, 123.0, 15, 1], [54.0, 123.0, 52.0, 123.0, 15, 0]], "ed_rm": [[0], [0, 6], [0], [0], [1], [1], 
[1], [1, 6], [2], [2, 6], [2], [2], [3], [3], [3], [3], [4, 7], [4], [4], [4], [5], [5], [5], [5, 6], [6], [6, 2], [6], [6, 7], [6], [6, 0], [6], [6], [7], [7], 
[7, 4], [7, 6], [8], [8, 1], [8], [8, 6], [9], [9, 6], [9], [9, 0], [10], [10, 6], [10], [10, 2], [11], [11, 5], [11], [11, 6], [12, 7], [12], [12, 4], 
[12], [13], [13, 7], [13], [13, 6], [14], [14], [14, 6], [14]]}

Figure 6. 14.json display (drawn by the author)
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In previous studies, preprocessing the RPLAN dataset was a necessary step for training. 

However, the information in the raw JSON format is grossly insufficient for our study because it 

does not include any data about the windows. Furthermore, our experiments require the ability 

to frequently resize all the windows in the test room. Therefore, we need to add additional 

data to identify the walls that can accommodate windows in each room. Finally, we also need 

to add information about the area of  these walls in the room, as different sized rooms have 

different sunlight requirements, which have a significant impact on the size of  the windows. 

This additional information is essential for conducting physical simulations and multi-objective 

optimisation experiments.

We mainly use the following methods to obtain additional window information data:

1. First, according to the edge length information contained in 'edges', obtain the area 

information of  the corresponding room.

2. Next, we extract the outer contour of  the entire building floor plan and capture the 

coordinates of  every pixel position along this outer contour.

2. Next, similar to previous methods, we isolate each room individually. Then, we obtain the 

contour of  each room, gathering the coordinates of  every pixel position along these contours.

3. We then match the coordinates of  the entire building's outer contour with each room's outer 

contour. The coordinates that perfectly overlap represent the exterior contour points of  each 

room. Since the line segments in the RPLAN floor plan are straight, and there is a gap between 

rooms, once we identify the outer contour points of  each room, we can extract the start and end 

coordinates of  each line segment. We then calculate the length of  each segment and exclude 

segments shorter than 1.5 meters. The 1.5-meter threshold is determined based on the maximum 

window-to-wall ratio (0.8) and the standard window unit width (1.2 meters).

4. While identifying the coordinates of  each room’s outer contour segments, we also retain the 

information of  the room to which each line segment belongs. This includes the index of  the 

room in room_type and the number of  outer contour segments within the same room that meet 

all conditions. At the same time, match the area information already recorded in step 1 with 

its corresponding outer contour edge, and add the area information to the list where the outer 

contour edge is located as well.

5. In order to determine the direction of  each line segment, we repositioned the two-dimensional 

matrix for each room based on the coordinates of  the start and end points of  the outer contours 

of  the rooms. By examining the values in the matrix around the start and end points of  the 

outer contour of  each room, we can determine the direction of  each line segment. Here, we 

define the segment directions as follows: the segment located at the bottom edge of  the building 

plan represents the direction towards the south and is labelled ‘1’; the segment located at the 

right edge represents the direction towards the east and is labelled ‘2’; the segment located at 

the top edge represents the direction towards the north and is labelled “3”; and the segment 

located at the left edge represents the direction towards the west and is labelled ‘4’.
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In summary, we have expanded the processing of  the original dataset by adding new 

information: the potential number of  windows in each room, the coordinates and lengths of  

walls suitable for window installation, the orientation of  these walls, and the corresponding 

room type and index.

Take the 150.json file in the new dataset as an example:

"ed_windows":

[[145,81,174,81,3,29.0,2,0,1],[225,94,225,132,2,38.0,3,1,2,1906.0],[178,94,225,94,3,47.0,3,1,2,190

6.0],[214,136,214,157,2,21.0,4,2,2],[178,157,214,157,1,36.0,4,2,2],[48,108,48,135,4,27.0,3,3,1,132

3.0],[31,136,31,175,4,39.0,3,4,4,3153.0],[110,157,110,175,2,18.0,3,4,4,3153.0],[110,157,125,157,1

,15.0,3,4,4,3153.0],[31,175,110,175,1,79.0,3,4,4,3153.0],[48,81,48,104,4,23.0,1,5,3,4012.0],[48,81,

141,81,3,93.0,1,5,3,4012.0],[143,145,174,145,1,31.0,1,5,3,4012.0]]

The list [225,94,225,132,2,38.0,3,1,2,1906.0] provides details about a line segment representing a 

window-related wall:

-[225,94] and [225,132] are the coordinates of  the start and end points of  the segment.

-The number 2 indicates the direction, which in this case is east.

-The value 38.0 represents the length of  the wall where the window can be installed.

-The number 3 indicates the room type to which the segment belongs.

-The value 1 represents the room's index in the "room_type" list.

-Then the value 2 indicates that this room has two edges where windows can be installed.

-Finally, the last value 1906.0 indicates the room area in which the edge is located.

3.2 Build a multi-objective optimisation program and Collect New Datasets

The optimal window size, or Window-to-Wall Ratio (WWR), varies depending on specific 

objectives and the building's environment. In our study, we focused exclusively on daylight as 

the target for multi-objective optimization, aiming to achieve the best possible indoor lighting 

conditions by adjusting window sizes. To streamline the process, we simplified our objective to 

determining the optimal WWR required to achieve the best daylighting in a room.

The reasons for considering only daylight in our optimization are as follows:

1. Time efficiency: Incorporating energy and other objectives into a multi-objective optimisation 

process can significantly increase computational time. Since our study involves the collection 

of  a large amount of  data from both multi-objective optimisation and physical simulation, 

reducing the computational time for each operation can help to significantly reduce the overall 

time required for dataset collection.

2. Impact on energy consumption: We refer to the conclusions in "Optimizing Hybrid 

Ventilation and Daylight-Linked Dimming Control for Carbon Reduction and Thermal Comfort 

in a Subtropical High-Rise Office Building", which verifies that changes in window size have a 

relatively small impact on the total energy consumption of  the building. [34]
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Figure 7. Converting JSON files into Grasshopper-usable data forms (drawn by the author)

34. Yu, Fu Wing & Ho, W.T.. (2023). Optimizing 

Hybrid Ventilation and Daylight-Linked 

Dimming Control for Carbon Reduction and 

Thermal Comfort in a Subtropical High-Rise 

Office Building. Cleaner Energy Systems. 7. 

100096. 10.1016/j.cles.2023.100096. 

3. The importance of  daylight in residential buildings: For residential apartments, light has a 

more direct impact on the life and work of  users.

3.2.1 Visual Building Model in Grasshopper

We chose to create 3D models using the Rhino 3D modeling software because the preprocessed 

RPLAN dataset generates corresponding JSON files. We needed a program capable of  

automatically reading these JSON files and converting the data into 3D models. To accomplish 

this, we used the Grasshopper plugin in Rhino.

In Grasshopper, we mainly use a plugin called ‘jSwan’(as shown in Figure 7). This plugin 

reads JSON files and converts the data into a format that Grasshopper can interpret for model 

generation. As shown in the figure below, the ‘jSwan’ plugin reads the information from the 

JSON file and lists the array of  information after the dictionary based on the structure of  the 

JSON file.Then, based on our needs, we use another plugin called "Deserialize Json" to connect 

to the corresponding dictionary, transforming the dictionary's data into a standard sequence 

format that Grasshopper can recognize as a list.
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After converting the data from the JSON files into a format that Grasshopper can use, we utilize basic plugins in Grasshopper to construct the corresponding 3D models. The key data we use includes room_type, 

edges, and ed_windows. The room_type data serves as markers to identify and select specific rooms for testing. The edges data is used to construct the mass of  each room. The process is as follows: first, we use the 

"Construct Points" plugin to transform the coordinates from edges into points, which are then connected to form lines. Since each room is separate, the line segments for each room are connected into closed polylines 

that represent individual rooms. These polylines are then converted into surfaces, and by extruding them upward, we create enclosed room volumes(as shown in Figure 8).

It is important to note that the ‘edge’ data contains information about all room boundaries, but we only need specific types of  rooms for testing. Therefore, it is important to distinguish the test room from all other 

rooms. To do this, we use the basic components in Grasshopper. The main idea is to first calculate the centre point of  all rooms (including the test room) using the ‘Area’ component. Next, the ‘Equality’ component is 

used to identify overlapping centroids and thus successfully isolate the test room. Finally, the ‘Reject Mode’ component is applied to separate the test room from all other rooms.

Similar to the edges, the ed_windows data was collected for the portions of  the walls in the floor plan that were suitable for window placement. Windows were then added in the centre of  these walls, with the size of  

the windows varying randomly. In our study, we set the minimum size of  the windows to 1.2 metres and adjusted them incrementally in 0.6 metre increments(as shown in Figure 9).

Figure 8. The Coordinates in ‘edges’ Generate the Building Blocks (drawn by the author)

Figure 9. The Coordinates in ‘ed_windows’ Generate the Windows  (drawn by the author)
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After converting the data from the JSON files into a format that Grasshopper can use, we utilize basic plugins in Grasshopper to construct the corresponding 3D models. The key data we use includes room_type, 

edges, and ed_windows. The room_type data serves as markers to identify and select specific rooms for testing. The edges data is used to construct the mass of  each room. The process is as follows: first, we use the 

"Construct Points" plugin to transform the coordinates from edges into points, which are then connected to form lines. Since each room is separate, the line segments for each room are connected into closed polylines 

that represent individual rooms. These polylines are then converted into surfaces, and by extruding them upward, we create enclosed room volumes(as shown in Figure 8).

It is important to note that the ‘edge’ data contains information about all room boundaries, but we only need specific types of  rooms for testing. Therefore, it is important to distinguish the test room from all other 

rooms. To do this, we use the basic components in Grasshopper. The main idea is to first calculate the centre point of  all rooms (including the test room) using the ‘Area’ component. Next, the ‘Equality’ component is 

used to identify overlapping centroids and thus successfully isolate the test room. Finally, the ‘Reject Mode’ component is applied to separate the test room from all other rooms.

Similar to the edges, the ed_windows data was collected for the portions of  the walls in the floor plan that were suitable for window placement. Windows were then added in the centre of  these walls, with the size of  

the windows varying randomly. In our study, we set the minimum size of  the windows to 1.2 metres and adjusted them incrementally in 0.6 metre increments(as shown in Figure 9).
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It's important to note that rooms such as bathrooms, kitchens, and storage areas do not require 

an optimal window configuration to achieve the best daylighting conditions. For these types 

of  rooms, window configurations are more focused on functionality. Therefore, these rooms are 

excluded from the light simulation, and their window configurations are assigned manually 

based on custom settings.

Specifically, the "Room Type" in the JSON file uses numbers to represent the room type. "1" is 

the living room, "2" is the kitchen, "3" is the bedroom, "4" is the bathroom, "5" is the balcony, 

"6" is the corridor, "7" is the dining room, "8" is the study, "10" is the storage room, "15" is the 

corridor, "16" is the unknown type, and "17" is the internal door.

Different room types have different treatment methods. When optimizing window configuration, 

rooms such as kitchens, bathrooms, balconies, corridors, dining rooms, storage rooms, corridor 

doors, unknown types, and internal doors are not considered. Instead, the three room types of  

living room, bedroom, and study are the focus of  research.

3.2.2 Setting of  Window Parameters

First, the window height is fixed in this study. There are two main reasons for setting the 

window height to be the same as the wall height(as shown in Figure 10):

1. Simplify calculation: By assuming that the window height is the same as the building floor 

height, intermediate calculations can be omitted. This approach eliminates the window height 

variable, and the room lighting results are directly related to the window width (herein referred 

to as window size). Therefore, the prediction model only focuses on the relationship between 

window width and room lighting performance. Although this assumption may introduce some 

errors, its impact is small and within the acceptable range in residential buildings.

2. Data limitations: The RPLAN data is a planar dataset, which does not contain any 

information about building heights or window heights. If  we set these values ​​manually, 

researchers who use our data in the future may need to perform a series of  conversions before 

they can use our data. This will reduce the generalizability of  our research.

Figure 10. The window height equal to the wall height (drawn by the author)
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In the multi-objective optimization process, it is necessary to continuously adjust window sizes 

to achieve the optimal daylighting results for each room. We proposed a method to adapt the 

window sizes based on actual requirements. First, the minimum window size was set to 1.2 

meters, which aligns with the standard window dimensions in local residential buildings. Next, 

the minimum scale increment was set to 0.6 meters, corresponding to the size of  a typical 

window frame(as shown in Figure 11).

This approach is implemented using the number slider in Grasshopper, which allows the use 

of  built-in functions. In this component, we entered the function: 1.2 + (x - 1) * 0.6, where n ≥ 

0. This function dynamically calculates the final window size, providing flexibility for resizing 

while maintaining compliance with actual design constraints(as shown in Figure 12).

Figure 11. Minimum Size of  Windows and Minimum Variation Parameter (drawn by the author)

Minimum Window Size Minimum Variation Parameter for 

Window Size

Figure 12. Setting Window Parameters (drawn by the author)
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3.2.3 Light Simulation

After constructing the building model and configuring the window parameters, we need to 

connect different parts of  the building model to the lighting simulation software. The light 

simulation process requires the use of  a plug-in called "ClimateStudio." To ensure the simulation 

runs smoothly, the following steps are necessary:  

1. Model Setup: Each part of  the model needs to be connected to the appropriate input in the 

ClimateStudio plug-in according to the requirements, and the correct materials must be assigned 

to different model components. In our research, we simplified certain model components where 

appropriate. For instance, in the case of  windows, we represented the entire window as glass, 

omitting the window frames. Finally, for the lighting simulation model, the primary elements 

to be modeled include "surrounding rooms outside the test room," "walls," "ceiling," "floor," and 

"windows."

Regarding the materials used for glazing(Table 1), walls, ceilings, and floors(Table 2), we selected 

the most common materials found in residential buildings in Turin, Italy. The materials for the 

walls, ceilings, and floors are the same, and their properties are detailed in the table below.

2. Location Selection: The corresponding location for the simulation must be selected to obtain 

information about coordinates, climate, and radiation intensity.

The next section outlines the climatic conditions at the modelled reference site of  Turin.

The daily DBT charts show a gradual increase in the daily temperatures during the hottest 

months. Hot summers and cold winters with large temperature differences throughout the year. 

The highest temperatures can be seen in March, April and May, with a minimum of  -5.50°C and 

a maximum of  33.70°C in 2020.

Analysis of  HDD and CDD in conjunction with temperature analysis shows that in 2020 there 

The Name of  Glazing Layers Tvis Rvis.front Rvis.back UVal[W/(m2·K)] SHGC

Solarban 60 (2)

on Starphire 

-Starphire(Argon)

Double 74.4% 11.0% 12.2% 1.36 0.41

The Name of  

Glazing

Type Surface Roughness Rvis

(tot)

Rvis

(diff)

Rvis

(spec)

Tvis

(tot)

Tvis

(diff)

Tvis

(spec)
Solarban 60 (2)

on Starphire-

Starphire(Argon)

Matte Ceiling 0.00 70.0% 70.0% 70.0% 0.0% 0.0% 0.0%

Table 1. The Material Information of  Glazing  (drawn by the author)

Table 2. The Material Information of  Ceiling, Wall, Ground and material of  the surrounding 

rooms except the Test Room (drawn by the author)
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Time 0-7 8 9 10 11 12 13 14 15 16 17 18 19 20-23
Schedule 

Value

0 0.7 1 1 1 0.7 0.5 0.7 1 1 1 0.6 0.2 0

Table 4. The preferred value of  Spatial Daylight Autonomy (drawn by the author)

Table 3. Schedule Setting (drawn by the author)

After completing all the settings, a series of  operations allow us to obtain various types of  light 

results related to the test room. The 3 main parameters used in our study are the following:

1. Spatial Daylight Autonomy (sDA) 

It assesses whether a space receives sufficient daylight on a work plane during standard 

operating hours on an annual basis. This metric quantifies the fraction of  the area within a 

space for which the daylight autonomy exceeds a specified value.

According to the lES LM-83.12 document, the sDA should be calculated for an illuminance 

threshold of  300 lx, a DA threshold of  50% and in a time interval from &am to 6pm over the 

year (sDA300, 50%)(Table 4).However the illuminance threshold and the occupancy period 

can be changed to better suit to the visual task performed and the type of  activity carried out. 

Similarly, the presence and operation of  dynamic blinds should be designed according to the 

specific requirements.

will be a need for heating in June, July and August and heating for most of  the rest of  the year.

Finally, the schedule(Table 3) is set according to the type of  building, which indicates how the 

users of  the space use the space during each hour of  the week. This schedule references the 

classroom schedule settings from the ClimateStudio software, with one key difference: in the 

classroom schedule, the schedule value for weekends is set to 0. However, in our study, all days 

for the apartment schedule are set the same. The chart below shows the schedule values for each 

hour across a 24-hour day, which are consistent across all seven days in our study.

2. Annual Sunlight Exposure (ASE)

Annual Sunlight Exposure (ASE): it identifies portions of  space receiving too much direct 

sunlight on an annual basis, which may cause visual discomfort (glare), thermal discomfort 

or additional cooling costs. This metric quantifies the fraction of  the area within a space that 

exceeds a specified direct sunlight illuminance level for more than a specified number of  hours 

per year over a specified daily schedule with all operable shading devices retracted.

Classification

Preferred

Nominally 

accepted

Low

Range

sDA > 75%

55% ≤ sDA ≤ 75%

sDA < 55%
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3. Daylight Factor(Mean)

Daylight factor is the most widely used index which defines the percentage ratio of  interior 

illuminance (E) on a horizontal surface to the exterior illuminance (Eh) on a horizontal surface 

under an overcast[Window to Wall ratio for Day lighting in context of  apartment building in 

Kathmandu valley]. It is also an important parameter to measure the effectiveness of  daylight 

as it expresses the daylight inside any room with respect to external horizontal illumination.

DF(%) = ( EOutdoor/EInterior )×100

EInterior is the indoor illuminance (lux) on a horizontal plane. EOutdoor is the outdoor illuminance 

(lux) on the horizontal plane under cloudy conditions. In the actual simulation, the daylight 

factor is not involved in the multi-objective optimisation calculation. Instead, it is evaluated 

after the optimisation process. According to the Turin regulations, a daylight factor of  more 

than 3% is sufficient. In our study, we found that as long as the spatial daylight autonomy (sDA) 

is met, the insolation coefficient also consistently exceeds the 3% threshold, ranging from 6% to 

15%.

3.2.4 Set Up the Automated Multi-objective Optimization Procedure 

In order to obtain the optimal daylighting simulation parameters for a test room, the key 

challenge is to automatically adjust the window sizing parameters after each ClimateStudio 

calculation. This process must be calculated and refined iteratively using a multi-objective 

optimisation algorithm until the optimal window size is obtained that meets the daylighting 

requirements.

For this purpose, we use Opossum, Grasshopper's built-in multi-objective optimisation plug-

in, which is able to combine the simulation results from ClimateStudio with a window resizing 

procedure(as shown in Figure 13). By combining ClimateStudio's iterative calculations with 

automatic window resizing, the plug-in uses a multi-objective optimisation algorithm to 

determine the optimal window size.

Table 5. The preferred value of  Annual Sunlight Exposure (drawn by the author)

Old classification New classification

Preferred

Nominally 

accepted

Low

Unacceptable

Exemplary

Accepted

Unacceptable

Range Range

ASE < 3%

3% ≤ ASE < 7%

7% ≤ ASE < 10%

ASE ≥ 10%

ASE < 10%

10% ≤ ASE < 

20%

ASE ≥ 20%

According to the lES LM-83-12 document, the ASE is calculated for a direct sunlight 

illuminance threshold of  1000 lx (i.e. due to the direct radiation only) and a time threshold of  

250 hours(Table 5). In a time interval from 8am to 6pm over the year (ASE1000,250), However, 

the occupancy period can be changed to better suit the type of  activity carried out.
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Figure 13. Automating Multi-Objective Optimization Operations with Opossum (drawn by the 

author)

Among the available multi-objective optimization algorithms, we chose the NSGA-II algorithm. 

This selection was based on insights drawn from the related research references discussed in the 

second section of  this paper and tailored to the specific requirements of  our study.

The multi-objective optimization aims to achieve the best balance between two solar radiation 

parameters: Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE). It is 

important to note that in the Grasshopper multi-objective optimization plugin, we can only 

specify whether we need to maximize or minimize these parameters. As mentioned before, we 

want the Spatial Daylight Autonomy (sDA) to be as high as possible, while for the Annual 

Sunlight Exposure(ASE), our goal is to minimize its value. Therefore, we multiply the ASE 

value by -1, thus converting it to a negative number. By converting the ASE result to a negative 

number, maximizing its value actually means bringing it closer to zero, thereby minimizing the 

ASE value.

For efficiency, we set the optimization process to stop in two cases: when the number of  

iterations exceeds 100, or when no improvement is seen after more than 20 consecutive 

iterations.

3.2.5 Selection of  Input Dataset  

We did not randomly sample data from more than 70,000 JSON files for multi-objective 

optimization, because random sampling can easily miss some building plan types. Our approach 

is to first select specific room categories. Then list all window configurations and finally collect 

room data for each window configuration. This strategy avoids the possibility that random 

sampling may lead to underrepresentation of  certain window configurations, resulting in poor 

prediction accuracy.

We finally extracted 258 rooms from more than 70,000 JSON files for optimization, recorded the 

results of  the optimization, and then created our dataset.
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It is worth noting that rooms in categories 3 and 8, representing bedrooms and studies 

respectively, rarely have four or more windows in both the dataset and the real-life scenarios. 

Therefore, we excluded cases where these rooms had four or more windows. In addition, when 

the number of  windows reached three or more, the orientation of  the windows was no longer 

considered. This is because a large number of  permutations and combinations would result if  

window orientation was also taken into account. Taking all of  these into account would have 

required a significant amount of  additional coding to cover every possibility. Instead, we chose a 

simple condition of  three or more windows and used random sampling to ensure that the various 

scenarios were well represented in the dataset.

3.2.6 Dataset Collection

3.2.6 Dataset Collection

After completing all configurations, we will run the dataset collection procedure. As we 

introduced in 3.2.4, the multi-objective optimization procedure will continuously change the 

size of  all windows in the room to obtain the best lighting balance. After the calculation is 

completed, we will integrate the results with the corresponding graphical output. This includes 

recording the window and wall sizes for a specific orientation, the relevant window length, 

window-to-wall ratio (WWR), window orientation, and daylighting indicators. The final result 

is a comprehensive dataset of  window sizes optimized by the multi-objective algorithm to meet 

the best daylighting requirements.

The following are the window configuration combinations considered(Table 6):

Room Type 3&8
Window number Categories of  window orientations 

combinations
1 1,2,3,4
2 1&2,1&3,1&4,2&3,2&4,3&4,1&1, 2&2, 3&3,4&4
3 Combinations without regard to window 

orientation
Note: 1 for South, 2 for East, 3 for North, 4 for West

Room Type 1
Window number Categories of  window orientations 

combinations
1 1,2,3,4
2 1&2,1&3,1&4,2&3,2&4,3&4,1&1, 2&2, 3&3,4&4
3 Combinations without regard to window 

orientation
4 Combinations without regard to window 

orientation
Note: 1 for South, 2 for East, 3 for North, 4 for West
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Figure 14. Multi-objective Optimization Process and Metrics Logging (drawn by the author)

For each building layout, we record all the edge information of  a single room and the final 

results obtained by the multi-objective optimization process in a structured table(Figure 14).
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3.3 Build a Window Size Prediction Program

3.3.1 Data Preprocessing

During the data preprocessing phase, we first select relevant factors influencing window 

dimensions, integrate this data, and process it into properly shaped feature vectors. In our 

study, the input features are derived from the reprocessed JSON files of  the RPLAN dataset and 

the data used in the daylight simulation computations.

It is worth noting that we have used data from the ‘ed_windows’ field in the JSON file, but 

not all of  the data has been used. Some of  the data (e.g. room types) has been converted to 

a numerical representation. However, these values are not suitable for direct input into the 

model as they simply represent the orientation of  the edges and lack direct correlation with 

the predicted window size. For such data, a format conversion is necessary. In our study, the 

orientation values were encoded using a single encoding. For example, if  there are four possible 

directions, direction ‘1’ is represented as [1, 0, 0, 0], where the position of  ‘1’ indicates the 

direction.

Additionally, not all input features are directly available. For example, to combine the window 

orientations of  a room, we first need to group the edges of  the same room in the building layout 

and then manually construct the features. Since one-hot encoding is used to represent window 

orientations, the combined feature for a room’s window orientation can be obtained by summing 

the window orientation vectors within the same room. For instance, if  a room has three windows 

with orientations [1,0,0,0], [0,1,0,0], and [0,1,0,0], the combined window orientation for the 

room would be [1,2,0,0], where the number "2" indicates that there are two windows facing that 

direction.

Below are the final input features and their corresponding representations(Table 7). 

Input Features Forms of  Expression Example
Area Value [50]

Room Type Value [3]
Direction One-hot Code [1,0,0,0]

Windows Number Value [3]
Combination of  Number of  

Directions

One-hot Code [1,2,0,0]

Wall Length Value [5.7]
Total Length of  Walls Value [15.7]
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3.3.2 Construction of  the Program Structure

For determining the model structure, we adopted an iterative approach by starting with simple 

deep learning models and gradually refining the design based on the accuracy of  the initial 

models. We initially experimented with two types of  deep learning models:  

1. A neural network model with the goal of  predicting the continuous regression value, the 

Window-to-Wall Ratio (WWR).  

2. A neural network classification model with the goal of  predicting discrete Window Length 

values.  

After training these two individual deep learning models, we randomly selected 10 processed 

JSON files as test data. The results from both models were unsatisfactory.  

The first model, designed to predict the continuous regression value of  the Window-to-Wall 

Ratio, produced particularly poor results. Below is an excerpt of  one of  the predictions made by 

the regression model(Figure 15).  

Figure 15. Demonstration of  WWR prediction results (drawn by the author)

As can be seen from the results, the predicted window-to-wall ratio (WWR) values are very 

inaccurate. Firstly, the WWR values are too large and it is clear that WWR has a simple 

positive correlation with wall length. While this correlation is valid to some extent, in our study 

this oversimplified relationship resulted in larger WWR values for larger wall lengths - a result 

that defies basic common sense.

The reasons for these errors can be analysed from three perspectives: the dataset, the prediction 

target and the model structure. Firstly, in terms of  the size of  the dataset, we have only 258 

room samples. Predicting WWR values from 0 to 100 with such a small dataset will inevitably 
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lead to significant errors.

Secondly, the WWR itself  is derived from the ratio of  window size to the length of  the wall on 

which it is located. However, since we set constraints such as the minimum window size and the 

minimum window size increment, the variations in WWR values inherently involve considerable 

complexity. Finally, regarding the model structure we used, a single neural network prediction 

model struggles to understand the distribution of  windows across different wall orientations. 

The relationship between the WWR and wall length is also not simply linear. For instance, when 

a room’s daylighting needs are already saturated, even if  the length of  the south-facing wall 

increases, to avoid overexposure, the south-facing window size would remain at the minimum of  

1.2 meters.

The second model aimed to predict discrete window lengths as classification targets. This 

classification model categorized window sizes, such as 1.2 meters as category 0, with increments 

of  0.6 meters forming new categories, until the next category would result in a window 

size longer than the corresponding wall length. From a design perspective, this approach 

appears more reasonable because the dataset inherently records window dimensions and 

uses window sizes as the prediction target, which should theoretically yield more accurate 

results than predicting WWR. However, testing revealed that this model also produced poor 

results(Figure16).

Figure 16. Window Size Prediction Results (drawn by the author)
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The root cause of  such results lies in the lack of  data and the highly imbalanced distribution 

of  window size categories. By printing the category statistics, we found that in our collected 

dataset of  258 samples, the distribution of  window size categories is as follows(Table 8):  

Table 8. Category Statistics (drawn by the author)

Category Number
Category 0 270 (48.82%) 
Category 1 77 (13.92%)  
Category 2 62 (11.21%) 
Category 3 33 (5.97%) 
Category 4 35 (6.33%)
Category 5 27 (4.88%) 
Category 6 21 (3.80%) 
Category 7 11 (1.99%) 
Category 8 8 (1.45%)
Category 9 2 (0.36%)

Category 10 3 (0.54%)
Category 12 1 (0.18%)  
Category 13 3 (0.54%)  

These results reveal that the distribution of  window size categories is highly imbalanced, and 

most categories have too few samples to form effective classification boundaries. This imbalance 

explains why our prediction results default to 1.2 meters.

Based on the failure of  the previous two attempts, we propose a window size prediction procedure 

that combines custom rules and multiple models. The procedure consists of  the following parts:

1. First, we trained a model for predicting the total window size in each room (Model 1). It works 

by predicting the total window size for the room based on the room and features such as the 

number of  windows and window orientation. This idea comes from the fact that we found a 

strong correlation in our dataset between rooms and features such as number of  windows and 

window orientation and the total window size for that room. And in the end, the model was 

validated and found to have good accuracy. It is different from previous classification models 

that predict window size as a category. The model distinguishes only two categories: a category 

in which all window sizes are 1.2 metres (the smallest window size), and a category that contains 

all the remaining categories. The purpose of  the classification model is to exclude rooms that 

already provide sufficient or even excessive sunlight under current conditions and that have the 

smallest window sizes.

2. Next, we use the room features, window features and self-attention mechanism to train models 

that can dynamically analyse and predict the size ratio between windows in a room (Model 2). 

The model will calculate the size proportions of  different windows in the same room. Then, the 

total window dimensions calculated by Model 1 are combined to finally obtain the dimensions of  

each window in the room. 
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Read Data

Situation 1
Model 1 +

Custom Rule

Situation 2
Model 1 +

Model 2+Custom Rule

Constructing 
Features

Model 1
(Total Window Length Prediction Model)

Outputs-
Total Window Length Prediction 

All windows can be assigned 
using only model 1 and the 
custom rules.

Model 2: Predictive Model for Window Edge 
Length Distribution.

Model 1: Total Window Length Prediction 
Model.

Based on the predictions of  model 1 and 
the predicted number of  windows in the 

room, there will be the following scenarios

After entering the results of  model 1, use 
model 2 along with a custom rule to get the 
dimensions of  all the windows.

3. Finally, we also introduced a series of  custom rules to confirm the size of  the windows. The 

main reason for introducing custom rules is that assigning the dimensions of  individual windows 

in a room based on Model 2 alone sometimes produces large errors that need to be corrected by 

custom rules. More than For example, when a window size takes up a large proportion of  the 

wall on which the window is located, the model calculates a window size that is larger than the 

wall on which it is located. This is shown to be impossible. In addition, the custom rules specify 

a minimum window size of  1.2 metres and a minimum change in window size of  0.6 metres. 

This will further correct the window dimensions calculated by Model 2 to produce more accurate 

results.

In addition, we introduced two loss function mechanisms when training Model 1 and Model 2. A 

larger penalty is imposed if  the predicted window size is less than 1.2 metres. Similarly, another 

larger penalty is imposed if  the predicted window size exceeds the length of  the corresponding 

wall.

The following chart illustrates the structure of  the entire program(Figure 17):  

Figure 17. Framework of  the Window Size Prediction Program (drawn by the author)
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Figure 18. Prediction Program Process Demonstration (drawn by the author)

Taking two data as examples, the prediction process of  two situations is demonstrated 

respectively(Figure 18).

Situation 1
Model 1 +

Custom Rule

Situation 2
Model 1 +

Model 2+Custom Rule

Model 1

Wall 1

Wall 2

Wall 3

Total window(s) length is 
1.36m

Final Window Length is
1.2m

Custom Rules

Test 
Room

Test 
Room

Model 1

Total window(s) length is 
3.32m

Window Length of  Wall 2 is 
1.33m

Window Length of  Wall 3 is 
1.99m

Model 2

Custom Rules

Final Window Length of  Wall 2 is 
1.2m

Final Window Length of  Wall 3 is 
1.8m
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3.3.3 Validating Model Accuracy

We randomly selected 10 processed JSON files containing 33 rooms and 61 windows as test data. 

We will check the accuracy of  Model 1 and Model 2 separately in the process. There are two 

main aims. Firstly, we want to improve the accuracy of  Model 1 by continuing to fine-tune the 

model parameters. On the other hand, we want to check if  the self-defined rules and Model 2 

can assign window sizes accurately and further correct the results of  Model 1.

The following are the testing results:

MSEModel 1=2.136

MSEModel 2=1.163

The result of  MSEModel 1 is calculated by first calculating the square of  the difference between the 

total window size for each room and the total window size predicted for that room by Model 1, 

and then averaging those squared differences.

By writing all the MSEModel 1 results in the table below(Table 9), we found that among the 33 

results, there are 2 values that are particularly large. Apart from these, the error rates of  the 

other results are relatively low. We list these two values separately for analysis.

From the tables(Table 10, 11), we can get some simple conclusions. Firstly, the reason for large 

MSEModel 1 is that one of  the walls with a longer length has a larger prediction error. So first 

we can know the large prediction error occurs in the walls with a longer length. But at the 

same time,  the walls with a longer length in the room with one or two windows still show high 

The corresponding data for MSEModel 1 equal to 22.56:

The corresponding data for MSEModel 1 equal to 17.81:

Table 9. The Results of  MSEModel 1 (drawn by the author)

Table 10. The Corresponding Data (drawn by the author)

Table 11. The Corresponding Data (drawn by the author)

The Results of  MSEModel 1

0.04 0.67 0.01 0.54 0.04 22.56 17.81 1.02 1.44 0.08 1.74
1.00 0.19 0.03 3.24 0.92 0.42 0.00 1.25 0.00 1.30 0.67
0.45 0.02 1.04 0.03 0.12 0.46 6.40 0.03 0.00 6.35 0.09
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4 1.2 1.2 7.2 6.6 2.4 4.8 1.8 1.2 3 9.6 4.85
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5.1 1.2 1.2 11.6 7.8 4.2 2 1.8 1.2 3 10.80 6.58
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accurary. Based on the the informations, we can draw a basic conclusion that larger errors tend 

to occur in rooms with more windows and larger walls. However, further research is needed to 

understand the cause of  errors, which will be a follow-up research issue in this direction. 

And the MSEModel 2 is calculated by first computing the squared difference between the predicted 

and simulated sizes of  each window within a room, then summing these values for all windows 

in the room. Finally, the average of  these sums across all rooms is calculated(Table 12).

From the table above, it can be observed that rooms with larger errors in MSEModel 1 also tend to 

have larger errors in MSEModel 2, although the errors in MSEModel 2 are generally lower than those in 

MSEModel 1.

 

In addition, although some MSE values increased after optimization by Model 2 compared to 

the results from Model 1, the overall MSE of  MSEModel 2 is still lower than that of  MSEModel 1. This 

indicates that Model 2, along with the custom rules, contributes to improving the accuracy of  

the final results.

 

The data of  the rooms whose errors increased after being optimized by Model 2 have been 

collected for further study. These cases may involve more complex issues, which will not be 

further elaborated on in this research.

3.3.4 Building an Application Platform

Our application platform consists of  Colab platform and Grasshopper platform. First, the floor 

plan image will be input into the Colab platform and processed into the corresponding Json file. 

It should be noted that if  we want to control the number and direction of  the windows in the 

room later, we need to process the corresponding Json file in this step. Specifically, in the "ed_

windows" list data, delete the data representing the corresponding wall. After that, the new 

Json will be input into the window prediction program for prediction. After the prediction is 

completed, the result will be converted into window coordinate data (fl_windows) similar to "ed_

windows", and then a new Json file will be generated.

After obtaining the new Json data, we will import it into the Grasshopper program developed 

previously, read "edges" and "fl_windows", and generate the corresponding 3D building floor 

plan block with windows(Figure 19).

Table 12. The Results of  MSEModel 2 (drawn by the author)

The Results of  MSEModel 2

0.00 1.44 0.00 3.60 0.00 18.00 13.32 0.00 1.44 0.08 9.00
6.12 0.36 0.72 3.24 0.36 0.36 0.00 1.44 0.00 0.72 0.36
0.36 0.00 1.44 0.00 0.36 1.44 0.00 0.00 0.00 5.76 0.00
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Figure 19. The Architecture of  the Application Platform(drawn by the author)

42Part lll Research Methods



Part IV Future Applications, Conclusion and Limitations

4.1 Future Applications

4.1.1 Early Application in Apartment Floor Plan Design

The window size prediction program we developed allows users to input room feature 

information and obtain the optimal window configuration that meets daylighting requirements 

for the room(Figure 20). This capability enables designers to rapidly determine the most suitable 

window configuration for each room during the early stages of  apartment floor plan design.  

There are two main functions. First, it can immediately observe whether the window size of  the 

building plane meets the requirements. If  not, the direction and size of  the window opening in 

the room can be adjusted in advance. 

Second, it can control the number of  windows. Different users may have different requirements 

for the number of  windows. The prediction program can predict the optimal size of  the windows 

under the corresponding number of  windows while controlling the number of  windows.

Figure 20. Early Application in Apartment Floor Plan Design (drawn by the author)
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4.1.2 Integration with Automated Building Layout Generation Models

The final trained window size predictor program can be integrated with the automatic building 

layout generation model(Figure 21). Since our dataset is the same as the dataset used by 

the House-GAN++ model, the predictor is highly compatible with House-GAN++. With 

this integration, we can parse the building layout generated by House-GAN++, extract the 

necessary building layout information, and input it into the window size predictor to obtain the 

window configuration optimized for daylighting performance based on the given layout.

Compared with the previous output, the layout generated by this integration contains the 

complete window configuration, and at the same time, we can control the number of  generated 

windows by controlling the number of  input data, making it more suitable for practical 

application in floor plan design. Building layouts with optimized window configurations 

also enable architects to evaluate their daylighting performance at the early stage of  design. 

Subsequent adjustments and optimizations to the layout can take into account both building 

performance and aesthetic requirements, thereby promoting more informed design decisions.

Figure 21. Integration with Automated Building Layout Generation Models 

(drawn by the author)
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4.1.3 Combined With Prefabricated Building Design

1. Generate spatial relationships based 

on user ideas.

2. Generate multiple plan plans and 

select the most satisfactory one.

Figure 22. Combined With Prefabricated Building Design (drawn by the author)
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3. Modularize the final 

building plan.

4. Using prediction programs to generate 

optimal window configurations.

Figure 22. Combined With Prefabricated Building Design (drawn by the author)
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Figure 23. Prefabricated Community (drawn by the author)



49 Part IV Future Applications, Conclusion and Limitations

Figure 24. Community Life Scene 1 (drawn by the author)
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Figure 25. Community Life Scene 2 (drawn by the author)



4.2 Conclusion

In summary, this research tackles a critical gap in automated building layout generation models 

by addressing the lack of  window configurations, which are essential for achieving optimal 

daylighting performance. This goal is achieved by building a prediction program with multiple 

models and custom rules combined. It addresses the problem that a single prediction model 

cannot predict complex building floor plan window configurations with a limited data set.

There are two key innovations in this study, one is the collection of  datasets and the other is the 

prediction procedure built by multiple prediction models and custom rules. In terms of  dataset 

collection, the key innovation lies in converting raw graphical data into textual information, 

then visualising it in grasshopper software, and finally combining it with light simulation 

software, multi-objective optimisation algorithms and custom rules to quickly generate accurate 

window configuration datasets.

In addition, this study highlights the limitations of  using a single deep learning model to predict 

window sizes for small and complex datasets. We significantly improve accuracy by adopting an 

innovative approach that combines custom rules and multiple prediction models. This approach 

is computationally efficient while also addressing the challenges posed by unbalanced datasets 

and complex indoor environments.

Finally, the results of  our research can be applied to a variety of  fields, including architecture. 

It can be used to suggest window configurations at the beginning of  a building's floor plan 

design, which can be continuously adapted to the building's floor plan. It can also In addition, 

by combining it with an artificial intelligence model like HouseGan++, it can quickly provide 

architects with complete building floor plans and also allow home users to build their own floor 

plans according to their own intentions. In the smart home sector, it can also be combined with 

smart furniture such as smart curtains.

4.3 Limitations 

Although windows were added to the original building layout and the lighting effect of  these 

windows was verified, the layout itself  did not change significantly. In addition, in our study, we 

only considered the lighting factor and selectively ignored the building physics factors such as 

energy and ventilation. In addition, for some users, the optimal lighting window configuration 

may not meet their personal needs. For example, some residents may prefer larger windows in a 

specific direction for landscape or environmental considerations. Therefore, the optimal window 

configuration that meets the lighting requirements may not be so important to them.

4.3.1 Limited Physical Building Considerations

As we said before, defining the optimal configuration of  windows in a building plan is complex, 

and it includes factors such as lighting, ventilation, and energy. But in our study, we mainly 
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focus on generating the optimal window configuration in a building layout based on lighting 

considerations.

But we have shown that we can collect new datasets through multi-objective optimization and 

use these datasets to train new deep learning models. In future research, we can incorporate 

more building physics elements into the multi-objective optimization process to obtain 

new datasets that meet more needs. For example, we can combine energy simulation, wind 

environment factors, and combine these factors to optimize the functional modules of  the 

building layout.

4.3.2 Regional Limitations of  the Program

Since the location of  the daylight simulation was chosen to be Turin, Italy, the procedure is 

subject to regional restrictions. This means that the simulation data is only applicable to areas 

with similar solar orientation and climatic conditions to Turin. Likewise, the prediction model 

trained based on this dataset is subject to the same restrictions. Therefore, the collected dataset 

and the final window size prediction procedure are region-specific and may not be directly 

applicable to areas with large differences in environmental and climatic conditions.

4.3.3 Daylighting Data in the Collected Dataset Is Based on Ideal Conditions

The prediction program can predict the optimal window size based on optimal lighting balance. 

However, in the process of  collecting data using the lighting software, we found that the ASE 

value often exceeded 20%, which is an unacceptable threshold. The main reasons for this result 

are as follows:

1. Maximum window height assumption: The window height is assumed to be equal to the floor 

height of  the building. This results in a larger window area than in the actual situation, which 

increases the amount of  solar radiation entering the room.

2. Ideal surrounding environment: In this study, the test environment for the building layout is 

assumed to be in an ideal situation with no shading by surrounding buildings. This eliminates 

the influence of  shading by neighboring buildings and further increases the amount of  solar 

radiation.

3. Lack of  shading devices: The simulated test room does not have shading devices such as 

overhangs or curtains. Therefore, the amount of  solar radiation is higher than in reality.

Due to these factors, the ASE values ​​in the dataset tend to be overestimated. Therefore, if  

the predictive model tries to limit the ASE value to determine the optimal window size, the 

accuracy of  the results may decrease and not fully reflect the real-world situation.
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