
POLITECNICO DI TORINO

College of Computer Engineering, Cinema and
Mechatronics

Master’s Degree Thesis

Similarity of Waste Image for Smart Bins
Using Deep Learning

Supervisors
prof. Bartolomeo Montrucchio
dr. Antonio Costantino Marceddu

Candidate
Hossein Zahedi Nezhad

July 2025





Abstract

This dissertation presents a deep learning-based framework for object-level change detection in
cluttered visual scenes, focusing on identifying added or reconfigured items between temporally
adjacent images. The motivation arises from real-world challenges in automated waste monitoring
systems, where detecting changes in bin contents is critical for optimizing collection routes, im-
proving recycling efficiency, and reducing operational costs. To address this need, two approaches
were explored. Initially, a Siamese network trained with contrastive loss was implemented to
evaluate the feasibility of image-level change detection based on pairwise similarity. While this
approach demonstrated potential, it was limited to producing a single similarity score between
images, without the ability to localize individual changes or determine the number of added ob-
jects. These limitations motivated the transition to a more expressive object-level triplet learning
framework, where the network compares anchor–positive–negative tuples. This design enables
fine-grained matching, robust feature discrimination, and estimation of added object count. In
the triplet-based framework, the system combines polygon-guided object cropping, deep metric
learning (i.e., training neural networks to learn a similarity-preserving embedding space), and co-
sine similarity analysis to compare object instances across image pairs. A COCO-style (Common
Objects in Context) annotated dataset of 7,150 real-world waste bin images was used, capturing
cluttered scenes with items such as cups, packaging, and organic waste. Objects were extracted
using segmentation masks and polygon-fitting, then standardized into 224×224 crops. Four pop-
ular convolutional neural networks—ResNet-50, ResNet-101, MobileNetV2, and Xception—were
repurposed from their original classification role to serve as backbone feature extractors. Each
model was modified with a custom projection head that maps high-dimensional features into a
128-dimensional embedding space using global average pooling, dropout, a dense layer, and L2
normalization. This transformation enables angular similarity comparisons via cosine distance,
making the architecture suitable for fine-grained object matching. A progressive training strat-
egy was employed to enhance embedding quality and assess the impact of adaptation. In the
zero-shot configuration, the backbone remained fully frozen to evaluate how well pre-trained fea-
tures generalize to the object matching task. In Phase 1, only the projection head was trained
while the backbone remained frozen, allowing rapid convergence and preserving general visual
priors. In Phase 2, selective fine-tuning of deeper backbone layers was performed while contin-
uing to train the projection head. Training relied on a margin-based triplet loss with a custom
mining pipeline incorporating hard positive mining, hard and semi-hard negative mining, and
stage-specific augmentations. Strong geometric and photometric transformations were applied to
anchors and positives, while negatives were minimally perturbed. Model comparison and perfor-
mance assessment across all architectures highlight the strengths and trade-offs of each model,
confirming that the proposed approach enables accurate detection of added objects and reliable
matching of existing instances across image pairs. The system is scalable, robust, and well-suited
for integration into real-time waste monitoring systems.

ii



Acknowledgements

First and foremost, I would like to express my sincere gratitude to Prof. Bartolomeo Montrucchio
and Dr. Antonio Costantino Marceddu for their guidance throughout the development of this
thesis. In particular, I am deeply thankful to Dr. Marceddu, who consistently provided useful
suggestions and invaluable support during the course of this project.

I would also like to extend my thanks to Federico Fedi, Mattia Brusamento and Simone
Cavariani from NANDO (ReLearn) for their early support and for facilitating key resources that
contributed to the successful completion of this work.

iii



Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Aim and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Models 4

2.1 Metric Learning for Visual Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Related Work on Image Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Classical Feature Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.2 Early CNN-Based Feature Extractors . . . . . . . . . . . . . . . . . . . . . 4

2.2.3 Metric-Learning Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.4 Recent Siamese and Pairwise Variants . . . . . . . . . . . . . . . . . . . . . 5

2.2.5 Hybrid and Attention-Based Approaches . . . . . . . . . . . . . . . . . . . . 5

2.3 Siamese Networks and Contrastive Loss . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Architecture of Siamese Networks . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Contrastive Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.3 Training Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.4 Comparison with Triplet Networks . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Evolution and Principles of Convolutional Neural Networks . . . . . . . . . . . . . 8

2.5 CNN-Based Embedding Backbones . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 ResNet50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.2 ResNet-101: Deeper Residual Architecture . . . . . . . . . . . . . . . . . . . 12

2.5.3 MobileNetV2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.4 Xception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iv



3 Methodology 23

3.1 Dataset and Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Annotation Schema and Metadata . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.2 Category Set and Annotation Statistics . . . . . . . . . . . . . . . . . . . . 25

3.1.3 Image Integrity Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.4 Dataset Splitting Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Object Extraction and Cropping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Polygon-Based Cropping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Metadata Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.3 Embedding Generation for Cropped Objects . . . . . . . . . . . . . . . . . 28

3.3 Cosine Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Triplet Learning and Triplet Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Triplet Loss Formulation and Intuition . . . . . . . . . . . . . . . . . . . . . 31

3.4.2 Triplet Mining Strategy for Embedding Generation . . . . . . . . . . . . . . 33

3.4.3 Triplet Dataset Construction and Loading . . . . . . . . . . . . . . . . . . . 34

3.4.4 Cosine-Based Triplet Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Fine-Tuning Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Enhanced Triplet Generation for Fine-Tuning . . . . . . . . . . . . . . . . . 37

3.6 Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.1 Augmentation Strategy: Motivation and Design . . . . . . . . . . . . . . . . 40

3.6.2 Overview of Triplet Construction and Augmentation Policies . . . . . . . . 42

3.7 Matching Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7.1 Matching Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7.2 Detection of Added Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 Inference Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 Visualizing Siamese Model Predictions . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.10 Training Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.10.1 Siamese Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.10.2 Triplet-Based Training Strategy for CNN Backbones . . . . . . . . . . . . . 50

3.10.3 Pretrained ResNet-50 as a Frozen Feature Extractor (Zero-Shot Baseline) . 51

3.10.4 Phase 1 of ResNet-50: Frozen Backbone with Trainable Projection Head . . 51

3.10.5 Phase 2 of ResNet-50: Layer-wise Fine-Tuning of Deeper Residual Blocks . 52

3.10.6 Pretrained ResNet-101 as a Frozen Feature Extractor (Zero-Shot Baseline) 53

3.10.7 Phase 1 of ResNet-101: Frozen Backbone with Trainable Projection Head . 53

3.10.8 Phase 2 of ResNet-101: Layer-wise Fine-Tuning of Deeper Residual Blocks 54

3.10.9 Pretrained MobileNetV2 as a Frozen Feature Extractor (Zero-Shot Baseline) 55

3.10.10Phase 1 of MobileNetV2: Frozen Backbone with Trainable Projection Head 55

3.10.11Phase 2 of MobileNetV2: Layer-wise Fine-Tuning of Upper Inverted Resid-
ual Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.10.12Pretrained Xception as a Frozen Feature Extractor (Zero-Shot Baseline) . . 56

3.10.13Phase 1 of Xception: Frozen Backbone with Trainable Projection Head . . 56

3.10.14Phase 2 of Xception: Layer-wise Fine-Tuning of High-Level Blocks . . . . . 57

v



4 Results and Evaluation 60

4.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Siamese Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Triplet-Based CNN Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Matching Performance of Pre-trained Models . . . . . . . . . . . . . . . . . 62

4.3.2 Matching Performance After Phase 1: Trainable Projection Head . . . . . . 63

4.3.3 Matching Performance After Phase 2: Layer-wise Fine-Tuning . . . . . . . 64

4.3.4 Visual Comparison of Matching Performance Across Training Phases . . . . 65

4.3.5 Added Object Detection with Pre-trained Models . . . . . . . . . . . . . . . 67

4.3.6 Added Object Detection after Phase 1 Training . . . . . . . . . . . . . . . . 68

4.3.7 Added Object Detection after Phase 2 Fine-Tuning . . . . . . . . . . . . . . 69

4.3.8 Visual Comparison of Added Detection Performance Across Training Phases 69

4.3.9 Threshold Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Conclusion 75

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Appendix 78

A Grid Search Results for Cosine Thresholds 79

Bibliography 86

vi



List of Figures

1.1 Comparison between coarse fill estimation and object-level detection . . . . . . . . 2

2.1 Siamese network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Basic architecture of ResNet-50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 ResNet-50 Bottleneck Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Detailed architecture of various ResNet models . . . . . . . . . . . . . . . . . . . . 11

2.5 ResNet-101 schematic overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Block-level configuration of ResNet-50 and ResNet-101 . . . . . . . . . . . . . . . . 12

2.7 Visual comparison of standard vs. depthwise separable convolution . . . . . . . . . 14

2.8 Architecture of MobileNetV2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9 Depthwise separable convolution in Xception . . . . . . . . . . . . . . . . . . . . . 18

2.10 Visualization of the Entry Flow in the Xception . . . . . . . . . . . . . . . . . . . . 19

2.11 Middle Flow of the Xception architecture . . . . . . . . . . . . . . . . . . . . . . . 20

2.12 Exit Flow of the Xception architecture . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Example images from the dataset with segmentation masks . . . . . . . . . . . . . 24

3.2 Annotation distribution across the top and bottom 10 object categories . . . . . . 26

3.3 Polygon-fit object crops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Input image pair for cosine similarity matrix construction . . . . . . . . . . . . . . 30

3.5 Visual explanation of triplet loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Training triplet examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Validation triplet examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8 Example of anchor–positive pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.9 Hard negative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.10 Enhanced triplet examples used in Fine-Tuning step . . . . . . . . . . . . . . . . . 39

3.11 Augmentation examples for anchor and positive samples . . . . . . . . . . . . . . . 41

3.12 Samples of Augmented Triplets Used for training the second phase . . . . . . . . . 43

3.13 Inference Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.14 Example of cropped objects from a sample image . . . . . . . . . . . . . . . . . . . 45

3.15 Model-wise output summary on a single sample . . . . . . . . . . . . . . . . . . . . 46

3.16 Single-sample evaluation using pre-trained CNN models . . . . . . . . . . . . . . . 47

vii



3.17 Example of dissimilar pair in Siamese network . . . . . . . . . . . . . . . . . . . . . 47

3.18 Example of similar pair in Siamese network . . . . . . . . . . . . . . . . . . . . . . 48

3.19 Phase 2 Pipeline Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Distribution of predicted distances in Siamese network . . . . . . . . . . . . . . . . 61

4.2 Matching performance of ResNet-50 across different training phases . . . . . . . . 65

4.3 Matching performance of ResNet-101 across different training phases . . . . . . . . 66

4.4 Matching Performance of MobileNetV2 across different training phases . . . . . . . 66

4.5 Matching Performance of Xception across different training phases . . . . . . . . . 67

4.6 Added detection performance of ResNet-50 across training phases . . . . . . . . . . 70

4.7 Added detection performance of ResNet-101 across training phases . . . . . . . . . 70

4.8 Added detection performance of MobileNetV2 across training phases . . . . . . . . 71

4.9 Added detection performance of Xception across training phases . . . . . . . . . . 71

4.10 Precision–Recall–F1 vs. Cosine Threshold (ResNet-50 Phase 2) . . . . . . . . . . . 72

4.11 Matching F1 score vs. Cosine Threshold (ResNet-50) . . . . . . . . . . . . . . . . . 73

4.12 Matching F1 vs. Threshold Across Backbones (Phase 2) . . . . . . . . . . . . . . . 74

viii



List of Tables

2.1 Comparative summary of ResNet-50 and ResNet-101 characteristics . . . . . . . . 13

2.2 Structure of MobileNetV2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Backbone CNN models summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Top 10 most frequent object categories by instance count. . . . . . . . . . . . . . . 26

3.2 Dataset split distribution by subset and percentage. . . . . . . . . . . . . . . . . . 27

3.3 Triplet statistics by model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Triplet construction statistics for Fine-Tuning step . . . . . . . . . . . . . . . . . . 38

3.5 Overview of Triplet Construction and Augmentation Policies . . . . . . . . . . . . 42

3.6 Software and Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Common Training Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Parameter summary of ResNet-50 Phase 1 . . . . . . . . . . . . . . . . . . . . . . . 52

3.9 Parameter summary of ResNet-50 Phase 2 . . . . . . . . . . . . . . . . . . . . . . . 53

3.10 Parameter summary of ResNet-101 Phase 1 . . . . . . . . . . . . . . . . . . . . . . 54

3.11 Parameter summary of ResNet-101 Phase 2 . . . . . . . . . . . . . . . . . . . . . . 54

3.12 Parameter summary of MobileNetV2 Phase 1 . . . . . . . . . . . . . . . . . . . . . 55

3.13 Parameter summary of MobileNetV2 Phase 2 . . . . . . . . . . . . . . . . . . . . . 56

3.14 Parameter summary of Xception Phase 1 . . . . . . . . . . . . . . . . . . . . . . . 57

3.15 Parameter summary of Xception Phase 2 . . . . . . . . . . . . . . . . . . . . . . . 58

3.16 Comparison of Fine-Tuning Configurations . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Evaluation performance of the Siamese network . . . . . . . . . . . . . . . . . . . . 61

4.2 Matching performance in zero-shot setting . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Matching performance after Phase 1 training . . . . . . . . . . . . . . . . . . . . . 63

4.4 Matching performance after Phase 2 training . . . . . . . . . . . . . . . . . . . . . 64

4.5 Evaluation results on added object detection using pre-trained models . . . . . . . 67

4.6 Evaluation results on added object detection after Phase 1 . . . . . . . . . . . . . . 68

4.7 Evaluation results on added object detection after Phase 2 . . . . . . . . . . . . . . 69

4.8 Grid search over cosine similarity thresholds (ResNet-50 Phase 2) . . . . . . . . . . 72

A.1 Grid search: ResNet-50 Pre-Trained . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.2 Grid search: ResNet-50 Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

ix



A.3 Grid search: ResNet-50 Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.4 Grid search: ResNet-101 Pre-Trained . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.5 Grid search: ResNet-101 Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.6 Grid search: ResNet-101 Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.7 Grid search: MobileNetV2 Pre-Trained . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.8 Grid search: MobileNetV2 Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.9 Grid search: MobileNetV2 Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.10 Grid search: Xception Pre-Trained . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.11 Grid search: Xception Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.12 Grid search: Xception Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

x



xi



Chapter 1

Introduction

1.1 Background and Motivation

Municipal solid-waste (MSW) volumes are climbing faster than population growth. The World
Bank’s What a Waste 2.0 estimates that the planet generated 2.24 billion tons in 2020 and will
reach 3.88 billion tons per year by 2050 if current consumption patterns persist [1]. UNEP’s Global
Waste-Management Outlook 2024 confirms a similar trajectory, estimating 2.1 billion tons of waste
generated in 2023 and projecting an increase to 3.8 billion tons by 2050. The current direct cost
of waste management services is estimated at US$252 billion per year. When externalities such
as health care, environmental pollution, and climate-related impacts are accounted for, the total
annual cost is projected to rise to US$640 billion by mid-century [2].

For city treasuries, the biggest drain is the collection truck. Routine collection and disposal
already swallow 20–50% of the entire municipal budget in many low- and middle-income jurisdic-
tions [3], and field audits show that collection alone can account for 50–80% of all solid-waste line
items [4]. Inefficiencies amplify those costs: each needless revisit to a half-empty bin burns diesel
(approx. 2.3 kg CO2 eq/km for a compactor truck) [5], while overfilled or mis-sorted containers
are now subject to contamination surcharges—up to US$25–150 per incident in California’s Oro
Loma district, automatically triggered by on-truck cameras [6].

To curb the haemorrhage of labour hours, fuel and tipping fees, cities and private haulers are
turning to “smart-bin” systems that retrofit containers with embedded sensors and connectivity.
Commercial platforms such as Sensoneo or Nordsense install ultrasonic or radar probes that
ping the fill-level every 15–60 minutes and stream the data to cloud-based route-optimisation
dashboards [7]. The promise is compelling: leaner truck fleets, pay-as-you-throw billing, and
near-real-time feedback to residents and building managers.

However, a crucial blind spot remains. Almost all deployed smart-bin sensors reduce the
container to a single coarse metric—“% full”. Camera systems fare only slightly better, typically
classifying the entire frame as “empty”, “half” or “full” or computing one global similarity score
between two snapshots. A 2024 survey of more than one hundred IoT-dustbin papers concludes
that the overwhelming majority stop at volume estimation or single-label classification, with
almost no work tackling object-level localisation of new items between visits [8]. Consequently,
operators still lack answers to three mission-critical questions:

1. What was deposited since the last collection?

2. How many discrete items are new?

3. How many and which items remained unchanged between collections?

Solving that triad is not mere academic curiosity; it is the key to postponing unnecessary
pickups, prioritising high-risk loads (food waste, e-waste, sharps), and issuing contamination

1



Introduction

warnings before the truck rolls. This thesis therefore frames the problem as an object-level change-
detection challenge and proposes a deep metric-learning solution that can track individual waste
items across successive images and flag newly added objects in cluttered, low-light conditions.

Figure 1.1: Traditional smart-bin systems output a coarse “percentage full” value (left), which
provides no insight into item types or counts. In contrast, the proposed approach enables object-
level detection, identifying individual waste items and tracking which ones are new or unchanged
between collections.

1.2 Problem Statement

Despite advances in smart-bin technologies and object-detection pipelines, existing systems funda-
mentally lack the capacity to perform object-level reasoning across successive images taken from
inside a bin. Most commercially deployed solutions rely on fill-level estimation (e.g., percentage
fullness from ultrasonic sensors) or produce a single global similarity score between images, offer-
ing no insight into how many individual items have been added between visits. These approaches
cannot differentiate between small rearrangements and meaningful content changes, nor do they
provide structured outputs that enable selective tracking or counting of newly deposited objects.

This lack of object-level change detection imposes critical limitations on downstream opera-
tions. Without fine-grained information about bin contents, collection routes cannot be optimised
dynamically, contamination cannot be flagged early, and behaviour-based feedback (e.g., for re-
cycling compliance or pay-as-you-throw billing) remains crude or infeasible.

From a technical perspective, the core challenge lies in the inability of current visual models
to generate discriminative, object-level embeddings that remain robust across cluttered scenes,
viewpoint variation, partial occlusion, and diverse material textures. Preliminary experiments
with a Siamese network trained using contrastive loss support this diagnosis: while the model
was able to distinguish similar and dissimilar image pairs in aggregate, it lacked the resolution
to localise individual changes or count newly added objects. These limitations were especially
evident in scenes involving overlapping items, transparent containers, or reflective surfaces such
as foil and glass.

Together, these observations motivate the development of a fine-grained, embedding-based ap-
proach that can detect and track individual waste items across image pairs. The proposed solution
must generalize across object categories while remaining sensitive to instance-level differences and
capable of capturing subtle, temporally localised changes in real-world bin environments.

This research was conducted in collaboration with NANDO (ReLearn), a technology company
specializing in AI-based waste management solutions. As part of this collaboration, NANDO
provided a proprietary dataset of annotated waste-bin images captured in real-world environments.
These data served as the foundation for all experimental evaluations in this thesis and reflect
practical challenges encountered in operational smart-bin systems.

2



Introduction

1.3 Aim and Objectives

The central aim of this thesis is to develop a deep metric-learning framework capable of matching
individual waste objects across temporally spaced bin images and accurately detecting newly
added items under real-world conditions such as clutter, occlusion, and lighting variation.

To support this aim, the following research objectives were pursued:

1. Dataset Utilization: Employ a COCO-style annotated dataset of real-world waste-bin
images—provided by NANDO (ReLearn)—containing instance-level segmentation masks,
which serve as the basis for generating object crops and computing temporal object-level
changes.

2. Baseline Implementation: Design and evaluate a Siamese neural network trained with
contrastive loss as an initial baseline, assessing its performance and limitations in binary
object-matching across successive image pairs.

3. Triplet-Loss Pipeline: Develop an advanced triplet-based embedding framework with
custom hard and semi-hard mining strategies, optimized to compute 128-dimensional em-
beddings that support instance-level comparison and identification across complex visual
conditions.

4. Model Benchmarking: Benchmark four CNN backbones—ResNet-50, ResNet-101, Mo-
bileNetV2, and Xception—under three training strategies: (i) zero-shot inference with frozen
backbones, (ii) projection-head fine-tuning, and (iii) partial fine-tuning of deeper layers, to
identify the optimal accuracy–efficiency trade-off for practical deployment.

1.4 Thesis Structure

This thesis is organized into five chapters, as follows:

• Chapter 1 – Introduction: Presents the background, motivation, problem statement,
dataset provider, and key research objectives that guide this study.

• Chapter 2 – Background and Models: Reviews prior work on image similarity, Siamese
and Contrastive loss, the evolution of convolutional neural networks, and the CNN model
architectures explored in this thesis.

• Chapter 3 – Methodology: Describes the dataset, object-extraction pipeline, similarity-
learning framework, triplet sampling strategies, fine-tuning steps, augmentation settings,
inference visualisation, and training procedures.

• Chapter 4 – Results and Evaluation: Presents experimental findings, including evalu-
ation metrics, backbone benchmarking, and analysis of added-object detection and object-
matching performance.

• Chapter 5 – Conclusion: Summarizes key contributions and results, discusses limitations,
and outlines possible extensions for future research and deployment.

3



Chapter 2

Background and Models

2.1 Metric Learning for Visual Similarity

Retrieving visually similar objects from a large image collection requires more than assigning
category labels: it demands a continuous embedding space in which the distance between any two
object crops faithfully represents their perceptual resemblance. Off-the-shelf convolutional neu-
ral networks trained for classification optimize their penultimate activations to separate discrete
classes, not to rank instances by similarity. As a result, two objects of the same category may lie
far apart in feature-space if they differ in color, texture, or pose, while visually distinct instances
of different labels can inadvertently cluster together.

Metric learning reframes this task by directly optimizing an embedding function so that similar
pairs are drawn closer and dissimilar pairs pushed farther apart. However, as we will see, the
limited capacity and training dynamics of a pairwise Siamese setup proved insufficient for our
large-scale, fine-grained retrieval task. Consequently, we complement that baseline with higher-
capacity CNN backbones—ResNet-50/101, Xception, and MobileNetV2—trained via the triplet
protocol detailed in Chapter 3.10.1.

In the remainder of this chapter, we first survey prior art in image similarity (Section 2.2),
then detail our initial Siamese approach with contrastive loss (Section 2.3), and finally describe
the CNN-based embedding backbones (Section 2.5).

2.2 Related Work on Image Similarity

The problem of retrieving visually similar images has been addressed through a progression of
techniques, from hand-crafted descriptors to deep neural embeddings trained with metric objec-
tives. Below we survey seminal and recent contributions in five categories.

2.2.1 Classical Feature Descriptors

Lowe’s Scale-Invariant Feature Transform (SIFT) introduced local keypoints with orientation
and scale normalization, enabling robust matching under viewpoint and illumination changes;
it remains a cornerstone for early image retrieval systems [9]. Bay et al. proposed Speeded-Up
Robust Features (SURF), accelerating descriptor computation via integral images and approx-
imated Hessian detectors [10]. Mikolajczyk and Schmid further evaluated these descriptors on
large benchmarks, highlighting trade-offs in repeatability and distinctiveness [11].

2.2.2 Early CNN-Based Feature Extractors

Razavian et al. showed that off-the-shelf CNN features from networks pre-trained on ImageNet
transfer effectively to retrieval tasks, outperforming hand-crafted descriptors on multiple datasets [12].

4



Background and Models

Babenko et al. introduced R-MAC pooling to aggregate convolutional activations into a com-
pact global descriptor, significantly boosting retrieval accuracy with minimal dimensionality [13].
Gordo et al. advanced this by learning the pooling regions end-to-end, further improving landmark
retrieval performance [14].

2.2.3 Metric-Learning Paradigms

Early metric-learning frameworks sought to shape the embedding space directly. Hadsell et al.
formalized the contrastive loss, penalizing similar pairs for large distances and dissimilar pairs for
distances below a margin, thus enforcing pairwise constraints in the learned space [15]. Chopra et
al. applied this within a Siamese CNN for verification tasks, demonstrating its efficacy on signature
and face data [16]. Weinberger and Saul proposed Large Margin Nearest Neighbor (LMNN),
optimizing Mahalanobis distances with a convex objective to improve k-NN classification [17].
Schroff et al.’s FaceNet introduced triplet loss with online hard-example mining, achieving state-
of-the-art face recognition by directly optimizing relative distances among anchor, positive, and
negative samples [18].

2.2.4 Recent Siamese and Pairwise Variants

Koch et al. adapted Siamese networks for one-shot learning, training on diverse image classes so
the model learns a generic similarity function that generalizes to unseen categories [19]. Bertinetto
et al. developed SiamFC, a fully-convolutional Siamese tracker that computes cross-correlation
between exemplar and search region feature maps for real-time object tracking [20]. Sohn proposed
improved pair mining strategies with multi-similarity loss, which dynamically weights positive
and negative pairs to stabilize convergence [21]. More recently, Ge et al. introduced Circle Loss,
unifying angle and cosine margin constraints to boost both intra-class compactness and inter-class
separability in embedding learning [22].

2.2.5 Hybrid and Attention-Based Approaches

With the rise of attention mechanisms, Li et al. incorporated non-local blocks into CNN backbones
to capture long-range dependencies for retrieval [23]. Radenović et al. combined local and global
features using regional attention mining, yielding descriptors that adaptively focus on salient im-
age regions [24]. These hybrid models represent the current frontier by blending metric objectives
with sophisticated network modules.

From survey to method. Having reviewed existing descriptors and metric-learning frameworks,
we now turn to our own implementation of a Siamese network with contrastive loss to establish
a performance baseline.

2.3 Siamese Networks and Contrastive Loss

Siamese neural networks are a specialized architecture designed explicitly for learning similari-
ties or differences between pairs of inputs. Introduced initially in the early 1990s for signature
verification tasks [25], Siamese networks have since gained popularity due to their effectiveness
in various metric-learning tasks, including facial recognition, object tracking, and image retrieval
[19].

Unlike traditional neural networks, Siamese networks consist of two identical subnetworks with
shared weights. Each subnetwork processes one input of a pair separately, and the resulting em-
beddings are then compared using a predefined similarity or distance measure, such as Euclidean
distance or cosine similarity [16]. The primary advantage of this architecture lies in its ability to
directly learn feature representations optimized for similarity-based comparisons, thus making it
particularly suitable for applications that require measuring semantic closeness between images
or other data points [26].

5



Background and Models

2.3.1 Architecture of Siamese Networks

The fundamental architecture of a Siamese network involves two identical neural network branches.
These branches share the same configuration, structure, and weights. Given a pair of inputs
(x1, x2), each input passes through its respective subnetwork to generate embedding vectors
(f(x1), f(x2)). The similarity or dissimilarity between these embeddings is then quantified through
a specific metric. By sharing parameters across both subnetworks, the network ensures that sim-
ilar inputs produce embeddings that are closer together in the feature space, while dissimilar
inputs yield embeddings that are farther apart [19].

Figure 2.1: Siamese network architecture (adapted from Rosebrock [27]).

2.3.2 Contrastive Loss

To effectively train Siamese networks, a specialized loss function known as contrastive loss is
frequently employed. Contrastive loss explicitly encodes the notion of similarity and dissimilarity
by penalizing the network based on whether input pairs belong to the same or different classes
[15].

Mathematically, contrastive loss (Lcontrastive) is defined as follows:

Lcontrastive(y, x1, x2) = y · 1
2
[D(x1, x2)]

2 + (1− y) · 1
2
[max(0,m−D(x1, x2))]

2 (2.1)

where:

• y is the binary indicator: y = 1 if inputs are similar, and y = 0 otherwise.

• D(x1, x2) represents the distance between the embeddings of inputs x1 and x2.

• m is a margin hyperparameter that determines the enforced minimum distance between
embeddings of dissimilar inputs.

The intuitive interpretation of this loss function is that similar pairs (y = 1) are penalized if
their embeddings are far apart, thus pushing them closer in the embedding space. Conversely,
dissimilar pairs (y = 0) incur a penalty only if their embeddings are closer than the margin m,
encouraging them to be separated by at least this distance [15].

2.3.3 Training Dynamics

The success of a Siamese network trained with contrastive loss heavily depends on effective sam-
pling of input pairs. Typically, training involves balanced batches containing equal proportions
of similar and dissimilar pairs to prevent bias towards one type. During training, hard exam-
ples—those challenging to classify correctly—are particularly valuable, as they provide stronger
gradients and improve the discriminative ability of the model [18].

6



Background and Models

Impact of Weight Sharing

Weight sharing significantly contributes to the stability and convergence of Siamese network train-
ing. By constraining both subnetworks to have identical weights, the network drastically reduces
the number of free parameters, thereby mitigating the risk of overfitting. This shared param-
eterization ensures consistent feature extraction across both inputs, reinforcing the learning of
invariant and robust representations. Additionally, it provides symmetrical gradients during back-
propagation, promoting stable convergence and preventing divergence, particularly in scenarios
with limited training data.

Gradient Computations and Backpropagation Dynamics

Consider two inputs x1 and x2 passing through identical subnetworks to obtain embeddings f(x1)
and f(x2). The loss function, typically contrastive loss, is computed as:

Lcontrastive(y, x1, x2) = y · 1
2
[D(x1, x2)]

2 + (1− y) · 1
2
[max(0,m−D(x1, x2))]

2 (2.2)

where D(x1, x2) = ||f(x1)− f(x2)||2 represents Euclidean distance.

During backpropagation, the gradient with respect to each embedding vector is computed.
For similar pairs (y = 1):

∂L

∂f(xi)
= (f(xi)− f(xj)), where i, j ∈ 1,2, i /= j (2.3)

For dissimilar pairs (y = 0) with D(x1, x2) < m:

∂L

∂f(xi)
= −(m−D(x1, x2))

(f(xi)− f(xj))

D(x1, x2)
(2.4)

These gradients then propagate backward through the network, updating shared parameters si-
multaneously. The symmetry in gradient updates further contributes to the network’s stability.

Implicit Metric Learning

Siamese networks implicitly perform metric learning by structuring their embedding space ac-
cording to a learned distance metric. The contrastive loss function explicitly guides the network
to arrange embeddings such that semantically similar inputs are closer together, and dissimilar
inputs maintain a sufficient margin of separation. Through shared weight optimization, Siamese
networks learn a nonlinear mapping from input space to a metric-structured embedding space,
where distances correspond directly to semantic similarity. This implicit metric learning capa-
bility allows Siamese networks to generalize well to unseen classes or categories without explicit
class labels during inference.

2.3.4 Comparison with Triplet Networks

Although Siamese networks and triplet networks share similar motivations—learning discrimina-
tive embeddings—they differ in their training structure. Triplet networks simultaneously process
three samples (an anchor, a positive, and a negative), explicitly enforcing relative distances among
embeddings. In contrast, Siamese networks handle pairs of inputs at a time, making them simpler
to implement but potentially less effective in capturing complex semantic relations due to fewer
constraints on the learned embedding space [18].

Nonetheless, Siamese networks offer computational advantages due to their simpler architec-
ture and are effective in many practical scenarios, especially when the primary objective is pairwise
similarity discrimination [19].

7



Background and Models

Applications and Practical Considerations

Siamese networks have successfully been applied across various domains. In face recognition,
Siamese architectures enable highly accurate face verification by directly comparing facial embed-
dings. Similarly, in object tracking, Siamese networks help maintain object identity across frames
by embedding similarity metrics [20].

When applying Siamese networks, several practical considerations should be noted:

• Effective selection of the margin hyperparameter (m) significantly impacts the embedding
space structure.

• Training pairs should be carefully selected to balance easy and hard examples, ensuring
stable convergence.

• Embedding dimensionality should be chosen thoughtfully, balancing computational effi-
ciency and representational power.

In summary, Siamese networks trained with contrastive loss provide a robust and efficient
framework for similarity-based learning tasks, leveraging deep neural architectures to generate
meaningful embeddings tailored for semantic comparison. However, to further improve represen-
tational capacity and capture finer visual distinctions, we next explore a variety of modern CNN
backbones that serve as high-capacity encoders for our embedding pipeline.

2.4 Evolution and Principles of Convolutional Neural Net-
works

Convolutional Neural Networks (CNNs) have revolutionized the field of computer vision, emerging
as the foundational architecture for modern image analysis and feature extraction tasks. Originally
inspired by biological processes in the visual cortex, CNNs were introduced in the late 1980s by
LeCun et al. with the creation of LeNet, a model designed for handwritten digit recognition [28].
Despite their early promise, initial adoption of CNNs was limited due to computational constraints
and insufficient training data.

A significant breakthrough occurred in 2012 with the advent of AlexNet by Krizhevsky et
al. [29], which demonstrated that CNNs, when combined with large-scale datasets such as Ima-
geNet and powerful GPUs, could significantly outperform traditional hand-crafted image features.
AlexNet’s success sparked rapid innovation and led to deeper and more sophisticated CNN ar-
chitectures such as VGGNet [30], GoogleNet [31], and ResNet [32]. These networks consistently
pushed the boundaries of accuracy by introducing novel architectural elements like deeper convo-
lutional layers, inception modules, and residual connections.

At the core of CNNs is the convolutional operation—a process involving sliding small filters
across the input image to produce feature maps that encode spatial hierarchies. Early layers
typically detect simple patterns such as edges and textures, while deeper layers capture complex
semantic features like objects, parts, and their interactions. Convolutional layers are interleaved
with pooling operations, reducing spatial dimensions and computational requirements while main-
taining salient information. Non-linear activation functions such as Rectified Linear Units (ReLU)
provide CNNs with the capacity to learn complex decision boundaries by introducing non-linearity
into the model.

In recent years, CNNs have become increasingly efficient and specialized, leading to architec-
tures tailored explicitly for deployment in resource-constrained environments. Networks such as
MobileNet [33] and Xception [34] utilize depthwise separable convolutions, drastically reducing
computational overhead while preserving strong representational power. This evolution highlights
the shift towards creating CNNs that balance performance with computational efficiency, meeting
the demands of diverse real-world applications.

Today, CNNs underpin most state-of-the-art visual recognition and embedding tasks, forming
the basis for systems ranging from autonomous driving to medical imaging diagnostics. The con-
tinued refinement and innovation within CNN architectures ensure their pivotal role in advancing
the frontiers of computer vision research and application.

8



Background and Models

2.5 CNN-Based Embedding Backbones
This section presents the different deep learning architectures explored as backbone encoders
for the object embedding task. Multiple convolutional neural networks were investigated, each
evaluated in terms of their capacity to generate compact and discriminative object embeddings
suitable for object-level change detection.

2.5.1 ResNet50

ResNet50 is a deep convolutional neural network consisting of 50 layers and approximately 25.6
million parameters, specifically designed to facilitate the training of very deep models by leveraging
residual learning [35]. The architecture begins with an initial convolutional layer and is followed
by four main stages of convolutional operations, referred to as conv2_x through conv5_x. Each
stage contains multiple residual blocks that incorporate shortcut connections, also known as skip
connections. These connections allow the input of a block to be directly added to its output,
forming a residual mapping defined by F (x) = H(x)−x. This structure helps to preserve gradient
flow during backpropagation and greatly enhances training stability. In its original configuration
for image classification tasks, the network concludes with a global average pooling layer followed
by a fully connected classifier.

Figure 2.2: Basic architecture of ResNet-50, illustrating the sequence of convolutional and residual
blocks across the network.1

ResNet-50 Bottleneck Residual Block

The bottleneck residual block used in ResNet-50 is composed of three sequential convolutional
layers: a 1 × 1 convolution for reducing the number of channels, a 3 × 3 convolution for spatial
processing, and another 1× 1 convolution for expanding the channels back to the original depth.
In a typical configuration from the conv2_x stage, the input tensor has 256 channels. The first
1 × 1 convolution compresses this to 64 channels, followed by a 3 × 3 convolution operating on
these 64 channels. The final 1 × 1 convolution increases the channel dimension back to 256,
thereby preserving the original depth of the block. Each convolutional operation is followed by
batch normalization and a ReLU activation, except for the final 1 × 1 layer, which omits the
activation function. The original input (with 256 channels) is then added to the output of the
three convolutional layers. A ReLU activation is applied to the result of this addition, producing
the final output of the block. This residual connection enables the block to learn modifications
to its input, making it easier to train very deep networks.

1Image Sources: Figure 2.2 Source: Adapted from ResearchGate, “Basic architecture of ResNet50,” https:
//www.researchgate.net/figure/Basic-architecture-of-ResNet50_fig5_363265826.

9

https://www.researchgate.net/figure/Basic-architecture-of-ResNet50_fig5_363265826
https://www.researchgate.net/figure/Basic-architecture-of-ResNet50_fig5_363265826


Background and Models

Figure 2.3: Structure of a bottleneck residual block used in ResNet-50 [32].

Having described the structure of the ResNet-50 bottleneck residual block, we now provide
a detailed breakdown of each stage in the network, beginning with the initial convolution and
progressing through all residual stages.

Initial Convolution and Pooling (conv1)

“The ResNet-50 model begins with an initial convolutional layer, referred to as conv1, which
applies a 7 × 7 convolution (64 filters, stride = 2, padding = 3). This 7×7 conv is followed by
BatchNorm and a ReLU activation, reducing the input resolution from 224 × 224 to 112 × 112.
A 3 × 3 max pooling layer (stride = 2, padding = 1) then further down-samples the spatial
dimensions to 56×56. This forms the stem of the network and prepares the input for the residual
stages.”

Residual Stage 1: conv2_x

The first residual stage, conv2_x, processes 56 × 56 feature maps and contains three bottleneck
blocks. Each block follows the bottleneck structure described earlier. The output of this stage
consists of feature maps with 256 channels. To ensure compatibility for residual addition, the first
bottleneck block includes a 1× 1 convolution on the shortcut path. This projects the 64-channel
input (from the stem) to 256 channels, aligning the shortcut with the output of the block.

Residual Stage 2: conv3_x

The conv3_x stage includes four bottleneck blocks. The first block performs downsampling using
a stride-2 convolution, reducing the feature map resolution to 28× 28. The output channel depth
is doubled to 512. As with the previous stage, a projection shortcut with a 1× 1 convolution and
stride 2 is used to match the dimensions for residual addition.

Residual Stage 3: conv4_x

The third residual stage, conv4_x, consists of six bottleneck blocks. The spatial resolution is
further reduced to 14 × 14 through stride-2 convolution in the first block, and the output depth
increases to 1024 channels. Projection shortcuts are again applied where required to match
dimensions between the main and shortcut paths.

Residual Stage 4: conv5_x

The final residual stage, conv5_x, contains three bottleneck blocks. The first block performs
downsampling, reducing the spatial dimensions of the feature map to 7× 7, while increasing the
number of channels to 2048. As in previous transitions, the first block includes a 1×1 convolution
with stride 2 in the shortcut path to match the dimensions for residual addition.

10



Background and Models

Classification Head

In its standard configuration, the ResNet-50 architecture is designed for large-scale image classifi-
cation tasks such as the ImageNet benchmark [35]. After the final convolutional block (conv5_x),
the network applies a global average pooling (GAP) operation to the 7 × 7 × 2048 feature map,
which reduces it to a 2048-dimensional vector.

This vector is then passed to a fully connected (Dense) layer with 1000 output units, followed
by a softmax activation function to produce class probabilities. This canonical configuration has
demonstrated strong performance on image classification benchmarks and is widely used as a
backbone for transfer learning in vision tasks.

Figure 2.4: Detailed architecture of various ResNet models, including ResNet-50, showing the
number and type of convolutional layers in each residual block, output sizes, and computational
cost (FLOPs). ResNet-50 uses bottleneck blocks consisting of 1×1, 3×3, and 1×1 convolutions.
Figure adapted from [32].

Custom Embedding Head (ResNet-50)

Following the convolutional backbone of ResNet-50, which yields a 7× 7× 2048 feature map from
the conv5_x stage, a custom projection head is applied to transform the extracted features into
low-dimensional embeddings suitable for similarity learning. The first component of this head
is a Global Average Pooling 2D layer [36], which operates on the 7 × 7 × 2048 output from the
conv5_x stage. This layer performs spatial averaging over each feature map, reducing the tensor
to a single 2048-dimensional vector. This operation compresses the spatial information into a
compact global descriptor while retaining the semantic richness of the high-level features.

Subsequently, a Dense (fully-connected) layer with 128 output units is used to project the
2048-dimensional vector into a lower-dimensional embedding space. This layer produces a vector
e ∈ R128 for each input image. The embedding size of 128 dimensions was selected as a balanced
choice between representation power and computational efficiency. This dimensionality is also
widely used in deep metric learning literature for applications such as object retrieval and face
recognition.

Notably, the output of the Dense layer does not pass through any non-linear activation func-
tion; it remains a purely linear transformation. This decision ensures that the full expressiveness
of the embedding space is preserved. A linear output allows the model to produce embeddings
with both positive and negative components, which is important for maintaining the geometric
integrity of distance-based comparisons. Introducing a non-linear function such as ReLU would
eliminate negative values and restrict the embedding space to R128

≥0 , thereby distorting distance
metrics such as cosine similarity or Euclidean distance. By avoiding this constraint, the learned
embeddings retain directional and magnitude information necessary for fine-grained similarity
learning

11



Background and Models

2.5.2 ResNet-101: Deeper Residual Architecture

ResNet-101 is a deeper variant of the ResNet family of convolutional neural networks introduced
by He et al. [32], designed to enhance representational capacity through increased depth while
maintaining efficient gradient propagation via residual connections. It retains the same architec-
tural principles and bottleneck design as ResNet-50 but significantly extends the number of layers,
particularly in the intermediate stages of the network. ResNet-101 contains approximately 44.5
million parameters, compared to 25.6 million in ResNet-50.

Structurally, ResNet-101 consists of 101 layers, including the initial convolution and pooling
layers, followed by a series of bottleneck residual blocks distributed across four main stages:
conv2_x, conv3_x, conv4_x, and conv5_x. The primary architectural difference from ResNet-50
lies in the conv4_x stage, which includes 23 bottleneck blocks in ResNet-101 compared to only
6 in ResNet-50. This substantial increase more than doubles the depth of the network, thereby
enhancing its ability to capture intricate hierarchical features and subtle visual distinctions in
complex scenes.

Figure 2.5: High-level schematic of ResNet-101. Each colored box represents one bottleneck
block; the numbers above indicate output spatial size. In conv2_x there are 3 blocks (3×3×64),
in conv3_x there are 4 blocks (3×3×128), in conv4_x there are 22 blocks (3×3×256), and in
conv5_x there are 2 blocks (3×3×512). Note: Although the diagram shows 22 blocks in conv4_x,
the correct count for ResNet-101 is 23, as described in the original ResNet paper [32].

Figure 2.6: Block-level breakdown of ResNet-50 and ResNet-101 architectures. The table high-
lights the number of residual blocks and the specific convolutional layer shapes in each stage.
Notably, ResNet-101 includes 23 blocks in the conv4_x stage compared to 6 in ResNet-50. Figure
adapted from [37].

Bottleneck Residual Blocks in ResNet-101

ResNet-101 uses the same bottleneck residual block design as ResNet-50 to maintain training
stability across a deeper network. Each bottleneck block contains three convolutional layers in

12



Background and Models

the sequence: a 1 × 1 convolution for reducing the number of channels, a 3 × 3 convolution for
spatial processing, and a final 1 × 1 convolution for restoring the channel depth. A shortcut
connection adds the input to the block’s output to form a residual mapping. This structure is
critical for mitigating vanishing gradients in very deep networks.

Classification Head

Similar to ResNet-50, the canonical ResNet-101 architecture concludes with a classification head
tailored for large-scale image recognition tasks. After the final residual stage (conv5_x), the
network outputs a 7× 7× 2048 feature map. This is followed by a global average pooling (GAP)
layer, which computes the mean across the spatial dimensions of each feature map, resulting in a
2048-dimensional vector.

This vector is then passed to a fully connected (Dense) layer with 1000 output units, each
corresponding to a class in the ImageNet dataset. A softmax activation function is applied to
produce a normalized probability distribution over the 1000 classes. This configuration forms the
standard ResNet-101 architecture as introduced in [32], and is optimized for supervised image
classification tasks on large datasets.

Custom Embedding Head (ResNet-101)

To adapt ResNet-101 for similarity learning tasks, we replace its original classification head with
the same custom projection head described in Section 2.5.1. This projection module, originally
introduced in the ResNet-50 configuration, includes a global average pooling layer followed by a
128-dimensional dense projection layer.

No architectural changes were made to the projection head when used with ResNet-101; this
ensures that any observed differences in embedding performance are attributable solely to the
depth and structure of the backbone network.

Motivation and Training Considerations

The rationale for including ResNet-101 in this study is to investigate the impact of increased
depth on embedding quality and object-level change detection. In theory, deeper networks should
be more capable of capturing subtle visual cues and hierarchical patterns, particularly in sce-
narios involving small, overlapping, or occluded objects. However, this benefit comes at the
cost of increased computational complexity, model size, and inference time. As such, we eval-
uate ResNet-101 alongside its shallower counterparts to assess whether the performance gains
justify the additional resource requirements in practical deployment settings. Training ResNet-
101 required longer convergence time, and regularization techniques such as dropout and data
augmentation were crucial due to the model’s higher capacity and increased risk of overfitting.

Table 2.1 summarizes the key architectural and computational differences between ResNet-50
and ResNet-101 used in this study.

Feature ResNet-50 ResNet-101
Total Layers 50 101
conv4_x Block Count 6 23
Total Parameters ∼25.6 million ∼44.5 million
FLOPs (224×224 input) 4.1 GFLOPs 7.8 GFLOPs [38]
Backbone Output Dimensionality 2048 2048

Table 2.1: Comparative summary of ResNet-50 and ResNet-101 characteristics and performance.

With the next two architectures, MobileNetV2 and Xception, we shift from standard convolu-
tional blocks to a more efficient design paradigm: depthwise separable convolutions. To enable a
clearer understanding of their design philosophy and performance advantages, we provide a brief
explanation of this technique below.

13



Background and Models

Depthwise Separable Convolutions

Depthwise separable convolutions are a widely used architectural innovation designed to reduce
computational complexity and model size, without significantly compromising performance [34],
[39]. They have become a core building block in many efficient convolutional neural networks,
including MobileNet and Xception.

This technique involves decomposing a standard convolution into two operations:

• A depthwise convolution, which applies a spatial filter to each input channel indepen-
dently, extracting localized patterns.

• A pointwise convolution (a 1×1 convolution), which combines the output of the depthwise
step across all channels to produce a richer representation.

By decoupling spatial and cross-channel processing, depthwise separable convolutions dramat-
ically reduce the number of parameters and floating-point operations compared to traditional
convolutions, while retaining much of their expressive power.

Figure 2.7: Side-by-side visualization of standard convolution (top) and depthwise separable con-
volution (bottom), highlighting how spatial and channel-wise operations are decoupled. Adapted
from [40].

2.5.3 MobileNetV2

MobileNetV2 is a convolutional neural network (CNN) architecture designed to deliver high clas-
sification accuracy while maintaining exceptional computational efficiency, making it particu-
larly suitable for mobile and embedded vision systems. Originally introduced by Sandler et
al. [33], it extends the ideas of its predecessor, MobileNetV1, by incorporating two major inno-
vations: inverted residual connections and linear bottlenecks. These mechanisms, combined with
the use of depthwise separable convolutions—a technique that decomposes standard convolutions
into lightweight spatial and channel-wise operations—enable the model to operate effectively on
resource-constrained platforms.

With approximately 3.4 million parameters [33], MobileNetV2 has been widely adopted across
computer vision tasks such as image classification, object detection, and semantic segmentation.
Compared to conventional architectures like ResNet or Xception, it delivers competitive accuracy
at a fraction of the computational cost. In the biomedical domain, for instance, MobileNetV2 has
been successfully applied to the classification of systemic sclerosis skin images, achieving higher
accuracy than traditional CNNs while significantly reducing training time [41].

14



Background and Models

Initial Convolution Layer

The MobileNetV2 architecture begins with a standard convolutional layer designed to process
raw input images. Specifically, this layer applies a 3 × 3 convolution operation with a stride of
2 and 32 output channels. The use of stride 2 reduces the spatial resolution of the input image
by half, which lowers the computational burden in subsequent layers while preserving essential
spatial structure.

This initial convolution plays a dual role: it acts as a low-level feature extractor by capturing
edge and texture information, and it increases the channel dimensionality from 3 (RGB) to 32,
allowing the network to process richer feature maps in the later bottleneck blocks. A ReLU6
activation function typically follows this convolution to introduce non-linearity while ensuring
compatibility with low-precision computation on mobile hardware. Unlike the standard ReLU,
which is unbounded, ReLU6 caps activations at 6. This constraint prevents excessively large values
that could destabilize quantized inference, improving numerical stability and efficiency for 8-bit
integer hardware deployments [33].

This layer sets the foundation for the efficient processing pipeline that follows in MobileNetV2,
ensuring that the early-stage features are appropriately compressed and enhanced for the network’s
lightweight bottleneck modules.

Inverted Residual Blocks

The core innovation of the MobileNetV2 architecture lies in its use of inverted residual blocks,
which serve as the principal building units throughout the network. These blocks are engineered
to maximize efficiency and representational capacity while minimizing computational overhead,
particularly on low-resource devices.

Each inverted residual block is composed of three primary stages:

• Expansion Layer: The input tensor, which typically has a low channel dimensionality, is
first passed through a 1× 1 pointwise convolution that expands the number of channels by
a predefined expansion factor (commonly t = 6). This step increases the capacity of the
model to learn complex features by lifting the input to a higher-dimensional feature space.
A ReLU6 activation and batch normalization follow this expansion.

• Depthwise Convolution: The expanded feature map undergoes a 3×3 depthwise convolu-
tion, which applies a single filter per input channel, rather than combining information across
channels. This technique drastically reduces the number of parameters and floating-point
operations compared to standard convolutions. It is also followed by batch normalization
and ReLU6 activation.

• Projection Layer (Linear Bottleneck): Finally, a 1× 1 pointwise convolution projects
the high-dimensional features back to a lower-dimensional output space. This projection
is followed by BatchNorm, with no ReLU6 activation afterward. Importantly, this de-
sign choice—referred to as a linear bottleneck—helps preserve representational integrity and
avoids information loss that could occur if a non-linear activation were applied to low-
dimensional projections.

The term “inverted” residual block arises from the reversal of the conventional ResNet bottle-
neck structure: instead of compressing and then expanding features, MobileNetV2 expands first
and compresses at the end. When the input and output dimensions match and the stride is 1, the
input is added element-wise to the output of the projection layer, forming a skip connection that
enables gradient flow and mitigates vanishing gradient issues during training. The block struc-
ture is illustrated in Figure 2.8 which highlights the expansion–depthwise–projection pipeline and
skip connection. This structure allows MobileNetV2 to construct deep networks that are both
memory- and computation-efficient, while still maintaining high classification accuracy [33].

15



Background and Models

Input Size Operator Expansion Factor (t) Output Channels (c) Repeats (n) Stride (s)
112× 112× 32 Bottleneck 1 16 1 1
112× 112× 16 Bottleneck 6 24 2 2
56× 56× 24 Bottleneck 6 32 3 2
28× 28× 32 Bottleneck 6 64 4 2
14× 14× 64 Bottleneck 6 96 3 1
14× 14× 96 Bottleneck 6 160 3 2
7× 7× 160 Bottleneck 6 320 1 1
7× 7× 320 1× 1 Conv - 1280 1 1
7× 7× 1280 Global Avg Pool - 1280 1 -
1× 1× 1280 Fully Connected - Num. of Classes 1 -

Table 2.2: Layer-wise configuration of MobileNetV2, adapted from [42]. The table begins with
the first inverted residual block, immediately following the initial 3×3 convolutional layer applied
to the 224× 224× 3 input image.

Classification Head

Once all inverted–residual blocks (each ending with its linear bottleneck) have processed the input,
MobileNetV2 concludes with:

• Global Average Pooling: Reduces h× w × 1280 → 1× 1× 1280.

• Fully Connected + Softmax: Maps the 1280-dim vector to C outputs (the number of
classes), followed by a softmax activation.

Custom Embedding Head (MobileNetV2)
After passing through the sequence of inverted residual blocks, MobileNetV2 concludes its feature
extraction pipeline with a compact and efficient embedding head. Unlike the original classification
architecture—which includes a global average pooling (GAP) layer followed by a fully connected
layer with softmax activation—our configuration replaces the classifier with a lightweight projec-
tion module suitable for metric learning.

Global Average Pooling (GAP): The feature map emerging from the last bottleneck block is
first reduced using a global average pooling layer. This operation compresses the h×w× c tensor
into a fixed-length 1 × 1 × c vector (with c = 1280), summarizing spatial information without
introducing dense parameters. GAP has been shown to improve generalization and is particularly
effective in translation-invariant feature learning [36].

Dense Projection and Normalization: The pooled feature vector is passed through a dense
layer that projects it into a lower-dimensional embedding space (e.g., 128 dimensions), followed
by an L2 normalization layer. This configuration ensures that output vectors lie on a unit hyper-
sphere, which is crucial for cosine similarity-based comparison. The use of L2 normalization aligns
the training objective with angular distance metrics typically used in contrastive and triplet loss
formulations.

This modification makes the architecture suitable for embedding-based applications such as object
matching and change detection, rather than classification. The fully connected softmax layer used
in traditional MobileNetV2 classifiers is excluded in our pipeline to ensure the output remains
suitable for similarity learning tasks.

This final structure is intentionally lightweight and optimized for edge inference. The use of global
average pooling and a streamlined projection head significantly reduces model size and complexity
without compromising performance, especially when combined with pretraining or fine-tuning on
domain-specific datasets [43], [44].

Figure 2.8 illustrates the standard classification architecture of MobileNetV2, which is adapted
later by replacing the final classification head with a custom embedding projection module.

16



Background and Models

Figure 2.8: Overall architecture of MobileNetV2, showing the initial convolution, inverted residual
blocks, and the final classification head. Adapted from [45].

2.5.4 Xception

Xception, short for “Extreme Inception,” is a deep convolutional neural network architecture in-
troduced by François Chollet [34]. It builds upon the Inception family of models but significantly
simplifies the design by replacing the complex Inception modules with depthwise separable convo-
lutions. This architectural shift allows for more efficient computation and better performance on
image classification tasks, while also maintaining a streamlined and modular design that is easier
to optimize.

Depthwise separable convolutions, the core building block of Xception, break down standard
convolutions into two separate steps: a depthwise convolution, which applies a spatial filter to each
input channel individually, followed by a pointwise (1 × 1) convolution that merges information
across channels. This separation drastically reduces the number of parameters and computational
cost, enabling efficient yet expressive feature learning.

17



Background and Models

Figure 2.9: Illustration of a depthwise separable convolution used in the Xception architecture.
Figure adapted from [46].

The total number of parameters in the Xception model is approximately 22.9 million, making
it slightly smaller than ResNet-50 (25.6M) while achieving comparable or better performance on
standard benchmarks such as ImageNet.

In terms of computational cost, Xception requires approximately 8.4 GFLOPs for a 299× 299
input, which is nearly double that of ResNet-50 (4.1 GFLOPs at 224×224) but provides improved
accuracy and architectural simplicity [34]. While more computationally intensive than lightweight
models like MobileNetV2 (0.3 GFLOPs), Xception offers a better balance between expressiveness
and efficiency, especially in scenarios where model capacity is more critical than minimal inference
time.

Due to its balance between accuracy and efficiency, Xception has become a widely adopted
backbone for tasks such as image classification, object detection, and transfer learning applica-
tions.

Structure

The Xception architecture is composed of a total of 14 distinct modules that are organized into
three main functional blocks: the Entry Flow, the Middle Flow, and the Exit Flow. This modular
division enables the network to progressively extract hierarchical features, from low-level textures
to high-level semantic concepts, in a structured and computationally efficient manner [34]. Each
of these three flows plays a critical role in enabling Xception to efficiently model complex image
features while maintaining a manageable number of parameters and operations.

We now proceed to review each of the three major flows—Entry, Middle, and Exit—in greater
detail, highlighting their architectural components, functionality, and impact on feature learning.

Entry Flow

The Entry Flow is responsible for initial feature extraction and spatial resolution reduction. It
begins with two standard convolutional layers that operate directly on the input image, which
has a resolution of 299 × 299 × 3. The first convolution layer uses 32 filters of size 3 × 3 with a
stride of 2× 2, thereby reducing the spatial dimensions and extracting low-level edge and texture
features. This is followed by a second 3 × 3 convolutional layer with 64 filters and a stride of
1× 1, further enriching the representation. Both layers are followed by batch normalization and
the ReLU activation function to introduce non-linearity and maintain stable gradients during
training.

After the initial convolutions, the architecture applies a sequence of modified depthwise sep-
arable convolution layers, each followed by batch normalization and ReLU. These operations are

18



Background and Models

interleaved with 3 × 3 max pooling layers with a stride of 2 × 2, which further downsample the
feature maps while retaining salient features. To ensure effective gradient propagation and feature
reuse, residual connections are added in parallel to the depthwise separable convolutions. These
skip connections are implemented using 1 × 1 convolutions to match the spatial dimensions and
channel depth, allowing for seamless addition of the residual paths.

By the end of the Entry Flow, the network has transformed the high-resolution input image into
a compact, high-dimensional feature map that preserves essential spatial and semantic information
for deeper stages of processing [34].

Figure 2.10: Visualization of the Entry Flow in the Xception architecture.Figure adapted
from [34].

Middle Flow:

The Middle Flow is the core feature extraction stage of the Xception architecture. It consists of
eight identical modules, each made up of three depthwise separable convolution layers with 3× 3
kernels and 728 filters. Each layer is followed by batch normalization and a ReLU activation.
Residual connections span each module, preserving gradient flow and enabling the efficient training
of deep representations.

Unlike the Entry and Exit flows, the spatial dimensions of the feature maps remain unchanged
throughout the Middle Flow. This design allows the network to refine and enrich intermediate
feature representations without altering the resolution. By repeating the same architectural unit
eight times, the model enhances its abstraction capacity while keeping the number of additional
parameters minimal. This repeated structure has been shown to improve generalization on tasks
such as image classification and transfer learning.

19



Background and Models

Figure 2.11: Illustration of the Middle Flow in the Xception architecture, which comprises eight
repeated modules of depthwise separable convolutions with residual connections. This block
enhances the network’s ability to model increasingly abstract features.Figure adapted from [34].

Exit Flow

The Exit Flow finalizes the feature extraction process by further refining the high-level represen-
tations produced by the Middle Flow. It begins with a depthwise separable convolution layer with
728 filters and continues through a series of separable convolutions with progressively increasing
channel depths: 1024, 1536, and finally 2048 filters, each using 3× 3 kernels. As in earlier flows,
each convolution is followed by batch normalization and a ReLU activation function. However,
in the final convolutional block, no residual connection is applied. This design choice allows the
network to avoid mixing original and transformed signals, thereby encouraging the final feature
maps to represent purely learned semantic abstractions without shortcut dependencies.

After the convolutional stack, the architecture applies a Global Average Pooling layer, which
compresses the spatial dimensions of the feature maps into a single vector by averaging across
each channel. This operation significantly reduces the number of parameters and improves gener-
alization. The resulting vector is then passed to a fully connected layer with a logistic regression
classifier, producing the final output probabilities over the target classes.

This flow ensures that the network captures the most abstract and semantically rich features
while maintaining computational efficiency and preserving gradient flow during training through
residual connections.

20



Background and Models

Figure 2.12: Diagram of the Exit Flow in the Xception architecture, which finalizes feature
extraction using high-dimensional depthwise separable convolutions, followed by global average
pooling and a dense classification layer. Figure adapted from [34].

Residual Connectivity

Residual connections run between every module except the very first and the final module. As
detailed in the Entry, Middle, and Exit Flow descriptions, each skip consists of a 1×1 convolution
(when spatial dimensions or channel depth change) so that the summed shortcut matches the
module’s output. These shortcuts preserve gradient flow and ensure stable training even with 36
convolutional layers in 14 modules, mitigating vanishing-gradient issues in a deep stack [32].

Custom Embedding Head (Xception)

While the original Xception architecture concludes with a global average pooling (GAP) layer
followed by a fully connected classification layer, our implementation replaces this classification
head with a lightweight projection module suitable for embedding-based tasks.

After GAP, the resulting 1 × 1 × 2048 feature vector is passed through a dense projection
layer that maps it into a lower-dimensional embedding space (typically 128 dimensions). To align
the output with cosine similarity–based training objectives, an L2 normalization layer follows the
projection. This normalization ensures that all embedding vectors lie on the unit hypersphere,
enabling stable distance-based comparisons.

This modification transforms Xception from a classifier into an embedding model suitable
for metric learning, where similarity is computed using angular distance. Such a design is criti-
cal for applications like object-level change detection, where feature proximity reflects semantic
consistency across different image views.

2.5.5 Summary

In this chapter we reviewed Siamese networks with contrastive loss and showed why we transi-
tioned to modern CNN backbones for embedding. In Chapter 3.10.1, we detail the triplet-based
training pipeline that yields robust similarity descriptors.

21



Background and Models

Model Params (M) FLOPs Backbone Output Dim Embed Dim

ResNet-50 25.6 4.1G 2048 128

ResNet-101 44.5 7.8G 2048 128

MobileNetV2 3.4 0.3G 1280 128

Xception 22.9 8.4G 2048 128

Table 2.3: Summary of parameter count, computational complexity, and dimensionality charac-
teristics for each CNN backbone used in the system. The Backbone Output Dim refers to the
size of the feature map produced after global average pooling in the pretrained model, while the
Embed Dim denotes the 128-dimensional vectors generated by the projection head in our pipeline,
used for similarity computation and training.

As outlined in Table 2.3, the selected backbone architectures vary considerably in depth,
parameter count, and computational cost. These four models—ResNet-50, ResNet-101, Mo-
bileNetV2, and Xception—were chosen to explore a diverse design space that spans deep residual
networks, lightweight mobile-friendly architectures, and depthwise separable convolution schemes.
Each model is integrated into the triplet-based training framework described in Chapter 3,
enabling a systematic evaluation of trade-offs between representational power, efficiency, and
fine-grained matching accuracy. The detailed architectural review provided in this chapter was
therefore essential for understanding their role and performance in the subsequent experimental
pipeline.

22



Chapter 3

Methodology

In this chapter, we construct a complete object-level similarity learning pipeline using triplet
loss and deep CNN embeddings. We detail each component of the system, including dataset
preprocessing, object cropping, embedding generation, training strategy, and inference evaluation.

3.1 Dataset and Annotations

The dataset used in this study adopts the COCO (Common Objects in Context) format, a widely
used schema for object detection and instance segmentation tasks. The COCO standard defines
a structured annotation format that includes fields for image metadata, object categories, bound-
ing boxes, and segmentation masks. Its hierarchical structure supports fine-grained object-level
analysis and is particularly well suited for training deep learning models in vision tasks involving
multiple objects per scene.

Dataset Description

The dataset used in this study consists of real-world visual scenes captured from smart waste
disposal environments. Each image depicts the interior of a household or industrial waste bin,
containing multiple discarded items such as plastic containers, food packaging, paper waste, and
metallic objects. These scenes exhibit naturally occurring clutter, partial occlusion, varied ob-
ject orientations, and challenging lighting conditions. This dataset was provided by NANDO
(ReLearn), a company specializing in AI-based waste management technologies.

The dataset is hosted in a remote cloud-based storage environment and is accessed program-
matically through secure integration with the experimental training pipeline. This setup ensures
efficient and scalable data retrieval without requiring local storage or manual intervention during
model development.

Each image is paired with a structured annotation file adhering to a COCO-style schema.
These annotations include object instance metadata such as segmentation masks, bounding boxes,
and categorical labels. Additional custom fields are also embedded to support object-level change
detection tasks across image pairs.

Images are preprocessed to a fixed resolution of 224 × 224 pixels and grouped into distinct
training, validation, and test subsets. The dataset spans a wide spectrum of waste materials,
container conditions, and spatial layouts, providing a robust basis for learning embeddings that
generalize well across intra-class variability and real-world occlusions.

23



Methodology

Figure 3.1: Example images from the dataset showing waste items with their segmentation masks.

3.1.1 Annotation Schema and Metadata

The annotation file used in this study adheres to a COCO-style structure and includes four
primary components: info, images, categories, and annotations. These elements respectively
encode dataset-level metadata, image descriptors, category definitions, and per-object annotation
entries.

Each image entry contains a unique identifier along with its associated filename, height, and
width. Every object annotation is linked to its corresponding image via the image_id field and
includes both a bounding box (bbox) and a segmentation mask (segmentation) for precise spatial
delineation. Category assignments are encoded using the category_id, which maps to human-
readable labels defined in the categories section.

In addition to standard COCO fields, the annotation format incorporates custom attributes to
support object-level change detection. These include flags such as is_new, which indicates whether
the object appears only in the later image of a pair, and is_occluded, which identifies instances
that are partially obscured. These metadata fields enable downstream modules to distinguish
added objects and handle ambiguous cases during embedding comparison.

To illustrate the schema, a sample entry from each annotation component is shown below:

"images": [
{
"id": 1,

24



Methodology

"width": 1280,
"height": 1024,
"file_name":

"real/2024_Week31_Tiny-0615_plastic_metal/data/2024-08-08___09-00-06.jpg",
"license": 0,
"flickr_url": "",
"coco_url": "",
"date_captured": 0

}
],
"annotations": [
{
"id": 1,
"image_id": 1,
"category_id": 39,
"segmentation": [[605.92, 965.16, 763.46, 804.04, ...]],
"area": 117128.0,
"bbox": [386.32, 429.29, 441.59, 535.87],
"iscrowd": 0,
"attributes": {"new": "yes", "occluded": false}

}
],
"categories": [
{
"id": 1,
"name": "ALUMINIUM CAN",
"supercategory": ""

}
]

Listing 3.1: Sample COCO-style JSON entries for image, annotation, and category fields

3.1.2 Category Set and Annotation Statistics

The dataset comprises 7,150 images and 36,739 object-level annotations, spanning 53 distinct
semantic categories. Each object instance is associated with a unique category_id corresponding
to one of the predefined classes, such as paper cup, plastic bottle, or aluminium can. These
categories reflect typical waste types encountered in real-world disposal settings, particularly in
office environments.

Table 3.1 and Figure 3.2 jointly illustrate the distribution of annotations across categories. A
substantial imbalance is evident: dominant classes like paper cup and crumbled tissue appear over
6,000 times across more than 2,500 distinct images. In contrast, rare categories such as COVID
test or laptop charger occur in only a single image each, often with a single annotated instance.

This class imbalance arises naturally from the frequency of certain disposal behaviors—items
like paper cups and tissues are common in shared office spaces, whereas specialized items such as
medical kits or electronics appear far less often. As a result, the dataset reflects realistic usage
patterns but presents challenges for training generalizable models.

25



Methodology

Category ID Category Name Instance Count

20 PAPER CUP 6,890
9 CRUMBLED TISSUE 5,576
22 PAPER PACKAGING 5,034
30 PLASTIC BOTTLE 2,548
39 PLASTIC SNACK PACKAGING 2,435
37 PLASTIC PACKAGING 1,935
33 PLASTIC CUP 1,927
1 ALUMINIUM CAN 1,473
18 ORGANIC SCRAPS 1,071
32 PLASTIC CAP 911

Table 3.1: Top 10 most frequent object categories by instance count.

Figure 3.2: Annotation distribution across the top and bottom 10 object categories. The figure
shows both the number of annotations and the number of distinct images per category.

26



Methodology

3.1.3 Image Integrity Filtering

To ensure the reliability of the dataset before training, a systematic filtering step was imple-
mented to detect and remove corrupted or unreadable images. Each image in the dataset was
programmatically opened and verified using the Python Imaging Library (PIL). The verification
step (‘img.verify()‘) ensures that each file is a valid image and not partially written, truncated,
or in an unsupported format.

Images that triggered exceptions during this check were flagged as corrupted and excluded from
the dataset. This step helped prevent downstream issues during preprocessing, model training,
or augmentation.

The filtering process resulted in the exclusion of 192 invalid files (the exact filenames are logged
and available for inspection). The remaining image set was stored in a cleaned image dictionary
(img_map), which was used for all subsequent annotation processing and model input generation.

3.1.4 Dataset Splitting Strategy

Following image verification and the exclusion of 192 corrupted or invalid images, the remaining
dataset was split into training, validation, and test subsets using a fixed 80/15/5 ratio. The final
counts after filtering are summarized in Table 3.2. .

Split Image Count Percentage

Training Set 5,566 80%
Validation Set 1,044 15%
Test Set 348 5%

Total 6,958 100%

Table 3.2: Dataset split distribution by subset and percentage.

The resulting split assignment was saved in a dictionary format to ensure reproducibility and
was used consistently throughout the training and evaluation pipeline.

3.2 Object Extraction and Cropping

Accurate object-level comparison begins with precise extraction of individual object instances
from their source images. While several strategies exist—such as extracting raw bounding boxes,
applying ROI-aligned crops, or using segmentation with fixed padding—this system adopts a
polygon-based cropping method guided by segmentation masks. This approach has been
empirically shown to improve visual consistency and model accuracy by reducing background
noise and preserving object shape.

3.2.1 Polygon-Based Cropping

To enable object-level comparison, each annotated object is individually extracted from its source
image. Rather than relying solely on bounding boxes, this system uses polygon segmentation
masks provided in the COCO-style annotation file to define more precise object boundaries.

Each image entry is loaded from disk and if the image is corrupt or unreadable, it is safely
skipped to ensure robustness in large-scale processing.

For each annotation, the ‘segmentation‘ field contains polygon coordinates that delineate the
object’s shape. These polygons are parsed and reshaped into a set of (x, y) coordinates. A binary
mask is then created with the same dimensions as the image, where the region inside the polygon
is filled with ones using OpenCV’s ‘fillPoly‘ function.

27



Methodology

This binary mask is applied channel-wise to the image, effectively removing the background
and isolating the object pixels. The system then computes the tightest rectangular bounding box
around the nonzero mask area by identifying the minimum and maximum x and y coordinates of
the active region.

From this region, a tight crop is extracted from the original image. To standardize input
dimensions for deep learning models, the crop is resized to 224 × 224 pixels using TensorFlow’s
‘resize with pad‘. This method preserves aspect ratio while padding the image to maintain square
dimensions.

This approach ensures consistent and centered object crops with minimal background inter-
ference, crucial for accurate embedding generation in later stages.

Figure 3.3: Polygon-fit object crops extracted from a single input image including five objects.

3.2.2 Metadata Management

Along with the cropped image patches, important metadata is recorded for each object to support
matching, filtering, and triplet mining during training. The following fields are stored:

• category_id: Numerical identifier corresponding to the object class (e.g., bottle, paper,
plastic).

• is_new: Boolean flag indicating whether the object is newly added in the second image of
a pair. This value is extracted from the custom ‘attributes‘ section of the annotation.

• is_occluded: Boolean flag indicating if the object is partially occluded. This is also
retrieved from the optional ‘attributes‘ field in the annotation.

The resulting crops and their associated metadata are returned together as Python lists,
enabling downstream components to access both the visual and semantic properties of each object.
This structured design supports later modules such as embedding comparison, similarity scoring,
and change detection logic.

3.2.3 Embedding Generation for Cropped Objects

Once object crops have been extracted from each image using the polygon-based cropping
strategy, the next step is to transform each visual crop into a compact vector representation that
captures its semantic appearance. This is achieved using a pretrained or fine-tuned convolutional

28



Methodology

neural network, which acts as an embedding backbone (e.g., ResNet-50, MobileNetV2, Xception)
followed by a lightweight projection head.

Formally, let C = {c1, c2, ..., cN} be the set of N object crops extracted from a given image,
where each ci is a tensor of shape (224 × 224 × 3). These tensors are stacked into a batch and
passed through the embedding model Fθ, yielding a corresponding set of embeddings:

E = {e1, e2, ..., eN} = Fθ(C) where ei ∈ R128

Each resulting vector ei lies in a 128-dimensional embedding space and encapsulates the high-
level visual features of the corresponding object crop. This embedding is the output of the final
projection head attached to the CNN backbone, trained to produce normalized and semantically
meaningful representations. The final output tensor has shape (N, 128), where N is the number
of cropped objects in the image. These embeddings are later used for semantic comparison across
object instances, forming the basis for matching, recognizing added objects, and triplet-based
training strategies.

3.3 Cosine Similarity

Once object embeddings have been generated for a given image pair, the system performs pairwise
comparison to identify semantically similar objects. This is achieved through a cosine similarity-
based matching strategy, which computes angular similarity between embeddings while incorpo-
rating class-level consistency constraints.

Given two sets of embeddings—one from the first image and another from the second im-
age—the system first applies L2 normalization to each embedding vector. This projects all vectors
onto the unit hypersphere, ensuring that similarity measurements are based purely on direction
rather than magnitude. Cosine similarity is then computed between each embedding in the first
image and every embedding in the second image, yielding a similarity matrix of shape (NA, NB) ,
where NA and NB denote the number of objects in each image, respectively. Each element in the
matrix reflects the cosine similarity score between a pair of object embeddings (ai,bj), computed
as:

sim(ai,bj) =
ai · bj

∥ai∥2 · ∥bj∥2
(3.1)

Since the vectors are L2-normalized prior to comparison, we have:

∥ai∥2 = ∥bj∥2 = 1

Substituting into the cosine similarity formula yields:

sim(ai,bj) =
ai · bj

1 · 1
= ai · bj

Thus, the similarity score reduces to the dot product between the normalized vectors, which
reflects the cosine of the angle between them.

In implementation, cosine similarity is computed using the cdist function, which returns cosine
distance—defined as:

dist(ai,bj) = 1− sim(ai,bj) (3.2)

To recover true similarity scores, we subtract the result from 1.0. This ensures that each value in
the resulting matrix reflects semantic similarity, with higher values indicating closer correspon-
dence between object embeddings. The following example demonstrates how the similarity matrix
is constructed by comparing objects across an input image pair.

29



Methodology

Figure 3.4: Example image pair used to construct the cosine similarity matrix. The system
compares object embeddings from Image A (row) and Image B (column).

In this example, the system extracted 6 objects (A0–A5) from Image A and 8 objects (B0–
B7) from Image B. For each cropped instance, L2-normalized embeddings were computed and
compared using cosine similarity, producing a (6 × 8) matrix of semantic similarity scores. The
values indicate how closely each object in Image A corresponds to objects in Image B, with scores
approaching 1 reflecting high alignment.

Cosine similarity constitutes a fundamental component of the proposed framework. It underpins
triplet generation during both training phases (see Section 3.4), guides the object matching and
added-object detection process (Section 3.7), and directly influences the evaluation outcomes
(Section 4.3).

3.4 Triplet Learning and Triplet Loss

Triplet learning is a foundational approach in deep metric learning, designed to teach neural
networks how to understand similarity relationships between data points. Rather than relying on

30



Methodology

traditional classification labels, this method learns a continuous embedding space where samples
from the same semantic class are mapped closer together, while samples from different classes are
positioned further apart.

The learning process is based on structured training examples called triplets. Each triplet
consists of three images: an anchor image, a positive image that is semantically similar to the
anchor, and a negative image that is semantically dissimilar. The core objective is to ensure that
the anchor is more similar (closer in the learned feature space) to the positive than to the negative.

This learning paradigm is particularly effective for tasks like face recognition, object re-
identification, and fine-grained visual similarity, where the goal is not just to classify, but to
reason about visual closeness. By focusing on relative comparisons rather than absolute labels,
triplet learning enables the model to generalize well to unseen categories during inference.

In practical implementations, triplet learning is often coupled with techniques such as hard
negative mining and custom sampling strategies to ensure that the selected triplets are informative
and challenging, which accelerates convergence and enhances discriminative power.

3.4.1 Triplet Loss Formulation and Intuition

Triplet loss is a core concept in deep metric learning, designed to guide models to learn embeddings
that reflect similarity relationships among inputs. Each training example consists of three samples:
an anchor (A), a positive (P ), and a negative (N). The anchor and positive belong to the
same class, while the negative belongs to a different class. The objective is to ensure that the
distance between the anchor and the positive is smaller than the distance between the anchor and
the negative by at least a fixed margin α. [18]

Mathematically, triplet loss can be expressed as:

L =

m∑︂
i=1

[︁
∥f(xi

a)− f(xi
p)∥22 − ∥f(xi

a)− f(xi
n)∥22 + α

]︁
+

(i.e., max(0, ·))

Where:

• f(x) is the embedding function (e.g., a deep neural network),

• xi
a, xi

p, xi
n are the anchor, positive, and negative samples,

• α is a margin hyperparameter that enforces a minimum distance between dissimilar pairs,

• [·]+ denotes the hinge function, i.e., max(0, ·).

This formulation encourages the model to learn an embedding space where similar items are
pulled closer together and dissimilar items are pushed apart, improving the model’s ability to
differentiate between subtle variations in input data. It has been widely used in applications such
as face verification, image retrieval, and fine-grained recognition tasks. [47], [48]

Intuition Behind Triplet Loss:

• Similar pairs (anchor and positive) should be embedded close together.

• Dissimilar pairs (anchor and negative) should be embedded far apart.

Through this learning mechanism, triplet loss enables the model to map raw input data into
a representation space that captures semantic similarity relationships more effectively.

31



Methodology

Figure 3.5: Visual explanation of triplet loss: training pulls anchor and positive samples closer
together while pushing negatives apart by at least the margin α [49].

Margin Selection

The margin α in the triplet loss function is a critical hyperparameter. A small margin may not
enforce sufficient discrimination between positive and negative pairs, while a large margin can
make it difficult for the model to satisfy the loss constraint, slowing or destabilizing training.
Empirically, margins in the range [0.1, 1.0] are often used and are selected via cross-validation.

Triplet Mining

Efficient training with triplet loss relies heavily on how triplets are selected. Random triplet
selection is typically ineffective, as most triplets will trivially satisfy the margin condition, yielding
little to no loss. Instead, more informative mining strategies are employed:

• Hard Negative Mining: This strategy selects triplets where the negative is closer to the
anchor than the positive, i.e., ∥f(xa) − f(xn)∥22 < ∥f(xa) − f(xp)∥22. These are the most
difficult examples and lead to the strongest gradients. However, they can introduce noise
and instability, especially early in training.

• Semi-Hard Negative Mining: This method selects negatives that are farther from the
anchor than the positive, but still within the margin:

∥f(xa)− f(xp)∥22 < ∥f(xa)− f(xn)∥22 < ∥f(xa)− f(xp)∥22 + α

Semi-hard negatives are informative but less noisy than hard negatives, making them suit-
able for stable convergence.

• Hard Positive Mining: This strategy selects the most distant positive sample from the
anchor, i.e., the same-class sample with the largest embedding distance:

∥f(xa)− f(xp)∥22 = max
pos

∥f(xa)− f(xp)∥22

Hard positives force the model to learn tighter intra-class clustering by pulling even difficult
same-class samples closer to the anchor. However, they may introduce noise if the positives
are mislabeled or contain significant artifacts.

• Semi-Hard Positive Mining: This method selects positives that are more distant than
average but not the hardest. These samples represent natural intra-class variation without
being outliers, making them useful for consistent gradient updates and better generalization.

• Batch-All vs. Batch-Hard: In Batch-All mining, all valid triplets within a mini-batch
are used, increasing the number of training signals. In Batch-Hard mining, only the
hardest positive and hardest negative per anchor are used. The choice depends on dataset
size, batch size, and computational resources. [47]

32



Methodology

Proper triplet mining ensures that the network continuously encounters challenging compar-
isons, which improves generalization and embedding discriminativeness. Mining strategy design
is a key research area in deep metric learning and has a direct impact on final model performance.

3.4.2 Triplet Mining Strategy for Embedding Generation

To train an effective metric learning model, we implemented a structured triplet mining pipeline
that extracts meaningful anchor-positive-negative tuples from the training dataset. Each triplet
is formed by selecting:

• Anchor: an object crop from an image A.

• Positive: a semantically matching object from image B, with the same category label and
high similarity to the anchor.

• Negative: a challenging distractor, ideally from the same category but with low similarity
to the anchor.

This design encourages the model to distinguish fine-grained visual differences even within the
same object class. Our triplet generation pipeline ensures both semantic and geometric diversity
while maintaining control over difficulty.

Positive Sampling Strategy

Given a pair of images A and B, we generate embeddings for all detected object crops in both
images. For each object ai in image A, we compute cosine similarity with all objects in B.
Positives are selected by:

• Matching category_id between ai and bj ,

• Cosine similarity ≥ τpos (empirically set to 0.67),

• Ensuring each bj is used at most once.

Among candidates, the bj with highest similarity is chosen as the positive. This hard-positive
mining ensures the model learns to focus on subtle differences even among visually similar objects.

Negative Sampling Strategy.

After selecting the anchor-positive pair (ai, bj), the negative nk is sampled using the following
logic:

• Prefer same-category negatives with similarity ≤ τneg (set to 0.4),

• If no suitable negative exists in image B, a fallback negative is randomly sampled from a
different image containing at least one valid crop.

This ensures that the triplet always contains an informative negative, either hard (same class,
dissimilar) or semi-hard (random, diverse).

Efficiency Considerations.

To increase dataset coverage and avoid bias, triplet mining is executed over multiple passes. A
limit of 20 triplets per anchor image is enforced to balance memory usage and difficulty diversity.

33



Methodology

3.4.3 Triplet Dataset Construction and Loading

To enable efficient model training using triplet loss, the system constructs a TensorFlow-based
pipeline that wraps anchor, positive, and negative samples into a batched dataset structure. This
format allows high-throughput, GPU-accelerated loading and transformation of training examples.

For each CNN-based embedding model—including ResNet-50, ResNet-101, MobileNetV2, and
Xception—a dedicated triplet generation phase is performed. In this phase, embeddings are
extracted from object crops using the respective pre-trained backbone with frozen weights. Based
on similarity scores computed in the embedding space, triplet samples are created and categorized
into training and validation sets.

The training triplets are derived from the training portion of the dataset, whereas the valida-
tion triplets are constructed exclusively from the validation split. This separation ensures a clear
distinction between learning and evaluation phases, promoting reliable generalization assessment.
Once generated, these triplets are serialized and stored as NumPy arrays on disk for future reuse.

During model training, the serialized datasets are loaded into memory and passed through a
modular pipeline that performs the following operations:

• Anchors, positives, and negatives are stacked into tensor groups with consistent shape.

• The training dataset is shuffled to promote randomization and prevent memorization.

• The validation dataset is kept unshuffled to maintain consistency during evaluation.

• All datasets are batched to ensure memory efficiency and accelerated computation.

This strategy ensures that each backbone model receives its own triplet dataset tailored to
the structure of its embedding space. By decoupling the triplet generation process from the
training loop, the system achieves both high flexibility and scalability, supporting consistent
experimentation across different CNN architectures.

Triplet Generation Statistics

To support comparative training across architectures, separate triplet datasets were generated for
each CNN-based embedding model. The following table summarizes the total number of training
and validation triplets created for each model:

Model Training Triplets Validation Triplets

ResNet-50 9,184 1,428
ResNet-101 9,094 2,691
MobileNetV2 8,860 990
Xception 8,005 1,486

Table 3.3: Summary of training and validation triplet counts generated for each CNN-based
embedding model.

These model-specific triplet sets form the basis for the first phase of training described in
Section 3.10. During this phase, the frozen backbones of each CNN architecture are used to train
the projection layers using the generated triplets. The corresponding validation triplets enable
performance monitoring and early stopping, ensuring that each embedding model is optimized
under consistent and architecture-specific training conditions.

Visualization of Training and Validation Triplets

To qualitatively inspect the effectiveness of our triplet generation strategy, we visualized a selection
of anchor-positive-negative triplets sampled from both the training and validation datasets. These

34



Methodology

visualizations provide intuitive insight into the learning objective and help verify the semantic and
visual consistency of the generated triplets.

For each triplet:

• The anchor is a reference object crop from an image in the dataset.

• The positive is a visually and semantically similar object from a paired image.

• The negative is a visually distinct or semantically dissimilar object, which may belong to
the same category or a different one, but exhibits low embedding similarity to the anchor.

These visualizations confirm that:

1. Positives maintain high intra-class similarity in shape, texture, or pose.

2. Negatives provide meaningful contrast by introducing subtle or significant variation, which
encourages the network to learn more discriminative embeddings

3. No obvious annotation or sampling errors are present in the generated triplets.

The following figures display multiple triplets from the training and validation sets respectively,
arranged in rows of three (anchor, positive, negative). This visual feedback is instrumental in
validating the quality of the embedding training pipeline before proceeding to model training.

Figure 3.6: Visualization of three training triplets generated using ResNet-50 embeddings.

35



Methodology

Figure 3.7: Visualization of two validation triplets constructed using ResNet-50 embeddings

3.4.4 Cosine-Based Triplet Loss

While the standard triplet loss is commonly defined using Euclidean (L2) distance, our implemen-
tation adopts a cosine similarity-based variant to better capture angular relationships between
embeddings. This approach is particularly effective when using L2-normalized vectors, as it em-
phasizes directional alignment rather than magnitude.

To optimize the embedding space such that semantically similar objects are positioned closer
together and dissimilar ones farther apart, we use a margin-based triplet loss defined over cosine
similarity. This loss formulation is consistently applied throughout both Phase 1 and Phase 2
training stages (see Section 3.10), where it serves as the primary optimization objective for learning
robust and discriminative object embeddings.

Given an anchor sample A, a positive sample P (same category), and a negative sample N
(different or dissimilar object), the objective is to satisfy:

Ltriplet = max (0, α− sim(A,P ) + sim(A,N))

where:

• sim(A,P ) and sim(A,N) represent cosine similarity scores,

• α is the enforced margin (empirically set to 0.3 in our implementation).

3.5 Fine-Tuning Step

Building on the foundations of transfer learning, we initialize our models with strong visual priors
using pre-trained backbones, ResNet-50, ResNet-101, MobileNetV2 and Xception. In the second
training phase, we selectively unfreeze and fine-tune the deeper layers of each architecture to better
adapt to the object-level challenges present in our dataset, such as partial occlusions, ambiguous
visual similarity, and high clutter within disposal environments.

For the ResNet-based models, this includes unfreezing layers within the conv4_x and conv5_x
blocks, which are responsible for capturing high-level semantic features. In MobileNetV2, we fine-
tune the final inverted residual blocks—specifically Blocks 14 to 16. For the Xception architecture,
we target Blocks 11 to 14, which correspond to the latter stages of the Middle Flow and the entire
Exit Flow. These fine-tuning choices are discussed in greater detail in Section 3.10.

To effectively train these layers and expose the models to realistic object variation, we apply an
enhanced triplet mining strategy in combination with strong image augmentation. This strategy

36



Methodology

dynamically generates new, diverse triplets during training, simulating fresh and variable condi-
tions across epochs. Such an approach allows the network to learn from a more representative
distribution of intra-class variation and inter-class contrast.

The specific methodology used for sampling and augmenting triplets in this fine-tuning phase
is described in the sections that follow.

3.5.1 Enhanced Triplet Generation for Fine-Tuning

During the second phase of training, the triplet generation process was refined to support ro-
bust metric learning under realistic and challenging visual conditions. The improvements were
introduced to enhance intra-class flexibility, harden inter-class discrimination, and better simulate
environmental clutter. Below, we outline the key enhancements individually:

• Positive Sampling Strategy: The threshold for accepting a sample as a positive was
reduced from 0.67 to 0.6. This relaxation allowed the inclusion of more varied intra-class
examples—objects that, while semantically similar, may differ in appearance due to real-
world factors such as lighting shifts, partial deformation, or pose variation. A positive was
selected from the second image of a pair if it:

– Shared the same category_id as the anchor,

– Had a cosine similarity score ≥ 0.6 with the anchor’s embedding,

– Had not already been selected for another triplet in the same batch.

This selection strategy promotes intra-class diversity within training batches and improves
the model’s ability to learn consistent embeddings across varying visual appearances.

Figure 3.8: Example of anchor–positive pair

• Negative Sampling Strategy: To enforce a more discriminative embedding space, we
adopted a hard negative mining policy. A candidate negative was selected from the second
image of a pair if it:

– Belonged to the same category_id as the anchor,

– Had a cosine similarity score ≤ 0.5 with the anchor’s embedding,

– Represented a distinct object not previously selected in the current batch.

These candidates are considered “hard” due to their visual closeness yet semantic dissimi-
larity. If no valid hard negative was found, a fallback strategy selected a random negative
from a different category and image.

37



Methodology

Figure 3.9: Example of a hard negative sample.The anchor and negative objects both belong to
the paper category but exhibit distinct shapes and textures. Despite their semantic dissimilarity,
their visual resemblance leads to a low cosine similarity score (≤ 0.5), qualifying this pair as a
hard negative.

• Occlusion Inclusion: The fine-tuning phase maintained this policy by continuing to in-
clude partially occluded objects as valid anchors and positives. This choice reflects a deliber-
ate design decision to simulate real-world visual clutter common in waste bin environments,
where objects are frequently overlapped or partially hidden. Allowing occlusion enhances
the model’s robustness and its ability to learn embeddings that generalize under imperfect
visibility conditions.

Triplet Dataset for the Fine-Tuning step

Triplets were constructed from temporally adjacent image pairs in the dataset. For each anchor
object detected in the first image of a pair, a positive and a negative crop were selected based
on predefined sampling strategies. This process was iteratively applied across all valid object
instances, with a cap of 15 triplets per image pair to ensure sample diversity and avoid redundancy.

Once generated, the triplets were integrated into the training pipeline, where they were dy-
namically batched, augmented, and passed through the network for optimization. Separate triplet
datasets were created for each backbone model: training triplets—extracted from the training
split—were used to fine-tune the deeper layers of the models, while validation triplets—generated
from the validation split—served for performance monitoring during training. The following table
summarizes the number of training and validation triplets produced per model:

Model Training Triplets Validation Triplets

ResNet-50 10,606 2,652
ResNet-101 10,607 2,652
MobileNetV2 10,072 2,518
Xception 10,286 2,572

Table 3.4: Number of triplets generated for each model, split by training and validation sets.

38



Methodology

Figure 3.10: Enhanced triplet examples used in Fine-Tuning step

3.6 Augmentation

In deep metric learning, particularly when using triplet loss, data augmentation is not merely a
technique for increasing data volume—it is a foundational strategy for improving model robust-
ness, enhancing generalization, and simulating real-world object variability. The effectiveness of
an embedding model heavily depends on its ability to remain invariant to superficial changes in
input data while still distinguishing between truly distinct classes.

General Importance of Augmentation in Deep Learning

Augmentation introduces controlled randomness to training data, generating realistic variations in
object appearance. These variations—such as geometric transformations, occlusions, or lighting
shifts—force the model to extract more abstract, invariant features rather than memorizing fixed
spatial or color patterns. This mechanism acts as a regularizer, reducing overfitting, improving
generalization, and enabling more stable convergence during training. These effects have been
extensively validated in computer vision research [50].

Augmentation Relevance in Triplet Loss Framework

In contrastive and triplet-based metric learning, the network is trained to compare image embed-
dings rather than predict fixed labels. Each training step presents an anchor image, a positive
sample (same class), and a negative sample (different class). If the anchor and positive appear
too similar (e.g., same lighting, orientation), the learning signal becomes weak and may lead to
collapsed embeddings. Conversely, if negatives are overly perturbed, they risk overlapping with
the positives semantically.

Therefore, a well-balanced augmentation policy is essential:

• Enhancing generalization: Strong augmentations prevent the network from learning
trivial correlations such as background, color tint, or camera angle. This ensures that
embeddings are shaped by semantic content rather than pixel-level features [50].

• Simulating intra-class variability: In real-world scenarios, objects from the same class
often differ due to rotation, compression, lighting, or partial occlusion. If a model has only
seen unvaried examples, it may incorrectly treat these variations as inter-class dissimilarity.
By augmenting anchor and positive samples with such transformations, the model learns to
encode class-level consistency despite these distortions.

39



Methodology

3.6.1 Augmentation Strategy: Motivation and Design

As observed in the raw data samples (see section 3.1), our dataset contains significant intra-class
variation caused by:

• Severe object rotation due to camera angle or disposal orientation.

• Spatial translation within the bin and compression from surrounding waste.

• Occlusions due to overlap between waste items or bin edges.

• Variations in lighting and plastic transparency, altering visual appearance.

These challenges make it difficult for a non-augmented model to generalize well. Thus, to simulate
these conditions and increase tolerance to such distortions, we integrate synthetic transformations
as part of the triplet generation process.

Overall, our augmentation policy is both empirically motivated by visual inspection of the
dataset and theoretically grounded in deep metric learning literature. The approach ensures that
embeddings for similar objects remain consistent under variation while reinforcing contrast for
dissimilar ones, ultimately improving the discriminative power of the learned representation space.

To implement a robust augmentation strategy tailored to our task, we divide the transforma-
tions into two separate policies:

• Advanced augmentations are applied to anchor and positive samples to simulate realistic
intra-class variation.

• Minor augmentations are applied to negative samples to introduce slight variability with-
out compromising semantic distinctiveness.

The following subsections detail the specific augmentations used for each case.

Anchor and Positive Augmentation: Advanced Transformations

To simulate real-world intra-class variation and enhance the model’s robustness, we apply a set
of advanced augmentations to both anchor and positive samples during triplet training. These
transformations are designed to introduce controlled perturbations that reflect common sources
of visual distortion observed in the dataset, such as object rotation, spatial shifts, illumination
changes, scale variations, and occlusion. The augmentations are implemented using a combination
of OpenCV and NumPy within a TensorFlow-compatible preprocessing pipeline.

The augmentation function introduces the following transformations sequentially:

• Rotation: Each input image is rotated by a random angle sampled uniformly between −50◦

and +50◦. This simulates disposal scenarios where objects appear in arbitrary orientations
within the bin.

• Shift (Translation): To account for spatial displacements within the bin, images are
shifted randomly along both the horizontal and vertical axes by up to ±35 pixels. The
transformation matrix is generated using NumPy and applied via OpenCV’s affine warping.

• Brightness Adjustment: Lighting conditions inside disposal environments often vary due
to reflective surfaces or shadows. We simulate this by scaling the pixel intensity values by
a factor between 0.7 and 1.3. This operation ensures variability in photometric appearance
while preserving semantic content.

40



Methodology

• Zooming: The object scale is randomly adjusted between 0.7× (zoom-out) and 1.4× (zoom-
in). Depending on the zoom factor, the resulting image is either padded (for zoom-out) or
center-cropped (for zoom-in) to restore the original dimensions. This step allows the model
to become invariant to object size changes due to proximity or camera viewpoint.

• Occlusion: With a 50% probability, a random rectangular patch is blacked out to simulate
partial occlusion. The size of the occlusion ranges from 20 pixels to half the image width
and height, and its position is randomly selected. This simulates realistic scenarios where
objects are partially covered by other items or obstructed by bin edges.

Figure 3.11: Illustration of advanced data augmentations applied to anchor and positive samples.
Each row displays a distinct object crop undergoing the five transformations: rotation, translation,
brightness adjustment, zooming, and occlusion.

The transformations described above are not applied in isolation but are executed sequen-
tially in a combined augmentation pipeline. By applying these operations together, we emulate
the complex and compounding effects that often occur in real disposal bins—where objects can
be randomly oriented, partially hidden, variably illuminated, and distorted due to environmen-
tal or physical interaction. However, while such aggressive augmentation increases diversity and
promotes generalization, it also introduces the risk of semantic distortion if pushed too far. Exces-
sive transformations—such as extreme occlusion, over-rotation, or low-brightness clipping—can
cause the altered sample to deviate significantly from its original semantic identity. To mitigate
this, each augmentation is bounded within empirically defined limits, ensuring that the trans-
formed samples remain visually realistic and semantically consistent with their original category.
This balance enables the network to learn robust embeddings without introducing label noise or
collapsing intra-class similarity.

Anchor and Negative Augmentation: Subtle Variations for Semantic
Integrity

In contrast to anchor and positive samples, negative images in triplet learning represent seman-
tically dissimilar instances. The goal during training is to ensure that these negatives remain
sufficiently distinct in the embedding space. Excessive or aggressive augmentation on negative
samples could distort their appearance to the point where they may unintentionally resemble
positives, leading to embedding collapse or ambiguous gradients.

To mitigate this, we employ a minimal augmentation policy for negatives. This implementation
designed to simulate mild variations without altering the fundamental identity of the object.

The two augmentation steps applied are:

• Shift (Translation): A mild translation is applied by randomly shifting the image hori-
zontally and vertically by up to ±10 pixels. This low-magnitude transformation introduces
spatial diversity without deforming the object or affecting its semantic identity.

41



Methodology

• Brightness Adjustment: The image brightness is scaled by a small factor between 0.8 and
1.2. This accounts for natural variation in lighting across scenes while keeping the object
easily recognizable as a distinct instance. The intensity scaling is clipped to maintain valid
pixel values within the 8-bit range [0, 255].

These restrained augmentations maintain the visual realism and semantic integrity of neg-
ative samples while still contributing a slight stochastic element to the training process. This
design choice prevents overfitting while safeguarding the core triplet loss objective: ensuring that
anchor–negative distances remain significantly larger than anchor–positive distances.

Overall, by adopting this asymmetric augmentation strategy -strong perturbations for anchor-
positive pairs and mild noise for negatives - we preserve the contrastive nature of the loss while
enhancing the robustness of the embedding space. This approach aligns with empirical best
practices in contrastive and metric learning [18], [47].

Augmentation Implementation Pipeline

All augmentations are applied dynamically during training, rather than precomputed and stored.
This on-the-fly strategy introduces fresh transformations at every epoch, improving generalization
and reducing memory overhead. By avoiding static augmented datasets, the model is continually
exposed to diverse input conditions throughout training.

Such online augmentation guarantees higher data diversity without increasing dataset size or
memory footprint, and supports better convergence behavior during metric learning.

3.6.2 Overview of Triplet Construction and Augmentation Policies

To summarize the fine-tuning strategy adopted in this work, we present a consolidated overview
of the triplet construction logic, along with the augmentation policy applied to each component
of the triplet. The goal is to concisely outline how anchor, positive, and negative samples were
selected and transformed, and how these combined strategies support robust deep metric learning.

Triplet Role Selection Criteria Augmentations

Anchor Random object from the first image of a pair. Advanced

Positive Object from the second image with the same
category_id and cosine similarity ≥ 0.6.

Advanced

Negative (hard) Same category_id, cosine similarity ≤ 0.5, not
previously used in batch.

Minor

Negative
(semi-hard)

Different category or image (used only if no valid
hard negative is found).

Minor

Table 3.5: Triplet roles, selection criteria, and augmentation policy used during fine-tuning.

The augmented triplets generated using this combined sampling and transformation strategy
were directly employed for fine-tuning the deeper layers of each backbone model, as described in
Section 3.10. These triplets served as the core input to the Phase 2 training process, providing
enriched and semantically controlled examples to improve the network’s ability to generalize across
intra-class variability and inter-class similarity.

42



Methodology

Figure 3.12: Samples of Augmented Triplets Used for training the second phase

3.7 Matching Process

After generating embeddings for object instances in a temporally aligned image pair, the system
aims to identify semantic correspondences between these objects. This process is crucial for
detecting whether specific objects persist, disappear, or newly appear across frames. The matching
pipeline is composed of three key stages:

1. Computing cosine similarity between embedding vectors.

2. Enforcing category consistency during pairwise matching.

3. Identifying unmatched instances in the second image as added objects.

The following subsections provide a detailed account of each of these stages.

3.7.1 Matching Algorithm

To ensure semantic correctness in the matching process, the system imposes an additional con-
straint based on object class labels. Specifically, for a candidate match to be considered valid,
both objects must share the same category. This prevents the erroneous pairing of visually similar
yet semantically distinct objects—such as confusing a plastic cup with a bottle—by ensuring that
only category-consistent comparisons are allowed.

Once the cosine similarity matrix is computed, the system performs pairwise matching using
a greedy best-match strategy. The algorithm proceeds as follows:

• For each object in the first image (represented as a row in the similarity matrix), the
algorithm identifies the object in the second image (column-wise) that satisfies the following
conditions:

– The category id values for both objects are identical.
– The cosine similarity score exceeds a predefined threshold of 0.66.
– The candidate object from the second image has not already been assigned to a previous

match.

• If such a match is found, the corresponding pair of indices is recorded, and both objects are
marked as matched to prevent duplicate assignments.

This one-to-one matching logic guarantees that each object in the second image is matched to
at most one object in the first image, avoiding redundant pairings. The output of the algorithm
consists of:

43



Methodology

• Matched Pairs: A list of index tuples (i, j) where object i from the first image is
matched to object j in the second image.

• Unmatched in Image A: A list of indices for objects in the first image that did not find
any valid match.

• Unmatched in Image B: A list of indices for objects in the second image that were not
matched by any object in the first image.

The choice of 0.66 as the cosine similarity threshold was empirically determined based on
validation experiments, striking a balance between match precision and coverage. Matches below
this threshold were frequently observed to be visually ambiguous or semantically inconsistent. As
a result, this cutoff serves to reject low-confidence pairings while preserving high-quality matches.

This algorithm forms the foundation for the system’s object-level change detection logic. By
explicitly aligning object instances across temporally adjacent image frames, it enables the de-
tection of both matched and unmatched instances—information that is essential for identifying
added or reconfigured objects in cluttered scenes.

3.7.2 Detection of Added Objects

Once object-level correspondences have been established between two temporally adjacent im-
ages, the system identifies newly introduced objects—i.e., those present in the second image but
unmatched in the first. This is achieved by analyzing the unmatched indices resulting from the
cosine similarity and category-aware matching process described in Subsection 3.7.1.

Let UB denote the list of unmatched object indices from the second image B, as determined by
the matching algorithm. The total number of added objects is computed as:

Nadded = |UB | (3.3)

This represents the cardinality of the unmatched set in image B and directly quantifies objects
that appear in B without a valid match in image A. These objects are inferred as newly added
instances in the visual scene.

3.8 Inference Visualization

To qualitatively assess the output of our trained CNN models, we present an example pair of
real-world waste-bin images, along with their detected object crops and instance-level comparison
results. This visualization illustrates how the system identifies semantically matching objects and
flags newly added items based on cosine similarity and class alignment.

The objective is to showcase the system’s ability to track object-level changes across time-
separated snapshots, validating its effectiveness beyond numerical evaluation.

44



Methodology

Figure 3.13: Full-resolution input images used for evaluation with ResNet-50 after Phase 2 train-
ing. Image A (left) and Image B (right) are shown side-by-side for visual comparison.

Figure 3.14: Detected object crops from Image A (top row, A0–A5) and Image B (bottom row,
B0–B6).

Phase 2 Output (ResNet-50):

• Matched Pairs: 5

• Matches: A1 → B4, A2 → B0, A3 → B3, A4 → B1, A5 → B2

• Unmatched in B: (B5, B6)

• Added Objects in B: 2

Using the full-resolution input pair shown in Figure 3.13, the system detected six object instances
in Image A (labeled A0–A5) and eight in Image B (labeled B0–B7). The corresponding cropped
objects are shown in Figure 3.14.

Based on cosine similarity scores (Section 3.3), the ResNet-50 embedding model—after Phase 2
fine-tuning—identified five matched object pairs:

• A1 → B4

• A2 → B0

• A3 → B3

• A4 → B1

• A5 → B2

45



Methodology

These pairs were selected as they exhibit the highest cosine similarity values among all cross-image
object pairs, and they belong to the same predicted category, satisfying both the similarity and
class consistency constraints defined in our matching process (see Section 3.7).

Object A0 from Image A remained unmatched, indicating it likely no longer appears in Image B.
Conversely, objects B5 and B6 had no sufficiently similar counterpart in Image A. As a result,
the system classified them as added objects—i.e., newly introduced items between frames.

This example illustrates how the trained model effectively captures object-level continuity and
change, enabling both matching and added-object detection via learned embedding comparisons.

This example illustrates how the trained model effectively captures object-level continuity and
change, enabling both matching and added-object detection via learned embedding comparisons.

Cross-Model Comparison Samples

To complement the detailed single-pair analysis, we include two qualitative examples that compare
the outputs of different CNN backbones. These examples use simplified outputs that summarize
the number of matched objects and added objects detected in Image B. While the full match-
ing pipeline operates at the instance level using embeddings and cosine similarity, these summaries
offer an interpretable view of how each model generalizes across different bin conditions.

Each pair includes: (1) the original input images, and (2) a corresponding results comparing
matched and added counts for all models after Phase 2 or in the zero-shot setting.

Figure 3.15: Model-wise output summary on a single image pair: matched and added objects
detected by each CNN after Phase 2 training. The ground truth number of added objects is 4,
which was correctly predicted only by the ResNet-50 model.

46



Methodology

Figure 3.16: Full-resolution input images (top) and comparative performance summary (bottom)
for a challenging bin scenario evaluated with pre-trained CNN models. The chart highlights
the limitations of zero-shot inference, showing that pre-trained models struggle with object-level
change detection and require task-specific training to improve performance.

3.9 Visualizing Siamese Model Predictions

To qualitatively evaluate the output of the Siamese network, we visualize example pairs of input
images alongside their predicted similarity scores. This helps illustrate how the model distin-
guishes between similar and dissimilar trash bin scenes.

Example Prediction: Dissimilar Pair

Figure 3.17: Dissimilar Pair – Predicted Distance: 0.73. The Siamese network correctly identifies
this pair as dissimilar, assigning a high distance score due to significant differences in object content
between the two trash bin scenes. Several items appear to have been removed.

47



Methodology

Example Prediction: Similar Pair

Figure 3.18: Similar Pair – Predicted Distance: 0.03. The Siamese model accurately detects high
similarity in this pair, assigning a very low distance score. The object configuration is nearly identical
across both images, indicating minimal or no change.

3.10 Training Strategy

This section presents the complete training methodology adopted for evaluating the object-level
similarity task using both Siamese and Triplet-based learning paradigms. We describe how each
convolutional backbone—ResNet-50, ResNet-101, MobileNetV2, and Xception—was integrated
into a unified framework and progressively trained under consistent experimental settings. This
part begins with a summary of the software libraries and hardware environment used to ensure
reproducibility. Then, we detail the training procedures applied to each model.

System and Software Environment

This project was implemented using Python and several widely adopted deep learning libraries.
TensorFlow 2.17.0 served as the primary framework for model definition, training, and eval-
uation. Data manipulation and analysis were facilitated by NumPy 1.26.4 and Pandas 2.2.3.
Scikit-learn 1.6.1 was used for evaluation metrics and preprocessing tasks, while Matplotlib 3.9.2
supported result visualization.

All experiments were conducted on a single NVIDIA Tesla V100 GPU with 16GB of VRAM,
using CUDA 12.2 and NVIDIA driver version 535.216.03 to accelerate training. This consistent
environment ensured reliable and efficient computation throughout all training phases.

48



Methodology

Tool / Component Description and Version

Python General-purpose programming language for scripting and
implementation (v3.10.14)

TensorFlow Deep learning framework used for model construction and
training (v2.17.0)

NumPy Library for numerical operations and matrix manipulation
(v1.26.4)

Pandas Data analysis and tabular processing library (v2.2.3)
Scikit-learn Toolkit for metrics, preprocessing, and ML utilities (v1.6.1)
Matplotlib Visualization library for generating figures (v3.9.2)
GPU NVIDIA Tesla V100 (16GB VRAM), used for hardware

acceleration
CUDA Toolkit NVIDIA CUDA version 12.2 for GPU computation
Driver Version NVIDIA Driver v535.216.03

Table 3.6: Summary of tools, libraries, and hardware environment used throughout this work.

In the following subsections, we present the detailed training configurations and phase-specific
strategies applied to each backbone model individually. Each model’s behavior in Phase 1 and
Phase 2 is analyzed to enable a fair and structured comparison.

3.10.1 Siamese Network

In this part, we outline the implementation details of our Siamese network for object-level simi-
larity learning. We describe the dataset preparation, pair generation, image preprocessing, model
architecture, loss function, training procedure, and model persistence.

Dataset Preparation and Pair Generation

To train the Siamese network, we require pairs of images labeled as ’similar’ (coming from the
same class) or ’dissimilar’ (from different classes). A Python generator constructs these training
pairs dynamically during runtime:

• With 50% probability, it randomly selects two distinct images from the same class to form
a positive pair (label = 0).

• Otherwise, it selects one image from one class and another from a different class to form a
negative pair (label = 1).

By sampling pairs dynamically, we avoid storing a combinatorial number of pairs on disk and
ensure a balanced mix of similar and dissimilar examples during each epoch.

Siamese Network Architecture

Our Siamese network consists of two identical branches sharing weights, followed by a distance
computation layer.

Each branch processes an input image through:

1. A 7 × 7 convolution with 64 filters (stride 2), batch normalization, ReLU activation, and
3× 3 max pooling (stride 2).

49



Methodology

2. Two successive 3 × 3 convolutions (64 filters), each followed by batch normalization and
ReLU.

3. A residual shortcut connection added after the second 3× 3 convolution, followed by ReLU.

4. Global average pooling to produce a 2048-dimensional feature vector.

5. A dense projection to 128 dimensions (linear activation).

6. L2 normalization to project embeddings onto the unit hypersphere.

Distance Layer

We compute the Euclidean distance between the two 128-dimensional embeddings using a custom
Euclidean Distance layer:

d =
√︂
max

(︁
∥e1 − e2∥22, ε

)︁
.

An infinitesimal constant ε prevents numerical instability near zero.

Loss Function

We employ the contrastive loss function:

L =
1

N

N∑︂
i=1

[︂
(1− yi)D

2
i + yi max(0,m−Di)

2
]︂
, (3.4)

where Di is the Euclidean distance for pair i, yi = 0 for similar and yi = 1 for dissimilar pairs,
and m = 1.0 is the margin.

Optimization and Training

The model is compiled with the Adam optimizer and the custom contrastive loss. During train-
ing, the model is trained for 10 epochs with 100 steps per epoch. Balanced batches of positive
and negative pairs ensure stable convergence. We monitor the validation loss and employ early
stopping to prevent overfitting.

3.10.2 Triplet-Based Training Strategy for CNN Backbones

In this section, we present the training methodology adopted for evaluating the object-level simi-
larity performance of the four backbone architectures introduced earlier in Section 2.5: ResNet-50,
ResNet-101, MobileNetV2, and Xception. Each model was initially used as a frozen feature ex-
tractor in a zero-shot configuration to assess its generalization capability without any task-specific
adaptation. Subsequently, all models underwent two progressive training phases—Phase 1 and
Phase 2—under controlled and consistent experimental settings to enable fair comparison across
architectures.

To ensure the validity and comparability of results, the same training pipeline and loss formu-
lation were applied to each model. Specifically, Phase 1 involved training only the projection head
while keeping the backbone frozen, and Phase 2 selectively fine-tuned deeper layers of the back-
bone while continuing to train the projection head. Both phases used the triplet loss formulation
discussed in Section 3.4, with a fixed margin α = 0.3 applied uniformly across all models. For all
models and training phases, the optimizer used was Adam, chosen for its adaptive learning rate
and stable convergence behavior. A learning rate of 1e−3 was used in Phase 1, while a reduced
rate of 1e−5 was applied in Phase 2 to stabilize fine-tuning. Early stopping was employed across
all phases to prevent overfitting and ensure generalization, and the best model weights (based on
validation loss) were saved during training to preserve optimal performance checkpoints.

The following table summarizes the global training configurations, hyperparameter settings,
and optimization strategies applied consistently across all models in both Phase 1 and Phase 2.

50



Methodology

Parameter Value Used in All Models

Optimizer Adam

Phase 1 Learning Rate 1e−3

Phase 2 Learning Rate 1e−5

Triplet Loss Margin 0.3

Early Stopping Enabled (patience = 6)

Best Weight Checkpoint Enabled (based on validation loss)

Table 3.7: Global training configuration applied uniformly across all models in Phase 1 and
Phase 2.

3.10.3 Pretrained ResNet-50 as a Frozen Feature Extractor (Zero-Shot
Baseline)

Before initiating any training or adaptation, a baseline experiment was conducted to evaluate
the zero-shot performance of ResNet-50 on the object matching task. In this setup, the ResNet-
50 model was loaded with pretrained weights from ImageNet, with its entire architecture left
completely frozen. No projection head was added, and no fine-tuning or training was performed
at this stage.

The model was used solely as a feature extractor. The cropped object images used in this eval-
uation were obtained using the segmentation-guided cropping pipeline described in Section 3.2.
Each cropped object was passed through the frozen ResNet-50, and the resulting feature embed-
dings were used for similarity comparison without any task-specific training.In this configuration,
the model’s output corresponds to the 2048-dimensional feature vector produced by the final
global average pooling (GAP) layer of ResNet-50.

To perform object matching between image pairs, cosine similarity was computed between
the extracted embeddings. As detailed in Section 3.3, this similarity metric focuses on angular
distance and benefits from an L2 normalization step applied before comparison. However, it is
important to note that this normalization occurs only during the matching phase, and not inside
the model itself—since no training or embedding head was applied.

This zero-shot baseline serves as a reference point to assess how effectively a large pretrained
convolutional model generalizes to a domain-specific matching task without any adaptation. The
evaluation results for this baseline are reported in Section 4.3.

3.10.4 Phase 1 of ResNet-50: Frozen Backbone with Trainable Projec-
tion Head

As previously described in Section 2.5.1, ResNet-50 consists of a deep convolutional backbone
composed of residual bottleneck blocks from conv1 through conv5_x. To initialize a strong
baseline for metric learning, the first training phase leverages a frozen ResNet-50 backbone
pre-trained on ImageNet. In this configuration, the convolutional layers are preserved in
their pretrained state and are excluded from gradient updates during training. This approach
capitalizes on the rich visual representations already learned on large-scale classification tasks,
while significantly reducing the number of trainable parameters and the risk of overfitting on the
comparatively smaller dataset used in this study.

To adapt ResNet-50 for embedding generation, the classification-specific layers are re-
moved when loading the model. This excludes both the global average pooling layer
and the final fully connected softmax classifier, thereby retaining only the convolutional

51



Methodology

feature extractor. The output of this backbone is a 7×7×2048 feature map from the final residual
stage.

This feature map is passed through a custom projection head composed of four layers:

• A Global Average Pooling layer compresses the spatial dimensions, yielding a 2048-
dimensional vector that globally summarizes the feature map.

• A Dropout layer with a dropout rate of 0.2 is applied for regularization during training,
mitigating overfitting in the projection head.

• A Dense (fully connected) layer projects the features into a 128-dimensional embedding
space, producing an initial descriptor for similarity comparison.

• A L2 Normalization layer constrains each 128-dimensional vector to have unit norm,
projecting it onto the surface of a unit hypersphere.

The use of L2 normalization aligns with the cosine similarity matching strategy detailed in Sec-
tion 3.3. By enforcing unit norm constraints, the model ensures that similarity comparisons focus
exclusively on the angular relationships between embedding vectors. This results in a geometri-
cally regular hyperspherical embedding space that is highly effective for matching semantically
similar object instances.

Overall, only the parameters in the Dense projection layer are updated during this phase,
while the convolutional backbone remains static. This strategy ensures fast convergence and
training stability, while producing a standalone embedding model whose performance is evaluated
in comparison to other training stages.

The ResNet-50 embedding model was trained using triplet samples constructed according to
the strategy detailed in Subsection 3.4.3. Specifically, a total of 9,184 training triplets and 1,428
validation triplets were generated for this backbone, as summarized in Table 3.3.

Layer Name Output Shape
Trainable
Params

Non-trainable
Params

ResNet-50 Backbone

(fully frozen)
(None, 7, 7, 2048) 0 23,587,712

Global Average Pooling (GAP) (None, 2048) 0 0

Dropout (rate = 0.2) (None, 2048) 0 0

Dense (projection_dense) (None, 128) 262,272 0

L2 Normalization (None, 128) 0 0

Total — 262,272 23,587,712

Table 3.8: Layer-wise parameter summary of the Phase 1 embedding model using a frozen ResNet-
50 backbone. Only the projection head was trainable during this stage.

3.10.5 Phase 2 of ResNet-50: Layer-wise Fine-Tuning of Deeper Resid-
ual Blocks

To improve upon the baseline established in Phase 1, a second training stage was conducted in
which selective fine-tuning was applied to the ResNet-50 backbone. As described in Section 2.5.1,
the ResNet-50 architecture is composed of four residual stages: conv2_x through conv5_x, each
consisting of multiple bottleneck residual blocks. In Phase 2, we unfreeze the deeper layers of the
backbone to allow task-specific feature adaptation while retaining the generalization benefits of
the earlier pretrained layers.

Specifically, only the convolutional layers within the conv4_x and conv5_x residual stages were
unfrozen and made trainable. All earlier layers, including conv1, conv2_x, and conv3_x, remained
frozen. This strategy is based on the intuition that high-level feature representations learned in

52



Methodology

deeper stages are more relevant to the target domain, whereas early-layer filters often capture
generic edge and texture information that generalize well across tasks. The projection head
architecture from Phase 1 was retained without modification, consisting of a global average pooling
layer, a dropout layer with rate 0.2, a dense layer projecting to a 128-dimensional embedding space,
and an L2 normalization layer. During training, the projection head and the unfrozen layers of
the backbone were optimized using triplet loss.

A total of 13,258 augmented triplets—corresponding to 39,774 individual image crops—were
generated for this fine-tuning phase using the enhanced sampling strategy described in Section 3.5.
Of these, 80% (10,606 triplets; 31,818 images) were used for training, and 20% (2,652 triplets;
7,956 images) for validation. A detailed breakdown is provided in Table 3.6.2.

Overall, allowing gradient flow through selected residual stages, the network learns to refine
its high-level representations to better capture the semantic nuances of object variation specific
to the dataset. The earlier layers remain fixed to preserve stability and reduce overfitting risk.

Layer Name Output Shape
Trainable
Params

Non-trainable
Params

ResNet-50 Backbone

(selectively unfrozen)
(None, 7, 7, 2048) 22,084,608 1,503,104

Global Average Pooling (GAP) (None, 2048) 0 0

Dropout (rate = 0.2) (None, 2048) 0 0

Dense (projection_dense) (None, 128) 262,272 0

L2 Normalization (None, 128) 0 0

Total — 22,346,608 1,503,104

Table 3.9: Layer-wise parameter summary of the Phase 2 embedding model using ResNet-50 with
fine-tuning applied to conv4_x and conv5_x.

3.10.6 Pretrained ResNet-101 as a Frozen Feature Extractor (Zero-
Shot Baseline)

To explore the generalization capabilities of deeper convolutional backbones, a second zero-shot
baseline experiment was conducted using ResNet-101. This model, like ResNet-50, was initialized
with pretrained ImageNet weights but remained entirely frozen during the evaluation. No addi-
tional projection head was appended, and no parameter updates were performed. The resulting
feature embeddings were 2048-dimensional, obtained after the final pooling layer, consistent with
the ResNet-50 baseline.

This setup enables a direct comparison between shallower and deeper backbones in zero-
shot conditions. By holding all other factors constant—input preparation, similarity metric, and
downstream logic—this baseline serves to evaluate whether the increased representational depth
of ResNet-101 leads to improved system performance without task-specific adaptation. Results
from this experiment are reported in Section 4.3.

3.10.7 Phase 1 of ResNet-101: Frozen Backbone with Trainable Pro-
jection Head

To enable a fair comparison with the ResNet-50 baseline, a similar training procedure was applied
to ResNet-101 in the first phase. The convolutional backbone was initialized with ImageNet-
pretrained weights and kept entirely frozen during this stage, thereby preserving all learned filters
across residual stages from conv1 to conv5_x. This allows the model to function as a deep, fixed
feature extractor while minimizing the risk of overfitting on the limited dataset.

Following the strategy described in Section 2.5.2, the frozen ResNet-101 backbone was coupled
with the same projection head architecture used in the ResNet-50 setup. This includes a global

53



Methodology

average pooling layer, dropout (rate = 0.2), a dense projection layer to 128 dimensions, and an L2

normalization layer. As before, this setup supports cosine-based embedding comparisons, which
are computed using angular distance between unit-normalized vectors (Section 3.3).

Notably, despite ResNet-101 being significantly deeper than ResNet-50, the projection head
architecture and its trainable parameter count (262,272) remained exactly the same. This embed-
ding model is trained using a total of 9,094 training triplets and 2,691 validation triplets generated
specifically for the ResNet-101 backbone, as summarized in Table 3.3.

Layer Name Output Shape
Trainable
Params

Non-trainable
Params

ResNet-101 Backbone (frozen) (None, 7, 7, 2048) 0 42,658,176

Global Average Pooling (GAP) (None, 2048) 0 0

Dropout (rate = 0.2) (None, 2048) 0 0

Dense (projection_dense) (None, 128) 262,272 0

L2 Normalization (None, 128) 0 0

Total — 262,272 42,658,176

Table 3.10: Layer-wise parameter summary of the Phase 1 embedding model using a frozen
ResNet-101 backbone. Only the projection head (Dense layer) was trainable during this stage.

3.10.8 Phase 2 of ResNet-101: Layer-wise Fine-Tuning of Deeper Resid-
ual Blocks

The second stage of training was conducted in which selective fine-tuning was applied to the
deeper convolutional layers of the ResNet-101 backbone. The ResNet-101 introduces significantly
more bottleneck blocks in the conv4_x stage compared to ResNet-50, resulting in a deeper and
more expressive architecture. To exploit this potential while mitigating the risk of overfitting, only
the layers corresponding to conv4_x and conv5_x were unfrozen and made trainable. All earlier
layers (i.e., conv1, conv2_x, and conv3_x) remained frozen to retain generic low-level features.

The same projection head used in ResNet-50 Phase1 (Subsection 3.10.4) was retained here
without modification. Joint optimization of the projection head and the deeper residual blocks
(conv4_x and conv5_x) was performed using triplet loss.

In this phase, a total of 13,259 Augmented triplets were generated from annotated image pairs.
These were divided into a training set of 10,607 triplets (80%) and a validation set of 2,652 triplets
(20%), corresponding to 31,821 and 7,956 image crops respectively.

Layer Name Output Shape
Trainable
Params

Non-trainable
Params

ResNet-101 Backbone

(selectively unfrozen)
(None, 7, 7, 2048) 41,102,848 1,555,328

Global Average Pooling (GAP) (None, 2048) 0 0

Dropout (rate = 0.2) (None, 2048) 0 0

Dense (projection_dense) (None, 128) 262,272 0

L2 Normalization (None, 128) 0 0

Total — 41,365,120 1,555,328

Table 3.11: Layer-wise parameter summary of the Phase 2 embedding model using ResNet-101
with fine-tuning applied to conv4_x and conv5_x.

54



Methodology

3.10.9 Pretrained MobileNetV2 as a Frozen Feature Extractor (Zero-
Shot Baseline)

To further assess the efficacy of lightweight architectures under zero-shot conditions, MobileNetV2
was evaluated as a frozen feature extractor. Pretrained on ImageNet, the MobileNetV2 model
was used in a fully frozen state, without further adaptation.

Input crops (Section 3.2), were individually passed through the MobileNetV2 backbone. Fea-
ture vectors were extracted after the final global average pooling (GAP) layer, resulting in
1280-dimensional descriptors for each object—lower in dimensionality compared to the 2048-
dimensional outputs of ResNet-50 and ResNet-101.

This experiment enables a comparative analysis of compact versus deep backbones in zero-
shot settings. While ResNet variants offer higher capacity, MobileNetV2 emphasizes efficiency,
allowing investigation of the trade-off between model size and representation quality. Evaluation
results are presented in Section 4.3.

3.10.10 Phase 1 of MobileNetV2: Frozen Backbone with Trainable Pro-
jection Head

The first training stage with MobileNetV2 follows a similar initialization strategy to that used in
the ResNet-based configurations (Sections 3.10.4 and 3.10.7), where the convolutional backbone is
retained in a frozen state while a task-specific projection head is trained for embedding generation.
The goal remains consistent: to transform high-dimensional pretrained features into compact,
semantically meaningful descriptors suitable for cosine similarity-based object matching.

In this configuration, MobileNetV2 serves purely as a frozen feature extractor. Its pre-
trained weights—learned on ImageNet—are preserved without modification to retain their general-
purpose visual representations. The output of the backbone is a 1280-dimensional global feature
vector, obtained via global average pooling over the final convolutional feature map. This vector
is then passed through a custom projection head consisting of a Dropout layer (rate = 0.2), a
dense layer that projects the feature vector to a 128-dimensional embedding space, and an L2

normalization layer that ensures the embeddings lie on the unit hypersphere. This design is inten-
tionally kept consistent with the projection heads used in ResNet-50, ResNet-101, and Xception
Phase 1 models, ensuring a fair comparison across all architectures.

Notably, this configuration introduces a moderate number of trainable parameters (163,698),
which is lower than the Phase 1 configurations of ResNet-50 and ResNet-101 (both with 262,272).
This reduced capacity reflects the lightweight nature of the MobileNetV2 architecture, while still
enabling effective embedding learning through the final dense transformation. A total of 8,860
training triplets and 990 validation triplets were used for this model, as summarized in Table 3.3.

Layer Name Output Shape
Trainable
Params

Non-trainable
Params

Input Layer (image_input) (None, 224, 224, 3) 0 0

Preprocessing (mobilenet_preproc) (None, 224, 224, 3) 0 0

MobileNetV2 Backbone (frozen) (None, 1280) 0 2,257,984

Dense Layer (proj_dense2, 128 units) (None, 128) 163,968 0

L2 Normalization (None, 128) 0 0

Total — 163,968 2,257,984

Table 3.12: Layer-wise parameter summary of the Phase 1 embedding model using a frozen
MobileNetV2 backbone

55



Methodology

3.10.11 Phase 2 of MobileNetV2: Layer-wise Fine-Tuning of Upper
Inverted Residual Blocks

To enhance the domain-specific representational capacity of MobileNetV2 while maintaining com-
putational efficiency, Phase 2 training selectively unfreezes only the top three inverted residual
blocks—block_14, block_15, and block_16. These deeper blocks, located toward the end of the
network hierarchy, are responsible for learning abstract and high-level semantic features. All ear-
lier layers, from the initial convolution through block 13, remain frozen to retain general-purpose
visual filters and avoid overfitting.

This approach is conceptually aligned with the strategy used for ResNet-50 and ResNet-
101 Phase 2, where fine-tuning was confined to the last two residual stages. While ResNet
variants operate on residual blocks across fixed stages (conv4_x and conv5_x), the equivalent
in MobileNetV2 corresponds to the final bottleneck blocks.

The projection head from Phase 1—consisting of a Global Average Pooling layer applied to
the backbone output, a dropout layer with a rate of 0.2, a single 128-dimensional dense layer, and
an L2 normalization layer—was retained and jointly trained alongside the unfrozen blocks.

In this phase, a total of 12,590 augmented triplets were used, with 10,072 (80%) allocated
to training and 2,518 (20%) to validation. Since each triplet consists of an anchor, a positive,
and a negative crop this results in 37,770 object crops used in the embedding model. A detailed
summary of the triplet distribution is provided in Table 3.6.2.

Layer Name Output Shape
Trainable
Params

Non-trainable
Params

Input Layer (image_input) (None, 224, 224, 3) 0 0

Preprocessing (mobilenet_preproc) (None, 224, 224, 3) 0 0

MobileNetV2 Backbone (None, 1280) 1,113,920 1,144,064

Dense Layer (projection_dense) (None, 128) 163,968 0

L2 Normalization (None, 128) 0 0

Total — 1,277,888 1,144,064

Table 3.13: Layer-wise parameter summary of the Phase 2 embedding model using MobileNetV2
with fine-tuning applied to blocks 14–16 and a trainable projection head.

3.10.12 Pretrained Xception as a Frozen Feature Extractor (Zero-Shot
Baseline)

In line with the previously described baselines, a fourth zero-shot experiment was performed using
the Xception architecture, which was originally introduced as an Inception-inspired model with
depthwise separable convolutions and residual connections [34]. It was initialized with pretrained
ImageNet weights and used without modification or training.

Each input object was passed through the frozen Xception backbone. Feature descriptors
were extracted after the final convolutional block, where the 10 × 10 × 2048 activation map was
compressed via a Global Average Pooling (GAP) operation, yielding 2048-dimensional vectors.

This setup mirrors the protocols used for ResNet-50, ResNet-101, and MobileNetV2, allowing
direct comparisons across architectures under identical preprocessing and matching conditions.
Also this baseline helps isolate the representational power of its depthwise separable convolutional
design. The corresponding evaluation results are reported in Section 4.3.

3.10.13 Phase 1 of Xception: Frozen Backbone with Trainable Projec-
tion Head

In Phase 1, the Xception model was utilized as a fixed feature extractor, following the same
protocol applied to ResNet-50, ResNet-101, and MobileNetV2. The convolutional backbone was
initialized with ImageNet-pretrained weights and kept entirely frozen during this stage.

56



Methodology

To adapt Xception for embedding-based tasks, the original classification head was replaced
with a compact projection module, consistent with the design used in the ResNet variants. Specif-
ically, the output of the final convolutional block—shaped 7 × 7 × 2048—was passed through a
Global Average Pooling (GAP) layer, yielding a 2048-dimensional vector. This was then passed
through a Dropout layer (rate = 0.2), followed by a dense projection layer of 128 units, and
finally an L2 normalization layer to ensure unit-length embeddings. This architecture enables
cosine-based similarity comparisons during training and evaluation, as outlined in Section 3.3.

Notably, the projection head design in Xception replicates the single-layer structure used in the
ResNet variants, yielding an identical parameter count (262,272). The model was trained using
8,005 triplets for training and 1,486 for validation, as reported in Table 3.3.

Layer Name Output Shape
Trainable
Params

Non-trainable
Params

Xception Backbone (frozen) (None, 7, 7, 2048) 0 20,861,480

Global Average Pooling (GAP) (None, 2048) 0 0

Dropout (rate = 0.2) (None, 2048) 0 0

Dense (projection_dense) (None, 128) 262,272 0

L2 Normalization (None, 128) 0 0

Total — 262,272 20,861,480

Table 3.14: Layer-wise parameter summary of the Phase 1 embedding model using a frozen
Xception backbone and a trainable projection head.

3.10.14 Phase 2 of Xception: Layer-wise Fine-Tuning of High-Level
Blocks

To improve upon the embedding performance of the zero-shot and Phase 1 Xception baselines,
a second training phase was conducted in which selective fine-tuning was applied to the deeper
layers of the Xception backbone. Specifically, convolutional blocks 11 through 14 were unfrozen,
allowing gradient updates during training. These blocks span the final stages of the Middle Flow
and the entire Exit Flow. The remaining lower-level blocks, which capture generic texture and
edge information, remained frozen to preserve stability and generalization.

This configuration leverages Xception’s efficient depthwise separable convolutions while tai-
loring the final semantic layers to the domain-specific task of object similarity learning.

The projection head followed the same structure used in the ResNet variants, consisting of
global average pooling, dropout, a 128-unit dense layer, and L2 normalization. Both the trainable
Xception blocks and the projection head were jointly optimized using triplet loss.

A total of 12,858 augmented triplets were generated for this fine-tuning phase, comprising
10,286 training triplets and 2,572 validation triplets. A summary of the triplet construction is
provided in Table 3.5.

57



Methodology

Layer Name Output Shape
Trainable
Params

Non-trainable
Params

Xception Backbone

(selectively unfrozen)
(None, 7, 7, 2048) 7,654,840 13,206,640

Global Average Pooling (None, 2048) 0 0

Dropout (None, 2048) 0 0

Dense (projection_dense) (None, 128) 262,272 0

L2 Normalization (None, 128) 0 0

Total — 7,917,112 13,206,640

Table 3.15: Layer-wise parameter summary of the Phase 2 embedding model using Xception, with
fine-tuning applied to convolutional blocks 11 through 14 and a trainable projection head.

Summary of Phase 2 Configurations

To provide a comparative overview of the Phase 2 fine-tuning configurations across all evaluated
models, Table 3.16 summarizes the key aspects of each architecture. These include the specific
layers unfrozen for training, the structure of the projection head, the total number of trainable
parameters, and the dataset scale used for training. This summary allows for direct comparison of
model complexity, training scope, and architectural differences in the context of embedding-based
object similarity learning.

Model Fine-Tuned Layers Projection Head Components Trainable Params Triplets Used

ResNet-50 conv4_x, conv5_x

GAP

Dropout (0.2)

Dense (128)

L2 Norm

22,346,608 13,258

ResNet-101 conv4_x, conv5_x

GAP

Dropout (0.2)

Dense (128)

L2 Norm

41,365,120 13,259

MobileNetV2 block 14–16

GAP

Dropout (0.2)

Dense (128)

L2 Norm

1,277,888 12,590

Xception blocks 11–14

GAP

Dropout (0.2)

Dense (128)

L2 Norm

7,917,112 12,858

Table 3.16: Summary of fine-tuning configurations, trainable parameters, and triplets used per
model.

58



Methodology

Cosine Similarity Matching

Matching Objects

Object Extracting and Image Processing

 Resizing 
 (224×224, Metadata,

Padding)

Polygon-based
Object Crop

  CNN Backbones and Custom
Embedding Heads

  
 ResNet-50, ResNet-101, MobileNetV2,

Xception

│ Projection Head (128D) │
 GAP → Dropout (0,2) → Dense(128) → L2-Norm

Triplet Generation (A, P, N) 

Hard Positives + Hard/ Semi-Hard Negatives

Minor 
Augmentation

 Negatives and
Anchors

Advanced
Augmentation 

Positives and
Anchors

Added Objects

Figure 3.19: This diagram illustrates the overview of the Phase 2 pipeline, where objects are first
extracted and grouped into triplets based on hard positive and hard/semi-hard negative criteria,
then augmented to enhance variability. These triplets are used to train CNN backbones, resulting
in a system capable of identifying matching and added objects.

59



Chapter 4

Results and Evaluation

In this chapter, we evaluate the effectiveness of our object-level change detection framework
using a test set of 200 images. The evaluation covers both the Siamese baseline and the triplet-
based CNN models. We begin by reporting the standalone evaluation results of the Siamese
network, highlighting its strengths in pairwise verification. We then introduce a dual evaluation
scheme—matched-object and added-object detection—to characterize the triplet-based models
more comprehensively. Results are analyzed across all three training phases (zero-shot, projection
head training, and fine-tuning), offering a comparative view of how embedding quality evolves and
affects downstream tasks such as object matching and change identification.

4.1 Evaluation Metrics

To assess the performance of our object-level comparison system, we employ standard classification
metrics—namely, F1-score, Recall, and Precision. These metrics are applied consistently
but in different contexts: for the Siamese baseline, they quantify binary similarity prediction
performance; for the CNN-based triplet embedding models, they are used to evaluate two
downstream tasks: object matching and added-object detection.

Precision is defined as the proportion of correctly predicted positive instances among all predicted
positives:

Precision =
True Positives

True Positives + False Positives
(4.1)

Recall measures the ability to identify all relevant ground truth positives:

Recall =
True Positives

True Positives + False Negatives
(4.2)

F1-score is the harmonic mean of precision and recall, offering a balanced measure that penalizes
both false positives and false negatives:

F1 = 2 · Precision · Recall
Precision + Recall

(4.3)

60



Results and Evaluation

4.2 Siamese Network

Metric Precision Recall F1-score

Siamese Network (threshold = 0.50) 0.7751 0.6022 0.6778

Table 4.1: Evaluation performance of the Siamese network using a fixed distance threshold of 0.50
on cosine distance.

The evaluation uses a fixed cosine distance threshold of 0.50, which defines the binary decision
boundary as follows:

• If the predicted cosine distance between two object crops is below 0.50, they are classified
as similar.

• If the distance is greater than or equal to 0.50, they are classified as dissimilar.

Based on this configuration, the Siamese network achieves a precision of 0.7751, a recall
of 0.6022, and an F1 score of 0.6778. The high precision (≈ 0.78) indicates that the model has
learned a strongly discriminative embedding: the vast majority of pairs it labels as “similar” are
indeed true matches. This makes its predictions highly dependable for downstream applications
that require reliable, high-confidence associations.

By contrast, the lower recall indicates that roughly 40% of genuine matches fall above the
distance cut-off and are therefore missed. In other words, the network operates conservatively—it
prefers to avoid false positives even if that means leaving some true positives unpaired.

Distance-distribution analysis

To better understand the model’s behavior, we examine the distribution of predicted distances in
Figure 4.1.

Figure 4.1: Distribution of predicted distances for similar (label=0) and dissimilar (label=1)
image pairs under the Siamese network. The red dashed line indicates the decision threshold of
0.5.

61



Results and Evaluation

Distances for similar pairs form a tight cluster between 0.1 and 0.4, whereas dissimilar pairs
peak around 0.6–0.7; the clear separation shows that the network has organised the feature space
into well-defined regions. The modest overlap in the 0.3–0.6 interval explains the recall value:
some true matches land just beyond the conservative 0.50 cut-off. If higher coverage were needed,
the threshold could be shifted leftward to capture those cases, trading a small amount of precision
for additional recall. As configured, however, the Siamese model offers a robust, low-risk matching
solution that prioritises reliability over exhaustive retrieval.

Limitations and Transition to the Triplet-based CNN models

The Siamese architecture is highly attractive for tasks that demand binary, high-confidence verifi-
cation: its single distance score yields very few false positives when two crops truly depict the same
object. However, because that score is computed pair-by-pair, the model cannot seamlessly match
all instances across two images or determine how many new objects have appeared—capabilities
required for both the matching and added-object tasks addressed in this work. To satisfy these
set-level matching and counting needs, we adopted a triplet-loss framework and trained four CNN
backbones—ResNet-50, ResNet-101, MobileNetV2, and Xception—as described in our training
methodology (Section 3.10). The resulting embeddings enable reliable identification and enumer-
ation of added objects, and their performance is analyzed in the subsequent evaluation sections.

4.3 Triplet-Based CNN Models

To comprehensively evaluate our triplet-based object comparison system, we adopt a dual-metric
strategy that includes both matched-object evaluation and added-object detection. These
two evaluation modes reflect complementary aspects of scene understanding:

• Object Matching: Measures the model’s ability to correctly identify objects that persist
across two images.

• Added Object Detection: Measures the ability to detect newly introduced or missing
objects between frames.

Although the final goal of our system is to identify newly added objects, evaluating both tasks
is essential to fully characterize model behavior. Matching focuses on semantic continuity and
identity preservation, while Added evaluation captures the model’s responsiveness to genuine scene
changes. Using only one of these perspectives can yield an incomplete or even misleading assess-
ment. For instance, poor matching may artificially inflate added-object recall by misclassifying
persistent objects as new.

This dual-perspective evaluation enables a robust and interpretable benchmarking of object-
level change detection. In the following subsections, we present the evaluation results for both
matching and added-object detection, across all three training phases—zero-shot infer-
ence, Phase 1 (projection head training), and Phase 2 (fine-tuning deeper layers).

4.3.1 Matching Performance of Pre-trained Models

This section presents the evaluation results of four pretrained CNN backbones: ResNet-50,
ResNet-101, MobileNetV2, and Xception. These models were used as fixed feature extractors
without task-specific fine-tuning.This highlights how each model performs in our metric learning
and similarity task when applied in a zero-shot setting, without any training on the target dataset.

Embeddings were generated and matched using the procedure described in Section 3.3, and
the predicted object matches were compared against ground truth annotations. Table 4.2 reports
the F1 score, Recall, and Precision obtained by each model.

62



Results and Evaluation

Model F1 Score Recall Precision

ResNet-50 0.6906 0.7471 0.6421

ResNet-101 0.6866 0.6692 0.7049

MobileNetV2 0.6736 0.6304 0.7232

Xception 0.6130 0.5486 0.6946

Table 4.2: Evaluation results for object matching performance using pre-trained convolutional
models in the zero-shot setting.

Based on the zero-shot baseline results, ResNet-50 emerges as the strongest model. Its 50-
layer architecture is deep enough to capture rich, transferable features, yet not so large that those
features become overly specialised to ImageNet; the result is the highest recall and the top overall
F1 (0.691). By contrast, ResNet-101, although deeper and slightly more precise, shows a small
drop in recall that leaves its F1 fractionally lower. MobileNet-V2 and Xception trade depth for
efficiency; their reduced parameter budgets limit representational capacity, yielding lower recall
and, for Xception, the weakest F1. Thus, within the purely zero-shot regime, a medium-depth
backbone such as ResNet-50 offers the best balance of expressiveness and generalisation.

4.3.2 Matching Performance After Phase 1: Trainable Projection Head

This section reports the evaluation results of the embedding models trained in Phase 1, where the
CNN backbone was kept frozen and only the projection head was optimized.

Model F1 Score Recall Precision

ResNet-50 0.6525 0.5953 0.7217

ResNet-101 0.6940 0.6265 0.7778

MobileNetV2 0.6374 0.5370 0.7841

Xception 0.5721 0.4708 0.7289

Table 4.3: Evaluation results for object matching performance using embedding models after
Phase 1 training, where CNN backbones remain frozen and only the projection head is trained.

After projection-head fine-tuning, all four backbones exhibit the same general pattern: preci-
sion increases whereas recall declines. The models thus become more conservative—rejecting
ambiguous matches more often (higher precision) yet overlooking a larger portion of true posi-
tives (lower recall). For ResNet-50, MobileNet-V2 and Xception the reduction in recall slightly
outweighs the precision gain, producing a modest drop in F1. ResNet-101 is the lone excep-
tion: its deeper, higher-capacity features allow the projection head to tighten decision boundaries
without discarding as many borderline positives, yielding a small F1 improvement.

This precision–recall trade-off is an expected consequence of the training regime. Triplet
loss, applied to the compact 128-D projection head while the convolutional backbone remains
frozen, drives intra-class embeddings closer together and pushes inter-class embeddings further
apart. The resulting wider angular margins make the model more selective. MobileNetV2, as a
lightweight backbone, suffers because its fixed features offer limited scope for the projection head
to recover information that has been compressed away, whereas the high-capacity ResNet-101
retains redundant cues that the head can exploit.

63



Results and Evaluation

Overall, the findings suggest that fine-tuning a minimal head boosts precision but may sacrifice
coverage unless the underlying representation is sufficiently rich or additional backbone layers are
unfrozen in later training phases.

4.3.3 Matching Performance After Phase 2: Layer-wise Fine-Tuning

This section presents the evaluation outcomes after Phase 2, where the deeper layers of each
convolutional backbone were selectively unfrozen and fine-tuned alongside the projection head.
This training stage enables the network to adjust high-level feature representations in response
to the metric learning objective, allowing the embedding space to better capture object-level
similarities specific to the task.

Model F1 Score Recall Precision

ResNet-50 0.8076 0.8249 0.7910

ResNet-101 0.6850 0.6304 0.7500

MobileNetV2 0.5972 0.4903 0.7636

Xception 0.6559 0.6342 0.6792

Table 4.4: Evaluation results for object matching performance after Phase 2 training, where both
the projection head and selected backbone layers were fine-tuned.

Drawing on the metrics in Table 4.4, and comparing them with both the zero-shot baseline
(Table 4.2) and the trainable projection head stage (Table 4.3), we observe the following trends
for each model:

• ResNet-50 benefits the most. With an additional 22M trainable parameters (unfreezing
conv4_x, conv5_x), its recall rebounds from the Phase 1 dip and surpasses the zero-shot
level (0.825), pushing F1 up to 0.808. The network is evidently large enough to adapt its
filters to metric learning, yet still regularised by its moderate depth, avoiding over-fitting. ,
its recall rebounds from the Phase 1 dip and surpasses the zero-shot level (0.825), pushing
F1 up to 0.808.

• ResNet-101 adds twice as many parameters (41 M), but the larger search space does not
translate into better generalisation: precision rises to 0.750, recall slips to 0.630, and F1

remains essentially flat (0.685 versus 0.687 zero-shot). The results suggest over-fitting once
all high-capacity layers are released on a modest-sized triplet set.

• MobileNetV2 (only 1.11 M new parameters) improves precision to 0.764 but suffers the
lowest recall (0.490) and the weakest F1 (0.597). The lightweight architecture lacks rep-
resentational headroom to relearn discriminative features after fine-tuning, illustrating the
limitations of extreme parameter efficiency for this task.

• Xception occupies a middle ground (7.6 M new trainable parameters). Fine-tuning boosts
both recall (0.634) and precision (0.679), raising F1 from 0.613 (zero-shot) and 0.572 (Phase
1) to 0.656. The moderate increase in capacity is sufficient to refine features without severe
over-fitting.

Overall, Phase 2 shows that moderate additional capacity—exemplified by ResNet-50—yields
the greatest gain, whereas too many unfrozen parameters (ResNet-101) risk over-fitting and too
few (MobileNet-V2) leave the model under-adapted. These findings underscore the importance
of aligning the extent of fine-tuning with both backbone size and dataset scale.

64



Results and Evaluation

4.3.4 Visual Comparison of Matching Performance Across Training Phases

To complement the numerical evaluation in Tables 4.2–4.4, we present bar chart visualizations
of matching performance for each backbone model. These plots illustrate the evolution of F1
Score, Recall, and Precision across the three training phases: zero-shot inference, projection-head
fine-tuning (Phase 1), and deeper backbone fine-tuning (Phase 2).

By offering a visual comparison, these figures help highlight the relative strengths and weak-
nesses of each model throughout training, including trends such as recall–precision trade-offs and
the impact of model capacity on fine-tuning effectiveness.

Zero-shot Phase 1 Phase 2
0.5

0.6

0.7

0.8

0.69

0.65

0.81

0.75

0.6

0.82

0.64

0.72

0.79

Sc
or

e

ResNet-50: Matching Performance by Training Phase

F1 Score Recall Precision

Figure 4.2: Matching performance of ResNet-50 across different training phases. F1 Score, Recall,
and Precision are shown for the zero-shot baseline, projection-head fine-tuning (Phase 1), and
partial backbone fine-tuning (Phase 2).

65



Results and Evaluation

Zero-shot Phase 1 Phase 2
0.5

0.6

0.7

0.8

0.69 0.69
0.69

0.67

0.63 0.63

0.7

0.78

0.75

Sc
or

e

ResNet-101: Matching Performance by Training Phase

F1 Score Recall Precision

Figure 4.3: Matching performance of ResNet-101 across different training phases. F1 Score,
Recall, and Precision are shown for the zero-shot baseline, projection-head fine-tuning (Phase 1),
and partial backbone fine-tuning (Phase 2).

Zero-shot Phase 1 Phase 2

0.5

0.6

0.7

0.8

0.67

0.64

0.6

0.63

0.54

0.49

0.72

0.78
0.76

Sc
or

e

MobileNetV2: Matching Performance by Training Phase

F1 Score Recall Precision

Figure 4.4: Matching Performance of MobileNetV2 across different training phases. F1 Score,
Recall, and Precision are shown for the zero-shot baseline, projection-head fine-tuning (Phase 1),
and deeper backbone fine-tuning (Phase 2).

66



Results and Evaluation

Zero-shot Phase 1 Phase 2

0.5

0.6

0.7

0.61

0.57

0.66

0.55

0.47

0.63

0.69

0.73

0.68

Sc
or

e

Xception: Matching Performance by Training Phase

F1 Score Recall Precision

Figure 4.5: Matching Performance of Xception across different training phases. F1 Score, Recall,
and Precision are shown for the zero-shot baseline, projection-head fine-tuning (Phase 1), and
deeper backbone fine-tuning (Phase 2).

4.3.5 Added Object Detection with Pre-trained Models

In addition to evaluating matched object pairs, we assess each model’s ability to identify newly
added objects—those present in one image of the pair but not the other. This task reflects the
model’s sensitivity to detecting novel content. The table below reports the performance of all four
CNN backbones when used as frozen feature extractors, without any task-specific fine-tuning.

Model F1 Score Recall Precision

ResNet-50 0.7562 0.6485 0.9069

ResNet-101 0.7929 0.8121 0.7746

MobileNetV2 0.7933 0.8606 0.7358

Xception 0.7599 0.8727 0.6729

Table 4.5: Evaluation results on added object detection using pre-trained CNN backbones (zero-
shot inference).

These results offer insight into how well each backbone generalises to out-of-distribution objects
detected in a zero-shot setting:

• ResNet-50 delivers the strongest precision (0.9069), indicating cautious yet highly accurate
detections, though at the cost of the lowest recall (0.6485).

• ResNet-101 provides a well-balanced performance (F1 = 0.7929), pairing solid recall
(0.8121) with good precision (0.7746).

• MobileNetV2 achieves the highest recall (0.8606), effectively flagging most added objects,
but this comes with more false positives (precision: 0.7358).

67



Results and Evaluation

• Xception records the highest recall overall (0.8727), but its precision is the weakest (0.6729),
signalling a tendency toward over-detection.

4.3.6 Added Object Detection after Phase 1 Training

Following the training of the projection head in Phase 1, we re-evaluate the models’ ability to
detect newly added objects. The convolutional backbones remain frozen, and only the projection
layer learns task-specific embeddings via triplet loss. Table 4.6 presents the updated results.

Model F1 Score Recall Precision

ResNet-50 0.7676 0.8606 0.6927

ResNet-101 0.7840 0.8909 0.7000

MobileNetV2 0.7537 0.9273 0.6349

Xception 0.7260 0.9152 0.6016

Table 4.6: Evaluation results on added object detection after training the projection head
(Phase 1).

Compared with the zero-shot baseline in Table 4.5, introducing a trainable projection head
for each model leads to various performance shifts:

• ResNet-50 – The jump in recall to 0.8606 means the model now finds many more added
objects than in the zero-shot run, while its precision of 0.6927 remains acceptable. In
practice, this backbone offers a strong balance between catching new items and limiting
false alarms, though ResNet-101 slightly outperforms it across all metrics.

• ResNet-101 – Recall rises to 0.8909 while precision remains moderate at 0.7000, resulting
in the highest F1 score (0.7840) among all models. The detector becomes more eager to
flag added objects yet maintains strong overall accuracy, making it suitable when slightly
more false positives are tolerable.

• MobileNetV2 – With recall soaring to 0.9273, the network misses almost no added objects.
However, precision drops to 0.6349, so many extra regions are incorrectly marked; this
setting favours exhaustive coverage over precision.

• Xception – Recall improves to 0.9152 while precision sinks to 0.6016. The model detects
nearly all added objects but produces the highest rate of false positives, highlighting a strong
bias toward coverage at the expense of accuracy.

68



Results and Evaluation

4.3.7 Added Object Detection after Phase 2 Fine-Tuning

In Phase 2, a subset of backbone layers was unfrozen for each architecture to allow deeper adapta-
tion to the metric learning objective. This section reports how this full fine-tuning stage affected
the detection of added objects.

Model F1 Score Recall Precision

ResNet-50 0.8280 0.7879 0.8725

ResNet-101 0.7760 0.8606 0.7065

MobileNetV2 0.7242 0.9152 0.5992

Xception 0.7485 0.7758 0.7232

Table 4.7: Evaluation results on added object detection after partial backbone fine-tuning
(Phase 2).

The Phase-2 results illustrate how each backbone responds once its deeper convolutional blocks
are unfrozen, and they should be read alongside the zero-shot baseline in Table 4.5 and the
projection-head stage in Table 4.6.

ResNet-50 continues to improve: precision rebounds to 0.872 and recall remains strong
at 0.788, lifting F1 to 0.828. Releasing the extra 22 M weights therefore gives the network
enough flexibility to adapt to added objects without over-fitting, confirming that a medium-
depth backbone is well matched to the task. By contrast, ResNet-101—with more than 41 M
newly trainable parameters—shows classic over-fitting behaviour: recall climbs further (0.860)
but precision slips to 0.706, so F1 falls below its zero-shot value.

MobileNetV2 also deteriorates: despite retaining the highest recall (0.915), precision drops
to 0.599 and F1 slides to 0.724, suggesting that the lightweight architecture lacks enough capacity
to refine its features once deeper layers are updated. Finally, Xception shifts toward a more
balanced trade-off: recall decreases to 0.776 while precision rises to 0.723, yielding an F1 of
0.749—higher than in Phase 1 and close to its zero-shot level.

These results emphasize that backbone capacity and fine-tuning depth must be aligned: deeper
adaptation benefits moderate-sized models like ResNet-50 and Xception, while MobileNetV2 over-
commits to recall at the expense of precision, and ResNet-101 tends to overfit without sufficient
regularization.

4.3.8 Visual Comparison of Added Detection Performance Across Train-
ing Phases

To support the numerical results presented earlier, Figures 4.6 to 4.9 illustrate the evolution of
performance metrics—F1 Score, Recall, and Precision—for added object detection across three
training stages: zero-shot inference, projection-head fine-tuning (Phase 1), and deeper backbone
fine-tuning (Phase 2).

These charts provide a clear, side-by-side visual comparison of how each model adapts to this
auxiliary detection task, revealing different trade-offs. In particular, they highlight the extent to
which each backbone generalizes to identifying unseen content during fine-tuning.

69



Results and Evaluation

Zero-shot Phase 1 Phase 2
0.5

0.6

0.7

0.8

0.9

0.76
0.77

0.83

0.65

0.86

0.79

0.91

0.69

0.87

Sc
or

e

ResNet-50: Added Detection Performance by Training Phase

F1 Score Recall Precision

Figure 4.6: Added detection performance of ResNet-50 across different training phases.

Zero-shot Phase 1 Phase 2
0.5

0.6

0.7

0.8

0.9

0.79 0.78 0.78

0.81

0.89

0.86

0.77

0.7 0.71

Sc
or

e

ResNet-101: Added Detection Performance by Training Phase

F1 Score Recall Precision

Figure 4.7: Added detection performance of ResNet-101 across different training phases.

70



Results and Evaluation

Zero-shot Phase 1 Phase 2
0.5

0.6

0.7

0.8

0.9

0.79

0.75

0.72

0.86

0.93
0.92

0.74

0.63

0.6

Sc
or

e

MobileNetV2: Added Detection Performance by Training Phase

F1 Score Recall Precision

Figure 4.8: Added detection performance of MobileNetV2 across different training phases.

Zero-shot Phase 1 Phase 2
0.5

0.6

0.7

0.8

0.9

0.76

0.73
0.75

0.87

0.92

0.78

0.67

0.6

0.72

Sc
or

e

Xception: Added Detection Performance by Training Phase

F1 Score Recall Precision

Figure 4.9: Added detection performance of Xception across different training phases.

4.3.9 Threshold Sensitivity Analysis

Using ResNet-50 as a case-study, we performed a grid-search over cosine-similarity cut-offs (0.60 ≤
θ ≤ 0.80) for the matching and added-object tasks at three checkpoints: the frozen zero-shot model,
the projection-head–only model (Phase 1), and the partially fine-tuned backbone (Phase 2).

As a representative example, we present the grid search results for the ResNet-50 model in
Phase 2, showing how threshold variations affect precision, recall, and F1-score for both the
matching and added-object tasks. Complete results for all other models and training stages are
provided in Appendix A.

71



Results and Evaluation

Threshold Matching Added Object

F1 Recall Precision F1 Recall Precision

0.60 0.7926 0.8327 0.7562 0.7960 0.7212 0.8881

0.62 0.7970 0.8327 0.7643 0.8013 0.7333 0.8832

0.64 0.7970 0.8249 0.7709 0.8078 0.7515 0.8732

0.66 0.8076 0.8249 0.7910 0.8280 0.7879 0.8725

0.68 0.7876 0.7938 0.7816 0.8224 0.8000 0.8462

0.70 0.7867 0.7821 0.7913 0.8171 0.8121 0.8221

0.72 0.7816 0.7588 0.8058 0.8176 0.8424 0.7943

0.74 0.7705 0.7315 0.8139 0.8148 0.8667 0.7688

0.76 0.7542 0.6926 0.8279 0.8120 0.9030 0.7376

0.78 0.7414 0.6693 0.8309 0.8000 0.9091 0.7143

0.80 0.7184 0.6304 0.8351 0.7784 0.9152 0.6771

Table 4.8: Grid search results for different cosine similarity thresholds in ResNet-50 Phase 2.
Metrics are shown for both Matching and Added-object detection.

These grid searches enabled us to extract comparative plots that highlight different aspects
of threshold behavior. To better visualize these effects, we plotted precision, recall, and F1-score
variations with cosine similarity thresholds for ResNet-50 Phase 2 (Figure 4.10), and compared
matching F1 performance across the zero-shot model, Phase 1, and Phase 2 (Figure 4.11).

Figure 4.10: Effect of cosine similarity threshold on precision, recall, and F1-score in ResNet-
50 Phase 2 for the matching task.

72



Results and Evaluation

Figure 4.11: Threshold sensitivity of the matching F1 score in ResNet-50 across training stages.

Based on the results presented in Table 4.8, Figure 4.10, and Figure 4.11, two key trends can
be observed:

1. Trade-off Curve. As expected, raising the threshold monotonically increases precision and
decreases recall, producing a concave F1 curve with a single peak for each phase. The peak
therefore marks the point where the marginal gain in precision no longer compensates for
the loss of recall.

2. Shift of the optimal cut-off. The threshold that maximizes F1 is not fixed; it moves
as the embedding space becomes more discriminative. This evolution is summarized in the
table below:

Zero-shot Phase 1 Phase 2

Best θ for Match F1 0.70 0.64 0.66

Best θ for Added F1 0.76 0.62 0.66

• In the zero-shot model, true-match similarities are relatively low, so a higher cut-off
(≈ 0.70) is needed to suppress false positives.

• After projection-head tuning (Phase 1), the head pulls positive pairs closer together;
a lower cut-off (≈ 0.64) now balances precision and recall.

• With partial backbone fine-tuning (Phase 2), both tasks peak at θ ≈ 0.66. The
added capacity tightens intra-class clusters while widening inter-class gaps, causing the
two tasks to converge on the same operating point.

We adopted θ = 0.66 as a single working threshold because it is optimal for Phase 2—our
final model—and remains close to the maxima in earlier stages. Nonetheless, the grid search
underscores that re-calibrating the similarity cut-off after each training phase can yield measurable
gains, especially when the downstream task places a premium on either exhaustive recall (lower
θ) or high precision (higher θ).

73



Results and Evaluation

Effect of Cosine Threshold Across Backbone Models

To assess whether the optimal cosine similarity cut-off varies across backbone architectures, we
plotted the matching F1 score across thresholds for all Phase 2 models.

Figure 4.12: Comparison of matching F1 score across cosine similarity thresholds for different
Phase 2 backbones: ResNet-50, ResNet-101, MobileNetV2, and Xception.

Figure 4.12 shows that each backbone reaches its peak matching F1 at a slightly different
cosine cut-off (ResNet-50 at θ≈0.66, ResNet-101 and MobileNetV2 at θ≈0.64, and Xception at
θ≈0.60). While choosing a model-specific threshold would eke out an extra 1–6 % of F1 for the
lighter backbones, it would also introduce an additional hyper-parameter for every architecture,
complicating both deployment and comparative analysis. For a fair, single-pass evaluation we
therefore adopt a common cosine threshold of 0.66 across all steps. This value is the plateau
point for ResNet-50 and remains within a few percent of the individual optima for the other
backbones, ensuring that the performance differences reported in Section 4.3 reflect the network
architectures rather than threshold tuning.

74



Chapter 5

Conclusion

This final chapter consolidates the main outcomes of the project, highlighting key findings, model
comparisons, and architectural insights gained from the experiments. It concludes by proposing
several directions for future research and practical improvements to enhance the effectiveness and
scalability of the proposed smart-bin change detection system.

5.1 Conclusion

This thesis presented a deep metric-learning framework for object-level change detection in smart
waste-bin environments. The primary objective was to detect and track individual waste items
across successive bin images using image embeddings, in order to identify newly added objects
under real-world conditions of clutter, occlusion, and lighting variability.

To achieve this, we first implemented a Siamese network with contrastive loss as a baseline.
While the model demonstrated strong precision (0.7751), it lacked the capability to detect mul-
tiple object-level changes, as it produced a single scalar distance per image pair and offered no
insight into instance-level correspondence or count. This limitation motivated the transition to
a triplet-loss framework, enabling the training of embedding models that support fine-grained
object matching across images.

We developed and benchmarked four convolutional backbones—ResNet-50, ResNet-101, Mo-
bileNetV2, and Xception—under three training configurations. First, we evaluated each model in
a zero-shot setting, using frozen feature extractors without any fine-tuning to assess their native
embedding quality. In Phase 1, we trained a projection head on top of the frozen backbones to
better adapt the embeddings to the object-matching task. Finally, Phase 2 selectively fine-tuned
deeper convolutional layers using strong augmentations tailored to waste-item variation and a
custom triplet sampling strategy that combined hard and semi-hard mining. This progressive
training strategy allowed us to evaluate trade-offs between model capacity, generalization, and
computational efficiency across real-world bin conditions.

The selected models span a diverse range of architectural depths and computational pro-
files: ResNet-50 and ResNet-101 contain 50 and 101 layers respectively, with parameter counts
of 25.6M and 44.5M and FLOPs of 4.1G and 7.8G (for 224 × 224 input), while MobileNetV2
offers a lightweight alternative with 3.4M parameters and only 0.3G FLOPs, benefiting from an
efficient design based on depthwise separable convolutions and inverted residuals. In contrast,
Xception—though also built on separable convolutions—incurs 8.4G FLOPs due to its greater
depth and higher-resolution design. All models, except in the zero-shot setting, project into a
common 128-dimensional embedding space, enabling consistent comparison across the training
phases.

Evaluation results revealed distinct performance patterns across training phases and models,
particularly for the two core tasks of matching (identifying unchanged objects across images) and
added-object detection.

75



Conclusion

In the zero-shot setting, where models were evaluated using frozen pre-trained backbones,
ResNet-50 achieved the highest F1-score for matching (0.6906), while MobileNetV2 slightly out-
performed others in added-object detection (0.7933), likely benefiting from its lightweight regular-
ization. Interestingly, Xception underperformed in both tasks in the zero-shot setting, indicating
that its depthwise-separable architecture may be less effective at producing general-purpose em-
beddings without prior adaptation to the task.

Phase 1, which involved training only the projection head while keeping the feature extractor
frozen, yielded modest or even reduced gains. ResNet-101 slightly improved in matching F1-
score (from 0.6866 to 0.6940) due to increased precision, and ResNet-50 improved marginally in
added-object F1-score (from 0.7561 to 0.7676). However, these results indicate that updating
only the projection head is insufficient to adapt the embedding space, as the frozen backbone may
not encode the visual variability specific to waste objects—especially under clutter, occlusion, or
lighting shifts.

Phase 2, involving layer-wise fine-tuning of the convolutional layers, produced the most sub-
stantial performance gains. In matching, ResNet-50 exhibited a remarkable improvement of +11.7
points in F1-score (from 0.6906 to 0.8076), alongside robust recall (0.8249) and precision (0.7910),
confirming its capacity to generalize under real-world variation. Xception also improved (F1 =
0.6559), but its final precision (0.6792) and recall (0.6341) suggest instability in fine-grained
object comparison. Meanwhile, ResNet-101 showed limited change across phases (matching F1

remained around 0.68–0.69), likely due to overfitting caused by its deeper architecture and more
than 41 million trainable parameters, which can be excessive given the relatively small training
set of 5,560 images. MobileNetV2, with its lightweight structure (only about 1.3 million train-
able parameters in this phase), degraded in both matching F1-score (from 0.6736 to 0.5972) and
added-object detection (from 0.7933 to 0.7424), indicating limited representational capacity for
nuanced comparison.

For added-object detection in Phase 2, ResNet-50 again achieved the highest F1-score (0.8280)
with balanced recall (0.7879) and precision (0.8725), outperforming all other models. Notably, it
was the only model to exhibit consistent improvements across both matching and added tasks,
underscoring its robustness. In contrast, Xception, despite improving its matching performance
in Phase 2, did not keep progressing in added-object detection (F1 = 0.7485), suggesting that
architectural differences—such as its heavy reliance on separable convolutions and potential mis-
match with the 224×224 input resolution used in our pipeline—may introduce training instability
or reduce alignment with instance-based objectives.

In summary, while deep or lightweight models like ResNet-101 and MobileNetV2 showed
strengths in specific metrics, they failed to consistently improve or generalize across training
regimes. These findings highlight the impact of both dataset limitations—such as limited training
samples and class imbalance (see Figure 3.2)—and the alignment between model characteristics
and task demands, including model depth, parameter count, and capacity to generalize from lim-
ited data. ResNet-50, with moderate depth and computational load (4.1G FLOPs), strikes the
optimal balance between representation power and overfitting risk, emerging as the most reliable
choice for object-level change detection in this domain.

Inference visualizations confirmed the models’ ability to detect added items even in complex
scenes with overlapping waste. The triplet-trained embeddings successfully clustered semantically
similar objects, enabling reliable differentiation of new vs. existing items.

Overall, this work demonstrates the feasibility and effectiveness of using deep metric learn-
ing for object-level change detection in smart-bin systems, offering a substantial advance over
traditional fill-level sensors and global similarity baselines.

Beyond the immediate application to smart-bin systems, this work contributes to the broader
vision of intelligent resource monitoring in smart cities. By enabling fine-grained object-level
change detection with affordable camera setups, the proposed framework opens avenues for auto-
mated waste auditing, behavioral analytics, and environmental compliance in recycling facilities.
Furthermore, the embedding-based similarity approach could inspire extensions to industrial in-
spection, smart retail inventory tracking, and other domains that demand instance-level visual
reasoning at scale.

76



Conclusion

5.2 Future Work

While the proposed framework showed promising results, several avenues remain open for future
research and development.

First, real-world deployment would benefit from optimizing the inference pipeline for edge
devices. Techniques such as model quantization, knowledge distillation, or pruning could reduce
the memory and compute requirements of heavier models like Xception and ResNet-101, enabling
onboard processing within smart-bin units.

Second, although the current evaluation focused on static image pairs, many practical appli-
cations involve continuous monitoring or video streams. Extending the system to track object
changes over time sequences would improve temporal reasoning and help detect gradual contam-
ination or delayed disposal behaviors.

Third, the current approach does not exploit segmentation masks during training. Incorporat-
ing segmentation-aware losses or attention mechanisms may enhance feature discrimination and
spatial awareness, especially for small or partially occluded objects.

Fourth, the triplet generation strategy can be further improved. Currently, triplets are gener-
ated from cosine similarity with optional hard-mining heuristics. More adaptive sampling tech-
niques—such as online batch-hard mining or reinforcement-based selection—could yield more
challenging training examples and improve generalization.

Fifth, expanding the dataset to include a larger number of training images and a more bal-
anced distribution of object categories would allow deeper models—such as ResNet-101—to better
exploit their capacity without overfitting. A broader dataset would also improve robustness across
diverse waste types and lighting conditions.

Finally, integrating this system into a full smart-bin management platform—complete with
contamination alerts, user feedback, and route optimization—would offer valuable operational
insight and support sustainable waste-handling policies such as pay-as-you-throw billing.

In summary, this thesis lays the foundation for intelligent, object-level monitoring in waste
management and offers a flexible deep learning pipeline for future real-world deployment and
academic extension.

77



Appendix

78



Appendix A

Grid Search Results for Cosine
Thresholds

This appendix presents the detailed results of grid searches over cosine similarity thresholds (θ =
0.60 to 0.80) conducted for all models, including the zero-shot (pretrained) baseline as well as the
two training stages (Phase 1 and Phase 2). For each architecture, we report performance metrics
(F1-score, Recall, and Precision) for both the matching and added-object tasks. These
results complement the main threshold analysis in Chapter 4 and offer transparency regarding
per-model threshold sensitivity across different training configurations.

Threshold Matching Added Object

F1 Recall Precision F1 Recall Precision

0.60 0.654991 0.727626 0.595541 0.694030 0.563636 0.902013

0.62 0.666667 0.735409 0.609677 0.705882 0.581818 0.897196

0.64 0.675000 0.735409 0.623762 0.731183 0.618182 0.894737

0.66 0.672659 0.731518 0.628763 0.734982 0.630303 0.831596

0.68 0.686131 0.731518 0.646048 0.762887 0.672727 0.880952

0.70 0.688000 0.719844 0.663082 0.792079 0.727273 0.869565

0.72 0.688091 0.708171 0.669118 0.787097 0.739394 0.843179

0.74 0.670565 0.669261 0.671875 0.785276 0.775758 0.795031

0.76 0.686747 0.665370 0.709544 0.797654 0.842424 0.772727

0.78 0.675052 0.626459 0.731818 0.790055 0.866667 0.725888

0.80 0.662309 0.591440 0.752475 0.778947 0.896970 0.688372

Table A.1: Grid search results for cosine similarity thresholds in ResNet-50 Pre-Trained.
Metrics are shown for both Matching and Added-object detection.

79



Grid Search Results for Cosine Thresholds

Threshold Matching Added Object

F1 Recall Precision F1 Recall Precision

0.60 0.649087 0.622568 0.677966 0.786127 0.824242 0.751381

0.62 0.648871 0.614786 0.686957 0.795455 0.848485 0.748663

0.64 0.655602 0.614786 0.702222 0.784314 0.848485 0.729167

0.66 0.652452 0.595331 0.721698 0.767568 0.860606 0.692683

0.68 0.652174 0.583658 0.738916 0.759894 0.872727 0.672897

0.70 0.644326 0.560311 0.757895 0.760224 0.903030 0.656388

0.72 0.643678 0.544747 0.786517 0.742574 0.909091 0.627615

0.74 0.630332 0.517510 0.806061 0.738609 0.933333 0.611111

0.76 0.617225 0.501946 0.801422 0.731591 0.933333 0.601562

0.78 0.589681 0.466926 0.800000 0.717593 0.933994 0.580524

0.80 0.558974 0.424125 0.819549 0.694878 0.945455 0.549296

Table A.2: Grid search results for cosine similarity thresholds in ResNet-50 Phase 1. Metrics
are shown for both Matching and Added-object detection.

Threshold Matching Added Object

F1 Recall Precision F1 Recall Precision

0.60 0.792593 0.832685 0.756184 0.795987 0.721212 0.888060

0.62 0.797020 0.832685 0.764286 0.801325 0.733333 0.883212

0.64 0.796992 0.824903 0.770899 0.807818 0.751515 0.873239

0.66 0.807619 0.824903 0.791045 0.828025 0.787879 0.872483

0.68 0.787645 0.793774 0.781609 0.822430 0.800000 0.846154

0.70 0.786893 0.782101 0.791339 0.817073 0.812121 0.822086

0.72 0.781563 0.758755 0.805785 0.817647 0.842424 0.794286

0.74 0.770492 0.731518 0.813853 0.814815 0.866667 0.768817

0.76 0.754237 0.692607 0.827907 0.811989 0.903030 0.737624

0.78 0.741379 0.669261 0.830918 0.800000 0.909091 0.714286

0.80 0.718404 0.630350 0.835052 0.778351 0.915152 0.677130

Table A.3: Grid search results for cosine similarity thresholds in ResNet-50 Phase 2. Metrics
are shown for both Matching and Added-object detection.

80



Grid Search Results for Cosine Thresholds

Threshold Matching Added Object

F1 Recall Precision F1 Recall Precision

0.60 0.655556 0.688716 0.625442 0.775920 0.703030 0.865672

0.62 0.652908 0.677043 0.630435 0.771242 0.715152 0.836879

0.64 0.655238 0.669261 0.641791 0.789089 0.751515 0.832215

0.66 0.651341 0.661479 0.641509 0.788644 0.755576 0.822368

0.68 0.653696 0.653696 0.653696 0.793846 0.781818 0.806250

0.70 0.661386 0.649885 0.673387 0.796407 0.806061 0.786982

0.72 0.643299 0.607004 0.684211 0.785311 0.842424 0.735450

0.74 0.632479 0.575875 0.701422 0.780762 0.884848 0.708738

0.76 0.622222 0.544747 0.725389 0.781491 0.921212 0.678571

0.78 0.604651 0.508537 0.751445 0.757946 0.939394 0.635246

0.80 0.589372 0.474708 0.777070 0.734118 0.945455 0.600000

Table A.4: Grid search results for cosine similarity thresholds in ResNet-101 Pre-Trained.
Metrics are shown for both Matching and Added-object detection.

Threshold Matching Added Object

F1 Recall Precision F1 Recall Precision

0.60 0.704453 0.677043 0.734177 0.782609 0.818182 0.750000

0.62 0.710744 0.669261 0.757799 0.788732 0.848485 0.736842

0.64 0.690678 0.634241 0.758140 0.790191 0.877878 0.717822

0.66 0.693966 0.624659 0.777778 0.784000 0.890909 0.700000

0.68 0.665208 0.591440 0.760000 0.774869 0.896970 0.682028

0.70 0.653333 0.571984 0.761658 0.766067 0.903030 0.665179

0.72 0.644144 0.556242 0.764706 0.754430 0.903030 0.647826

0.74 0.628110 0.521401 0.770115 0.745098 0.921212 0.625514

0.76 0.596059 0.486381 0.771065 0.728571 0.927273 0.600000

0.78 0.555000 0.431987 0.776224 0.710766 0.945455 0.569943

0.80 0.541237 0.408560 0.801527 0.700655 0.957576 0.552448

Table A.5: Grid search results for cosine similarity thresholds in ResNet-101 Phase 1. Metrics
are shown for both Matching and Added-object detection.

81



Grid Search Results for Cosine Thresholds

Threshold Matching Added Object

F1 Recall Precision F1 Recall Precision

0.60 0.681542 0.653696 0.711864 0.786127 0.824242 0.751381

0.62 0.688532 0.649805 0.726087 0.778409 0.830303 0.732620

0.64 0.687500 0.642023 0.739910 0.774373 0.842424 0.716495

0.66 0.684989 0.633063 0.750000 0.775956 0.860606 0.706468

0.68 0.686567 0.626459 0.759434 0.778378 0.872727 0.702439

0.70 0.675381 0.603113 0.767327 0.773684 0.890909 0.683721

0.72 0.659292 0.579767 0.764103 0.775194 0.900991 0.675676

0.74 0.640732 0.544747 0.777778 0.756219 0.921212 0.641350

0.76 0.627635 0.521401 0.788235 0.752427 0.933994 0.627530

0.78 0.612827 0.501946 0.785755 0.741627 0.939394 0.612648

0.80 0.588808 0.470817 0.785714 0.728972 0.945455 0.593156

Table A.6: Grid search results for cosine similarity thresholds in ResNet-101 Phase 2. Metrics
are shown for both Matching and Added-object detection.

Threshold Matching Added Object

F1 Recall Precision F1 Recall Precision

0.60 0.692067 0.692067 0.692067 0.793846 0.781818 0.806250

0.62 0.695825 0.680934 0.711382 0.809524 0.824242 0.795322

0.64 0.699187 0.669261 0.731915 0.806916 0.848485 0.769231

0.66 0.703158 0.649085 0.766055 0.802198 0.884848 0.733668

0.68 0.695652 0.622568 0.783177 0.791557 0.909091 0.708955

0.70 0.677021 0.583658 0.806452 0.767677 0.921212 0.658089

0.72 0.627635 0.521401 0.788235 0.747573 0.933333 0.623482

0.74 0.597087 0.478599 0.793548 0.730679 0.945455 0.595420

0.76 0.589421 0.455253 0.835714 0.723982 0.969697 0.577617

0.78 0.555844 0.416342 0.835938 0.704846 0.969697 0.553633

0.80 0.497268 0.354086 0.834862 0.676533 0.960697 0.519481

Table A.7: Grid search results for cosine similarity thresholds in MobileNetV2 Pre-Trained.
Metrics are shown for both Matching and Added-object detection.

82



Grid Search Results for Cosine Thresholds

Threshold Matching Added Object

F1 Recall Precision F1 Recall Precision

0.60 0.663774 0.595331 0.750000 0.777778 0.890909 0.698141

0.62 0.660574 0.579767 0.760841 0.768041 0.903030 0.668161

0.64 0.657596 0.564202 0.788043 0.763819 0.921212 0.652361

0.66 0.637413 0.536965 0.784091 0.753695 0.927273 0.634855

0.68 0.609524 0.498045 0.752576 0.749403 0.951515 0.618110

0.70 0.611650 0.490272 0.812903 0.744731 0.963636 0.606870

0.72 0.572864 0.443580 0.808511 0.725624 0.969697 0.579710

0.74 0.538860 0.404669 0.806202 0.710817 0.975758 0.559028

0.76 0.519894 0.381323 0.816667 0.696970 0.975758 0.542888

0.78 0.486188 0.342412 0.838095 0.679245 0.981818 0.519231

0.80 0.434783 0.291829 0.852273 0.659919 0.987879 0.495441

Table A.8: Grid search results for cosine similarity thresholds in MobileNetV2 Phase 1. Metrics
are shown for both Matching and Added-object detection.

Threshold Matching Added Object

F1 Recall Precision F1 Recall Precision

0.60 0.638581 0.560311 0.742268 0.757732 0.890909 0.659193

0.62 0.627540 0.540856 0.747312 0.752525 0.903030 0.645022

0.64 0.618938 0.521401 0.761364 0.743842 0.915152 0.626556

0.66 0.597156 0.490272 0.763636 0.724221 0.915152 0.599206

0.68 0.579732 0.455253 0.764706 0.722611 0.939394 0.587121

0.70 0.566502 0.447471 0.771812 0.715935 0.939394 0.578358

0.72 0.543147 0.416342 0.781022 0.696629 0.939394 0.553571

0.74 0.485333 0.354086 0.771186 0.681034 0.957576 0.528428

0.76 0.444124 0.311824 0.776699 0.657098 0.957576 0.503185

0.78 0.414986 0.280165 0.800000 0.646341 0.963636 0.486239

0.80 0.389381 0.256809 0.804878 0.644000 0.975758 0.480597

Table A.9: Grid search results for cosine similarity thresholds in MobileNetV2 Phase 2. Metrics
are shown for both Matching and Added-object detection.

83



Grid Search Results for Cosine Thresholds

Threshold Matching Added Object

F1 Recall Precision F1 Recall Precision

0.60 0.612326 0.599222 0.626016 0.779762 0.793939 0.766082

0.62 0.612576 0.587549 0.639831 0.768786 0.806061 0.734807

0.64 0.615063 0.571984 0.665158 0.759003 0.830303 0.699880

0.66 0.613043 0.548638 0.694581 0.759894 0.872727 0.672897

0.68 0.600897 0.521041 0.728995 0.743084 0.884848 0.640351

0.70 0.597222 0.501946 0.737143 0.732187 0.903030 0.615722

0.72 0.598086 0.486381 0.776398 0.722090 0.921212 0.593750

0.74 0.579853 0.459144 0.786667 0.717593 0.939394 0.580524

0.76 0.562025 0.431097 0.804348 0.702703 0.945455 0.559140

0.78 0.544041 0.408560 0.819353 0.693157 0.951515 0.545139

0.80 0.502703 0.361688 0.823009 0.678083 0.963636 0.523260

Table A.10: Grid search results for cosine similarity thresholds in Xception Pre-Trained. Met-
rics are shown for both Matching and Added-object detection.

Threshold Matching Added Object

F1 Recall Precision F1 Recall Precision

0.60 0.611236 0.529183 0.723404 0.746193 0.809090 0.641921

0.62 0.596811 0.509728 0.719780 0.740000 0.896970 0.629787

0.64 0.587963 0.494163 0.725714 0.737101 0.909091 0.619835

0.66 0.572104 0.470817 0.728916 0.725962 0.915152 0.601594

0.68 0.565947 0.459144 0.737500 0.715646 0.915152 0.587549

0.70 0.561743 0.451362 0.743590 0.708920 0.915152 0.578544

0.72 0.563725 0.447471 0.761589 0.709977 0.927273 0.575188

0.74 0.544081 0.420233 0.771429 0.701357 0.939394 0.559567

0.76 0.519481 0.389105 0.781250 0.696635 0.957576 0.546713

0.78 0.486631 0.354086 0.777778 0.679570 0.957576 0.526667

0.80 0.425770 0.295720 0.760000 0.655602 0.957576 0.498423

Table A.11: Grid search results for cosine similarity thresholds in Xception Phase 1. Metrics
are shown for both Matching and Added-object detection.

84



Grid Search Results for Cosine Thresholds

Threshold Matching Added Object

F1 Recall Precision F1 Recall Precision

0.60 0.667954 0.673152 0.662835 0.722741 0.703030 0.743590

0.62 0.661479 0.661479 0.661479 0.726154 0.715152 0.737500

0.64 0.648221 0.638132 0.658635 0.732733 0.739394 0.726190

0.66 0.655936 0.634241 0.679167 0.748538 0.775758 0.723164

0.68 0.652977 0.618677 0.691304 0.755682 0.806061 0.711320

0.70 0.656004 0.610895 0.710487 0.749722 0.818182 0.688776

0.72 0.652268 0.587549 0.733810 0.750000 0.854545 0.668246

0.74 0.644295 0.560311 0.757895 0.739976 0.878788 0.638767

0.76 0.615741 0.517510 0.760000 0.717445 0.884848 0.603306

0.78 0.591346 0.478599 0.773585 0.709220 0.909091 0.581395

0.80 0.538653 0.420233 0.750000 0.684932 0.909091 0.549451

Table A.12: Grid search results for cosine similarity thresholds in Xception Phase 2. Metrics
are shown for both Matching and Added-object detection.

85



Bibliography

[1] S. Kaza, L. Yao, P. Bhada-Tata, and F. Van Woerden, What a Waste 2.0: A Global Snapshot
of Solid Waste Management to 2050. World Bank Publications, 2018.

[2] United Nations Environment Programme, Global waste-management outlook 2024, Nairobi:
UNEP, 2024.

[3] World Bank, Solid waste management – urban development brief, https://www.worldbank.
org/en/topic/urbandevelopment/brief/solid-waste-management, 2020.

[4] E. Trapen et al., «Environmental sustainability impacts of solid waste management», Jour-
nal of Cleaner Production, vol. 389, p. 136 862, 2023.

[5] A. López et al., «Ghg emission from trucks during collection of solid wastes», Eurasian
Journal of Environmental Research, vol. 2, no. 2, pp. 25–34, 2019.

[6] Oro Loma Sanitary District & Waste Management Inc., Contamination and overage moni-
toring programme – factsheet, 2023.

[7] Sensoneo, Waste fill-level monitoring with smart sensors, https://www.sensoneo.com,
2025.

[8] M. P. Arthur, S. Shoba, and A. Pandey, «A survey of smart dustbin systems using the iot
and deep learning», Artificial Intelligence Review, vol. 57, no. 3, pp. 2135–2172, 2024.

[9] D. G. Lowe, «Distinctive image features from scale-invariant keypoints», in International
journal of computer vision, vol. 60, Springer, 2004, pp. 91–110.

[10] H. Bay, T. Tuytelaars, and L. Van Gool, «Surf: Speeded up robust features», in European
conference on computer vision, Springer, 2006, pp. 404–417.

[11] K. Mikolajczyk and C. Schmid, «A comparison of affine region detectors», in International
journal of computer vision, vol. 65, Springer, 2005, pp. 43–72.

[12] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, «Cnn features off-the-shelf: An
astounding baseline for recognition», Proceedings of the IEEE conference on computer vision
and pattern recognition workshops, pp. 806–813, 2014.

[13] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky, «Aggregating local deep features
for image retrieval», in International conference on computer vision, IEEE, 2015, pp. 1269–
1277.

[14] A. Gordo, J. Almazán, J. Revaud, and D. Larlus, «End-to-end learning of deep visual
representations for image retrieval», in International journal of computer vision, vol. 124,
Springer, 2017, pp. 237–254.

[15] R. Hadsell, S. Chopra, and Y. LeCun, «Dimensionality reduction by learning an invariant
mapping», in Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), IEEE, 2006, pp. 1735–1742. doi: 10.1109/CVPR.2006.
100.

[16] S. Chopra, R. Hadsell, and Y. LeCun, «Learning a similarity metric discriminatively, with
application to face verification», in Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), IEEE, 2005, pp. 539–546. doi: 10.
1109/CVPR.2005.202.

86

https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management
https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management
https://www.sensoneo.com
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202


BIBLIOGRAPHY

[17] K. Q. Weinberger and L. K. Saul, «Distance metric learning for large margin nearest neigh-
bor classification», in Advances in neural information processing systems, 2009, pp. 1473–
1480.

[18] F. Schroff, D. Kalenichenko, and J. Philbin, «Facenet: A unified embedding for face recog-
nition and clustering», Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 815–823, 2015.

[19] G. Koch, «Siamese neural networks for one-shot image recognition», University of Toronto,
Tech. Rep., 2015, Technical Report.

[20] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr, «Fully-convolutional
siamese networks for object tracking», in European Conference on Computer Vision (ECCV),
Springer, 2016, pp. 850–865. doi: 10.1007/978-3-319-48881-3_56.

[21] K. Sohn, «Improved deep metric learning with multi-class n-pair loss objective», in Advances
in neural information processing systems, 2016, pp. 1857–1865.

[22] W. Sun, S. Feng, and Y. Li, «Circle loss: A unified perspective of pair similarity opti-
mization», in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 6398–6407.

[23] X. Li, H. Hu, Z. Lin, Y. Wang, J. Ponce, and A. Yuille, «Revisiting non-local neural networks
for image recognition and retrieval», in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 2032–2041.

[24] F. Radenović, J. Araújo, J. Almazán, and T. Darrell, «Fine-tuning cnn image retrieval with
no human annotation», in IEEE transactions on pattern analysis and machine intelligence,
vol. 41, 2018, pp. 1655–1668.

[25] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, «Signature verification using
a siamese time delay neural network», International Journal of Pattern Recognition and
Artificial Intelligence, vol. 7, no. 4, pp. 669–688, 1993. doi: 10.1142/S0218001493000339.

[26] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, «Deepface: Closing the gap to human-
level performance in face verification», in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), IEEE, 2014, pp. 1701–1708. doi: 10.1109/CVPR.
2014.220.

[27] A. Rosebrock, «Siamese network with keras, tensorflow, and deep learning», PyImageSearch,
Nov. 2020, [Online; accessed 3-July-2025]. [Online]. Available: https://pyimagesearch.
com/2020/11/30/siamese-networks-with-keras-tensorflow-and-deep-learning/.

[28] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, «Gradient-based learning applied to doc-
ument recognition», in Proceedings of the IEEE, vol. 86, IEEE, 1998, pp. 2278–2324.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, «Imagenet classification with deep convolu-
tional neural networks», in Advances in Neural Information Processing Systems (NeurIPS),
2012, pp. 1097–1105.

[30] K. Simonyan and A. Zisserman, «Very deep convolutional networks for large-scale image
recognition», in International Conference on Learning Representations (ICLR), arXiv:1409.1556,
2015.

[31] C. Szegedy, W. Liu, Y. Jia, et al., «Going deeper with convolutions», in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–9.

[32] K. He, X. Zhang, S. Ren, and J. Sun, «Deep residual learning for image recognition», in
Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR),
2016, pp. 770–778.

[33] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, «Mobilenetv2: Inverted
residuals and linear bottlenecks», in Proceedings of the IEEE conference on computer vision
and pattern recognition (CVPR), 2018, pp. 4510–4520.

[34] F. Chollet, «Xception: Deep learning with depthwise separable convolutions», in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2017,
pp. 1251–1258. [Online]. Available: https://arxiv.org/abs/1610.02357.

87

https://doi.org/10.1007/978-3-319-48881-3_56
https://doi.org/10.1142/S0218001493000339
https://doi.org/10.1109/CVPR.2014.220
https://doi.org/10.1109/CVPR.2014.220
https://pyimagesearch.com/2020/11/30/siamese-networks-with-keras-tensorflow-and-deep-learning/
https://pyimagesearch.com/2020/11/30/siamese-networks-with-keras-tensorflow-and-deep-learning/
https://arxiv.org/abs/1610.02357


BIBLIOGRAPHY

[35] K. He, X. Zhang, S. Ren, and J. Sun, «Deep residual learning for image recognition», in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 770–778.

[36] M. Lin, Q. Chen, and S. Yan, «Network in network», in International Conference on Learn-
ing Representations (ICLR), arXiv:1312.4400, 2014.

[37] S. Das, A. A. Fime, N. Siddique, and M. M. A. Hashem, «Estimation of road boundary for
intelligent vehicles based on deeplabv3+ architecture», IEEE Access, vol. 9, pp. 114–125,
2021. doi: 10.1109/ACCESS.2020.3048272.

[38] S. Bianco, R. Cadene, L. Celona, P. Napoletano, and R. Schettini, «Benchmark analysis of
representative deep neural network architectures», IEEE Access, vol. 6, pp. 64 270–64 277,
2018.

[39] L. Sifre and S. Mallat, Rigid-motion scattering for image classification, arXiv preprint
arXiv:1403.1687, 2014.

[40] B. Abraham and M. S. Nair, «Covid-19 detection using cnn transfer learning from x-ray im-
ages», Computer Methods and Programs in Biomedicine, vol. 199, p. 105 581, 2021, https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC7759122/. doi: 10.1016/j.cmpb.2020.
105581.

[41] K. Shankar, J. S. Kumar, and S. R. Kumar, «Mobileskin: A lightweight mobilenetv2-based
cnn for classification of systemic sclerosis skin images», Biomedical Signal Processing and
Control, vol. 70, p. 102 993, 2021.

[42] GeeksforGeeks, Mobilenet v2 architecture in computer vision, Accessed: 2025-06-05, 2023.
[Online]. Available: https://www.geeksforgeeks.org/mobilenet-v2-architecture-in-
computer-vision/.

[43] S. Mehta, T. Lee, and et al., «Efficient deep learning models for classification of systemic
sclerosis from skin images», Computer Methods and Programs in Biomedicine, vol. 199,
p. 105 906, 2021.

[44] X. Zhang, X. Zhou, M. Lin, and J. Sun, «Shufflenet: An extremely efficient convolutional
neural network for mobile devices», Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 6848–6856, 2018.

[45] A. T. Tragoudaras, P. Stoikos, K. Fanaras, and G. Stamoulis, «Design space exploration
of a sparse mobilenetv2 using high-level synthesis and sparse matrix techniques on fpgas»,
Sensors, vol. 22, no. 12, p. 4567, 2022.

[46] R. Roopashree and R. Anitha, «Deepherb: A vision-based system for medicinal plant iden-
tification using xception deep learning model», in 2021 International Conference on In-
telligent Technologies (CONIT), IEEE, 2021, pp. 1–6. [Online]. Available: https://www.
semanticscholar.org/paper/DeepHerb%3A-A-Vision-Based-System-for-Medicinal-
using-Roopashree-Anitha/cfc002389353d10ba7d6bef73714f948fc92d119.

[47] A. Hermans, L. Beyer, and B. Leibe, «In defense of the triplet loss for person re-identification»,
arXiv preprint arXiv:1703.07737, 2017.

[48] A. Rosebrock, Deep metric learning with triplet loss and keras, https://pyimagesearch.
com/2020/04/13/deep-metric-learning-with-triplet-loss-and-keras/, 2020.

[49] U. Karn, Triplet loss – advanced intro, Accessed May 2025, 2020. [Online]. Available: https:
//medium.com/data-science/triplet-loss-advanced-intro-49a07b7d8905.

[50] C. Shorten and T. M. Khoshgoftaar, «A survey on image data augmentation for deep learn-
ing», Journal of Big Data, vol. 6, no. 1, pp. 1–48, 2019.

88

https://doi.org/10.1109/ACCESS.2020.3048272
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7759122/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7759122/
https://doi.org/10.1016/j.cmpb.2020.105581
https://doi.org/10.1016/j.cmpb.2020.105581
https://www.geeksforgeeks.org/mobilenet-v2-architecture-in-computer-vision/
https://www.geeksforgeeks.org/mobilenet-v2-architecture-in-computer-vision/
https://www.semanticscholar.org/paper/DeepHerb%3A-A-Vision-Based-System-for-Medicinal-using-Roopashree-Anitha/cfc002389353d10ba7d6bef73714f948fc92d119
https://www.semanticscholar.org/paper/DeepHerb%3A-A-Vision-Based-System-for-Medicinal-using-Roopashree-Anitha/cfc002389353d10ba7d6bef73714f948fc92d119
https://www.semanticscholar.org/paper/DeepHerb%3A-A-Vision-Based-System-for-Medicinal-using-Roopashree-Anitha/cfc002389353d10ba7d6bef73714f948fc92d119
https://pyimagesearch.com/2020/04/13/deep-metric-learning-with-triplet-loss-and-keras/
https://pyimagesearch.com/2020/04/13/deep-metric-learning-with-triplet-loss-and-keras/
https://medium.com/data-science/triplet-loss-advanced-intro-49a07b7d8905
https://medium.com/data-science/triplet-loss-advanced-intro-49a07b7d8905

	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Problem Statement
	Aim and Objectives
	Thesis Structure

	Background and Models
	Metric Learning for Visual Similarity
	Related Work on Image Similarity
	Classical Feature Descriptors
	Early CNN-Based Feature Extractors
	Metric-Learning Paradigms
	Recent Siamese and Pairwise Variants
	Hybrid and Attention-Based Approaches

	Siamese Networks and Contrastive Loss
	Architecture of Siamese Networks
	Contrastive Loss
	Training Dynamics
	Comparison with Triplet Networks

	Evolution and Principles of Convolutional Neural Networks
	CNN-Based Embedding Backbones
	ResNet50 
	ResNet-101: Deeper Residual Architecture
	MobileNetV2
	Xception
	Summary


	Methodology
	Dataset and Annotations
	Annotation Schema and Metadata
	Category Set and Annotation Statistics
	Image Integrity Filtering
	Dataset Splitting Strategy

	Object Extraction and Cropping
	Polygon-Based Cropping
	Metadata Management
	Embedding Generation for Cropped Objects

	Cosine Similarity
	Triplet Learning and Triplet Loss
	Triplet Loss Formulation and Intuition
	Triplet Mining Strategy for Embedding Generation
	Triplet Dataset Construction and Loading
	Cosine-Based Triplet Loss

	Fine-Tuning Step
	Enhanced Triplet Generation for Fine-Tuning

	Augmentation
	Augmentation Strategy: Motivation and Design
	Overview of Triplet Construction and Augmentation Policies

	Matching Process
	Matching Algorithm
	Detection of Added Objects

	Inference Visualization
	Visualizing Siamese Model Predictions
	Training Strategy
	Siamese Network
	Triplet-Based Training Strategy for CNN Backbones
	Pretrained ResNet-50 as a Frozen Feature Extractor (Zero-Shot Baseline)
	Phase 1 of ResNet-50: Frozen Backbone with Trainable Projection Head
	Phase 2 of ResNet-50: Layer-wise Fine-Tuning of Deeper Residual Blocks
	Pretrained ResNet-101 as a Frozen Feature Extractor (Zero-Shot Baseline)
	Phase 1 of ResNet-101: Frozen Backbone with Trainable Projection Head
	Phase 2 of ResNet-101: Layer-wise Fine-Tuning of Deeper Residual Blocks
	Pretrained MobileNetV2 as a Frozen Feature Extractor (Zero-Shot Baseline)
	Phase 1 of MobileNetV2: Frozen Backbone with Trainable Projection Head
	Phase 2 of MobileNetV2: Layer-wise Fine-Tuning of Upper Inverted Residual Blocks
	Pretrained Xception as a Frozen Feature Extractor (Zero-Shot Baseline)
	Phase 1 of Xception: Frozen Backbone with Trainable Projection Head
	Phase 2 of Xception: Layer-wise Fine-Tuning of High-Level Blocks


	Results and Evaluation
	Evaluation Metrics
	Siamese Network
	Triplet-Based CNN Models
	Matching Performance of Pre-trained Models
	Matching Performance After Phase 1: Trainable Projection Head
	Matching Performance After Phase 2: Layer-wise Fine-Tuning
	Visual Comparison of Matching Performance Across Training Phases
	Added Object Detection with Pre-trained Models
	Added Object Detection after Phase 1 Training
	Added Object Detection after Phase 2 Fine-Tuning
	Visual Comparison of Added Detection Performance Across Training Phases
	Threshold Sensitivity Analysis


	Conclusion
	Conclusion
	Future Work

	Appendix
	Grid Search Results for Cosine Thresholds
	Bibliography

