POLITECNICO DI TORINO

MASTER’s Degree in ICT FOR SMART SOCIETIES

iniGie - di Torino

MASTER’s Degree Thesis

Compression and Cloud screening for Satellite Images
Supervisors Candidate

Prof. Enrico MAGLI Alessia SCARDI

Prof. Diego VALSESIA

JULY 2025

Compression and Cloud screening for Satellite Images

Alessia Scardi

Abstract

The increasing volume of Earth Observation (EO) data generated by the
high-resolution satellites’ sensors poses critical challenges to onboard storage,
transmission, and real-time processing. The images collected during the space
missions need to clearly show the surface of the Earth, to be used in multiple
contexts and fields: land cover classification, vegetation, ice and water analysis,
atmospheric correction and mineral mapping. Unfortunately, the sky is not
always clear of clouds, which degrade the information quality when appear-
ing in the satellite images, often making major portions of the data unfit for
further analysis and losing the very purpose the images were meant to serve.
Accurate cloud detection algorithms are required to discriminate cloudy pixels
from cloud-free ones directly onboard the satellite. The algorithms generate
binary segmentation masks that are subsequently exploited during the onboard
compression stage. According to the CCSDS 123.0-B-2 standard for multi-
spectral and hyperspectral image compression, it is possible to assign different
compression parameters depending on pixel classes. Specifically, cloudy pixels,
being less informative, can be more compressed than cloud-free ones. This
particular compression approach reduces the volume of data to be transmitted,
saving on onboard resources.

The thesis addresses the challenge of detecting clouds directly onboard
through a lightweight U-Net, and create the segmentation masks used in the
compression stage. Satellites are equipped with MultiSpectral Imagers (MSI)
Instruments which are provided with scanners acquiring data line by line to
create an image. For this reason, standard image-level processing is impractical
in onboard scenarios, as it would require loading entire high-resolution images
into memory. To address this constraint, the proposed lightweight U-Net
architecture is trained using two memory-efficient strategies: chunk-based and
sliding-window-based learning. These approaches allow the network to operate
on smaller portions of the image, significantly reducing the memory footprint
during inference. This design choice ensures that segmentation masks can be
generated progressively during onboard execution, enabling real-time cloud
screening. Particular emphasis is placed on the trade-off between segmentation
accuracy and computational efficiency.

To further reduce computational complexity and adapt the network for

efficient deployment on hardware platforms, the lightweight U-Net used to

create binary cloud masks is optimized through quantization, specifically weight
ternarization. To this end, several quantization strategies have been investigated
and empirically compared using a consistent set of performance metrics. The
presence of ternary weights simplifies hardware implementation by lowering
complexity in arithmetic operations, resulting in a reduction in both memory
usage and inference latency while, for the majority of methods, maintaining
high segmentation accuracy.

Experimental results confirm the effectiveness of the proposed methods in

both compression efficiency and cloud screening accuracy.

Table of Contents

1 Introduction 1

2 Background on Remote Sensing and Compression Techniques 3

2.1 Remote Sensingo 3
2.2 Satellite Imaging Systems and Hyperspectral Data 3
2.2.1 Sentinel-2 mission 5

2.3 Image Compression for Remote Sensing 6
2.3.1 Compression Paradigms 7
2.3.2 The CCSDS 123.0-B-2 Compression Standard 8
Compressor and Decompressor Structure 9

3 Background on Deep Learning 12
3.1 Neural Networks and Deep Learning 12
3.1.1 Neural Networks (NNs) 13
3.1.2 Convolutional Neural Networks (CNNs) 16
313 U-Net 19
3.1.4 Lightweight U-Net-based model 20
Performance Evaluation and Results 21

3.2 Quantization of Neural Networks 22
3.2.1 Post-Training Quantization vs Quantization-Aware Training 24

3.2.2 Ternary Neural Networks (TNNs) 24
3.2.3 Ternary Weight Networks (TWN) 25
3.2.4 Absmean Ternary Quantization 26
3.2.5 Trained Ternary Quantization (TTQ) 27

4 Methodology 30
4.1 Onboard Cloud-Aware Compression 30
4.1.1 Pre-processing techniques 31

4.2 Cloudscreening 31
4.3 Training and inference techniques 32
4.3.1 Slice-based Lo 32

4.3.2 Slding window 33

TABLE OF CONTENTS

4.4 Ternarization methods 34

5 Experimental Results 39
5.1 The Dataset 39
5.2 Experimental Framework 40
5.3 Evaluation Metrics oL 40
5.4 Stripes and Sliding-window approach 41
5.5 Lightweight U-Net: Post-training Quantization 46
5.6 Lightweight U-Net: Quantization-Aware Models for Ternarization 47
5.6.1 Overall Performance via ROC Analysis 48

5.6.2 Quantitative Analysis of Key Metrics 50

5.6.3 Visual and Qualitative Assessment 50

Visual Comparison of Cloud Masks 51

Analysis of Error Types 52

Performance Trade-offs vs. Cloud Probability Threshold 53

5.7 Sliding Window approach on Ternarization models 55
5.8 Satellite images compression using cloud masks 57

6 Conclusions and Future Work 61

Bibliography 63

List of Figures

2.1

2.2
2.3
2.4

3.1

3.2
3.3

3.4

3.5

3.6

4.1
4.2

Copernicus Sentinel-2C takes the skies in January 2025. Credit:

MSI spectral bands. Credit:ESA.
Compressor pipeline. Credit [1].

A diagram of a fully connected Artificial Neural Network (ANN),
also known as a Multi-Layer Perceptron. It shows an input layer,
a hidden layer where all neurons are interconnected, and an
output layer.
Simple Neural Network Architecture.
The architecture of a typical Convolutional Neural Network
(CNN). It illustrates the flow from an input image through
convolutional and pooling layers for feature extraction, followed
by a fully connected and an output layer.
The U-Net architecture, showing the symmetric contracting
(encoder) and expansive (decoder) paths with skip connections
between them. Credit [24].
Architecture of the lightweight U-Net model designed for on-
board cloud detection. It features a reduced number of blocks and
uses efficient operations like Depthwise Separable Convolutions
and PixelShuffle. Credit [25]
Trained Ternary Quantization pipeline. Credit [31].

Cloud screening and compression pipeline.
From left to right: the RGB composite, the ground truth cloud
map, the FP model trained without using slices and tested using

slice-like approach, the FP model trained and tested using slice-

like approach. The Cloud Probability Threshold (CPT) used for

21
27

cloud detection precision is 0.7 and the number of slices used is 32. 33

LIST OF FIGURES

4.3

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

From left to right: the RGB composite, the ground truth cloud
map, the FP model trained using sliding windows of 32 lines
shifted by 4 and 16 lines and finally the sliding window approach
used only for testing the FP model. The Cloud Probability
Threshold (CPT) used for cloud detection precision is 0.5 and

the number of slices used is 32.

Slices approach: the first column shows the RGB composite and
the corresponding Ground Truth, then the predicted cloud masks
obtained from Full Precision models trained and evaluated using
different slicing strategies. All results are generated with a fixed
CPTof 0.5.
Sliding window approach with window size=32: cloud mask
predictions from Full Precision model using different shift values
(2,4,8,16). Fixed CPT of 0.5.
Sliding window approach with window size=16: cloud mask
predictions from Full Precision model using different shift values
(2, 4, 8). Fixed Cloud Probability Thresholds (CPT) of 0.5. . . .
Sliding window approach with window size=8: cloud mask pre-
dictions from Full Precision model using different shift values (2,
4). Fixed Cloud Probability Thresholds (CPT) of 0.5.
ROC curves for Post-Training Quantization using different cloud
detection thresholds and different precision models (INT8, INT4,
INT2, TWN). . . .
ROC curves for the baseline TT(Q models, highlighting the im-
portance of using both a Straight-Through Estimator (STE) and
pre-trained Full-Precision (FP) weights for initialization.

ROC curves comparing the absmean ternarization method against
the Full-Precision and INT4-PTQ baselines.
ROC curves for the advanced QAT techniques, demonstrating
the highest performance levels among the quantized models.
From left to right: input RGB composite, TTQ + FP + STE
cloud mask, symmetric TTQ cloud mask, TT(Q + warmup cloud
mask with threshold=0.5.
From left to right: input RGB composite, TTQ + FP + STE
cloud mask, symmetric TTQ cloud mask, TT(Q + warmup cloud
mask with threshold=0.9.
From left to right: input RGB composite, Full Precision cloud
mask, absmean ternarization cloud mask, per-channel TTQ cloud
mask with threshold=0.5.

44

45

LIST OF FIGURES

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

From left to right: input RGB composite, Full Precision cloud
mask, absmean ternarization cloud mask, per-channel TTQ cloud
mask with threshold=0.7. 52
Error map for the TTQ + FP + STE model at CPT=0.7.
Green indicates correctly identified clouds (TP), red highlights
erroneously flagged clear pixels (FP), and yellow shows missed
clouds (FN). The low number of red pixels indicates a low rate
of critical errors.o Lo 52
From left to right: Ground truth cloud mask, True Positives,
False Positives and True Negatives map of the clouds created
with the model TTQ + FP + STE and threshold=0.5. 53
From left to right: Ground truth cloud mask, True Positives,
False Positives and True Negatives map of the clouds created
with the model TTQ + FP + STE and threshold=0.9. 53
False Positive Rate (FPR) vs. Threshold for advanced QAT
models. All models exhibit a sharp drop in FPR, with absmean

+ distillation loss achieving the lowest false alarm rate at higher

thresholds. oo 54
F1 Score vs. Threshold for advanced QAT models. Most models
achieve their peak F1 Score between a CPT of 0.1 and 0.9. . . . 54

Different ternarization models trained and tested though the
sliding window approach: window size = 16, shift = 4, CPT = 0.5. 55
Different ternarization models trained and tested though the
sliding window approach: window size = 16, shift = 4, CPT = 0.7. 56
Different ternarization models trained and tested though the
sliding window approach: window size = 16, shift = 8, CPT = 0.5. 56
Different ternarization models trained and tested though the
sliding window approach: window size = 16, shift = 8, CPT = 0.7. 56
Compression Rate vs. Mean Squared Error (MSE) for different
cloud masking models at a CPT of 0.7. Lower is better. 58

List of Tables

2.1

5.1

5.2

5.3

5.4
5.5

Overview of Sentinel-2 Level-1 and Level-2 products. Credit: [5] 7

Performance Metrics of Full-Precision Models Using Different
Slicing Strategies and Cloud Probability Thresholds (CPT). . . 43
Performance Metrics for the Sliding Window Approach with
Different Window Sizes, Shifts, and Cloud Probability Thresholds

(CPT). . . . 46
Performance Summary for Top Quantization-Aware Training
Models. 50

Performance of Ternarized Models with a 16-Line Sliding Window. 57
False Negative Rate (FNR) at CPT=0.7 for Top Performing
Models. 59

Chapter 1

Introduction

From thousands of kilometers above, satellites like the European Space Agency’s
Sentinel-2 are humans’ eyes in the sky. Their constant, moving scan provides a
stream of high-resolution images that has given us an incredible new window
into our planet’s health. We can now watch the ice sheets of Greenland shrink
year by year, trace the path of a raging wildfire across a remote landscape
in near-real-time and see the shifts in vegetation signaling a coming drought.
This data is vital for monitoring the health of a single farmer’s field, for
tracking deforestation in the Amazon basin, for managing our water resources,
for responding to natural disasters with never-seen-before speed and insight
and many other aspects. However, this incredible capability has created a
monumental problem: we are capturing data far faster than we can send it back
to Earth. The data pipelines from space are narrow and expensive, creating
a digital traffic difficulty that forces us to be incredibly selective about what
we bring home. Adding to this challenge is a problem as old as the sky itself:
clouds. Like a thumb over a camera lens, clouds and their shadows often block
the most interesting parts of an image, rendering it partially or completely
useless. Sending these cloudy, worthless images all the way back to Earth is a
total waste of our limited satellite bandwidth. This reality calls for a smarter
approach, that almost allows satellites to make decisions for themselves, right
there in orbit.

This thesis proposes a smart system designed to work directly on a satellite,
integrating cloud detection with data compression. First, an efficient deep
learning model, built on a Lightweight U-Net architecture, acts as a "cloud-
spotter", identifying which parts of an image are clear and which are obscured
by clouds. Second, the cloud map it creates guides an adaptive compression
system based on the CCSDS 123.0-B-2 standard from ESA. This system is
able to compress the data from cloudy pixels much more aggressively, while
carefully preserving the precious detail in the clear, scientifically valuable areas.

Nevertheless, making this work on a satellite, with its tight power and memory

Introduction

budgets, requires practical strategies to handle massive hyperspectral images.
This work explores two of them: a simple chunk-based approach and a more
robust sliding-window technique. Furthermore, to make the neural network
itself as lightweight as possible, this research focuses on a technique called
ternary weight quantization. A wide range of methods to reduce the model
down to its bare essentials are tested, making it fast and efficient enough to
run on low-power hardware without sacrificing its accuracy.

This thesis is structured as follows. Chapter 2 provides an overview of remote
sensing fundamentals and image compression paradigms, with a focus on the
Sentinel-2 mission and the CCSDS 123.0-B-2 standard. Chapter 3 introduces
neural networks and quantization techniques, with particular attention to U-Net
and ternary models. Chapter 4 describes the methodology for cloud screening
and onboard compression, including preprocessing steps and model deployment
strategies, used to develop the thesis’ models and results. Chapter 5 discusses
the experimental results performed on the models measuring segmentation

accuracy, compression performance, and model efficiency.

Chapter 2

Background on Remote Sensing

and Compression Techniques

2.1 Remote Sensing

Remote sensing is the science of acquiring information about the Earth’s surface
without being in direct physical contact with it. This is primarily accomplished
by measuring and analyzing the electromagnetic radiation, such as visible light,
infrared, and microwave energy, that is either reflected or emitted from objects
on the ground. The sensors used for this purpose are typically mounted on
platforms like satellites and can be broadly classified into two categories: passive
sensors detect the natural radiation that is reflected or emitted from the Earth’s
surface, with the primary source of energy being the Sun. In contrast, active
sensors, such as radar (SAR) and lidar, provide their own source of energy
and measure the backscattered signal. By processing the data collected from
these sensors, remote sensing enables the creation of detailed imagery and data
products that are essential for monitoring environmental changes, managing

natural resources, and understanding complex planetary systems.

2.2 Satellite Imaging Systems and Hyperspec-
tral Data

Satellite imaging systems are the backbone of modern Earth observation (EO)
missions, enabling the systematic acquisition of Earth data from orbit. These
systems can be classified into panchromatic, multispectral, and hyperspectral,
based on their spectral resolution and number of bands. Although panchromatic
sensors provide high-resolution grayscale images that capture broad spectral
content, multispectral sensors typically record data across 4 to 20 discrete

spectral bands. Hyperspectral imaging (HSI) systems, on the other hand,

Background on Remote Sensing and Compression Techniques

collect data in hundreds of narrow, contiguous spectral bands across visible,
near-infrared, and shortwave infrared regions of the electromagnetic spectrum
(approximately 400-2500 nm). The dense spectral sampling of the hyperspectral
images helps in the distinction of fine-grained material, particularly used in
applications such as land cover classification, vegetation analysis, atmospheric
correction, and mineral mapping [1].

A hyperspectral image can be mathematically modeled as a three-dimensional
data cube X € R¥*W*B where H and W represent the spatial dimensions
(height and width), and B is the number of spectral bands. Each pixel x; ; € R?
encodes a spectral signature characterizing the surface material at position
(,7) [2]. The spectral signature, formed by recording the reflectance across a
large number of wavelengths, allows the use of techniques such as sub-pixel
classification and spectral unmixing, even in heterogeneous land-cover scenes
[3].

The high data volume of hyperspectral images, key to their scientific value,
creates a significant bottleneck for onboard storage, transmission, and processing
systems. For example, NASA’s HyspIRI sensor is estimated to generate up
to 5 TB of data per day [1], far exceeding the downlink capabilities of typical
satellite platforms. Therefore, both onboard data compression and intelligent
data prioritization have become crucial technologies in the design of modern

imaging satellites.

Figure 2.1: Copernicus Sentinel-2C takes the skies in January 2025. Credit:
ESA.

Background on Remote Sensing and Compression Techniques

2.2.1 Sentinel-2 mission

An illustrative example of a modern EO mission is the Sentinel-2 constellation,
operated by the European Space Agency (ESA) as part of the Copernicus
Programme. The mission aims at providing global, high-resolution, multispectral
coverage in support of Copernicus land, emergency-response and security
services [4].

The original Sentinel-2 mission comprises two twin, sun-synchronous, satel-
lites, Sentinel-2A and Sentinel-2B, launched respectively in 2015 and 2017.
Sentinel-2A has already been replaced by Sentinel-2C in January 2025 (shown
in Figure 2.1) and Sentilel-2B will be succeeded by Sentinel-2D, creating the
second generation of Sentinel-2 satellites, active until 2035, improving global
measurements. The two satellites fly in the same 786 km orbit, phased 180°
apart so that any point between 83°N and 56°S is revisited every ~5 days (10
days with a single spacecraft) [4], [5].

M1 mirror

STRIGFU plate assemblies

Rear (-Z) Panel (PSS)

SiC Telescope
Baseplate

Payload I/F Panel

MSI Connector

SWIR FEE Bracket

radiator VCU Connector

PIF top floor oracket

Focal Plane
Assemblies \/

VCU (nomired)

Figure 2.2: Onboard satellites MSI. Credit:ESA.

Each satellite is equipped with a MultiSpectral Instrument (MSI), shown in
Figure 2.2, that enables systematic observation of terrestrial surfaces capturing
data across 13 spectral bands, described in Figure 2.3.

MSI’s core is a silicon-carbide, three-mirror anastigmatic telescope which
directs light onto two separate focal-plane assemblies, one for the visible and
near-infrared (VNIR) spectrum and another for the shortwave infrared (SWIR).
Together, these assemblies form a continuous 25,000-pixel line of detectors,
giving the instrument a swath of 290 km. Sentinel-2 operates in push-broom
mode: every exposure records a complete cross-track line in all 13 spectral
bands simultaneously, while the satellite’s orbital motion provides the second
dimension of the image. The line-by-line "carpet-mapping" is highly efficient,

generating around 1.6 TB of raw data per orbit at three distinct resolutions:

Background on Remote Sensing and Compression Techniques

four bands at 10 m, six at 20 m (including three red-edge channels), and three

atmospheric bands at 60 m [4].

VNIR | SWIR |
A VIS NIR FPA

/Atmospheric correction ¢hannels |

SWIR |

r
.
L d

om | ntinuity with SPOTS multispectral |

1200 1400 1600 1800 2000 2200 2400
nm nm nm nm nm nm nm

Figure 2.3: MSI spectral bands. Credit:ESA.

Copernicus User Level Data, shown in Table 2.1, need to go through a
rigorous calibration and validation standard processing chain before it can
be used for scientific analysis and quantitative Earth-observation applications
[5]. The Mission Performance Cluster (MPC) is responsible for evaluating
data quality, monitoring instruments’ performance and ensuring compliance
with product specifications. Furthermore, it oversees the development and
maintenance of essential calibration resources, such as scientific algorithms and
processing modules, to guarantee the delivery of consistent, high-quality data

throughout the mission’s lifecycle.

2.3 Image Compression for Remote Sensing

While scientifically valuable, the hyperspectral data contains significant redun-
dancy due to high correlation between spectral bands. Even if this redundancy
burdens storage systems, it can also be used for efficient data processing. Tech-
niques like Principal Component Analysis (PCA), Independent Component
Analysis (ICA), and deep autoencoders exploit this correlation to perform
tasks such as compression, dimensionality reduction, and anomaly detection,
all while preserving the data’s most informative features. However, atmo-
spheric conditions, particularly cloud cover, significantly affect the usability
of optical hyperspectral data. Approximately 70% of the Earth’s surface is
obscured by clouds at any given time, rendering large portions of collected
imagery uninformative for downstream applications. This has motivated the
development of onboard cloud screening algorithms that operate in real-time to
detect and discard cloud-covered regions before compression and transmission.
Techniques range from threshold-based detectors, as Sen2Cor [6] and Fmask

6

Background on Remote Sensing and Compression Techniques

Table 2.1: Overview of Sentinel-2 Level-1 and Level-2 products. Credit: [5]

Processing Key processing steps / outputs
Level
Level-1 Radiometric corrections: stray-light / crosstalk removal,

defective-pixel exclusion, de-noising, de-convolution, rela-
tive & absolute calibration.
Geometric corrections: inter-band & inter-detector co-
registration, ortho-rectification.

Level-2 a) Cloud screening.
b) Atmospheric corrections: thin-cirrus removal, terrain-
slope and adjacency-effect compensation.
¢) Retrieval of geophysical variables: e.g. Fraction of Ab-
sorbed Photosynthetically Active Radiation (FAPAR), leaf
chlorophyll content, Leaf Area Index (LAI), land-cover
classification.

Level-3 Spatio-temporal synthesis products (e.g. generation of
cloud-free mosaics by simulating/merging cloud-corrections
applied to Level-2 imagery).

[7], to lightweight convolutional neural networks (CNNs) such as U-Net and
KappaMask [8]. These approaches aim to preserve cloud-free observations while

reducing data volume and avoiding unnecessary bandwidth waste.

2.3.1 Compression Paradigms

Image compression is essential for transmitting data on Earth quickly and
efficiently. The compression is categorized into three paradigms: lossless, lossy

and near-lossless, depending on the level of allowable information distortion.

Lossless Compression

Lossless compression paradigms allow to exactly reconstruct the original image,
without losing information during the decompression stage [9]. While its primary
advantage is complete data fidelity, the achievable compression ratios are only
modest when compared to other techniques. The performance of lossless
compression is fundamentally limited by the image’s entropy, a statistical
measure of its information content, which sets a theoretical boundary on how
much the data can be compressed. The most common implementations are
prediction-based algorithms such as Fast Lossless (FL) [10], DPCM [11], and
the CCSDS-123 standard.

Background on Remote Sensing and Compression Techniques

Lossy Compression

In lossy compression, the decompressed image results distorted with respect to
the original one. The distortions are introduced during a quantization stage
and cause the permanent loss of information when decompressing the image.
The decompressed image results to be an approximation of the original, not
its exact copy. However, lossy compression achieves higher compression ratios
then the lossless technique. This compression paradigm is usually built on
top of transform-based approaches like Principal Component Analysis (PCA),
Discrete Cosine Transform (DCT), and Discrete Wavelet Transform (DWT).
These transforms are effective because they concentrate the most significant
visual information into a small number of coefficients, allowing to eliminate the

less important data and significantly reduce the file size [9].

Near-Lossless Compression

Near-lossless compression is a compromise between the other two paradigms,
offering better compression ratios than lossless methods while ensuring that
data degradation is strictly controlled. This is achieved by limiting the pixel
distortion to a previously defined absolute or relative error, with a more stringent
definition constraining the error to the level of the instrument’s intrinsic noise.
This is implemented in three main ways [9]: quantizing the prediction error
and then encoding it losslessly, as done in CALIC [12] and NL-CCSDS-123 [13]
methods, pre-quantizing the entire original image before applying a lossless
coder or using a two-stage process where a lossy version is created, and the

residual difference is then quantized and losslessly encoded.

2.3.2 The CCSDS 123.0-B-2 Compression Standard

The Consultative Committee for Space Data Systems (CCSDS) developed the
123.0-B-2 standard to support efficient onboard compression of multispectral
and hyperspectral image data. This standard extends its lossless-only prede-
cessor (CCSDS 123.0-B-1) by introducing a near-lossless mode, which allows
for lossy compression with user-defined absolute and/or relative error limits in
the reconstructed image. Designed to be low-complexity and hardware-friendly,
CCSDS 123.0-B-2 is now adopted by major space agencies like NASA and
the European Space Agency (ESA). The new features, including a new hy-
brid entropy coder, enable significantly smaller data volumes while precisely

controlling the quality of the decompressed images.

Background on Remote Sensing and Compression Techniques

Compressor and Decompressor Structure

The compression chain of the CCSDS 123.0-B-2 standard consists of two main

functional blocks: a Predictor and an Encoder, as shown in Figure 2.4. The

Predictor stage generates a prediction for each sample, computes the prediction

error, and quantizes it. The subsequent Encoder stage losslessly compresses

the resulting stream of mapped quantizer indices.

The decompressor performs the inverse operations in a symmetric manner

to ensure that predictions are identical at both ends, which is critical for a

successful reconstruction [1].

Compressor Pipeline

Predictor

[Quantized ---__--___i MEDDEU
Input | Prediction Prediction iQuantizer
Image; Errors Ermrors W! Indices g_"l;WEd
| i itstream
Sl | A ey 9 | Cindex [80}
| Same vapping] Cocer | [el
[. ; lection plive
1Predicted Representatives] Sel ; G
‘Sample _— sz | Sample 1 (Once Per
Values |- | Rep i Ima%s} v, .
iszlf} Calculation @ " O

Figure 2.4: Compressor pipeline. Credit [1].

The compression process is a single-pass operation for each image sample.

1. Prediction: A causal predictor is used to estimate the current pixel

value §,(t).This prediction is not based on original pixel values but on
sample representatives, values derived from previously coded data. This
closed-loop design ensures the decompressor can perfectly replicate the
prediction, which is calculated using a weighted sum of local differences
computed from local sums of neighboring sample representatives in the

current and previous spectral bands.

. Prediction Error Computation: The prediction error (or residual) is

the difference between the original sample and its predicted value:
AL (t) = s.(t) — 8.(t). (2.1)

. Quantization (for Near-Lossless): The prediction error A,(t) is
uniformly quantized to a quantizer index ¢,(t). This stage is always
active, but for lossless compression, the user sets the error limit to zero,
which makes the quantization lossless (g,(t) = A,(t)). For near-lossless

compression, the quantizer’s bin size is determined by user-specified

Background on Remote Sensing and Compression Techniques

absolute and/or relative error limits, ensuring that the reconstruction

error is bounded.

4. Quantizer Index Mapping: The potentially negative quantizer indices
q.(t) are mapped to non-negative integers, §,(t), which are suitable for

the entropy coders.

5. Entropy Coding: The sequence of mapped quantizer indices 6,(t) is

compressed using one of three available entropy coders:

» Sample-Adaptive: Uses a family of Golomb-Power-of-2 (GPO2)
codes, adapting the code for each sample.

+ Block-Adaptive: Partitions samples into blocks and encodes each
block with the most efficient of five methods (including Rice coding

and no compression).

» Hybrid (new in Issue 2): Classifies samples as high- or low-entropy.
It uses a variation of GPO2 codes for high-entropy samples and a
family of 16 efficient variable-to-variable-length codes for low-entropy

samples, which are prevalent in near-lossless mode.

Decompressor Pipeline

The decompression process symmetrically reverses the compression steps to

reconstruct the image.

1. Entropy Decoding: The compressed bitstream is decoded using the
corresponding entropy coder (sample-adaptive, block-adaptive, or hybrid)

to perfectly recover the sequence of mapped quantizer indices 6,(t).

2. Inverse Quantizer Index Mapping: The non-negative indices 4, ()

are mapped back to the original quantizer indices ¢,(t).

3. Prediction: The decompressor calculates the exact same sample repre-
sentatives from previously decoded data that the compressor used. Using
the sample representatives, it applies the identical prediction algorithm

to compute the predicted sample value 3, ().

4. Reconstruction: The reconstructed sample value is obtained by adding
the de-quantized error to the prediction. The de-quantized error is derived
from the index ¢,(t) and the predicted value §,(t), resulting in a final

reconstructed sample not exceeding the user-specified error limits.

This closed-loop design, where both compressor and decompressor make

predictions based on shared, reproducible data (the sample representatives),

10

Background on Remote Sensing and Compression Techniques

is crucial to ensure controlled error reconstruction in near-lossless mode and

bit-exact reproduction in lossless mode [1].

11

Chapter 3

Background on Deep Learning

3.1 Neural Networks and Deep Learning

The development of deep learning has been strongly influenced by biological
systems like the human brain, which process sensory information through
multiple hierarchical layers. The visual cortex, in particular, has served as a
primary source of inspiration for the architecture of Artificial Neural Networks
(ANNSs).

In their 1962 work, Hubel and Wiesel discovered that neurons in the early
visual cortex of cats are selectively responsive to primitive visual features, such
as specific edge orientations [14]. These neurons respond to increasingly abstract
visual stimuli as information moves through successive layers of the cortex,
revealing that the brain performs hierarchical feature extraction: lower layers
detect primitive features like edges and texture, and higher layers assemble these
into more complex representations, identifying shapes, surfaces, and ultimately
full objects.

This idea of hierarchical processing is central to deep learning. As the brain
organizes perception into layers of increasing abstraction, deep neural networks
are designed with multiple layers to learn a hierarchy of features. Early layers
automatically extract low-level features from raw data, which are then combined
in deeper layers to form more abstract, task-specific representations [15].

Traditional machine learning models often rely on shallow architectures,
typically with one or two layers. While effective for some tasks, these mod-
els directly map inputs to outputs (in supervised environments) or to latent
representations (in unsupervised settings) without intermediate stages of ab-
straction. However, those simple mappings can be insufficient for complex,
high-dimensional data like satellite imagery, where meaningful features are
often deeply embedded and require a hierarchical approach to be effectively

captured.

12

Background on Deep Learning

Inspired by this biological paradigm, Deep learning (DL) is a subfield of
machine learning that employs multi-layered neural networks to model complex
patterns in the data. Unlike traditional algorithms, which often require manual
feature extraction, deep learning models can automatically learn hierarchical
representations from raw data since each layer contains non-linear processing
units able to transform the output of the previous layer into a slightly more
abstract representation. Although originally motivated by visual perception,
this approach has proven remarkably effective across a broad range of domains,
including image and speech recognition, natural language processing, and

beyond.

3.1.1 Neural Networks (NNs)

Input layer Hidden layer

Figure 3.1: A diagram of a fully connected Artificial Neural Network (ANN),
also known as a Multi-Layer Perceptron. It shows an input layer, a hidden
layer where all neurons are interconnected, and an output layer.

Artificial Neural Networks (ANNs) are computational models designed to
approximate complex functions by learning from data. They are composed by
interconnected processing units, known as neurons, organized in layers, as shown
in Figure 3.1. Each neuron performs a simple transformation on its inputs,
and their collective action enables the network to model complex relationships.

Neural networks are compatible with different learning paradigms:

+ Supervised learning, where a Neural Network is trained on a labeled

dataset to learn a mapping from inputs to target outputs.

13

Background on Deep Learning

+ Unsupervised learning, where the network identifies latent patterns,

structures, or groupings within unlabeled data.

+ Reinforcement learning, where an agent learns an optimal policy for

decision-making by interacting with an environment and receiving reward

feedback.

This thesis focuses specifically on supervised learning for image classification
tasks using hyperspectral satellite data. In this context, a neural network is
trained to map high-dimensional image data to discrete class labels to perform
the automatic detection of clouds: the network learns to binary classify each

pixel of an image as cloud or non-cloud. The Architecture of a simple neural

xt |
~ —— / \\\\
i
X2 (P uwX) Y
y \
xn \

Figure 3.2: Simple Neural Network Architecture.

network is shown in Figure 3.2. Its fundamental computational unit is the
neuron, able to compute a weighted sum of its inputs followed by the application
of a non-linear activation function. Mathematically, the output y of a single

neuron can be expressed as shown in eq. 3.1.
y=f(w'x+b) (3.1)

where x € R" is the input vector, w € R"™ is a vector of learnable weights
connecting the input layer and the neuron, b € R is a bias term introducing an
intercept, and f is a non-linear activation function.

Activation functions introduce non-linearity into the model, enabling the
network to approximate complex, non-linear patterns that cannot be captured by
linear transformations alone. The choice of the activation function significantly
impacts a network’s performance and training dynamics.

Among the earliest and most commonly used activation functions is the

14

Background on Deep Learning

Sigmoid function, defined in eq. 3.2.

B 1
1l 4e

f(2)

(3.2)

The Sigmoid function maps its input to the range [0, 1], making it suitable for
binary classification outputs. However, it suffers from the vanishing gradient
problem: for inputs with large absolute values, the function saturates, and its
derivative approaches zero. This can cause learning to stall in deep networks,
as gradient updates become negligible during backpropagation [16].

The hyperbolic tangent (tanh) function addresses some of these issues by
mapping inputs to the range [—1, 1], which is zero-centered. Its mathematical

formulation is shown in eq. 3.3.

ef —e*

f(2) = tanh(z) = prarpery (3.3)

While its zero-centered nature can lead to faster convergence in practice, the
hyperbolic tangent also saturates and suffers from the vanishing gradient
problem in deep architectures [17].

A significant advancement in deep learning came with the introduction of
the Rectified Linear Unit (ReLU), defined as in eq. 3.4.

f(2) = max(0, 2) (3.4)

ReLU has become the default activation in many modern NN architectures
due to its computational simplicity and its effectiveness in mitigating the
vanishing gradient problem for positive inputs [18]. By setting negative inputs
to zero, ReLLU introduces sparse activations, which can be computationally
efficient. However, this leads to a potential issue known as the dying ReLU
problem, where neurons can become permanently stuck in a state of outputting
zero if their weights are updated such that their input is always negative.

To address this, variants such as Leaky ReLU and Exponential Linear
Units (ELUs) have been proposed. Equation 3.5 shows the mathematical
formulation of the Leaky ReLLU, which modifies the function to allow a small,

non-zero gradient when the unit is not active.

1(2) = z if 2> 0, (3.5)

az otherwise,

where a € (0, 1) is a small constant [19]. ELUs further generalize this idea by

15

Background on Deep Learning

introducing exponential behavior in the negative region, as shown in eq. 3.6.

f(z) = z if 2> 0, (3.6)

ale —1) if 2<0,

which can help networks converge faster by pushing the mean activations closer
to zero [20].

In classification tasks, especially those with multiple output classes, the
softmax function is typically applied to the final layer. It converts a vector
of real-valued scores into a probability distribution over K classes, as shown in
eq. 3.7.

Zi

Fz) = EJ{T i=1,... K (3.7)
This formulation ensures that all output values lie in [0, 1] and sum to 1,

which is ideal for probabilistic interpretation in multi-class classification.
Once the network architecture is defined, the learning process involves min-
imizing a loss function (such as cross-entropy) that measures the discrepancy
between the network’s predictions and the true labels. This minimization is
typically performed using gradient-based optimization algorithms, like Stochas-
tic Gradient Descent (SGD). The gradients of the loss function with respect
to the network’s parameters are calculated efficiently using backpropagation
algorithms [21], and these gradients are used to iteratively update the weights
and biases. The interaction between layered representations, non-linear acti-
vations, and gradient-based optimization is what grants neural networks their

remarkable expressive power and ability to generalize to unseen data.

3.1.2 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a specialized class of neural networks
that have become a cornerstone of modern deep learning. They are specifically
designed to process data with a grid-like topology, such as images, videos and
time series, and their design is heavily inspired by the organization of the
animal visual cortex [22]|. Unlike fully connected networks, CNNs leverage two
key principles to efficiently learn from spatial data: local receptive fields and
parameter sharing. This allows them to automatically and hierarchically learn
spatial features, from simple edges in early layers to complex objects in deeper
layers.

As shown in Figure 3.3, the typical CNN architecture consists of a sequence
of layers, with the most common building blocks being convolutional layers,
activation layers, and pooling layers, followed by one or more fully connected

layers for classification or regression.

16

Background on Deep Learning

Input ‘Convolution Pooling Fully Connected Output

Figure 3.3: The architecture of a typical Convolutional Neural Network
(CNN). It illustrates the flow from an input image through convolutional and
pooling layers for feature extraction, followed by a fully connected and an
output layer.

In detail:

1. Convolutional Layer: The convolutional layer is the core component of
a CNN. Its purpose is to detect local features in the input data using a set
of learnable filters, also known as kernels. Each kernel is a small matrix
of weights that slides (or convolves) across the input volume, computing
a dot product at each location. This operation produces a 2D feature
map (or activation map), where each value indicates the presence and
strength of that specific feature (such a vertical edge or a specific texture)
at that spatial position.

The 2D convolution operation for an input image X and a kernel K is

defined as:

Y(i,75) =YY X(i+m,j+n) K(mmn)+b (3.8)
where Y (i,) is the output at position (z,7) in the feature map, the
summations are over the dimensions of the kernel, and b is a learnable

bias term.
Two critical hyperparameters control the behavior of the convolutional

layer:

¢ Stride: The number of pixels the kernel moves at each step. A
stride of 1 results in overlapping receptive fields, while a larger stride

produces a smaller output volume.

+ Padding: Adding a border of zeros around the input volume. This
allows for control over the spatial dimensions of the output and helps

to keep the kernel’s receptive field centered on border pixels.

Parameter sharing allows the CNN to use the same kernel (and its set of

17

Background on Deep Learning

weights) across all spatial locations of the input. This drastically reduces
the number of learnable parameters compared to a fully connected network,

making CNNs more memory-efficient and less prone to overfitting.

. Activation Layer: Immediately following each convolutional layer, an
activation function such as ReLLU is applied element-wise to the feature
map. This introduces non-linearity, allowing the network to learn more

complex features.

. Pooling Layers: used to perform spatial downsampling, which is used
for two main purposes: reducing the dimensionality of the feature maps
(decreasing computational cost) and creating a degree of invariance to

small translations in the input data. Common pooling operations include:

+ Max pooling: For each local window in the feature map, it out-
puts the maximum value. This is effective at capturing the most
prominent features.

Yij = Titm,j+n (39)

max
(m,n)eP
+ Average pooling: It computes the average value within each win-

dow.

Yij = |—;J| > Titmjin (3.10)
(m.n)eP

. Fully Connected Layers: After several convolutional and pooling layers

have extracted hierarchical features, one or more fully connected layers

are typically used at the end of the network. The high-level feature maps

are first flattened into a 1D vector. This vector then serves as the input to

the fully connected layers, which perform the final mapping from features

to output classes (often followed by a softmax function).

An efficient alternative to standard convolutions is Depthwise Separable

Convolutions, which reduce model size and computational complexity by

splitting the convolution into two separate steps [23]. First, a depthwise convo-

lution applies a single 2D filter to each input channel independently creating

an intermediate set of feature maps. This captures spatial patterns within each

channel but does not combine information across channels. Second, a pointwise

convolution handles the channel combination through a 1x1 convolution, com-

bining the outputs of the depthwise convolution to produce the final feature

maps. This 1x1 filter processes all channels at each pixel location to compute

new features, effectively mixing the channel information. This factorization

18

Background on Deep Learning

significantly reduces the number of parameters and is a key component in
modern, efficient architectures like MobileNet and Xception.
The convolutional operator is highly versatile and can be adapted to different

data dimensionalities:

« 1D Convolutions are primarily used for sequential data like time series

and audio signals.

« 2D Convolutions are the standard for image data, capturing spatial

patterns.

« 3D and Multidimensional Convolutions are employed for volumetric data
or video, where they can capture features in both spatial and temporal

dimensions.

3.1.3 U-Net

The U-Net architecture [24] is a specialized Convolutional Neural Network orig-
inally designed for biomedical image segmentation. It is particularly powerful
because it can be accurately trained on very few annotated images, making
it very useful when the available data is limited, while achieving precise seg-
mentation. Its architecture is characterized by a symmetric encoder-decoder

structure, visually resembling the letter U, as shown in Figure 3.4.

input

. output
IMAgEe |- segmentation
tile map

388 w38 ¥

256 256
B t’l”&l ¥ =»conv 3x3, RelLU
LR - : copy and cro|
' 512 512 1024 512 py p
el o el # max pool 2:2
E) 1008 A § up-conv 2x2
S-t_‘é_ = cONV 1x1

Figure 3.4: The U-Net architecture, showing the symmetric contracting
(encoder) and expansive (decoder) paths with skip connections between them.

Credit [24].

The network’s main components are:

19

Background on Deep Learning

» The Encoder (Contracting Path): This part captures the context of the
input image. It consists of successive blocks, each containing repeated
convolutional layers followed by a pooling (or strided convolution) oper-
ation for downsampling. This process progressively reduces the spatial
dimensions while increasing the number of feature channels, allowing the

network to learn the content (what) of the image at an abstract level.

» The Decoder (Expanding Path): This part enables precise localization.
It systematically upsamples the feature maps from the bottleneck while
concatenating them with high-resolution feature maps from the corre-
sponding level in the encoder via skip connections. These skip connections
are the most critical innovation of U-Net, as they allow the decoder to
recover fine-grained spatial information (where) that is lost during down-
sampling. Each upsampling step is followed by convolutions to refine the

features.

The final layer of the U-Net is typically a 1x1 convolution that maps the feature
channels to the desired number of output classes, followed by a Sigmoid (for
binary segmentation) or softmax activation to produce the final probability
map. The U-Net’s design allows it to produce high-resolution segmentation
masks and has led to its widespread adoption in medical imaging and other

domains requiring precise delineation of structures.

3.1.4 Lightweight U-Net-based model

Building on the U-Net paradigm, a lightweight neural network for on-board
satellite cloud detection is proposed in [25], demonstrating that a deep learning
model can achieve performance comparable to traditional physical algorithms
while significantly reducing computational complexity, for resource-constrained
satellite hardware.

As shown in Figure 3.5, the network is a modified U-Net architecture

designed for maximum efficiency:

« Simplified Encoder: The encoder is significantly shallower than a
standard U-Net, consisting of only three blocks: an initial stem layer for
feature extraction, followed by two downsampling blocks. This reduces

model depth and complexity.

« Efficient Convolutions: To minimize parameters and inference time,
each downsampling block employs a Depthwise Separable Convolution
(SDC) with a stride of 2. This replaces both the standard convolution
and the separate pooling layer of the classical U-Net, halving the spatial

resolution efficiently.

20

Background on Deep Learning

Input image
Output probabilities

512x512

» s

— -
)
g
o
g
Ails
Strided SepDep

b :
—_— D ConvaD
o
@

32x2 N .
SepDep ConvaD
3x3, BN, RelU
Strided ConvaD
w3, BN, RelU
— -

12B8x128

SepDep ConviD,

: - 3 e seme
=)
1 =
1 ks

- v : Concat channels
-2 28

Figure 3.5: Architecture of the lightweight U-Net model designed for on-
board cloud detection. It features a reduced number of blocks and uses efficient
operations like Depthwise Separable Convolutions and PixelShuffle. Credit [25]

« Efficient Upsampling: The decoder mirrors the encoder’s structure.
Upsampling is achieved using PixelShuffle layers, which are computation-
ally cheaper and avoid the checkerboard artifacts sometimes produced by

transposed convolutions.

« Skip Connections: Like the original U-Net, skip connections link the
encoder and decoder at each resolution level, ensuring that fine-grained
spatial details are preserved for accurate segmentation. A small bottleneck

block sits between the encoder and decoder to manage channel dimensions.

¢ Output Layer: The final block uses a standard convolution followed by

a Sigmoid activation to generate the pixel-wise cloud probability map.

The network is trained on a specific subset of Sentinel-2 spectral bands (B2,
B3, B4, B8, and B10) chosen for their effectiveness in distinguishing clouds. To
stabilize training in such a shallow architecture, Batch Normalization layers
are used before each activation. The model is optimized using the Binary
Cross-Entropy (BCE) loss function, which is standard for binary segmentation
tasks. This design enables the network to reduce the parameter count from

millions to thousands (about 20k) while maintaining competitive accuracy.

Performance Evaluation and Results

The effectiveness of this lightweight design was validated through a set of
experiments detailed in [25] and conducted both thick and thick cloud labeled

21

Background on Deep Learning

data. Its performance was compared to the highly optimized, traditional
Sen2Cor physical algorithm. The evaluation was based on several key metrics
crucial for on-board cloud screening, the same used for the purpose of this
thesis and described in section 5.

The main comparison with physical algorithms shows that the Lightweight
U-Net model significantly outperforms the best-performing version of Sen2Cor.

The lightweight model, with a Cloud Probability Threshold (CPT) of 0.80,
achieves a Balanced Overall Accuracy (BOA) (eq. 5.4) of 0.86 and a precision
(eq. 5.3) of 0.96. In contrast, the best Sen2Cor configuration reaches a BOA of
only 0.79 and a precision of 0.88.

The Lightweight model also demonstrates a better False Positive Rate
(5.2) with respect to Sen2Cor’s: just 0.02 (2%), compared to 0.06 (6%). The
reduction in false positives is a decisive advantage for on-board systems, as it
minimizes the erroneous discarding of useful, clear-sky data while maintaining
a higher cloud detection rate (TPR (eq. 5.1) of 0.73 compared to Sen2Cor’s
0.63).

Another significant advantage of this neural network is its tunability via the
Cloud Probability Threshold (CPT), which is the confidence threshold applied
to the Sigmoid output that allows a direct trade-off between TPR and FPR to

match specific mission goals:

o A low CPT, such as 0.5, maximizes cloud detection, achieving a very high
TPR of 0.87 at the cost of a higher FPR, (0.06). This setting is ideal for

missions where it is critical to identify every possible cloud.

o A high CPT, such as 0.9, minimizes false alarms, achieving a near-perfect
FPR of 0.00 (less than 0.5%), while still correctly identifying the majority
of clouds (TPR of 0.58). This is suitable for missions where preserving
clear-sky data is the top priority.

This flexibility is a marked improvement over physical algorithms, which have
less adaptable, hard-coded thresholds.

3.2 Quantization of Neural Networks

The deployment of deep neural networks (DNNs) on resource-constrained
platforms, such as edge devices or onboard satellite systems, produces significant
challenges in terms of memory footprint, computational latency and power
consumption. Model compression strategies are essential to mitigate these
issues, and neural network quantization is one of the most effective approaches.
While it enables efficiency gains, the process introduces quantization noise,

which can lead to a degradation in the accuracy of the model [26].

22

Background on Deep Learning

Traditional DNNs are trained and often perform inference using 32-bit
floating-point (FP32) arithmetic, which is a high-precision format, even if com-
putationally expensive. The fundamental operation in dense and convolutional
layers is the multiply-accumulate (MAC) operation, defined for a single neuron

as:

Ay =bp+ > Wy - 2, (3.11)

The energy cost of this operation scales non-linearly with the number of bits
required for the representation [27]. An 8-bit integer MAC, for instance,
is significantly more energy- and area-efficient than its 32-bit floating-point
counterpart. Furthermore, reducing the bit-width from 32 to 8 bits decreases
the memory required to store weights and activations by a factor of 4, alleviating
memory bandwidth bottlenecks, which are a major source of latency and power
drain in embedded systems.

To leverage these hardware benefits, full-precision floating-point tensors
are mapped to low-bit integer formats. The core idea is to approximate a
floating-point vector = using a low-precision integer representation . This
mapping is controlled by two key parameters: a floating-point scale factor s,
which defines the step size or real-world value of each integer increment, and
an integer zero-point z,, which ensures the value 0.0 is represented perfectly
without error. The mathematical formulation between the real value and its
quantized representation is shown in eq. 3.12.
int

— %) (3.12)

X R 8,(x

By quantizing both weights and activations, the computationally intensive
summation performed by each neuron of the network (3~ w) can be reformulated
so that the bulk of the work, the multiplications and additions, is performed

entirely with simple integer arithmetic, as shown by eq. 3.13.

An = by + S5z Y (Wn,m™ — z,) - (z — z,) (3.13)

m
The expensive floating-point scale factors are only multiplied once after the
entire summation is complete. To prevent numerical overflow, this sum is
calculated in a high-precision (32-bit) accumulator. The final result is then
requantized back to a low-bit format before being sent to the next layer,
thus maintaining high computational efficiency throughout the entire network

pipeline.

23

Background on Deep Learning

3.2.1 Post-Training Quantization vs Quantization-Aware
Training

Quantization is applied to neural networks using two main strategies: Post-
Training Quantization (PTQ) and Quantization-Aware Training (QAT)
[26].

» Post-Training Quantization (PTQ) is a fast and data-light approach
where a pre-trained FP32 model is converted to a low-precision format
without any retraining. The process involves calibrating the optimal scale
factor and zero-point for each tensor using a small, representative set of
calibration data. Because PTQ does not require access to the original
training pipeline or labeled data, it is simple and computationally cheap.
However, this simplicity can come at the cost of accuracy, especially when
quantizing to very low bit-widths (4-bit or less), as the model’s weights

have not been optimized to be robust to quantization noise.

» Quantization-Aware Training (QAT) simulates the effects of quanti-
zation during the training process. "Fake' quantization nodes are inserted
into the network graph, which quantize weights and activations in the
forward pass but allow full-precision gradients to flow through during the
backward pass. This is typically achieved using a Straight-Through Esti-
mator (STE), which approximates the gradient of the non-differentiable
rounding function as 1. By exposing the model to quantization noise
during training, QAT allows the optimizer to find weight distributions
that are much more resilient to the effects of rounding and clipping. While
computationally expensive, QAT almost always achieve higher accuracy
than PTQ and is essential for obtaining good performance with aggressive,

low-bit quantization.

3.2.2 Ternary Neural Networks (TINNs)

Ternary Neural Networks are an aggressive form of quantization where weights
are constrained to a set of three values: {—a,0,+a}, where a is a learnable or
fixed scaling factor. This approach offers benefits with respect to the standard

8-bit quantization:

« Computational Efficiency: Multiplications can be replaced by simple
additions and subtractions for the values —a and +a, and conditional

gating for the 0 values, which are much cheaper in hardware.

« High Sparsity: The presence of the zero value induces high levels of

activation and weight sparsity, which can be exploited by hardware to

24

Background on Deep Learning

skip computations entirely, further reducing power consumption.

» Improved Expressiveness: Compared to binary networks (which only
use two values), the zero in ternary networks provides a crucial extra
degree of freedom, allowing TNNs to achieve accuracy much closer to

their full-precision counterparts.

As with other low-bit schemes, TNNs are typically trained using Quantization
Aware Training with a STE. Advanced techniques like Fine-Grained Quantiza-
tion (FGQ) have been proposed to further improve accuracy [28]. Instead of
using a single scaling factor a for an entire layer, FGQ partitions the weights
into small groups and computes an independent scaling factor for each group.
This allows the model to better adapt to the varying dynamic ranges of differ-
ent features within a layer, resulting in minimal accuracy loss even with 2-bit

(ternary) weights.

3.2.3 Ternary Weight Networks (TWN)

Ternary Weight Networks, introduced in [29], are a variant of TNNs, where the
quantization is applied exclusively to the weights of a neural network, while
activations are typically kept at full precision. This approach constrains the
weights to the values —a, 0, or +a. Here, a is a positive, layer-specific scaling
factor that compensates for the precision loss and it is optimized alongside the
weights.

The key advantage of TWNs over binary networks lies in the inclusion of
the zero value. This allows for true weight pruning, introducing significant
sparsity that can be exploited by specialized hardware to skip MAC operations
entirely, leading to substantial reductions in both computational latency and
power consumption. The authors of [29] highlight that this approach achieves
up to a 16x model compression rate compared to FP32 models and offers
vastly superior expressive power, as a 3x3 ternary filter has over 19.000 possible
patterns compared to just 512 for a binary filter.

The core of the TWN methodology is to find the optimal ternary weights
W, in the range {—1,0,+1} and scaling factor a that minimize the L2 distance
to the original full-precision weights W, as shown in equation 3.14. Then the
effective weight used during inference is not W, but its scaled version a - W;.
The optimal ternary weights W and scaling factor a solve:

a'W; arg azo,,WI},l,-ien—l,o,H W — aW, |3 (3.14)

Solving this optimization problem directly is computationally expensive.

Therefore, the authors propose an efficient, threshold-based approximation. For

25

Background on Deep Learning

a given threshold A > 0, the ternary weights are determined as:

+1 W, > A
Wi={0 if Wi <A (3.15)
-1 ifW; < —-A

With the ternary weights fixed, the optimal scaling factor a can be calculated

directly as the average magnitude of the non-zeroed weights:
1
a:@Zi € TA|W;| where TA = {i | |W;| > A} (3.16)

The authors of [29] suggest a practical rule of thumb for setting the threshold
A based on the assumption of a normal weight distribution, approximating it

as a fraction of the mean absolute weight for the layer:
A=0.7-E[|W]] (3.17)

A fundamental challenge in training all the Ternary Networks, is that the
ternarization function is discrete and non-differentiable, which prevents gradi-
ents from flowing during backpropagation. To overcome this, Straight-Through
Estimator (STE) is used. During training, the model maintains a full-precision
"latent" copy of the weights. In the forward and backward passes, the ternarized
version of the weights (a- W) is used for all computations. However, during the
weight update step, the calculated gradients are applied directly to the latent
full-precision weights. This allows the model to accumulate small gradient
updates effectively, ensuring stable learning while still optimizing a network
that will be purely ternary at inference time. Once training is complete, the

latent weights are discarded, leaving only the compact ternary model.

3.2.4 Absmean Ternary Quantization

Building on the principles of ternary networks, the BitNet b1.58 model [30] in-
troduces a Quantization-Aware Training approach designed for Large Language
Models. It employs a method called absmean quantization to constrain the
network’s weights to the set {-1,0,4-1}. Unlike the explicit thresholding method
used in TWNs, this technique first scales the entire weight matrix W by its
mean absolute value v = F[| W |]. Each scaled weight is then simply rounded
to the nearest integer. This implicitly sets the ternarization threshold at 0.5 -,
dynamically adapting it to the weight distribution of each layer rather than
using a fixed heuristic. The full-precision weights W are scaled by 7 rounded
to the nearest integer, and then clipped to the range [—1, +1] according to the

26

Background on Deep Learning

following equation:

W = RoundClip (i —1, 1) (3.18)
v+ e

where € is a small constant for numerical stability, and the RoundClip function

performs the rounding and clamping operations:
RoundClip(z, a,b) = max(a, min(b, round(z))) (3.19)

A crucial distinction is that this scaling factor v is only used during the
quantization step in training and is not applied during inference. The resulting
weight matrix W consists purely of {—1,0,+1} values, allowing matrix multi-
plication to be performed almost entirely with integer addition and subtraction,
without a final floating-point scaling operation. Furthermore, to simplify the
pipeline, activations are quantized to 8-bits using a symmetric scheme that
eliminates the integer zero-point z,. The model is trained from scratch using
this quantization scheme, enabling it to match the performance of full-precision

models while drastically reducing computational and memory costs.

3.2.5 Trained Ternary Quantization (TTQ)

Trained

Normalized Intermediate Ternary Weight Quantization Final Ternary Weight

Full Precision Weight Full Precision Weight

QA,Mﬂ 1]

— Feed Forward +---- Back Propagate Inference Time
Figure 3.6: Trained Ternary Quantization pipeline. Credit [31].

Trained Ternary Quantization (TTQ)[31], is an advanced ternary Quantiza-
tion Aware technique where network weights are constrained to an asymmetric
set of three values: {—W,,,0,+W,}. The innovation of this method is that the
scaling coefficients for negative weights W, and positive weights W), are indepen-
dent, trainable parameters, allowing the network to learn optimal quantization
levels for each layer.

During the forward pass, a latent full-precision weight tensor w; for layer [

is quantized based on a layer-wise A; threshold. A weight w; is assigned to one

27

Background on Deep Learning

of the three values according to the rule of eq. 3.20.

+WE o if @ > A
wt =40 if | |< A (3.20)
—WEif @ < —A

While the threshold can be learned, the authors propose a practical heuristic
for their experiments, setting it proportionally to the maximum absolute value

of the latent weights in the layer:
Ay =t-maz(| W |) (3.21)

where t is a global hyperparameter.
As shown in Figure 3.6, the training process uses a Straight-Through Esti-
mator (STE) with two distinct gradient paths to update the model parameters:

» Updating Latent Weights (W;): The gradient with respect to a latent
weight w; is a scaled version of the gradient from the corresponding
quantized weight wf. This scaling acts as a learning rate multiplier,
allowing the latent weights to evolve and potentially change their ternary
assignment across the threshold. The update rule for the gradient is:

or Wé'%{ if w; > A
95, 1- % if ;] < A (3.22)

Wi 2L if i < —A

n :
i

« Updating Scaling Coefficients (W;, W!): The scaling factors are
updated by aggregating the gradients from all weights that were assigned
to them. Let I! = {i | w; > A;} be the set of indices for positive weights.
The gradient for W; is then the sum:

oL oL
oWl — 2 At

F o7l
i€l

(3.23)

A similar summation is performed for W! over the set of negative-assigned

weights.

The dual-path learning allows the model to simultaneously optimize the
ternary assignments via w; and the ternary values themselves via W; and W..
By allowing the model to learn distinct magnitudes for positive and negative

values, this asymmetric approach can more faithfully represent the original

28

Background on Deep Learning

weight distribution compared to symmetric methods, resulting in a significant

improvement in model performance.

29

Chapter 4

Methodology

4.1 Onboard Cloud-Aware Compression

This thesis implements and evaluates an onboard data processing pipeline
that integrates cloud screening with an adaptive compression scheme. The
entire framework is designed to be compliant with the CCSDS 123.0-B-2
standard, leveraging its low-complexity, predictive coding architecture, which
was detailed in Chapter 2. The primary goal is to significantly reduce data
volume by applying higher compression to uninformative cloudy regions while
preserving the scientific quality of clear-sky pixels through near-lossless or

lossless encoding.

Input:
Raw Satellite
Image

,_¢_ ’ Onboard Adaptive Compr&ssioﬁ\

Cloud Sersening Pipeline (CCSDS 123.0-B-2)

Mode! v

unet | Optional:
| Full Precision or Temary |

Binary Cloud
Mask

._

Figure 4.1: Cloud screening and compression pipeline.
To achieve this, the methodology combines two key stages: a deep learning-

based cloud screening model to generate pixel-level masks, and conditional

pre-processing techniques to be used before feeding the input images and the

30

Methodology

cloud masks to the CCSDS compressor. The developed pipeline is showed in
Figure 4.1.

4.1.1 Pre-processing techniques

Various pre-processing techniques exist to improve compression efficiency. This
study focuses on two main approaches applied prior to the final entropy coding
stage.

As an optional pre-processing step, the use of the Generalized Anscombe
Transformation (GAT) [32] to stabilize the signal-dependent noise character-
istic of optical satellite sensors is investigated. The goal of a variance-stabilizing
transform like GAT is to convert the input signal into a domain where the
noise is approximately constant and additive. This allows a simple, uniform
quantizer to operate more efficiently across the entire dynamic range of the
image. The decompressor mirrors the compressor’s pipeline: an inversion of
the GAT is mandatory if using it in the compression stage.

Another optional pre-processing technique to be used before the lossless com-
pression stage (and consequently after the decompression) is a pre-quantization
algorithm. It enables a near-lossless compression mode operating band-by-band
by applying a quantization step size (), = 2 * d, + 1, where 4, is a user-defined
parameter for spectral band z. This step is applied conditionally at the pixel
level, guided by the binary cloud mask generated by the Lightweight U-Net
model, described in Section 3.1.4, and further modified through this work:
for pixels identified as non-cloudy, a fine quantization step is used, for pixels
flagged as cloudy, a different, more aggressive quantization step, can be used.
This is justified as cloudy regions contain less useful information for most down-
stream tasks, allowing them to be compressed more aggressively. Through this
method it is possible to use a lossless compressor even if actually performing a

near-lossless compression.

4.2 Cloud screening

To generate the cloud masks required by the adaptive compression pipeline, this
thesis employs different cloud screening techniques, all based on the Lightweight
U-Net described in section 3.1.4. The model was chosen for its high computa-
tional efficiency and small memory footprint, making it suitable for resource-
constrained onboard environments. Its key features enable it to perform accurate
cloud segmentation with a parameter count of only 20k. This model is trained
to perform binary segmentation, classifying each input pixel as either cloud or

non-cloud. The proposed techniques focus on training and testing the network,

31

Methodology

both with full precision and quantized weights.

4.3 Training and inference techniques

As detailed in Chapter 2, the Sentinel-2 Multi-Spectral Instruments (MSI)
collect images using pushbroom sensors which acquire data sequentially, as
the spacecrafts move along their orbit. This acquisition mode, along with the
stringent memory and computational constraints of satellite hardware, renders
full-frame image processing impractical for real-time, onboard applications.
To address these challenges, this thesis implements and evaluates two
memory-efficient processing strategies build for onboard cloud screening. These
methods align directly with the natural data flow of the sensor and enable
the use of deep learning models in resource-constrained environments. Their
primary advantages include reduced memory footprint, simplified integration
with existing data pipelines, and the potential for parallelized computation.
The two strategies adopted are slice-based and sliding window approaches,
both allowing partial, incremental inference that fits within the hardware
constraints. They are described in the following paragraphs while the obtained

results are presented in Chapter 5.

4.3.1 Slice-based

In the slice-based approach, the image is divided into non-overlapping patches
(slices or chunks), each of which is processed independently by the cloud
screening network. The number of slices is customable and it is selected by
choosing a constant offset.

By processing smaller portions of the image, slice-based training and in-
ference help prevent memory overflow that could result in data loss or failed
predictions. To ensure consistency between training and inference, the network
is trained on the same type of slices used during the testing phase, without
changing the offset. Figure 4.2 displays an example of the slice-based approach
to generate cloud masks. The image is divided in 16 slices using an offset of 32
lines and the Cloud Probability Threshold (CPT) is fixed to 0.7. The generated
cloud mask is compared to the ground truth and to the prediction of the full
precision model trained on the entire image and tested following a slice-like
method.

A limitation of this approach is the lack of contextual overlap between slices,
which degrades accuracy near stripe boundaries where objects or clouds are
partially visible, especially when the images provided to the network during

training is made by few lines (in case of smaller offsets). The network, made

32

Methodology

Ingut RGB Image

Figure 4.2: From left to right: the RGB composite, the ground truth cloud
map, the FP model trained without using slices and tested using slice-like
approach, the FP model trained and tested using slice-like approach. The
Cloud Probability Threshold (CPT) used for cloud detection precision is 0.7
and the number of slices used is 32.

by relatively few parameters, is not able to capture the connections between
the features when the stripes are small.
To improve the accuracy of the network when the slices are too small it is

possible to use the sliding window approach, described in the following section.

4.3.2 Sliding window

The sliding window approach helps the network to bypass the problem of small
spatial context in the image by processing overlapping patches that shift across
the image with a fixed stride, smaller than the window size. Each pixel is thus
seen in multiple contexts, and the final prediction is obtained by averaging
the results from all overlapping windows. This method reduces boundary
artifacts and improves prediction quality as each pixel is evaluated multiple
times with slightly shifted context. With respect to the slice-based approach,
the sliding window method increases inference time and memory consumption
due to redundant processing of overlapping areas. Testing is also performed
using sliding windows to allow prediction consistency and avoid performance
degradation caused by differences in the training and inference conditions.
Figure 4.3 shows an example of cloud masks generated using the sliding
window approach. The window size is fixed to 32 and the Cloud Probability
Threshold (CPT) to 0.5. The ground truth cloud mask is compared to the
sliding window approach’s cloud mask generated with different shifts (4 and 16)
and with the full precision model’s prediction when trained using the standard

approach (no windows).

33

Methodology

G T Siding shtad] Siiding (shif=18) i FPMasal oo siride. o oretas)

Rl

Figure 4.3: From left to right: the RGB composite, the ground truth cloud
map, the FP model trained using sliding windows of 32 lines shifted by 4
and 16 lines and finally the sliding window approach used only for testing the
FP model. The Cloud Probability Threshold (CPT) used for cloud detection

precision is 0.5 and the number of slices used is 32.

4.4 Ternarization methods

To adapt the Lightweight U-Net model for deployment on satellite hardware,
this thesis investigates several ternarization methods based on Quantization-
Aware Training (QAT). Those methods are used to reduce the computational
complexity of neural networks by constraining weight values to a limited set.
This approach frees the hardware from the need of multipliers, as multiplications
can be replaced by simple additions and subtractions and skipped entirely in
the case of zero weights.

To ensure a fair comparison, each quantization method is applied to the
same baseline Lightweight U-Net architecture (Section 3.1.4), which utilizes
separable convolutional layers, batch normalization, and ReLU activations. All
quantized models are trained using consistent optimizers, loss functions, and
training schedules, allowing for a direct performance comparison against each
other and the full-precision baseline.

The ternarization methods implemented for the purpose of the thesis are
listed below.

+ Modified TTQ: This thesis implements a modified version of the Trained
Ternary Quantization (TTQ) method from [31]. TTQ is implemented
by extending PyTorch’s nn.Conv2d module to support ternary quan-
tization using asymmetric scaling factors. Each custom convolutional
layer uses two learnable parameters, W, and W,, initialized to 1.0 and
updated during training via standard gradient descent. During the for-
ward pass, the ternarization threshold for each layer is computed as
A = t - max(|w|),where t is a global hyperparameter fixed at 0.05, as it is
done in the original TT(Q method. A Straight-Through Estimator (STE)
is used to approximate the gradients during backpropagation, allowing
the updates to be applied to a latent full-precision copy of the weights,
which are also used to initialize the model. Using the STE, the quantized

34

Methodology

weights are detached from the computation graph and combined with
the original weights such that gradients flow only through the latent vari-
ables. The final quantized weights used in inference thus take values from

{—W,,0,W,}, and the full-precision weights are discarded post-training.

While this implementation preserves the main concepts of the TTQ
method, such as asymmetric scaling, layer-wise thresholding, STE-based
training, and latent full-precision weight updates, the two methods are
not exactly alike. First, in the original paper the weights are normalized
to the range [—1,+1] prior to thresholding, ensuring consistent scale
across layers. This step is omitted in this thesis’ implementation, where
the threshold is instead directly computed from the unnormalized full-
precision weights. Second, in the original TT(Q), the gradients for the
scaling coefficients W), and W,, are computed only over the subsets of
weights mapped to +1 and -1, respectively, while this implementation
relies on PyTorch’s automatic differentiation to update these parameters
globally, based on the total loss. Third, the manual scaling of gradients
for the latent weights, which depends on their ternary assignment as
specified in the original TTQ paper, is not applied in this implementation.
Finally, unlike the optional constant sparsity enforcement in the original
work, this implementation allows the layer-wise sparsity to be learned

naturally during training.

For the experimental evaluation, this method is referred to as TTQ +
FP + STE but other combinations are tested to identify the impact of
different components: TTQ + noFP + STE uses the modified TTQ with
STE described above but with random weight initialization instead of
pre-trained full precision weights. TT(Q + FP + noSTE uses FP weights
initialization without the STE during backpropagation and T'T'Q) + noFP
+ noSTE uses weights randomly initialized and does not use the STE
approach.

Symmetric modified TTQ: A symmetric variant of TT(Q) is also imple-
mented, keeping the modifications with respect to the original TTQ paper
described above. The quantization process maps full-precision weights
to ternary values, but the scaling factor is shared for both positive and
negative weights such that W, = W, = W. This simplification reduces
the number of trainable parameters per layer while preserving the benefits
of ternarization. The ternarization threshold is computed in the same way,
using a fixed scaling factor ¢ multiplied by the maximum absolute weight
value, but the quantized weights take values from the symmetric set {-W,

0, +W}. During training, the unique scaling coefficient W is treated as a

35

Methodology

learnable parameter and it is optimized through the full-precision weights
using standard backpropagation. As in the asymmetric case, ternarized
weights are used in the forward pass, while latent full-precision weights are
updated via the Straight Through Estimator. The symmetric formulation
simplifies the deployment pipeline but reduces model accuracy due to the
constraint of equal magnitude for positive and negative ternary weight

values.

This method is referred as symTTQ + FP + STE in the experimental

results, and other variants are not tested.

Absmean ternarization: This symmetric ternary quantization approach
is inspired by the absmean quantization function introduced in the BitNet
b1.58 paper [30]. The quantization rule is implicit and requires no

additional learnable parameters. The process involves two steps:

— Quantization: Full-precision weights are first scaled by an implicit,
layer-wise factor s = 1/mean(| w |), rounded to the nearest integer,
and clipped to the ternary set {-1, 0, +1}.

— Rescaling: The resulting ternary weights are then rescaled by multi-

plying by 1/s to return them to the original dynamic range.

Unlike TT(Q, which relies on separate trainable scaling factors for positive
and negative weights, this symmetric approach uses a single scaling
derived from the layer’s own statistics, simplifying the optimization
process. A crucial distinction must be made about the inference process.
The original BitNet b1.58 performs inference using pure {-1, 0, +1}
weights. In contrast, this thesis implements the absmean rule in the
style of Ternary Weight Networks (TWN), where the scaling factor is
re-applied. The final weights used for inference are therefore {—~, 0, +7},
where v = mean(| w |). Training is conducted using a STE to update the

latent full-precision weights.

This technique is referred as absmean + STE o simply absmean. Another
version of the model is tested, absmean + noSTE, which does not use the
Straight Through Estimator.

Per-channel asymmetric TTQ: This method extends the modified
Trained Ternary Quantization (TTQ) by performing per-output-channel
ternarization. Unlike the original TTQ approach, which uses a single
pair of scaling coefficients (W,, W,,) per layer, this method assigns a
distinct pair of learnable scaling factors to each output channel of a

convolutional layer: each output channel i is associated with its own

36

Methodology

Wéi) and W9, allowing the quantized weights to adapt more precisely
to channel-wise statistics. The ternarization threshold A; is computed
individually for each output channel as A; = t - max(|w;|), where w;
represents the full-precision weights of the i-th output channel and ¢ is a
global hyperparameter fixed to 0.05, consistent with the original TTQ
paper and its modified simpler version. The full-precision weights are
mapped to —W()_ 0, or +W1§£) depending on whether they fall below
—A,;, within the threshold, or above +A;, respectively. During training,
the latent full-precision weights are updated using the Straight-Through
Estimator (STE), while the per-channel scaling coefficients are optimized
through standard backpropagation. The channel-wise adaptation intro-
duces additional degrees of freedom into the quantization scheme and
it is particularly helpful in deep convolutional networks where feature

distributions vary considerably across channels.

This approach is referred as perchannelTT() in the following paragraphs.

Absmean ternarization with distillation loss: This method inte-
grates multiple strategies including knowledge distillation and a symmetric
ternarization function based on the absmean rule. The quantized model
uses a simple quantization function that scales the full-precision weights
by the inverse of their mean absolute value, rounds and clips the result
to the ternary set {-1, 0, +1}, and then rescales the quantized weights
back to their original range, as it is done in the absmean ternarization.
During training, the full-precision latent weights are retained and updated
via the Straight-Through Estimator (STE), enabling gradients to flow
through the ternarized operations. A pre-trained full-precision lightweight
U-Net model serves as a teacher in a knowledge distillation setup, and
the quantized model (called student) is trained to match both the ground
truth and the teacher’s soft predictions. The total loss function is a
weighted combination of binary cross-entropy (with the labels) and mean
squared error (between softened logits of teacher and student), modu-
lated by a temperature parameter. Higher temperatures make the output
distribution softer (less confident), helping the quantized student learn
from the relative probabilities of the teacher, not just the hard binary
predictions. This method is introduced by Hinton et al. in [33] and, for

the purpose of this work, it is referred as absmean + distillation loss.

TTQ model using a warmup strategy: To improve training stability,
a warmup strategy is integrated into the standard TTQ framework. For
an initial number of epochs, the model is trained using its original full-

precision weights, allowing it to converge to a reasonable state before

37

Methodology

the potentially disruptive effects of quantization are introduced. This
allows the network to adapt before ternarization is activated. At the
end of the warmup period, the forward pass switches to a ternary mode,
where weights are projected to {—W,,,0,W,} based on a fixed threshold.
The quantized weights are detached from the computational graph and
combined with the original latent weights using the Straight Through
Estimator (STE), ensuring proper gradient flow during backpropagation.
This method is referred as TTQ + warmup in the experimental results.

TTQ model with warmup and annealed threshold: This approach
enhances the warmup strategy by incorporating a time-varying (annealed)
delta threshold. Rather than using a static threshold for all epochs, a
threshold A is computed dynamically based on training progress. It
starts from a relatively large initial value and gradually decays towards a
smaller final threshold during the training process, implementing a linear
interpolation schedule. At each forward pass, the threshold is recalculated
as a function of the current epoch and the maximum absolute weight in
the layer, modulated by a multiplicative factor. This dynamic adjustment
reduces the model’s complexity in early stages, while progressively refining
its quantized representations. The ternarization itself is applied using
a symmetric masking rule: weights above +A are assigned +W), those
below —A to —W,, and the rest are mapped to zero. This method is

referred as annealed TTQ + warmup.

38

Chapter 5
Experimental Results

This Chapter focuses on the Experimental Results collected to validate the
proposed methods discussed in Chapter 4 and their analysis, along with a
description of the dataset, the experimental framework and the performance

metrics used to perform the tests.

5.1 The Dataset

The development and evaluation of the algorithms in this thesis is founded on
the CloudSEN12 dataset[34], which is used for both training and testing the
models. CloudSEN12 is a large-scale, globally distributed dataset developed to
improve the semantic understanding of clouds and cloud shadows in Sentinel-
2 imagery. It is composed by 49,400 image patches (IPs), each covering a
5.090%5.090 meter area, distributed across diverse geographical regions to allow
model generalization. Each patch includes a rich combination of satellite data:
Sentinel-2 Level-1C (Top-Of-Atmosphere) and Level-2A (Surface Reflectance),
Sentinel-1 SAR imagery, Digital Elevation Models (MERIT), land cover maps,
and auxiliary data such as water occurrence and solar geometry.

CloudSEN12 is designed to aid the training of deep learning models under
supervised, semi-supervised, and weakly-supervised settings and it provides
three levels of annotation quality: high-quality pixel-level annotations (10.000
IPs), scribble annotations (10.000 IPs), and no annotations (29.250 IPs). This
work focuses on the high-quality annotated images, which categorize pixels into
four semantic classes: clear, thick cloud, thin cloud, and cloud shadow. The
reliability of these labels is ensured through rigorous protocols involving active
learning tools such as IRIS. For the binary classification task at of this thesis,
the labels are grouped into two superclasses: cloud (thick cloud) and non-cloud
(clear sky, thin cloud and cloud shadow). Each of the 10.000 used patches is
downsampled to a 509 x 509 pixel image, padded to 512x512, and used for

39

Experimental Results

both training and evaluating the models.

5.2 Experimental Framework

The Lightweight U-Net used with full-precision or quantized weight is trained
using CloudSEN12 spectral bands B2, B3, B4, B8 and B10, with pixels nor-
malized as Top-of-Atmosphere (TOA) (Sentinel-2 Level-1C) and padded to
512x512 pixels. The networks is trained on a GPU Quadro RTX 6000, using a
batch size of 32 for 50 epochs. The chosen optimazer is Adam, with an initial
learning rate of 0.001, while the used loss function is the Binary Cross Entropy.
The training set and the test set are respectively made by approximately 9000
and 1000 images.

The Cloud Probability Threshold (CPT), which is applied to the sigmoid to
determine the cutoff above which a pixel is classified as cloudy, is changed in the

range [0, 1] to perform the tests and compare the different models’ performance.

5.3 Evaluation Metrics

The performance of the Deep Learning algorithms are evaluated using classical

performance metrics.

» True Positive Rate (TPR): the conditional probability that the algo-
rithm declares positive given the sample is truly positive. Also addressed

as Sensitivity or Recall.

TP _
TPR = TP+ PN P(predicted cloud | true cloud) (5.1)

» False Positive Rate (FPR): the conditional probability that the algo-

rithm produces a false alarm on a truly negative sample.

FPR = LN P(predicted cloud | true clear) (5.2)

» Precision (Positive Predicted Value): it measures the reliability of a

positive prediction.

. TP _
Precision = TP TEP P(true cloud | predicted cloud) (5.3)

» Balanced Overall Accuracy (BOA): it averages class-wise accuracies,

making it insensitive to class imbalance (useful if cloud pixels are only a

40

Experimental Results

few percentage of an image).

1 1/ TP N
BOA = §(TPR+TNR) =32 (TP+FN+TN+FP) (5.4)

where the True Negative Rate is evaluated as TNR = %}}P.

» Intersection-over-Union (IoU): also called Jaccard Index, measures
the overlap between the predicted cloud mask and the ground truth,

penalizing both misses and false alarms.

This index ranges between 0 (no similarity) to 1 (identical sets).

TP
U = 55 7P oN (5.5)

5.4 Stripes and Sliding-window approach

To enable efficient training and inference on resource-constrained platforms
such as onboard satellite systems, this work adopts two alternative strategies
to process input images: the slice-based and sliding window approaches. These
methods are useful since satellites typically acquire images line by line using
pushbroom sensors, making it natural to process stripes, as deepened in section
4.3.

Moreover, using smaller input chunks mitigates memory overload risks that
could otherwise result in loss of data during inference. In the following, models
trained and evaluated using different slicing configurations are compared, as
well as sliding window setups with various window sizes and shifts. Figure
5.1 shows the effect of different image slicing during model training on the
resulting cloud mask. The top-left image shows the RGB composite of the
input image and the Ground Truth Cloud Mask is below it, the top-center
image presents the prediction obtained from the Full Precision (FP) model
trained using a single 512-line chunk (traditional approach, without slices), with
inference performed using 32-line chunks. The other three images show the
predictions generated by FP models trained and tested on sliced input images of
different chuck heights: 32-line slices (top-right), 16-line slices (bottom-center),
and 8-line slices (bottom-right). All predictions are generated using a fixed
CPT of 0.5. When performing inference on the full precision model trained
traditionally, the output appears visually degraded. When the image is trained
using slices, the cloud masks appear more loyal to the ground truth image.

Furthermore, by looking at Table 5.1 it is possible to compare different
models trained using different numbers of slices, also changing the CPT: the
32-slices model results to be the best performing in terms of TPR and BOA

41

Experimental Results

Churked inference with different offsets (threshold=0.5)

FP Model {inference with 32-ine chunks} 32-sBces Model {inference with 32-fine chunks)

Figure 5.1: Slices approach: the first column shows the RGB composite and
the corresponding Ground Truth, then the predicted cloud masks obtained from
Full Precision models trained and evaluated using different slicing strategies.
All results are generated with a fixed CPT of 0.5.

which are even higher than the one of the model trained using 512x512 pixel
images. On the other hand, the 16-slices model is the worse-performing in
terms of TPR but the best in terms of Precision.

Another application consists in training the Full Precision model using a
sliding window approach. During both training and inference, the model is
presented with a limited vertical portion of the full image (a window) that slides
over the entire height of the image with a fixed step, also called shift. Through
this method, the network sees similar spatial contexts across the dataset,
learning more robust local features with respect to the previous approach: when
slicing the images without sliding the window, the context provided to the
network totally changes from slice to slice, as the network is trained simply
using smaller images, which does not improve the learning process.

During inference, predictions from overlapping windows are aggregated
by averaging to produce a coherent full-image prediction: for each window,
the model predicts a partial cloud mask, and all overlapping predictions are
accumulated. A weight mask tracks the number of times each pixel is covered,
allowing for proper averaging. For this reason, the final prediction results
smoother than in the case of the slices approach. After averaging the overlapping
outputs the final binary mask is obtained properly setting the CPT to obtain
the desired level of accuracy in cloud detection.

Figure 5.2 illustrates the results obtained using the sliding window approach

42

Experimental Results

Table 5.1: Performance Metrics of Full-Precision Models Using Different
Slicing Strategies and Cloud Probability Thresholds (CPT).

Slicing Strategy CPT TPR FPR Precision BOA IoU
Full Image (1 Slice, 512 Offset)

0.5 0.867 0.036 0.905 0.915 0.795
0.7 0777 0.015 0.955 0.881 0.750
0.9 0623 0.003 0.988 0.810 0.619

16 Slices (32 Offset)
0.5 0.847 0.028 0.924 0.909 0.792
0.7 0.768 0.013 0.961 0.877 0.744
0.9 0.628 0.003 0.988 0.813 0.623

32 Slices (16 Offset)
0.5 0.888 0.051 0.877 0.918 0.789
0.7 0817 0.025 0.931 0.896 0.770
0.9 0675 0.006 0.980 0.835 0.666

64 Slices (8 Offset)
0.5 0.866 0.046 0.885 0.910 0.778
0.7 0791 0.023 0.934 0.884 0.749
0.9 0650 0.007 0.976 0.822 0.640

Inference using sliding window averaging {oflset=32, threshold=05)

Figure 5.2: Sliding window approach with window size=32: cloud mask
predictions from Full Precision model using different shift values (2, 4, 8, 16).
Fixed CPT of 0.5.

43

Experimental Results

with a Full Precision model and a window size of 32 lines. The top-left image
shows the RGB composite of the input image and the Ground Truth mask is
below it. The top-center image displays the 32-lines inference output generated
using a model trained on the full image without overlapping windows. The

remaining images show the results of inference performed with sliding window

shifts of 2, 4, 8 and 16 lines and a fixed CPT of 0.5.

Inference using sliding window averaging (offset=16, threshold=0.5)

FP Made! {no stride. no overiap)
i~

Figure 5.3: Sliding window approach with window size=16: cloud mask
predictions from Full Precision model using different shift values (2, 4, 8).

Fixed Cloud Probability Thresholds (CPT) of 0.5.

Similarly, Figure 5.3 and Figure 5.4 show the results obtained using the
sliding window approach with a Full Precision model and a window size of
16 and 8 lines, respectively. In both cases the top-left image shows the RGB
composite of the input image and the Ground Truth mask is shown below it.
The top-center image displays the 16-lines and 8-lines, respectively, inference
output generated using a model trained on the full image, without overlapping
windows. The remaining images show the results of inference performed with
sliding window shifts of 2, 4 and 8 lines in the first case and 2 and 4 lines in
the second. The threshold used to establish how precisely a detected cloud has
to be labels as such is fixed to 0.5. Compared to the corresponding images
generated with a 32-lines window size, the results appear degraded in both
cases.

The overall best sliding window model, in terms of performance is the
one having window size equal to 32 and a shift of 2 lines, allowing improved

prediction smoothness and the best spatial continuity in the final cloud mask

44

Experimental Results

Inference using sliding window averaging (offset=8, threshold=0.5)

FP Made! {no stride. no overiap)

Figure 5.4: Sliding window approach with window size=8: cloud mask
predictions from Full Precision model using different shift values (2, 4). Fixed

Cloud Probability Thresholds (CPT) of 0.5.

with respect to the other approaches. However, it is necessary to account for
the trade-off between the precision of the model in predicting the cloud mask
and the computational effort needed to process overlapping windows. Smaller
shift values lead to increased inference time and higher resource consumption.

Table 5.2 shows the results of the sliding window experiments, offering a
comparison across three window sizes (32, 16, and 8 lines) and their corre-
sponding shift values. The performance is evaluated at high-confidence Cloud
Probability Thresholds (CPT) of 0.7 and 0.9. Several key trends can be identi-
fied from this analysis. First, for any given window size, a smaller shift, which
results in a greater overlap, consistently improves segmentation accuracy. This
is most evident in the 32-line window configuration, where reducing the shift
from 8 lines to 2 lines at a CPT of 0.7 improves the IoU of 3%. This trend
holds because smaller shifts allow each pixel to be evaluated more frequently
and within a greater variety of contexts, which smooths out prediction errors
and increases spatial consistency. Second, the impact of the window size itself
shows a more complex relationship. While larger windows are generally ex-
pected to perform better due to a wider field of view, the results show that the
8-line window with a 4-line shift achieves the highest IoU (0.783) and Balanced
Overall Accuracy (0.907) among all tested configurations at CPT=0.7. This
counterintuitive result suggests that for the Lightweight U-Net architecture, a

smaller, more focused window may be more effective at learning fine-grained

45

Experimental Results

cloud features, while larger windows might introduce noise or irrelevant contex-
tual information that slightly worsen performance. As expected, the effect of
the CPT is consistent across all configurations. Increasing the CPT from 0.7
to 0.9 invariably leads to a lower False Positive Rate (FPR) at the cost of a
lower True Positive Rate (TPR). This demonstrates the fundamental trade-off
between minimizing false alarms, preserving clear-sky data, and maximizing

cloud detection sensitivity.

Table 5.2: Performance Metrics for the Sliding Window Approach with
Different Window Sizes, Shifts, and Cloud Probability Thresholds (CPT).

Window Shift CPT TPR FPR Precision BOA 1IoU
Size

0.7 0.784 0.014 0.957 0.885 0.757
0.9 0.645 0.004 0.986 0.821 0.640

L 0.7 0720 0009 0969 0.855 0.704
32 lines MeS 00 058 0.002 0990 0.792 0.582

0.7 0.738 0.009 0.970 0.865 0.722

2 lines

8lines 09 0600 0.002 0.992 0.799 0.597
61 0.7 0784 0013 0.961 0.886 0.760
Me 09 0637 0003 0.989 0.817 0.633
. 0.7 0765 0012 0963 0.876 0.743
2 lines

0.9 0.630 0.003 0.989 0.814 0.626
16 lines 0.7 0789 0.016 0.952 0.886 0.758

dlines "o 0657 0004 0085 0.826 0.651

- 0.7 0713 0009 0970 0.852 0.698

MeS 00 0588 0.002 0.990 0.793 0.585

o1 0.7 0814 0020 0942 0897 0.775
. MeS 00 0663 0.004 0.986 0.820 0.657
8 lines

. 0.7 0845 0032 0914 00907 0.783

4 lines

0.9 0.714 0.008 0.973 0.853 0.700

5.5 Lightweight U-Net: Post-training Quanti-
zation

Many quantization methods have been applied to the Lightweight U-Net de-

scribed in section 3.1.4. The Post-Training Quantization techniques used are

INTS8, INT4, INT2 and TWN. Figure 5.5 displays the ROC curves for the

different PTQ techniques, showing that the Area Under the Curve (AUC)

increases while increasing the precision of the model, reaching the same results

46

Experimental Results

ROC Curves for PTQ) models log-ROC Curves for PTQ models

—— Full-Precision model (AUC = 0.97) 0z —— Full-Precision mode! (AUC = 0.97)

INTE model AUC = 0.97) mTEmadel |AUC = 0.97)
—— T4 model (FTQ) AUC = 0.95) —— MTamadel (FTQ) {AUC = 0.85)
—— INT2 model (AUC = 0.69) —— WT2madel [AUC = 0.69)
—— TWN (AUC = 047} /’{::—mim)t-n‘ﬂ
a9 —- Aandom guess L =T ——- Random guess
o 0z o o as 10 10 10= 10= 10=* 10 0= 1
False Pasitive fate Faise Poasitive Aate (lag scale)
(a) ROC curve. (b) log-ROC curve.

Figure 5.5: ROC curves for Post-Training Quantization using different cloud
detection thresholds and different precision models (INT8, INT4, INT2, TWN).

of the Full Precision model, whose weights are saved as 32-bit floating-point
numbers, by mapping them to signed 8-bit integers in the range [—128, 127].
The accuracy of the INT8 model is very similar to the FP model’s one, offering
4x memory savings. In the INT4 model weights are quantized to values in the
range [—8, 7|, providing 8x memory savings over FP32 but providing a degra-
dation in the performance. On the other hand, if using INT2 models, weights
are highly compressed and they can take four possible values: [—2, —1,+1, +2].
The accuracy of the model is severely dropped.

Figure 5.5b shows log-ROC curved which allow a more accurate analysis
on the points where the FPR is low, where false detections can significantly
impact the usability of the data.

While the INT8 and INT4 models work really well, the TWN, implemented
as described in section 3.2.2, behaves as a random guess, showing the worst
results for the PT(Q models. This happens because the network is trained using
FP32 weights and then tested using only three values for the weights: —1,0, +1.
The approximation is too tight and the outputs are close to random.

TWN is the only method, among the tested Post-Training Quantization’s
ones, to use ternary weights and it is outperformed by the Quantization-Aware

methods for ternarization described in the next section.

5.6 Lightweight U-Net: Quantization-Aware

Models for Ternarization

This section presents a comprehensive evaluation of the Quantization-Aware
Training (QAT) methods described in Section 4.4. The analysis is structured
into three parts: an overall performance comparison using ROC curves, a

detailed quantitative analysis of key metrics, and a qualitative visual evaluation

47

Experimental Results

ROC Curves for TTQ) models log-ROC Curves for TTQ models

—— Full-Precision model {AUC = 0.97) —— Full-Precision madel {ALC = 0.97)
a4 e TIG # F# 4+ naSTE (AUC = 0.92) 02 TTG # F# + naSTE AUC = 0.92)

- —— TTQ +nakP + 5TE (AUC = 0.90) —— TT4Q +nafP + STE UL = 0.90)
—— TTQ #FP + STE (AUC = 0.93) —— TTQ #FP + STE JAUC = 0.93)
—— TTQ + nofP + naSTE (AUC = 0.89) —— TTQ +nofP + noSTE jAUC = 0.89)
. —— symmetic TTQ {AUC = 0.92) —— symmetric TTQ {AUC = 0.92)
a9 —— Aandam guess 984 —- Aandom guess

o 0z o o as 10 0= 10=* 10t 16
False Pasitive fate Faise Pasitive Aate (lag scale)

(a) ROC curve. (b) log-ROC curve.

Figure 5.6: ROC curves for the baseline TT(Q) models, highlighting the
importance of using both a Straight-Through Estimator (STE) and pre-trained
Full-Precision (FP) weights for initialization.

of the generated cloud masks.

5.6.1 Overall Performance via ROC Analysis

The ROC curves shown in Figure 5.6, 5.7 and 5.8 highlight the key differences
between the ternarization models. For each figure, the left plot represents
the complete ROC curve (plot of the True Positive Rate (TPR) against the
False Positive Rate (FPR)), while the right plot represents log-ROC curves,
where the False Positive Rate (FPR) is plotted on a logarithmic scale. This
visualization is particularly useful as it expands the low-FPR region, allowing
for a clearer comparison of model performance in this critical zone. Minimizing
false alarms is crucial in operational scenarios to avoid the erroneous, aggressive
compression of valuable clear-sky data.

The Area Under the Curve (AUC) is also reported for each case, providing
a single scalar value summarizing overall classification performance. It is

calculated as

(5.6)

n—1 i i
AUC _ [Jl TPR(FPR) d(FPR) ~ Z(FPR1+1_FPR4)TPR1+12+ TPR';

i=1

Figure 5.6 evaluates the baseline Modified TT(Q) and its derivations. The
results clearly demonstrate the value of both STE, for stable training, and
FP initialization for providing a strong starting point. The TTQ + FP +
STE model (AUC = 0.93) significantly outperforms all other combinations,
establishing it as the most robust of the simple TTQ variants. The symmetric
TTQ approach performs almost as well as the corresponding asymmetric version
(AUC = 0.92) only but slightly lagging, highlighting the benefit of learning

48

Experimental Results

ROC Curves for absmean temarization models log-ROC Curves for absmean ternarization models

024
—— FullPrecision mode! (AUC = 0.97)

—— INT4 model {FTQ) JALC = 0.95)
—— absmean tem. + FF + noSTE(AUC = 0.81)

—— Full-Precision madel (AUC = 0.97)
—— INT4 model {PTQ] (AUC = 0.95)
—— absmeantemn. + P + naSTE (AUC = 0.81)

. —— absmean termarzation + FP + STE (AUC = 0.95] —— ahsmean temarization + FP + STE (AUC = 0.95]
00 —— Aandam guess 004 —- Aandom guess

o 0z o o as 10 10= 10 1= 16
False Pasitive fate Faise Pasitive Aate (lag scale)

(a) ROC curve. (b) log-ROC curve.

Figure 5.7: ROC curves comparing the absmean ternarization method against
the Full-Precision and INT4-PT(Q) baselines.

ROC Curves for advanced models log-ROC Curves for advanced models

a0z 1= —— Fullfrecision model (AUC = 0.97} 0z —— FulPrecision madel {AUC = 0.97)

- —— absmean mm. + Distiason Loss (AUC = 0.89) —— absmeantem. + Distiiation Loss {AUC = 0.89)
—— 179 peroutput<hannel (AUC = 097) — TTQ peroutput<hannel {ALC = 0.97)
—— TTQ # warmup AUC = 0.94] —— TTQ # warmup (AUC = 0.94]
—— T4 + warmup + annealed delta |AUC = 0.95) —— TTQ + warmup + annealed defta |AUC = 0.95)
0.0 - —— Random guess 984 —- Random guess

EX) 0.2 04 EX) a8 10 107 107t 16
Faise Pasitive Rate Faise Pasitive Rate (log scalel

(a) ROC Curve. (b) log-ROC curve.

Figure 5.8: ROC curves for the advanced QAT techniques, demonstrating
the highest performance levels among the quantized models.

independent scaling factors.

Figure 5.7a compares the absmean ternarization against similar models. The
absmean + STE model (AUC = 0.95) achieves performance nearly identical to
the INT4-PTQ model. However, its superiority is evident by looking at the log-
ROC curve (Figure 5.7b), which shows that the model maintains higher TPRs
than the INT4-PT(Q model, making it a more suitable choice for operational
deployment. The plot also reaffirms the critical role of the STE, as the absmean
+ noSTE model’s performance collapses (AUC = 0.81).

Figure 5.8 shows the more advanced QAT strategies. The per-channel
TTQ model emerges as the clear top performer, achieving an AUC of 0.97,
virtually indistinguishable from the Full-Precision baseline. This highlights the
substantial benefit of learning channel-wise scaling factors, which allows the
model to adapt to the unique statistical properties of each feature map. The
distillation and annealed delta methods also show strong performance (AUC =

0.89 and 0.95, respectively), proving to be effective optimization strategies.

49

Experimental Results

5.6.2 Quantitative Analysis of Key Metrics

To provide a more granular comparison, Table 5.3 consolidates key performance
metrics for the top-performing QAT models at CPTs of 0.5, 0.7, and 0.9.
These thresholds represent low, medium, and high-confidence operating points,

respectively.

Table 5.3: Performance Summary for Top Quantization-Aware Training

Models.

Model CPT TPR FPR BOA IoU
0.5 0.831 0.022 0.905 0.788
Full-Precision (Baseline) 0.7 0.750 0.009 0.870 0.733

0.9 0.608 0.002 0.803 0.604

0.5 0.877 0.051 0.918 0.789
INT4-PTQ (Reference) 0.7 0.817 0.025 0.896 0.770
0.9 0.675 0.006 0.835 0.666

0.5 0.712 0.021 0.845 0.677
TTQ + FP 4 STE 0.7 0.643 0.011 0.816 0.626
0.9 0545 0.004 0.770 0.540

0.5 0.726 0.011 0.857 0.707
absmean + STE 0.7 0.638 0.004 0.817 0.632
0.9 0.497 0.001 0.748 0.496

0.5 0.891 0.065 0.913 0.769
per-channel TTQ 0.7 0.820 0.033 0.894 0.759
0.9 0.669 0.007 0.831 0.658

The quantitative results reinforce the findings from the ROC analysis. The
per-channel TT(Q model demonstrates remarkable robustness, achieving an
IoU of 0.759 at a CPT of 0.7, a result that significantly outperforms other
QAT methods and is competitive with the INT4-PTQ baseline, all while using
a more hardware-friendly ternary representation. Notably, at a CPT of 0.9,
per-channel TTQ maintains a very low FPR of 0.007 (0.7%) while still correctly
identifying 66.9% of clouds, making it an excellent candidate for missions where

preserving clear-sky data is the highest priority.

5.6.3 Visual and Qualitative Assessment

This analysis focuses on the visual quality of the generated cloud masks and
the specific trade-offs each model makes as the Cloud Probability Threshold
(CPT) is adjusted.

50

Experimental Results

Visual Comparison of Cloud Masks

Threshald: 0.5

TTG Modal Prediction Symmatric TTQ Model Pradicsion

Figure 5.9: From left to right: input RGB composite, TTQ + FP + STE
cloud mask, symmetric TTQ cloud mask, TTQ + warmup cloud mask with
threshold=0.5.

Threshold: 0.9

TTQ Modal Prediction Symmatric TTQ Model Pradicsion TTQ + wammup Madel Pradiction
. . e

Figure 5.10: From left to right: input RGB composite, TTQ + FP + STE
cloud mask, symmetric TTQ cloud mask, TT(Q + warmup cloud mask with
threshold=0.9.

The models can be additionally compared by looking at the generated cloud
masks at different cloud detection thresholds. Figures 5.9 and 5.10 show the
cloud masks generated by the models TTQ + FP 4+ STE, symmetric TT(Q) and
TTQ + warmup, which become more precise when increasing the threshold
from 0.5 (first figure) to 0.9 (second figure). The Symmetric TTQ and TTQ
+ Warmup models, while effective, tend to generate slightly softer or more

fragmented boundaries, aligning with their slightly lower quantitative scores.

Threshald: 0.5

FP Modal Prediction ‘apsmaan wm
T

Figure 5.11: From left to right: input RGB composite, Full Precision cloud
mask, absmean ternarization cloud mask, per-channel TTQ cloud mask with

threshold=0.5.

Figures 5.11 and 5.12 show the top-performing models against the Full-
Precision baseline at different CPT: from 0.5 (first figure) to 0.9 (second figure).
The per-channel TT(Q model produces an output nearly identical to that of the

unquantized model, accurately capturing fine details like wispy cloud edges and

51

Experimental Results

Threshald: 0.7

‘absmaan wm

Figure 5.12: From left to right: input RGB composite, Full Precision cloud
mask, absmean ternarization cloud mask, per-channel TTQ cloud mask with

threshold=0.7.

small gaps between cloud formations. This visual evidence confirms that the
channel-wise flexibility of this method allows it to preserve a very high degree
of segmentation accuracy.

The same behavior is shown by Figures 5.11 and 5.12, which display the
cloud masks generated by the models Full Precision, absmean ternarization
and per-channel TTQ. In this case the threshold is increased from 0.5 (first
figure) to 0.9 (second figure)

Analysis of Error Types

To understand the nature of the errors, it is useful to visualize the spatial
distribution of True Positives (TP), False Positives (FP), and False Negatives
(FN). For the onboard compression use-case, minimizing False Positives is
fundamental, as each FP represents a clear-sky pixel that would be erroneously
subjected to aggressive, lossy compression, leading to a loss of valuable scientific
data. False Negatives, while not ideal, are less critical as they result in cloudy
pixels being compressed losslessly, which only reduces the overall compression

ratio without degrading the quality of clear-sky areas.

Quantization Model: TTQ + FP + STE (Threshold=0.7)

Input ARG image Ground Truth Cloud Mask TR/ FP{FN Map

Figure 5.13: Error map for the TTQ + FP 4+ STE model at CPT=0.7. Green
indicates correctly identified clouds (TP), red highlights erroneously flagged
clear pixels (FP), and yellow shows missed clouds (FN). The low number of
red pixels indicates a low rate of critical errors.

Figure 5.13 shows a representative error map. The model exhibits a low

number of False Positives (colored in red), which are mostly confined to the

52

Experimental Results

transition zones around cloud edges. In contrast, False Negatives (colored in
yellow) are more prevalent, typically occurring in the thinner, semi-transparent
parts of clouds where the confidence score is lower.

Figures 5.14 and 5.15 show the effects of changing the Cloud Probability
Threshold for detecting the clouds through maps of True Positives, False
Positives and False Negatives. The image used for testing is the same, as the
model used to create the Cloud Mask: TTQ + FP + STE. By increasing the
threshold from 0.5 in the first figure, to 0.9 in the second, the amount of True
Positives and False Positives decreases, while the amount of False Negatives

Increases.

Quantization model: TTQ + FP + STE {Threshold=0.5}

Figure 5.14: From left to right: Ground truth cloud mask, True Positives,
False Positives and True Negatives map of the clouds created with the model

TTQ + FP + STE and threshold=0.5.

Quantization model: TTQ + FP + STE {Threshold=0.9}

Figure 5.15: From left to right: Ground truth cloud mask, True Positives,
False Positives and True Negatives map of the clouds created with the model

TTQ + FP + STE and threshold=0.9.

Performance Trade-offs vs. Cloud Probability Threshold

Figure 5.16 illustrates how the FPR evolves as the CPT is varied from 0.1 to
0.9 for the advanced QAT models. The FPR represents the fraction of clear-sky
pixels that are incorrectly classified as clouds. A lower FPR is better, as it
means fewer false alarms. As expected, all models exhibit a decreasing FPR
as the Cloud Probability Threshold increases. This indicates that being more

stringent with the classification criteria, requiring a higher confidence score to

53

Experimental Results

FPR ws Threshold by Model

0.25
Modal

—=— TTQ_FP_STE
absmean_ternalization STE
0.20 1 —+— absmean_tern_distillation_loss

—.— 'ITO_pEr_::han;EI 1
—s— TTQ_warmup
b —e— TTQ_warmup_annealed_delta
] \
0.10

0051 \\\\.\R

—— '--—-_._-.‘_-—-_'._'___‘—‘—-—-v """-—-..________-

FPR

0.00

0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9
Threshold

Figure 5.16: False Positive Rate (FPR) vs. Threshold for advanced QAT
models. All models exhibit a sharp drop in FPR, with absmean + distillation
loss achieving the lowest false alarm rate at higher thresholds.

label a pixel as a cloud, effectively reduces the number of false alarms. The
absmean + distillation loss model (green curve) consistently demonstrates the
best performance, maintaining the lowest FPR across all thresholds and the
simple absmean ternarization model (orange curve) has the second-lowest FPR.
In contrast, the per-channel model (red curve) has the highest FPR, making
it the most prone to misclassifying clear sky pixels as clouds compared to the
others.

Figure 5.17 plots the F1 Score, which represents the harmonic mean of
Precision and Recall, for different advanced models at different CPTs (0.1 to
0.9). A higher Fl-score is better. The F1-score for most models peaks at an
optimal threshold before decreasing. This peak represents the spot where the
model achieves the best balance between correctly identifying all clouds (high

recall) and not mislabeling clear sky as cloud (high precision).

F1 ws Threshold by Model

Model
—s— TTQ_FP STE
absmean_temalization STE
0.70 4 —=— absmean_tem_distillation_loss
—s=— TTQ_per_channel
—=— TTQ_warmup
—+— TTQ_warmup_annealed_delta

0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9
Threshold

Figure 5.17: F1 Score vs. Threshold for advanced QAT models. Most models
achieve their peak F1 Score between a CPT of 0.1 and 0.9.

The per-channel TTQ (red curve) and TTQ + warmup + annealed delta

54

Experimental Results

(brown curve) models achieve the highest peak F1-scores, both reaching ap-
proximately 0.87. This indicates they provide the best overall balance between
precision and recall, though they achieve this at different optimal thresholds
(around 0.5-0.6 for per-channel TTQ and 0.3-0.4 for TTQ + warmup + annealed
delta). The simple absmean ternarization model (orange curve) also performs
well, but it peaks early at a threshold of 0.2. The absmean + distillation loss
model (green curve) is notable for its stability. While it doesn’t reach the
highest peak Fl-score, its performance is very consistent and degrades much
more slowly at higher thresholds compared to others.

The best choice would be the absmean + distillation loss model with a high
threshold, such as 0.7 since it prioritizes the safety of the scientifically valuable
data by ensuring an extremely low False Positive Rate. While its peak F1-score
isn’t the absolute highest, it remains very high (0.83), indicating that it is still

a very effective cloud detector.

5.7 Sliding Window approach on Ternarization

models

To emulate more realistic onboard inference conditions, some ternarization
models are trained and evaluated using a sliding window approach: absmean
ternarization model, TTQ + FP + STE and per channel TTQ.

To test the models, a fixed window size of 16 lines is used across all models,

while different shift values (4 and 8 lines) are employed during inference.

Inference using sliding window averaging over quantization models (offset=16, shift=4, threshold=0.5)

creean bl i el i peschanad TTG model
s

Figure 5.18: Different ternarization models trained and tested though the
sliding window approach: window size = 16, shift = 4, CPT = 0.5.

Figures 5.18 and 5.19 display visual comparisons of the predicted cloud
masks generated by the three ternarized models evaluated under the same
window and shift settings, but changing the cloud detection thresholds from
0.5 to 0.7. The shift of the sliding window is fixed to 4 for the test.

Figures 5.20 and 5.21 display a different image tested under the same

conditions except from the shift of the window, which is equal to 8.

55

Experimental Results

Inference using sliding window averaging over quantization models (offset=16, shift=4, threshold=0.7)

Figure 5.19: Different ternarization models trained and tested though the
sliding window approach: window size = 16, shift = 4, CPT = 0.7.

Inference using sliding window averaging over quantization models (offset=16, shift=8, threshold=0.5)

Figure 5.20: Different ternarization models trained and tested though the
sliding window approach: window size = 16, shift = 8, CPT = 0.5.

Inference using sliding window averaging over quantization models (offset=16, shift=8, threshold=0.7)

parchaned TTG madel
= :

Figure 5.21: Different ternarization models trained and tested though the
sliding window approach: window size = 16, shift = 8, CPT = 0.7.

56

Experimental Results

The predictions from the Absmean and TTQ models are smoother and
better aligned with ground truth masks at threshold 0.5, while threshold 0.7

sharpens predictions at the cost of increased false negatives.

Table 5.4: Performance of Ternarized Models with a 16-Line Sliding Window.

Model Shift CPT TPR FPR BOA IoU

0.5 0.839 0.045 0.897 0.755
0.7 0.757 0.022 0.868 0.719

0.5 0728 0.031 0.849 0.677

4 lines

absmean + STE

Slines 0w (645 0012 0816 0.626
. 05 0.821 0041 0.890 0.746
dlines - (608 0.012 0843 0.678
TTQ + FP + STE : : : : :
. 05 0.760 0.021 0.870 0.723
Me 97 0668 0008 0.830 0.654
. 05 0.860 0.063 0.899 0.746
dlines - (788 0.030 0.879 0.735
per-channel TTQ ' ' ' i '
. 05 0.876 0076 0.900 0.738
8 lines

0.7 0.847 0.058 0.895 0.742

The results in Table 5.4 confirm the trends observed with the full-precision
models: smaller shifts lead to better performance due to increased overlap,
at the cost of higher computational load. The per-channel TT(Q model again
demonstrates its superior robustness, maintaining the highest IoU and BOA
across both shift configurations. This indicates that its strong performance
holds up under realistic, memory-constrained inference conditions.

By considering per-channel TTQ, with a 16-line window and a 4-line shift
at a CPT of 0.7, it is noticeable that this model achieves a BOA of 0.879 and
an IoU of 0.735. As shown in Table 5.2, the full-precision model, under the
exact same configuration (16-line window, 4-line shift, CPT=0.7), yields a BOA
of 0.886 and an IoU of 0.758. This represents a performance gap of 0.007 in
BOA and 0.023 in IoU, which is a minimal degradation with respect to the
savings in the memory footprint. It shows that the model successfully learns to
compensate for the precision reduction during the Quantization-Aware Training

process, achieving only a marginal loss in segmentation accuracy.

5.8 Satellite images compression using cloud

masks

To reduce data transmission loads and optimize the compression process while

preserving essential scientific information, cloud segmentation is used with

57

Experimental Results

different compression strategies for cloudy and non-cloudy regions. In this
context, lossy compression is applied to cloud-covered pixels, where radiometric
precision is less critical, while non-cloudy areas are preserved using lossless
encoding.

This section presents a comparative analysis of various models generating
cloud masks and evaluates their impact on compression efficiency, measured
in terms of Compression Rate and Mean Squared Error (MSE). The evalua-
tion highlights the trade-offs between segmentation accuracy and compression
performance.

The compression rate is evaluated as shown in eq 5.7.

Compressed data size(bits)

Compression Rate (bps) = N, x N, x N, (5.7)
where N, N, and N, are the dimensions of the compressed image.
The Mean Squared Error (MSE) is evaluated as shown in eq 5.8.
MSE = —~ 3 (s0y: — 82y0)? (5.8)
-~ N;NyN, Py Sz T Sy .

where 54y, is the original sample and 5.y, is the reconstructed sample.

Compression Rate vs MSE for Different Models

7.50 Model
™
7.25 —&— FP
PN —4— NO_CLOUD_MAP
= PERCHTTQ
E 7.00 -
5 1.00 -34- ABSMEAN
3 X GROUND_TRUTH
Ses4
g ¥
2 1
© 6.50 -
g | &
! %,
gszs_ E\ . CEETE - P D — e R L -
a
£ 6.00 1 ‘-a.._____._
8 ° j -
5.75 -
0 100 200 300 400

MSE (Mean Squared Error)

Figure 5.22: Compression Rate vs. Mean Squared Error (MSE) for different
cloud masking models at a CPT of 0.7. Lower is better.

Figure 5.22 illustrates the rate-distortion performance of various cloud
segmentation models (FP, TTQ, absmean and per-channel TTQ). The x-axis,
Mean Squared Error (MSE), quantifies the average error or distortion introduced
by the compression: a higher MSE value means the reconstructed image is
less faithful to the original. The y-axis, Compressed Data Rate, represents

the final size of the data in bits per sample: a lower rate means more effective

58

Experimental Results

compression. The precision threshold is set to 0.7 for all the models.

The "Ground Truth" line represents the theoretical lower bound generated
using the true label of each pixel, while the "No Cloud Map" star shows
the high bit rate required without any adaptive strategy. This is generated
without providing any cloud mask and performs the worst in terms of rate
(approximately 7.5 bits/sample), showing the importance of cloud segmentation.
All tested models generating cloud masks provide a significant reduction in the
compression rate with respect to the "No Cloud Map" compressed image.

The plot reveals a crucial trade-off: to achieve a lower data rate (meaning
to hardly compress the data), a higher level of distortion (a higher MSE) must
be tolerated. To create each curve, the compression algorithm is run multiple
times with increasingly stronger quantization settings. Moving from left to
right along a curve corresponds to increasing the quantization strength. This
discards more data, which naturally increases the reconstruction error (higher
MSE), but in return, it allows the data to be stored with fewer bits (lower data

rate).

Table 5.5: False Negative Rate (FNR) at CPT=0.7 for Top Performing
Models.

Model FNR (%) at CPT=0.7
Full-Precision 0.223
TTQ + FP + STE 0.357
absmean + STE 0.362
per-channel TTQ 0.180

The main performance difference between the models is driven by their
False Negatives (cloudy pixels classified as non-cloudy pixels). In the imple-
mented pipeline, any pixel labeled as "non-cloud’ is passed to a high-quality,
lossless compressor to preserve its scientific value. When a cloudy pixel is
mistakenly identified as clear (a False Negative), it is unnecessarily encoded
with this inefficient lossless method instead of being aggressively compressed.
Consequently, models with higher FNR produce larger final data volumes, as
more of the image is forced through the less efficient compression path. While
this reduces the overall compression ratio, it is considered a less critical error
than the opposite case. A False Positive, where clear-sky data is mislabeled
as cloud and aggressively compressed, would result in an irreversible loss of
valuable information, which is a much more severe outcome for most mission
objectives.

As shown in Table 5.5, the per-channel TT(Q model achieves the lowest FNR
(0.180) among all tested models. This superior ability to correctly identify clouds

translates directly into the best compression performance, as seen in Figure 5.22,

59

Experimental Results

where its curve is closest to the Ground Truth lower bound (outperforming also
the Full Precision model). This definitively establishes the per-channel TTQ
model as the most effective solution for the end-to-end cloud-aware compression

pipeline developed in this thesis.

60

Chapter 6
Conclusions and Future Work

The exponential growth in Earth Observation (EO) data during the last years
has created a significant bottleneck for satellite missions, where onboard storage
and downlink bandwidth are severely constrained. This challenge is linked to
the presence of clouds in the sky, which obscure large portions of imagery and
reduce the scientific value of the collected data. This thesis addressed these
issues by developing and evaluating an integrated framework for onboard cloud
screening and adaptive compression, designed to enhance data transmission
efficiency by prioritizing clear-sky pixels.

The core of this work was a two-stage pipeline that first used a Lightweight
U-Net to perform real-time, pixel-level cloud segmentation. The resulting binary
masks then guide an adaptive compression scheme compliant with the CCSDS
123.0-B-2 standard, applying aggressive lossy compression to uninformative
cloudy regions while preserving the scientific integrity of clear areas through
near-lossless encoding. The experimental results confirm that this cloud-aware
approach provides a substantial improvement in compression rates compared to
non-adaptive methods. A central focus of this research was the optimization of
the neural network for resource-constrained hardware through ternary weight
quantization. The conducted evaluation included multiple Quantization-Aware
Training (QAT) strategies and the findings showed that with the right training
methodology, the performance gap between a full-precision model and its highly
compressed ternary counterpart can be significantly narrowed. Among the
tested techniques, the per-channel Trained Ternary Quantization (TT(Q) model
emerged as the most robust solution. It achieved an Area Under the Curve
(AUC) of 0.97, nearly identical to the full-precision baseline, and delivered
the best end-to-end compression performance by maintaining the lowest False
Negative Rate. This confirms that learning channel-specific scaling factors is
a highly effective strategy for preserving model accuracy even under extreme
quantization. The investigation also captured key insights into the practical

application of memory-efficient inference strategies. For the non-overlapping

61

Conclusions and Future Work

slice-based approach, performance was directly correlated with the amount
of spatial context, with larger slices yielding better results. In contrast, the
sliding-window method demonstrated a more complex relationship, where a
smaller, more focused window sometimes outperformed larger ones. This
suggests that for a lightweight architecture, forcing the model to specialize in
local feature detection, while relying on the averaging of overlapping predictions
to reconstruct global context, can be a highly effective strategy.

While this thesis successfully demonstrates a viable solution for onboard
cloud-aware compression, it also opens several avenues for future research and

enhancement:

« Full-Model Quantization: This work focused exclusively on weight quanti-
zation. The next logical step is to investigate the quantization of network
activations. A fully quantized model, where both weights and activa-
tions are low-precision, would further reduce computational complexity
and power consumption by enabling the use of pure integer arithmetic

throughout the network.

o The extension of the model from a binary classifier to a multi-class
segmentation network capable of distinguishing between clouds, thin
cirrus, haze, smoke, and cloud shadows. This technique might enable

even more sophisticated and fine-grained adaptive compression schemes.

In summary, this research establishes a strong foundation for the devel-
opment of autonomous, efficient data processing systems for next-generation
satellite missions. By integrating intelligent sensing directly at the data source,
the methodologies explored in this thesis offer a practical pathway to miti-
gate data bottlenecks and maximize the scientific return of Earth Observation

missions.

62

Bibliography

1]

2]

3]

[4]

[5]

[6]

Miguel Hernandez-Cabronero, Aaron B. Kiely, Matthew Klimesh, Ian
Blanes, Jonathan Ligo, Enrico Magli, and Joan Serra-Sagrista. “The
CCSDS 123.0-B-2 “Low-Complexity Lossless and Near-Lossless Multispec-
tral and Hyperspectral Image Compression” Standard: A comprehensive
review”. In: IEEFE Geoscience and Remote Sensing Magazine 9.4 (2021),
pp. 102-119. por: 10.1109/MGRS.2020.3048443 (cit. on pp. 4, 9, 11).

Antonio Plaza et al. “Recent advances in techniques for hyperspectral
image processing”. In: Remote Sensing of Environment 113 (Sept. 2009),
S110-S122. 1sSN: 0034-4257. por: 10.1016/j.rse.2007.07.028. URL:
http://dx.doi.org/10.1016/j.rse.2007.07.028 (cit. on p. 4).

José M. Bioucas-Dias, Antonio Plaza, Nicolas Dobigeon, Mario Parente,
Qian Du, Paul Gader, and Jocelyn Chanussot. Hyperspectral Unmiz-
ing Overview: Geometrical, Statistical, and Sparse Regression-Based Ap-
proaches. 2012. DOI: 10.48550/ARXIV.1202.6294. URL: https://arxiv.
org/abs/1202.6294 (cit. on p. 4).

Copernicus: Sentinel-2 - The Optical Imaging Mission for Land Services
— copernical.com. https://www.copernical.com/projects—public/it
em/20279-copernicus-sentinel-2-the-optical-imaging-mission-

for-land-services (cit. on pp. 5, 6).

ESA. Copernicus: Sentinel-2 - eoPortal. 2025. URL: https://www.eop
ortal.org/satellite-missions/copernicus-sentinel-2#overview

(cit. on pp. 5-T7).

Magdalena, Main-Knorn, Bringfried Pflug, Jerome Louis, Vincent De-
baecker, Uwe Miiller-Wilm, and Ferran Gascon. “Sen2Cor for Sentinel-2”.
In: Image and Signal Processing for Remote Sensing XXIII. Ed. by
Lorenzo Bruzzone, Francesca Bovolo, and Jon Atli Benediktsson. SPIE,
Oct. 2017. por: 10.1117/12.2278218. URL: http://dx.doi.org/10.
1117/12.2278218 (cit. on p. 6).

63

https://doi.org/10.1109/MGRS.2020.3048443
https://doi.org/10.1016/j.rse.2007.07.028
http://dx.doi.org/10.1016/j.rse.2007.07.028
https://doi.org/10.48550/ARXIV.1202.6294
https://arxiv.org/abs/1202.6294
https://arxiv.org/abs/1202.6294
https://www.copernical.com/projects-public/item/20279-copernicus-sentinel-2-the-optical-imaging-mission-for-land-services
https://www.copernical.com/projects-public/item/20279-copernicus-sentinel-2-the-optical-imaging-mission-for-land-services
https://www.copernical.com/projects-public/item/20279-copernicus-sentinel-2-the-optical-imaging-mission-for-land-services
https://www.eoportal.org/satellite-missions/copernicus-sentinel-2#overview
https://www.eoportal.org/satellite-missions/copernicus-sentinel-2#overview
https://doi.org/10.1117/12.2278218
http://dx.doi.org/10.1117/12.2278218
http://dx.doi.org/10.1117/12.2278218

BIBLIOGRAPHY

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Zhe Zhu and Curtis E. Woodcock. “Object-based cloud and cloud shadow
detection in Landsat imagery”. In: Remote Sensing of Environment 118
(Mar. 2012), pp. 83-94. 1ssN: 0034-4257. po1: 10.1016/j.rse.2011.10.
028. URL: http://dx.doi.org/10.1016/j.rse.2011.10.028 (cit. on

p. 7).

Marharyta Domnich et al. “KappaMask: Al-Based Cloudmask Processor
for Sentinel-2”. In: Remote Sensing 13.20 (Oct. 2021), p. 4100. 1SSN:
2072-4292. por: 10.3390/rs13204100. URL: http://dx.doi.org/10.
3390/rs13204100 (cit. on p. 7).

Amal Altamimi and Belgacem Ben Youssef. “Lossless and Near-Lossless
Compression Algorithms for Remotely Sensed Hyperspectral Images”.
In: Entropy 26.4 (Apr. 2024), p. 316. 1ssN: 1099-4300. por: 10.3390/
€26040316. URL: http://dx.doi.org/10.3390/e26040316 (cit. on
pp- 7, 8).

Didier Keymeulen et al. “High Performance Space Computing with
System-on-Chip Instrument Avionics for Space-based Next Generation
Imaging Spectrometers (NGIS)”. In: 2018 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS). 2018, pp. 33-36. por: 10.1109/
AHS.2018.8541473 (cit. on p. 7).

Jiaojiao Li, Jiaji Wu, and Gwanggil Jeon. “GPU Acceleration of Clustered
DPCM for Lossless Compression of Hyperspectral Images”. In: [EEE
Transactions on Industrial Informatics 16.5 (2020), pp. 2906-2916. pDoTI:
10.1109/TII.2019.2893437 (cit. on p. 7).

Xiaolin Wu, Nasir Memon, and K. Sayood. “A Context-based, Adaptive,
Lossless/Nearly-Lossless Coding Scheme for Continuous-tone Images”. In:
(Sept. 1995) (cit. on p. 8).

[an Blanes, Enrico Magli, and Joan Serra-Sagrista. “A Tutorial on Image
Compression for Optical Space Imaging Systems”. In: IEEE Geoscience
and Remote Sensing Magazine 2.3 (2014), pp. 8-26. por: 10.1109/MGRS.
20142352465 (cit. on p. 8).

David H Hubel and Torsten N Wiesel. “Receptive fields, binocular in-
teraction and functional architecture in the cat’s visual cortex”. In: The
Journal of physiology 160.1 (1962), pp. 106-154. por: 10.1113/jphysiol.
1962.sp006837 (cit. on p. 12).

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In:
Nature 521.7553 (May 2015), pp. 436-444. 1SsN: 1476-4687. por: 10.1038/
naturel14539. URL: http://dx.doi.org/10.1038/nature14539 (cit. on

p. 12).

64

https://doi.org/10.1016/j.rse.2011.10.028
https://doi.org/10.1016/j.rse.2011.10.028
http://dx.doi.org/10.1016/j.rse.2011.10.028
https://doi.org/10.3390/rs13204100
http://dx.doi.org/10.3390/rs13204100
http://dx.doi.org/10.3390/rs13204100
https://doi.org/10.3390/e26040316
https://doi.org/10.3390/e26040316
http://dx.doi.org/10.3390/e26040316
https://doi.org/10.1109/AHS.2018.8541473
https://doi.org/10.1109/AHS.2018.8541473
https://doi.org/10.1109/TII.2019.2893437
https://doi.org/10.1109/MGRS.2014.2352465
https://doi.org/10.1109/MGRS.2014.2352465
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539

BIBLIOGRAPHY

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Sepp Hochreiter. “The vanishing gradient problem during learning re-
current neural nets and problem solutions”. In: International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 6.02 (1998),
pp. 107-116 (cit. on p. 15).

Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Miiller.
“Efficient BackProp”. In: (2012), pp. 9-48 (cit. on p. 15).

Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve re-
stricted Boltzmann machines”. In: Proceedings of the 27th International

Conference on Machine Learning (ICML). 2010 (cit. on p. 15).
Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. “Rectifier nonlin-

earities improve neural network acoustic models”. In: Proc. ICML 30.1
(2013), p. 3 (cit. on p. 15).

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast
and accurate deep network learning by exponential linear units (ELUs)”.
In: arXiv preprint arXiv:1511.07289 (2016) (cit. on p. 16).

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning
representations by back-propagating errors”. In: Nature 323.6088 (1986),
pp. 533-536 (cit. on p. 16).

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. “A Survey
of Convolutional Neural Networks: Analysis, Applications, and Prospects”.
In: IEEE Transactions on Neural Networks and Learning Systems 33.12
(2022), pp. 6999-7019. DOI: 10 . 1109/ TNNLS . 2021 . 3084827 (cit. on
p. 16).

Harsh Srivastava and Kishor Sarawadekar. “A Depthwise Separable Con-
volution Architecture for CNN Accelerator”. In: 2020 IEEFE Applied
Signal Processing Conference (ASPCON). 2020, pp. 1-5. por: 10.1109/
ASPCON49795.2020.9276672 (cit. on p. 18).

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convo-
lutional Networks for Biomedical Image Segmentation. 2015. DOIL: 10.
48550/ARXIV.1505.04597. URL: https://arxiv.org/abs/1505.04597
(cit. on p. 19).

On-board cloud screening algorithms for satellite imaging - Webthesis
— webthesis.biblio.polito.it. http://webthesis.biblio.polito.it/id/
eprint/33085 (cit. on pp. 20, 21).

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko,
Mart van Baalen, and Tijmen Blankevoort. A White Paper on Neural
Network Quantization. 2021. arXiv: 2106.08295 [cs.LG]. URL: https:
//arxiv.org/abs/2106.08295 (cit. on pp. 22, 24).

65

https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/ASPCON49795.2020.9276672
https://doi.org/10.1109/ASPCON49795.2020.9276672
https://doi.org/10.48550/ARXIV.1505.04597
https://doi.org/10.48550/ARXIV.1505.04597
https://arxiv.org/abs/1505.04597
http://webthesis.biblio.polito.it/id/eprint/33085
http://webthesis.biblio.polito.it/id/eprint/33085
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295

BIBLIOGRAPHY

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Mark Horowitz. “1.1 Computing’s energy problem (and what we can do
about it)”. In: 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC). 2014, pp. 10-14. por: 10.1109/
ISSCC.2014.6757323 (cit. on p. 23).

Naveen Mellempudi, Abhisek Kundu, Dheevatsa Mudigere, Dipankar
Das, Bharat Kaul, and Pradeep Dubey. Ternary Neural Networks with
Fine-Grained Quantization. 2017. DOI: 10.48550/ARXIV. 1705.01462.
URL: https://arxiv.org/abs/1705.01462 (cit. on p. 25).

Fengfu Li, Bin Liu, Xiaoxing Wang, Bo Zhang, and Junchi Yan. Ternary
Weight Networks. 2022. arXiv: 1605. 04711 [cs.CV]. URL: https://
arxiv.org/abs/1605.04711 (cit. on pp. 25, 26).

Shuming Ma et al. The Era of 1-bit LLMs: All Large Language Models
are in 1.58 Bits. 2024. DOI: 10.48550/ARXIV.2402.17764. URL: https:
//arxiv.org/abs/2402.17764 (cit. on pp. 26, 36).

Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained
Ternary Quantization. 2017. arXiv: 1612.01064 [cs.LG]. URL: https:
//arxiv.org/abs/1612.01064 (cit. on pp. 27, 34).

M. Makitalo and A. Foi. “Optimal Inversion of the Generalized Anscombe
Transformation for Poisson-Gaussian Noise”. In: IEEE Transactions on
Image Processing 22.1 (Jan. 2013), pp. 91-103. 1ssN: 1941-0042. poTr:
10.1109/tip.2012.2202675. URL: http://dx.doi.org/10.1109/TIP.
2012.2202675 (cit. on p. 31).

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge
in a Neural Network. 2015. DOI: 10.48550/ARXIV. 1503.02531. URL:
https://arxiv.org/abs/1503.02531 (cit. on p. 37).

Cesar Aybar et al. “CloudSEN12, a global dataset for semantic under-
standing of cloud and cloud shadow in Sentinel-2”. In: Scientific Data 9.1
(Dec. 2022). 18sN: 2052-4463. Do1: 10.1038/s41597-022-01878-2. URL:
http://dx.doi.org/10.1038/s41597-022-01878-2 (cit. on p. 39).

66

https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.48550/ARXIV.1705.01462
https://arxiv.org/abs/1705.01462
https://arxiv.org/abs/1605.04711
https://arxiv.org/abs/1605.04711
https://arxiv.org/abs/1605.04711
https://doi.org/10.48550/ARXIV.2402.17764
https://arxiv.org/abs/2402.17764
https://arxiv.org/abs/2402.17764
https://arxiv.org/abs/1612.01064
https://arxiv.org/abs/1612.01064
https://arxiv.org/abs/1612.01064
https://doi.org/10.1109/tip.2012.2202675
http://dx.doi.org/10.1109/TIP.2012.2202675
http://dx.doi.org/10.1109/TIP.2012.2202675
https://doi.org/10.48550/ARXIV.1503.02531
https://arxiv.org/abs/1503.02531
https://doi.org/10.1038/s41597-022-01878-2
http://dx.doi.org/10.1038/s41597-022-01878-2

	Introduction
	Background on Remote Sensing and Compression Techniques
	Remote Sensing
	Satellite Imaging Systems and Hyperspectral Data
	Sentinel-2 mission

	Image Compression for Remote Sensing
	Compression Paradigms
	The CCSDS 123.0-B-2 Compression Standard
	Compressor and Decompressor Structure

	Background on Deep Learning
	Neural Networks and Deep Learning
	Neural Networks (NNs)
	Convolutional Neural Networks (CNNs)
	U-Net
	Lightweight U-Net-based model
	Performance Evaluation and Results

	Quantization of Neural Networks
	Post-Training Quantization vs Quantization-Aware Training
	Ternary Neural Networks (TNNs)
	Ternary Weight Networks (TWN)
	Absmean Ternary Quantization
	Trained Ternary Quantization (TTQ)

	Methodology
	Onboard Cloud-Aware Compression
	Pre-processing techniques

	Cloud screening
	Training and inference techniques
	Slice-based
	Sliding window

	Ternarization methods

	Experimental Results
	The Dataset
	Experimental Framework
	Evaluation Metrics
	Stripes and Sliding-window approach
	Lightweight U-Net: Post-training Quantization
	Lightweight U-Net: Quantization-Aware Models for Ternarization
	Overall Performance via ROC Analysis
	Quantitative Analysis of Key Metrics
	Visual and Qualitative Assessment
	Visual Comparison of Cloud Masks
	Analysis of Error Types
	Performance Trade-offs vs. Cloud Probability Threshold

	Sliding Window approach on Ternarization models
	Satellite images compression using cloud masks

	Conclusions and Future Work
	Bibliography

