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Abstract

Abstract

Traditional communication systems have long prioritized the accurate transmission of bit

sequences, focusing more on symbol-level precision than on the actual meaning of the

transmitted information. This approach, while effective in many technical scenarios, can be

limiting when the goal is to ensure that the receiver understands the intended message rather

than its exact form.

Semantic communication introduces a shift in perspective by aiming to convey meaning

instead of replicating every transmitted symbol. Recent advancements in deep learning, par-

ticularly through Transformer-based architectures, have made it possible to develop systems

that optimize for semantic understanding rather than syntactic accuracy.

This thesis proposes the enhancement of a semantic communication system based on a

Joint Source–Channel Coding (JSCC) framework for text transmission, with several modi-

fications aimed at improving its robustness and adaptability in real-world conditions. The

proposed solution includes a feedback mechanism that enables selective retransmissions

and leverages reference-free quality metrics to evaluate decoding success without needing a

ground truth comparison.

In addition, the thesis presents an experimental evaluation of the system, carried out under

different wireless channel conditions. The goal is not only to test its performance but also

to observe how the feedback mechanism responds in each scenario, offering insights into its

behavior. The results show the impact achieved with the proposed enhancements and provide

hints towards further approaches for an effective semantic-based retransmission system.
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Introduction

1 Introduction

1.1 Background and Motivation

Classic Information Theory (CIT), introduced by Shannon in 1948, provides the mathematical

foundations of modern communication systems. As presented in [26], the classic commu-

nication system consists of a source, encoder, channel (affected by noise), decoder, and

destination, as illustrated in Figure 1. This framework focuses on the uncertainty of informa-

tion and introduces four fundamental metrics used to evaluate communication performance:

entropy, mutual information, channel capacity, and the rate-distortion function.

Figure 1: Block diagram of a classical communication system. Source: [26].

While this model has driven decades of research and development in telecommunications,

it only addresses what Weaver defined as Level A of communication, which is concerned

with the technical problem of transmitting symbols accurately. Shannon explicitly stated that

the semantic aspects of communication are irrelevant to the engineering problem [26]. As a

result, meaning, interpretation, and context are excluded from the classical model.

To overcome this limitation, recent works have proposed Semantic Communication as a

natural extension of CIT. In this paradigm, the primary goal is not the faithful reconstruction

of a bit sequence, but the correct interpretation of the intended meaning at the receiver

side. This corresponds to Level B in Weaver’s classification [37], where the emphasis is on

semantics rather than syntax.

The semantic communication system introduced in [26] is shown in Figure 2. In this

extended model, the source and destination each contain both a syntactic and a semantic

component. Synonymous mapping functions are used to associate sets of syntactic elements

with shared semantic content, enabling the system to operate on semantic equivalence classes

rather than raw bit sequences. A similar demapping process is performed at the receiver.
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Figure 2: Block diagram of a semantic communication system. Source: [26].

This reformulation makes it possible to reduce the volume of transmitted information

by focusing on the transmission of meaning. As a result, semantic communication has the

potential to significantly improve communication efficiency, especially in scenarios with lim-

ited bandwidth or strict latency constraints. Moreover, it provides the theoretical foundation

for intelligent, context-aware communication in future systems such as 6G.

This field is still relatively new, and the enhancements proposed in this thesis aim to

increase the autonomy, reliability, and semantic robustness of DeepSC, a JSCC framework for

text transmission, through adaptive evaluation, feedback-based retransmission, and memory-

augmented decoding.

1.2 Research Direction

This thesis extends DeepSC by introducing a series of enhancements to make semantic

communication more autonomous and robust. The proposed contributions are as follows:

• Reference-free semantic evaluation: A decision mechanism based on perplexity,

unigram-normalized perplexity, and grammatical acceptability (via CoLA) is intro-

duced, allowing the receiver to assess the quality of decoded messages without relying

2
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on reference sentences.

• Retransmission loop based on semantic quality: A retransmission strategy is imple-

mented in which the decoder triggers a new transmission when the decoded sentence is

deemed semantically unacceptable. This process continues until a satisfactory output

is obtained or a maximum number of attempts is reached.

• Memory-augmented decoding: During retransmission, the decoder receives both the

current and previous received signals as input. This fused representation allows the

decoder to incorporate information from prior attempts, enabling semantic refinement

and improved output quality.

1.3 Objectives

The main objective of this work is to improve the practical viability of semantic communica-

tion in realistic, reference-free settings. Specifically, the work aims to:

1. Enable semantic retransmission decisions using reference-free evaluation metrics.

2. Integrate a decoder memory mechanism that conditions future predictions on previously

received signals.

3. Design a feedback loop at inference time that incorporates semantic-aware retransmis-

sion policies.

4. Evaluate the system under both reference-based and reference-free conditions using

established metrics such as BLEURT, BERTScore, PPL, PPLu, and CoLA.

1.4 Outline

The remainder of this document is structured as follows:

• Section 2 reviews the state of the art in semantic communication. It first presents the

DeepSC framework and its Transformer-based architecture, then surveys relevant re-

search on evaluation metrics (both reference-based and reference-free), as well as recent

extensions addressing feedback mechanisms, retransmission strategies, and memory-

augmented decoding.

3
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• Section 3 describes the proposed architectural modifications and their implementation.

• Section 4 reports experimental results and analysis.

• Section 5 provides conclusions and future directions.

4
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2 State of the Art

2.1 Main Research Directions in Semantic Communication

The semantic communication paradigm has been thoroughly analyzed in [22], which iden-

tifies three principal research directions: Theory of Mind (ToM), Generative AI, and Deep

Joint Source-Channel Coding (DeepJSCC). These approaches aim to go beyond classical

information theory by embedding semantic understanding into the entire communication

process. Figure 3 illustrates their conceptual organization and mutual relationships.

Figure 3: Key directions in semantic communication: Theory of Mind, Generative AI, and DeepJSCC.
Source: [22].

Theory of Mind (ToM) In the Theory of Mind (ToM) approach, agents construct internal

models of each other’s knowledge, beliefs, and intentions. This cognitive modeling enables

more adaptive and efficient communication, as messages are generated not just for correctness

but for interpretability from the recipient’s perspective.

An example of this approach is proposed in the pragmatic semantic communication

system by Thomas et al. [33], which introduces a two-level feedback architecture grounded

in ToM reasoning. At the first level (Level A), physical transmission is adapted to the channel

state through traditional feedback mechanisms such as SNR or CQI. At the second level,

5
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semantic feedback is integrated using a cognitive model of the receiver’s neural networks

(NNs), allowing the transmitter to infer how the receiver might interpret or misinterpret a

given message.

The system includes a semantic encoder and decoder that are enhanced with ToM modules

capable of modeling the neural behavior of the communication counterpart. These models

are used to simulate and anticipate semantic ambiguity, improving both message selection

and refinement. The overall architecture is illustrated in Figure 4.

Figure 4: Pragmatic semantic communication framework with dual-level feedback and Theory of
Mind modeling. Source: [33].

A more comprehensive cognitive integration is seen in the MindForge framework by

Colle et al. [25], which equips embodied agents with a full causal ToM template for contin-

ual and collaborative learning. MindForge is designed to operate in complex, open-ended

environments such as Minecraft, where agents must communicate, plan, and adapt over long

time horizons.

The system incorporates a structured model of cognition including percepts, beliefs,

desires, and actions, all grounded in a dynamic task environment. It uses episodic, semantic,

and procedural memory to track prior experience and align current behavior with inferred

partner goals. Communication is mediated by a dedicated module that interacts with a critic

and execution planner, enabling agents to plan context-aware interactions and learn from

multi-agent dialogue.

The MindForge architecture is shown in Figure 5, where the Causal ToM Template

operates in coordination with a memory system and task-specific modules. Belief inference

is used not only for action selection but also for dialogue planning and policy adaptation.

6
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Figure 5: MindForge framework: integration of causal Theory of Mind with episodic, semantic, and
procedural memory modules in a multi-agent environment. Source: [25].

Both frameworks exemplify the growing role of ToM in semantic communication systems.

By reasoning about how others interpret and act upon information, agents can dynamically ad-

just their encoding, select context-relevant utterances, and improve communication efficiency

in noisy, ambiguous, or multi-agent scenarios.

Generative AI-Based Semantic Communication Generative AI facilitates semantic com-

munication by allowing the transmitter to abstract high-dimensional sensory or linguistic

inputs into compact, meaning-preserving latent representations. These can then be decoded

or regenerated by the receiver, yielding semantically equivalent reconstructions even under

limited bandwidth or noisy channels.

A comprehensive overview of this vision is presented by Grassucci et al.[5], who contrast

traditional reconstruction-oriented communication systems with semantic-preserving gener-

ative approaches. Instead of transmitting raw or heavily encoded signals, the transmitter

extracts scene-level semantics (e.g., textual descriptions or sparse semantic maps) and sends

these compressed representations. The receiver uses a generative model to reconstruct a

plausible version of the original scene. As illustrated in Figure 6, this approach significantly

reduces bandwidth demands while preserving communicative intent.

7
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Figure 6: Comparison between traditional AI-based reconstruction and generative AI-based semantic
communication. The latter preserves meaning while reducing bandwidth. Source: [5].

A more task-specific implementation is proposed by Zhang et al.[19], who design a

semantic communication system that progressively refines message quality through generative

inference. The system, shown in Figure 7, relies on a Swin-Transformer encoder to extract

patch-level semantic embeddings, which are then decoded at the receiver via a diffusion

model. This combination enables robustness in low-SNR environments and supports multi-

user settings by distributing semantic features across users with distinct refinement stages.

8
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Figure 7: Semantic successive refinement architecture with Swin Transformer encoder and diffusion-
based decoder across multiple users. Source: [19].

The foundation of these systems rests on several families of generative models, each with

distinct strengths. As summarized in Figure 8, Generative Adversarial Networks (GANs),

Variational Autoencoders (VAEs), Diffusion Models (DMs), and Transformer-based archi-

tectures offer different trade-offs in sample quality, training stability, and representation

flexibility. Diffusion models, in particular, have gained popularity in semantic communica-

tion due to their robustness in noisy environments and their capacity to model uncertainty

during reconstruction.

Figure 8: Comparison of popular generative architectures for semantic communication. Each family
offers different strengths for encoding and reconstruction. Source: [16].

In the context of vehicular communication, Lu et al.[16] propose the GMSC (Generative

9
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AI-enhanced Multi-modal Semantic Communication) system. Their design addresses the

real-time and bandwidth-constrained requirements of Internet of Vehicles (IoV) by fusing data

from multiple sensors (e.g., camera, LiDAR, GPS), encoding it semantically, and applying

diffusion models for robust reconstruction and reasoning. Figure 9 shows the dual pipeline

for digital and analog semantic transmission, where tasks such as scene understanding and

BEV (bird’s-eye view) prediction are supported through generative decoding.

Figure 9: GMSC architecture for multi-modal semantic communication in vehicular systems using
generative AI. The framework includes both digital and analog pipelines. Source: [16].

These examples illustrate how generative AI enables communication systems to prioritize

meaning over syntax, leading to more flexible, robust, and bandwidth-efficient designs. By

exploiting the generative prior learned from massive datasets, these models bridge the gap

between compression, reasoning, and reconstruction in semantic communication.

Deep Joint Source–Channel Coding (DeepJSCC) DeepJSCC unifies source and channel

coding into a single neural framework that learns to transmit semantic information directly

over noisy wireless channels. This joint optimization enables robust communication with

reduced latency and better semantic preservation compared to traditional separation-based

10
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designs. This thesis work falls within this research direction, focusing on neural joint

source–channel coding and the integration of semantic feedback and retransmission strategies.

A representative example is MambaJSCC, proposed by Wu et al. [35]. This model in-

tegrates visual state-space modeling into a DeepJSCC framework, enabling real-time adapt-

ability through channel-aware encoding. The encoder captures temporal and spatial features

using patch-based 2D embedding and VSSM-CA blocks, while Channel State Information

(CSI) is encoded to guide both the encoder and decoder during transmission. The complete

pipeline is illustrated in Figure 10.

Figure 10: MambaJSCC architecture incorporating CSI-guided visual state-space modeling for
semantic image transmission. Source: [35].

A more modular design is offered by Huang et al. [15], who propose D2-JSCC, a digital

variant of DeepJSCC. Their approach combines deep entropy coding with digital channel

encoding and supports bit-level control while preserving semantic content. This structure

enables joint optimization over compression and reliability metrics. As shown in Figure 11,

their system bridges neural compression with traditional channel coding strategies, benefiting

from digital flexibility.

11
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Figure 11: (a) End-to-end DeepJSCC encoder-decoder pipeline. (b) Modular D2-JSCC architecture
with entropy coding and joint optimization. Source: [15].

To improve semantic robustness in adverse channel conditions, Zhu et al. [23] propose

SGD-JSCC, which augments DeepJSCC with a diffusion denoising module. Their model

introduces semantic side information to guide the generative refinement process. As shown

in Figure 12, the decoder leverages diffusion-based generation to reconstruct semantically

meaningful content, compensating for degraded latent features.

Figure 12: Standard vs. semantics-guided DeepJSCC with diffusion denoiser and auxiliary side
information. Source: [23].

In task-oriented scenarios, Park et al. [30] design a KL-regularized DeepJSCC framework

aimed at stabilizing semantic representations during transmission. Their system aligns the

posterior of received latent variables with the prior distribution learned during training, using

KL-divergence regularization. This setup is well-suited for applications like image captioning

12
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or classification, as depicted in Figure 13, where the decoder directly infers symbolic outputs

from noisy signals.

Figure 13: KL-regularized DeepJSCC for robust task-oriented semantic communication. The decoder
predicts symbolic labels directly from noisy features. Source: [30].

Collectively, these innovations demonstrate the flexibility of DeepJSCC in combining

end-to-end differentiability, semantic robustness, and cross-layer optimization. By adopt-

ing generative models, attention mechanisms, and hybrid digital-analog designs, modern

DeepJSCC systems push the boundaries of what semantic communication can achieve under

realistic wireless constraints.

Interrelation and Evolution These three directions are not isolated. Theory of Mind can

evolve into Generative AI-based models by integrating external knowledge and neural priors.

Generative architectures, in turn, benefit from DeepJSCC techniques to ensure semantic

reliability over real-world wireless channels. Together, they form a unified foundation for

intelligent, adaptive, and efficient communication systems.

2.2 DeepSC: A Transformer-Based Semantic Communication System

DeepSC (Deep Learning Enabled Semantic Communication) is an architecture that imple-

ments a Joint Source-Channel Coding (JSCC) strategy using deep learning, with a specific

focus on preserving the semantic meaning of transmitted messages. Unlike traditional com-

munication systems that treat source coding (e.g., compression) and channel coding (e.g.,

error correction) as separate blocks, JSCC integrates these functions into a single end-to-

end model. DeepSC further specializes this by ensuring that the transmitted information

maintains its semantic integrity, even if the exact symbol sequence is altered due to channel

imperfections.
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The original DeepSC model, introduced by Xie et al. [10], was designed for text-based

communication using a Transformer-based encoder-decoder architecture. This approach al-

lows the system to extract high-level semantic features from natural language text and transmit

them efficiently over noisy wireless channels. The model was later extended by Grieco [7] to

better simulate real-world conditions and support benchmarking against standard 5G New Ra-

dio (NR) communication systems. These improvements include support for realistic physical

channels, Multiple-Input Multiple-Output (MIMO) transmission, and advanced equalization

techniques, while preserving the interpretability and semantic fidelity of the original design.

Figure 14: General DeepSC semantic transceiver model. Source: [10].

The transmitter maps the input sentence s = [𝑤1, 𝑤2, . . . , 𝑤𝐿] into a semantic represen-

tation via a transformer encoder 𝑆𝛽, followed by a channel encoder 𝐶𝛼:

x = 𝐶𝛼 (𝑆𝛽 (s)) (1)

The signal is transmitted over a realistic physical channel with additive noise and MIMO

fading:

y = H · x + n (2)

At the receiver, decoding is performed via:

ŝ = 𝑆−1
𝜒 (𝐶−1

𝛿 (y)) (3)
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Figure 15: Detailed implementation of the final DeepSC transformer-based model. Source: [10].

The detailed architecture in Figure 15 illustrates the end-to-end transceiver pipeline using

Transformer-based components. The input batch S has shape 𝐵 × 𝐿, where 𝐵 is the batch

size and 𝐿 is the sentence length. Each word is embedded into a vector of size 𝐸 , resulting

in a tensor of shape 𝐵 × 𝐿 × 𝐸 .

The key processing steps are:

• Embedding Layer: maps tokens to dense vectors E ∈ R𝐵×𝐿×𝐸 .

• Transformer Encoder: extracts semantic features, producing M ∈ R𝐵×𝐿×𝑉 , where 𝑉

is the latent dimension of the semantic space.

• Dense Layer & Channel Encoder: the semantic features are projected and reshaped

into X ∈ R𝐵×𝑁𝐿×2, representing complex-valued channel symbols.

• Channel Layer: simulates transmission through a realistic physical channel (AWGN,

Rayleigh, Rician, or CDL-B MIMO).

• Channel Decoder & Dense Layer: reconstructs the semantic embedding M̂ ∈ R𝐵×𝐿×𝑉

from the received signal.

• Transformer Decoder + Softmax: estimates the original sentence Ŝ ∈ R𝐵×𝐿 .

The architecture incorporates advanced physical layer components:

• CDL-B channel model (3GPP-compliant), simulating multipath fading via clustered

delay profiles.

• MIMO transmission (up to 32×4) using Space Frequency Coding (SFC) for diversity

and robustness.
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• Pre-coding via Singular Value Decomposition (SVD):

H = U𝚺V𝐻 , Xtx = V · XMIMO (4)

• Equalization techniques, including:

– Zero-Forcing (ZF):

XMIMO ≈ U𝐻𝚺𝐻Y (5)

– Minimum Mean Squared Error (MMSE):

WMMSE = H𝐻
eq

(
HeqH𝐻

eq + 𝑁0I
)−1

(6)

The system is trained end-to-end using a composite loss function that combines semantic

accuracy and channel robustness:

Ltotal = LCE(s, ŝ) − 𝜆LMI(x, y) (7)

where the mutual information loss is computed using a neural estimator 𝑓𝑇 :

LMI = E𝑝(𝑥,𝑦) [ 𝑓𝑇 ] − log
(
E𝑝(𝑥)𝑝(𝑦) [𝑒 𝑓𝑇 ]

)
(8)

The training process is performed in two stages, as illustrated in Figure 16. First, the

mutual information estimator 𝑓𝑇 is trained. Then, the full transceiver is optimized via

stochastic gradient descent using the total loss function.
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Figure 16: Two-phase training process used in DeepSC. Phase 1 estimates the mutual information
𝐼 (X; Y), and Phase 2 performs end-to-end optimization using a combined loss function based on
cross-entropy and mutual information. Source: [7].

These architectural extensions enable DeepSC to be evaluated under real-world communi-

cation conditions, making it a suitable framework for benchmarking semantic communication

against traditional systems such as 5G NR.

2.3 ARQ and HARQ Mechanisms in DeepSC

Automatic Repeat reQuest (ARQ) and Hybrid Automatic Repeat reQuest (HARQ) are clas-

sical error control mechanisms used in communication systems to ensure data reliability over

unreliable or noisy channels. In ARQ protocols, the receiver detects transmission errors and

requests retransmission of corrupted data packets via acknowledgment (ACK) and negative

acknowledgment (NACK) messages. HARQ extends this principle by combining retransmis-

sions with error-correction coding, allowing the receiver to incrementally decode messages

using both newly received and previously stored data.

While traditional ARQ and HARQ operate at the bit or symbol level, their reinterpretation

in the context of semantic communication allows for new opportunities. Here, the goal is

not just to correct corrupted bits, but to preserve the intended meaning of the transmitted

content. This shift requires feedback mechanisms that assess semantic fidelity and trigger

retransmissions only when the degradation affects comprehension or task performance. The

integration of such semantic-aware ARQ/HARQ strategies into DeepSC architectures opens
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up new avenues for improving communication efficiency, robustness, and adaptability.

Recent research has proposed several frameworks that extend ARQ and HARQ principles

to operate on semantic representations. The most notable among these include SCAN,

SemHARQ, and SimHARQ, which introduce feedback-driven mechanisms that consider

content relevance, task utility, and semantic distortion during retransmission decisions. In

the following, these approaches are reviewed and analyzed for their integration potential into

DeepSC systems.

SCAN: Semantic Communication with Adaptive Feedback In [8], the authors propose

the SCAN (Semantic Communication with Adaptive chaNnel feedback) framework, which

reinterprets the classical ARQ paradigm through a semantic lens. Instead of relying solely

on bit-level retransmission, SCAN introduces a content-aware mechanism that adapts both

the transmission and feedback strategy based on semantic relevance and channel dynamics.

At the core of SCAN is the concept of Semantic Distortion Outage Probability (SDOP), a

learned function that estimates the probability of exceeding an acceptable semantic distortion

threshold under given channel conditions. The receiver evaluates this probability based on

the received signal y, estimated channel state information (CSI), and the intended task (e.g.,

image classification or captioning). This SDOP value is sent back to the transmitter through

a dedicated feedback channel, guiding the selection of compression levels and modulation

parameters in future transmissions.

SCAN’s feedback loop is shown in Figure 17. The receiver side includes a CSI encoder

that compresses the estimated channel matrix and semantic quality signals into a compact

feedback vector zℎ, which is transmitted to the sender. The transmitter then decodes zℎ and,

using a learned performance evaluation module, dynamically selects one of multiple DeepSC

encoder branches optimized for different semantic complexities. These branches vary in

compression strength, trading off fidelity and bandwidth. A shared MIMO precoding module

ensures that the representation z is efficiently adapted to the channel matrix H.
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Figure 17: SCAN system architecture. The receiver estimates the semantic distortion and channel
state, encodes them into a feedback vector, and the transmitter dynamically adjusts compression and
coding. Source: [8].

Another key innovation in SCAN is the use of deep reinforcement learning (DRL) to

jointly optimize compression selection and retransmission strategies. The transmitter acts

as a policy agent, observing the SDOP feedback and selecting compression indicators (e.g.,

{2, 4, 5, ...}) that correspond to encoder branches with different semantic abstraction levels.

The DRL policy is trained to minimize semantic distortion while accounting for channel

variability and transmission costs. Importantly, retransmissions are triggered selectively and

can focus on semantically high-impact regions (e.g., facial features in an image), rather than

indiscriminately repeating entire messages.

Furthermore, SCAN supports multi-level semantic abstraction, where semantic units are

structured hierarchically. This enables the system to degrade gracefully under poor channel

conditions by discarding less relevant semantic layers while preserving core meaning. Such

a design ensures robustness and scalability for tasks requiring semantic generalization, such

as object recognition, image captioning, or scene understanding.

In conclusion, SCAN represents a paradigm shift in the use of feedback for semantic

communication—transforming it from a mere error detection mechanism into a tool for

semantic relevance evaluation. Its adaptive design offers a promising foundation for extending

DeepSC architectures toward more context-aware and resilient communication strategies.

SemHARQ: Task-Oriented Semantic HARQ A more recent contribution is presented

in [14], which introduces SemHARQ, a semantic-aware Hybrid Automatic Repeat reQuest

protocol designed specifically for multi-task semantic communication systems. In contrast
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to conventional HARQ strategies that operate at the bit or packet level, SemHARQ per-

forms retransmission selectively at the semantic feature level, guided by task-oriented quality

assessments.

The overall architecture, illustrated in Figure 18, comprises several interconnected mod-

ules. At the transmitter side, a multi-task semantic encoder first extracts semantically mean-

ingful representations s from the input data (e.g., images). These are then passed through a

joint source–channel (JSC) encoder to produce a compact feature vector f. The core novelty

lies in the subsequent Scalable Feature Selector for HARQ, which prioritizes semantic fea-

tures based on their importance for each downstream task. This module outputs a subset of

features z̃ 𝑗 to be normalized and transmitted over the wireless channel.

At the receiver, a Retransmission Identification Module compares the received features

ẑ 𝑗 against expected semantic representations using a feature distortion evaluation (FDE)

network. The result is a binary feedback vector 𝑝 𝑗+1, which acts as a bitmask indicating

which feature groups should be retransmitted. This mask is returned to the transmitter via

the feedback channel in the form of a semantic-aware NAK signal.

A key component of SemHARQ is the Feature Importance Ranking (FIR) mechanism,

which enables the system to adapt its retransmission strategy dynamically. Features that are

considered semantically critical, either due to their relevance to the target task or based on

learned importance weights, are prioritized for retransmission. This approach maximizes the

utility of each additional transmission while operating under bandwidth constraints.

The decoder at the receiver side performs two stages: (i) decoding of the semantic features

via the JSC-decoder, and (ii) execution of parallel downstream tasks, such as classification or

identification, using task-specific performers. The architecture supports multiple concurrent

tasks (e.g., object type, color), and is optimized end-to-end to minimize semantic distortion

while maximizing task-specific accuracy.

20



State of the Art

Figure 18: SemHARQ system architecture: semantic features are prioritized and selectively retrans-
mitted based on distortion and task relevance, with multi-task decoding at the receiver. Adapted from
[14].

To validate the performance of SemHARQ in realistic settings, the authors evaluate the

system on the VeRi-776 dataset, which contains over 50,000 annotated images of 776 vehicles

under varying camera viewpoints and lighting conditions. Each image is labeled with object

ID, color, and vehicle type, enabling multi-task classification.

SemHARQ demonstrates substantial gains under low-SNR conditions. For instance, at

an SNR of −2 dB, it achieves a rank-1 accuracy of 71.22% in vehicle re-identification,

significantly surpassing both traditional HARQ and state-of-the-art semantic-aware HARQ

baselines by over 40 percentage points. Comparable improvements are observed in auxiliary

tasks such as color and type classification, with performance gains exceeding 10%.

These results confirm that SemHARQ’s selective retransmission strategy, guided by

semantic importance and distortion, offers a robust and bandwidth-efficient solution for

multi-task semantic communication systems deployed in noisy wireless environments.

The modularity of SemHARQ allows seamless integration with scalable encoder ar-

chitectures and pre-trained vision backbones, making it a robust candidate for real-world

multi-modal semantic communication systems. By moving retransmission logic from the

bit level to the semantic level, it lays the groundwork for more intelligent and context-aware

feedback mechanisms in future networks.

SimHARQ: Semantic HARQ for Cooperative Perception In the domain of cooperative

perception, [38] proposes a semantic communication framework specifically designed for

vehicle-to-vehicle (V2V) transmission of LiDAR-derived features. Unlike conventional per-

ception sharing, which often transmits raw or lightly processed point clouds, this system
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adopts a semantic-first philosophy that prioritizes perceptual importance and task-specific

relevance.

At the heart of the framework lies the use of importance maps, which quantify the

semantic relevance of spatial regions within LiDAR data. These maps are generated through

task-driven neural encoders and are used to rank the importance of feature segments prior to

transmission. This ranking guides the allocation of communication resources, ensuring that

high-value semantic components are prioritized under limited bandwidth.

To handle channel-induced errors, the authors introduce SimCRC (Similarity-based Cyclic

Redundancy Check), a semantic-aware error detection module. Instead of relying solely on

bit-level checksums, SimCRC computes the cosine similarity between received features and

reference semantic embeddings. A semantic distortion threshold 𝛿 is used to determine

whether retransmission is required. This thresholding mechanism provides more nuanced

error detection by considering perceptual semantics rather than just raw accuracy.

Building on SimCRC, two variants of HARQ are introduced:

• SimHARQ-I: based on chase combining, this strategy retransmits identical copies of

corrupted features and uses combining techniques at the receiver to improve robustness.

• SimHARQ-II: employs incremental redundancy by sending additional parity or semantic-

dense information, progressively refining the received representation during retrans-

missions.

These mechanisms are embedded into a cooperative perception pipeline that fuses locally

observed and received features for robust object detection. As illustrated in Figure 19, the

pipeline includes modules for semantic encoding, importance assessment, SimCRC-based

feedback generation, and progressive semantic fusion on the receiver side.
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Figure 19: SimHARQ framework for cooperative LiDAR feature sharing. Importance maps guide
prioritized transmission, while semantic-aware HARQ mechanisms ensure robust perception under
channel distortion. Adapted from [38].

Extensive evaluations on the KITTI dataset demonstrate the effectiveness of the frame-

work. Compared to traditional HARQ and baseline semantic communication systems,

SimHARQ-II achieves up to 19% improvement in 3D object detection mAP under low-

SNR conditions. Additionally, its ability to reduce unnecessary retransmissions results in up

to 25% bandwidth savings without compromising detection accuracy.

Overall, SimHARQ showcases how semantic feedback, importance-driven prioritization,

and incremental refinement can be synergistically combined to enable robust and bandwidth-

efficient cooperative perception in vehicular networks. Its modular design also makes it

amenable to integration with DeepSC-style architectures and future 6G V2X systems.

Towards Feedback-Enhanced DeepSC Building on the ideas presented in SCAN, SemHARQ,

and SimHARQ, recent studies suggest that DeepJSCC-based architectures could benefit from

semantic-aware ARQ/HARQ integration. For instance, semantic quality estimators such as
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embedding similarity or task-specific classification scores can be used to trigger feedback

responses. Upon detecting insufficient semantic reliability, the receiver may issue a NACK

signal, leading to partial or full retransmissions. Some proposals explore token-level retrans-

mission, conditional refinement through semantic encoders, or modulation of redundancy

based on semantic importance [8, 14, 38].

Although implementations remain at the early stage, these directions highlight the poten-

tial of feedback mechanisms to enhance DeepSC robustness and adaptability, particularly in

low-SNR and multi-task settings.

2.4 Memory-Augmented Feedback Loop in DeepSC

Recent advances in semantic communication have explored the integration of memory mech-

anisms into transceiver architectures to improve semantic continuity and contextual coher-

ence. Memory modules enable the receiver to retain prior contextual knowledge, which is

particularly relevant in sequential tasks such as instruction following, dialogue systems, or

collaborative decision-making. A memory-augmented feedback mechanism enables the re-

ceiver to accumulate semantic knowledge over time and use it to refine message interpretation

and guide adaptive retransmission strategies.

In [11], the authors propose a semantic communication system that incorporates an

explicit memory module on the receiver side. The system operates in two distinct phases. In

the first phase, referred to as memory shaping, contextual information such as prior dialogue

turns or environmental observations is transmitted and stored in the receiver’s memory. This

data is not decoded directly but rather used to build semantic context. In the second phase,

known as task execution, a new semantic message (for example, a question) is transmitted, and

the receiver leverages both the received signal and its memory to reconstruct a semantically

consistent output. This two-stage mechanism is illustrated in Figure 20, where subfigure

(a) represents the memory shaping process and subfigure (b) shows the decoding process

enriched by memory context.
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Figure 20: Memory-augmented semantic communication system. (a) Memory shaping phase; (b)
Task execution phase with memory-assisted decoding. Adapted from [11].

An alternative design is presented in [4], where the authors introduce a Feedback Attention

Memory (FAM) mechanism embedded within the Transformer architecture. Instead of

maintaining a separate memory buffer, each token representation is recurrently propagated

and selectively updated through successive transformer layers. As shown in Figure 21,

this copy-and-replace mechanism allows long-range dependencies to be modeled efficiently,

enabling contextual refinement without significantly increasing model complexity.

Figure 21: Feedback Attention Memory (FAM) mechanism in TransformerFAM. Token representations
are recurrently copied and selectively updated across transformer blocks. Adapted from [4].
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In addition to explicit memory mechanisms, the concept of implicit memory has been

explored in [27]. The Implicit Memory Transformer relies on left-context attention to

reference previously computed activations without the need for an external memory buffer.

This approach enables the model to maintain semantic continuity across sequential inputs with

reduced computational overhead, which is particularly valuable in real-time or low-latency

semantic communication scenarios.

Explicit memory shaping [11], internal memory updating through attention recurrence

[4], and implicit context referencing [27] represent complementary strategies that contribute

to the integration of memory within semantic communication systems. These approaches

enable semantic continuity and context preservation across transmissions, which are essential

properties in sequential or multi-turn scenarios. The incorporation of memory mechanisms

into the DeepSC architecture offers promising opportunities to enhance robustness and adapt-

ability, although this remains an active area of research with several open challenges.

2.5 Transformer Encoders: BERT and DistilBERT

Transformer encoder architectures are widely used in semantic communication systems to

generate dense, contextual embeddings from natural language input. Among the most influ-

ential models in this category is BERT (Bidirectional Encoder Representations from Trans-

formers) [12]. BERT is pre-trained on large unlabeled corpora using two unsupervised

objectives: masked language modeling (MLM) and next sentence prediction (NSP). The

MLM task involves randomly masking a subset of tokens and training the model to predict

the missing elements using the bidirectional context. The NSP task trains the model to

determine whether a given sentence follows another in the original document, improving its

ability to capture inter-sentence dependencies.

The input is tokenized using subword units and represented by a combination of token

embeddings, segment embeddings, and positional encodings. The architecture of BERT-

BASE consists of 12 transformer encoder layers, each containing multi-head self-attention

and feed-forward sublayers. The model has 110 million parameters and provides strong

performance across multiple language understanding tasks.

Due to its depth and size, BERT may not be suitable for applications with limited

computational resources or strict latency constraints. To address this issue, DistilBERT was
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introduced as a lighter alternative [36]. It is obtained through knowledge distillation, where a

smaller student model learns to replicate the behavior of a larger teacher model. DistilBERT

retains the same hidden size and attention configuration as BERT, but reduces the number of

layers by 50% (from 12 to 6), resulting in 66 million parameters and a 60% improvement in

inference speed.

The training objective for DistilBERT includes:

• a masked language modeling loss,

• a distillation loss that minimizes the divergence between the student and teacher output

distributions,

• and a cosine embedding loss to align internal hidden representations.

These components ensure that the model preserves both functional behavior and represen-

tational structure, enabling the use of transformer encoders in settings where computational

efficiency is essential.

Recent works have continued to refine the transformer encoder design. Warner et al. [3]

propose a modernized bidirectional transformer architecture that improves generalization,

training stability, and throughput. Their model incorporates optimizations such as improved

normalization layers and enhanced scaling strategies. Chen et al. [13] explore a combined

encoder-transformer approach that integrates encoder-derived representations with controlled

generative decoding, enhancing coherence and semantic consistency in downstream tasks.

Transformer encoders such as BERT and DistilBERT are particularly effective when used

as the semantic encoder module in neural communication systems. These models provide the

ability to map discrete text inputs into latent semantic spaces that can be further processed

and transmitted by the communication channel. The selection between full-scale models like

BERT and lightweight variants such as DistilBERT depends on the balance between semantic

precision and computational efficiency required by the target application.

Table 1: Comparison of BERT and DistilBERT architectures

Model #Layers Parameters Relative Inference Time

BERT-base [12] 12 110M 100%
DistilBERT [36] 6 66M 60%
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2.6 Semantic Evaluation Metrics

2.6.1 Reference-Based Metrics

In the evaluation of natural language generation systems such as machine translation, sum-

marization, and semantic communication, reference-based metrics play a central role. These

metrics estimate the quality of a candidate output by comparing it to one or more human-

generated reference sentences. The core assumption is that a higher similarity to human

references corresponds to greater linguistic quality and semantic fidelity.

Over the years, a variety of reference-based metrics have been introduced, each adopting

a different approach to measure similarity. Earlier metrics rely on lexical overlap and surface-

level patterns, while more recent ones incorporate semantic embeddings or model-based

scoring functions. This section presents four prominent reference-based metrics that are

frequently used in the literature and are particularly relevant for evaluating semantic quality:

BLEU, METEOR, BERTScore, and BLEURT.

For each metric, we describe its main formulation, typical scoring scale, common ap-

plications, and known limitations. This overview offers a comprehensive foundation for

understanding how automated evaluations are performed and what specific challenges arise

when these metrics are applied to tasks where the preservation of meaning is a primary

concern.

BLEU. The Bilingual Evaluation Understudy (BLEU) [20] is a reference-based metric

originally developed for evaluating machine translation. It estimates the quality of a candidate

sentence by comparing its 𝑛-gram overlap with one or more human-generated reference

sentences. BLEU assumes that the closer a candidate is to a professional human translation,

the better its quality.

BLEU combines modified 𝑛-gram precision with a brevity penalty (BP) to penalize

excessively short translations. The score is computed as:

BLEU = BP · exp

(
𝑁∑︁
𝑛=1

𝑤𝑛 log 𝑝𝑛

)
,

where 𝑝𝑛 is the modified precision for 𝑛-grams, and 𝑤𝑛 are typically uniform weights. The
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brevity penalty is defined as:

BP =


1 if 𝑐 > 𝑟,

𝑒(1−𝑟/𝑐) if 𝑐 ≤ 𝑟,

with 𝑐 and 𝑟 denoting the lengths of the candidate and reference sentences, respectively.

BLEU scores range from 0 to 1 and are often reported as percentages. In practice, BLEU

is computed over a corpus to improve reliability, as sentence-level scores can be unstable. On

platforms like Hugging Face, implementations follow the WMT mteval-v13a tokenization by

default, though other tokenizers can be used.

Despite its widespread use, BLEU presents several well-known limitations. It relies

solely on precision and does not directly measure recall; the brevity penalty only partially

compensates for this, and its adequacy remains debated. Furthermore, BLEU performs

𝑛-gram matching across all reference translations simultaneously, rather than comparing to

each individually and selecting the best match, which may dilute alignment accuracy.

The metric also demands exact word matching, without accounting for stemming, mor-

phological variants, or synonyms. This rigid criterion penalizes outputs that are semantically

correct but lexically divergent. All 𝑛-gram matches are weighted equally, regardless of their

linguistic importance, which can undervalue key content words. BLEU’s use of geometric

averaging across 𝑛-grams makes it highly sensitive to zero matches—if even one 𝑛-gram

order has zero overlap, the entire score drops to zero.

Additionally, BLEU does not assess grammaticality or fluency, nor can it distinguish

between critical and benign errors. For example, it may assign similar scores to sentences

that preserve or invert meaning if 𝑛-gram overlap remains unchanged [28]. Because of

these limitations, BLEU is often complemented with semantically-aware metrics such as

BERTScore or BLEURT, especially in tasks where meaning preservation is crucial.

To assist interpretation, Table 2 summarizes approximate qualitative thresholds for BLEU

scores, as suggested by the Google Cloud AutoML Translation documentation [6]. These

categories help contextualize BLEU values in terms of perceived translation quality. For

instance, scores below 10% typically indicate output that is nearly unintelligible, while values

above 50% are generally associated with fluent and accurate translations. Although BLEU is
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not designed to capture meaning explicitly, these intervals provide a practical reference when

evaluating the relative performance of different systems on the same task and dataset.

Table 2: Approximate interpretation of BLEU score ranges [6]

BLEU (%) Interpretation

< 10 Almost useless translation
10–19 Meaning is hard to understand
20–29 Message is clear but with major grammatical errors
30–40 Understandable to good-quality translations
40–50 High-quality translations
50–60 Very fluent and adequate translations
> 60 Sometimes better than human translations

METEOR. METEOR (Metric for Evaluation of Translation with Explicit ORdering) [2, 21]

was introduced to address several limitations of BLEU, particularly its lack of recall and

its insensitivity to word meaning and ordering. Unlike BLEU, which focuses on 𝑛-gram

precision, METEOR computes an alignment between the candidate and reference translations

based on flexible unigram-level matches, including exact matches, stemmed forms, and

synonyms (via WordNet).

Once aligned, the metric calculates unigram-level precision (proportion of matched uni-

grams in the candidate) and recall (proportion of matched unigrams in the reference). These

are combined using a weighted harmonic mean, known as F-mean:

𝐹mean =
10 · 𝑃 · 𝑅
𝑅 + 9𝑃

,

which places more weight on recall, in line with findings that recall correlates better with

human judgments [21].

To capture word order and fluency, METEOR applies a penalty based on chunk frag-

mentation. The fewer and longer the contiguous matched sequences (chunks), the lower the

penalty:

Penalty = 0.5 ·
(

#chunks
#matched unigrams

)
.

The final METEOR score is then:

Score = (1 − Penalty) · 𝐹mean.
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Scores range from 0 to 1, with values closer to 1 indicating higher similarity to the

reference. In practice, METEOR scores are typically higher than BLEU for the same system

output, due to its more forgiving alignment and use of synonymy.

METEOR has been shown to correlate more strongly with human judgments than BLEU,

especially at the sentence level. For example, in experiments on Arabic-English and Chinese-

English translations from the DARPA/TIDES 2003 dataset, METEOR achieved system-level

Pearson correlation coefficients as high as 0.964 [2]. The Pearson correlation coefficient (also

known as Pearson’s 𝑟) measures the linear relationship between two variables, in this case

between automatic scores and human judgments; values close to 1 indicate strong agreement.

Sentence-level correlations were lower, averaging around 0.331 and 0.347 for Chinese and

Arabic, respectively, but still superior to those obtained with BLEU and NIST.

However, METEOR has known limitations. It can overestimate translation quality in the

presence of superficial lexical similarity, and the weighting scheme for function words or

synonyms can mask critical errors. Saadany and Orăsan [28] report that METEOR assigns

high scores to mistranslations that omit sentiment-bearing words, such as negations, because

of its tolerance toward matching via stemming or synonyms.

Despite these drawbacks, METEOR remains a strong baseline metric for tasks where

partial semantic similarity and syntactic variation are common, especially in cases where more

precise learned metrics like BLEURT are not available or too computationally expensive.

To help interpret the scores, Table 3 provides qualitative thresholds for METEOR values,

as reported by Number Analytics [29]. These ranges offer a practical guideline for evaluating

translation quality across systems and tasks.

Table 3: Qualitative interpretation of METEOR score ranges [29]

METEOR Interpretation

0.0–0.2 Very poor translation quality
0.2–0.4 Poor translation quality
0.4–0.6 Fair translation quality
0.6–0.8 Good translation quality
0.8–1.0 Excellent translation quality

BERTScore. BERTScore [34] is a reference-based evaluation metric that leverages con-

textual embeddings from large pre-trained language models, such as BERT [12], to assess
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semantic similarity between a candidate sentence and a reference. Unlike traditional metrics

that rely on surface-level 𝑛-gram overlap, BERTScore compares token representations in

vector space, enabling it to capture paraphrasing, synonymy, and flexible word order.

The metric computes token-level similarity using cosine distance between contextual

embeddings. Precision is defined as the average maximum similarity between each candidate

token and all reference tokens; recall is defined analogously:

PBERT =
1
|𝑥 |

∑̂︁
𝑥 𝑗

max
𝑥𝑖

cos(𝑥 𝑗 , 𝑥𝑖), RBERT =
1
|𝑥 |

∑︁
𝑥𝑖

max
𝑥 𝑗

cos(𝑥𝑖, 𝑥 𝑗 )

The final BERTScore is their 𝐹1-harmonic mean. To improve interpretability, scores are

baseline-rescaled:

𝐹̂1 =
𝐹1 − 𝑏

1 − 𝑏

where 𝑏 is an empirically determined lower bound on unrelated sentence pairs.

BERTScore values range from 0 to 1, where higher values indicate stronger semantic

alignment. Typical 𝐹1 scores for well-aligned sentence pairs fall between 0.85 and 0.95,

but scores can vary depending on model type, task, and language. In practice, BERTScore

is often computed without baseline rescaling, and values near 1.0 represent high similarity,

while lower values (below 0.7) indicate limited or noisy semantic overlap [34].

Despite its strengths, BERTScore inherits limitations from its underlying language model.

As shown by Hanna and Bojar [9], BERTScore can struggle with linguistic phenomena such

as negation, antonymy, and named entity disambiguation. In particular, it may assign overly

high scores to incorrect candidates that are lexically or stylistically similar to the reference,

even when they contain meaning-altering errors.

In semantic communication tasks, BERTScore offers a flexible and powerful tool to

evaluate meaning preservation. However, due to its insensitivity to certain semantic di-

vergences—especially when lexical overlap is high—it should be complemented with other

metrics that better capture factual and functional correctness.

To assist with interpretation, Table 4 presents a qualitative guide to BERTScore values as

commonly observed in NLP benchmarks.
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Table 4: Qualitative interpretation of BERTScore values

BERTScore Interpretation

< 0.70 Low semantic similarity
0.70–0.85 Moderate semantic similarity
0.85–0.92 Strong semantic similarity
> 0.92 Very high or near-exact semantic alignment

BLEURT. BLEURT (Bilingual Evaluation Understudy with Representations from Trans-

formers) [32] is a learned reference-based metric designed to predict human judgments of text

generation quality. It builds on the BERT architecture [12], which is fine-tuned to produce

scalar quality scores for candidate-reference sentence pairs.

BLEURT operates in two phases: large-scale pre-training on synthetic perturbations of

English sentences, followed by fine-tuning on human-annotated quality ratings. The pre-

training step exposes the model to a broad range of plausible variations in grammar, style,

and semantics by introducing artificial edits (e.g., synonym replacements, word deletions,

backtranslation). These variations help the model learn generalizable representations of

semantic equivalence and distortion.

Formally, given a reference sentence 𝑥 and a candidate 𝑥, BLEURT encodes both inputs

using a shared BERT model and uses the [CLS] token embedding to predict a scalar score

𝑦̂ ∈ R via a regression layer:

𝑦̂ = 𝑓 (𝑥, 𝑥) = W · v[CLS] + 𝑏

where v[CLS] is the contextualized representation of the sentence pair and W, 𝑏 are learnable

parameters.

BLEURT’s output has a range of values between -1 and approximately 1. This value

indicates how similar the generated text is to the reference texts, with values closer to 1

representing more similar texts. In most practical scenarios, outputs range between 0.2 and

0.9. The model can be applied at the sentence or corpus level and also supports cases

where multiple references are available: in such setups, BLEURT computes a score for each

reference and returns the maximum value, assuming that the best-matching reference is the

most informative.
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Compared to lexical and embedding-based metrics, BLEURT has shown significantly

higher correlation with human judgments across multiple years of the WMT Metrics Shared

Task [32]. It outperforms BLEU, METEOR, and BERTScore in both Kendall’s Tau [18] and

Pearson correlation, especially for sentence-level evaluation.

Nonetheless, BLEURT has certain limitations. It is more computationally intensive than

traditional metrics, requires access to trained models, and may generalize less effectively

to unseen domains if the fine-tuning data is too narrow. However, thanks to its strong

performance and robustness to quality drifts, it remains one of the most reliable metrics

currently available for semantic evaluation of generated text.

To support practical interpretation, Table 5 offers an approximate guide to BLEURT

scores based on common usage patterns in research and shared tasks.

Table 5: Approximate interpretation of BLEURT score ranges

BLEURT Score Interpretation

< 0.3 Low semantic match; major divergence from reference
0.3–0.5 Acceptable quality; partial meaning overlap
0.5–0.7 Good match; most key information is preserved
0.7–0.9 High-quality output; minor differences from reference
> 0.9 Near-perfect or better-than-reference match

Limitations of Reference-Based Metrics. While BLEU, METEOR, and BERTScore have

played an important role in the automatic evaluation of text generation systems, they suffer

from critical limitations that reduce their reliability, especially in cases where semantic fidelity

is more important than surface similarity.

Several studies, including the analysis by Saadany and Orăsan [28], have shown that these

metrics often fail to penalize translations that introduce meaning-altering errors, especially

in sentiment-bearing content. For example, translations that omit negation (e.g., rendering

“May God not forgive you” as “May God forgive you”) can receive high scores under all three

metrics, despite conveying the opposite intent. BLEU and METEOR, which rely on 𝑛-gram

overlap and soft lexical matches, assign scores above 0.70 in such cases due to preserved

token similarity. Even BERTScore, despite its semantic basis, can assign inflated scores

because antonyms like "great" and "terrible" may appear close in embedding space.

Figure 22 illustrates this problem. It shows how the three metrics rate candidate trans-
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lations with both non-critical and critical sentiment errors. Notably, the scores remain high

and relatively uniform, even when the semantic distortion is substantial.

Figure 22: Segment-level scores for candidate translations with non-critical and critical sentiment
errors, evaluated by BLEU, METEOR, and BERTScore. Adapted from [28].

As shown in the figure, all three metrics assign relatively high scores even to translations

containing meaning-reversing errors such as dropped negations. This indicates that the

metrics are not sufficiently sensitive to semantic fidelity and tend to over-rely on lexical or

embedding similarity. The inability to penalize critical shifts in meaning raises concerns

about their reliability in contexts where preserving intent is essential.

These shortcomings are especially concerning in tasks like semantic communication,

where accurate intent transmission matters more than lexical fidelity. Traditional metrics

tend to overvalue surface similarity and fail to distinguish between meaning-preserving and

meaning-breaking variations.

To overcome these issues, learned metrics such as BLEURT have been introduced.

Trained directly on human-annotated quality scores and pre-trained on synthetic data to

handle a wide range of distortions, BLEURT demonstrates greater sensitivity to subtle se-

mantic errors. As shown in shared evaluation benchmarks like WMT, BLEURT consistently

achieves stronger correlation with human judgment at both system and sentence level. This

makes it a more robust and context-aware tool for evaluating semantic quality in language

generation.

35



State of the Art

Table 6 summarizes the main characteristics, score ranges, and known limitations of the

reference-based metrics discussed in this section. This comparative overview serves both as a

quick reference and as a basis for motivating the need for more semantically aware evaluation

approaches.

Table 6: Summary of reference-based evaluation metrics.

Metric Basis Score Range Main Limitation

BLEU [20] 𝑛-gram overlap 0–1 Ignores meaning
METEOR [2] Unigram + synonyms 0–1 Overvalues surface match
BERTScore [34] BERT embeddings 0–1 Weak on negation, antonyms
BLEURT [32] Fine-tuned BERT -1∼1 Requires large models and tuning

2.6.2 Reference-Free Metrics

As highlighted in recent literature [31], reference-free metrics represent a growing field in

the evaluation of natural language generation (NLG) systems. These approaches aim to

estimate the quality of generated texts without relying on human-written reference sentences.

This direction is especially valuable in open-ended or low-resource settings, where collecting

gold-standard references is costly or impractical.

In the context of semantic communication, reference-free evaluation provides a powerful

tool for assessing fluency, coherence, and grammaticality at runtime—without requiring an

external reference. These metrics are typically classified into two broad categories [31]: (i)

hypothesis-only evaluation, which examines textual quality based solely on the generated

output, and (ii) context-aware evaluation, which considers the alignment between the input

and the output. In this case, even though no explicit reference is available, the input provides a

form of background knowledge or semantic frame that guides the interpretation and evaluation

of the output. In this section, we focus on two representative metrics from the former category:

perplexity-based scores and grammatical acceptability classifiers.

Perplexity (PPL). Perplexity is one of the most established metrics for evaluating the

fluency and predictability of language models. It measures the inverse likelihood of a
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generated word sequence, defined as:

PPL =

(
𝑇∏
𝑡=1

𝑃(𝑤𝑡 |𝑤1:𝑡−1)
)− 1

𝑇

,

where 𝑤1, . . . , 𝑤𝑇 is the output sequence. Lower perplexity indicates better alignment with

the training distribution.

Recent work [39] demonstrates that perplexity can also serve as a useful tool for data

pruning: small models can score training samples by perplexity and effectively improve

the performance of much larger models. However, their results also highlight a limita-

tion—models trained on data with lower test perplexity do not always perform better on

downstream benchmarks, raising concerns about perplexity’s reliability as a standalone qual-

ity metric.

The range of this metric is [0,∞), with lower values indicating better predictive per-

formance. However, as highlighted by [24], perplexity values are highly dependent on the

specific model and training corpus. This means that perplexity scores are not directly com-

parable across different models or datasets, limiting their utility in cross-system evaluation.

This insight motivates the development of more robust alternatives like unigram-normalized

perplexity.

Unigram-Normalized Perplexity (PPLu). To address the limitations of standard perplex-

ity, Roha et al. [17] introduced Unigram-Normalized Perplexity (PPLu), a metric designed to

be invariant to vocabulary size and more reflective of contextual modeling. It is defined as:

PPLu =

(
𝑇∏
𝑡=1

𝑃(𝑤𝑡 |𝑤1:𝑡−1)
𝑃(𝑤𝑡)

)− 1
𝑇

.

By normalizing each conditional probability by the unigram frequency of the predicted

word, PPLu quantifies the information gain from context over a unigram baseline. The

logarithmic form of PPLu corresponds to mutual information:

log PPLu = − 1
𝑇

𝑇∑︁
𝑡=1

log
𝑃(𝑤𝑡 , 𝑤1:𝑡−1)

𝑃(𝑤𝑡)𝑃(𝑤1:𝑡−1)
.
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Empirical results show that PPLu is more stable across datasets with different vocabularies

and more reliable in ranking sentence quality, especially when frequent tokens skew raw

perplexity [17]. Unlike standard perplexity, it better distinguishes between true contextual

understanding and statistical frequency matching.

Acceptability Classification via CoLA. Another class of reference-free metrics assesses

whether a generated sentence is grammatically acceptable in the target language. A canonical

resource for this task is the Corpus of Linguistic Acceptability (CoLA) [1], which contains

over 10,000 English sentences annotated as acceptable or unacceptable based on linguistic

judgments from the theoretical literature.

Acceptability classifiers trained on CoLA are typically binary sentence classifiers, often

implemented using deep language models such as BERT. These models are fine-tuned to

output a scalar score indicating the likelihood that a sentence conforms to the syntactic and

semantic norms of English. Accuracy is typically evaluated using metrics such as Matthews

Correlation Coefficient (MCC), where human-level agreement reaches around 0.70 [1].

In semantic communication, such models serve as valuable proxies for syntactic well-

formedness and plausibility of reconstructed messages. Unlike perplexity-based metrics,

CoLA-based classifiers are sensitive to phenomena such as argument structure, question

formation, and binding, making them suitable for verifying that generated outputs not only

are fluent but also grammatically sound.

Table 7 provides a compact comparison of the main reference-free metrics discussed in

this section, highlighting their scope, scale, and interpretability.

Table 7: Summary of reference-free evaluation metrics.

Metric Basis Score Range Limitation

PPL [39] Language model
prediction accu-
racy

(0,∞); lower is
better

Vocabulary-dependent;
not comparable across
setups

PPLu [17] Contextual in-
formativeness
(MI-normalized)

(0,∞); lower is
better

Requires external unigram
estimates

CoLA [1] Grammatical
acceptability clas-
sification

Binary classifier;
MCC ∼ 0.70

Requires task-specific
training; sensitive to
syntax phenomena
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3 Methodology

3.1 System Overview

The architecture adopted in this work extends the original Transformer-based DeepSC frame-

work described in Section 2.2, which models semantic communication as a differentiable

end-to-end learning problem. While the baseline system demonstrates the feasibility of

transmitting natural language over noisy channels, the current implementation introduces

several enhancements aimed at increasing robustness, adaptability, and realism in practical

scenarios.

The core encoder–channel–decoder pipeline is preserved, but it is augmented with addi-

tional components that improve both the inference process and the evaluation loop. Specifi-

cally, the system integrates:

• Improved Reference-Based Metrics: BLEURT and BERTScore are used during

testing to assess the semantic fidelity between transmitted and received messages.

These replace the previous cosine similarity approach and provide more sensitive,

fine-grained evaluations.

• Reference-Free Semantic Decision: During simulation, the receiver evaluates the

quality of decoded sentences using internal, reference-free metrics (PPL, PPLu, and

CoLA). Sentences falling below predefined thresholds are marked as semantically

unacceptable and may trigger retransmission.

• Retransmission Loop (Two Variants): Two feedback strategies are implemented.

The first is a baseline retransmission loop, where the same model handles up to three

independent decoding attempts using separately transmitted signals. No memory is

retained between transmissions. The second is a memory-augmented loop, in which a

dedicated retransmission model (TX2) performs a single additional decoding step that

fuses the received signal from the initial transmission (TX1) with its own, allowing the

system to refine the output based on prior communication history.

These components are designed to approximate realistic feedback mechanisms in practical

39



Methodology

semantic communication systems, especially in low-SNR or resource-constrained settings.

The following subsections provide a detailed description of each module.

3.2 Improved Reference-Based Metrics

The original DeepSC validation relied on a custom cosine similarity between the average word

embeddings of predicted and reference sentences. This approach, while computationally

efficient, had several limitations:

• It ignored word order, treating permutations of the same words as equivalent.

• It lost contextual nuance by collapsing all tokens into a single average vector.

• It was not sensitive to critical semantic errors such as negations or word substitutions.

To overcome these issues, we integrated more robust semantic metrics:

• BLEURT, a learned evaluation model that correlates strongly with human judgments.

• BERTScore, which measures semantic similarity based on contextual token embed-

dings.

• BLEU, maintained for backward compatibility and comparability with prior bench-

marks.

These metrics are used not only for validation but also in the final evaluation pipeline,

providing a more accurate measure of semantic fidelity across different transmission condi-

tions.

3.3 Reference-Free Semantic Decision

In real-world scenarios, semantic communication systems must often operate without access

to ground-truth reference sentences. To enable automatic retransmission decisions in such

settings, this work adopts a reference-free evaluation strategy based on three metrics: Per-

plexity (PPL), Unigram-Normalized Perplexity (PPLu), and grammatical acceptability

via CoLA. These metrics were further detailed in Section 2.6.2, which provides formal

definitions and a comparison of their properties.
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The goal is to determine whether a decoded sentence should be accepted or discarded and

retransmitted, based solely on its intrinsic quality. To this end, a decision logic is implemented

that evaluates each decoded output along three dimensions:

• Perplexity (PPL) is computed using the GPT-2 language model, following standard

formulations where lower values indicate greater fluency and compatibility with natural

language. The implementation uses the Hugging Face model gpt2.

• Unigram-Normalized Perplexity (PPLu) provides a context-aware measure of seman-

tic coherence by comparing the conditional probability of the sentence to its unigram

likelihood. This accounts for the informativeness gained from context and is robust to

vocabulary frequency effects.

• Grammatical acceptability is assessed using a binary classifier fine-tuned on the

CoLA dataset, implemented via the textattack/roberta-base-CoLA model. The

output predicts whether the sentence is linguistically well-formed.

The system uses a threshold-based logic to make decisions that prioritize semantic fidelity

over strict grammaticality. Specifically, the decision policy is as follows:

1. If PPL is below a conservative threshold (PPL < 150), the sentence is accepted

unconditionally, as it is considered sufficiently fluent.

2. If PPL is moderate (150 ≤ PPL < 500), the sentence is accepted only if it also passes

the CoLA acceptability test.

3. If PPL is high (≥ 500), the sentence may still be accepted if it exhibits high semantic

informativeness (PPLu < 10) and passes CoLA.

This multi-tiered strategy ensures that sentences are not rejected solely for minor grammat-

ical errors, provided they carry sufficient contextual and semantic meaning. The thresholds

were empirically selected based on preliminary analysis of typical values in GPT-2 out-

puts and human-labeled acceptability predictions from CoLA. While the PPL bounds aim

to capture general language fluency, the PPLu condition offers a safeguard for semantically

meaningful but structurally atypical sequences.
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Overall, this reference-free feedback mechanism enables the decoder to autonomously

assess the quality of its outputs in the absence of references, making the system more adaptable

to real-time and resource-constrained deployment environments.

3.4 Retransmission Loop

To better model retransmission behavior in practical semantic communication systems, this

work implements and compares two variants of the retransmission loop:

• A baseline strategy, where the same model (TX1) is used for both the initial transmis-

sion and any retransmissions. Each decoding attempt operates independently, without

leveraging information from prior transmissions.

• An enhanced memory-aware strategy, where a second transmission model (TX2) is

introduced. In this case, TX2 receives both the new signal and the previously received

one from TX1, enabling a more informed decoding based on concatenated features.

The two variants are described below.

3.4.1 Baseline Strategy

In the baseline retransmission scheme, the same encoder–decoder model (TX1) is reused

across all transmission attempts. Each decoding is performed independently: the source

sentence is re-encoded and retransmitted from scratch. No memory of prior attempts is

retained, and no fusion between received signals is performed.

Training and Validation. Training in the baseline strategy follows the standard DeepSC

pipeline. For each sentence in the batch, the model encodes the source input, applies channel

encoding, and transmits the signal through a noisy channel. The received signal is decoded

to produce a predicted output, which is compared against the ground-truth to compute the

reconstruction loss. If mutual information regularization is used, the corresponding loss term

is added, and the Mutual information (MI) network is used in evaluation mode, as detailed in

Algorithm 1.

Validation reuses the same forward architecture, but no gradient updates are performed.

All model components operate in inference mode, and mutual information (if enabled) is
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included only as a diagnostic term. The validation loss is used to monitor model performance

and guide early stopping, as described in Algorithm 2.

Algorithm 1 Training loop for baseline model (TX1 only)
1: for each sentence 𝑠 in the training batch do
2: Encode 𝑠 using TX1 encoder
3: Transmit over noisy channel → obtain RX
4: Decode RX and compute output 𝑠 using TX1 decoder
5: Compute cross-entropy loss between 𝑠 and reference 𝑠

6: if mi_net is provided then
7: Compute mutual information loss and add it to the total loss
8: end if
9: Backpropagate and update TX1 parameters

10: end for

Algorithm 2 Validation loop for baseline model (no updates)
1: for each sentence 𝑠 in the validation batch do
2: Encode 𝑠 using TX1 encoder
3: Transmit over noisy channel → obtain RX
4: Decode RX and compute output 𝑠 using TX1 decoder
5: Compute validation loss between 𝑠 and reference 𝑠

6: if mi_net is provided then
7: Add mutual information loss term (no gradient update)
8: end if
9: end for

Testing Phase. At test time, the system uses TX1 for all decoding attempts. After each

transmission, the decoded output is evaluated using the reference-free semantic acceptability

logic described in Section 3.3. If the sentence fails, a new transmission is issued, up to

a maximum of three attempts. The first acceptable output is retained; otherwise, the final

attempt is accepted by default. The semantic ARQ logic for baseline retransmission is

summarized in Algorithm 3.

3.4.2 Memory-Aware Strategy

In the enhanced retransmission strategy, the system introduces a second encoder–decoder

model (TX2) dedicated to handling retransmissions. Unlike the baseline case, the second

decoding attempt is informed by both the current and previous received signals, allowing the

system to refine its output based on communication history.
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Algorithm 3 Baseline ARQ Retransmission Logic
1: Input: Source sentence 𝑠

2: for attempt 𝑖 = 1 to 3 do
3: Encode and transmit 𝑠 using TX1
4: Decode output 𝑠𝑖
5: if 𝑠𝑖 passes acceptability test then
6: Accept 𝑠𝑖 and exit
7: end if
8: end for
9: Accept 𝑠3 (max attempts reached)

This memory-aware scheme enables the receiver to fuse information across attempts,

improving reconstruction quality in challenging channel conditions.

Training and Validation. The training pipeline involves two sequential transmissions of

the same source sentence. TX1 performs the first transmission and remains frozen. TX2

performs a second transmission and fuses its received signal with RX1 (from TX1) to enhance

semantic recovery. Only TX2 is updated via backpropagation during training, as detailed in

Algorithm 4.

Validation follows the same processing flow, but with no weight updates. If a mutual

information module is used, its contribution is included during both training and validation,

but the MI network remains frozen during validation, as described in Algorithm 5.

Algorithm 4 Training loop for memory-aware model (TX1 frozen, TX2 updated)
1: for each sentence 𝑠 in the training batch do
2: Encode 𝑠 using TX1 encoder (frozen) → obtain RX1
3: Encode 𝑠 using TX2 encoder → obtain RX2
4: Concatenate RX1 and RX2: RXconcat = [RX1; RX2]
5: Decode RXconcat and compute output 𝑠 using TX2
6: Compute cross-entropy loss between 𝑠 and reference 𝑠

7: if mi_net is provided then
8: Compute mutual information loss and add it to the total loss
9: end if

10: Backpropagate and update TX2 parameters
11: end for
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Algorithm 5 Validation loop for memory-aware model (no updates)
1: for each sentence 𝑠 in the validation batch do
2: Encode 𝑠 using TX1 encoder (frozen) → obtain RX1
3: Encode 𝑠 using TX2 encoder (frozen) → obtain RX2
4: Concatenate RX1 and RX2: RXconcat = [RX1; RX2]
5: Decode RXconcat and compute output 𝑠 using TX2
6: Compute validation loss between 𝑠 and reference 𝑠

7: if mi_net is provided then
8: Add mutual information loss term (no gradient update)
9: end if

10: end for

Testing Phase. During testing, retransmission is handled dynamically:

1. A sentence is transmitted via TX1 and decoded.

2. If the output fails the reference-free acceptability test, a retransmission is issued.

3. The retransmission is sent via TX2; the two received signals (from TX1 and TX2) are

concatenated and decoded.

4. If the second output still fails, it is accepted by default. The system allows a maximum

of two transmission attempts per sentence.

This process emulates a realistic ARQ feedback loop without ground-truth, enabling

sentence-wise adaptive retransmission based solely on intrinsic quality signals.

The logic is summarized in Algorithm 6.
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Algorithm 6 Semantic ARQ Retransmission Logic
1: Input: Source sentence 𝑠

2: Encode and transmit 𝑠 with TX1 → obtain RX1
3: Decode output 𝑠1
4: if 𝑠1 fails semantic acceptability test then
5: Encode and transmit 𝑠 with TX2 → obtain RX2
6: Concatenate RX1 and RX2: RXconcat = [RX1; RX2]
7: Decode RXconcat and compute output 𝑠 using TX2
8: if 𝑠2 fails acceptability test then
9: Accept 𝑠2 (max attempts reached)

10: else
11: Accept 𝑠2
12: end if
13: else
14: Accept 𝑠1
15: end if

3.5 Memory-Augmented Decoding

In conventional retransmission schemes, each decoding attempt is treated independently,

with no memory of past transmission efforts. In contrast, the memory-augmented decoding

strategy adopted in this work introduces a lightweight form of memory by fusing received

signals across transmission attempts.

Specifically, the decoder of the retransmission model (TX2) receives as input the con-

catenation of the received signal from the initial transmission (TX1) and the one from its own

transmission. This results in a composite tensor RXconcat = [RX1; RX2] ∈ R𝐵×𝐿×2𝑑 , where

𝐵 is the batch size, 𝐿 the sequence length, and 𝑑 the feature dimension.

By conditioning its prediction on both signals, TX2 is implicitly able to incorporate

information from past attempts. This concatenated input acts as a memory buffer, allowing the

decoder to leverage contextual cues, partial signal content, or redundancy from the previous

pass. Unlike architectures that require explicit memory states (e.g., recurrent networks or

attention over prior outputs), this approach offers a memory mechanism entirely embedded

in the input representation.

This design improves robustness in noisy channels and enables the model to correct errors

from previous transmissions. The decoder effectively learns to interpret the joint signal space

as a richer semantic prior, supporting refined and more accurate reconstructions.
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3.6 Dataset: Europarl Corpus

All experiments in this work are conducted on the Europarl corpus, a large-scale parallel

dataset composed of proceedings from the European Parliament. This dataset is well-suited

for evaluating semantic communication in natural language settings due to its formal tone,

sentence-level segmentation, and topical variety.

We use a preprocessed version of the English monolingual subset, which is tokenized

and stored in .pkl format for efficient loading. The dataset is split into training, validation,

and test sets. Each data sample consists of a tokenized sentence represented as a list of word

indices, compatible with the vocabulary of the Transformer encoder-decoder model.

The dataset class EurDataset handles loading and indexing. During training, batches

are padded to the length of the longest sentence and sorted by length to improve efficiency

during Transformer-based decoding.

The Europarl corpus offers several advantages for semantic communication studies:

• It contains high-quality, well-formed natural language sentences;

• It supports both sentence-level and discourse-level semantic evaluation;

• It enables realistic testing of retransmission strategies based on grammar and semantic

coherence.

The use of Europarl ensures that the system is tested on a linguistically rich and domain-

relevant dataset, offering insights into the real-world applicability of the proposed feedback

and memory-enhanced DeepSC system.

3.7 Post-processing and Evaluation Pipeline

To support the analysis of model behavior under different channel conditions and retransmis-

sion strategies, this work includes a custom post-processing pipeline that parses simulation

outputs and generates comparative performance plots.

The pipeline processes two main sources of output:

• simresults.log: a log file containing training and validation losses (including cross-

entropy and mutual information) along with instantaneous SNR values per epoch.
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• performance_results.txt: a summary file reporting, for each SINR value, the

average semantic quality metrics and the average number of retransmissions (avg_RTX)

under each configuration (NoRETX, baseline, memory-aware).

Based on this data, the pipeline performs the following analyses:

• Metric comparison across SINR: For each evaluation metric (BLEU, BLEURT,

BERTScore, PPL, PPLu, CoLA), the script generates plots that compare performance

across SINR values for three configurations: No retransmission, baseline retransmis-

sion, and memory-aware retransmission.

• Percentage improvement computation: For each SINR point and metric, the script

computes the percentage gain (or loss) of both baseline and memory-aware strategies

with respect to NoRETX. These results are saved in separate reports for reference-based

and reference-free metrics.

• Exporting visualizations and reports: All plots and textual summaries are automat-

ically saved in the specified output directory, with separate files for each metric and

channel condition.

This post-processing pipeline enables reproducible and efficient evaluation of model be-

havior, highlighting how semantic quality varies as a function of SNR and retransmission

strategy. By directly comparing NoRETX, baseline, and memory-aware configurations, it

provides clear insight into the semantic gains introduced by feedback and memory mecha-

nisms.
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4 Results

This section presents the results obtained under two channel models: CDL-B and Rayleigh.

For each scenario, the baseline and memory-aware configurations are evaluated both with and

without retransmission. The analysis includes reference-based metrics (BLEU, BLEURT,

BERTScore) and reference-free indicators (PPL, PPLU, and CoLA), offering a comprehensive

view of semantic fidelity and linguistic quality across varying SINR conditions.

4.1 CDL-B Channel

Reference-Based Metrics

Figures 23, 24, and 25 report BLEU, BLEURT, and BERTScore under CDL-B conditions,

comparing baseline and memory-aware configurations, both with and without retransmission.

In the baseline system, retransmission introduces only marginal differences, without con-

sistent improvements. As shown in Figure 23, BLEU scores remain nearly flat beyond 4dB,

with negligible variation between retransmission and no-retransmission setups. BLEURT

shows similarly minor fluctuations, but achieves slightly higher gains than BLEU, particu-

larly at lower SINR values. BERTScore, on the other hand, shows slightly more consistent

gains, although the improvements remain limited. As summarized in Table 8, BERTScore

achieves an improvement of approximately 0.5% across SINR levels, outperforming BLEU

and BLEURT, whose gains are generally below 0.13% and 0.3% respectively. The only

exception is BLEURT at -4dB, which reaches a peak improvement of 0.641%. These results

indicate that, in the absence of memory, retransmission alone does not significantly enhance

semantic fidelity.

In contrast, the memory-aware configuration shows a higher benefit from retransmission.

As reported in Table 8, BLEU improves by +1.149% at -4dB and maintains gains above

1% across all SINR levels. BLEURT shows stronger improvements, reaching +2.672%

at -4dB and stabilizing around +2.6% at higher SINR values. BERTScore also benefits

from memory, with gains between +1.939% and +2.151%. This improvement across all

three metrics confirms that memory integration enables the system to accumulate and refine

semantic information over repeated transmissions, making retransmission effective only when
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combined with memory-awareness.

Furthermore, as expected, all configurations show a general upward trend in metric scores

as SINR increases. Higher SINR levels correspond to better channel conditions, leading to

more accurate decoding and, consequently, higher semantic fidelity regardless of whether

retransmission or memory is used.

Table 8 quantifies these trends by reporting the percentage improvement of both baseline

and memory-aware configurations over the NoRETX setup, across all SINR levels and

reference-based metrics.

Table 8: Percentage improvement over NoRETX for BLEU, BLEURT, and BERTScore under CDL-B
conditions.

2*SINR [dB] BLEU BLEURT BERTScore
Baseline Memory Baseline Memory Baseline Memory

-4 0.133% 1.149% 0.641% 2.672% 0.504% 1.939%
0 0.058% 1.031% 0.301% 2.450% 0.564% 1.937%
4 0.016% 0.992% 0.188% 2.395% 0.558% 1.997%
8 0.031% 1.034% 0.197% 2.492% 0.575% 2.076%
12 0.015% 1.055% 0.108% 2.555% 0.560% 2.104%
16 0.011% 1.066% 0.076% 2.655% 0.560% 2.151%
20 0.007% 1.059% 0.086% 2.636% 0.544% 2.148%

Figure 23: BLEU scores under CDL-B conditions comparing NoRETX, FullRETX (baseline), and
FullRETX (memory-aware).
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Figure 24: BLEURT scores under CDL-B conditions comparing NoRETX, FullRETX (baseline), and
FullRETX (memory-aware).

Figure 25: BERTScore under CDL-B conditions comparing NoRETX, FullRETX (baseline), and
FullRETX (memory-aware).

Reference-Free Metrics

Figures 26, 27, and 28 report Perplexity (PPL), unigram-level Perplexity (PPLU), and CoLA

acceptability under CDL-B conditions, comparing baseline and memory-aware configura-

tions, both with and without retransmission.

Unlike reference-based metrics, where higher values indicate better performance, in the

case of PPL and PPLU, lower values are preferred, as they reflect higher confidence and

fluency in the language model’s predictions.

For PPL, the memory-aware configuration shows some improvements from retransmis-

sion. As summarized in Table 9, it achieves a peak reduction of 13.3% at -4dB, and
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maintains gains above 9.5% across all SINR levels. These results suggest the benefit of

memory mechanisms in refining sentence-level fluency during repeated decoding.

In contrast, the baseline system exhibits poor behavior under retransmission for PPL. At

-4dB, no value is reported (N/A), likely due to numerical instability or undefined decoding.

Furthermore, at 0dB, PPL performance actually worsens by +0.606% compared to NoRETX,

and overall improvements remain marginal, with the best gain being only 2.13% at 4dB. This

confirms that without memory, retransmission struggles to stabilize sentence-level predictions

and may even degrade them under moderate noise.

Figure 26: PPL under CDL-B conditions comparing NoRETX, FullRETX (baseline), and FullRETX
(memory-aware). Lower values are better.

PPLU values, which reflect unigram-level token predictability, remain mostly stable across

configurations. The baseline system without retransmission consistently achieves the lowest

PPLU values, and the addition of retransmission introduces only minor improvements. As

shown in Table 9, the improvements remain below 0.03% in all cases. Specifically, the

baseline configuration shows consistent reductions in PPLU across all SINR values (e.g.,

-0.028% at -4dB), indicating slightly improved token predictability.

The memory-aware configuration also exhibits small gains at low SINR values, but shows

slight regressions at higher SINRs, with PPLU increasing by up to +0.029% at 20dB. These

results suggest that while retransmission with memory improves sentence-level fluency (as

seen with PPL), it does not consistently enhance local token-level predictability, and may

even introduce minimal degradation under clean channel conditions, which is unexpected

and might possibly depend on statistical limitations of the testing dataset.
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Figure 27: PPLU under CDL-B conditions comparing NoRETX, FullRETX (baseline), and FullRETX
(memory-aware). Lower values are better.

CoLA acceptability, on the other hand, improves more significantly across both config-

urations. In the baseline system, retransmission yields a notable gain of +10.3% at -4dB,

which remains slightly higher than the memory-aware improvement of +8.7% at the same

SINR. A similar advantage holds at 0dB, where baseline scores slightly exceed those of the

memory-aware setup. However, as SINR increases, the baseline configuration exhibits a

counterintuitive trend: CoLA scores progressively decrease, reaching only +1.3% improve-

ment at 20dB. This suggests that retransmission alone, without memory, fails to consistently

benefit grammatical acceptability as channel conditions improve.

In contrast, both the NoRETX and memory-aware configurations follow the expected

trend: CoLA acceptability increases steadily with SINR. The memory-aware system, in

particular, maintains stable and strong improvements across all SINR values, ranging from

+6.7% to +8.7%. These results indicate that retransmission is more effective at recovering

grammatical structure when coupled with memory mechanisms, and that memory integration

helps sustain syntactic coherence even as channel quality improves.
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Figure 28: CoLA acceptability under CDL-B conditions comparing NoRETX, FullRETX (baseline),
and FullRETX (memory-aware). Higher values are better.

Table 9 quantifies these trends by reporting the percentage improvement of both baseline

and memory-aware configurations over the NoRETX setup, across all SINR levels and

reference-free metrics.

Table 9: Percentage improvement over NoRETX for PPL, PPLU, and CoLA under CDL-B condi-
tions. For PPL and PPLU, lower values indicate better performance, so negative percentages imply
improvement.

2*SINR [dB] PPL PPLU CoLA
Baseline Memory Baseline Memory Baseline Memory

-4 N/A -13.315% -0.028% -0.145% +10.331% +8.698%
0 +0.606% -9.525% -0.011% -0.038% +7.569% +7.256%
4 -2.126% -10.296% -0.001% -0.013% +5.684% +7.202%
8 -0.479% -7.824% -0.019% -0.017% +4.294% +6.568%
12 -1.325% -9.865% -0.016% +0.002% +2.830% +6.835%
16 -0.630% -10.366% -0.000% +0.014% +2.082% +6.880%
20 -0.425% -9.611% -0.001% +0.029% +1.315% +6.715%

4.2 Rayleigh Channel

Reference-Based Metrics

Figures 29, 30, and 31 present BLEU, BLEURT, and BERTScore under Rayleigh fading

conditions. Results are shown for both baseline and memory-aware configurations, comparing

retransmission (RETX) and no retransmission (NoRETX).

In the baseline configuration, retransmission leads to consistent but modest improvements
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across all metrics. As shown in Figure 29, BLEU scores increase slightly at low SINR

values, with a peak gain of 0.534% at -4dB, then converge toward the no-retransmission

curve as SINR increases. BLEURT and BERTScore follow similar trends: BLEURT reaches

a maximum improvement of 1.854%, while BERTScore peaks at 1.159%, both at -4dB.

However, these benefits diminish steadily, with improvements dropping below 0.1% at high

SINR values. These results suggest that retransmission provides some marginal benefit in

noisy conditions but becomes ineffective as channel quality improves.

The memory-aware configuration shows stronger and more stable gains. BLEU improves

by 1.970% at -4dB and maintains gains above 1.1% across the entire SINR range. BLEURT

benefits even more noticeably, with an improvement of 4.199% at -4dB and sustained gains

around 2.1–2.4% at higher SINR values. Similarly, BERTScore rises by 3.147% at low SINR

and remains above 1.8% even at 20dB. These trends confirm that memory mechanisms allow

the system to effectively leverage repeated decoding attempts, improving semantic alignment

consistently across channel conditions.

As expected, all configurations show a general upward trend in metric scores as SINR

increases. Better channel conditions lead to more accurate decoding, thereby enhancing

semantic fidelity regardless of retransmission or memory integration.

Table 10 quantifies these trends by reporting the percentage improvement of both baseline

and memory-aware configurations over the NoRETX setup, across all SINR levels and

reference-based metrics.

Table 10: Percentage improvement over NoRETX for BLEU, BLEURT, and BERTScore under Rayleigh
conditions.

2*SINR [dB] BLEU BLEURT BERTScore
Baseline Memory Baseline Memory Baseline Memory

-4 0.534% 1.970% 1.854% 4.199% 1.159% 3.147%
0 0.14% 1.241% 0.396% 2.446% 0.301% 1.935%
4 0.059% 1.119% 0.270% 2.197% 0.137% 1.782%
8 0.030% 1.103% 0.144% 2.146% 0.057% 1.817%
12 0.022% 1.113% 0.083% 2.099% 0.044% 1.843%
16 0.008% 1.098% 0.032% 2.064% 0.022% 1.857%
20 0.009% 1.099% 0.029% 2.071% 0.022% 1.866%
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Figure 29: BLEU scores under Rayleigh conditions comparing NoRETX, FullRETX (baseline), and
FullRETX (memory-aware).

Figure 30: BLEURT scores under Rayleigh conditions comparing NoRETX, FullRETX (baseline),
and FullRETX (memory-aware).

Figure 31: BERTScore under Rayleigh conditions comparing NoRETX, FullRETX (baseline), and
FullRETX (memory-aware).
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Reference-Free Metrics

Figures 32, 33, and 34 report Perplexity (PPL), unigram-level Perplexity (PPLU), and CoLA

acceptability under Rayleigh fading, comparing baseline and memory-aware configurations,

both with and without retransmission.

As with CDL-B, lower values for PPL and PPLU indicate better performance, while

higher values are preferred for CoLA.

In terms of PPL, the baseline configuration exhibits irregular behavior under retransmis-

sion. As shown in Table 11, no PPL values are available at low SINR levels (-4dB and 0dB),

likely due to numerical instability or decoding failures caused by highly corrupted input,

which make the perplexity score undefined. At moderate SINR (e.g., 8dB), retransmission

leads to a peak improvement of -2.56%, but this trend reverses at higher SINRs: performance

degrades slightly compared to the NoRETX setup, with PPL increasing by +0.79% at 16dB

and +0.15% at 20dB. These inconsistencies are unexpected and suggest that the statistical

relevance of the testing dataset should be improved by averaging results over a higher number

of epochs — a process that may, however, be demanding due to the significant computational

load involved.

In contrast, the memory-aware configuration shows strong and consistent PPL improve-

ments across all SINR values (from 4dB onward). The gains are especially pronounced at

higher SINRs, reaching a maximum reduction of -15.23% at 16dB, and remaining above

-10% across the upper SINR range. These results confirm that memory mechanisms can be

beneficial for effectively leveraging retransmission, enabling the system to refine its outputs

over multiple decoding attempts, especially when the input signal is less noisy.

In terms of PPL, the baseline configuration also exhibits, in this case, inconsistent behavior

under retransmission. As shown in Table 11, no values are available at low SINR levels (-

4dB and 0dB), likely due to numerical instability or decoding failures under extremely noisy

conditions. At moderate SINRs, retransmission yields mixed results: a modest improvement

of -2.56% is observed at 8dB and -2.21% at 12dB, but these gains are offset by degradations

at higher SINRs, such as +0.79% at 16dB and +0.15% at 20dB.

Surprisingly, the memory-aware configuration does not align with the expected trend of

improved PPL through retransmission. Across all available SINR values, PPL increases when
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retransmission is used. For example, the degradation reaches +12.62% at 4dB, +15.23% at

16dB, and +14.22% at 20dB, suggesting a systematic decline in performance. This behavior

may result from overgeneration or instability introduced by repeated decoding steps, especially

under favorable channel conditions, or, once again, from the limited number of simulated

epochs used to average the results.

Figure 32: PPL under Rayleigh conditions comparing NoRETX, FullRETX (baseline), and FullRETX
(memory-aware). Lower values are better.

For PPLU, which measures unigram-level token predictability, the differences across

configurations are minimal. The baseline configuration shows very small variations from

retransmission, with mostly negligible improvements. The best result is observed at -4dB,

with a reduction of -0.25%, indicating slightly enhanced token-level consistency under poor

channel conditions. However, the gains quickly diminish: at 0dB, the improvement drops

to only -0.009%, and at 4dB a minor degradation of +0.004% is recorded. From this point

onward, the trend slightly recovers, with small improvements up to -0.006% at 16dB. Overall,

the effect of retransmission remains marginal in the absence of memory.

The memory-aware setup, by contrast, demonstrates more consistent behavior. Retrans-

mission leads to slightly lower PPLU values across all SINRs, with improvements gradu-

ally increasing as channel conditions improve. From 0dB onward, the gap relative to the

no-retransmission case widens, reaching a maximum reduction of -0.14% at 20dB. This

behavior suggests that while memory-based retransmission provides only small benefits at

the token level, it helps maintain local consistency more robustly, especially under favorable

channel conditions.
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Figure 33: PPLU under Rayleigh conditions comparing NoRETX, FullRETX (baseline), and FullRETX
(memory-aware). Lower values are better.

CoLA acceptability shows the most consistent improvement across all metrics and config-

urations. In the baseline case, retransmission yields a substantial gain of +22.31% at -4dB,

with benefits decreasing steadily at higher SINRs, down to +1.84% at 20dB.

The memory-aware configuration, however, offers a more stable profile: improvements

range from +8.60% to +18.74%, and maintain an upward trend as SINR increases. These

results indicate that while the baseline benefits more at low SINR, particularly at -4dB where it

achieves a higher gain than the memory-aware case (+22.31% vs. +18.74%), its performance

deteriorates as channel conditions improve. In contrast, the memory-aware model continues

to leverage retransmission effectively, preserving grammatical integrity at all SINR levels.

Overall, the memory-enhanced system outperforms the baseline in most cases, providing

more robust and reliable improvements in syntactic acceptability.
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Figure 34: CoLA acceptability under Rayleigh conditions comparing NoRETX, FullRETX (baseline),
and FullRETX (memory-aware). Higher values are better.

Table 11 quantifies these trends by reporting the percentage improvement of both baseline

and memory-aware configurations over the NoRETX setup, across all SINR levels and

reference-based metrics.

Table 11: Percentage improvement over NoRETX for PPL, PPLU, and CoLA under Rayleigh condi-
tions. For PPL and PPLU, lower values indicate better performance, so negative percentages imply
improvement.

2*SINR [dB] PPL PPLU CoLA
Baseline Memory Baseline Memory Baseline Memory

-4 N/A N/A -0.249% -0.547% +22.307% +18.738%
0 N/A N/A -0.009% -0.057% +9.819% +10.488%
4 +4.450% +12.623% +0.004% -0.075% +6.665% +8.793%
8 -2.555% +2.363% -0.005% -0.086% +4.967% +8.535%
12 -2.206% +10.953% -0.004% -0.117% +3.865% +8.656%
16 +0.789% +15.228% -0.006% -0.126% +2.881% +8.629%
20 +0.145% +14.218% -0.001% -0.138% +1.843% +8.604%

4.3 Retransmission Behavior: Qualitative Analysis

To illustrate the practical effects of semantic retransmission logic, this section presents several

decoding examples at fixed -4dB SNR under Rayleigh fading, using the baseline system with

retransmission enabled. Each entry includes the transmitted and received sentence, the

number of retransmission attempts, and key quality metrics. The selected cases demonstrate

a variety of linguistic and semantic behaviors, including fluency, syntactic correctness, and

semantic drift.
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Note: The received sentence and associated metrics correspond to the final decoding

output, i.e., the version accepted after the last retransmission (if any).

Rayleigh, Baseline, ReTX enabled @ -4dB

Case A — No retransmission. Perfect reconstruction.

Transmitted: as a result and because we believe that this is an important

report my group will vote in favour

Received: as a result and because we believe that this is an important

report my group will vote in favour

ReTX done: 0 — BLEU: 1.000, BLEURT: 0.739, BERT: 1.000, PPL: 68.6, PPLU:

19.00, CoLA: True

The sentence is recovered exactly, with all quality metrics confirming optimal decoding.

No retransmission is needed.

Case B — No retransmission. Fluent but syntactically flawed.

Transmitted: let us not forget that in the past four years georgia has

made tremendous efforts to move forward toward a democratic and market

oriented society

Received: let us not forget that in the past four years georgia has made

tremendous efforts to move forward adopts a democratic and market roots

society

ReTX done: 0 — BLEU: 0.903, BLEURT: 0.586, BERT: 0.818, PPL: 149.3, PPLU:

25.00, CoLA: False

Despite grammatical issues and failed CoLA classification, the low PPL value leads to

acceptance. This reflects a design choice in the ARQ logic that prioritizes fluency.

Case C — One retransmission. Syntax improves after retry.

Transmitted: pl mr president in my contribution to the debate on the report

on public finances in the emu countries for i would like to make a few

observations

Received: pl mr president in my contribution to the debate on the report

on the finances in the emu countries for i would like to make a few

observations

ReTX done: 1 — BLEU: 0.951, BLEURT: 0.706, BERT: 0.956, PPL: 125.2, PPLU:

61



Results

19.80, CoLA: False

Retransmission is triggered once, and the final output remains fluent but not syntac-

tically valid, confirming the conservative nature of the decision logic. Furthermore,

the transmitted sentence appears syntactically incorrect, reducing the effectiveness of

retransmission in restoring grammaticality.

Case D — One retransmission. Improved output with positive CoLA.

Transmitted: it is true that russia is exploiting the situation but it

is equally clear that russia s imperial interests would also find other

justifications should the need arise

Received: it is true that russia is roots the situation but it is equally

clear that russia s appointments interests would also find other adopts

should the need arise

ReTX done: 1 — BLEU: 0.820, BLEURT: 0.363, BERT: 0.702, PPL: 184.1, PPLU:

20.42, CoLA: True

Although PPL exceeds 150, the sentence passes CoLA and is thus accepted after a single

retry. This example highlights the benefit of multi-criteria evaluation in moderate-noise

regimes.

Case E — Two retransmissions. Fluency dominates over syntax.

Transmitted: the stress tests should be evaluated on technical grounds

and not on political grounds or grounds which leave room for speculation

Received: on stress tests should be fulfilled on technical grounds and

not on political grounds or grounds which leave room for speculation

ReTX done: 2 — BLEU: 0.908, BLEURT: 0.629, BERT: 0.874, PPL: 136.6, PPLU:

15.34, CoLA: False

Despite structural corruption at the start of the sentence and failed CoLA, PPL remains

below threshold. As a result, the final decoding is accepted without further retries.

Case F — Two retransmissions. CoLA enables semantic recovery.

Transmitted: i do not think that parliament is providing demonstrators

or organising the demonstration therefore i cannot answer your question

Received: i do not think that parliament is providing demonstrators or

preconditions the demonstration therefore i cannot answer your question

ReTX done: 2 — BLEU: 0.909, BLEURT: 0.658, BERT: 0.809, PPL: 208.6, PPLU:
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17.66, CoLA: True

Here, PPL is moderate, but CoLA classifies the output as acceptable. The logic correctly

halts after the second attempt, avoiding unnecessary retransmissions.

Case G — Three retransmissions. Poor result still accepted.

Transmitted: mr president mr barroso how nice it is for us to be able

to continue our conversation that was so rudely interrupted just a month

ago

Received: mr president mr barroso how nice it is for us to be able to

continue our generate that was so midday down just a month ago

ReTX done: 3 — BLEU: 0.796, BLEURT: 0.329, BERT: 0.687, PPL: 139.2, PPLU:

23.37, CoLA: False

The final output is both ungrammatical and semantically nonsensical. Nevertheless, the

low PPL allows acceptance. This case exposes a limitation of threshold-only criteria.

Case H — Three retransmissions. Semantic error, structurally valid.

Transmitted: thank you mrs leperre verrier i shall of course be sending

parliament s condolences to the families concerned

Received: thank you mrs james blottnitz i shall of course be sending

parliament s condolences to the families concerned

ReTX done: 3 — BLEU: 0.868, BLEURT: 0.579, BERT: 0.705, PPL: 427.9, PPLU:

18.00, CoLA: True

A name substitution introduces a semantic distortion, yet the structure is fluent and passes

CoLA. This illustrates how certain critical errors may go undetected under current policy.

Case I — Four retransmissions. Retry budget exhausted despite poor output.

Transmitted: mr president this debate is becoming very emotional but my

comments are not in that vein

Received: mr president this debate is becoming very jan but my comments

are not in that phenomena

ReTX done: 4 — BLEU: 0.862, BLEURT: 0.384, BERT: 0.743, PPL: 954.4, PPLU:

16.00, CoLA: False

Despite failing all linguistic checks (high perplexity, incorrect grammar, and semantic

corruption), the sentence is accepted due to reaching the maximum number of retrans-

mission attempts. This reveals a structural limit in the ARQ logic, which halts retrying
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after three attempts regardless of output quality.

Case J — Four retransmissions. Acceptable output after final attempt.

Transmitted: illegal immigration will also be tackled more effectively

this involves a common repatriation policy and better border control

Received: illegal immigration will also be tackled more effectively this

involves a common occurred policy and better border control

ReTX done: 4 — BLEU: 0.908, BLEURT: 0.616, BERT: 0.852, PPL: 534.9, PPLU:

18.00, CoLA: True

Here, the system reaches the retry limit but produces a linguistically valid sentence.

While a key noun is substituted, the output remains grammatical and coherent, lead-

ing to CoLA acceptance. This case demonstrates that, in some scenarios, retry budget

exhaustion can still yield an acceptable decoding.

These examples demonstrate how the ARQ logic combines multiple reference-free metrics

to guide retransmissions, balancing fluency (PPL), grammaticality (CoLA), and contextual

coherence (PPLU). Most retransmissions contribute to output quality, although some edge

cases reveal potential for improved semantic filtering beyond fixed thresholds.
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5 Conclusion and Future Work

This thesis introduced a semantic communication system that extends the DeepSC framework

with mechanisms aimed at improving performance in realistic transmission conditions. The

proposed architecture integrates advanced semantic quality metrics, both reference-based

(BLEU, BLEURT, BERTScore) and reference-free (PPL, PPLu, CoLA), and supports a

retransmission strategy based on semantic acceptability. In particular, a memory-aware

retransmission model was implemented, capable of combining information from multiple

transmission attempts to enhance decoding quality.

The experimental analysis, conducted under CDL-B and Rayleigh fading channels,

demonstrated that the use of memory can improve semantic reconstruction compared to

both the no-retransmission case and traditional retransmission strategies without memory.

These improvements, even if limited, have been observed across various evaluation metrics

and signal-to-noise ratios, showing that the integration of prior communication attempts

might be used to improve semantic robustness.

Despite the limited gains, this research direction remains worth pursuing, as several

challenges are still open and point to potential improvements:

• Improving semantic fidelity at high SNR levels. Even in optimal channel conditions,

reconstructed messages are not always perfect. This highlights the potential for improv-

ing the underlying encoder–decoder architecture or adopting more advanced language

models. An improved architecture that can fully leverage the channel in favorable

conditions is also more likely to benefit from a retransmission strategy, which leads to

a more stable and higher-quality effective channel.

• Extending support to multiple full retransmissions. The current system allows

only one enhanced retransmission. Future work may explore architectures capable

of managing a longer sequence of retransmissions, each conditioned on previously

received information.

• Exploring adaptive encoder retransmission strategies. In the current system, in the

memory-aware setup, retransmissions are generated using a separate encoder network,

resulting in a different latent representation from the original transmission. Future work
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could expand this approach and explore the use of richer feedback signals to guide

the construction of retransmissions, allowing the transmitter to adaptively refine or

complement the original message. This could enhance semantic recovery by increasing

diversity and reducing redundancy across retransmission attempts.

• Leveraging semantic reconstructions instead of raw signals. The current fusion

strategy operates at the physical layer. An alternative approach would involve using

the semantic output from a previous decoding attempt as the input to subsequent

transmissions, shifting the focus from signal accumulation to meaning refinement.

• Generalizing to other media types. Although this work focused on natural language,

the underlying methodology can be adapted to other modalities such as images, audio,

or video, enabling semantic communication in a broader range of applications.

• Evaluating on diverse and more ambiguous datasets. The experiments in this thesis

were conducted on the Europarl corpus, which contains formal and well-structured par-

liamentary language. Future evaluations on datasets with more informal, ambiguous, or

conversational content (e.g., movie subtitles, dialogue datasets, or user-generated text)

would provide deeper insight into the system’s generalizability and semantic robustness

in real-world scenarios.

• Analyzing radio resource efficiency. A detailed evaluation of the trade-offs between

semantic performance and communication cost, in terms of bandwidth, energy, and

latency, is essential for assessing the practical feasibility of such systems.

Semantic communication represents a novel and rapidly evolving research area where

deep learning and communication theory intersect to redefine how information is transmitted

and interpreted. The contributions developed in this thesis lay a foundation for future ad-

vancements in this direction, highlighting the importance of feedback, memory, and semantic

reasoning in next-generation communication systems.
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