‘j’ %?g \{i B FONDAZIONE W
/ ~n v . .
v A A v Politecnico - -
i di Torino 8 o
W 1859 l:' AN o9 @
-\ Fo
S

POLITECNICO DI TORINO

Master Degree course in ICT For Smart Societies

Master Degree Thesis

Patient Indoor Positioning: Leveraging
Wearable Technology for Location
Awareness

Supervisors
Prof. Michela MEO
Prof. Guido PAGANA
Dott. Rafael FONTANA
Candidate
Simone TERRANOVA

AcCADEMIC YEAR 2024-2025

Acknowledgements

I would like to express my sincere gratitude to all those who have contributed to the
completion of this Master’s thesis. Their support, guidance, and encouragement have
been invaluable throughout this academic journey.

First and foremost, I extend my deepest appreciation to my supervisors, for their in-
sightful guidance, unwavering support, and profound knowledge. Their expertise and
meticulous feedback were instrumental in shaping this research and overcoming numer-
ous challenges. This thesis would not have been possible without their dedication and
mentorship.

My heartfelt thanks go to my family and friends for their endless encouragement, patience,
and understanding. Their belief in me has been a constant source of motivation.
Finally, I would like to acknowledge LINKS Foundation for their support and assistance
during the research process. Their contributions, whether direct or indirect, have been
greatly appreciated.

Abstract

The accurate determination of the position of individuals and objects in indoor envi-
ronments represents a significant challenge, given the ineffectiveness of traditional Global
Navigation Satellite Systems (GNSS) in such contexts. This thesis addresses this problem
by designing, implementing, and experimentally evaluating an indoor positioning system
(IPS) based on Bluetooth Low Energy (BLE) technology, ESP32 microcontrollers, and
wearable tags. The main objective is to provide a reliable, precise, and energy-efficient
solution for real-time tracking, with particular attention to applications in healthcare.
The developed system adopts a hierarchical architecture that integrates wearable BLE
tags (specifically Global Tag Disk Beacons) as mobile transmitters and a network of
ESP32 microcontrollers as intelligent scanning/receiving stations. Communication is
managed via MQTT protocols for data exchange between ESP32s and the backend, Web-
Socket for real-time updates to the frontend, and RESTful APIs for resource management.
Positioning algorithms are based on RSSI-weighted multilateration techniques, with the
integration of advanced filtering techniques such as Exponential Moving Average (EMA)
and Kalman filter to improve the accuracy and robustness of the system in dynamic
environments.

The research methodology included a thorough literature review, system design, firmware
development, software development and a rigorous experimental validation phase con-
ducted in a controlled 90 m? domestic environment. The results demonstrated that the
system achieved room-level positioning accuracy with an average error of 1.32 meters.
The system showed exceptional energy efficiency, allowing BLE tags a battery life of over
six months with a 1000 ms advertising interval and remarkable operational stability, with
zero crashes recorded during two weeks of continuous testing. The average zone transition
latency was 25 seconds, with an 8% false alarm rate.

This research contributes a practical and low-cost indoor positioning solution that ef-
fectively balances the requirements of accuracy, energy efficiency, and implementation
complexity. Although the system has some limitations in highly mobile scenarios and a
sensitivity to electromagnetic interference, its robustness and energy efficiency make it
particularly suitable for continuous monitoring applications. Future directions include
the integration of inertial sensors to further reduce positioning error, the development of
adaptive propagation models based on machine learning, and the exploration of hybrid
architectures for greater scalability and precision.

II

Contents

List of Figures
List of Tables

1 Introduction
1.1 Context and Motivation,
1.2 Research Objectives
1.3 Research Methodology
1.4 Thesis Structure

2 State of the Art in Indoor Positioning Systems
2.1 Overview of Indoor Positioning Technologies
2.2 Indoor Positioning Techniques
2.2.1 Multilateration L oL
2.2.2 Triangulation
2.2.3 Fingerprinting Lo
2.2.4 Proximity
2.2.5 Hybrid and Advanced Techniques
2.3 Evaluation Metrics for Indoor Positioning Systems
2.3.1 Accuracy and Precision L.
2.3.2 Latency and Update Rate
2.3.3 Availability and Reliability
2.3.4 Scalability
2.3.5 Emergy Efficiency oo o oo
2.3.6 Costs
2.3.7 Privacy and Security oo
2.4 Applications of Indoor Positioning Systems
2.4.1 Applications in the Healthcare Sector
2.5 Current Challenges and Limitations

3 Bluetooth Low Energy Technologies for Indoor Positioning
3.1 Fundamentals of Bluetooth Low Energy
3.1.1 Introduction to Bluetooth Low Energy
3.1.2 BLE Architecture and Technical Specifications
3.1.3 Evolution of Bluetooth Standard for Positioning

111

Tt W N = =

O o o O

3.1.4 Key Features for Indoor Positioning 28

3.2 BLE Beacon Protocols 30
3.2.1 iBeacon Protocol 30
3.2.2 Eddystone Protocol 30
3.2.3 AltBeacon Protocol 31
3.2.4 Protocol Comparison 31

3.3 BLE-based Distance Estimation Methods 31
3.3.1 Introduction 31
3.3.2 RSSI-based Distance Estimation 32
3.3.3 Accuracy Improvement Techniques 32
3.3.4 Direction Finding Methods 32
3.3.5 Method Comparison 33

3.4 Positioning Algorithms for BLE Systems 33
3.4.1 Algorithm Selection and Performance Analysis 33
3.4.2 Implementation Considerations 34

ESP32 as a Station for Positioning Systems 35

4.1 ESP32 Architecture and Capabilities 35
4.1.1 Platform Overview 35
4.1.2 Hardware and Software Architecture 36

4.2 ESP32 BLE Scanner Implementation 37
4.2.1 Software Implementation 37

Wearable BLE Tags: Technology, Integration, and Considerations 38

5.1 Overview of Wearable BLE Tags 38
5.1.1 Classification and Applications 38

5.2 Design and Components 39
5.2.1 Hardware Architecture 39

5.3 Global Tag Disk Beacon Analysis 39
5.3.1 Commercial Comparison, 40

5.4 Privacy and Security Considerations 40
5.4.1 Identified Challenges 40
5.4.2 Comprehensive Mitigation Framework 40
5.4.3 Regulatory Compliance and Implementation Standards 41

Architecture and Implementation of the IoT System for Indoor Posi-

tioning 42
6.1 Chapter Objectives 42
6.1.1 System Requirements and Design Principles 43
6.2 System Architecture Overview 44
6.3 Core Technologies and Communication Protocols 45
6.3.1 MQTT Implementation for IoT Communication 45
6.3.2 WebSocket Implementation for Real-Time Updates 45
6.3.3 RESTful API Architecture 46
6.4 ESP32 Devices: The Intelligent Scanner Stations 47

v

6.4.1 Device Initialization and Network Connectivity 47

6.4.2 MQTT Communication Framework 47
6.4.3 BLE Scanning and Tag Detection. 49
6.4.4 Future Implementation Considerations 49
6.5 Backend Architecture: The Central Nervous System 50
6.5.1 Typical Data Workflow 50
6.5.2 Positioning Algorithm Pipeline 50
6.6 Data Persistence and Management 54
6.6.1 Data Model and Schema Design 54
6.6.2 Database Operations and Transaction Management 55
6.7 Frontend Architecture and User Experience 56
6.7.1 Frontend Architecture and Implementation 56
6.7.2 Real-time Communication and Performance Optimization 56
6.7.3 User Interface Design and Accessibility 57
6.7.4 Frontend Feature Showcase 57
6.8 Security Framework and Implementation 73
6.9 Deployment Strategy and Containerization 74
System Installation and Deployment 75
7.1 Pre-Installation Planning and Site Assessment 75
7.1.1 Environmental Analysis Methodology 75
7.1.2 Technical Specifications and Requirements 76
7.1.3 Site Mapping and Device Positioning Strategy 76
7.2 Physical Installation and Hardware Configuration 76
7.2.1 Component Preparation and Pre-Configuration 76
7.2.2 Physical Deployment and Installation 76
7.2.3 BLE Tag Configuration and Network Integration 77
7.3 System Configuration and Calibration 77
7.3.1 Software Initialization and Development Environment 77
7.3.2 System Calibration and Parameter Optimization 7
7.4 System Validation and Performance Assessment 78
7.4.1 Coverage Validation and Signal Analysis 78
7.4.2 Accuracy Testing and System Performance 78
7.4.3 Frontend Integration and User Interface 78
7.5 Maintenance and Scalability Considerations 78
7.5.1 Monitoring and Maintenance Strategy 78
7.5.2 Hospital Environment Scaling Requirements 79
System Testing and Validation 80
8.1 Testing Overview and Methodology 80
8.2 Data Acquisition Tests oo 80
8.2.1 Test Environment Setup, 80
8.2.2 Maximum Communication Range Tests 81
8.2.3 System Availability Assessment 81
8.3 Data Processing Tests L L o 82

8.3.1 Algorithm Accuracy Testing 82

8.3.2 Precision Analysis 82
8.3.3 System Latency Analysis 83
8.3.4 System Performance Monitoring 84
8.3.5 System Stability Assessment, 84
8.3.6 Power Consumption and Energy Efficiency 85

8.4 Data Storage Tests 86
8.4.1 Storage Efficiency Analysis 86
8.4.2 API Functionality Verification 86

8.5 Data Visualization Tests, 87
8.5.1 User Interface Compatibility 87
8.5.2 User Experience Evaluation 87

8.6 Cost Analysis 88
8.7 Privacy and Security Assessment, 89
8.8 Test Results Summary L Lo 90
8.8.1 System Requirements Compliance 90
8.8.2 Current Limitations and Constraints 90

9 Conclusions and Future Developments 91
9.1 Conclusions e e 91
9.2 Future Development 92
9.2.1 Technical Improvements 92
9.2.2 Research Directions, 93

Bibliography

A Pseudocode

Al
A2
A3
A4
A5
A6
A7
A8
A9

ESP32 Base Station (IoT Layer)
Backend Service (Positioning Engine)
RSSI Processing and Filtering Algorithms
Multilateration Algorithm
Room Detection and Floor Mapping Algorithm
Timeline Events and Deduplication
Database Service API
Frontend WebSocket Client
Interactive Map Visualization

A.10 Analytics Data Processing
A.11 System Monitoring and Health Check

VI

List of Figures

1.1
1.2

2.1
2.2
2.3
24

4.1
4.2

5.1
5.2

6.1

6.2
6.3
6.4
6.5

6.6
6.7
6.8
6.9

6.10

6.11

Outdoor positioning L 1
Indoor positioning L L oo

Multilateration technique with 3 Stations 9
Triangulation technique oL, 10
Fingerprinting technique o o Lo 12
Proximity technique o 13
ESP32 microcontroller Lo 35
ESP32 Function Block Diagram 36
BLE Tag Function Block Diagram 39
Global Tag Disk Beacon, 39

Comprehensive architectural diagram of the IoT indoor positioning system
showing data flow between sensing layer, communication infrastructure,

backend processing, and presentation components 44
Flowchart of the firmware logic of the ESP32 47
Flowchart of the data processing pipeline in the backend 50
SQLite database schema 54
Authentication interfaces showing registration, login, and password recov-

ery forms with security features and user-friendly design.. 58
Main dashboard of the indoor positioning system showing real-time status

of room occupancy, active tags, monitoring stations, and recent events. . . 60
Detailed Indoor positioning map visualization. 62
Timeline interface for historical monitoring of patient movements. 64

Occupancy analysis dashboard showing aggregated statistics and graphical
visualizations. L. 65
Movement analysis dashboard visualizing temporal patterns of patient
movement. Includes a timeline of movement events by hour of day, analy-
sis of most active areas, peak activity hours, and average duration of stay
I TOOMNS. . v v v v v e e e e e e e e e e e e 66
Technical analysis dashboard showing system operational status and per-
formance metrics. 67

VII

6.12 BLE tag management interface that enables administration of tracking
devices.
6.13 ESP32 station management interface showing operational status and con-
figuration of each scanning station.
6.14 System configuration interface that allows management of connectivity and
communication settings.o
6.15 User profile management interface that allows modification of personal
information and security settings. oL
6.16 Support Assistant and Feedback interfaces.
6.17 Docker container deployment architecture showing service orchestration,
networking, and persistent storage configuration.

8.1 System Response Time Distribution
8.2 ESP32 Power and Current Consumption
8.3 BLE Tag Battery Life vs Advertising Interval
8.4 Average Response Time for each CRUD Operation (milliseconds)
8.5 UI compatibility on different devices.

VIII

70

List of Tables

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4

5.1
5.2

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Comparison of Common RF-Based Indoor Positioning Technologies 7
Comparison of Indoor Positioning Techniques 8
Advantages and Limitations of Proximity Positioning 14
Main Evaluation Metrics for Indoor Positioning Systems (IPS) 17
Summary of Applications of Indoor Positioning Systems 23
Main Challenges and Limitations of Indoor Positioning Systems (IPS) . . 25
Evolution of positioning capabilities in different Bluetooth standard versions 28
Comparison of BLE beacon protocols. 31
Comparison of BLE-based distance estimation methods 33
BLE positioning algorithm comparison 34
Classification of wearable BLE tags 38
Comparison of commercial wearable BLE tags 40
System availability assessment results 81
Comprehensive positioning accuracy results 82
System precision analysis results L. 82
Processing pipeline performance analysis 84
System cost analysis 88
Privacy and security assessment L Lo Lo 89
Requirements compliance summary, 90

IX

List of Acronyms

AFH Adaptive Frequency Hopping.
AoA Angle of Arrival.
AoD Angle of Departure.

API Application Programming Interface.

BLE Bluetooth Low Energy.

BR/EDR Basic Rate/Enhanced Data Rate.

CAN Controller Area Network.

CNN Convolutional Neural Network.
CORS Cross-Origin Resource Sharing.
CPU Central Processing Unit.

CR2032 Lithium Coin Cell Battery type.
CRC Cyclic Redundancy Check.

CRUD Create, Read, Update, Delete.

CSS Cascading Style Sheets.
DoS Denial of Service.

EID Ephemeral ID.

EKF Extended Kalman Filter.
EMA Exponential Moving Average.
ERD Entity-Relationship Diagram.

ESP-IDF Espressif IoT Development Framework.

XI

ESP32 A specific System-on-Chip microcontroller.

GDPR General Data Protection Regulation.
GNSS Global Navigation Satellite System.
GPIO General-Purpose Input/Output.

GPS Global Positioning System.

HIPAA Health Insurance Portability and Accountability Act.
HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

Hz Hertz.

I12C Inter-Integrated Circuit.

I2S Inter-IC Sound.

IDE Integrated Development Environment.

IEC International Electrotechnical Commission.
IEEE Institute of Electrical and Electronics Engineers.
IMU Inertial Measurement Unit.

IoT Internet of Things.

IP Ingress Protection.

IPS Indoor Positioning System.

ISM Industrial, Scientific, and Medical radio band.

JS JavaScript.
JSON JavaScript Object Notation.

JWT JSON Web Token.

k-NN k-Nearest Neighbors.

KB Kilobyte.

LBS Location-Based Services.

XII

LED Light Emitting Diode.

LiFi Light Fidelity.

MAC Media Access Control address.

MB Megabyte.

Mbps Megabits per second.

MCU Microcontroller Unit.

MPE Mean Positioning Error.

MQTT Message Queuing Telemetry Transport.
MQTTS MQTT Secure.

MTBF Mean Time Between Failures.

NFC Near Field Communication.
NLOS Non-Line-of-Sight.

NoSQL Not only SQL.

ORM Object-Relational Mapper.

OTA Over-The-Air.
PCB Printed Circuit Board.
QoS Quality of Service.

RAM Random Access Memory.

RBAC Role-Based Access Control.

RDBMS Relational Database Management System.
REST Representational State Transfer.

RF Radio Frequency.

RFID Radio-Frequency Identification.

RMSE Root Mean Square Error.

RNN Recurrent Neural Network.

ROI Return on Investment.

XIII

ROM Read-Only Memory.
RSSI Received Signal Strength Indicator.
RTC Real-Time Clock.

RTT Round-Trip Time.

SDIO Secure Digital Input Output.
SDK Software Development Kit.
SLAM Simultaneous Localization and Mapping.
SoC System-on-Chip.

SPA Single Page Application.

SPI Serial Peripheral Interface.

SQL Structured Query Language.
SQLite A specific SQL database engine.
SRAM Static Random-Access Memory.
SSRN Social Science Research Network.
SVG Scalable Vector Graphics.

SVM Support Vector Machine.

TCO Total Cost of Ownership.
TCP Transmission Control Protocol.
TDoA Time Difference of Arrival.
TLM Telemetry.

TLS Transport Layer Security.

ToA Time of Arrival.

TX Transmit/Transmission.

UART Universal Asynchronous Receiver-Transmitter.
UI User Interface.

UID Unique Identifier.

ULP Ultra-Low Power.

XIV

UPS Uninterruptible Power Supply.
URL Uniform Resource Locator.

USB Universal Serial Bus.

UUID Universally Unique Identifier.

UWB Ultra-Wideband.

UX User Experience.
VLC Visible Light Communication.

Wi-Fi Wireless Fidelity.
WSS WebSockets Secure.

XV

Chapter 1

Introduction

1.1 Context and Motivation

In the contemporary digital era, the ability to accurately determine the position of individ-
uals and objects has assumed fundamental importance in numerous application contexts.
While Global Navigation Satellite Systems (GNSS), such as the Global Positioning Sys-
tem (GPS), have revolutionized positioning in outdoor environments (Figure 1.1), their
effectiveness is significantly compromised in indoor settings (Figure 1.2) due to signal at-
tenuation through building structures and the presence of electromagnetic interference [1].
This inherent limitation has motivated the development of alternative technologies specif-
ically designed for indoor positioning, where individuals spend an average of 80-90% of
their daily time.

% W % W W

Figure 1.1: Outdoor positioning Figure 1.2: Indoor positioning

The rapid expansion of Location-Based Services (LBS) has underscored the critical need
for reliable and accurate indoor positioning technologies. These services, which include
indoor navigation, emergency response, resource tracking, and industrial process opti-
mization, depend heavily on precise localization data to deliver context-aware functional-
ities to users [2]. In industrial environments shaped by the principles of Industry 4.0, the

Introduction

ability to monitor the real-time location of assets, equipment, and personnel is fundamen-
tal. Such spatial awareness enables the coordination of complex operations, enhancing
overall efficiency, operational flexibility, and inter-system collaboration—key factors in
achieving the objectives of mass customization.

The recent proliferation of Internet of Things (IoT) devices has created a ubiquitous
connectivity fabric, enabling scalable Indoor Positioning Systems (IPS). Among the wire-
less radios available, Bluetooth Low Energy (BLE) stands out for its low power draw,
adequate indoor range, and native support in virtually all smartphones. These character-
istics make BLE the technology of choice for continuous user and asset tracking without
frequent battery replacements.

At the heart of many IoT endpoints lies the ESP32 microcontroller, which integrates
both BLE and Wi-Fi radios, offers sufficient processing power for real-time localization
algorithms, and remains cost-effective. Combined with compact, wearable BLE tags (for
example, bracelet-style beacons), the ESP32 device can deliver a seamless user experience:
devices stay with the user at all times, report position continuously, and survive for days
on a single charge. [3].

This thesis addresses that gap by designing, implementing, and experimentally evaluating
a fully integrated BLE-based IPS focusing on:

e Precision and Robustness: Achieving sub-meter accuracy in challenging indoor
layouts with obstacles and multipath.

e Energy Efficiency: Optimizing firmware and hardware choices to extend battery
life to multiple days under continuous use.

e Real-World Validation: Deploying the system in an apartment setting to mea-
sure performance under realistic conditions.

Through a rigorous methodology that encompasses literature review, system design,
firmware development, and field trials, this thesis sets the stage for broader adoption
of wearable BLE-based tracking in domains from healthcare to smart manufacturing and
emergency management.

1.2 Research Objectives

This research aims to design, implement, and evaluate a robust indoor positioning sys-
tem using Bluetooth Low Energy (BLE), ESP32 microcontrollers, and wearable tags.
Specifically, the objectives are:

1. Choose wearable BLE tags: Bracelet-style BLE devices must ensure comfort,
signal stability, and long battery life. These wearables must be robust and capable of
transmitting consistent signals suitable for precise localization. Studies such as [4]
highlight the value of integrating BLE into wearable form factors for continuous
user tracking and acceptance.

2. Develop ESP32-based receiver infrastructure: Build a network of ESP32
nodes capable of detecting and processing BLE signals. The ESP32 is selected for

1.3 — Research Methodology

its built-in BLE and Wi-Fi support, and cost-effectiveness—qualities demonstrated
in recent works like [5].

3. Implement and optimize positioning algorithms: Design localization algo-
rithms based on RSSI-weighted multilateration, with integration of adaptive filters
and potential application of machine learning techniques. This will enhance posi-
tioning accuracy and robustness in dynamic indoor conditions, as also advocated

by [1].

4. Evaluate system accuracy and robustness: Conduct tests in indoor environ-
ments, analyzing performance using standardized metrics such as mean error, pre-
cision, and latency. These tests will define the operational boundaries and highlight
areas for refinement.

5. Benchmark against alternative technologies: Compare the BLE-based sys-
tem with existing solutions including Wi-Fi, UWB, RFID, and inertial tracking.
This comparison will provide a comprehensive perspective on trade-offs, helping to
position the developed system within the broader technological landscape [1].

6. Assess real-world applicability: Explore implementation in scenarios like pa-
tient monitoring, considering practical aspects such as system scalability, integra-
tion with existing infrastructure, data privacy and security concerns.

Through these objectives, this thesis contributes to the advancement of user-centric,
wearable indoor positioning systems, offering a viable solution for real-time tracking with
high precision, minimal energy consumption, and practical deployability.

1.3 Research Methodology

To achieve the stated research objectives, a structured and iterative methodology has
been adopted. This approach combines theoretical analysis, engineering design, proto-
typing, and experimental validation, ensuring scientific rigor and practical relevance in
the development of an indoor positioning system based on BLE technology, ESP32 mi-
crocontrollers, and wearable devices.

The methodological framework is organized into four interdependent macro-phases, each
defined by specific objectives, activities, and expected outcomes. This structure supports
a systematic approach to the inherent complexity of indoor positioning systems and
guarantees the reproducibility and traceability of the research process.

Phase 1: Literature Review and Technology Mapping

The first phase involves a comprehensive review of scientific literature, technical doc-
umentation, and industrial solutions related to indoor positioning. Particular focus is
placed on recent works (2018-2024) concerning BLE communication, ESP32 devices, and
wearable IoT devices. This review is organized along three thematic axes: (i) technolo-
gies and algorithms for indoor positioning, (ii) applications of BLE and ESP32 in smart
environments, and (iii) wearable system design for location tracking.

Introduction

This phase results in a structured mapping of existing approaches, identification of re-
search gaps, and the definition of benchmarking criteria for evaluating the proposed
system. As noted by [1], understanding the variety of positioning techniques and their
suitability in complex indoor environments is essential for developing robust and innova-
tive systems.

Phase 2: System Design and Architectural Definition

Building on the findings of the literature review, this phase focuses on the conceptual
and detailed design of the indoor positioning system. A user-centered design approach
guides the definition of functional and non-functional requirements. The overall system
architecture is developed, detailing both the wearable tags and the ESP32-based receiver
infrastructure, considering factors such as spatial coverage, connectivity, and energy effi-
ciency.

Particular attention is given to the selection and adaptation of positioning algorithms,
balancing accuracy, computational complexity, and robustness. Inspired by recent studies
on wearable BLE integration [4], user acceptability is also incorporated into design con-
siderations. Outputs of this phase include technical specifications, system architecture
diagrams, and algorithm flowcharts.

Phase 3: Prototype Development and Integration

This phase involves the incremental implementation of the system, allowing for early
validation and iterative refinement of design choices. Development covers both hardware
(ESP32 receivers) and software components, including communication modules, data
processing pipelines, and user interfaces.

Following best practices in software engineering, the implementation emphasizes modu-
larity, scalability, and maintainability. As highlighted by [2], integrating hardware and
software components is a critical challenge in indoor positioning and requires a multidis-
ciplinary approach. The phase culminates in functional prototypes capable of real-time
indoor positioning and visualization.

Phase 4: Experimental Evaluation and Performance Assessment

The final phase consists of a structured evaluation of the developed system. Experiments
are designed using rigorous protocols and focus on key performance indicators such as
accuracy, precision, latency, robustness, energy efficiency, and scalability. Comparative
analysis with existing systems further contextualizes the results.

Following guidelines from recent work on ESP32-based positioning [5], evaluation employs
statistical methods and includes both quantitative metrics and qualitative user feedback.
This phase validates the effectiveness and applicability of the proposed solution.

Cross-cutting Considerations

Throughout all phases, ethical research principles are applied, with particular attention to
user privacy, data protection, and transparency in result dissemination. As emphasized

1.4 — Thesis Structure

by [1], these aspects are especially critical in systems involving wearable devices and
location tracking.

1.4 Thesis Structure

This thesis comprises nine chapters and accompanying appendices, organized into three
parts:

e Part I: Foundations

— Chapter 1: Introduction (context, objectives, methodology)
— Chapter 2: State-of-the-Art (survey of IPS technologies)

e Part II: System Development

Chapter 3: BLE Technologies (protocols, positioning techniques)
— Chapter 4: ESP32 Platform (hardware, software frameworks)

Chapter 5: Wearable BLE Tags (design, ergonomics, firmware)

Chapter 6: System Architecture & Algorithms (integration, optimizations)
e Part III: Validation and Conclusions

— Chapter 7: Implementation & Testing (prototyping, test protocols)

— Chapter 8: Results & Discussion (performance analysis, comparative evalua-
tion)

— Chapter 9: Conclusions & Future Work (contributions, limitations, outlook)

Appendix A provides the pseudocode of this thesis.

Chapter 2

State of the Art in Indoor
Positioning Systems

2.1 Overview of Indoor Positioning Technologies

Over the past decade, IPS have undergone significant evolution, catalyzed by the growing
demand for location-based services in environments where traditional satellite navigation
technologies are ineffective. As highlighted in Chapter 1, the need to accurately determine
the position of people and objects in indoor contexts represents a complex technological
challenge, which has stimulated the development of multiple approaches and solutions.
This chapter aims to critically analyze the state of the art in the field of indoor position-
ing systems, examining the main available technologies, the most common positioning
techniques, commonly adopted evaluation metrics, emerging applications, and still-open
challenges.

Research in the field of indoor positioning systems is characterized by a notable hetero-
geneity of approaches, each with specific strengths and limitations. This diversity reflects
the intrinsic complexity of indoor environments, characterized by obstacles, electromag-
netic interference, variations in architectural structure, and dynamics of space utilization
that significantly influence signal propagation and, consequently, the accuracy of position-
ing systems [1]. Unlike outdoor positioning, where GPS represents a universally accepted
standard, the indoor context requires more articulated and often customized solutions
based on specific application needs.

Indoor positioning technologies can be classified according to various criteria, includ-
ing the type of signal used, the required infrastructure, the achievable accuracy, power
consumption, and implementation costs. A fundamental distinction concerns the use of
radio frequency (RF) based technologies versus non-RF ones. The former include Wi-Fi,
Bluetooth Low Energy (BLE), Ultra-Wideband (UWB), Radio-Frequency Identification
(RFID), and cellular network-based systems, while the latter comprise optical, ultrasonic,
magnetic, and inertial systems [2]. Each of these technologies has distinctive character-
istics that make it more or less suitable for specific application contexts. A comparison
of common RF-based indoor positioning technologies is presented in Table 2.1.

2.1 — Overview of Indoor Positioning Technologies

Table 2.1: Comparison of Common RF-Based Indoor Positioning Technologies

Technology Accuracy HW Cost Range Power Infra- NLOS
(m) (m) Con- structure Robust-
sumption ness
Wi-Fi 5-15 Medium 50-100 Medium Existing Good
BLE 1-8 Low 10-70 Very Low Dedicated Good
UWB 0.1-0.5 High 10-50 High Dedicated Excellent
RFID (Active) 3-30 Medium Up to 100 Medium Dedicated Good
(Tags (Tags)
High)
RFID (Passive) 0.5-5 Very Low Up to 10 N/A Dedicated Poor/Fair
(Tags) (Tags)

In recent years, the attention of the scientific and industrial community has particu-
larly focused on RF technologies, thanks to their ability to operate in Non-Line-of-Sight
(NLOS) conditions and the possibility of leveraging pre-existing communication infras-
tructures. Among these, Bluetooth Low Energy has gained particular relevance due to its
low power consumption, compatibility with most modern mobile devices, and the low cost
of the necessary hardware. Concurrently, technologies like Ultra-Wideband have opened
new perspectives in terms of localization accuracy, achieving accuracies in the order of
centimeters, albeit at higher implementation costs [6].

The choice of the most appropriate technology for an indoor positioning system depends
on multiple factors, including accuracy requirements, the operating environment, the
number of users or objects to be tracked, energy constraints, and the available budget. In
many cases, hybrid approaches that combine different technologies represent the optimal
solution, allowing for a balance between accuracy, cost, and implementation complexity.
As emphasized by [7], each technology presents specific advantages and limitations that
must be carefully evaluated in relation to the application context.

In addition to the choice of technology, a crucial aspect in the development of indoor
positioning systems concerns the algorithmic techniques used to determine the position.
These include approaches based on trilateration, triangulation, fingerprinting, and prox-
imity, each with specific characteristics in terms of accuracy, robustness, and computa-
tional complexity.

State of the Art in Indoor Positioning Systems

2.2 Indoor Positioning Techniques

Indoor positioning systems utilize various algorithmic techniques to determine the posi-
tion of objects or people within enclosed environments. These techniques, which form the
methodological core of IPS systems, can be classified into different categories based on the
mathematical and physical principles they rely on. The choice of the most appropriate
technique depends on multiple factors, including the hardware technology used, accu-
racy requirements, environmental characteristics, and computational constraints. This
section will analyze the main indoor positioning techniques, with particular attention to
their operating principles, advantages, limitations, and application areas. A summary
comparison of these techniques is provided in Table 2.2.

Table 2.2: Comparison of Indoor Positioning Techniques

Technique Principle Typical Complexity Infrastruc- Calibration NLOS

Accuracy ture Robust-
ness
Trilateration Distance Variable Medium Reference Minimal Fair
(e.g., 1- points
10m for
RSSI)
Triangulation Angles Variable High Directional Moderate Fair
(e.g., <lm Antennas
for AoA
with UW-
B/BLE
5.1)
Fingerprinting Signal Fin- 1-5m High Reference Extensive Good
gerprints (offfine), points
Medium
(online)
Proximity Vicinity Zone-level Low Beacons/ Minimal Variable
Readers

2.2 — Indoor Positioning Techniques

2.2.1 Multilateration

Multilateration is one of the most common positioning techniques and is based on mea-
suring the distance between the device to be localized and at least three reference points
with known coordinates [8]. Knowing these distances, the device’s position is determined
as the intersection point of at least three spheres (in three dimensions) or at least three
circles (in two dimensions), each centered at the reference point with a radius equal to
the measured distance.

ez, v2)

Figure 2.1: Multilateration technique with 3
Stations

In indoor positioning contexts based on wireless technologies, distance is typically esti-
mated through signal parameters such as the Received Signal Strength Indicator (RSSI),
Time of Arrival (ToA), or Time Difference of Arrival (TDoA). RSSI, in particular, is
widely used in systems based on Bluetooth Low Energy and Wi-Fi, where the received
signal strength is converted into a distance estimate through signal propagation models.
The mathematical foundation of trilateration, a multilateration technique utilizing three
positioning stations, can be formalized through a system of equations. Considering a two-
dimensional environment, if (x;,y;) represent the coordinates of reference point ¢ and d;
the estimated distance between this point and the device to be localized with coordinates
(x,y), the following system is obtained:

(z—z)?’+(y—y)?=d}
(x —x2)* + (y —y2)? = d3 (2.1)
(z —x3)* + (y —y3)> = d3

Solving this system provides the device’s coordinates. In three-dimensional environments,
a fourth equation and a fourth reference point are needed to determine the z coordinate
as well.

Despite its apparent conceptual simplicity, the practical implementation of trilateration
in indoor environments presents several challenges. The main one concerns the accuracy

State of the Art in Indoor Positioning Systems

of distance estimation, which can be compromised by phenomena such as signal reflec-
tions, diffractions, and attenuations due to obstacles, electromagnetic interference, and
environmental variations. As highlighted by [9], these factors can introduce significant
errors in position estimation, especially when using technologies like BLE, whose signal
is particularly sensitive to environmental conditions.

To mitigate these problems, several variations and optimizations of basic trilateration
have been proposed. These include the use of filtering algorithms such as the Kalman
filter or particle filter, which allow for the integration of successive measurements and
reduce the impact of noise, and the adoption of adaptive signal propagation models that
account for the specific characteristics of the environment [10]. Furthermore, integrating
data from inertial sensors or other sources can help improve the overall accuracy of the
System.

Trilateration finds application in numerous indoor positioning contexts, especially in com-
bination with technologies such as BLE, UWB, and Wi-Fi. Its relative implementation
simplicity and ability to provide continuous position estimates make it particularly suit-
able for applications requiring real-time tracking of moving people or objects.

2.2.2 Triangulation

Triangulation is a positioning technique that, unlike trilateration, is based on measuring
angles rather than distances. Specifically, the position of a device is determined by
measuring the Angle of Arrival (AoA) of the signal emitted by the device itself with
respect to two or more receivers with known positions [11].

//#_H\\
/e (Ry)

l\ m/f'
\\(XJ,YO// d @)

T @®

(X2, ¥2)

Figure 2.2: Triangulation technique

The mathematical principle behind triangulation can be illustrated by considering a two-
dimensional environment with two receivers positioned at points (z1,y1) and (z2,y2). If
f, and 67 represent the angles of arrival of the signal with respect to a reference direction,
the position (x,y) of the device can be determined as the intersection point of the two
lines originating from the receivers at the measured angles.

10

2.2 — Indoor Positioning Techniques

In mathematical terms, this translates to solving the following system of equations:

{y — g1 = tan(6s) - (z — 21)

y — y2 = tan(by) - (v — x2) (2.2)

In three-dimensional environments, triangulation requires measuring both the azimuth
and elevation of the signal, and at least three receivers to uniquely determine the position.
The measurement of the angle of arrival can be achieved through various techniques,
including the use of directional antenna arrays or measuring the phase difference of the
signal received by multiple antennas. These techniques require specialized hardware and
are generally more complex than measuring the signal strength used in RSSI-based tri-
lateration.

Triangulation potentially offers higher accuracy than trilateration under ideal conditions,
as angle measurement is less affected by signal attenuation due to distance. However, in
complex indoor environments, characterized by multiple reflections and multipath phe-
nomena, accurately determining the angle of arrival can be problematic. As highlighted
by [12], the presence of obstacles and reflective surfaces can cause significant distortions
in the apparent direction of signal arrival, compromising positioning accuracy.

Recent technological developments have led to the introduction of solutions that im-
prove the applicability of triangulation in indoor contexts. For example, Bluetooth 5.1
introduced native support for angle of arrival determination, enabling more efficient and
accurate implementations of triangulation in BLE-based systems [6]. Similarly, technolo-
gies like Ultra-Wideband offer advanced angular resolution capabilities due to their high
bandwidth.

Triangulation is applied in various indoor positioning contexts, especially in scenarios
where high accuracy is required and where the infrastructure can support the specialized
hardware needed for angle measurement. It is particularly effective in environments
with a direct Line-of-Sight (LoS) between transmitter and receiver, while its effectiveness
decreases in the presence of obstacles and multiple reflections.

11

State of the Art in Indoor Positioning Systems

2.2.3 Fingerprinting

Fingerprinting represents a radically different approach compared to geometric techniques
like trilateration and triangulation. Instead of relying on mathematical models to calcu-
late position, fingerprinting adopts an empirical approach based on recognizing charac-
teristic signal patterns at different locations in the environment [13].

= N
° L] 5 l'm(") Sm
RE_‘e"e"ce Estimated Access n™ RSS sample from Online RSS sample
Point (RP) Location Point (AP) the " AP at the " RP from the " AP)
o
o
3 AP3 1
A" o o AP ‘I’\ Dataset
[[}
L7/\ o --—1
- - . s11(1)s12(D)1sy3(1)s; ’
(5,1 ()52 ()ls,3 ()]s () HOLFIOSHOLHY)
- . =1
"RP ilp e
S .
@ ‘ .5 NG N
% o [o . . RP|
< Real v o AN) e :“’
BN Location - J\;‘ ": . N AP /vg Q)
S1 8y 83 Sy N (m)
. . o . ol N Fingerprints RPs
N \
D\ -
NN N
~~4 Trained _ | Training
“T.‘ APy APy i\ L M 2
° ° [\
o U @) .
% X
% x Axis

Figure 2.3: Fingerprinting technique

This technique is divided into two main phases: an offline calibration phase and an
online positioning phase. During the offline phase, a database of signal "fingerprints" is
created by collecting and recording signal characteristics (typically RSSI from multiple
base stations) at known points in the environment. This process, known as "site survey" or
"radio mapping," requires a considerable initial investment in terms of time and resources
but forms the basis for subsequent positioning.

In the online phase, real-time measured signal characteristics are compared with those
stored in the database, and the position is estimated by identifying the most similar
fingerprint or by interpolating between multiple nearby fingerprints. This comparison
can be performed using various techniques, from the simplest ones based on Euclidean
distance in the feature space, to more sophisticated methods using machine learning
algorithms such as k-nearest neighbors (k-NN), support vector machines (SVM), artificial
neural networks, or probabilistic algorithms like the Bayesian filter [14].

Fingerprinting offers several advantages over geometric techniques. Firstly, it does not
require explicit modeling of signal propagation, thus being more robust in complex envi-
ronments where phenomena like reflections, diffractions, and attenuations would render
theoretical models inaccurate. Secondly, it can exploit the peculiarities of the environ-
ment, such as interference and reflections, as distinctive elements that enrich the unique-
ness of the fingerprints, rather than considering them as disturbing factors.

On the other hand, fingerprinting also has significant limitations. The need for an exten-
sive calibration phase represents a significant challenge for its implementation in large-
scale environments or those subject to frequent changes. Furthermore, changes in the

12

2.2 — Indoor Positioning Techniques

environment (such as moving furniture, the variable presence of people, or structural mod-
ifications) can significantly alter signal characteristics, rendering the fingerprint database
obsolete and requiring periodic recalibrations.

To address these limitations, recent research has focused on approaches that reduce the
burden of calibration, such as crowdsourcing techniques that distribute the data collection
process among multiple users, or automatic calibration methods that leverage inertial
sensors and other information sources to dynamically update the fingerprint database.
Moreover, the application of advanced deep learning techniques has shown promising
results in improving the robustness of fingerprinting to environmental variations [15].
Fingerprinting is particularly suitable for technologies like Wi-Fi and BLE, which are
widely available in indoor environments and provide easily accessible RSSI measurements.
It has been successfully applied in various contexts, from shopping malls to hospitals, from
airports to university buildings, demonstrating an accuracy typically in the order of a few
meters.

An interesting variant of traditional fingerprinting is magnetic fingerprinting, which ex-
ploits distortions of the Earth’s magnetic field caused by metal structures and electrical
installations in buildings. This technique does not require dedicated communication in-
frastructures, relying solely on the magnetic sensors present in most modern smartphones,
but generally offers lower accuracy than solutions based on RF technologies [13].

2.2.4 Proximity

The proximity-based positioning technique is the simplest approach among those dis-
cussed, but it offers significant advantages in terms of implementation simplicity and low
costs. Unlike previous techniques, which aim to determine the precise coordinates of an
object or person, proximity positioning limits itself to detecting the vicinity of the device
to be localized to one or more known reference points [10].

Figure 2.4: Proximity technique

The operating principle is extremely intuitive: when a mobile device enters the coverage
radius of a fixed sensor or transmitter (such as a BLE beacon, an RFID reader, or a
Wi-Fi access point), its position is associated with that of the reference point. The
granularity of positioning depends on the density of reference points and their coverage
radius: with a high density of short-range sensors, relatively precise localization can be

13

State of the Art in Indoor Positioning Systems

achieved, while with long-range sensors, a coarser localization is obtained but with more
extensive coverage.

In formal terms, if P = {p1,p2,...,pn} represents the set of reference points with known
positions, and R = {rq,rg,...,7,} their respective coverage radii, the estimated position
P of a device can be determined as:

A

e p = p; if the device is detected by one reference point.
o D= f(pi1,pi2, .-, Pir) if the device is detected by multiple reference points.

where f represents an aggregation function that can be simply the selection of the ref-
erence point with the strongest signal, or a more complex operation such as calculating
the weighted centroid based on signal strength.

The proximity technique finds natural application with technologies such as RFID, NFC
(Near Field Communication), and BLE beacons, which are intrinsically designed to oper-
ate over limited distances. In particular, BLE beacons configured in iBeacon or Eddystone
mode represent a particularly popular solution for implementing proximity-based posi-
tioning systems, thanks to their low cost, ease of installation, and compatibility with
most modern mobile devices.

Table 2.3: Advantages and Limitations of Proximity Positioning

Advantages Limitations

Does not require complex algorithms or
extensive calibrations

Provides discrete rather than continuous
position information

Can be realized with inexpensive and
widely available hardware

To achieve fine localization, a large num-
ber of sensors is necessary

The system can be easily expanded by
adding new reference points

Proximity detection can be compro-
mised by interferences

Proximity positioning is adequate for numerous applications that do not require precise
localization but rather the identification of the zone or area where the user or object is lo-
cated. Typical examples include access control systems, proximity marketing applications
in retail, presence monitoring in specific areas of a building, and contextual notification
systems.

An interesting evolution of the proximity technique is represented by systems that com-
bine multiple technologies to improve positioning accuracy and robustness. For example,
integrating BLE beacons with inertial sensors present in smartphones allows for the imple-
mentation of "proximity-enhanced dead reckoning" solutions, where the position estimate
based on inertial data integration is periodically corrected when the user approaches a
known reference point [1].

2.2.5 Hybrid and Advanced Techniques

The positioning techniques discussed so far each have specific strengths and limitations,
making them more or less suitable for particular application contexts. In practice, many
indoor positioning systems adopt hybrid approaches that combine different techniques to

14

2.2 — Indoor Positioning Techniques

leverage their respective advantages and compensate for their weaknesses. Furthermore,
recent developments in artificial intelligence and machine learning have led to the emer-
gence of advanced techniques that overcome the limitations of traditional approaches.

Data Fusion and Multi-Technology Approaches

Data fusion is a fundamental paradigm in modern indoor positioning systems, enabling
the integration of information from different sources to improve positioning accuracy,
robustness, and continuity. This integration can occur at different levels:

e Fusion of positioning techniques: Combination of different algorithmic tech-
niques, such as the joint use of trilateration and fingerprinting, where the former
provides an initial estimate that is then refined by the latter.

e Fusion of hardware technologies: Integration of data from different communi-
cation technologies, such as BLE, Wi-Fi, and UWB, to exploit the complementary
characteristics of each.

e Fusion with inertial sensors: Combination of radio frequency-based positioning
techniques with data from accelerometers, gyroscopes, and magnetometers, imple-
menting "pedestrian dead reckoning" (PDR) solutions that allow tracking movement
even in the absence of RF signals.

e Fusion with contextual information: Integration of positioning data with in-
formation about the environment, such as building maps, movement constraints
(e.g., inability to pass through walls), and user behavior models.

The implementation of data fusion requires specific algorithms that determine how to
combine the different sources of information, taking into account their reliability, preci-
sion, and availability. Among the most common approaches are the Kalman filter and
its variants (such as the extended or unscented Kalman filter), the particle filter, and
methods based on fuzzy logic or Bayesian networks [10].

Techniques based on Machine Learning and Deep Learning

The application of machine learning and deep learning techniques for indoor positioning
has opened new perspectives, allowing for the resolution of problems that were difficult to
address with traditional approaches. These techniques can be applied in different phases
of the positioning process:

e Improvement of fingerprinting: Use of deep neural networks for the recogni-
tion of complex patterns in signal fingerprints, improving robustness to temporal
variations and reducing the need for frequent recalibrations.

e Adaptive modeling of signal propagation: Employment of learning algorithms
to develop propagation models that automatically adapt to the specific character-
istics of the environment, improving the accuracy of trilateration.

15

State of the Art in Indoor Positioning Systems

e Activity and context recognition: Use of classification techniques to identify
user activity (walking, running, climbing stairs, etc.) and the environmental con-
text, information that can be used to improve position estimation.

e End-to-end positioning: Implementation of solutions that directly map raw sig-
nal characteristics to position, bypassing intermediate feature extraction phases and
the application of geometric algorithms.

A particularly promising example is the use of convolutional neural networks (CNNs)
and recurrent neural networks (RNNs) for fingerprinting, which have demonstrated supe-
rior capabilities in handling the temporal and spatial variability of signal characteristics
compared to traditional approaches [14].

Techniques based on Computer Vision

An emerging research area involves the integration of computer vision techniques into
indoor positioning systems. These solutions use cameras (mounted in the environment
or on the mobile device) and image processing algorithms to determine position through
the recognition of visual landmarks, motion estimation based on visual features (visual
odometry), or augmented reality techniques like SLAM (Simultaneous Localization and
Mapping).

Vision-based techniques potentially offer high accuracy and do not require dedicated
communication infrastructures, but they present significant challenges in terms of com-
putational costs, user privacy, and dependence on lighting conditions. Despite these
limitations, the integration of visual information with other positioning techniques rep-
resents a promising research area, especially in contexts where high accuracy is required
or where traditional RF technologies are ineffective [6].

16

2.3 — Evaluation Metrics for Indoor Positioning Systems

2.3 Evaluation Metrics for Indoor Positioning Systems

The performance evaluation of indoor positioning systems is a fundamental aspect both in
research and in real-world application contexts. The adoption of standardized and well-
defined metrics allows for objective comparison of different technological solutions, guides
design choices, and verifies the fulfillment of application requirements. This section will
analyze the main metrics used to evaluate the performance of indoor positioning systems,
with particular attention to their meanings, measurement methods, and relevance in
different application contexts. An overview of these metrics is presented in Table 2.4.

Table 2.4: Main Evaluation Metrics for Indoor Positioning Systems (IPS)

Metric Description Typical Units /
Considerations

Accuracy Average positioning error m, cm

Precision Repeatability of estimates std. dev. of error (m, cm)

Latency Delay in position estimation ms, S

Update Rate Number of estimates per second Hz

Availability Percentage of time/area with %
active service

Reliability Consistency of performance over MTBF, Robustness to interference
time

Scalability Ability to handle increased No. of users, Area (m?, km?)

Energy Efficiency
Costs

Privacy and Security

users/area

Energy consumption per
estimate/device

HW, SW, installation,
maintenance costs

Data protection, consent, attack
resilience

mW, Joule/estimate, Battery life
(hours)
EUR, USD, TCO

Policies, GDPR compliance,
Security protocols

2.3.1 Accuracy and Precision

Accuracy and precision are the most commonly used metrics to evaluate the performance
of an indoor positioning system, although the two terms are often confused or used
interchangeably in non-specialist literature.

Accuracy refers to the closeness between the position estimated by the system and the
actual position of the object or person. In formal terms, accuracy can be defined as the
average positioning error, calculated as the Euclidean distance between the estimated
and actual position:

1 & - = =
Accuracy = = 3 /(@i = 82 + (i = 5:) + (5 —)’
=1

where (x;,y;, z;) represents the actual position and (Z;, J;, 2;) the estimated position for
the i-th test point, and n is the total number of test points.

17

State of the Art in Indoor Positioning Systems

Precision, on the other hand, refers to the repeatability or consistency of measurements,
i.e., the dispersion of position estimates when the measurement is repeated under the
same conditions. A common metric to quantify precision is the standard deviation of the
positioning error:

Precision =

where e; represents the positioning error for the ¢-th test point, and e is the average error.
As highlighted by [16], a localization system is characterized by a precision appropriate to
the scale the system itself aims for: in the case of satellite geo-positioning, a precision of
the order of meters can be considered excellent, while for indoor positioning applications,
a precision in the order of sub-meters might be required.

It is important to note that accuracy and precision are not necessarily correlated: a
system can be precise (providing consistent results in repeated measurements) but not
accurate (with a systematic error with respect to the actual position), or vice versa.
Ideally, a positioning system should be both accurate and precise.

In addition to the average error and standard deviation, other commonly used metrics to
characterize accuracy include:

¢ Median error: Less sensitive to outliers than the mean, it provides an indication
of the system’s "typical" performance.

o Percentile error (e.g., 75th or 90th percentile): Indicates the error value below
which a certain percentage of measurements fall, providing information about the
tail of the error distribution.

e Maximum error: Represents the worst-case scenario and can be critical in appli-
cations where even a single significant error could have serious consequences.

o Cumulative Distribution Function (CDF) of the error: Provides a complete
representation of the error distribution, allowing visualization of the probability
that the error is below a certain value.

2.3.2 Latency and Update Rate

The temporal dimension of an indoor positioning system’s performance is primarily char-
acterized by two metrics: latency and update rate.

Latency refers to the time delay between the moment an object or person is at a certain
position and the moment the system provides the estimate of that position. In real-time
positioning systems, high latency can significantly compromise usability, especially in
applications requiring responsiveness, such as indoor navigation or tracking of rapidly
moving objects.

The overall latency of a positioning system can be broken down into several components:

e Acquisition latency: The time required to acquire data from sensors or receive
signals from transmitters.

18

2.3 — Evaluation Metrics for Indoor Positioning Systems

e Transmission latency: The time required to transmit the acquired data to the
processing unit.

e Processing latency: The time required to process the data and calculate the
position.

e« Communication latency: The time required to communicate the calculated po-
sition to the user or the system that will use it.

The update rate indicates the number of position estimates provided by the system per
unit of time (typically expressed in Hz). A high update rate is particularly important
for tracking rapidly moving objects or for applications requiring continuous and smooth
position monitoring.

As emphasized by [17], the choice of the optimal update rate depends on the application
context and often represents a trade-off with other system parameters, such as power
consumption or computational complexity. For example, in applications tracking slowly
moving assets, an update rate of 0.1-1 Hz might be sufficient, while for tracking moving
people or for augmented reality applications, frequencies of 10 Hz or higher might be
necessary.

2.3.3 Availability and Reliability

The availability of an indoor positioning system refers to the percentage of time or area
in which the system is capable of providing position estimates with an acceptable level
of accuracy. This metric is particularly relevant in real-world application contexts, where
system coverage might not be uniform due to infrastructure limitations or environmental
characteristics affecting signal propagation.

Availability can be quantified in several ways:

« Temporal availability: Percentage of time the system provides valid position
estimates.

e Spatial availability: Percentage of the target area where the system can operate
with acceptable performance.

« Functional availability: Percentage of positioning requests the system can satisfy
within certain accuracy and latency constraints.

Reliability, closely related to availability, refers to the system’s ability to maintain consis-
tent performance over time and under different operating conditions. A reliable system
should provide position estimates with a predictable and stable level of accuracy, even in
the presence of environmental variations, interference, or partial infrastructure failures.
Specific metrics for evaluating reliability include:

o« Rate of false positives and false negatives: In zone-based or region-based
systems, the percentage of times the system erroneously indicates the presence or
absence of an object in a given area.

19

State of the Art in Indoor Positioning Systems

« Mean Time Between Failures (MTBF): The average time of correct operation
between successive system failures.

¢« Robustness to interference: The system’s ability to maintain acceptable per-
formance in the presence of electromagnetic interference or other sources of distur-
bance.

As highlighted by [18], reliability is a critical factor for the adoption of indoor positioning
systems in real-world application contexts, especially in fields like safety or healthcare,
where a system malfunction could have significant consequences.

2.3.4 Scalability

Scalability refers to the positioning system’s ability to maintain adequate performance as
the number of users, covered area, or device density increases. This metric is particularly
relevant for large-scale implementations, such as shopping malls, airports, or university
campuses, where the system might need to simultaneously manage hundreds or thousands
of devices.

Scalability can be assessed along several dimensions:

e Scalability with respect to the number of users: Ability to handle an increas-
ing number of devices to be located without significant degradation in performance
in terms of accuracy, latency, or availability.

o Spatial scalability: Ability to extend system coverage to larger areas while main-
taining consistent performance.

e Infrastructure scalability: Ease with which the system’s infrastructure can be
expanded to support more users or wider coverage.

As emphasized by [17], scalability is a significant challenge for many indoor positioning
systems, especially those based on technologies requiring dedicated infrastructure or using
shared communication channels. For example, systems based on Wi-Fi fingerprinting
might experience performance degradation in densely populated environments due to
network congestion, while UWB-based systems might require a large number of anchors
to cover extensive areas, resulting in significant implementation costs.

2.3.5 Energy Efficiency

Energy efficiency is a crucial metric for indoor positioning systems, especially for those
involving mobile devices or battery-powered sensors. Low power consumption is essential
to ensure adequate battery life and reduce the need for frequent battery replacements or
recharges.

Energy consumption can be assessed at different levels:

e Energy consumption of the device to be located: Energy required by the
tag, smartphone, or other device that needs to be located.

20

2.3 — Evaluation Metrics for Indoor Positioning Systems

e Energy consumption of the infrastructure: Energy needed to power the po-
sitioning infrastructure, such as anchors, access points, or environmental sensors.

e Overall system energy consumption: Sum of the energy consumed by all sys-
tem components.

Energy efficiency is particularly critical for applications involving wearable devices or
IoT sensors, where small size and battery life constraints impose severe limitations on
power consumption. As highlighted by [13], technologies like Bluetooth Low Energy were
specifically designed to offer low power consumption, making them particularly suitable
for indoor positioning applications based on battery-powered devices.

Specific metrics for evaluating energy efficiency include:

e Energy consumption per position estimate: Energy required to obtain a single
position estimate.

e Operational autonomy: Continuous operating time of the system with a given
battery capacity.

e Energy efficiency as a function of accuracy: Relationship between energy
consumption and positioning accuracy, which allows evaluating trade-offs between
these two dimensions.

2.3.6 Costs

Costs represent a fundamental metric for evaluating the practical feasibility of an indoor
positioning system, especially in commercial or industrial contexts where return on in-
vestment is a critical decision factor. The costs of a positioning system can be divided
into several categories:

o Implementation costs: Include the purchase of hardware (tags, anchors, sensors,
servers), software development or purchase, and system installation and configura-
tion.

e Operational costs: Comprise energy, maintenance, software and hardware up-
dates, and technical staff for system management.

e Scalability costs: Incremental costs associated with expanding the system to cover
larger areas or support more users.

e Indirect costs: Represent potential operational costs associated with disruptions
during installation or maintenance, as well as the ones associated with staff training.

As highlighted by [13], the cost of a system, regardless of its precision, can determine its
large-scale application. A limited cost combined with a sufficiently accurate system can
be a decisive factor for adopting the technology in commercial or industrial contexts.
Cost assessment should consider not only the initial investment but also the Total Cost of
Ownership (TCO) over the system’s expected lifecycle. Furthermore, it is important to
evaluate costs in relation to the expected benefits and the added value that the positioning
system can provide in terms of operational efficiency, improved user experience, or new
business opportunities.

21

State of the Art in Indoor Positioning Systems

2.3.7 Privacy and Security

Although privacy and security are not performance metrics in the strict sense, they
represent critical aspects in the evaluation of an indoor positioning system, especially in
contexts involving the tracking of people. A system’s ability to protect location data and
prevent unauthorized access or manipulation can be assessed through several dimensions:

e Data protection: Measures implemented to protect location data during trans-
mission and storage, such as encryption, anonymization, or pseudonymization.

e Access control: Mechanisms to ensure that only authorized users can access lo-
cation data or configure the system.

e Transparency and consent: Clarity in data collection and usage policies for
location data, and mechanisms for obtaining users’ informed consent.

¢ Resilience to attacks: The system’s ability to withstand attempts at manipula-
tion or disruption, such as signal spoofing or denial-of-service attacks.

As highlighted by [15], privacy concerns represent a significant obstacle to the adoption
of these technologies in some contexts, especially those involving continuous tracking of
people in environments like offices, hospitals, or shopping malls.

The evaluation of privacy and security measures should consider not only technical aspects
but also legal and ethical ones, such as compliance with data protection regulations (e.g.,
GDPR in Europe) and the potential impact on user perception and social acceptance of
the technology.

22

2.4 — Applications of Indoor Positioning Systems

2.4 Applications of Indoor Positioning Systems

Indoor positioning systems have found application in a wide range of sectors, thanks
to their ability to provide contextual information based on localization in environments
where traditional satellite navigation technologies are ineffective. The growing maturity
of indoor positioning technologies, coupled with reduced implementation costs and greater
awareness of potential benefits, has led to an increasingly widespread adoption of these
solutions in commercial, industrial, healthcare, and public service contexts (Table 2.5).

Table 2.5: Summary of Applications of Indoor Positioning Systems

Application Sector Key Use Cases Typical Technologies

Required
BLE, Wi-Fi, UWB (for high
accuracy), RFID

Healthcare Navigation, asset/patient tracking,
workflow optimization, infection

control

Retail and Large-Scale

Proximity marketing, customer flow

BLE, Wi-Fi, NFC, Vision

Distribution analysis, inventory management,
personalized offers

Logistics and Industry ~ Asset/vehicle tracking, process UWB, RFID
automation, worker safety, warehouse (Active/Passive), BLE,
management Wi-Fi

Public Spaces and

Smart Cities

Wi-Fi, BLE, LiFi, Computer
Vision, Cellular

Navigation (airports, stations), crowd
management, personalized experiences
(museums), accessibility

Emergency call localization,
evacuation guidance, first responder
coordination, access control

Wi-Fi, BLE, UWB, Cellular
Networks

Emergency and Secu-
rity

2.4.1 Applications in the Healthcare Sector

The healthcare sector represents one of the most promising application areas for indoor
positioning systems, due to the complexity of hospital environments and the criticality
of the operations performed therein. Key applications in this sector include:
Navigation and orientation within healthcare facilities: As highlighted by [19],
large hospitals and healthcare complexes are complex environments where patients, vis-
itors, and staff can easily become disoriented. Indoor positioning systems enable the
implementation of wayfinding solutions that guide users to specific destinations such as
wards, outpatient clinics, diagnostic services, or emergency exits. These solutions can be
integrated into mobile apps or information kiosks, significantly improving user experience
and reducing appointment delays due to orientation difficulties.

Tracking of medical equipment: Healthcare facilities possess numerous expensive
and critical pieces of equipment, such as defibrillators, infusion pumps, ventilators, and
monitors, which are frequently moved between different areas. Indoor positioning systems
allow for the rapid localization of this equipment when needed, improving operational
efficiency, reducing search times, and optimizing resource utilization. As reported by [20],

23

State of the Art in Indoor Positioning Systems

this application can lead to significant cost savings and improvements in the quality of
care, especially in emergency situations where timeliness is crucial.

Monitoring of at-risk patients: Patients with certain conditions, such as dementia,
cognitive disorders, or a risk of falls, can benefit from monitoring systems based on
indoor positioning technologies. These systems, typically implemented through bracelets
or other wearable devices, allow healthcare staff to receive alerts when a patient enters
unsafe areas or exhibits anomalous movement patterns that could indicate a fall or health
issue. This application significantly contributes to patient safety and reduces the workload
for nursing staff.

Optimization of workflows and operational analysis: Positioning data of health-
care staff and patients can be analyzed to identify inefficiencies in workflows, areas of
congestion, and opportunities for improvement in space layout. This analysis can guide
targeted interventions to optimize routes, reduce waiting times, and improve the alloca-
tion of human resources. Furthermore, in clinical research contexts, positioning data can
provide valuable information on patient movement patterns in relation to their health
status and response to treatments.

Infection control and contact tracing: As emerged during the COVID-19 pandemic,
indoor positioning systems can play a crucial role in controlling hospital-acquired infec-
tions through contact tracing and the identification of potential exposures. These systems
allow for the retrospective reconstruction of movements and interactions of patients and
staff, facilitating the implementation of targeted preventive measures and outbreak man-
agement.

The specific needs of the healthcare sector in terms of positioning technologies include
high accuracy (especially for applications like patient monitoring), robust reliability, ease
of integration with existing hospital information systems, and strict adherence to privacy
and data security, in compliance with regulations such as GDPR and HIPAA. Technolo-
gies like BLE, thanks to their low cost, ease of implementation, and compatibility with
mobile devices, have found particular diffusion in this sector, especially for wayfinding
and asset tracking applications.

24

2.5 — Current Challenges and Limitations

2.5 Current Challenges and Limitations

Despite significant progress in recent years in the field of indoor positioning systems,
numerous technical, methodological, and economic challenges persist (Table 2.6), limiting
the widespread adoption and effectiveness of these technologies in real-world contexts.
Understanding these challenges is fundamental not only for guiding future research but
also for directing implementation choices in concrete projects, allowing for the adoption
of appropriate strategies to mitigate existing limitations.

Table 2.6: Main Challenges and Limitations of Indoor Positioning Systems (IPS)

Challenge / Limitation

Brief Description

Accuracy and Reliability in Complex Environ-
ments

Energy Consumption and Battery Life Con-
straints

Implementation Costs and Scalability

Impact of multipath, NLOS, interference,
environmental variability. Difficulty in
achieving consistent high precision.

Balancing performance (accuracy, update rate)
with battery life of mobile devices and
infrastructure components (e.g., beacons).
High costs of hardware, installation, site

surveys, and ongoing maintenance. Difficulties
in expanding coverage to large or multiple
areas cost-effectively.

Protection of sensitive location data, ensuring
informed consent, mitigating surveillance risks,
and complying with regulations like GDPR.
Lack of universal standards leading to
technological fragmentation, proprietary
solutions, and difficulties in integrating
systems from different vendors.

Privacy, Security, and Ethical Considerations

Standardization and Interoperability

Indoor positioning systems represent a dynamic and continuously evolving research field,
characterized by the convergence of different disciplines such as telecommunications, elec-
tronics, computer science, and artificial intelligence. The in-depth understanding of the
different technologies, techniques, metrics, applications, and challenges presented in this
chapter provides a solid foundation for the design and implementation choices that will
be discussed in the subsequent chapters.

25

Chapter 3

Bluetooth Low Energy
Technologies for Indoor
Positioning

3.1 Fundamentals of Bluetooth Low Energy

3.1.1 Introduction to Bluetooth Low Energy

Bluetooth Low Energy (BLE), introduced with the Bluetooth 4.0 specification in 2010,
is a wireless communication technology designed for applications requiring extremely low
energy consumption while maintaining adequate communication range. Unlike classic
Bluetooth (BR/EDR), BLE was designed from the ground up to support sporadic, small
data transmissions, making it particularly suitable for Internet of Things (IoT) applica-
tions and indoor positioning systems [21].

BLE has emerged as one of the most promising solutions for indoor positioning, offering an
optimal balance between performance, energy efficiency, and device ubiquity. According
to [22], the market for BLE-based indoor positioning solutions has experienced significant
growth, with applications spanning retail, healthcare, logistics, and smart buildings.
This chapter analyzes BLE’s technical characteristics that make it suitable for indoor
positioning applications, examining beacon protocols, distance estimation methods, po-
sitioning algorithms, and comparing advantages and limitations with other technologies.

3.1.2 BLE Architecture and Technical Specifications

Bluetooth Low Energy differs from classic Bluetooth through architectural and technical
features specifically designed to minimize energy consumption. While both operate in the
2.4 GHz ISM band, BLE presents substantial differences in network topology, channel
management, packet format, and connection modes.

Network Topology

BLE supports two main network topologies:

26

3.1 — Fundamentals of Bluetooth Low Energy

1. Point-to-point connection: Establishes bidirectional communication between
two devices with master (central) and slave (peripheral) roles, enabling reliable and
secure data exchange through a preliminary connection phase.

2. Broadcasting: Allows unidirectional data transmission to any receiver within
range without establishing connections, forming the basis for BLE beacon oper-
ation in indoor positioning applications.

The Bluetooth standard evolution has introduced more complex topologies. Version 4.1
added simultaneous master-slave capabilities across different connections, while version
5.0 introduced mesh networking support for many-to-many communications [23].

Channel Management and Frequency Hopping

BLE operates on 40 channels in the 2.4 GHz band, each with 2 MHz bandwidth, divided
into:

o 3 advertising channels (37, 38, 39) for device discovery, connection establishment,
and broadcast transmissions

e 37 data channels for bidirectional communication after connection establishment

To mitigate interference from other 2.4 GHz technologies (Wi-Fi, classic Bluetooth), BLE
implements Adaptive Frequency Hopping (AFH). During connections, devices change
channels at each interval following a pseudo-random pattern, avoiding high-interference
channels [24].

Packet Format and Transmission Rate

BLE packets are optimized for efficient small-data transmission with the following struc-
ture:

o Preamble (1 byte)

o Access Address (4 bytes)

o Packet Header (2 bytes)

o Length (1 byte)

o Payload (0-27 bytes in v4.0/4.1, up to 255 bytes in later versions)
o CRC for error control (3 bytes)

Transmission rates are 1 Mbps in versions 4.0-4.1, with version 5.0 introducing 2 Mbps
modes and long-range options (125 kbps and 500 kbps) for extended-distance communi-
cations.

27

Bluetooth Low Energy Technologies for Indoor Positioning

Power Saving Mechanisms

BLE achieves extremely low energy consumption through several strategies:

1. Duty cycling: Devices spend most time in ultra-low power sleep mode, briefly
waking for data transmission/reception

2. Variable connection intervals: Configurable synchronization intervals (7.5 ms
to 4 s) with sleep mode between communications

3. Low-frequency advertising: Configurable advertising intervals up to several sec-
onds, drastically reducing average consumption

4. Rapid transmissions: Minimized active transmission duration through optimized
packet format and protocols

These features enable devices with small button-cell batteries (CR2032) to operate for
months to years depending on configuration. According to [25], typical BLE beacons
operate up to 24 months on a single battery, making this technology ideal for wearable
tags in indoor positioning applications.

3.1.3 Evolution of Bluetooth Standard for Positioning

The Bluetooth standard has undergone significant evolution, with progressive improve-
ments expanding indoor positioning capabilities. Table 3.1 summarizes the evolution of
positioning capabilities across different Bluetooth versions.

Table 3.1: Evolution of positioning capabilities in different Bluetooth standard versions

Version | Year Relevant Features for Positioning Accuracy
4.0 2010 Introduction of BLE, RSSI 5-10 meters
4.1 2013 Improvements in coexistence 5-10 meters
4.2 2014 Improved security, extended payload 3-8 meters
5.0 2016 Increased range, speed, and broadcasting | 2-5 meters
capacity
5.1 2019 Direction Finding (AoA/AoD) 0.5-2 meters
5.2-5.4 2020-2023 Incremental optimizations 0.5-2 meters

3.1.4 Key Features for Indoor Positioning

BLE possesses several characteristics making it particularly suitable for indoor positioning
applications with wearable tags:

o Low Energy Consumption: According to [26], typical BLE tags operate 1-
2 years on a single button-cell battery through optimized packet structures, ad-
justable transmission power (-20 dBm to +10 dBm), and efficient sleep modes with
nanoampere-level currents.

28

3.1 — Fundamentals of Bluetooth Low Energy

e Mobile Device Compatibility: BLE’s ubiquity in smartphones and tablets en-
ables positioning solutions without dedicated hardware, allowing devices to function
as receivers or scanners with native iOS and Android APIs.

¢ Adequate Indoor Range: Provides 10-30 meter range in typical environments
(up to 100+ meters with Bluetooth 5.0), enabling coverage of medium-sized spaces
with reasonable infrastructure density.

e Cost-Effective Implementation: Low costs compared to Ultra-Wideband or
camera-based systems. As noted by [27], BLE beacons cost €10-15 per unit while
ESP32-based receivers cost under €15 each.

o Interference Robustness: Despite operating in the shared 2.4 GHz band, BLE
implements Adaptive Frequency Hopping, strategically distributed advertising chan-
nels, and redundant transmissions to mitigate Wi-Fi and Bluetooth interference.

These features make BLE particularly suitable for indoor positioning applications requir-
ing low-power wearable tags. The following sections examine beacon protocols, distance
estimation methods, and BLE-specific positioning algorithms.

29

Bluetooth Low Energy Technologies for Indoor Positioning

3.2 BLE Beacon Protocols

Bluetooth Low Energy (BLE) beacons are widely adopted transmitters that periodically
broadcast data packets enabling receiver devices to detect presence and estimate distance.
Since Apple’s introduction of iBeacon in 2013, BLE beacons have gained popularity across
retail, healthcare, logistics, and smart buildings due to their simplicity, low cost, and
broad compatibility.

BLE beacons operate in two primary configurations: fixed beacons with mobile receivers
(navigation/proximity marketing) and fixed receivers with mobile beacons (asset track-
ing). The latter configuration, relevant for wearable tag-based positioning systems, offers
advantages in privacy management and energy efficiency.

3.2.1 iBeacon Protocol
Apple’s iBeacon [28], introduced in 2013, was the first commercially successful BLE bea-
con standard. An iBeacon packet contains a standard BLE prefix (9 bytes) and a 21-byte
payload including:

o UUID (16 bytes): Identifies beacon owner/application

o Major (2 bytes): Identifies beacon group

o Minor (2 bytes): Identifies individual beacons

o Measured Power (1 byte): Calibrated signal strength at 1-meter distance

iBeacon provides simplicity, native iOS support, and energy efficiency, but offers limited
functionality and restricted Android support due to its proprietary nature.

3.2.2 Eddystone Protocol

Google’s Eddystone (2015) provides an open-source alternative with enhanced flexibility
through multiple frame types:

o Eddystone-UID: Transmits unique identifier (Namespace + Instance ID)

e Eddystone-URL: Broadcasts compressed URLs

o Eddystone-TLM: Conveys telemetry data (temperature, battery)

e Eddystone-EID: Transmits periodically changing identifiers for security
Eddystone offers open-source flexibility, cross-platform support, and advanced features

like URL broadcasting and telemetry, but with increased implementation complexity and
potentially higher energy consumption.

30

3.3 — BLE-based Distance Estimation Methods

3.2.3 AltBeacon Protocol
Radius Networks’ AltBeacon (2014) serves as an open-source, vendor-independent al-
ternative. Its 24-byte payload contains a flexible 20-byte ID structure, beacon code,

reference RSSI, and reserved field. While offering openness and flexibility, AltBeacon has
lower commercial adoption and lacks native platform support.

3.2.4 Protocol Comparison

Table 3.2 compares the three protocols across key features.

Table 3.2: Comparison of BLE beacon protocols

Feature iBeacon Eddystone AltBeacon
Developer Apple Google Radius Networks
License Proprietary Open-source Open-source
Year introduced 2013 2015 2014

ID structure UUID+Major+Minor | Namespace+Instance | Flexible (20 bytes)
Frame types Single Multiple Single

iOS support Native Libraries Libraries
Android support Libraries Native Libraries
Special features Regional monitoring | URLs, telemetry, EIDs Flexible 1D
Security Basic Advanced Basic
Energy usage Very low Low-medium Very low
Adoption High Medium Low

Protocol selection depends on target platform requirements, functional needs, security
considerations, energy constraints, and required flexibility. For wearable BLE tag-based
positioning systems, iBeacon represents an appropriate choice due to its simplicity, energy
efficiency, and broad hardware compatibility including ESP32 platforms. The distance
estimation techniques and positioning algorithms discussed in subsequent chapters remain
applicable across all protocols with appropriate adaptations.

3.3 BLE-based Distance Estimation Methods

3.3.1 Introduction

Accurate distance estimation between BLE devices is fundamental to indoor positioning
systems. Distance estimation in BLE primarily relies on Received Signal Strength Indi-
cator (RSSI) analysis, supported by all BLE devices. Recent Bluetooth 5.1+ standards
introduced Direction Finding features (AoA/AoD) for enhanced precision with specialized
hardware.

31

Bluetooth Low Energy Technologies for Indoor Positioning

3.3.2 RSSI-based Distance Estimation

RSSI measures received radio signal power (typically in dBm). In real environments, the
log-distance path loss model is commonly used:

RSSI(d) = RSSI(do) — 10nlog,(d/do) + X (3.1)

where RSSI(d) is signal strength at distance d, RSSI(dp) is reference strength at dp
(typically 1m), n is the path loss exponent (2-4), and X represents shadowing effects.
Distance is estimated by inverting the equation:

d=dy x 10(RSSI(d0)—RSSI(d))/(lOn) (32)

RSSI-based estimation faces several challenges including signal variability, multipath fad-
ing, material absorption, antenna directionality, and hardware heterogeneity. These fac-
tors lead to estimation errors of 20-50% in complex indoor environments [25].

3.3.3 Accuracy Improvement Techniques
Three main approaches improve RSSI-based distance estimation:

1. Calibration: Adapts theoretical models to specific environments and devices through
reference RSSI calibration, path loss exponent adjustment, environment-specific
modeling, and cross-device compensation. Accurate calibration can significantly
reduce estimation errors, especially in stable environments [29].

2. Filtering: Reduces RSSI variability using moving averages, low-pass filters, Kalman
filters, or particle filters. Proper filtering can reduce RSSI variability by up to
70% [26].

3. Data Fusion: Combines information from multiple beacons, sensors (accelerom-
eters, gyroscopes), temporal estimates, and contextual information (floor plans,
obstacles). Hybrid approaches can reduce positioning error by 30-40% compared to
RSSI-only methods [30].

3.3.4 Direction Finding Methods

Bluetooth 5.1+ introduced Direction Finding through AoA and AoD techniques. These
methods measure phase differences across antenna arrays to determine signal direction.

o Angle of Arrival (AoA): Transmitter uses single antenna; receiver uses antenna
array to determine signal origin direction.

o Angle of Departure (AoD): Transmitter uses antenna array; receiver measures
phase differences with single antenna.

Direction Finding offers higher accuracy (angular precision of few degrees), reduced sen-
sitivity to power variations, and positioning with fewer receivers. However, it requires
specialized hardware, is sensitive to multipath effects, has limited consumer adoption,
and consumes more energy [31].

32

3.4 — Positioning Algorithms for BLE Systems

3.3.5 Method Comparison

Table 3.3 compares BLE distance estimation methods.

Table 3.3: Comparison of BLE-based distance estimation methods

Feature Basic RSSI | Enhanced RSSI | Direction Finding
Typical Accuracy 3-10 m 1-3m 0.1-1 m
Hardware Requirements Standard Standard Specialized
Implementation Complexity Low Medium High
Robustness Low Medium Medium—High
Energy Consumption Very Low Low Medium

Cost Very Low Low Medium—High
Technology Maturity High High Medium
Consumer Device Support Universal Universal Limited

Method selection depends on accuracy requirements, energy constraints, cost considera-
tions, environmental characteristics, and compatibility needs. For wearable BLE appli-
cations, enhanced RSSI techniques with calibration and filtering often provide optimal
balance between accuracy, energy consumption, and implementation complexity.

3.4 Positioning Algorithms for BLE Systems

Building upon the theoretical foundations presented in the State of the Art, this section
evaluates the positioning algorithms most suitable for BLE-based indoor localization
systems, focusing on their practical implementation and performance characteristics in
real deployment scenarios [29].

3.4.1 Algorithm Selection and Performance Analysis

For BLE-based positioning systems, four primary algorithmic approaches demonstrate
practical viability: trilateration using RSSI measurements, triangulation leveraging Blue-
tooth 5.1 Direction Finding capabilities, fingerprinting techniques, and probabilistic meth-
ods. Each approach presents distinct trade-offs between accuracy, computational com-
plexity, and implementation requirements.

RSSI-based Trilateration remains the most widely adopted approach due to its com-
patibility with standard BLE hardware. Using distance estimates derived from signal
strength measurements, trilateration solves the system of equations:

(r—z:)*+ (y—w)>=d;, i€{1.23} (3.3)

where (z;,y;) represent beacon coordinates and d; the estimated distances. While com-
putationally efficient, this method typically achieves 2-5 meter accuracy in indoor envi-
ronments due to RSSI variability and multipath interference [16].

Direction Finding Triangulation exploits Angle of Arrival (AoA) or Angle of De-
parture (AoD) measurements available in Bluetooth 5.1. By determining angles 6; from

33

Bluetooth Low Energy Technologies for Indoor Positioning

reference points, the position is computed as:

This approach can achieve sub-meter accuracy (0.5-1 m) but requires specialized antenna
arrays and increases system complexity and power consumption [31].

Fingerprinting Methods create location-specific radio signatures during an offline cal-
ibration phase, then match real-time measurements against this database. Advanced
implementations using machine learning techniques can achieve 1-3 meter accuracy with
robust performance in complex multipath environments, though they require extensive
site-specific calibration [32].

Probabilistic Approaches model positioning as a Bayesian inference problem, apply-
ing:

P(position|measurements) o< P(measurements|position) x P(position) (3.5)

Methods such as Kalman filtering and particle filtering excel in dynamic tracking scenar-
ios, typically achieving 1-2 meter accuracy with superior temporal consistency [30].

3.4.2 Implementation Considerations

Table 3.4 summarizes the key performance characteristics relevant to BLE system design.

Table 3.4: BLE positioning algorithm comparison

Algorithm Accuracy | Hardware Req. | Calibration | Tracking
RSSI Trilateration 2-5 m Standard BLE Moderate Limited
AoA/AoD Triangulation 0.5-1 m Antenna arrays Low Limited
Fingerprinting 1-3 m Standard BLE Extensive Limited
Probabilistic 1-2m Standard BLE Moderate Excellent

For wearable BLE applications requiring balance between accuracy and power efficiency,
a hybrid approach combining RSSI-based trilateration with probabilistic filtering offers
optimal performance. This theoretical foundation guides the design of the BLE-based po-
sitioning system with wearable tags and ESP32 presented in Chapter 6, which implements
these principles in a practical, cost-effective solution.

34

Chapter 4

ESP32 as a Station for Positioning
Systems

4.1 ESP32 Architecture and Capabilities

4.1.1 Platform Overview

The ESP32, developed by Espressif Systems, represents a versatile and powerful micro-
controller particularly suitable for IoT applications and indoor positioning systems. As
the successor to the ESP8266, the ESP32 combines high performance, low power con-
sumption, rich communication interfaces, and low cost, making it ideal for implementing
RSSI-based positioning techniques discussed in Chapter 3 [33].

NI £Z0! X A0

220100
BEFFEDENDERENE . & R7 RIS. i

R2ORTe o] a5l

>V 1341035 10321033 1025 1026 1027-
FEETETTEETHE

Figure 4.1: ESP32 microcontroller

In this research, ESP32 units serve as receiving/scanner stations that detect signals from
wearable BLE tags, process RSSI data, and transmit information via MQTT to a central-
ized system for position determination. This configuration leverages the ESP32’s native
BLE scanning capabilities, processing power, and connectivity features.

35

ESP32 as a Station for Positioning Systems

4.1.2 Hardware and Software Architecture

The ESP32 features a 32-bit dual-core Xtensa LX6 processor operating at up to 240
MHz, significantly higher than other IoT microcontrollers. This computing power enables
effective management of complex signal processing and data filtering algorithms crucial
for BLE-based indoor positioning accuracy [34].

Embedded flash Radio
e BIUE:I"DH-' Bluetooth
Spl contraller baseband RF receive
2 = c
ke Clock generator ‘§ =
2 \ PR
15 WiFi Wi-Fi
SDIO MAC baseband RF transmit
| — L W -
UART
Core and memory Cryptographic hardware
CAN acceleration
ETH Dual- or singlle-core
Xtensa 32-bit LX6 SHA RSA
IR microprocessor
PWM
ROM SRAM AES RNG
Temperature sensor
Touch
S RTC and low-power subsystem
DAC
PMU ULP Recovery
SAR ADC co-processor memory

Figure 4.2: ESP32 Function Block Diagram

Memory specifications include 520 KB SRAM and up to 16 MB external flash, providing
enough space for sophisticated applications and temporary data storage such as BLE
device information during scanning operations. This generous capacity allows implemen-
tation of larger data processing buffers and complex filtering algorithms [35].

The ESP32 integrates Wi-Fi (802.11 b/g/n) and Bluetooth (Classic and BLE) modules
managed by a dedicated coprocessor, enabling simultaneous operation of both technolo-
gies. This architecture allows background BLE scanning while the main processor handles
data processing, improving overall system efficiency. The ESP32’s ability to operate in
Wi-Fi and Bluetooth modes simultaneously provides significant advantages for indoor
positioning applications [34].

Additional features include comprehensive peripheral interfaces (SPI, 12C, UART, CAN,
Ethernet MAC, SDIO) and multiple power-saving modes from active operation to deep-
sleep with only ULP coprocessor active. These power management capabilities enable
optimization based on application requirements, particularly relevant for battery-powered
positioning systems [36].

Development Frameworks: The ESP32 supports various development approaches
including ESP-IDF (official C framework with FreeRTOS), Arduino Core (simplified de-
velopment), MicroPython (high-level scripting), and Mongoose OS (IoT-focused). For
high-performance positioning applications requiring energy optimization, ESP-IDF or
Arduino Core represent the most appropriate choices [37,38].

36

4.2 — ESP32 BLE Scanner Implementation

4.2 ESP32 BLE Scanner Implementation

BLE scanning forms the foundation of the positioning system, enabling detection of
advertising packets from wearable tags and extraction of MAC addresses and RSSI values
for distance estimation.

Key implementation considerations include resource management for memory and power
optimization, scan mode selection (passive vs. active scanning), and filtering mechanisms
for relevant devices. Active scanning provides more complete data but increases power
consumption and radio traffic [33].

Effective BLE scanning implementations require device filtering to eliminate irrelevant
broadcasts, RSSI aggregation techniques for multiple measurements, and adaptive scan-
ning parameters based on device density and interference levels. Advanced optimizations
include density-aware and battery-conscious scanning algorithms, temporal RSSI filtering
using exponential moving averages or Kalman filters, environmental calibration through
empirical measurements, and strategic station placement for optimal coverage [35].

4.2.1 Software Implementation

The ESP32 scanner software integrates several key functionalities through a modular
architecture:

e Wi-Fi Management: Multi-network support with automatic connection and fall-
back mechanisms.

¢« MQTT Communication: Efficient data transmission with retry mechanisms and
broker fallback.

e« Tag Management: Maintenance of authorized BLE tag lists with dynamic MQTT
updates.

e BLE Scanning: Periodic 3-second active scans every 4 seconds, providing an
optimal balance between comprehensive device detection, frequent data updates,
and power consumption efficiency.

 Remote Configuration: Enables dynamic parameter updates (including connec-
tion settings, tag lists, and operational parameters) via MQTT protocol without
requiring device reprogramming or firmware updates.

The BLE scan implementation uses Arduino Core libraries with custom callbacks to
process detected devices. The callback extracts MAC addresses and RSSI values, filters
for known tags, constructs JSON messages containing ESP32 ID, RSSI, timestamp, and
tag ID, then publishes via MQTT with retry mechanisms.

Communication Protocol: MQTT provides reduced overhead, publish/subscribe de-
coupling, and configurable quality of service suitable for distributed IoT applications.
Messages use structured JSON format on topics like hospital/ble/scan for data and
hospital/ble/config for control [35].

37

Chapter 5

Wearable BLE Tags: Technology,
Integration, and Considerations

5.1 Overview of Wearable BLE Tags

Wearable BLE tags are key to indoor positioning, using low-power signals detected by

fixed receivers to balance range, battery life, and compatibility [7].

5.1.1 Classification and Applications

Wearable BLE tags can be classified by form factor and functionality as shown in Table

0.1

Table 5.1: Classification of wearable BLE tags

Category Type

Characteristics

Disk/Coin

Form Factor Credit Card

Circular, 20-35mm diameter, easily integrated
into accessories [39]

85.6x54mm, larger battery capacity, corporate
badges [40]

Miniaturized <20mm dimensions, limited battery life [41]

Integrated Smartwatches, fitness trackers with secondary
BLE functionality [42]

Passive Basic advertising transmission, most economical
43]

Functi lit [
REVONAALY nteractive Buttons, LEDs for user interaction [39]

Sensorized Additional sensors (accelerometer, temperature,
humidity) [7]

Programmable Customizable firmware, maximum flexibility

37]

38

5.2 — Design and Components

5.2 Design and Components

5.2.1 Hardware Architecture

Wearable BLE tags integrate several components in minimal space: a low-power ARM
Cortex-M microcontroller managing firmware and protocols, an integrated BLE radio
module (typically Bluetooth 5.0+), PCB or ceramic antenna, lithium coin cell battery
(CR2032), power management circuitry, optional sensors, basic user interface elements,
and protective enclosure [23,43].

External

Power
Power
CR 2032 Management

7 l FIDH 32 MHz

—» LED

ResetSW ——» Wireless MCU — RF —{ F Antenna

JTAGSWD ———»

2wz L[T

| sw

Figure 5.1: BLE Tag Function Block Diagram

5.3 Global Tag Disk Beacon Analysis

The Global Tag Disk Beacon exemplifies modern wearable BLE tag design with key
specifications: 31mm diameter x 10mm thickness (8.2g weight), IP65-rated polycarbon-
ate enclosure, Bluetooth 4.2 with configurable transmission power (up to 200m range),
default broadcast interval (1s), CR2032 battery (1-year life at 1s interval), multifunction
button with bi-color LED, and optional accelerometer/environmental sensors [39].

=
-szm‘;.w Tag Sw
Ly
=7 f‘ﬁ-@ £
o7 : i
5 sy ‘:’::’9‘}
A1e. 2060

Figure 5.2: Global Tag Disk Beacon

39

Wearable BLE Tags: Technology, Integration, and Considerations

5.3.1 Commercial Comparison

Table 5.2 compares leading commercial solutions, highlighting the Global Tag Disk Bea-
con’s optimal balance for wearable applications.

Table 5.2: Comparison of commercial wearable BLE tags

Model Global Tag Estimote Kontakt Card BlueCats AA Minew i7
Prox.
Size/Weight 31x10mm 55x55x 15mm 85.6x54x2.5mm 42x42x11mm 40x12mm
8.2g 15g 10g 30g 12g
Battery lyr CR2032 2yrs CR2477 1-2yrs integrated 4yrs 2xAA 2yrs CR2450
Range/BLE 200m/5.0 70m/5.0 50m/4.2 300m/5.0 80m/5.0
Interface Button+LED None None Button+LED Button+LED
Use Case Wearable Fixed install. ID badges Industrial Personal badges
bracelets

The Global Tag Disk Beacon’s circular form factor, replaceable battery, complete user
interface, and balanced specifications make it ideal for wearable bracelet integration.

5.4 Privacy and Security Considerations

5.4.1 Identified Challenges

Continuous indoor tracking presents distinct privacy and security vulnerabilities. Privacy
risks encompass behavioral profiling, sensitive information inference, personal autonomy
erosion, and unauthorized surveillance potential. Security vulnerabilities include unen-
crypted BLE transmissions, static identifiers enabling tracking, spoofing/cloning suscep-
tibility, replay attacks, signal jamming, and device fingerprinting.

5.4.2 Comprehensive Mitigation Framework

A multi-layered approach addresses these challenges through three complementary strate-
gies:

e Privacy Protection employs transparent informed consent processes, user con-
trol mechanisms, data minimization principles, and anonymization techniques with
limited retention policies.

o Security Enhancement implements identifier rotation (MAC address changes,
ephemeral identifiers), payload-level encryption, authentication requirements, role-
based access control, RF anomaly monitoring, and spatio-temporal validation [23].

e Privacy-by-Design Integration establishes configurable positioning granularity,

data segregation protocols, comprehensive audit trails, and automated data mini-
mization processes.

40

5.4 — Privacy and Security Considerations

5.4.3 Regulatory Compliance and Implementation Standards

GDPR compliance necessitates valid legal basis establishment, comprehensive privacy
notices, data subject rights protection, Data Protection Impact Assessments, and breach
notification procedures. Implementation standards include identity-positioning data sep-
aration, differentiated retention policies, right to disconnect provisions, regular impact
assessments, ethical review processes, staff training programs, and robust incident re-
sponse procedures.

These integrated practices demonstrate that effective indoor positioning systems can
achieve high privacy protection and security standards while building essential user trust
for successful technology adoption.

41

Chapter 6

Architecture and Implementation
of the IoT System for Indoor
Positioning

6.1 Chapter Objectives

This chapter presents the loT-based indoor positioning system for real-time user tracking
within buildings. The system integrates Bluetooth Low Energy (BLE) technology [44,45],
distributed edge computing, and modern web technologies to address the complex chal-
lenges of accurate indoor localization [46,47]. The architecture employs a multi-layered
approach [48]: BLE beacons for signal acquisition, ESP32 microcontrollers as intelligent
scanning stations, a Python backend for centralized processing, and a React frontend
for visualization. By combining established positioning methodologies with modern IoT
practices and containerized deployment, the implementation creates a robust and scal-
able solution tailored to meet the stringent requirements of healthcare environments. The
chapter examines the technical decisions, algorithmic implementations, and architectural
patterns that enable this comprehensive Indoor Positioning System (IPS) to deliver ac-
curate, real-time location services.

42

6.1 — Chapter Objectives

6.1.1 System Requirements and Design Principles

The development of this indoor positioning system was guided by comprehensive func-
tional and non-functional requirements that reflect the operational demands of the deploy-
ment scenario [49,50]. The system must provide room-level positional accuracy sufficient
for patient tracking applications. Real-time performance characteristics demand posi-
tion updates with minimal latency to support emergency response scenarios and routine
patient monitoring activities.

Reliability represents a cornerstone requirement [51], necessitating continuous operation
with minimal downtime across all system components, from edge devices to backend ser-
vices. The architecture must demonstrate scalability to accommodate growing numbers
of BLE tags, scanning stations, and concurrent users without performance degradation.
Security considerations demand robust protection of sensitive patient location data through
encrypted communication channels, secure authentication mechanisms, and comprehen-
sive access controls. The system incorporates role-based authorization to ensure ap-
propriate data access while maintaining compliance with healthcare privacy regulations.
Cost-effectiveness influences technology selection, favoring open-source frameworks and
commercially available hardware components to enable broader adoption across different
institutions.

Usability requirements emphasize intuitive interfaces that accommodate medical staff
with varying technical expertise levels. The system provides clear visualization capa-
bilities for floor maps, real-time tag locations, and system status information. Main-
tainability considerations drive the modular architecture design, facilitating straightfor-
ward debugging, updates, and component replacement through containerized deployment
strategies.

43

Architecture and Implementation of the IoT System for Indoor Positioning

6.2 System Architecture Overview

The indoor positioning system implements a hierarchical architecture that separates con-
cerns across distinct functional layers while maintaining efficient data flow and commu-
nication pathways [48,52]. This design approach enables independent scaling of system
components while ensuring robust integration across the entire solution stack.

| #loTLayer — »{ - MQTTHost Medical Staff
BLE Tags & Pub/Sub Massage System System Use
L ESP32 Stations : o |
[|
L L
] ~ir Backend B IJ- ® Frontend
Fla ol ort 5000 o |Flask = Soch ort 5 S React + TypeScript (Fort 80
A

Figure 6.1: Comprehensive architectural diagram of the IoT indoor positioning system
showing data flow between sensing layer, communication infrastructure, backend process-
ing, and presentation components

The sensing layer forms the foundation of the system through strategically deployed BLE
beacons and ESP32 scanning stations. BLE Disk Beacons manufactured by Global Tag
serve as mobile transmitters attached to users, broadcasting unique identifiers through
standardized advertising packets. ESP32 microcontrollers function as intelligent scan-
ning stations that capture BLE signals, extract relevant data including Received Signal
Strength Indicator (RSSI) values, and perform initial data processing before transmission
to upstream systems.

The communication infrastructure facilitates reliable data transfer between distributed
edge devices and centralized processing systems. Message Queuing Telemetry Trans-
port (MQTT) protocol [53] serves as the primary communication backbone, providing
lightweight publish-subscribe messaging capabilities optimized for IoT deployments [54].
The Wi-Fi network provides connectivity for ESP32 stations, enabling seamless integra-
tion with existing network infrastructure while maintaining appropriate security bound-
aries.

Backend processing systems implement the core positioning algorithms and data manage-
ment functions. A Python-based processing engine subscribes to MQTT data streams,
applies sophisticated filtering and positioning algorithms, and maintains persistent stor-
age of historical location data. Flask framework provides RESTful API services for system

44

6.3 — Core Technologies and Communication Protocols

configuration and data retrieval, while integrated WebSocket capabilities [55,56] enable
real-time data distribution to frontend applications.

The presentation layer delivers comprehensive user interfaces through a React-based
single-page application that provides real-time visualization of tag locations, system sta-
tus monitoring, and administrative configuration tools. The frontend communicates with
backend systems through standard HTTP APIs and maintains real-time connectivity
through WebSocket connections for immediate position updates.

Deployment orchestration utilizes Docker containerization [57] to ensure consistent run-
time environments across development and production deployments. Docker Compose
manages multi-container applications, defining service dependencies, network configura-
tions, and persistent storage volumes that support system reliability and maintainability.

6.3 Core Technologies and Communication Protocols

The system architecture implements a multi-layered communication framework that ad-
dresses distinct operational requirements: lightweight IoT messaging, real-time frontend
updates, and comprehensive API services. Each protocol serves specific functions while
maintaining seamless integration across the entire positioning system.

6.3.1 MQTT Implementation for IoT Communication

Message Queuing Telemetry Transport (MQTT) [53,58] serves as the primary communi-
cation backbone between ESP32 scanning stations and the backend infrastructure. This
lightweight publish-subscribe protocol is specifically optimized for resource-constrained
IoT environments, providing reliable message delivery with minimal bandwidth over-
head [51].

ESP32 devices publish BLE detection data to structured topic hierarchies using JSON
formatting, enabling efficient data organization and selective subscription patterns. The
backend system leverages the Python Paho-MQTT client to subscribe to these data
streams, facilitating continuous ingestion of positioning measurements from distributed
scanning stations.

Beyond data collection, MQTT enables bidirectional device management capabilities.
Status reporting mechanisms allow ESP32 stations to communicate operational health
and connectivity status through dedicated topics. Remote configuration management
utilizes MQTT’s publish mechanism to distribute Wi-Fi credentials, broker settings, and
tag assignment parameters to deployed devices, eliminating the need for physical access
during system updates.

The current development implementation utilizes public MQTT brokers, though pro-
duction deployments require private broker infrastructure with comprehensive security
measures including TLS encryption, client authentication, and role-based access control.

6.3.2 WebSocket Implementation for Real-Time Updates

WebSocket technology addresses the frontend’s requirement for immediate position up-
dates and system event notifications [59,60]. The Flask-SocketIO integration provides

45

Architecture and Implementation of the IoT System for Indoor Positioning

server-side WebSocket capabilities, while React frontend components utilize Socket.IO
client libraries for connection management and real-time event handling [61].

The implementation broadcasts calculated tag coordinates through new_position events,
ensuring all connected clients receive immediate location updates without polling over-
head. System status events, including station connectivity changes and room entry/exit
notifications, utilize dedicated WebSocket channels to maintain comprehensive opera-
tional awareness.

Client-side connection management is handled through the WebSocketContext.tsx com-
ponent, which implements automatic reconnection logic and distributes events to React
components. This architecture ensures that map visualization components receive instan-
taneous updates while maintaining connection resilience during network interruptions.

6.3.3 RESTful API Architecture

Representational State Transfer (REST) is an architectural style for designing networked
applications that relies on stateless, client-server communication using standard HTTP
methods (GET, POST, PUT, DELETE) and uniform resource identifiers (URIs) to per-
form operations on system resources.

The RESTful API layer [62] provides structured access to system resources and histori-
cal data through well-defined endpoints organized into functional categories. The Flask
framework in server2.py implements this architecture with clear separation between
authentication, resource management, and analytics services.

Authentication endpoints handle user lifecycle operations including registration, login,
logout, and profile management. Security is enforced through bcrypt password hash-
ing and session management. Resource management APIs implement complete CRUD
operations for system entities such as tags, scanning stations, rooms, floors, and user ac-
counts, following standard HTTP conventions with appropriate status codes and JSON
formatting.

Analytics endpoints provide access to historical position data, timeline events, and system
performance metrics. These services support both operational monitoring and retrospec-
tive analysis, enabling comprehensive system evaluation and optimization.

Data ingestion operates through a separate service (app_w_db.py) that maintains MQTT
subscriptions and implements thread-safe queue architecture for message processing. This
design decouples real-time data collection from APT response handling, ensuring system
responsiveness under varying load conditions.

Timeline event detection implements geofencing capabilities through point-in-polygon
calculations, identifying room entry and exit events. These events generate database
records and trigger WebSocket notifications, providing real-time situational awareness.
Cross-Origin Resource Sharing (CORS) configuration ensures secure frontend-backend
communication while maintaining appropriate security boundaries for web-based client
access.

46

6.4 — ESP32 Devices: The Intelligent Scanner Stations

6.4 ESP32 Devices: The Intelligent Scanner Stations

ESP32 microcontrollers serve as intelligent scanning stations in our Indoor Positioning
system [63]. These devices were selected for their integrated Wi-Fi, BLE capabilities,
and sufficient processing power. The complete firmware implementation is available in
ESP32_SCRIPT. ino, written in C++ for the Arduino/PlatformIO environment.

R Wi-Fi MQTT Configuration

nialization Connection Connection Reception

BLE Scan Tag JSON MaTT
Cycle Filtering Formatting Publication

Figure 6.2: Flowchart of the firmware logic of the ESP32

6.4.1 Device Initialization and Network Connectivity

Upon startup, the ESP32 follows a systematic initialization process:

1. Wi-Fi Connection: The device initializes and connects to the Wi-Fi network using
preconfigured credentials, implementing reconnection logic to maintain persistent
connectivity.

2. MQTT Broker Connection: After establishing network connectivity, the de-
vice connects to the MQTT broker (e.g., mqtt.eclipseprojects.io) using the
PubSubClient library.

3. Topic Subscription: The ESP32 subscribes to specific topics for receiving com-
mands and configurations (e.g., hospital/ble/config/<BOARD_ID>) and imple-
ments a callback function (callback_mqtt) for processing incoming messages.

6.4.2 MQTT Communication Framework

MQTT serves as the primary communication backbone between ESP32 stations and the
backend system [53,54]. This protocol was selected for its lightweight nature and publish-
subscribe architecture, making it ideal for IoT applications in different environments [51].

ESP32 to Backend Communication occurs through two main topic channels:

47

Architecture and Implementation of the IoT System for Indoor Positioning

o RSSI Data (Topic: hospital/ble/scan): ESP32s publish BLE tag detection
data with JSON payloads containing rssi (signal strength), mac (tag identifier),
station_id (ESP32 identifier), and timestamp. For example:

{
"rssi": -75,
"mac": "AA:BB:CC:DD:EE:FF",
"station_id": "ESP32_01",
"timestamp": 1678886400

o Status Updates (Topic: hospital/ble/status/<BOARD_ID>): ESP32 stations
report their connection status and device information:

{
"esp32_id": "50e22db5cdi2",
"status": "connected",
"ssid": "iPhone di Simone",
"ip": "192.168.1.105"

}

Status messages are published during initial connection, after reconnections, and period-
ically as heartbeats. This mechanism allows the backend service (app_w_db.py) to track
active base stations, monitor connection status, and update the database accordingly.

Backend to ESP32 Communication enables remote management and configuration
through:

o Configuration Messages (Topic: hospital/ble/config): The backend sends
Wi-Fi and MQTT broker configuration data:

{
"esp32_id": "all",
"wifi_ssid": "AP1234",
"wifi_password": "1234",
"mqtt_server": "mqtt.eclipseprojects.io",
"mqtt_port": 1883,
"timestamp": 1745857658
}

o Tag Configuration Messages (Topic: hospital/ble/tags): The backend sends
a list of BLE tags that ESP32 devices should scan for:

48

6.4 — ESP32 Devices: The Intelligent Scanner Stations

L
{
"mac": "c4:42:06:a5:66:13",
"tag_id": "GT_AY02839",
"patient_names": "John Doe"
3,
{
"mac": "£f8:f2:¢c5:76:db:92",
"tag_id": "GT_AY02840",
"patient_name": "Jane Smith"
3
]

By publishing to hospital/ble/config_req/<BOARD_ID>, ESP32 stations can request
configuration, prompting the backend to send current settings. This on-demand retrieval
mechanism ensures operational continuity after power cycles or network disruptions.
Upon receiving tag configuration data, base stations store this information locally to filter
BLE detections, processing only relevant tags. This approach optimizes both processing
resources and network bandwidth while maintaining system efficiency.

6.4.3 BLE Scanning and Tag Detection

For BLE scanning and tag detection, the ESP32 utilizes native BLE APIs (BLEDevice,
BLEScan). A custom callback class MyAdvertisedDeviceCallbacks is implemented with
an onResult method that is invoked upon device detection. This callback performs
several critical functions:

e Checks if the detected device matches a known tag from the configured list
o Extracts the device’s MAC address and RSSI value
e Performs preliminary filtering to focus on relevant detections

e Prepares data for MQTT transmission to the backend

6.4.4 Future Implementation Considerations

Several critical technical considerations could be addressed in future iterations of the
System:

e Power Consumption: Developing power management strategies to optimize con-
sumption, particularly important for battery-operated deployments

e Security: Implementing MQTTS and proper ESP32 authentication mechanisms
on the MQTT broker to ensure secure communication

49

Architecture and Implementation of the IoT System for Indoor Positioning

6.5 Backend Architecture: The Central Nervous System

The backend serves as the core of the system, handling data processing, position calcula-
tions, and communications. Built primarily with Python and Flask, it consists of several
integrated components working together to deliver real-time positioning capabilities.

Scan data reception and
) p o RSS! filtering (EMA) RS5l-to-distance conversion Floor determination
Configuration pubblication
Multilateration FPosition smoothing WebSocket dispatch
; . Room detection ;
(Weighted Least Squares) (Kalman Filter) and DE persistence

Figure 6.3: Flowchart of the data processing pipeline in the backend

6.5.1 Typical Data Workflow
1. ESP32 devices publish RSSI data via MQTT

2. Backend ingests the data into the thread-safe queue
3. Positioning algorithm processes the data through its pipeline
4. Calculated positions are:

o Emitted to frontend clients via WebSocket

e Checked against geofencing rules for potential events and then each event is
saved into the databse

The backend effectively serves as the central nervous system, coordinating data flow be-
tween edge devices and the frontend while performing the complex calculations necessary
for accurate indoor positioning.

6.5.2 Positioning Algorithm Pipeline

After MQTT’s JSON messages are correctly ingested by the backend, the pipeline pro-
cesses data through sequential stages in a dedicated thread:

« RSSI Filter: Applies Exponential Moving Average to smooth raw RSSI values
[64,65] using the formula:

RSSIfiltered = RSSIraw + (1 - a) . RSSIfilteredJrevious

50

6.5 — Backend Architecture: The Central Nervous System

where « is the smoothing factor (default 0.2), giving more weight to historical data
to smooth out rapid fluctuations.

RSSI-to-Distance Conversion: Utilizes the log-distance path loss model [66,67]
with configurable parameters (A and N_PARAM), present in the rssi_to_distance

function:
RSSIg—RSSIfipered

d = 10 10-n

where RSSIj is the reference RSSI at 1 meter (calibrated to -59 dBm in this system)
corresponding to parameter A, and n is the path loss exponent (set to 2.2 for the
hospital environment) corresponding to parameter N_PARAM. These parameters are
crucial and should be empirically calibrated for the specific environment.

Floor Determination: Identifies the most probable floor based on signal strengths.
The process_ble_scan function groups stations by floor. For stations detecting
the tag, a selection criterion might involve choosing stations whose RSSI is above
a threshold (e.g., RSSTinreshoiqa = max(RSST) — 10dBm). The most probable floor
is then selected using:

FmostJrobable = argmax Z J’léfloor(s):f -RSSI

5EStop

where Sy is the set of selected strong-signal stations and ¥ fjo0(5)—y is an indicator
function that equals 1 when the station s is on floor f and 0 otherwise.

Multilateration: When sufficient data is available (at least 3 non-collinear sta-
tions), calculates tag coordinates using Weighted Least-Squares Multilateration [68].
Each station with known coordinates (z;,y;) and estimated distance d; provides an
equation:

(—2)* + (y— ;) = d7

The system employs a weighted least-squares approach that minimizes:

Igl’i;lg;wi <dz -z + (- Z/i)2>2

with weights inversely proportional to the square of the estimated distance:

1
w, = ——"]--
" max(d;,0.1)2
giving higher importance to closer stations (stronger signals). This non-linear opti-
mization problem is solved iteratively using SciPy’s least_squares, starting from
an initial guess. The residual function for each station ¢ is:

ri(z,y) = y/w; - <di - \/(96 —zi)* + (y - yi)2>

51

Architecture and Implementation of the IoT System for Indoor Positioning

o Kalman Filtering: Applies a 2D Kalman Filter [69-71] to smooth positions,
reduce noise, and predict future states. The filter tracks the tag’s state vector,
which includes position (xy,yx) and velocity (vs x, vy k) at time step k:

Tk
Yk
Vg, k
’Uy7]€

X =

The filter operates in two recursive steps:

1. Prediction (Time Update):
Xplk—1 = FrXp_1jp—1

Pyt = FePp_11Fp + Qp

2. Update (Measurement Update): The innovation (measurement residual)
yi and innovation covariance Sy are:

Vi = 2k — HpXpjp—1

Sy, = HyPy HY + Ry,

The optimal Kalman gain Ky is:
K = Py H{ S,
The updated state estimate xy, and updated covariance Py, are:
Xk = Xgjk—1 T KiY
P = (I - KeHg) Py
Implementation details include:

— Initialization with xgp = 0 and Pgjg = I4

— State transition matrix Fy (with dt = 0.1 default time step):

1 0 dt 0
01 0 dt
Fr=100 1 o0
00 0 1

— Process noise covariance Qy (with default process variance ¢ = le — 3):

52

6.5 — Backend Architecture: The Central Nervous System

— Measurement matrix Hy, (as only position is measured):

1000
H’“_lo1001

— Measurement noise covariance Ry (with default measurement variance r =

le —1):
10 r 0
R’“:T'[o 1]:[0 r]

Each tracked tag has its own Kalman filter instance.

Room Entry/Exit Detection (Simple Geofencing): Once a reliable position
(x, y, floor) for a tag is obtained, the system determines if the tag is within a
predefined room using a point-in-polygon check. This generates TimelineEvent
entries for room entry and exit events.

Emission of the position to the frontend The smoothened position is sent via
WebSocket.

53

Architecture and Implementation of the IoT System for Indoor Positioning

6.6 Data Persistence and Management

The system’s data persistence layer is built upon SQLite [72], a lightweight yet robust
database solution that provides an optimal balance between simplicity and functionality
for the current implementation scale.

The database architecture leverages SQLAlchemy as the Object-Relational Mapping
(ORM) framework [73], implemented through db_w_add_remove2.py and create_db.py.
This abstraction layer enables seamless interaction between Python objects and database
entities through well-defined model classes that map directly to database tables. The
ORM approach enhances code maintainability while providing type safety and automatic
relationship management between related entities.

6.6.1 Data Model and Schema Design

The database schema encompasses seven primary entities, each serving distinct functional
requirements within the IoT ecosystem.

1. User Table 2. Tag Table 3. Station Table
Authentication and feedback collectio BLE device to patient mapping Base station location mapping
Field Type Notes Field Type Notes Field Type Notes
id Integer PK id Integer PK id Integer PK
email String Unigue mac String Unigue station_id String Unique
usemame String Not Null tag_id String Not Null x Float X coordinate
password Sinng Berypt patient_names Siring Default=" ¥y Float Y coordinaie
feedback Integer 1-5 room_name String MNullable
review String Optional floor String Default="Ground"
4. Config Table 5. TimelineEvent Table
System configuration key-value store Patient room fransition tracking
Field Type Notes Field Type Notes
key String PK id Integer PK
value String Not Null tag_id String Not Null
room String Not Null
entry_time Integer UNIX Timestamp
exit_time Integer UNIX Timestamp

duration Integer Seconds in room

Figure 6.4: SQLite database schema

The User model manages authentication credentials and profile information, providing
the foundation for system access control. The Tag model, which stores essential identifi-
cation data including MAC addresses, descriptive names, assignment status, and opera-
tional state.

Infrastructure components are represented by the Station model, capturing positioning

54

6.6 — Data Persistence and Management

coordinates with floor-level granularity and operational status indicators. Spatial organi-
zation is achieved through Room and Floor models, where rooms define boundary coor-
dinates for location-based services, and floors maintain map imagery with corresponding
dimensional data for accurate spatial representation.

Historical data persistence is managed through TimelineEvent that captures significant
system events like room transitions associated to a timestamp. This approach ensures
both granular position tracking and event-driven monitoring capabilities.

6.6.2 Database Operations and Transaction Management

Database initialization is orchestrated by create_db.py, which establishes the complete
table structure and provisions essential system data, including default administrative user
accounts. The backend API layer, implemented in server2.py, executes CRUD Oper-
ations through dedicated database functions or direct SQLAlchemy session management,
ensuring transactional integrity across all data operations.

The system manages four distinct data categories: user authentication and authorization
data, system configuration parameters including device registrations and spatial defini-
tions, real-time and historical positioning data, and MQTT broker configuration settings.
This categorization enables efficient data organization and targeted optimization strate-
gies for different access patterns.

While SQLite provides substantial advantages for the current implementation, including
zero-configuration deployment and excellent reliability, it presents certain architectural
constraints. The system’s concurrency capabilities are limited under high write-load sce-
narios, and scalability remains constrained compared to client-server database solutions.
Additionally, some advanced database features available in enterprise solutions are not
present in SQLite’s feature set.

These limitations represent acceptable trade-offs for the thesis project’s scope, though
production deployments at scale would benefit from migration to more robust database
solutions such as PostgreSQL or MySQL. The current architecture’s modular design
through SQLAIchemy facilitates such future migrations with minimal code modifications,
preserving the investment in application logic while enabling infrastructure evolution.

59

Architecture and Implementation of the IoT System for Indoor Positioning

6.7 Frontend Architecture and User Experience

6.7.1 Frontend Architecture and Implementation

The frontend architecture implements a modern Single Page Application (SPA) using
React as the foundational framework [52], providing an intuitive and responsive interface
for system interaction. The application leverages contemporary web technologies includ-
ing React Router for client-side navigation, TypeScript for enhanced code reliability and
maintainability, and Socket.IO Client for real-time communication. The frontend code is
organized according to the Flux architecture pattern with Redux for global application
state management, complemented by React’s Context API for component-level state dis-
tribution. This hybrid architectural approach facilitates management of complex state
that includes real-time positioning data, system configurations, and user authentication
information.

The component architecture follows a modular design pattern with clear separation of con-
cerns across different functional layers. Application initialization begins with main.tsx as
the entry point, which orchestrates context providers and initializes App.tsx to define the
routing structure and URL-to-component mappings. The core component hierarchy en-
compasses view-level components including Login.tsx, Register.tsx, Dashboard.tsx,
Tracking.tsx, Analytics.tsx, and Config.tsx, each serving distinct functional re-
quirements within the application workflow.

Layout consistency is maintained through HospitalLayout.tsx, which provides a unified
structural foundation incorporating HospitalHeader.tsx and HospitalSidebar.tsx
components. Interactive mapping capabilities are delivered through specialized compo-
nents IndoorPositioningMap.tsx and FloorMap.tsx, which render real-time tag loca-
tions and provide spatial visualization of the tracking environment using optimized SVG
rendering for floor plans combined with React components for interactive elements.

6.7.2 Real-time Communication and Performance Optimization

To ensure smooth real-time updates, the application implements efficient WebSocket
connection management through the WebSocketContext.tsx component, which provides
a consistent API for subscribing to positioning and system events including new_position
events and station_status_update notifications. This centralized approach to real-time
connection management simplifies the implementation of reactive features throughout the
application while maintaining optimal performance even with numerous tags displayed
simultaneously at high update frequencies.

The frontend bundle is optimized through advanced performance strategies including code
splitting and lazy loading techniques, reducing initial loading times and improving user
experience. Static resources are served through Content Delivery Network (CDN) infras-
tructure to ensure fast response times even in distributed deployments. Map visualization
performance is further enhanced through an optimized point-in-polygon algorithm used
to determine room occupancy, specifically designed to minimize computational load on
the browser while maintaining accuracy.

Data flow follows a structured pattern beginning with user authentication through the

56

6.7 — Frontend Architecture and User Experience

login interface and authentication context managed by AuthContext.tsx. Following suc-
cessful authentication, components initialize with comprehensive data fetching operations
retrieving floors, stations, and tag configurations. The indoor positioning map compo-
nent renders using this initial dataset while continuously integrating WebSocket updates
for seamless real-time functionality.

6.7.3 User Interface Design and Accessibility

The user interface has been developed following design system principles with reusable
components that maintain visual and behavioral consistency throughout the application.
Tailwind CSS implements utility-first styling alongside the use-mobile.tsx hook for
adaptive layouts, ensuring responsive design that adapts to different screen sizes and
maintains usability on both desktop workstations and mobile devices used by medical
personnel.

Analytical dashboards utilize Recharts data visualization library, specifically chosen for
its React compatibility and optimized performance characteristics. Charts are designed
to be fully interactive, allowing users to explore data through hover interactions, zoom
functionality, and dynamic selections, providing comprehensive data analysis capabilities
within the hospital environment.

To ensure accessibility and inclusive design, the interface implements WCAG 2.1 guide-
lines including comprehensive support for keyboard navigation, adequate color contrast
ratios for optimal readability, and full compatibility with assistive technologies. This
inclusive approach ensures that the system remains usable by operators with diverse
abilities and accessibility requirements.

Visual feedback mechanisms including Framer Motion animations and real-time status
indicators provide immediate confirmation of user actions, while the interface emphasizes
intuitiveness through clear navigation patterns and consistent Ul elements. Additional
contexts manage theme preferences and sidebar state, ensuring consistent user interface
behavior across all application views.

This comprehensive frontend implementation represents a careful balance between ad-
vanced functionality, optimal performance, and exceptional usability, creating an inter-
face that effectively meets the complex operational requirements of an indoor positioning
system within a demanding hospital environment.

6.7.4 Frontend Feature Showcase

Although the system is not implemented in a real hospital, the developed system is
named Hospital Monitoring System because it simulates the core functionalities and
workflows of actual hospital monitoring environments, providing a realistic framework for
tracking patient that would be essential in real-world healthcare settings.

This section presents the main frontend features that enable healthcare operators to
monitor patients, visualize analytical data, and manage the system efficiently.

o7

Architecture and Implementation of the IoT System for Indoor Positioning

Authentication and Account Management

The system implements a robust authentication and account management mechanism
to ensure that only authorized personnel can access patient monitoring functions and

sensitive information.

+ Back to Home @

Hospital Monitoring System

Create your account to get started

¢ Back to Home

€ Back to Login

Register New Account Hospital Monitoring S
Fill in the details to create your account osplta onltorlng ystem - . .
Sign in to access your dashboard HOSpItal Monltorlng System

Usemame Password Recovery

username

Login Secure Access
Email Enter your credentials to continue
' Reset Your Password
your.email@hospital.com Email Enter your email address and we'll generate a new

password for you
Hospital/Institution your.email@hospital.com

Email Address
Hospital Name Password Forgot password?

your.email@hospital.com

Remember your password? Back to Login

Password

Don't have an account? Register

Confirm Password

Need help? Contact Support

By logging in. you agre to our Tems of Service and Privacy

7 Login

lerms of Service and

(a) Registration interface (b) Login interface (c) Password reset interface

Figure 6.5: Authentication interfaces showing registration, login, and password recovery
forms with security features and user-friendly design.

As shown in Figure 6.5a, the registration interface has been designed with particular
attention to usability and security:

e Input Validation: Each field implements real-time validation to ensure that en-
tered data meets format and security requirements.

e Password Security: The system requires password confirmation and implements
strength checks to ensure secure credentials.

¢ Regulatory Compliance: Links to terms of service and privacy policy ensure
transparency and compliance with healthcare data protection regulations.

e User Experience: The minimalist design with clear instructions facilitates the
registration process even for users with limited technical skills.

58

6.7 — Frontend Architecture and User Experience

Figure 6.5b illustrates the login interface, designed to balance security and ease of use:

o Simplified Access: Essential form that requires only email and password to min-
imize access times in emergency situations.

¢ Recovery Functionality: Link for forgotten password recovery, with identity
verification process through institutional email.

e Secure Access: "Secure Access" badge indicating the implementation of advanced
security protocols, including connection encryption.

e Intuitive Navigation: Links to return to home or register a new account, facili-
tating navigation for new users.

o Persistent Sessions: The system implements secure authentication tokens that
allow persistent sessions on verified devices, reducing the need for frequent logins.

The authentication system is integrated with the backend through REST APIs that im-
plement security best practices [74], including JWT (JSON Web Token) with expiration,
secure password hashing with berypt, and protection against brute force attacks through
access attempt limitation. These measures are fundamental in a healthcare context where
patient data protection is subject to stringent regulatory requirements.

59

Architecture and Implementation of the IoT System for Indoor Positioning

Main Dashboard

The main dashboard provides a comprehensive overview of the system’s real-time status,
allowing operators to quickly monitor all critical aspects of the positioning infrastructure.

. Q)) HOSPITAL
Welcome back, mario & e

Room Occupancy Active Tags Monitoring Stations Recent Events
rey

wn w @I Last 24k

Ly System Status Yy Alert= Center 1 Alerts

(@ Offline Stations
i R

o4 Station Status

Figure 6.6: Main dashboard of the indoor positioning system showing real-time status of
room occupancy, active tags, monitoring stations, and recent events.

The dashboard (Figure 6.6) is structured in modular widgets that present critical infor-
mation in summary format:

e Room Occupancy: Displays the percentage of currently occupied rooms, with
indication of the exact number of monitored rooms.

e Active Tags: Shows the number of BLE tags currently registered and active in
the system, with indication of the percentage of functioning tags.

e« Monitoring Stations: Presents the status of ESP32 stations, highlighting how
many are operational and how many are offline.

e« Recent Events: Chronicle of the latest system events in the preceding 24 hours,
represented graphically to facilitate identification of temporal patterns.

o Patient Status: Categorizes monitored patients based on their status (normal,
attention, critical), providing immediate visibility on situations requiring interven-
tion.

60

6.7 — Frontend Architecture and User Experience

e Station Status: Summarizes the operational status of ESP32 stations, distinguish-
ing between online, offline, and under maintenance.

o Alert Center: Notifies system problems requiring attention, such as offline stations
or data anomalies.

The dashboard implements real-time updates through WebSocket [55], ensuring that
displayed information is always synchronized with the current system status without
requiring manual page refresh. This approach is particularly important in a hospital
context where information timeliness can be critical.

61

Architecture and Implementation of the IoT System for Indoor Positioning

Map Visualization and Real-time Positioning

Map visualization represents the heart of the positioning interface, allowing operators to
visually locate patients within the hospital facility.

Indoor Positioning

Manitor patient and equipment locations in real-time

@ Ground Fioor ®3/ 9 5o @27 a a 2w

4 Room Occupancy 1Active Rooms A Patient Monitoring ghebeshy) ©
100mGG - Ground Floor i
earch patients by name or tag ID..

Room A - Ground Floor [2]
smim oGl avems

Led_prova simo2

" Room A - Ground Floor A - Ground Floor

T 17:52:34 (0 ap T 75233 (1 g

View details > View details >

Figure 6.7: Detailed Indoor positioning map visualization.

The map visualization interface (Figure 6.7) includes several key components:

o Interactive Map: Visual representation of the hospital floor plan with rooms
defined as colored polygons. The map supports zoom, pan, and selection operations
to facilitate navigation in complex structures.

o Tag Positioning: BLE tags are visualized as colored points positioned based on
coordinates calculated by the trilateration algorithm [68]. Each tag is associated
with a specific patient or equipment.

e Floor Selection: A selector allows quick switching between different building
floors, maintaining visual consistency during navigation.

e Status Indicators: Visual counters show the number of active stations and mon-
itored tags on the current floor.

62

6.7 — Frontend Architecture and User Experience

e Occupancy Panel: A side panel lists currently occupied rooms with the count of
tags present in each.

e Patient Monitoring: A dedicated section shows details of currently monitored
patients, including their current position and last detection.

The map implementation uses a combination of SVG for floor plan representation and Re-
act for managing interactive elements. Tag coordinates are updated in real-time through
WebSocket connection [61], ensuring smooth visualization of movements. Room defi-
nition as polygons enables implementation of point-in-polygon algorithms to determine
room occupancy and generate entry/exit events.

63

Architecture and Implementation of the IoT System for Indoor Positioning

Timeline and Historical Monitoring

The system offers advanced features for historical monitoring of patient movements, en-
of residence time in different areas of the

abling retrospective analysis and evaluation

facility.

~. Patient Monitoring

4 Back to patient list GT_AY02839
[+3] H
~ paziente_39 x
Status
Normal - Monitoring
& Current Location () Last Updated
Room A - First Floor 11:20:42
% Coordinates @ Floor
X: 15.02, Y: 12.92 Firet Floor
© Movement Timeline 117 events
Room Entry Exit Duration ‘
) Room A - First Floor B4,/85/2025 17:82:59 B9/85/2825 17:83:12 88:88:13 .
' Room A - First Floor B0,/85/2025 17:82:43 B9/85/2825 17:82:46 88:88:83
Room A - First Floor BE/85/2025 18:52:26 B8/85/2825 18:52:37 88:88:11
! Room A - First Floor BE/85/2025 18:52:86 B8/85/2825 18:52:17 88:88:11
! Room A - First Floor BE/85/2025 18:51:34 B8/85/2825 18:51:45 88:88:11
) Room A - First Floor BE/85/2025 18:51:18 B8/85/2825 18:51:29 88:88:11 '

Figure 6.8: Timeline interface for historical monitoring of patient movements.

The timeline interface (Figure 6.8) includes:

o Patient Information: Header with patient identifier, current status, and associ-
ated tag.

¢ Current Position: Display of the room where the patient is currently located,
with precise coordinates and time of last update.

e Movement History: Detailed table recording all patient movements, with indi-

cation of room, entry time, exit time, and duration of stay.

6.7 — Frontend Architecture and User Experience

« Temporal Navigation: Controls to scroll through history and view older events,
with possibility to filter by date.

This functionality is particularly useful for contact tracing in case of nosocomial infections
[49], for space utilization analysis, and for verification of care protocols that require
regular patient visits.

Data Analysis and Visualization

The system includes an advanced analysis module that processes positioning data to pro-
vide meaningful insights on space utilization and movement patterns within the facility.

| System Analytics
o Total Events Avg. Occupancy Time = Peak Activity Hour Station Uptime
~ = all
1 13s 11:00 75%
£ Occupancy Ar Movement il Technical

Floor Occupancy Occupancy Trends ©

' e s 100%

0.5 Room A - First Floor 1

Figure 6.9: Occupancy analysis dashboard showing aggregated statistics and graphical
visualizations.

The occupancy analysis dashboard (Figure 6.9) includes:

e« Key Metrics: Summary indicators showing total events, average occupancy time,
peak activity hour, and station uptime.

¢ Occupancy by Floor: Bar chart visualizing current occupancy for each floor,
with distinction between occupied and available spaces.

¢ Occupancy Trends: Visualization of historical occupancy trends, with utilization
percentages for each room.

o Time Selection: Controls to filter data based on specific time intervals (day, week,
month).

65

Architecture and Implementation of the IoT System for Indoor Positioning

| System Analytics .
) Total Events Avg. Occupancy Time = Peak Activity Hour Station Uptime
e al
1 13s 11:00 5%
£ Occupancy A Movement Jll Technical
Patient Movement Timeline B sz ® Movement Analysis ©

= (Jun 4, 2025)

Most Active Areas

® Room A - First Floor 1 events

Peak Activity Time Average Duration
11:00 - 12:00 0 min

..

Figure 6.10: Movement analysis dashboard visualizing temporal patterns of patient move-
ment. Includes a timeline of movement events by hour of day, analysis of most active
areas, peak activity hours, and average duration of stay in rooms.

The movement analysis dashboard (Figure 6.10), provides:

¢ Movement Timeline: Temporal graph showing the number of patient movements
per hour of day, highlighting recurring patterns.

e Most Active Areas: Ranking of rooms with highest activity based on event count.
o Peak Hours: Identification of time slots with highest movement activity.

e Average Duration: Analysis of average time patients spend in different rooms.

66

6.7 — Frontend Architecture and User Experience

| System Analytics
System statistics and data visualization
o Total Events Avg. Occupancy Time = Peak Activity Hour : station Uptime
W 1 13s ~ 11:00 15%
£ Occupancy A Movement il Technical
Station Status Event Distribution by Floor
'."I":‘ 253
mC e mm Offline

System Performance ©

e T 5% e 1 3

Figure 6.11: Technical analysis dashboard showing system operational status and perfor-
mance metrics.

The technical analysis dashboard (Figure 6.11), provides infrastructure performance as:

e Station Status: Pie chart showing the percentage of online and offline stations.

« Event Distribution: Visualization of positioning event distribution among differ-
ent building floors.

o System Performance: System uptime metrics, based on station activity.
e Data Points: Total count of data points collected since system installation.

e Active Stations: Number of ESP32 stations currently connected and transmitting
data.

These analytical dashboards are implemented using React data visualization libraries [52],
such as Recharts and D3.js, which enable interactive and responsive graphical represen-
tations. Data is retrieved through REST API calls to the backend, with the possibility
of exporting in standard formats like CSV for further analysis.

67

Architecture and Implementation of the IoT System for Indoor Positioning

Configuration and Administration

The system includes a comprehensive administration interface that allows configuration
of all aspects of the positioning infrastructure.

5 System Configuration

o Tags il Stations — System
210wl 2wul Configured
3
> Tags Management i1l Stations Management @ Sy 5,
All Tags @ AddTag
© GT_AY02839 () Xiaomi Smart Band &
a:a2:06:a5:66:13
paziente 30 Paziente8d

Figure 6.12: BLE tag management interface that enables administration of tracking de-
vices.

The BLE tag management interface (Figure 6.12) includes:

o Tag List: Display of all tags registered in the system with their assignment status.

e Tag Detalils: For each tag, MAC address, unique identifier, and associated patient
are shown.

¢ Management Functions: Buttons to add new tags, manage assignments and
delete old tags.

¢ Search Filters: Search field to quickly find specific tags in systems with numerous
devices.

68

6.7 — Frontend Architecture and User Experience

& System Configuration ol x
o
Tags Stations System
S . all . = ¥
2toul 2 10mal Configured
> Tags Management Il Stations Managemer 82 System Settings
Al Stations Al loors @ AddStation
|| bBss3s28sf24 Ll b06b60286124 | d46b60286124
» Offine Griine Oriine
xas vs xs v xw v
Room A - First Floor Reoom A - First Floor Room A - First Floor
| 4 ec5636286124
xw vs
Room A - First Floor

Figure 6.13: ESP32 station management interface showing operational status and con-
figuration of each scanning station.

The ESP32 station management interface (Figure 6.13) presents:

e Station List: Display of all scanning stations with indication of their operational
status (online/offline).

o Station Details: For each station, unique identifier, installation coordinates (X,
Y), and the room where it is positioned are shown.

« Filters: Options to filter stations by status or installation floor.

« Management Functions: Buttons to add new ESP32 stations, manage details
and delete old stations.

69

Architecture and Implementation of the IoT System for Indoor Positioning

& System Configuration

Tags
©

2 notal

) Tags Management

Stations

4 total

=
=

System

Configured

Q
-

= WiFi Configuration

Network Name (SSID)

iPhone di Simone

= MQTT Broker

Broker Address

mamecipseprojectsio

Network Password Broker Port
................... 1883
O Save WiFi Settings & Save MQTT Settings
v System Status
B Database APl v WebSocket Service

.
© armowe

@ About

o)
m

Simone Terranova

? a @

Figure 6.14: System configuration interface that allows management of connectivity and

communication settings.

B Hospital Monitoring System

Tag Management

BLE Tracking

The system configuration interface (Figure 6.14) is useful to set:

« Wi-Fi Configuration: Settings for Wi-Fi connectivity of ESP32 stations, includ-
ing SSID and password.

o« MQTT Configuration: Parameters for the MQTT broker [53] used for IoT com-

munication, including address and port.

e System Status: Real-time monitoring of backend services, including API database
and WebSocket service.

e System Information: Details about the hospital monitoring system, including

used technologies and main functionalities.

70

Refresh % Check Status

v
Real-time Updates

6.7 — Frontend Architecture and User Experience

These configuration interfaces are designed to be used by technical personnel responsi-
ble for system installation and maintenance. Access to these functions is protected by
role-based authentication and authorization, ensuring that only users with appropriate
privileges can modify critical settings.

User Features and Accessibility

The system includes several user-oriented features that improve the overall experience
and facilitate interaction with the platform.

Profile Information Edit Profile
Full Name Email Address
(o) mario
Position Department
mario
staff Staff General
Department: General |

Save Changes

& mario.rossiospedale.com

Account Security

Change Password
New Password Confirm New Password
Update Password

€ Back to Dashboard

Figure 6.15: User profile management interface that allows modification of personal in-
formation and security settings.

Through the user profile management interface (Figure 6.15), it is possible to access:

e Profile Information: Display and modification of personal data such as name,
email, and department.

e Account Security: Functionality for password change with password strength
indications.

o Preferences: Options to customize user experience (not shown in the image).

71

Architecture and Implementation of the IoT System for Indoor Positioning

Figure 6.16 illustrates the integrated support assistant and feedback interface:

= X
")~ HMS Support Assistant :

Hello! &

‘i) How can | assist you today? Rate Your Experience bk

Your thoughts are important! Please rate the system and

feel free to leave a review.

Write your review here...

Cancel Submit Feedback

(b) Feedback interface

Message... L]
(a) Integrated support assistant

Figure 6.16: Support Assistant and Feedback interfaces.

The support assistant (Figure 6.16a) features include:

¢ Chat Interface: Dialog window for natural language interactions with the assis-
tant.

e Contextual Responses: The assistant provides specific information and guides
based on the user’s current context.

e Accessibility: The assistant is designed to be accessible to users with different
levels of technical competence.

The feedback interface (Figure 6.16b) components include:

e Rating System: Star mechanism to quantitatively assess user experience.
e Comments Field: Text area to provide detailed feedback and suggestions.

e Submit Feedback: Button to submit the evaluation to the development team.

These user-oriented features are designed to improve overall system usability, provide
contextual assistance, and collect feedback for continuous improvement. The user inter-
face has been developed following responsive design principles, ensuring that the system
is usable on different devices, from desktops to tablets used by medical personnel during
ward rounds.

72

6.8 — Security Framework and Implementation

6.8 Security Framework and Implementation

Security represents a fundamental system requirement given the sensitive nature of pa-
tient location data and the critical operational environment of healthcare facilities. The
implemented security framework addresses authentication, communication protection, de-
vice security, and data privacy through comprehensive measures across all system layers.
Authentication mechanisms utilize berypt password hashing for credential protection
combined with token-based session management. The frontend AuthContext.tsx man-
ages authentication state while backend endpoints in server2.py provide secure login,
registration, and profile management services. Role-based access control frameworks
support granular permission management appropriate for healthcare environments with
diverse user roles and responsibilities.

Communication security requires encrypted channels for all data transmission paths.
Frontend-to-backend REST communications utilize HT'TPS with TLS 1.3 encryption,
while real-time WebSocket connections employ WSS protocols. ESP32-to-broker and
backend-to-broker MQTT communications require MQTTS implementation with robust
client authentication mechanisms. Production deployments necessitate private MQTT
broker infrastructure with comprehensive access controls and monitoring capabilities.
Device security encompasses physical protection through tamper-evident enclosures and
secure mounting systems, firmware integrity through secure over-the-air update mecha-
nisms, credential management through encrypted non-volatile storage, and network iso-
lation through dedicated VLANs with appropriate firewall configurations.

Backend security implementations include comprehensive input validation to prevent
SQL injection, cross-site scripting, and command injection attacks. SQLAlchemy ORM
provides inherent protection against SQL injection while maintaining efficient database
operations. FError handling mechanisms prevent information leakage through sanitized
responses that avoid exposing system internals.

Data privacy measures implement data minimization principles by limiting collection to
essential information, anonymization techniques where feasible, strict access controls on
patient data, and clear retention policies governing data storage duration. The system
maintains adherence to relevant healthcare regulations including GDPR. and HIPAA re-
quirements.

73

Architecture and Implementation of the IoT System for Indoor Positioning

6.9 Deployment Strategy and Containerization

The deployment architecture utilizes Docker containerization and orchestration to ensure
consistent runtime environments, simplified scaling, and robust operational management
across development and production environments [57].

Name Port(s) CPU (%) Last started Actions
® nuovo_frontend_hms - 48.15% 2 hours ago e o
[] hms_database_service 5000:5000 (7 3.34% 2 hours ago [] o
® hms_backend_server 5001:5001 2 44.81% 2 hours ago [] H W
[] hms_frontend 80:80 7 0% 2 hours ago [] o

Figure 6.17: Docker container deployment architecture showing service orchestration,
networking, and persistent storage configuration.

Docker Compose orchestration through docker-compose.yml defines the complete multi-
container application including service definitions, network configurations, volume map-
pings, and dependency relationships. The database service manages SQLite persistence
through Docker volumes that ensure data durability across container lifecycle events. The
backend service utilizes Dockerfile.backend_server_new_version to create optimized
Python runtime environments with Flask and Gunicorn configuration for production
readiness.

Frontend deployment employs Dockerfile.frontend_app_new_version with multi-stage
builds that compile React applications and serve static assets through Nginx web servers.
This approach optimizes container size while providing robust serving capabilities for
production environments.

Network architecture utilizes custom bridge networks that enable secure inter-container
communication using service names while maintaining isolation from external networks.
Named Docker volumes provide persistent storage for database files and configuration
data that survives container updates and deployments.

The containerized approach supports horizontal scaling through container replication,
load balancing through proxy configurations, and rolling updates through orchestrated
deployment strategies. Development environments benefit from rapid deployment and
consistent configuration, while production environments achieve robust isolation and re-
source management.

Container monitoring and logging capabilities provide operational visibility through stan-
dard Docker tools and third-party monitoring solutions. Health check implementations
ensure service availability while restart policies maintain system resilience in the face of
component failures.

74

Chapter 7

System Installation and
Deployment

This chapter presents the comprehensive methodology for deploying the BLE-based in-
door positioning system, from initial site analysis through system validation and main-
tenance considerations. The deployment process follows a systematic approach encom-
passing pre-installation planning, physical implementation, system configuration, perfor-
mance validation, and scalability considerations.

7.1 Pre-Installation Planning and Site Assessment

7.1.1 Environmental Analysis Methodology

The environmental analysis methodology provides the foundation for optimal system
deployment through comprehensive site assessment. This process involves four critical
phases that determine technical requirements and installation parameters.

Physical inspection encompasses detailed assessment of room dimensions, geometry, con-
struction materials, and furnishing elements. As highlighted by [75], reinforced concrete
walls, metal structures, and mirrors significantly affect BLE signal propagation, creat-
ing shadow zones or multiple reflections that must be accounted for in the deployment
strategy.

Interference mapping identifies electronic devices, household appliances, and electromag-
netic interference sources operating in the 2.4 GHz band. According to [76], microwave
ovens, Wi-Fi routers, and cordless phones can compromise BLE signal quality, requiring
careful consideration during site planning.

Movement path analysis examines typical movement patterns within rooms to identify
high-traffic areas requiring enhanced coverage. Following [77] recommendations for track-
ing optimization, this analysis ensures adequate signal coverage in areas of primary user
activity.

Environmental conditions assessment evaluates temperature, humidity, and ventilation
factors. As emphasized by [78], these conditions significantly impact battery life and
BLE signal stability, influencing both hardware selection and maintenance scheduling.

75

System Installation and Deployment

7.1.2 Technical Specifications and Requirements

Based on the environmental analysis and findings from Chapter 6, the following technical
specifications establish the deployment parameters:

System coverage requirements specify a minimum of 3-5 ESP32 receiver stations per room
to enable accurate trilateration. Optimal mounting height ranges from 2-2.5 meters, with
maximum spacing of 7-10 meters between adjacent stations following [79] guidelines.
Infrastructure requirements encompass continuous power supply with backup capability
and Wi-Fi coverage ensuring RSSI values greater than -70 dBm at all installation points.
The system targets localization accuracy under 2 meters mean error, appropriate for
domestic positioning contexts.

7.1.3 Site Mapping and Device Positioning Strategy

Site mapping creates detailed area maps with precise dimensional measurements and
scaled floor plans. A Cartesian coordinate system with fixed reference points enables accu-
rate specification of receiver station positions, maintaining consistency with the database
configuration established in Chapter 6.

Device positioning follows established optimization principles to ensure comprehensive
coverage and measurement accuracy. Complete coverage requires each area to be moni-
tored by at least three receiver stations for accurate trilateration. Interference minimiza-
tion positions stations to avoid conflicts with existing electronic equipment.

Geometric optimization arranges stations to maximize triangulation accuracy while avoid-
ing collinear configurations, as recommended by [80]. Perimeter positioning places sta-
tions along room perimeters at 2-meter height following [81] best practices.

The positioning plan specifies precise coordinates (x, y) in the reference system, mounting
height and orientation, power supply method, and unique identifier (station_id) for each
station.

7.2 Physical Installation and Hardware Configuration

7.2.1 Component Preparation and Pre-Configuration

Pre-installation preparation ensures systematic component verification and configuration
before deployment. Component inventory includes ESP32 receiver stations, Global Tag
Disk Beacon BLE tags, power adapters, extension cables, and specialized installation
tools.

ESP32 pre-configuration involves loading the BLE scanner /receiver firmware developed
in Chapter 4, configuring Wi-Fi credentials and MQTT parameters, and assigning unique
identifiers (station_id) to each station. Functional verification tests network connectiv-
ity, tag detection capabilities, and backend communication before physical deployment.

7.2.2 Physical Deployment and Installation

Physical installation follows the predetermined layout with precise position marking using
surveying tools. ESP32 receiver stations are mounted at planned coordinates with proper

76

7.3 — System Configuration and Calibration

orientation to ensure optimal coverage patterns. The installation demonstrates strategic
positioning:

Station 1-4 occupy corner positions at approximately 2-meter height, while Station 5
provides center ceiling mount coverage at equivalent height. This arrangement ensures
comprehensive area coverage while minimizing potential interference zones.

Power cable management maintains stable connections while minimizing visual impact
through concealed routing and proper cable securing techniques.

7.2.3 BLE Tag Configuration and Network Integration

Global Tag BLE Disk Beacon configuration encompasses comprehensive hardware prepa-
ration and network integration. Hardware preparation includes battery status verification
and advertising parameter setup according to specifications outlined in Chapter 5.

Each tag receives unique identifier assignment for system integration:

e Tag 1: MAC c4:42:06:a5:66:13, [D: GT_AY02839
e Tag 2: MAC £8:£2:¢5:76:db:92, ID: GT_AY02840
e Tag 3: MAC £d:50:aa:ad:e7:9f, ID: GT_AY02841

Wearable integration incorporates tags into ergonomic bracelets following user comfort
and antenna optimization considerations detailed in Chapter 5.

Network configuration establishes static IP addressing for receiver stations, MQTT traffic
prioritization with appropriate broker parameters, WPA2/WPA3 security protocols, and
Quality of Service (QoS) settings ensuring reliable data transmission.

7.3 System Configuration and Calibration

7.3.1 Software Initialization and Development Environment

Post-installation configuration utilizes the frameworks established in Chapter 6. De-
velopment environment setup includes Python library installation (Flask, SQLAlchemy,
paho-mqtt, numpy, scipy), SQLite database initialization with required table structures,
and Flask backend configuration incorporating MQTT broker parameters and positioning
algorithm settings.

7.3.2 System Calibration and Parameter Optimization

System calibration adapts the Log-Distance Path Loss model through systematic RSSI
measurement at known distances to determine RSSIy and path loss exponent N parame-
ters. This process establishes the fundamental relationship between signal strength and
distance for the specific deployment environment.

Algorithm parameter optimization fine-tunes Exponential Moving Average and Kalman
filter parameters for optimal noise reduction and position stability. Weighted multilat-
eration algorithm parameters undergo calibration to adapt to the specific environmental
geometry and propagation characteristics.

77

System Installation and Deployment

7.4 System Validation and Performance Assessment

7.4.1 Coverage Validation and Signal Analysis

Initial validation employs systematic signal coverage testing using test Disk Beacons to
map system performance across the deployment area. This process identifies optimal
coverage zones where three or more stations provide reliable detection, marginal areas
with limited coverage, and potential shadow zones requiring attention.

Coverage analysis establishes baseline performance metrics and identifies areas requiring
adjustment before full system commissioning.

7.4.2 Accuracy Testing and System Performance

Accuracy testing compares real versus estimated positions to establish comprehensive
system performance baselines. This validation process quantifies positioning accuracy
under various conditions and identifies factors affecting measurement precision.
Performance assessment enables necessary calibration adjustments and validates that the
system meets the specified accuracy requirements for the intended application context.

7.4.3 Frontend Integration and User Interface

Frontend configuration integrates real-time position displays, analytics capabilities, sys-
tem configuration interfaces, and user profile management functionality. This integration
provides the user-facing components necessary for system operation and monitoring.

7.5 Maintenance and Scalability Considerations

7.5.1 Monitoring and Maintenance Strategy

Continuous monitoring through the app_w_db. py implementation tracks receiver station
status, Disk Beacon battery levels, and comprehensive system performance metrics fol-
lowing [82] best practices for system reliability and performance optimization.
Preventive maintenance includes quarterly hardware inspections, semi-annual coverage
verification, and monthly database optimization procedures following [83] recommenda-
tions for sustained system performance.

Battery management addresses critical operational concerns through continuous moni-
toring and standardized replacement procedures that anticipate depletion and minimize
service disruptions. As emphasized by [84], effective battery management significantly
impacts system reliability and operational costs.

Software updates utilize Over-The-Air distribution mechanisms for ESP32 stations and
version-controlled backend deployment with comprehensive pre-production testing pro-
tocols to ensure system stability and feature enhancement.

78

7.5 — Maintenance and Scalability Considerations

7.5.2 Hospital Environment Scaling Requirements

Building on the healthcare applications discussed in Section 2.4.1, hospital environments
require substantially different deployment strategies compared to domestic installations.
A typical 10,000m? hospital facility necessitates a dense network of 150-200 BLE scanner
stations powered via PoE with battery backup, supporting unlimited tag capacity [85,86].
Infrastructure Requirements: Scanner stations must provide comprehensive cover-
age through RF analysis-based positioning, supporting hundreds to thousands of patients
with 1-2 second update intervals. A hybrid sensor fusion approach can enhance accuracy
by combining BLE (cost-effective, low power) with UWB technology (10-30 cm precision),
Wi-Fi RTT leveraging existing infrastructure, and complementary sensors including IMU
for motion tracking and barometric sensors for floor-level detection. Network infrastruc-
ture requires enterprise-grade Wi-Fi (IEEE 802.11ac/ax), wired Ethernet backbone with
PoE switches, and optional mesh networks for extended coverage in challenging areas.
Technical Challenges: Medical equipment interference management requires chan-
nel diversification strategies and electromagnetic compatibility compliance (IEC 60601).
Backend architecture must upgrade from SQLite to enterprise-grade distributed systems
utilizing PostgreSQL for relational data and InfluxDB for time-series positioning data to
achieve required scalability and performance.

Regulatory Compliance: Healthcare deployment mandates GDPR/HIPAA data pri-
vacy compliance with full PHI protection, potential medical device regulation classifica-
tion (MDR/FDA), IEC 60601 electrical safety standards, and ISO 13485 quality man-
agement systems. Robust cybersecurity measures include hardware encryption modules
(TPM/HSM), secure boot, network segmentation via VLANs, and comprehensive audit
trails.

79

Chapter 8

System Testing and Validation

8.1 Testing Overview and Methodology

This chapter presents comprehensive testing results of the indoor positioning system
across four distinct phases: data acquisition (assessing collection processes and wireless
range), data processing (validating algorithm accuracy and system stability), data stor-
age (evaluating consumption and API performance), and data visualization (ensuring
interface functionality and user satisfaction). The testing approach followed real-world
deployment scenarios over a 2-week evaluation period, progressing from controlled static
conditions to realistic deployment scenarios.

As outlined in Section 2.3, comprehensive evaluation of indoor positioning systems re-
quires assessing accuracy, precision, latency, update rate, availability, reliability, scalabil-
ity, energy efficiency, cost, and privacy and security considerations.

8.2 Data Acquisition Tests

8.2.1 Test Environment Setup

Data acquisition tests were conducted in a controlled 90 m? domestic apartment envi-
ronment featuring three rooms: living room (22.4m?), bedroom (13.3m?), and study
(9.0m?). The apartment construction materials provided realistic RF propagation char-
acteristics while maintaining controlled testing conditions.

The experimental setup comprised 12 ESP32 devices deployed as BLE scanners (4 per
room), ceiling-mounted at 4.1 meters height and powered by 1A, 5V supplies. Four Disk
Beacon tags from Global Tag served as the tracked devices, with data processing han-
dled by a backend system running on an Intel Core i7 laptop with 16 GB RAM. Testing
involved 10 repetitions across approximately 77 meters with 5 occupants present during
normal operational conditions. Testing with occupants present created realistic condi-
tions, as human bodies significantly affect BLE signal propagation through absorption
and reflection, causing signal attenuation and multipath effects [87].

The software configuration implemented a Log-Distance Path Loss model with RSSIy =
-60 dBm and path loss exponent N = 2.0. Signal processing utilized an EMA filter with

80

8.2 — Data Acquisition Tests

alpha factor 0.2 and a Kalman filter with process variance 103 and measurement variance
107

8.2.2 Maximum Communication Range Tests

Two critical range tests established system communication boundaries in obstacle-free
conditions. The first test evaluated maximum bracelet-to-scanner distance by gradually
increasing distance in a nearly obstacle-free corridor until signal propagation terminated,
achieving a maximum effective range of 16 meters averaged across 10 test iterations.
The second test assessed maximum scanner-to-access point distance using a single scanner
and LTE modem, gradually increasing distance until the scanner became unreachable via
ping, achieving a maximum effective range of 19 meters averaged across 10 repetitions.

8.2.3 System Availability Assessment

As defined in Section 2.3.3, availability refers to the percentage of time or area in which the
system is capable of providing position estimates with an acceptable level of accuracy. To
quantify this critical metric, comprehensive availability testing occurred across the entire
test environment.

Table 8.1: System availability assessment results

Availability Type Living Room | Bedroom | Study
Temporal availability 98.7% 97.9% 96.8%
Spatial availability 96.4% 95.2% 93.8%
Functional availability 97.5% 96.8% 95.3%
Overall availability 97.5% 96.6% 95.3%

Temporal availability was measured as the percentage of time the system provided valid
position estimates during the 2-week testing period. Spatial availability was assessed
by dividing each room into a 1m x 1m grid and determining the percentage of grid
cells where the system maintained acceptable performance (error < 2m). Functional
availability was calculated as the percentage of positioning requests the system satisfied
within the accuracy threshold (< 2m) and latency constraints (< 30s).

The system demonstrated excellent overall availability of 96.5% across all test environ-
ments, with minor variations between rooms primarily attributed to differences in scanner
density and environmental factors affecting signal propagation.

81

System Testing and Validation

8.3 Data Processing Tests

8.3.1 Algorithm Accuracy Testing

Positioning accuracy was assessed using single bracelet transfers across zones while logging
system predictions. False alarm rates were calculated using:

False Alarm Rate — Number of incorrect dete.ctions « 100
Total number of detections

(8.1)

Testing involved 3 iterations with 20-minute durations and systematic movement across
all 4 zones, achieving an 8% false alarm rate in the apartment environment.

Static positioning tests revealed consistent performance across the apartment environ-
ment, with comprehensive positioning accuracy results shown below:

Table 8.2: Comprehensive positioning accuracy results

Room Zone Accuracy (%) | False Alarm (%)
Living Room 94 8
Bedroom 90 8
Study 93 8
Apartment Average 92.3 8

Several factors influenced accuracy: physical barriers, RF interference during peak 2.4 GHz
congestion, and human body interference in crowded areas. Multiple bracelet tests main-
tained similar accuracy, demonstrating system robustness with a maximum detection
range of 14 meters in the apartment environment.

8.3.2 Precision Analysis

As defined in Section 2.3.1, precision refers to the repeatability or consistency of mea-
surements when repeated under the same conditions. To properly quantify this metric,
dedicated precision testing involved placing tags at fixed reference points and collecting
100 consecutive position estimates at each location.

Table 8.3: System precision analysis results

Room Std. Devi- | Variance Min-Max IQR (m)
ation (m) (m?2) Range (m)

Living Room 0.42 0.18 1.87 0.58

Bedroom 0.47 0.22 2.05 0.63

Study 0.51 0.26 2.24 0.71

Apartment Average | 0.47 0.22 2.05 0.64

The system demonstrated good precision with an average standard deviation of 0.47m
across all test environments. The interquartile range (IQR) of 0.64m indicates that 50% of
all measurements fell within a relatively narrow band, confirming consistent performance.

82

8.3 — Data Processing Tests

Precision was slightly better in the living room compared to other areas, likely due to
the more optimal scanner placement and fewer obstacles affecting signal propagation.
These results align with the precision requirements discussed in Section 2.3.1, where
sub-meter precision is considered appropriate for indoor positioning applications.

8.3.3 System Latency Analysis

Zone transition latency was measured using a chronometer to determine time from patient
zone exit until new position detection. Results showed an average latency of 25 seconds
in the apartment environment.

Zone transition detection averaged 25 seconds with 82% of transitions detected within 30
seconds, distributed as follows: less than 20 seconds (12%), 20-25 seconds (28%), 25-30
seconds (42%), 30-35 seconds (15%), and greater than 35 seconds (3%).

[cumulative (%) [Frequency (%)

50 100
45 90
40 80
35 70

S e

< 30 60 3

£ 25 50

=] <

g 20 40 2

: S

15 30 =
10 20
5 10
0 0

<20s 20-25s 25-30s 30-35s 355

Figure 8.1: System Response Time Distribution

This distribution is further illustrated in Figure 8.1, which presents both the frequency
and cumulative distribution function (CDF) of the system response times. The CDF
clearly shows that a significant majority of zone transitions are detected within the 30-
second threshold, confirming the system’s responsiveness for user monitoring applications.

83

System Testing and Validation

8.3.4 System Performance Monitoring

Resource utilization monitoring showed efficient consumption during bracelet movement
across zones. As explained in Section 6.9, the system was Dockerized and deployed un-
der the nuovo_frontend_hms stack on an Intel Core i7 laptop with 16 GB RAM. The
deployment recorded CPU usage peaks of 48.15% for the full stack. Individual contain-
ers remained efficient, with the hms_backend_server averaging 44.81% CPU usage, the
hms_database_service consuming only 3.34%, and the hms_frontend showing negligi-
ble load. RAM usage remained well within operational limits throughout.

The end-to-end latency averaged approximately 3000 ms, with detailed breakdown of
processing pipeline stages shown below:

Table 8.4: Processing pipeline performance analysis

Pipeline Stage Average Time (ms) | Impact Level
BLE Transmission 1000 | High

Scanner Processing 750 | High

Data Transmission 400 | Medium
Server Processing 500 | Medium

UI Rendering 150 | Low

Total Pipeline 2800 | -

Multiple bracelet testing with up to 4 devices showed minimal impact on system perfor-
mance with almost identical outcomes. This demonstrates the system’s scalability for a
limited number of tracked devices, a crucial aspect for real-world deployments [51].

8.3.5 System Stability Assessment

Long-term stability was assessed over a 2-week period by tracking system crashes, with
each crash triggering automatic restart and counter increment. Results showed zero
crashes during the entire testing period from day 1 (00:00) to day 14 (23:59). This
performance is highly desirable for continuous monitoring systems in critical healthcare
applications where system failures could compromise patient safety [86].

84

8.3 — Data Processing Tests

8.3.6 Power Consumption and Energy Efficiency

The system demonstrated excellent energy efficiency while maintaining acceptable per-
formance across all operational modes and components.

(months)

Battery Life

e oy oy \eeP 250 500 750 1000 1250 1500 1750 2000
€ AUV O \E E
BV Wi ® DeeP Advertising Interval (ms)

Figure 8.2: ESP32 Power and Current Con- Figure 8.3: BLE Tag Battery Life vs Adver-
sumption tising Interval

The power consumption analysis reveals significant differences between operational modes
in the ESP32 infrastructure nodes. Figure 8.2 demonstrates that simultaneous Wi-Fi and
BLE operation consumes approximately 520 mW with 110 mA current draw, representing
the highest power state during active positioning operations. Wi-Fi-only mode reduces
consumption to 400 mW (80 mA), while BLE-only operation achieves 320 mW (65 mA).
The deep sleep mode exhibits exceptional efficiency at under 20 mW, enabling substantial
energy savings during inactive periods.

The BLE tag battery life analysis shown in Figure 8.3 illustrates the theoretical rela-
tionship between advertising interval and operational longevity for different BLE tag
configurations. The analysis demonstrates that at 100 ms intervals, tags would achieve
approximately 2 months of operation, while 500 ms intervals would yield 6 months of
battery life. The implemented system operates with a fixed 1000 ms advertising interval,
providing nearly 10 months of continuous operation as shown in the curve. Extended
intervals of 2000 ms could theoretically provide over 12 months of operation, though this
configuration was not implemented due to the fixed interval constraint of the selected
BLE tags.

To enhance energy efficiency in Bluetooth Low Energy (BLE) systems, several optimiza-
tion strategies should be considered [88]. Adaptive advertising intervals can significantly
reduce power consumption by dynamically adjusting based on device activity, setting
shorter intervals (100 ms) during movement detection and longer intervals (2000 ms) when
stationary conserves energy without compromising responsiveness. Transmission power
control optimizes energy usage by adjusting output power based on proximity to anchor
nodes, reducing power when near anchors and increasing it when farther away to en-
sure reliable communication while conserving battery life. Additionally, leveraging deep
sleep modes between advertising events extends battery life by minimizing active peri-
ods and maximizing sleep durations, potentially extending operational time to several
months under typical usage conditions. Implementing these strategies leads to significant
improvements in battery life and overall system efficiency.

85

System Testing and Validation

8.4 Data Storage Tests

8.4.1 Storage Efficiency Analysis

Storage consumption was evaluated by attaching a bracelet to a person performing regular
activities in the apartment environment for 24 hours. Results showed daily storage con-
sumption of 4.82 KB per day per bracelet, projecting to approximately 482 KB/day
for 100 patients and 176 MB annually for 100 patients.

8.4.2 API Functionality Verification

All system workflow steps and features were executed and validated, including user lo-
gin and authentication, user/patient registration and modification, patient positioning
tracking, patient flow tracking,tag/station management and data retrieval and display.
All CRUD operations passed successfully, confirming proper functionality of the storage
APIT and database interactions.

80
40
20

10

Response Time (ms)

o

CREATE READ UPDATE DELETE

Operation Type

Figure 8.4: Average Response Time for each CRUD Operation (milliseconds)

CREATE operations taking significantly longer (52.74ms) than the others. READ oper-
ations are the fastest at just 2.83ms, while UPDATE (15.40ms) and DELETE (7.26ms)
fall in between.

The testing framework achieved complete endpoint coverage through unit tests (individual
APT validation), integration tests (workflow verification), and end-to-end tests (complete
system validation), ensuring reproducibility, isolation, and performance optimization.

86

8.5 — Data Visualization Tests

8.5 Data Visualization Tests

8.5.1 User Interface Compatibility

Cross-platform UI testing was conducted across Chrome, Edge, and Safari browsers on
smartphone, tablet, and desktop screen sizes, evaluating user dashboard, sliding menu,
and navigation elements. All interface elements passed compatibility testing, demon-
strating responsive design effectiveness across platforms and devices.

© Hms togim = I

Real-time Patient Real-time Patient Tracking
Tracking For Modern For Modern Healthcare
Healthcare

Figure 8.5: Ul compatibility on different devices.

8.5.2 User Experience Evaluation

User satisfaction was assessed using 10 randomly selected students with no prior system
knowledge performing 13 specific user interface tasks with a success criterion of task com-
pletion within 30 seconds, totaling 130 tests (10 participants x 13 tasks). The satisfaction
rate was calculated using:

Successful Tests

Satisfaction Rate = 100 8.2
atisfaction Rate Total Tosts < (8.2)

Results achieved an overall satisfaction rate of 89% with 116 successful task completions
out of 130 total tests and average task completion time under 25 seconds.

87

System Testing and Validation

8.6 Cost Analysis

As emphasized in Section 2.3.6, cost assessment is a fundamental metric for evaluating
the practical feasibility of an indoor positioning system. A comprehensive cost analysis
was conducted covering implementation, operational, and scaling dimensions:

Table 8.5: System cost analysis

Cost Category | Amount (EUR) | Notes

Implementation Costs:

Hardware (per room) 80 | 4 ESP32 scanners (€12 each),
mounting hardware (€8 each)

Tags (per unit) 20 | BLE Disk Beacon with CR2032
battery

Gateway hardware 120 | Per 20 scanners

Server infrastructure 950 | For up to 500 tags

Software development 12,000 | One-time development cost

Installation (per room) 90 | Labor, configuration, testing

Operational Costs (Annual):

Energy consumption 40 | Per 10 rooms

Maintenance 950 | System updates, repairs

Battery replacement 3 | Per tag per year

Cloud hosting 720 | For standard deployment

Scaling Costs:

Additional room 370 | Hardware, installation, configu-
ration

Additional 10 tags 200 | Hardware only

Additional gateway 120 | Required per 20 scanners

Total Cost of Ownership 21,470 | 3-year TCO for 10-room

deployment with 50 tags

The cost analysis reveals that the developed BLE-based indoor positioning system offers
significant cost advantages compared to alternative technologies. The implementation
cost is approximately 65% lower than UWB-based systems and 45% lower than Wi-Fi-
based solutions for comparable coverage and accuracy. The low operational costs, par-
ticularly due to extended battery life and minimal maintenance requirements, contribute
to a favorable Total Cost of Ownership over the system’s lifecycle.

For a standard 10-room deployment tracking 50 assets over 3 years, the TCO of ap-
proximately €21,470 represents a cost-effective solution for healthcare facilities, with an
estimated ROI period of 13 months based on efficiency improvements and reduced asset
loss.

88

8.7 — Privacy and Security Assessment

8.7 Privacy and Security Assessment

As highlighted in Section 2.3.7, privacy and security are critical aspects in the evaluation
of indoor positioning systems. A comprehensive assessment of the system’s privacy and
security measures was conducted:

Table 8.6: Privacy and security assessment

Dimension Implementation Compliance
Data protection | AES-256 encryption for all stored location | GDPR Art. 32
data; TLS 1.3 for all data in transit
Access control Role-based access control with least privi- ISO 27001
lege principle; Multi-factor authentication
for administrative access

Transparency Clear privacy policy; Explicit consent col- | GDPR Art. 5, 7
lection; Data minimization principles ap-
plied

Attack resilience | Penetration testing conducted; Resilient | NIST SP 800-53
to replay attacks; Signal jamming detec-
tion implemented

Data retention Configurable retention policies (default: | GDPR Art. 5(e)
90 days); Automated data anonymization
for long-term storage

Audit logging Comprehensive audit trails for all access HIPAA
to location data; Tamper-evident logs

The system implements comprehensive privacy and security measures aligned with rel-
evant regulations and best practices. All location data is encrypted both at rest and
in transit, with strict access controls limiting data visibility based on user roles. The
system’s privacy-by-design approach includes data minimization, purpose limitation, and
configurable retention policies.

Security testing included vulnerability scanning, penetration testing, and specific attacks
relevant to positioning systems such as signal spoofing and replay attacks. The system
demonstrated good resilience to these threats, with no critical vulnerabilities identified
during security assessment.

89

System Testing and Validation

8.8 Test Results Summary

8.8.1 System Requirements Compliance

The system successfully met all initial requirements defined in the project specification:

Table 8.7: Requirements compliance summary

Requirement Target Achieved | Status
Localization accuracy >90% zone detection 92.3% | v Exceeded
Mean positioning error | <2 meters 1.32 meters | v’ Exceeded
Transition detection <30 seconds 25 seconds | v'Met

Tag autonomy >3 months 8-9months | v’ Exceeded
System reliability 1 week continuous 2 weeks tested | v Exceeded
System availability >95% 96.5% | v Exceeded
Cost effectiveness <€500 per room €80 per room | v Exceeded

All initial system requirements were successfully met or exceeded, including patient po-
sitioning achieved with 92-93% zone detection accuracy, near real-time updates with 25
second latency meeting healthcare requirements, successful privacy and security imple-
mentation with authentication and data encryption, scalability supported by low resource
utilization for multiple concurrent users, and reliability demonstrated by zero crashes dur-
ing extended testing.

8.8.2 Current Limitations and Constraints

Despite promising results, several fundamental limitations constrain the broader applica-
bility of this approach. The system exhibits significant performance degradation under
dynamic conditions, where accuracy substantially decreases as movement speeds increase.
This limitation is inherent to RSSI-based localization methods, which struggle to main-
tain precision in rapidly changing environments. Electromagnetic interference represents
another critical constraint, with the system showing marked sensitivity to environmental
factors. Performance notably deteriorates in the presence of active microwave sources and
other electromagnetic disturbances commonly found in real-world deployments. The un-
derlying signal propagation models present additional challenges, particularly in scenarios
that deviate from controlled laboratory conditions. Prediction accuracy decreases sub-
stantially at greater distances from reference points, and the models show poor adaptabil-
ity to dynamic scenarios where environmental conditions change rapidly or unpredictably.
These limitations collectively suggest that while the proposed approach demonstrates
viability under controlled conditions, significant improvements in robustness and adapt-
ability are necessary before practical deployment in diverse real-world environments.

90

Chapter 9

Conclusions and Future
Developments

9.1 Conclusions

This research successfully developed and validated a comprehensive BLE technology-
based indoor positioning system using ESP32 microcontrollers and wearable tags, achiev-
ing all primary objectives established at the project’s inception. The system demonstrated
room-level positioning accuracy with an average error of 1.32 meters, acceptable respon-
siveness with transition detection times of 25-29 seconds, exceptional energy efficiency
enabling battery life exceeding six months, and robust operational performance verified
through two weeks of continuous testing without system failure.

The key technical contributions of this work include the comprehensive performance
characterization under realistic operational conditions, the effective implementation of
advanced filtering techniques combining Exponential Moving Average (EMA) and Kalman
filtering that provided a 29.4% improvement in positioning accuracy, the development of
energy optimization strategies that extended battery life to 8-9 months, and the creation
of a complete API architecture that enables seamless system integration with existing
infrastructure.

The experimental validation demonstrates that BLE technology represents a viable and
practical solution for indoor positioning applications requiring room-level accuracy, par-
ticularly in healthcare monitoring and elderly care contexts where continuous, long-term
operation is essential. While the system exhibits certain limitations regarding dynamic
performance in highly mobile scenarios and sensitivity to electromagnetic interference
in complex environments, its exceptional energy efficiency and operational robustness
make it well-suited for continuous monitoring applications where these constraints are
acceptable trade-offs.

The systematic identification of current limitations provides clear directions for future
research development. Priority areas include latency reduction through optimized com-
munication protocols, scalability enhancement for large-scale deployments, and the inte-
gration of advanced signal processing techniques including machine learning algorithms
and inertial sensor fusion. These improvements would significantly expand the system’s

91

Conclusions and Future Developments

applicability to more demanding real-world scenarios requiring higher precision and faster
response times.

This research contributes a practical, cost-effective indoor positioning solution that ef-
fectively balances the competing requirements of accuracy, energy efficiency, and imple-
mentation complexity. The BLE-ESP32 approach offers particular value in applications
prioritizing extended battery life and moderate accuracy requirements, with performance
metrics that compare favorably to existing solutions documented in the literature while
maintaining significantly lower implementation costs.

The comprehensive evaluation methodology developed and the systematic comparison
with alternative positioning technologies contribute valuable insights to the broader in-
door positioning research community. The established performance benchmarks and prac-
tical deployment guidelines provide essential reference points for future BLE-based system
developments and offer concrete guidance for real-world implementation considerations.
The foundation established by this work creates a robust platform for future innovations
in ToT-based positioning systems. With continued development addressing the identified
limitations, particularly through inertial sensor integration and adaptive signal modeling,
this technology demonstrates significant potential for widespread adoption across health-
care, logistics, and smart building applications where traditional GPS-based positioning
technologies prove inadequate or economically unfeasible.

9.2 Future Development

9.2.1 Technical Improvements
Short-term enhancements should address current limitations:

e Inertial sensor integration: Implementation of accelerometers and gyroscopes
in BLE tags for motion compensation, potentially reducing positioning error by up
to 40% in dynamic scenarios as demonstrated by [89]

« Adaptive propagation models: Development of self-calibrating models using
machine learning techniques for environment-specific optimization

e Frequency hopping techniques: Implementation of dynamic channel alternation
to reduce electromagnetic interference impact

e Latency optimization: Backend processing parallelization and BLE scanning
algorithm optimization to reduce response time

Long-term developments could explore:

« Hybrid positioning systems: Integration with UWB technology for sub-meter
accuracy applications and Wi-Fi for extended coverage

e Distributed architectures: Implementation of directional antennas and cooper-
ative positioning algorithms to reduce required station density

e« Machine learning optimization: Development of predictive models for move-
ment anticipation and automatic parameter calibration

92

9.2 — Future Development

9.2.2 Research Directions

Future research should investigate several promising directions:

e Collaborative positioning: Development of peer-to-peer localization where tags
actively participate in the positioning process through mesh networks and crowd-
sourced calibration

e Privacy-preserving techniques: Implementation of local processing, homomor-
phic encryption, and differential privacy methods for sensitive location data pro-
tection

e Multimodal integration: Seamless indoor-outdoor positioning continuity, adap-
tive granularity systems, and multisensor fusion approaches

93

Bibliography

1]

[15]
[16]
[17]

[18]

L. Hailu, J. Luo, Y. Ding, T. Qiu, and W. Zhuang, “A survey on indoor positioning
systems: Challenges, approaches, and open issues,” IEEE Communications Surveys
& Tutorials, 2024.

X. Li, J. Wang, C. Liu, and L. Zhang, “Recent advances in indoor positioning sys-
tems: A comprehensive survey,” ACM Computing Surveys, 2024.

Beaconzone, “Bluetooth 5 advertising extensions for indoor positioning.” Beaconzone
Technical Blog, 2024.

SSRN, “Wearable technology for indoor positioning: Challenges and opportunities.”
SSRN Electronic Journal, 2024.

Journal of Robotics and Control, “Accuracy improvement for indoor positioning
using decawave on esp32 uwb pro with display module,” Journal of Robotics and
Control, 2024.

Pozyx, “Ultra-wideband versus other location technologies.” https://www.pozyx.
io/newsroom/uwb-versus-other-technologies, 2024.

Mokosmart, “Uwb contro bluetooth: Quale tecnologia di po-
sizionamento indoor scegliere?.” https://www.mokosmart.com/it/
uwb-vs-bluetooth-indoor-positioning-guide/, 2024.

E. Tinti, “Metodi e tecniche di posizionamento,” 2016.

A. Colombo and M. De Simone, “Indoor positioning system using Bluetooth Low
Energy,” in Proceedings of the 12th IEEFE International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob), pp. 1-8, 2016.

G. Martella, “Tesi martella gianmarco,” 2018.

C. Ricci, “Tecniche di rivelazione tramite vlc,” 2016.

G. Fusco, “Tecniche di rivelazione tramite vlc,” 2018.

F. Torsello, “Progettazione e realizzazione di un indoor positioning system basato
su tecnologia bluetooth low energy,” 2017.

Anonymous, “A real-time fingerprint-based indoor positioning using deep learning,”
Ezxpert Systems with Applications, 2023.

Anonymous, “Indoor location fingerprinting privacy: A comprehensive survey,”
arXiv preprint, 2024.

S. Maddio, “Introduzione ai sistemi di localizzazione indoor.” Quaderni del Dottorato
di Ricerca in Ingegneria dell’Informazione dell’Universita di Firenze, 2018.

V. Andreuzza, “Sistemi di georeferenziazione indoor tramite tecnologia bluetooth,”
2019.

D. Catellani, “Una rassegna di tecnologie per posizionamento indoor,” 2017.

https://www.pozyx.io/newsroom/uwb-versus-other-technologies
https://www.pozyx.io/newsroom/uwb-versus-other-technologies
https://www.mokosmart.com/it/uwb-vs-bluetooth-indoor-positioning-guide/
https://www.mokosmart.com/it/uwb-vs-bluetooth-indoor-positioning-guide/

Bibliography

[19] Navigine, “Sistema di localizzazione indoor e tracciamento indoor.” https://
navigine.com/it/localizzazione-indoor/, 2024.

[20] Bit Tonic, “Localizzazione indoor.” https://www.bit-tonic.it/
localizzazione-indoor/, 2024.

[21] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of Bluetooth Low En-
ergy: An emerging low-power wireless technology,” Sensors, vol. 12, no. 9, pp. 11734~
11753, 2012.

[22] F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization systems and
technologies,” IEEE Communications Surveys € Tutorials, 2019.

[23] Bluetooth SIG, “Bluetooth core specification v5.2,” tech. rep., Bluetooth Special
Interest Group, 2020.

[24] A. Leonardi, L. Zaffanella, and F. Zanichelli, “Indice,” 2023.

[25] Mokosmart, “Il ruolo del Bluetooth RSSI nel posizionamento indoor.” https://www.
mokosmart.com/it/the-role-of-bluetooth-rssi-in-indoor-positioning/,
2024.

[26] Dusun IoT, “Bluetooth RSSI Vs BLE AOA Vs po-
sizionamento UWBY” https://www.dusuniot.com/it/blog/
indoor-positioning-technology-bluetooth-rssi-vs-ble-aoa-vs-uwb-positioning/,
2023.

[27] Feasycom, “Confronto di 6 tecnologie RTLS (real-time location systems) indoor.”
https://www.feasycom.com/it/comparison-of-6-indoor-rtls-technologies.
html, 2023.

[28] Apple Inc., “ibeacon for developers.” https://developer.apple.com/ibeacon/,
2013. Accessed: July 9, 2025.

[29] M. Benedetti, “Un algoritmo di geolocalizzazione indoors basato su Bluetooth Low
Energy,” 2018.

[30] A. Liparulo, “Algoritmi ibridi per il posizionamento indoor basati su tecnologie wire-
less,” 2016.

[31] Feasycom, “Tutto quello che devi sapere sul’AOA Bluetooth.” https://www.
feasycom.com/it/comprehensive-introduction-past-present-and-future-of-bluetooth-aoa.
html, 2024.

[32] Anonymous, “An improved method based on bluetooth low-energy fingerprinting for
indoor positioning,” Sensors, 2022.

W
&

| Espressif Systems, “ESP32 series datasheet,” tech. rep., Espressif Systems, 2023.
| N. Kolban, Kolban’s Book on ESP32. Leanpub, 2022.

A. Maier, A. Sharp, and Y. Vagapov, “Comparative analysis of ESP32 with other
microcontrollers for IoT applications,” Internet of Things, vol. 22, p. 100639, 2023.

ool
Sy B

[36] M. Maier, F. Dorfmeister, and B. Scheuermann, “A comparative analysis of BLE-
based indoor positioning systems,” in Proceedings of the International Conference
on Indoor Positioning and Indoor Navigation (IPIN), pp. 1-8, 2023.

[37] Espressif Systems, ESP-IDF Programming Guide. Espressif Systems, 2023.

[38] Arduino, “ESP32 BLE Arduino” https://github.com/espressif/
arduino-esp32, 2024.

https://navigine.com/it/localizzazione-indoor/
https://navigine.com/it/localizzazione-indoor/
https://www.bit-tonic.it/localizzazione-indoor/
https://www.bit-tonic.it/localizzazione-indoor/
https://www.mokosmart.com/it/the-role-of-bluetooth-rssi-in-indoor-positioning/
https://www.mokosmart.com/it/the-role-of-bluetooth-rssi-in-indoor-positioning/
https://www.dusuniot.com/it/blog/indoor-positioning-technology-bluetooth-rssi-vs-ble-aoa-vs-uwb-positioning/
https://www.dusuniot.com/it/blog/indoor-positioning-technology-bluetooth-rssi-vs-ble-aoa-vs-uwb-positioning/
https://www.feasycom.com/it/comparison-of-6-indoor-rtls-technologies.html
https://www.feasycom.com/it/comparison-of-6-indoor-rtls-technologies.html
https://developer.apple.com/ibeacon/
https://www.feasycom.com/it/comprehensive-introduction-past-present-and-future-of-bluetooth-aoa.html
https://www.feasycom.com/it/comprehensive-introduction-past-present-and-future-of-bluetooth-aoa.html
https://www.feasycom.com/it/comprehensive-introduction-past-present-and-future-of-bluetooth-aoa.html
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32

Bibliography

[39]
[40]
[41]

[42]

[43]

Global Tag, “Disk beacon Bluetooth Low Energy.” https://www.global-tag.com/
portfolio/disk-beacon-bluetooth-low-energy/, 2024.

Kontakt.io, “The ultimate guide to Bluetooth Low Energy beacons.” https://
kontakt.io/blog/bluetooth-low-energy-beacons-guide/, 2023.

BlueCats, “Wearable BLE tags for industrial applications.” https://bluecats.com/
wearable-ble-tags-industrial-applications/, 2022.

Z. Igbal, B. Da, W. Ding, X. Hu, and H. Wang, “Wearable sensors for human activity
recognition: Recent developments and future prospects,” IEEFE Internet of Things
Journal, vol. 10, no. 5, pp. 4203-4220, 2023.

S. Statler, Beacon Technologies: The Hitchhiker’s Guide to the Beacosystem. Apress,
2016.

Bluetooth Special Interest Group, “Bluetooth core specification,” Bluetooth SIG,
2023.

C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of bluetooth low
energy: An emerging low-power wireless technology,” Sensors, 2012.

T. Aziz, Z. Ullah, R. Ullah, F. Khan, S. Hussain, and A. Ullah, “A comprehensive
review of indoor localization technologies,” Applied Sciences, 2025.

J. Singh, R. K. Sharma, and M. K. Sharma, “A systematic review of contemporary
indoor positioning technologies,” IEEE Access, 2024.

S. Sadowski and P. Spachos, “Iot architectural reference model: Overview and rec-
ommendations,” IEEFE Internet of Things Journal, 2020.

P. 1. Philippopoulos, G. Z. Papadopoulos, O. Tsakiridis, and I. Chatzigiannakis,
“Cost-efficient rssi-based indoor proximity positioning, for real-time monitoring of
elderly people,” Sensors, 2025.

R. Gaona Judrez, J. d.-J. Lozoya-Santos, R. A. Ramirez-Mendoza, and
A. Molina Gutierrez, “Design and implementation of an indoor localization system
based on rssi and machine learning techniques,” Applied Sciences, 2025.

A. Mota, A. Pinto, C. Barros, P. Carvalho, and P. Simoes, “Implementation of an
internet of things architecture to monitor indoor air quality in school environments,”
Sensors, 2025.

S. Newman, Building Microservices. O’Reilly Media, 2021.

A. Banks, E. Briggs, K. Borgendale, and R. Gupta, “Mqtt version 5.0,” OASIS
Standard, 2019.

EdgeCore, “Edgecore wi-fi access points now support mqtt protocol for iot applica-
tions,” 4 2025.

I. Fette and A. Melnikov, “The websocket protocol,” Internet Engineering Task Force
(IETF), 2011.

Ably, “Websockets explained: What they are and how they work,” 4 2025.

K. Matthias and S. P. Kane, Docker: Up & Running: Shipping Reliable Containers
in Production. O’Reilly Media, 2018.

VideoSDK, “Mqtt vs websocket: Real-time communication protocols,” 4 2025.
Nabto, “A complete guide to webrtc vs. websocket for iot,” 2 2025.

DesignGurus, “How do websockets enable real-time communication in web applica-
tions,” 5 2025.

https://www.global-tag.com/portfolio/disk-beacon-bluetooth-low-energy/
https://www.global-tag.com/portfolio/disk-beacon-bluetooth-low-energy/
https://kontakt.io/blog/bluetooth-low-energy-beacons-guide/
https://kontakt.io/blog/bluetooth-low-energy-beacons-guide/
https://bluecats.com/wearable-ble-tags-industrial-applications/
https://bluecats.com/wearable-ble-tags-industrial-applications/

Bibliography

[61]
[62]

[63]

TheCurve, “What are websockets, and why are they essential for iot?,” 6 2024.

R. T. Fielding, Architectural Styles and the Design of Network-based Software Ar-
chitectures. University of California, Irvine, 2000.

Anonymous, “Development of a secure esp32-based indoor position tracking system
with ble technology,” Preprints, 4 2025.

G. Gagnon, A. Boukhtouta, and M. Debbabi, “Rssi-based attacks for identification
of ble devices,” Computers & Security, 2024.

BeaconZone, “Indoorpositioning — beaconzone blog,” 4 2025.

R. Faragher and R. Harle, “Location fingerprinting with bluetooth low energy bea-
cons,” IEEE Journal on Selected Areas in Commumnications, 2015.

Y. Yang, H. Yang, and F. Meng, “A bluetooth indoor positioning system based on
deep learning with rssi and aoa,” Sensors, 2025.

N.-T. Nguyen, M.-T. Tran, H.-T. Nguyen, and T.-V. Le, “A survey on multilateration
methods for localization problems,” ICT FExpress, 2021.

G. Welch and G. Bishop, “An introduction to the kalman filter,” University of North
Carolina at Chapel Hill, Department of Computer Science, 1995.

S. J. Julier and J. K. Uhlmann, “A new extension of the kalman filter to nonlinear
systems,” 1997.

BeaconZone, “Rssistability — beaconzone blog,” 9 2024.

Z. Li, A. Abidi, J. Liang, and A. Cheung, “Sqlite: Past, present, and future,” in
Proceedings of the 2023 International Conference on Management of Data, ACM,
2023.

M. Fowler and P. J. Sadalage, NoSQL Distilled: A Brief Guide to the Emerging
World of Polyglot Persistence. Addison-Wesley Professional, 2012.

A. S. Tanenbaum and D. J. Wetherall, Computer Networks. Pearson, 2016.
Locatify, “Factors affecting BLE signal propagation in indoor environments.” Locat-
ify Technical Documentation, 2021.

Navigine, “Interference sources in indoor positioning systems.” Navigine Technical
Blog, 2021.

ArcGIS TIPS, “Best practices for indoor positioning system deployment.” Esri Tech-
nical Documentation, 2024.

Proximi.io, “Environmental factors affecting beacon performance.” Proximi.io Tech-
nical Documentation, 2017.

Navigine, “Ble beacon installation guide.” https://docs.navigine.com/en/
beacons_installation_guide, 2021.

Locatify, “Indoor positioning systems based on ble beacons - basics.” https:
//locatify.com/blog/indoor-positioning-systems-ble-beacons/, 2021.
Proximi.io, “How to do accurate indoor positioning with bluetooth beacons?.” https:
//proximi.io/accurate-indoor-positioning-bluetooth-beacons/, 2017.

GAO RFID, “Operation, maintenance and support of a ble beacon.” https://
gaorfid.com/operation-maintenance-and-support-of-a-ble-beacon/, 2024.
Peerbits, “The ultimate guide to beacon installa-
tion and maintenance.” https://www.peerbits.com/blog/
the-most-comprehensive-guide-beacon-installation-maintenance.html,

https://docs.navigine.com/en/beacons_installation_guide
https://docs.navigine.com/en/beacons_installation_guide
https://locatify.com/blog/indoor-positioning-systems-ble-beacons/
https://locatify.com/blog/indoor-positioning-systems-ble-beacons/
https://proximi.io/accurate-indoor-positioning-bluetooth-beacons/
https://proximi.io/accurate-indoor-positioning-bluetooth-beacons/
https://gaorfid.com/operation-maintenance-and-support-of-a-ble-beacon/
https://gaorfid.com/operation-maintenance-and-support-of-a-ble-beacon/
https://www.peerbits.com/blog/the-most-comprehensive-guide-beacon-installation-maintenance.html
https://www.peerbits.com/blog/the-most-comprehensive-guide-beacon-installation-maintenance.html

Bibliography

[84]
[85]

[36]

2022.

Wiliot, “A complete guide to bluetooth beacons & iot solutions.” https://www.
wiliot.com/bluetooth-beacon, 2024.

H. G. Hailu, K. G. Hagos, and A. Attlee, “Indoor positioning systems in hospitals:
A scoping review,” SAGE Digital Health, vol. 8, p. 20552076221081696, 2022.

X. Li, Y. Wang, X. Liu, and Z. L. Deng, “Indoor positioning systems provide insight
into emergency department operations,” Nature Communications Medicine, vol. 4,
no. 1, pp. 1-10, 2024.

P. Li, W. Wu, Z. Zhao, and G. Q. Huang, “Indoor positioning systems in industry 4.0
applications: Current status, opportunities, and future trends,” Digital Engineering,
2024.

S. Labs, “Optimizing current consumption in bluetooth low energy devices,” 2025.
A. Poulose, O. S. Eyobu, and D. S. Han, “An indoor position-estimation algorithm
using smartphone IMU sensor data,” IEEE Access, 2020.

https://www.wiliot.com/bluetooth-beacon
https://www.wiliot.com/bluetooth-beacon

Appendix A

Pseudocode

A.1 ESP32 Base Station (IoT Layer)

1 // BLE Scanning and MQTT Publishing Algorithm

2> function setup():

3 Initialize WiFi connection parameters

4 Initialize MQTT connection parameters

5 Initialize BLE scanner

6 Set BLE scan parameters (interval = 100ms,
true)

7 Connect to WiFi network

9 while WiFi not connected:

10 Try to reconnect WiFi every 5 seconds
11 If connection attempts > 10:

12 Restart ESP32 device

14 Connect to MQTT broker

16 while MQTT not connected:

17 Try to reconnect MQTT every 2 seconds
18 If connection attempts > 10:

19 Restart WiFi connection

21 Subscribe to control topics:

window

22 "hospital/basestation/{MAC_ADDRESS}/control"

"hospital/basestation/all/control"

N

¥

25 Start BLE scanning
27 function loop ():
28 if WiFi is disconnected:

29 Attempt to reconnect WiFi

31 if MQTT is disconnected:
32 Attempt to reconnect MQTT

34 Check for incoming MQTT messages on control

topics

99ms ,

active

A.2 — Backend Service (Positioning Engine)

// Continue BLE scanning in background

38 function onBLEDeviceFound (device):

if device.name matches known tag format:
Measure RSSI value
Create JSON payload:
{

"tag_id": device.address,
"tag_name": device.name,
"rssi": rssi_value,
"base_station": ESP32_MAC_ADDRESS,
"timestamp": current_timestamp,
"battery": device.battery_level (if available)

Publish to MQTT:
Topic: "hospital/ble/scan"
Payload: JSON payload
QoS: 1

function onControlMessageReceived (topic, message):

if message == '"restart":
Restart ESP32
else if message == "update_config":

Update configuration parameters
Restart services

Listing A.1: BLE Scanning and MQTT Publishing Algorithm (ESP32)

A.2 Backend Service (Positioning Engine)

// Main Backend Service

> function initializeServer():

Initialize Flask application

Initialize SocketIO with CORS support
Initialize MQTT client

Load configuration from environment variables
Connect to database service

Start MQTT client:
Connect to MQTT broker
Subscribe to "hospital/ble/scan"
Set callback to processBleScanData

Start SocketIO server
Register routes and event handlers

Start positioning engine in background thread
function processBleScanData(topic, message):

Parse JSON payload from message
Validate payload structure and required fields

Pseudocode

Extract tag_id, base_station, rssi, timestamp

// Store raw RSSI data in cache
Add data point to tags RSSI history buffer

// Process data through positioning pipeline
position = positioningPipeline(tag_id)

// Broadcast position update to clients
Emit "position_update" event via Socket.IO:

{
"tag_id": tag_id,
"tag_name": tag_name,
"position": position,
"timestamp": timestamp,
"battery": battery_level,
"status": tag_status

}

// Check for room transitions
if room has changed:
recordTimelineEvent (tag_id, old_room, new_room)

function positioningPipeline(tag_id):

// Get raw RSSI values for this tag from all base stations
rssi_data = getRssiDataForTag(tag_id)

// Apply EMA Filter to smooth RSSI values
filtered_rssi = applyEmaFilter (rssi_data)

// Convert RSSI to distance estimates
distances = rssiToDistance(filtered_rssi)

// Perform multilateration to get coordinates
raw_position = performMultilateration(distances)

// Apply Kalman Filter for trajectory smoothing
smoothed_position = applyKalmanFilter (raw_position)

// Determine floor level based on strongest signals
floor = determineFloorLevel(filtered_rssi)

// Map coordinates to room
room = mapCoordinatesToRoom (smoothed_position, floor)

return {
"x": smoothed_position.x,
"y": smoothed_position.y,
"floor": floor,
"room": room,
"confidence": calculateConfidence (distances)

Listing A.2: Main Backend Service Logic

A.3 — RSSI Processing and Filtering Algorithms

A.3 RSSI Processing and Filtering Algorithms

1 // EMA (Exponential Moving Average) Filter
> function applyEmaFilter (rssi_data, alpha = 0.2):
3 filtered_values = {}

5 for each base_station in rssi_data:

6 raw_values = rssi_datal[base_station]
8 if base_station not in filtered_values:
9 filtered_values[base_station] = raw_values [0]

1 for i from 1 to length(raw_values):
12 filtered_values[base_station] = alpha * raw_values[i] + (1 -
alpha) * filtered_values[base_station]

14 return filtered_values

Listing A.3: EMA (Exponential Moving Average) Filter

1 // RSSI to Distance Conversion
2> function rssiToDistance(rssi_values):
3 distances = {}

5 for each base_station in rssi_values:
6 rssi = rssi_values[base_station]

8 // Path loss model: d = 10~ ((TxPower - RSSI)/(10 * n))
9 // where n is the path loss exponent (typically 2-4)

11 tx_power = getTxPowerForTag(tag_id) // typically -59 to -69 dBm
at 1 meter

12 n = getPathLossExponentForEnvironment() // typically 2.7 for
indoor hospital

14 distances [base_station] = Math.pow(10, (tx_power - rssi) / (10 * n

))

16 return distances

Listing A.4: RSSI to Distance Conversion

1 // Kalman Filter for Position Smoothing

> function applyKalmanFilter (position):

3 // State variables

4 static x_k = [position.x, O, position.y, 0] // [x, vx, y, vyl
5 static P_k = identity_matrix(4) * 100 // Initial uncertainty

7 // System matrices

8 dt = getTimeDelta ()
9 F = [

10 [1, dt, O, O],
11 [0, 1, o, 0],

12 (o, o, 1, dtl,

Pseudocode

(o, o, o, 1l

1
H=[
[1) O) 0’ 0],
(o, o, 1, ol
]
Q = process_noise_matrix(dt)
R = measurement_noise_matrix ()

// Prediction step
x_k_pred = F * x_k
P_k_pred = F * P_k * transpose(F) + Q

// Measurement

z_k = [position.x, position.y]

// Update step

y_k = z_k - H * x_k_pred

S_.k = H x P_k_pred * transpose(H) + R

K_k = P_k_pred * transpose(H) #* inverse(S_k)

x_k_pred + K_k * y_k
(identity_matrix(4) - K_k * H) * P_k_pred

_k
k

return {x: x_k[0], y: x_k[2]}

Listing A.5: Kalman Filter for Position Smoothing

A.4 Multilateration Algorithm

// Weighted Multilateration with Least Squares Optimization
function performMultilateration(distances):

if length(distances) < 3:
return estimatePositionWithInsufficient (distances)

// Get base station coordinates
base_stations = []
distance_values = []

weights = []

for each base_station in distances:
coords = getBaseStationCoordinates(base_station)
base_stations.append(coords)
distance_values.append(distances[base_station])

// Calculate weights based on signal reliability
rssi = getRssiForBaseStation(base_station)
weights.append(calculateWeight (rssi))

// Initial position estimate (centroid)
initial_position = calculateCentroid(base_stations)

A.4 — Multilateration Algorithm

// Non-linear least squares optimization

result_position = initial_position

for iteration in range(10): // Max 10 iterations
jacobian = calculateJacobian(result_position, base_stations)
residuals = calculateResiduals (result_position, base_stations,

distance_values)

// Apply weights to Jacobian and residuals
weighted_jacobian = applyWeights(jacobian, weights)
weighted_residuals = applyWeights(residuals, weights)

// Compute position update: p = (J°T * W * J)"(-1) * J°T * W * r
delta = solveNormalEquation(weighted_jacobian, weighted_residuals)

// Update position
result_position.x -= delta.x
result_position.y -= delta.y

// Check convergence
if magnitude(delta) < 0.1:
break

return result_position

7 function calculateResiduals (position, base_stations, measured_distances):
residuals = []

for i from O to length(base_stations) - 1:

station = base_stations[i]
measured = measured_distances[i]

// Calculate Euclidean distance
calculated = sqrt(pow(position.x - station.x, 2) + pow(position.y

station.y, 2))

// Residual is the difference between measured and calculated
residuals.append (measured - calculated)

return residuals

function calculateJacobian(position, base_stations):
jacobian = []

for station in base_stations:

dx = position.x - station.x
dy = position.y - station.y

distance = sqrt(dx*dx + dyxdy)

if distance < 0.1: // Avoid division by very small numbers
distance = 0.1

// Partial derivatives

~
w

76

Pseudocode

jacobian.append([-dx/distance, -dy/distance])

return jacobian

Listing A.6: Weighted Multilateration with Least Squares Optimization

A.5 Room Detection and Floor Mapping Algorithm

// Room Detection Algorithm

function mapCoordinatesToRoom (position, floor):
// Load floor plan for the specified floor
floor_plan = loadFloorPlan(floor)

// Filter rooms on the current floor
candidate_rooms = floor_plan.getRooms ()

for each room in candidate_rooms:
if isPointInPolygon(position, room.coordinates):
return room.id

// If not inside any room, find closest room
closest_room = null
min_distance = INFINITY

for each room in candidate_rooms:
distance = distanceToRoom(position, room)

if distance < min_distance:
min_distance = distance
closest_room = room.id

if min_distance < PROXIMITY_THRESHOLD:
return closest_room
else:
return "hallway" // Default to hallway if not near any room

Listing A.7: Room Detection Algorithm

// Floor Determination Algorithm

function determineFloorLevel (filtered_rssi):
// Group base stations by floor
stations_by_floor = groupBaseStationsByFloor ()

floor_signals = {}

// Calculate average signal strength per floor
for each floor in stations_by_floor:
floor_signals[floor] = 0
count = 0

for station in stations_by_floor [floor]:
if station in filtered_rssi:
floor_signals[floor] += filtered_rssil[station]

1

N

- W

A.6 — Timeline Events and Deduplication

count += 1

if count > O:
floor_signals[floor] /= count

// Find floor with strongest average signal
best_floor = null
-INFINITY

max_signal

for floor in floor_signals:
if floor_signals[floor] > max_signal:
max_signal = floor_signals[floor]

best_floor = floor

return best_floor

Listing A.8: Floor Determination Algorithm

function isPointInPolygon (point, polygon):

// Ray casting algorithm for point-in-polygon test
inside = false
j = polygon.length - 1
for i from O to polygon.length - 1:
if ((polygon[i]l.y > point.y) != (polygon[jl.y > point.y)) &&
(point.x < polygon[i].x + (polygon[j]l.x - polygon[i].x) *
(point.y - polygon[il.y) / (polygonl[jl.y - polygon[i].y)):

inside = !inside

return inside

Listing A.9: Point in Polygon Test (Ray Casting)

A.6 Timeline Events and Deduplication

// Timeline Event Recording with Deduplication
function recordTimelineEvent (tag_id, old_room, new_room):

// Skip if no actual room change
if old_room == new_room:
return

// Get recent events for this tag
recent_events = getRecentEvents(tag_id, 60) // Last 60 seconds

// Check for oscillating transitions (A->B->A pattern)
if recent_events.length >= 2:

latest = recent_events [0]

previous = recent_events [1]

if latest.to_room == old_room && previous.from_room == new_room:

41

Pseudocode

// This is an oscillation, update counts
incrementOscillationCount (tag_id, old_room, new_room)

// If oscillation count is high, ignore this transition
if getOscillationCount(tag_id, old_room, new_room) >
OSCILLATION_THRESHOLD:
return

// Create new timeline event

event = {

"tag_id": tag_id,

"from_room": old_room,

"to_room": new_room,

"timestamp": getCurrentTimestamp (),

"duration_in_previous": calculateDuration(tag_id, old_room)
}

// Store in database
storeTimelineEvent (event)

// Reset oscillation counter
resetOscillationCount (tag_id)

// Broadcast event to clients
broadcastTimelineEvent (event)

function getRecentEvents(tag_id, seconds):
current_time = getCurrentTimestamp ()
cutoff_time = current_time - seconds

// Query database for recent events

query = "SELECT * FROM timeline_events
WHERE tag_id = ? AND timestamp > 7
ORDER BY timestamp DESC"

return executeQuery(query, [tag_id, cutoff_time])

function calculateDuration(tag_id, room):
// Find the most recent entry event to this room
query = "SELECT timestamp FROM timeline_events
WHERE tag_id = ? AND to_room = 7
ORDER BY timestamp DESC LIMIT 1"

result = executeQuery(query, [tag_id, rooml])

if result.length > O0:
entry_time = result[0].timestamp
current_time = getCurrentTimestamp ()
return current_time - entry_time
else:
return O

Listing A.10: Timeline Event Recording with Deduplication

A.7 — Database Service API

A.7 Database Service API

// Database Service Core Functions
function initializeDatabaseService():

Initialize Flask application with SQLite

Create tables if not exist:
- base_stations
- tags
- rooms
- timeline_events
- system_settings

Register API routes:
- /api/base_stations (GET,
- /api/tags (GET, POST)
- /api/rooms (GET, POST)
- /api/timeline (GET, POST)
- /api/settings (GET, PUT)

Start API server on port 5000

POST)

Listing A.11: Database Service Core Functions

// Base Station Management
function getBaseStations ():

query =

results = executeQuery (query)

return formatResponse (results)

function addBaseStation():

data = parseRequestJSON ()

required_fields =
if not validateFields (data,

[’mac_address’,
required_fields):

"SELECT * FROM base_stations"

’name’ ,

)]))
X7, Yy

>floor’]

return errorResponse("Missing required fields", 400)

query =
(mac_address, name, x,
VALUES (?, ?, ?, 7, 7,

executeQuery (query, [
data.mac_address,
data.name,
data.x,
data.y,
data.floor,
getCurrentTimestamp (),
’active’

D

y

?

"INSERT INTO base_stations

>

g9

floor,
’?)Il

last_seen,

return successResponse ("Base station added")

status)

Listing A.12: Base Station Management API

Pseudocode

1 // Tag Management

function getTags():

query = "SELECT * FROM tags"
results = executeQuery(query)

return formatResponse (results)

function addTag():

data = parseRequestJSON ()

required_fields = [’mac_address’, ’name’, ’type’]
if not validateFields (data, required_fields):
return errorResponse("Missing required fields", 400)

query = "INSERT INTO tags
(mac_address, name, type, last_seen, battery, status)
VALUES (?, ?, ?, 7, 7, ?)"

executeQuery (query, [
data.mac_address,
data.name,

data.type,
getCurrentTimestamp (),
data.battery || 100,
active’

D

return successResponse("Tag added")

Listing A.13: Tag Management API

// Timeline API
function getTimeline(tag_id = null, start_time = null, end_time =

query_parts = ["SELECT * FROM timeline_events"]
params = []

conditions = []
if tag_id:
conditions.push("tag_id = 7")

params .push(tag_id)

if start_time:
conditions.push("timestamp >= ?7")
params.push(start_time)

if end_time:
conditions.push("timestamp <= 7")

params .push(end_time)

if conditions.length > O:
query_parts.push("WHERE " + conditions.join(" AND "))

query_parts.push("ORDER BY timestamp DESC")

null):

A.8 — Frontend WebSocket Client

query = query_parts.join(" ")
results = executeQuery(query, params)

return formatResponse (results)

function addTimelineEvent ():
data = parseRequestJSON ()

required_fields = [’tag_id’, ’from_room’, ’to_room’]
if not validateFields (data, required_fields):
return errorResponse("Missing required fields", 400)

query = "INSERT INTO timeline_events
(tag_id, from_room, to_room, timestamp, duration_in_previous)
VALUES (?, ?, ?, 7, ?)"

executeQuery (query, [
data.tag_id,
data.from_room,
data.to_room,
data.timestamp || getCurrentTimestamp (),
data.duration_in_previous || O

D

return successResponse("Timeline event added")

Listing A.14: Timeline API

A.8 Frontend WebSocket Client

// WebSocket Connection Management

> function initializeWebSocketContext ():

const [isConnected, setIsConnected] = useState(false)
const [positions, setPositions] = useState ({})

const [timeline, setTimeline] = useState ([])

const [errors, setErrors] = useState([])

function connect () :
const socket = io(BACKEND_URL, {
reconnection: true,
reconnectionAttempts: 10,
reconnectionDelay: 1000,
reconnectionDelayMax: 5000

b

socket.on(’connect’, () => {
setIsConnected (true)
console.log(’Connected to WebSocket server’)

b

> {

socket.on(’disconnect’, ()
setIsConnected (false)

Pseudocode

23 console.log(’Disconnected from WebSocket server’)
24 b

25

26 socket.on(’position_update’, (data) => {
27 setPositions (prevPositions => ({

28 ...prevPositions,

29 [data.tag_id]: {

30 ...data,

31 last_updated: Date.now()

32 }

33)

34 b

36 socket.on(’timeline_event’, (data) => {
37 setTimeline (prevTimeline => [data, ...prevTimeline])
38 »

39

10 socket.on(’error’, (data) => {

41 setErrors (prevErrors => [

12 {

13 ...data,

44 timestamp: Date.now(),

15 id: generateRandomId ()

16 ¥e

47 ...prevErrors

18 D

19 1)

51 return socket
5

52 }

useEffect (() => {
5 const socket = connect ()

57 return () => {

58 socket .disconnect ()
59 }

60 }, [

62 return {

63 isConnected,
64 positions,
65 timeline,

66 errors

Listing A.15: WebSocket Connection Management (Frontend)

A.9 Interactive Map Visualization

1 // Floor Map Visualization Component
2> function FloorMap({ floor, positions, rooms }):
3 const canvasRef = useRef (null)

A.9 — Interactive Map Visualization

const [dimensions, setDimensions] = useState({ width
const [scale, setScale] = useState (1)
const [pan, setPan] = useState({ x: 0, y: 0 1})

// Filter tags on this floor

0, height:

const tagsOnFloor = positions.filter(pos => pos.floor === floor)

// Setup canvas and draw initial floor plan
useEffect (() => {

const canvas = canvasRef.current

const ctx = canvas.getContext(’2d’)

// Set canvas dimensions

const { width, height } = calculateDimensions(floor)

canvas.width = width
canvas .height = height
setDimensions ({ width, height })

// Draw floor plan background
drawFloorPlan(ctx, floor)

// Draw rooms
for each room in rooms:
if room.floor === floor:
drawRoom (ctx, room)
}, [floor, rooms])

// Draw tags on the floor when positions update
useEffect (() => {

const canvas = canvasRef.current

const ctx = canvas.getContext(’2d’)

// Clear previous tag positions
ctx.clearRect (0, 0, canvas.width, canvas.height)

// Redraw floor plan
drawFloorPlan(ctx, floor)
drawRooms (ctx, rooms.filter (room => room.floor =

// Draw each tag
for each tag in tagsOnFloor:
drawTag (ctx, tag, scale, pan)
}, [tagsOnFloor, scale, pan])

// Handle zoom and pan interactions
function handleWheel (e):
if (e.ctrlKey) {
// Zoom
const newScale = e.deltaY > 0O 7 scale * 0.9
setScale (newScale)
} else {
// Pan
setPan ({
X: pan.x - e.deltaX,
y: pan.y - e.deltay¥

floor))

scale * 1.1

0

b

64

66

67

69

Pseudocode

b

return (
<div className="floor-map-container">

<canvas
ref={canvasRef}
onWheel={handleWheel}
width={dimensions.width}
height={dimensions.height}

/>

<div className="floor-controls">

<button onClick={() => setScale(scale * 1.1)}>Zoom In</

// Set styles based on room properties and occupancy

if highlight:
ctx.fillStyle = ’rgba(255, 255, 0, 0.3)°’
ctx.strokeStyle = ’rgba(255, 255, 0, 0.8)°
ctx.lineWidth = 2

else if room.occupancy > O:
ctx.fillStyle = ’rgba(0, 150, 255, 0.3)°
ctx.strokeStyle = ’rgba(0, 150, 255, 0.8)°
ctx.lineWidth = 1.5

else:
ctx.fillStyle = ’rgba(QOO, 200, 200, 0.2)°
ctx.strokeStyle = ’rgba(150, 150, 150, 0.5)°

ctx.lineWidth = 1

// Draw the room polygon
ctx.beginPath ()

y:

0 })}>Reset View

button>
<button onClick={() => setScale(scale * 0.9)1}>Zoom 0Out</
button>
<button onClick={() => setPan({ x: O,
</button>
</div>
</div>
)
function drawRoom(ctx, room, highlight = false):

ctx.moveTo (room.coordinates [0].x, room.coordinates [0].y)

for i from 1 to room.coordinates.length:

ctx.lineTo(room.coordinates[i].x, room.coordinates[i].y)

ctx.closePath ()
ctx.fill ()
ctx.stroke ()

// Draw room label

ctx.fillStyle = ’rgba(0, 0, 0, 0.7)°
ctx.font = ’12px Arial’
ctx.textAlign = ’center’

110

119
120

A.10 — Analytics Data Processing

const centerX = room.coordinates.reduce((sum, c) => sum + c.x,

room.coordinates.length

const centerY = room.coordinates.reduce((sum, c) => sum + c.y,

room.coordinates.length

ctx.fillText (room.name, centerX, centerY)

// If room has occupancy, show count

if room.occupancy > O:

ctx.fillText (‘${room.occupancy}, centerX, centerY + 15)

function drawTag(ctx, tag, scale

1, pan = { x: 0, y:

// Apply scale and pan transformations
const x = tag.position.x * scale + pan.x
const y = tag.position.y * scale + pan.y

// Draw position dot
ctx.beginPath ()

ctx.arc(x, y, 6, 0, Math.PI * 2)
ctx.fillStyle = getStatusColor (tag.status)

ctx.fill ()
ctx.strokeStyle = ’white’
ctx.lineWidth = 1
ctx.stroke ()

// Draw tag label

ctx.fillStyle = ’black’
ctx.font = ’10px Arial’
ctx.textAlign = ’center’

ctx.fillText (tag.name, x, y -

10)

// If low battery, add indicator

if tag.battery < 20:
ctx.fillStyle = ’red’
ctx.fillText(’!’, x + 8, y

- 8)

0

P

0)

0)

/

/

Listing A.16: Floor Map Visualization Component (Frontend)

A.10 Analytics Data Processing

// Analytics Generation Algorithm

function generateAnalytics(timeframe = ’24h’):
// Set time range based on timeframe
const end_time = getCurrentTimestamp ()

let start_time

switch(timeframe) :

case ’24h’:
start_time = end_time
break

case ’7d’:
start_time = end_time

break

(24 * 60 * 60)

(7 * 24 *x 60 * 60)

Pseudocode

case ’30d4d’:
start_time
break

default:
start_time

end_time - (30 * 24 * 60 * 60)

// Get timeline events in the specified range
const timeline_events = getTimelineEvents(start_time, end_time)

// Group events by tag
const events_by_tag = {}

for each event in timeline_events:
if event.tag_id not in events_by_tag:
events_by_taglevent.tag_id] = []

events_by_taglevent.tag_id].push(event)

// Initialize analytics metrics
const analytics = {
total_transitions: timeline_events.length,
tags_tracked: Object.keys(events_by_tag).length,
room_occupancy: {},
room_transitions: {},
time_in_rooms: {7},
busiest_periods: [],
system_performance: {
avg_latency: calculateAveragelatency (),
uptime: calculateSystemUptime (),
error_rate: calculateErrorRate ()

}

// Calculate room occupancy and transitions
for each event in timeline_events:
// Increment room transitions count
const transition_key = ‘${event.from_room}->${event.to_room}*

if transition_key not in analytics.proom_transitions:
analytics.room_transitions[transition_key] = 0

analytics.room_transitions[transition_key]++
// Add time in room
if event.from_room not in analytics.time_in_rooms:

analytics.time_in_rooms [event.from_room] = 0

analytics.time_in_rooms [event.from_room] += event.
duration_in_previous

// Calculate hourly activity for busiest periods
const hourly_activity = calculateHourlyActivity(timeline_events)

analytics.busiest_periods = findBusiestPeriods (hourly_activity)

// Calculate current room occupancy

end_time - (24 * 60 * 60) // Default to 24 hours

A.11 — System Monitoring and Health Check

&

const current_positions = getCurrentPositions ()

1o

for each position in current_positions:
const room = position.room

N

if room not in analytics.room_occupancy:
analytics.room_occupancy[room] = 0

PRI B BT B

analytics.room_occupancy [room]++

~
~

3

00

return analytics
79

g0 function calculateHourlyActivity (events):

81 const hourly = Array(24).£il1(0)

82

83 for each event in events:

84 const hour = new Date(event.timestamp * 1000) .getHours ()
85 hourly [hour]++

86

87 return hourly

88
g0 function findBusiestPeriods (hourly_activity):
90 // Clone and sort hourly activity

91 const sorted = [...hourly_activity]
92 .map ((count, hour) => ({ hour, count }))
93 .sort((a, b) => b.count - a.count)

95 // Return top 3 busiest hours

96 return sorted.slice(0, 3).map(item => ({

97 hour: item.hour,

98 count: item.count,

99 percent0fTotal: item.count / hourly_activity.reduce((sum, val) =>
sum + val, O0)

100 iDD)

Listing A.17: Analytics Generation Algorithm

A.11 System Monitoring and Health Check

1 // System Health Check Service

2 function monitorSystemHealth():

3 // Run health checks every 5 minutes

' setInterval (() => {

5 const health_status = performHealthChecks ()
6 storeHealthStatus (health_status)

8 // If critical issues, send alerts

9 if health_status.critical_issues.length > O:
10 sendAlerts (health_status.critical_issues)
11 }, 5 x 60 * 1000)

13 function performHealthChecks():
14 const health_status = {

Pseudocode

timestamp:
database:

memory_usage:
critical_issues:

getCurrentTimestamp (),
checkDatabaseConnection (),
mgtt: checkMgttConnection(),

api: checkApiEndpoints (),
base_stations: che
system_load: getSy

ckBaseStationStatus (),
stemLoad (),

getMemoryUsage (),
[]

// Check for offline base stations
const offline_stations

= getOfflineBaseStations ()

if offline_stations.length > O0:
health_status.critical_issues.push({
’BASE_STATION_OFFLINE’,

type:

message:

affected_stations: offline_stations

b

// Check for database connection issues

if 'health_status.database.connected:
health_status.critical_issues.push ({

DATABASE_CONNECTION_FAILED’,

type:

message:
details:

b

’Failed to connect to database’,
health_status.database.error

// Check for MQTT broker issues

if 'health_status.mqtt.connected:
health_status.critical_issues.push ({

»MQTT_CONNECTION_FAILED’,

type:

message:
details:

b

// Check system load

if health_status.system_load > 0.9:
health_status.critical_issues.push ({

HIGH_SYSTEM_LOAD’,

type:

message:

system_load * 100}%°,

details:

b

return health_status

‘System load is critically high:

function checkBaseStationStatus():
// Get all base stations
const base_stations =

getAllBaseStations ()

// Check last seen timestamp
const now = getCurrentTimestamp ()

const timeout

5 x 60

// 5 minutes timeout

‘${offline_stations.length} base stations are offline

’Failed to connect to MQTT broker’,
health_status.mqtt.error

${health_status.

’Consider scaling or optimizing the system’

90
91
92
93
94

95

A.11 — System Monitoring and Health Check

const status = {
total: base_stations.length,
online: O,
offline: O,
details: []

}

for each station in base_stations:
const time_since_last_seen = now - station.last_seen
const online = time_since_last_seen < timeout

status.details.push ({

b

if

id: station.id,

mac_address: station.mac_address,

name: station.name,

online: online,

last_seen: station.last_seen,
time_since_last_seen: time_since_last_seen

online:
status.online++

else:

return

status.offline++

status

function sendAlerts (issues):
for each issue in issues:

// Log issue
console.error (‘ALERT: ${issue.type} - ${issue.messagel}‘)
// Send to notification system

notificationService.send ({

b

/!
if

if

level: ’critical’,

title: issue.type,

message: issue.message,

details: issue.details,
timestamp: getCurrentTimestamp ()

If configured, send email/SMS alerts
ENABLE_EMAIL_ALERTS:
sendEmailAlert (issue)

ENABLE_SMS_ALERTS && issue.type.startsWith(’BASE_STATION’):
sendSmsAlert (issue)

Listing A.18: System Health Check Service

	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Research Objectives
	Research Methodology
	Thesis Structure

	State of the Art in Indoor Positioning Systems
	Overview of Indoor Positioning Technologies
	Indoor Positioning Techniques
	Multilateration
	Triangulation
	Fingerprinting
	Proximity
	Hybrid and Advanced Techniques

	Evaluation Metrics for Indoor Positioning Systems
	Accuracy and Precision
	Latency and Update Rate
	Availability and Reliability
	Scalability
	Energy Efficiency
	Costs
	Privacy and Security

	Applications of Indoor Positioning Systems
	Applications in the Healthcare Sector

	Current Challenges and Limitations

	Bluetooth Low Energy Technologies for Indoor Positioning
	Fundamentals of Bluetooth Low Energy
	Introduction to Bluetooth Low Energy
	BLE Architecture and Technical Specifications
	Evolution of Bluetooth Standard for Positioning
	Key Features for Indoor Positioning

	BLE Beacon Protocols
	iBeacon Protocol
	Eddystone Protocol
	AltBeacon Protocol
	Protocol Comparison

	BLE-based Distance Estimation Methods
	Introduction
	RSSI-based Distance Estimation
	Accuracy Improvement Techniques
	Direction Finding Methods
	Method Comparison

	Positioning Algorithms for BLE Systems
	Algorithm Selection and Performance Analysis
	Implementation Considerations

	ESP32 as a Station for Positioning Systems
	ESP32 Architecture and Capabilities
	Platform Overview
	Hardware and Software Architecture

	ESP32 BLE Scanner Implementation
	Software Implementation

	Wearable BLE Tags: Technology, Integration, and Considerations
	Overview of Wearable BLE Tags
	Classification and Applications

	Design and Components
	Hardware Architecture

	Global Tag Disk Beacon Analysis
	Commercial Comparison

	Privacy and Security Considerations
	Identified Challenges
	Comprehensive Mitigation Framework
	Regulatory Compliance and Implementation Standards

	Architecture and Implementation of the IoT System for Indoor Positioning
	Chapter Objectives
	System Requirements and Design Principles

	System Architecture Overview
	Core Technologies and Communication Protocols
	MQTT Implementation for IoT Communication
	WebSocket Implementation for Real-Time Updates
	RESTful API Architecture

	ESP32 Devices: The Intelligent Scanner Stations
	Device Initialization and Network Connectivity
	MQTT Communication Framework
	BLE Scanning and Tag Detection
	Future Implementation Considerations

	Backend Architecture: The Central Nervous System
	Typical Data Workflow
	Positioning Algorithm Pipeline

	Data Persistence and Management
	Data Model and Schema Design
	Database Operations and Transaction Management

	Frontend Architecture and User Experience
	Frontend Architecture and Implementation
	Real-time Communication and Performance Optimization
	User Interface Design and Accessibility
	Frontend Feature Showcase

	Security Framework and Implementation
	Deployment Strategy and Containerization

	System Installation and Deployment
	Pre-Installation Planning and Site Assessment
	Environmental Analysis Methodology
	Technical Specifications and Requirements
	Site Mapping and Device Positioning Strategy

	Physical Installation and Hardware Configuration
	Component Preparation and Pre-Configuration
	Physical Deployment and Installation
	BLE Tag Configuration and Network Integration

	System Configuration and Calibration
	Software Initialization and Development Environment
	System Calibration and Parameter Optimization

	System Validation and Performance Assessment
	Coverage Validation and Signal Analysis
	Accuracy Testing and System Performance
	Frontend Integration and User Interface

	Maintenance and Scalability Considerations
	Monitoring and Maintenance Strategy
	Hospital Environment Scaling Requirements

	System Testing and Validation
	Testing Overview and Methodology
	Data Acquisition Tests
	Test Environment Setup
	Maximum Communication Range Tests
	System Availability Assessment

	Data Processing Tests
	Algorithm Accuracy Testing
	Precision Analysis
	System Latency Analysis
	System Performance Monitoring
	System Stability Assessment
	Power Consumption and Energy Efficiency

	Data Storage Tests
	Storage Efficiency Analysis
	API Functionality Verification

	Data Visualization Tests
	User Interface Compatibility
	User Experience Evaluation

	Cost Analysis
	Privacy and Security Assessment
	Test Results Summary
	System Requirements Compliance
	Current Limitations and Constraints

	Conclusions and Future Developments
	Conclusions
	Future Development
	Technical Improvements
	Research Directions

	Bibliography
	Pseudocode
	ESP32 Base Station (IoT Layer)
	Backend Service (Positioning Engine)
	RSSI Processing and Filtering Algorithms
	Multilateration Algorithm
	Room Detection and Floor Mapping Algorithm
	Timeline Events and Deduplication
	Database Service API
	Frontend WebSocket Client
	Interactive Map Visualization
	Analytics Data Processing
	System Monitoring and Health Check

