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Abstract

Due to the progressive aging of the population and the resulting rise in individuals
with neurological diseases and chronic disabilities, such as Parkinson’s Disease
(PD), there is a growing need for personalized care solutions that promote patient
autonomy while maintaining the sustainability of healthcare services. Telemedicine,
including remote monitoring and rehabilitation, represents an Information and Com-
munication Technology (ICT)-based approach aimed at complementing traditional
care and alleviating pressure on healthcare systems.

Exergames—video games that utilize motion sensors, cameras or other input
devices to translate player movements into gameplay—are a promising application
within telemedicine. They promote physical activity by integrating exercise into
an engaging game-based experience.

Five exergames with adjustable difficulty levels, developed by Synarea Con-
sultants and the National Research Council of Italy – Institute of Electronics,
Computer and Telecommunication Engineering (CNR-IEIIT) using Unity and
Google’s Mediapipe, were tested in a clinical study involving 14 PD patients from
the Associazione Amici Parkinsoniani Piemonte (AAPP-AIP).

Data was collected in 5 to 10 one-hour sessions per participant. During each
session, patients repeated the games when possible, with difficulty levels increased
after maximum scores. Following gameplay, participants completed a 5-star-based
survey capturing data on medication timing (Levodopa-based), self-assessment,
satisfaction, willingness to repeat, perceived difficulty and fatigue. Additionally,
clinical evaluations were conducted using the Unified Parkinson’s Disease Rating
Scale (UPDRS), provided by an expert neurologist from Department of Neuroscience
of University of Turin.

The primary objective of this study was to conduct both qualitative and quan-
titative analyses of the collected data, aiming to track the evolution of patient
performance over sessions and assess the alignment between game metrics and
survey responses. Furthermore, a correlation analysis was performed to iden-
tify relationships between gameplay performance, UPDRS scores, and survey
responses—globally, per game, per session and per patient.

The results indicated a strong correlation between UPDRS motor scores and
in-game performance metrics, suggesting that patients’ responses over time to the
exercises were influenced by their clinical condition, which also appeared to affect
their self-reported experience in the surveys. Promising usability outcomes emerged
both from the analysis of the maximum levels reached in each exergame and from
the participants’ questionnaire responses.
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Chapter 1

Introduction

In recent years, alarming demographic shifts-such as aging of global population [1]
(Figure 1.1)-have increased the sense of urgency for finding and developing new
solutions to cope with the consequent increase of burden on healthcare system.
In particular, resources are being invested in quests for accessible and scalable
"panacee". Due to the complexity and heterogeneity of the healthcare sector, some
chronic, age-related and progressive diseases with motor and non-motor symptoms
and complications like Parkinson’s Disease (PD) are being particularly attentioned.
Maintaining patients’ autonomy guaranteeing an high-level cure to the individual
while ensuring a sustainable usage of structures and personnel has thus become a
priority. In this picture, the avant-garde solution of telemedicine, together with its
conjugations like remote rehabilitation and exergames, have emerged as promising
supplementations or alternatives to traditional healthcare strategies.

1.1 Project Context
This thesis is conducted within the scope of ELEVATOR [4] (Ecological Exercises in
Virtual Reality to Stimulate Upper Limb Function and Monitor Motor and Cognitive
Aspects at Home), a project proposed under NODES1 (Nord Ovest Digitale e
Sostenibile) ecosystem [5], one of Italy’s main initiatives funded through the PNRR
program NextGenerationEU. Project is coordinated by SynArea Consultants S.r.l.
(Figure 1.2) in collaboration with the Department of Neuroscience at the University
of Turin, the IRCCS Istituto Auxologico Italiano and the CNR-IEIIT (Istituto
di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, part
of Italy’s National Research Council). ELEVATOR’s goal is to develop a set

1multi-institutional innovation network to accelerate the digital and ecological transition of
key industrial sectors like Health

1



Introduction

Figure 1.1: Global aging trends from 1950 to 2100. Adapted from Visual Capitalist
(2023)[2], based on United Nations World Population Prospects 2022 [3].

of VR exergames, relying on budget HW & SW solutions like webcams and
markerless motion trackers, in order to support motor and cognitive rehabilitation
or conservation of elders and neurologically-compromised individuals, including
patients with PD. Exergames have been developed, with the help of CNR-IEIIT,
using Unity platform, with focus on stimulating real-life experiences like flight or
ski.
SynArea Consultants [6], the company hosting this thesis project, is a Turin-based
ICT firm with over 30 years of experience in the design of custom software solutions
for a wide range of sectors, including manufacturing, aerospace, healthcare and
education. Regarding health sector, company has invested in the development of
virtual and augmented reality platforms for cognitive and motor rehabilitation. As
a follow-up to its work on the REHOME [7][8] platform, it now leads the technical
development and effectiveness/usability testing of exergames within ELEVATOR.
The study presented in this thesis contributes to data analysis and evaluation
phase. In particular, involves data collection on game data and on survey feedback
obtained from up to 14 PD patients in 10 sessions and the relative qualitative and
quantitative inspection to investigate on usability and effectiveness. Gameplay
results are correlated with medical PD-specific evaluation scales, such as UPDRS
or Hoehn and Yahr, in order to find meaningful connections between performance

2
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Figure 1.2: SynArea Consultants logo.

and clinical conditions. Finally, on a bigger picture, this work serves to validate
the potential of webcam-based motion tracking as a reliable, home-deployable
alternative to costlier solutions like Microsoft Kinect, with the broader aim of
promoting accessible and engaging remote care technologies.

1.2 Introduction to Parkinson’s Disease

Parkinson’s Disease (PD) is a chronic, progressive neurodegenerative disorder and
the second most common condition of its kind. It affects approximately 0.3% of
the global population, with prevalence rising to 3% among individuals over 65
years of age. PD is primarily characterized by the degeneration of dopamine2-
producing neurons in the substantia nigra. The symptoms of this disease are
classified as motor and non-motor. Core motor symptoms include bradykinesia3,
rigidity, tremor and postural instability [9]. Non-motor symptoms may involve sleep
disturbances, depression, hallucinations, dementia and gastrointestinal dysfunction.
Given the diversity and quantity, to manage them a combination of pharmacological
and non-pharmacological intervention is employed. Current treatment strategies
predominantly rely on the administration of Levodopa4, which is the most effective
pharmacological intervention to date [10]. A single oral dose can substantially
alleviate motor symptoms, improving fatigue, gait and speech during a temporary
phase known as the “on” time. However, Levodopa neither cures nor halts disease
progression [11] and may lead to dyskinesias5 with long-term use.
Several rating scales are available to assess PD severity. The two most widely used
are the Hoehn and Yahr (H&Y) scale and the Unified Parkinson’s Disease Rating
Scale (UPDRS) [12].

2A neurotransmitter and hormone crucial to the brain’s reward system, affecting motivation,
pleasure, movement and several physiological functions.

3Slowness of movement, difficulty initiating movement and reduced amplitude.
4A dopamine precursor that the body converts into dopamine.
5Involuntary, erratic movements of the limbs or trunk.

3
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1.2.1 Hoehn and Yahr Scale
The Hoehn and Yahr scale, named after its authors, was published in 1967 and was
the first rating scale to describe the progression of Parkinson’s Disease (PD)[12]. It
outlines five stages of PD progression:

• Stage One: The earliest stage, with mild symptoms such as unilateral tremor,
rigidity, or bradykinesia and minimal or no functional impairment.

• Stage Two: Symptoms affect both sides of the body and may include loss of
facial expression and speech abnormalities.

• Stage Three: A mid-stage marked by loss of balance and slowness of move-
ment. Falls are common, but patients remain fully independent in daily
activities such as dressing, hygiene and eating.

• Stage Four: PD progresses to a severely disabling stage. Although patients
may still walk and stand unassisted, they are significantly impaired and often
require a walker. At this point, they are no longer able to live independently
and need help with daily tasks.

• Stage Five: The most advanced stage, characterized by confinement to a bed
or wheelchair. Patients may be unable to rise without assistance, are prone to
falling and may freeze or stumble when attempting to walk.

1.2.2 Unified Parkinson’s Disease Rating Scale
The Unified Parkinson’s Disease Rating Scale (UPDRS), later revised by the
Movement Disorder Society (MDS) into the MDS-UPDRS [13], is a comprehensive
tool that incorporates input from both patients and caregivers. It consists of four
parts, each rated on a scale from 0 (normal) to 4 (severe problems):

• Part 1 – Non-Motor Experiences of Daily Living: Covers intellectual
function, mood and behavior, including anxiety, delusions, depression, apathy,
sleep disturbances, pain, fatigue, constipation and urinary issues.

• Part 2 – Motor Experiences of Daily Living: Assesses speech, salivation,
chewing, swallowing, handwriting, walking, balance, falls, freezing and the
ability to perform routine tasks.

• Part 3 – Motor Examination: Examines motor functions such as speech
clarity, facial expressions, rigidity, finger tapping, hand movements, toe tapping,
leg agility, rising from a chair, gait and freezing of gait, postural stability,
bradykinesia and resting tremor.
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• Part 4 – Motor Complications: Evaluates dyskinesia (involuntary move-
ments), the amount of time spent experiencing these complications and the
severity and impact of motor fluctuations (such as “off” periods).

1.3 State of the art

In addition to personally-suited drug prescriptions and neurological examinations,
PD and other similar chronic and degenerative diseases rehabilitation have tradi-
tionally relied on non-pharmacological, therapist-led complementary strategies that
aim to manage symptoms and preserve quality of life.

Although effective, all these treatments often require in-person attendance, are
resource-intensive and face adherence challenges in long-term care, due to the
increasing prevalence of neurological disorders, as outlined in the abstract.

In order to mitigate the costs and the lack of available personnel and spaces,
thanks to the improvements in the ICT field, physical and cognitive rehabilita-
tion are moving forward to remotely-guided solutions, gathered in a sector called
telemedicine.

Despite being a reality since the start of the 20th century with telephones and
telegraph being the main tools for remote healthcare, with the development of
modern cameras and fast internet connections it became progressively more used,
with the definitive coronation as a new standard with the COVID-19 pandemic.
Telerehabilitation is a specialized branch of telemedicine focused on delivering
rehabilitation services remotely over telecommunication networks and the internet.
It offers flexibility, cost-effectiveness and convenience, eliminating the need for travel.

Relevant is also the opportunity to receive support for late-stage diseased or
individuals with disabilities that are not able to seek in-presence aid. Recent
advancements in technology have introduced immersive systems like Virtual Real-
ity (VR) and Augmented Reality (AR), enabling the development of exergames:
interactive games designed for rehabilitation. These systems provide more engaging
and effective experiences and are showing promising therapeutic outcomes. This
gamified approach relies on softwares such as MediaPipe (MP) Pose LandMarker
and Azure Kinect, which allow motion tracking and data collection, essential for
monitoring patient performance remotely.

With these tools, costs are notably cut (no more need of sensors or wearable
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devices) and a constant health state monitoring is possible: data like survey an-
swers, game results and body joints coordinates is gathered and analysis can be
performed to objectively measure outcomes.

A reliable solution to give diagnoses is Machine Learning: Rana et al. [14] con-
ducted a literature analysis of 112 research papers published up until 2022 in
order to outline data modalities and artificial intelligence techniques that have been
utilized in the analysis and diagnosis of PD. Main ML supervised and un-supervised
techniques are Support Vector Machines (SVM), Artificial Neural Networks (ANN),
K-Nearest Neighbors (KNN), Naïve Bayes, logistic regression, Classification and
Regression Trees (CART) and decision tree.

Purpose is to differentiate between healthy subjects and people with PD (PWDP).
Symptoms like tremors [15], writing difficulties or speech impairment can be used
as attributes for ML algorithms to diagnose the PD severity. Data can be taken
from different kind of public dataset, like [16], [17], [18] or [19].

More data is collected, whether from exergames, surveys or in-clinic crowd exam-
inations, more accurate supervised learning classification models can be trained,
giving the opportunity in the future to have automatic pseudo-diagnosis and even
more auto-personalized non-pharmacological therapies.

1.3.1 Traditional medicine solutions
PD and other similar chronic and degenerative diseases rehabilitation solutions
include physical therapy for motor symptoms such as gait and postural instability
[20], occupational therapy for daily function [21], speech therapy for voice and
swallowing difficulties [22] and cognitive interventions to counteract depression and
cognitive decline [23] [24].
Conventional computer-assisted rehabilitation methods typically use basic hardware
such as keyboards, mice and monitors. While affordable and accessible, these lack
immersion and can result in reduced long-term patient engagement. Moreover,
they offer limited support for integrated physical therapy.
This is why other initiatives, more focused on the union of entertainment and
exercise, are gaining attention: examples are programs of martial arts like Tai-Chi
[25], karate [26] and boxing [27] or initiatives such as dancing [28] and singing [29].

1.3.2 Telemedicine & Telerehabilitation
Telemedicine is a branch of healthcare delivery that employs telecommunications
technology to provide clinical services remotely. For diseases like PD, which are
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chronic, neurodegenerative and in constant need of monitoring, telemedicine repre-
sents a promising strategy to bridge gaps in care.
PD management typically involves regular assessments of motor and non-motor
symptoms, medication adjustments, physical and cognitive rehabilitation. Tra-
ditional healthcare delivery often falls short in ensuring timely access to such
services, especially for patients in rural areas and/or with transportation barriers.
Telemedicine enables them to consult with neurologists, physiotherapists and other
specialists from home, significantly reducing the physical and logistical burdens of
travel.
While traditional care allows for hands-on assessments and is preferred for early di-
agnosis or cases of acute changes, telemedicine serves an ideal solution for standard
scenarios, complementing traditional care by making routine follow-ups, medication
management and rehabilitative interventions more convenient and efficient.
Telerehabilitation is one of the main branches of telemedicine. It allows patients
to interact with providers remotely and can be used both to make diagnosis and
to deliver therapy. Main application are physical therapy, occupational therapy,
speech-language pathology, audiology and psychology.
Therapy sessions may be delivered individually or in groups. These are typically
supported through webcams, video conferencing platforms, dedicated web portals,
or mobile applications.
Dias et al. [30] investigated voice telerehabilitation in Parkinson’s disease using
videoconferencing and found significant improvements in vocal patterns and re-
ported an high degree of satisfaction and a preference for the remote modality of
exercise.
Sekimoto et al. [31] investigated the safety and feasibility of video-based
telemedicine system delivered via tablet for PD subjects, which were randomly
divided among clinic and online for their sessions. Study proved that medical
outcomes for remotely-examined patients were the same as the ones obtained with
traditional in-presence therapy.
Due to the visual nature and dependence on internet connections and devices, an
important area of this branch is devoted to the investigation on telerehabilitation
limits and on the study of its effectiveness via surveys, outcomes analysis and costs.
These analyses are mostly based on a randomized controlled trial.6
For example, Silva-Batista et al. [32] examined 14 studies to review the current
evidence on the effects of telerehabilitation by videoconferencing on balance and
gait for patients with PD. Outcome suggested that for these two tasks in-presence
solution is better: balance is particular challenging to assess by videoconferencing

6RCT is a study in which participants are randomly assigned to either a treatment group
(receiving the intervention) or a control group (receiving a placebo or standard treatment)
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and patients are generally more confident in clinics, where they can give their best
without fear of falling.
Videoconferencing, however, is not the only telerehabilitation solution: thanks to
the develop of mark-less motion tracking SWs as Kinect and MP, exergames are
becoming for certain specific tasks the main alternative to traditional physical and
cognitive re-education.

1.3.3 VR & AR exergames
Virtual Reality games are fully immersive games that place players in a completely
virtual environment through which they move using body movement.
Pazzaglia et al. [33] compared a 6-week VR rehabilitation program with a conven-
tional rehabilitation program on 51 PD patients randomly divided. Results proved
that VR group showed greater improvements in balance, walking and upper limb
motion.

Thumm et al. [34] created a system based on a treadmill and a depth cam-
era (Microsoft Kinect) to track the movement of the participant’s feet during
treadmill walking and project it on the screen, providing real-time feedback on
performance. The virtual environment consists of different obstacle-lined pathways,
requiring the user to modulate his or her gait to negotiate the obstacles projected
on the screen (e.g., take a longer step or increase foot clearance). At the end of the
trial, outcomes showed an increase in gait speed and walk duration.

Gandolfi et al. [35] study examined patients following traditional postural stability
rehabilitation or an innovative VR version based on Nintendo Wii Fit system and
teleconferences. In this second case, participants played some exergames rather
than practicing some standard exercise. Outcomes suggested that same results
were achieved in the two modalities, but with a lower cost in the telemedicine
solution.
Augmented Reality games are interactive games that overlay digital content onto
the real world, allowing players to remain aware of their physical environment while
engaging with virtual elements.
Hardeman et al. [36] created Reality DTx®, a digital therapeutic software platform
for AR glasses that enables a home-based gait-and-balance exergaming intervention
specifically designed for people with Parkinson’s disease. Results showed, following
an RTC program, that solution is a safe, well-accepted and potentially effective
intervention in PD, with no recorded occurences of falls and just four near falls
registered among 24 total participants.

Ferraris et al. [8] presented the REHOME solution, a telerehabilitation platform
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integrating motor and cognitive exergames for neurological disorders, including
Parkinson’s disease. The system leverages Kinect-based tracking and gamified tasks
to support remote monitoring and rehabilitation. Preliminary usability results from
70 subjects showed high acceptance and engagement, suggesting the feasibility of
home-based exergaming protocols for PD patients.

Amprimo et al. [37] proposed an integrated Azure Kinect-based system for remote
motor assessment and exergaming in PD. Their approach combines standardized
motor tasks with virtual exergames, enabling both evaluation and rehabilitation. In
trials involving 20 PD patients and 15 healthy controls, the system demonstrated
statistically significant improvements in motor performance and arm swing symme-
try, validating its dual-purpose design.
A recent study (2024) by Gandolfi et al. [38] explored the use of immersive VR
exergames for PD rehabilitation. The system incorporated obstacle negotiation
and gait modulation tasks, with real-time feedback provided via depth cameras
and treadmill-based environments. Results showed enhanced motor engagement
and adaptability, reinforcing the potential of immersive VR for personalized gait
training.

1.3.4 Markerless Motion Tracking Tools: Mediapipe and
Kinect

In order to support AR & VR exergames in the context of telerehabilitation, cost-
effective and user-friendly motion recognition solutions are needed. As summarized
in 1.1, main options are Azure Kinect [39] and Mediapipe Pose Landmarker [40]:
the first is more precise in capturing the depth, but the latter does not require any
further HW and is very flexible, actually giving access to gamified therapy to a
wider pool of people with neurodegenerative diseases. However, these tools can
be used not only in exergames, but also in more generic supervised rehabilitation
programs, where important parameters such as flexions, adductions, extensions,
inclinations, rotations, symmetries and repetition counts can be extracted and
evaluated to keep track on patients’ evolution. Some studies tried to assess the
quality of measures retrieved by using MP: Latreche et al. [41] used this technology
for measuring four active shoulder ranges of motion, giving proof of the reliability
of mediapipe results by comparing its measures with the ones gathered via Kinect
and a clinical goniometer, which respected a 95% Limit Of Agreement (LOA)7.
Francia et al. [42] confronted inertial measurement unit (IMU)-based sensors with

7A statistical concept used to quantify the agreement between a new measurement method
and a gold-standard reference, focusing on how much their results differ for the same observations.
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Table 1.1: Comparison of markerless motion capture systems with gold-standard
solutions

Feature Azure Kinect MediaPipe Gold Standard
(Vicon, Xsens)

Input Devices RGB camera,
depth sensor,
IMU

Webcam only Wearable IMUs,
optical markers

Output 3D skeletal track-
ing (32 joints)

2D/3D land-
marks (33
points)

High-precision
full-body kine-
matics

Hardware Re-
quirements

Azure Kinect
camera PC

Any PC built-in
webcam

Multiple sen-
sors/cameras,
high-end PC

Cost Medium–High Low (free, open
source)

Very High

Integration Unity, Python,
C++

Unity, Python,
JS

Specialized SDKs
(often propri-
etary)

Use Case Suit-
ability

Home/telehealth Home/telehealth Clinical/research
lab

Tracking Preci-
sion

High Moderate Very high
(research-grade)

Setup Com-
plexity

Moderate (hard-
ware, drivers)

Low (no sensors) High (sensor
placement, cali-
bration)

Best For Remote rehab
with depth sens-
ing

Accessible and
scalable rehab

Biomechanical
studies, clinical
validation

an MP algorithm in reproducing the angular trends over time for four gestures.
Outcomes showed how MP, despite being more imprecise and with quality differences
between acquisitions among upper (16% RMSE) and lower joints (20% RMSE),
could be a valid tool for tele-rehabilitation.
Mustar et al. [43] investigated with an RCT on monitoring the rehabilitation of
a patient’s Range of Motion (ROM) using the MediaPipe library. The developed
detection system measures angles concerning the patient’s body ROM patterns.
The results showed an overall system error of 27%. The minimum system error
was 11%.
Roggio et al. [44] used MP to evaluate applicability and reliability of a machine
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learning (ML) pose estimation model for the human posture assessment, while
also exploring the underlying structure of the data through principal component
and cluster analyses. Outcomes pointed out gender-specific differences in hip and
shoulder adduction angles, giving proof of measurements quality obtaining a ICC
(Intraclass Correlation Coefficient) of 0.95 at maximum and showing that this could
be potentially a new non-intrusive method for rapid, reliable screening in physical
therapy and sports.
Instead, for what concerns Azure Kinect, Bertram et al. [45] confirmed its high
accuracy and repeatability in measuring motor function compared to a gold-
standard motion capture system. Brambilla et al. [46] assessed Azure Kinect’s
performance under varied environmental conditions, showing its reliability in
upper limb biomechanical tracking, supporting its feasibility for tele-rehabilitation
applications.
Finally, as shown in 1.3 and 1.4, the joint landmarks used for pose analysis in
both technologies are illustrated. These systems have the ability to consistently
reproduce and save three-dimensional coordinates of the detected landmarks, with
a frequency determined by a defined frame rate (FPS). Despite differing in accuracy
and accessibility, these tools open the door to scalable, home-based rehabilitation
by enabling real-time motion capture without the need for expensive infrastructure,
required instead by gold-standard solutions.

1.4 Objectives of the Study
The aim of this study is to perform both qualitative and quantitative analyses of
data collected from five custom-designed exergames that integrate physical activity
within a gamified framework. The broader goal is to assess whether, in the near
future, such exergames represent a viable telemedicine solution for individuals with
Parkinson’s Disease (PD).

The specific objectives are the following:

• To evaluate the clinical usability and effectiveness of the proposed
exergames in a pool of individuals with PD.

• To monitor the progression of patients’ performance over multiple
sessions, with the aim of identifying collective trends in game-based metrics.

• To investigate correlations between objective game indicators and subjec-
tive responses gathered through participant session surveys.

• To explore patient-specific relationship between UPDRS motor assessments
and individualized gameplay trends.
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Figure 1.3: Azure Kinect joints landmarks [47]

Figure 1.4: Default Mediapipe joints landmarks [40]

• To compare the differential impact of each exergame on user engagement
and performance outcomes.

In order to carry on the study, data collection was an implicit, thus crucial objective.

1.5 Structure of the Thesis
This thesis is structured into five main chapters, each addressing a specific aspect
of the study:

• Chapter 1 - Introduction: Gives a brief introduction to the context,
motivation, parent project, followed by background on Parkinson’s Disease,
the state of art, objectives and structure of the thesis.
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• Chapter 2 - Methods: Describes exergames and the data collection process.
In addition, displays overall statistics on the acquisition, with a section
dedicated to data types summarisation.

• Chapter 3 - Analysis and Results: Provides an overview on patients’
medical attributes and on gameplay data, aggregated per patient and per
session, aiming at tracking their evolution in time and trends. It evaluates
alignment between game metrics and survey responses, paying attention in
particular to games’ max levels. Furthermore, performs correlation analysis
to identify relationships among gameplay performance, UPDRS scores and
survey responses-at multiple levels (globally, per game, per session and per
patient). The chapter concludes with a focused study on three specific patients
and presents results from the application of unsupervised learning techniques
to cluster sessions.

• Chapter 4 - Discussion: Interprets findings in relation to clinical relevance,
user experience and technological feasibility.

• Chapter 5 - Conclusion and Future Work: Summarizes main outcomes
and proposes directions for enhancing the analytical framework and platform
usability.
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Methods

In this section ELEVATOR platform, exergames and the collection process are
described, together with a summary on total gathering time, sessions and patients.
Following, a subsection is dedicated to presentation of different data types obtained.
Finally HW used for the experimentation is described.

2.1 ELEVATOR Platform Presentation

As previously mentioned in chapter 1 and in the abstract, thesis’ host Synarea
Consultants developed four exergames (Airplane, Tile, Skewer and Ski), which,
together with CNR-IEIIT’s Gym, compose the set of gamified rehabilitation solu-
tions enclosed in the ELEVATOR platform. Platform is developed as a Software
as a Service (SaaS) and guarantees a cloud database backup both for game-related
(movement and game metrics) and survey data. Once logged in, the operator has
the possibility to start a new session with a new/already registered patient or to
access the global or per participant results dashboard (Figures 2.1, 2.2).
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Figure 2.1: Dashboard with global results. On the left side, pie charts for sex
and disease. On the right, bar plots for age demographic analysis and total number
of attempts per game. Above visualization of data, there are filters for selection of
age, sex and disease.

Figure 2.2: Dashboard with patient-specific results and data retrieval. Above,
pie chart with fraction on the total of specific exergames attempts and bar plot
with total number of tries per game. Below, main patient features are displayed,
with possibility to check and download single attempts data.

After patient selection (Figure 2.3), a pre-test questionnaire has to be compiled
(Figure 2.4) in order to gain access to the game selection interface (Figure 2.5).
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Figure 2.3: Interface for patient selection or registration, accessible only by
registered operators. Below selection, patient key features are displayed.

Figure 2.4: Pre-test questionnaire. Required information regard last Levodopa-
based medicament assumption, description of the medicine (mg, name, frequency...)
and a self-evaluation for the perceived actual condition.
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Figure 2.5: Game selection interface with the 5 exergames considered for the
study.

At the end of the session, a post-test questionnaire (Figure 2.6) was asked as well
to keep track of subjective impressions regarding the games, considering the variety
of difficulties proposed across the path.

Figure 2.6: Post-test questionnaire. Likert-type scale answers regard satisfaction,
repeatability, fatigue and difficulty. On the right, all session attempts are listed.

2.2 Exergames Description
The exergames are presented individually, detailing the required actions, the motor
or cognitive functions targeted, the game level and scoring logic. Each game
supports semi-autonomous activation through a gesture-based selection system,
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eliminating the need for a mouse or keyboard. This was made possible by the
integrated hand-tracking system and an intuitive, user-friendly Human-Machine
Interface (HMI).

2.2.1 Airplane - SynArea Consultants
A 3D scene in which the participant controls an airplane using coordinated move-
ments of the torso and arms (Figure 2.7), which simulate the function of wings.
The objective is to avoid obstacles and fly through colored rings (from which score
is computed) distributed along the path. Difficulty levels are determined by the
aircraft’s speed settings, as well as the number and spatial arrangement of the
rings. In the more advanced levels, the color of each ring determines whether the
airplane should fly through it or avoid it. Passing through an incorrect ring results
in a point deduction.

Figure 2.7: Airplane exergame demonstration.

Game level is computed as follows:

GameLevel = (level difficulty × 3) + level velocity

where level difficulty and level velocity spans from 0 to 2, defined as:

• 0 = Easy

• 1 = Medium

• 2 = Hard
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From a cognitive perspective, this exergame engages several key functions. The
dynamic 3D environment stimulates selective and sustained attention, requiring the
participant to stay focused on relevant stimuli while maintaining performance over
time. In advanced levels, the color-dependent decision-making activates working
memory, inhibitory control and cognitive flexibility, as players must recall and
adapt to rules in real-time. Additionally, the spatial navigation task enhances
visuospatial reasoning and processing speed, supporting both cognitive training and
motor-cognitive integration in rehabilitation contexts.

2.2.2 Tile - SynArea Consultants
In order to press tiles, this exergame is designed to stimulate upper limb activity
through frontal extension and positioning movements (Figure 2.8). These actions
promote motor control, coordination and movement precision, while also engaging
more complex motor patterns, upper limb strength and postural alignment of the
head and trunk.
In addition to its physical goals, the game targets cognitive functions, particularly
sustained and selective attention. The participant must remain focused on executing
the correct movements while selecting the appropriate keys, which are randomly
prompted by the system to compose a melody. This dual-task structure supports
motor-cognitive integration and encourages engagement through musical feedback.
Game levels and scores reflect the total amount of tile to press (5, 7 or 10) to
complete the exercise.

Figure 2.8: Tile exergame demonstration.
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2.2.3 Skewer - SynArea Consultants

Game’s target is to compose a skewer following a certain order of ingredients
(Figure 2.9). The primary functional objective of this exergame is to stimulate
upper limb motor coordination, either unilaterally or bilaterally, in combination
with grasping and pinching actions. These movements promote fine motor control,
coordination and precision in reaching for and manipulating virtual objects. The
game leverages Google MediaPipe’s hand-tracking capabilities, which allow for
real-time detection of hand landmarks via a standard webcam.
In addition to motor stimulation, the exergame engages several cognitive functions.
The participant must maintain selective attention to identify and interact with
relevant targets, while visuomotor integration is required to align hand movements
with visual cues. A key cognitive component involves selecting the correct ingredient
displayed on a virtual blackboard: this task activates working memory, semantic
processing and decision-making, as the participant must recall the target item and
distinguish it from distractors. The grasping and pinching actions further reinforce
executive functions such as planning and response inhibition, particularly under
time constraints or when incorrect selections result in point deductions. While
scores goes up to the number of ingredients inserted in order (maximum value is
6), game level is computed as follows, resulting in six distinct levels ranging from 0
(easiest) to 5 (most challenging):

GameLevel = (level difficulty × 2) + hands number

where hands number takes values 0 (single mode) or 1 (both hands mode) and
level difficulty ranges from 0 to 2, corresponding to the values:

• 0 = Easy

• 1 = Medium

• 2 = Hard

Generally, within each session, both different hand modes were proposed to the
participant, keeping the same difficulty level.

20



Methods

Figure 2.9: Skewer exergame demonstration.

2.2.4 Ski - SynArea Consultants
This game, designed to simulate skiing across varied tracks (Figure 2.10), is the
only one in which both upper and lower limbs are actively engaged. The activity
involves rhythmic, alternating stepping movements of the legs combined with coor-
dinated arm lifts. Despite its simplicity, the exercise targets multiple rehabilitative
domains, including motor coordination, muscular strength, mobility and postural
trunk balance.
In addition to its physical goals, the exergame also engages several cognitive func-
tions. The participant must maintain sustained attention and motor-cognitive
coordination to execute the correct movement pattern while navigating the track.
The need to avoid obstacles and collect coins as rewards introduces elements of
anticipatory planning, visual scanning and decision-making under pressure. These
demands promote cognitive flexibility and reinforce the integration of perception,
action and reward-based motivation.
Difficulty levels are implemented by introducing tracks with increasingly complex
layouts, requiring greater precision, timing and cognitive control to navigate suc-
cessfully. Game level is computed as follows:

GameLevel = level velocity + (track difficulty × 3)

where track difficulty ranges from 0 to 3, corresponding to the values:

• 0 = Straightaway
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• 1 = Curve

• 2 = S-turn

• 3 = Closed track

Level velocity spans from 0 to 2, defined as:

• 0 = Easy

• 1 = Medium

• 2 = Hard

Figure 2.10: Ski exergame demonstration.

2.2.5 Gym - CNR-IEIIT
This exergame is designed to stimulate upper limb motor function through exercises
inspired by common gym routines. The activity consists of a series of arm lifts-
performed either unilaterally (one arm at a time) or bilaterally (coordinated arm
movements), executed in both lateral and frontal directions.
The game includes the following sequence of exercises:

• Repetitions of right-arm lifts

• Repetitions of left-arm lifts

• Repetitions of alternating arm lifts (starting with the right arm)
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• Repetitions of simultaneous arm lifts

In order to complete the game, each of the four exercises must be performed in both
the lateral (arms lifted to the sides) and frontal (arms lifted forward) modalities.
In addition to its physical objectives (targeting motor coordination, strength and
range of motion) the exergame also engages cognitive functions. The participant
must maintain sustained attention and sequencing ability to follow the prescribed
order of exercises and switch between movement types. The need to recall and
execute specific movement patterns also stimulates working memory and motor
planning, supporting the integration of cognitive and physical rehabilitation goals.
Scores are assigned as follows:

• Correct Repetition = +100

• Wrong Repetition = -25

A four-level scale is implemented, where the number of repetitions increases in
increments of five-from a baseline of 5 up to a maximum of 20.

Figure 2.11: Gym exergame demonstration.
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2.3 Deployment of the Pilot Study within the
Association

As summarized in Table 2.1, the collection process involved the coordination
among multiple actors: the AAPP-AIP coordinators, the CNR-IEIIT, the SynArea
Consultants employees, the neurologist and the patients. This process lasted
from the start of November 2024 until Easter festivities of 2025, with plenty of
time devoted to identifying participants, planning sessions and accommodating
individual needs. The pilot study consisted of two phases:

Table 2.1: Project Timeline Overview

Date Task Description
5 Nov 2024 Web meeting with the Association to define thesis aspects,

especially the exergame testing
10 Nov 2024 Project divided into two phases: feasibility study and

data collection
10 Jan 2025 Visit to the Association to introduce the activities and

prepare an info document for potential participants
13 Jan 2025 Drafting message to circulate among AAPP-AIP profes-

sionals to recruit Phase 1 volunteers
17 Jan 2025 Drafting newsletter for AAPP-AIP members
20 Jan - 10 Feb 2025 Meetings with volunteers for Phase 1
11 Feb - 4 Mar 2025 Planning weekly calendar to identify patients for Phase

2 (Tab 2.2)
5 Mar 2025 Project presentation at AAPP-AIP (Figure 2.12) and

participant clinical assessments by a neurologist
10 Mar 2025 Start of Phase 2
18 Apr 2025 End of Phase 2

• Phase 1: First feasibility study and search for ideal target

• Phase 2: Data collection organized in gamified sessions

2.3.1 Phase 1 of Pilot Study
This phase involved the search for heterogeneous participants (see upper graphs
from Figure 2.1), willing to try the five exergames, which, at that stage, still relied
on Azure Kinect technology. For this part of the study, volunteers were asked to
participate only once and to answer the same pre & post questionnaires described
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in Figures 2.4 and 2.6. 26 subjects showed up to contribute, among which there
were cases of DBS, early and late PD stages and a person confined to wheelchair.
The primary goal was to perform a usability study to assess the range of patients’
disease stages for which the difficulty level of the exercises is suitable, enjoyable
and effective. This was done considering game performances as well as by collecting
feedback, impressions and suggestions directly from the players. Outcomes were
used to better align the development of the in-game activities with the needs and
preferences expressed by the patients. Secondary purpose was to select the best
responsive volunteers, both in terms of game performances and survey evaluations,
to invite them to participate in the second phase. Findings indicated that the
gamified exercises were best suited for individuals in Hoehn and Yahr stages two
to three (see chapter 1 subsection on the scale).

2.3.2 Phase 2 of Pilot Study

The last phase of the study, which lasted for more than a month, was dedicated to
the data collection. Gamified sessions were divided in 1-hour slots with frequency
of one or two times per week, depending on participant availability. Among the
26 patients visited in phase 1, 14 of the most responsive participants agreed to
take part in this phase. Data collection consisted not only in gathering game
performance data and survey responses, but also joint motion capture and video
recordings of main motor UPDRS tasks, asked to be performed before and after
each session. The collection made in this phase was later used as unique base for
the data analysis described in section 3.
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Table 2.2: Example Weekly Schedule: One-Week Snapshot (subject to modifica-
tions)

Time Monday Tuesday Wednesday Thursday Friday

7:00-8:00 6
8:00-9:00 1 18 18
9:00-10:00 5 21 14 13
10:00-11:00 2 17 20 5
11:00-12:00 10 19 2 14
12:00-13:00 20 7 22 7
13:00-14:00 22 6
14:00-15:00 17
15:00-16:00 13 10
16:00-17:00 21

Figure 2.12: Presentation to the patients in AAPP-AIP.
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Overall Collection Statistics

In phase 2, a total of 123 sessions were held and personally supervised, correspond-
ing to a total of at least 123 hours of data collection. The total number of tries is
reported in Figure 2.13.

Figure 2.13: Total number of tries for each exergame.

Notably, the game with the fewest trials was Gym, which was proposed only once
per session due to its longer duration.

2.3.3 Data Types and Ranges
The data collected during the pilot study can be categorized into four main types:
game data, video recordings, questionnaire responses and clinical and
demographic data. Each type was stored in standardized formats for ease of
analysis, reproducibility and cross-reference.

Game Data

Game sessions generated two distinct data streams stored in .json format:

27



Methods

• Motion data: Frame-by-frame tracking of joint positions using 3D Cartesian
coordinates (x, y, z) per joint. These data support kinematic analysis and
movement quality assessment.

• Game results: A series of integer-based scores reflecting user performance
across different exergame sessions.

Video Recordings

Two types of video files were recorded throughout the work:

• Exergame attempts: Gameplay recordings that could be used in the future
to qualitatively assess user engagement, motor strategies and any discrepancies
with tracked motion data. The recorded sessions may be reprocessed by third
parties to extract motion data from the video material without requiring
patients to undergo the rehabilitation protocol again.

• UPDRS tasks executions: Videos captured participants via smarphone
performing selected items of the MDS-UPDRS scale, recorded both before and
after each session for clinical comparison. Tasks included Sit-To-Stand, Leg
Agility, Gait (from two perspectives, frontal and horizontal), Finger Tapping,
Toe Tapping and Hands Movement.

Questionnaire Data

Self-reported questionnaires were presented to participants pre and post sessions.
Responses used a Likert-type scale1 ranging from 1 (lowest) to 5 (highest) and were
saved in .csv format for analysis.

Clinical and Demographic Data

Additional data was compiled in structured files:

• Patient information: Collected in a .csv file, including demographic data
and anonymized participant identifiers.

• Clinical scores: Stored in .xlsx format, incorporating Hoehn and Yahr
staging and itemized UPDRS assessments filled out by a neurologist.

1psychometric response format commonly used in questionnaires to measure attitudes, opinions,
or perceptions. It present a graded scale, where 1 means "strongly disagree" and 5 means "strongly
agree".
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2.4 Hardware Setup for Data Collection
This section describes the hardware setup adopted for the data collection throughout
the pilot study. Two distinct configurations were used for Phase 1 and Phase 2,
reflecting the technological transition during the course of the project.

Phase 1 - Azure Kinect Setup
In the first phase of the pilot study, the exergames were still integrated with the
Azure Kinect system. Participants interacted with the system through Kinect’s
built-in RGB-D camera. No external webcam was used during this phase.

Phase 2 - Webcam and Display Setup
For Phase 2, the Azure Kinect HW was replaced by Mediapipe SW. A Logitech
BRIO 4K Stream Edition webcam was used for high-resolution video recordings
and to enable real-time body tracking for game inputs, with key features including:

• Ultra HD 4K resolution (recorded at 1280×720px, 30 fps)

• Automatic light correction with HDR technology

• Omnidirectional microphones with noise cancellation

• Adjustable field of view (FOV) at 65°, 78° and 90°
In both phases, laptop used to support exergames, body tracking and video
recording had the following specifications:

• Operating System: Windows 11

• Processor: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz

• RAM: 16 GB

• GPU: NVIDIA GeForce GTX 1650
To enhance the user experience and enable real-time feedback, a secondary 50-inch
monitor was installed to display games.
Participants were seated facing the television, approximately two meters away, in a
well-illuminated position with a white wall behind them. The designated posture
remained consistent across all games when considered individually. Specifically,
the setup for Airplane, Ski and Tile was identical: the webcam was positioned
horizontally, aimed directly at the participant to ensure full-body framing (see
Figure 2.14). For the Gym game, the indicated posture required the subject to stand.
During Skewer, the participant was moved closer to the screen (approximately one
meter away) and the camera was tilted and mounted on top of the television.
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Figure 2.14: Video frame of a patient performing Airplane exergame.
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Chapter 3

Analysis & Results

This chapter details the data analysis process implemented after the completion
of Phase 2 data collection. Before presenting results, a brief overview of the data
preparation pipeline is provided, followed by a general profile of the participants.
The analysis is organized into key areas of interest: game results (with emphasis
on game level to point out progressions), survey responses, correlation heatmaps
(linking game metrics, questionnaire data and clinical evaluations), special patients
analysis and unsupervised sessions classification. Special patients analysis consists
into the inspection done on three representative patient profiles, designated as
the “least severe”, “most severe” and “outlier”. These subjects data is explored in
comparative depth. Each area of investigation (excluding clustering) is analyzed
on a per-game basis by aggregating data first by patient, then by session.

3.1 Data Preparation

This section outlines the data preparation process, including initial organization,
cleaning and preprocessing steps required to produce a consistent and analyzable
dataset.

3.1.1 Data Organization

As described in chapter 2, multiple data types were used in Phase 2 analysis, which
necessitated an initial organization into structured folders, followed by conversion
into standard formats such as .csv files to enable compatibility with Python
DataFrame libraries.
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Game Data

The built-in auto-save process generated a hierarchical folder structure for each
game, summarized in Figure 3.1.

Figure 3.1: Auto-generated hierarchical structure of game data.

Noticeably, no session information was explicitly present in final
game_results.json files, which were all divided and with the wrong ID mapping.
In addition, repeated gameplay attempts were stored as folders sharing the same
date but differing by timestamp (hour and minute). The first step in organizing data
involved creating a GAME_session_summary.json file for each exergame, containing
the session summaries for that specific game: primary key was the patient’s ID and
value was a dictionary having as key the session number and as value the list of
folders indicating the different tries. Each patient’s folders were iteratively accessed
to compute game metrics and generate preliminary .csv result files, storing all
tries tabular data.

UPDRS Tasks Video Recordings

Since videos were recorded with a smartphone, proper filing was required after
acquisitions, ensuring that motor assessment clips were properly sorted by patient
ID and session type (pre/post). Files were later saved on company cloud for
future usage, as not analyzed as part of the present study. Clinical scores, patient
descriptions and survey answers did not require any additional organization step,
being already well separated and, apart from medical results, already in CSV format.
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3.1.2 Data Cleaning & Preprocessing
The cleaning process primarily targeted game results, with a focus on session and
attempt integrity checks: only complete, uncorrupted and uninterrupted records
were considered valid for inclusion in the final dataframes. For all exergames,
columns that were meant to be numeric were converted into appropriate numeric
types (integers or floating-point values).
Session number indicators were standardized to ease future merging of data, while
timestamps were converted into python-readable datetime objects.
The Gym exergame scores were normalized to align them with the range of other
game metrics, minimizing distortion in visual analyses.
Questionnaire answers were subjected to a renaming process, replacing numerically
labeled columns (such as answer_2) with semantically meaningful attribute names,
followed by a feature selection phase where non-relevant metrics were discarded.
Patient and clinical evaluation databases were subjected to the same transformation
pipeline as the surveys, ensuring consistent naming conventions and formats across
shared columns.
Merging was a crucial step to put together exergames’ results into a single complete
dataset, using as key fields the patient ID and the session number. An ’exergame’
identifier column was added to preserve row origin. Due to heterogeneity in metrics
across games, only a subset of universally relevant features was retained for cross-
game analysis.
These are: game time, game level, score and errors. In particular for the tile
game, a tile time field obtained by dividing the game time by the number of
points (and thus tiles pressed) was included in the analysis but not stored as a
column in the merged database.
Patients and clinical results were merged together on the patient ID and the result
was also merged with survey data, keeping the session number indicator.
Finally, this DataFrame was merged with the output of the combination of games
data, obtaining a fully informative starting point for more advanced researches in
later stages.
All cleaning and merging operations were performed using custom Python scripts
developed for this study. Analyses ware conducted by aggregating merged databases
by patient ID or session number, obtaining different points of view of the results
evolution process and knowledge on best performers.

Software Tools
All data processing, cleaning and analysis tasks were performed using Python
3.10. The workflow leveraged several open-source libraries and modules, including:

• pandas, csv, json, pathlib: For tabular data manipulation, I/O operations
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and directory traversal.

• datetime, functools, itertools, re, collections: For time management,
functional operations and data structuring.

• NumPy, SciPy: For numerical computations and geometric analysis.

• matplotlib, seaborn: For data visualization and custom plot generation.

• scikit-learn (sklearn): For preprocessing, clustering (DBSCAN, KMeans,
Agglomerative) and evaluation metrics (silhouette score).

3.2 Patients Presentation

Before diving into the analysis, a general presentation of the patients is given in
Table 3.1, while main clinical evaluations from neurologic assessment are shown in
Figure 3.2 and 3.3.
Participants ranged in age from 54 to 82 years, with total UPDRS scores spanning
8.5 to 62.
Despite the apparent heterogeneity of participants, thirteen out of fourteen partici-
pants were classified within Hoehn and Yahr stages 2 or 3 (stage 2: n = 8, stage
3: n = 5). The only patient labeled as stage 4 was intentionally included as the
most severe case among the admissible subjects selected in phase 1. Purpose was
to explore his responsiveness to gamified therapy over a prolonged period of time
to prove effectiveness, despite the tougher conditions.
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Participant Demographics

Patient ID Age Years with PD Most Compromised Side Sex
1 54 24 RX M
2 80 4 RX M
5 66 3 RX M
6 81 12 RX M
7 75 4 RX F
10 74 5 RX M
13 65 10 RX M
14 66 3 LX M
17 78 9 RX M
18 75 7 RX M
19 82 2 NO M
20 75 4 RX M
21 67 4 RX F
22 67 15 RX M

Table 3.1: Phase 2 patients: demographics and most compromised side (RX =
right, LX = left, no = no compromised side).
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Clinical Profile

Figure 3.2: Total UPDRS values of patients, colored by H&Y scale.

Figure 3.3: UPDRS’ main motor features values per patient, colored by H&Y
scale.
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3.3 Game Results Analysis
A subset of the available exergame metrics was selected to highlight the most
relevant indicators for performance assessment. Results were first categorized by
aggregation type, then analyzed by game. Chosen indicators were:

• Airplane: score and game level, chosen to assess participants’ adaptability
and progression across difficulty tiers.

• Tile: time to press a tile and errors, indicators of reaction speed and cognitive-
motor coordination under pressure.

• Skewer: game time, used to quantify endurance, accuracy and velocity.

• Ski: game level, game time and errors. They reflect adaptability to a dual-task
challenge involving obstacle avoidance and timed execution.

• Gym: game level and score, which summarize task completion and in-game
success across multiple motor tasks. Score values were normalized to percent-
ages to align with other metrics.

3.3.1 Per Patient Aggregation
This section aims to identify the top-performing patients based on aggregated
performance metrics across sessions. In order to do so, each exergame’s DataFrame
was grouped by patient ID, computing the overall mean, standard deviation and
maximum values for all metrics previously listed. For each metric, a summary
DataFrame was generated containing one row per patient, ordered by descending
mean value of that metric. These summaries were used to generate Matplotlib-based
bar charts, where for each patient:

• The bar height represents patient’s average performance

• The gray shaded area shows the ± standard deviation

• The black triangle marker indicates the maximum value achieved

A dashed red line shows the global mean across all session records of all patients.
The standard deviation was calculated using the .std() method from pandas
library, which quantifies the dispersion of a set of n values x1, x2, . . . , xn from their
arithmetic mean x̄:

s =
öõõô 1

n − 1

nØ
i=1

(xi − x̄)2 (3.1)

where:
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• s is the sample standard deviation,

• x̄ is the mean of the observations,

• xi represents each individual measurement,

• n is the total number of observations for that patient.

Airplane

Figure 3.4: Average and Maximum normalized Score obtained by patients across
sessions (expressed in percentages).

In figure 3.4, initial insights into patient consistency can be drawn by examining the
standard deviations (std), maximum and means normalized score. Normalization
enables evaluation of the ratio between actual and maximum scores, penalizing
subjects that reached lower levels at their best, since higher levels bring possible
higher scores and thus larger percentages. In particular, subjects with higher
normalized scores and lower standard deviations (patients from number 22 to 18)
demonstrate more stable and efficient motor-cognitive performance across sessions.
Participants with moderated standard deviation and near-average mean scores
have a variability consistent to session to session changes in motor and cognitive
aspects. Patients with high standard deviations and low mean scores—such as 17,
5 and 7—are the most inconsistent: their performances may spike in some sessions
and drop in others. In addition, case of participant 19, with low std and mean, is
an example of a consistent poorly performer. Maximum level analysis reveals that

38



Analysis & Results

50% of patients reached the global maximum score, achievable with three most
engaging game levels marked as "difficult". Interesting are the cases of patient 2
and 5. The first, despite being among the top performers, never hit the global
maximum score, while the latter, although being the one with the second lowest
mean score, has obtained at least once a quite high result.
In Figure 3.5, per patient game level progression for Airplane exergame is shown.

Figure 3.5: Average and Maximum Level obtained by patients across sessions.

Top performers (which are the same outlined for 3.4) are patients with an average
value 1 unit higher than the mean level. All of them reached the absolute max
level, including patient 5 and 2, which have below overall mean average game level,
indicating an important later sessions improvement. Remaining patients never
reached maximum level, with subjects 19, 7, 17 that found early a difficulty plateau
that could not overtake. Despite the differences in level reaching, the relatively
uniform standard deviation indicates that study group members were all similarly
consistent in their behavior: game’s difficulty progression produced a balanced
cognitive-motor challenge across the participants, making this metric a reliable
discriminator for differences in capability and adaptation.

Tile

By observing the average and maximum times to press a tile in Figure 3.6, a clear
understanding of participants reaction times can be achieved. Both mean and
maximum results cover a wide performance spectrum: patients ranged from the
fastest patient 14 (3.5 seconds as average) to patient 19 (slowest, almost 14 seconds

39



Analysis & Results

Figure 3.6: Average and Maximum Time to press a tile obtained by patients
across sessions.
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as average). The slowest patients (19 and 17) also show the largest standard
deviations (±8.5 seconds and ±4.3 seconds), consistent with pronounced motor
impairment evaluations. All participants, excluding the least reactive 17 and 19
and the quickest 14 and 18, had as average values numbers close to the overall mean,
with deltas between the range of half a second. Fastest participants mentioned
before were also consistent in their performances, with very low standard deviations.
Figure 3.7 reveals several notable patterns in error distribution through patients.

Figure 3.7: Average and Maximum number of Errors obtained by patients across
sessions.

Error spectrum is wide: maximum values range from more than 17 to less than 1,
while mean values vary from 10 to 1. Patient 17, despite being one of the slowest in
pressing tiles (see previous analysis), is also the one who makes the most mistakes,
validating the clinical outcomes that ranked this subject as the most severe. Patient
6 instead, which was one of the fastest, is also one of the least precise. Finally, all
patients beside patient 14 have had a game try where they made more errors with
respect to the overall average number. Subject 14 instead can be considered as
the top performer: not only the fastest, but also the most consistent and precise,
without any sessions exceeding the average error threshold.

Skewer

Figure 3.8 illustrates the variation in Skewer’s gameplay duration across participants,
resulting in a large spectrum of values: times shift from the highest time execution
attempt (more than 11 minutes and a half) performed by patient 19 to the lowest
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Figure 3.8: Average and Maximum Game Time obtained by patients across
sessions.
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maximum time execution, performed by patient 18 in just under 100 seconds.
Important is to notice that as maximum value is intended the worst performance
obtained by a patient. Least quick subjects are 17 and 19, the same outlined in
the tile game investigation, while the fastest are 2 and 18. Notably, the standard
deviation trend indicates that slower patients are also the least consistent, while
most speedy ones are more continuous.

Ski

Figure 3.9: Average and Maximum Level obtained by patients across sessions.

Ski’s game level related indices visualization in Figure 3.9 allows for several key
observations. Firstly, overall mean level is less than one unit below half maximum
level: this validates the difficulty of the exergame. If we consider in addition
the maximum game level reached by patients, it is noticeable that 10 out of 14
patients reached global higher number, meaning that progress was slow and mainly
occurred during the last sessions. Only patients 5, 6, 17 and 19 failed to reach
higher difficulty mode, with last two struggling to escape the least challenging
ones. These subjects are the same outlined in previous games metrics as more in
difficulty. Besides these participants, all the others showed an uniform standard
deviation, similarly to the Airplane game. The challenge was engaging also for this
exergame, leading to the conclusion that these two interventions were the most
difficult and arduous ones. Patients 22, 13 and 14 distinguished themselves the
most, in complete accordance with their UPDRS evaluations.
Figure 3.10 illustrates a wide range of game durations across patients: metrics
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Figure 3.10: Average and Maximum Game Time obtained by patients across
sessions.
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vary from patient 19 values (maximum of more than 13 minutes, mean close to 9
minutes) to the ones of patient 13 (maximum try lasted nearly 3 minutes, while
mean value is 2 minutes). Notably, the std variation across patients is directly
proportional to the self mean game time. Patients 7, 10 and 21, differently from
subjects 13 and 14, despite being among the best in game level reached, needed
more time in average to complete the executions. Finally for the Ski plots by

Figure 3.11: Average and Maximum number of Errors obtained by patients across
sessions.

patient aggregation, error metric distribution is visualized in Figure 3.11: also
in this case, errors ranges widely both in mean value (from 6.6 to 0.7) and max
absolute value (from 20 to 3). Patients 7, 19 and 21 had the most fluctuating
executions. In particular, subject 21, despite being an above-average performer,
had prolonged and error-prone trials. Patients 14, 18 and 22 committed fewer
errors on average with respect to other participants, despite playing hardest levels
and in shortest times. These, together with patient 13, are the Ski top performers.

Gym

Figure 3.12 presents patient-level distributions for the Gym exergame. The std
appears to be uniform across all subjects, meaning that they reached a difficulty
plateau in a limited number of tries. This plateau was reached by only 3 out
of 14 patients, since by considering the absolute maximum level completed, all
the remaining ones executed the exergame at highest degree of difficulty. Best
performers include those with average values above the overall mean: these are, as
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Figure 3.12: Average and Maximum Level obtained by patients across sessions.

46



Analysis & Results

for the majority of previous analyses, number 13, 14, 18, 22, with the addition of
patient 10 and 21. Additionally, analysis of Figure 3.13 on normalized total score,

Figure 3.13: Average and Maximum Score obtained by patients across sessions.

gives evidence that score is heavily correlated with game level: as seen in Chapter 2,
+100 points were assigned for a correct repetition, while -25 was the penalization
for a wrong movement. Higher level means more repetitions, thus more potential
total points. This is why best performers are the same outlined for game level.
Despite clinical conditions, patient 18 resulted one of the top performers in almost
all metrics analyzed in this section. From now, in all the following inspections,
it will be referred as the "outlier" patient. In the final investigations, particular
attention will be paid to this subject, together with the "best" and "most severe"
patients, respectively number 14 and 17.

3.3.2 Per Session Aggregation
This analysis focuses on the progression of performance across rehabilitation sessions,
aiming to uncover trends and variability in the selected metrics over time. To
achieve this, each exergame’s DataFrame was grouped by session number. For each
metric, the mean, standard deviation and maximum value were computed
across all participating patients.
The resulting session-level summaries were used to generate Matplotlib bar charts,
structured as follows:

• The bar height represents the mean value of the selected metric across all
patients for that session.
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• The gray shaded rectangle visualizes one standard deviation (±σ) around
the mean.

• A black triangle marker denotes the maximum value reached for that metric
in the corresponding session.

Additionally, a dashed red line indicates the global average across all session
entries in the dataset for that metric.

The selected metrics for each exergame remained consistent with the per-patient
analysis.

Airplane

Figure 3.14: Average and Maximum Score obtained in sessions across patients.

Considering Airplane’s visual display of score metric illustrated in Figure 3.14, it is
possible to see the global patient evolution of performances. The first session where
at least a patient was able to complete an execution with maximum score was the
fourth. Standard deviation values increased by more than one unit from session
4 onward, suggesting that substantial performance variability was present among
patients, with subject stuck on lower levels or on higher degrees of difficulty modes
but unable to reach elevated scores. Considering average scores, it is possible to see
that globally means tend to rise directly proportional with session number: sessions
up to number 6 yielded average scores below the global mean, while successive
sessions (excluding session 7) exceeded it.
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Figure 3.15: Average and Maximum Level obtained in sessions across patients.
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Figure 3.15 clearly illustrates a learning curve and performance improvement
trend of patients across sessions for level: ceiling score was first reached in session
4, while mean metric values increase from start to end. Standard deviation is lower
on first and last two sessions, where majority of individuals was either learning
how to deal with the game in easier modes or either on most challenging scenario.
The proximity of the overall mean to half the cap level suggests the game posed a
balanced challenge.

Tile

Figure 3.16: Average and Maximum Time to press a tile obtained in sessions
across patients.

Studying time to press a tile metric plot in Figure 3.16, insights into the nature
of the tile game can be derived. Peak session values indicate that first session
was the hardest in general for patients, where they were still trying to figure out
how to play the exergame. Until session 6 included, there were patients taking
above average times to press a tile, while, from next one, mean and maximum
session values where close to the overall average. Exception is last session, possibly
reflecting late-stage adaptation among slower learners reaching higher difficulty
levels. Mean values correspond with the observed oscillations in standard deviation.
Considering errors in Tile game, aggregated per session, showed in Figure 3.17,
it is noticeable how mean error numbers were close to the overall mean for all
sessions except the last, slightly lower. Maximum error number per session were
high compared to other games, ranging from 7.5 up to 17.5: the Tile game appears
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Figure 3.17: Average and Maximum number of Errors obtained in sessions across
patients.
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to demand the highest degree of precision among all five exergames. Also, the std
was quite uniform across all sessions.

Skewer

Figure 3.18: Average and Maximum Game Time obtained in sessions across
patients.

Figure 3.18 shows trends in game time performance for the Skewer exergame. It
reveals a negative trend involving all sessions above the second for the mean values
and all session included between 2 and 7 for the peak intra-session times. The final
three sessions were excluded due to outlier performances involving unusually slow
executions. Trend described begins from when patients started dealing with the
two hands mode. Standard deviation followed the same evolution path.

Ski

Digging into Figure 3.19’s display of Ski levels across sessions, an initial inter-session
progression trend is clearly observable. Standard deviation increases up to session
6, after which it declines in proportion to session number. This implies a global
improvement of performances in later tries, with a gradual increase in the metric
value that differs significantly intra-session, depending on patients’ ability. First
two sessions can be considered of initial setup for the game, with mean values close
to the baseline scores. Although upper-bound level is reached from fourth session,
the overall mean (below half peak value for game level) indicates that this exergame
was considered above-average as difficulty, with intra-session discrepancies between
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Figure 3.19: Average and Maximum Level obtained in sessions across patients.
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patients.
Figure 3.20 exhibits consistent game time performance across sessions, with mean

Figure 3.20: Average and Maximum Game Time obtained in sessions across
patients.

session values close to overall average and a stable but high standard deviation
across them, with values near or higher than 2 minutes. Considering that higher
levels required longer execution times due to the track length and shape, these
results indicate the patients’ overall ability to deal with the exergame, following a
capped 10-sessions trial-and-error process.

Analysis of error metrics in Figure 3.21 shows how, despite the increasing difficulty
of the game throughout sessions, the quality of the execution remained overall
steady. Notably, the values for session 6 were above the overall mean, supporting
the hypothesis of a correlation between execution time and error frequency. Inter-
session mean error is close to 3, which is a good result considering the presence of
worst attempts with up to 20 errors. Standard deviation is stable across all sessions,
highlighting the variability in patient performance throughout this exergame.

Gym

Gym’s level plot showing aggregated per session metrics in Figure 3.22 suggests that
this exergame is more suitable for later-stage progression: maximum level is reached
starting from session 3 and average metric values per session are above overall
mean since session 5, with a general plateau from session 7, where mean value is
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Figure 3.21: Average and Maximum number of Errors obtained in sessions across
patients.

Figure 3.22: Average and Maximum Level obtained in sessions across patients.
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close to the upper bound. Standard deviation is steady and low throughout all
sessions, reflecting the ease with which most participants reached higher difficulty
levels.

Figure 3.23 reinforces the strong correlation between score and game level in Gym,

Figure 3.23: Average and Maximum Score obtained in sessions across patients.

as previously described in the per-patient aggregated analysis and supports the
same conclusions observed in the level-based evaluation.

3.4 Maximum Level Study
As stated before, special focus was dedicated to the game level metric. This can be
used to track patients progression in exergames throughout sessions, in order to:

• Find better and worse performing patients.

• Prove the learning ability of participants, analyzing inter-session differences.

• Rank the difficulty of an exergame.

3.4.1 Patients Ranking based on Maximum Level
This investigation relies on prior game-level analyses done on exergames’ game
level plots, aiming at finding relationships between game level reached and clinical
evaluations. In the binary matrix presented in Figure 3.24, patients were sorted by
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Figure 3.24: Binary Matrix pointing out patients that reached maximum levels
in exergames.
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the total number of exergames in which they reached the maximum level, allowing
visual grouping of highly engaged or skilled individuals. The visualization was
generated as a color-coded heatmap, with light and dark shades distinguishing
max-level achievement.
After a first look, patients 1, 13, 14, 18, 20 and 22 reached ceiling level on all
exergames. Among these, individuals 13, 14 and 22 fall into the low PD stage
category, while 20 in the medium. Patient 1 is classified as high UPDRS, but
the clinical score of 27.5 is at the lower bound of this category and is derived by
non-motor symptoms, like voice-related complications. Subject 18, as noted before,
can be considered an outlier, noted as high UPDRS individual but with great
performances.
Participants 2, 5, 6, 7, 10 and 21, which reached peak level in at least three
exergames, belong all to medium clinical class, apart from subject 10 which is
ranked as high. Remaining patients, which reached maximum level in two or less
games, are clustered as high and are the same patients with weaker performance
metrics in plots examined in previous analysis scope. Overall, 9 out of 14 patients
reached peak level in at least half games and just one subject never reached the
most challenging stage of any exergame.

Figure 3.25: Bar plot showing the number of sessions needed for each patient to
reach maximum level in any exergame.

The bar plot in Figure 3.25 was generated using a summary dataset containing the
session number where a patient hit the global peak level for a game. Separated
by a vertical dashed line, patients are on the x-axis, while session numbers are on
the y-axis. Order of the games considered is always the same in each subject. It is
important to note that if a patient (like number 17) never reached an upper ceiling
value in any game it will not be displayed. The same is valid for single exergames,
displayed only if subject managed to complete the maximum level.
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This plot offers a comparative overview of learning pace and adaptation across game
modalities. Patients with lower bar heights across exergames may have reached
peak difficulty early, whereas higher bars suggest gradual progression. It can be
also indicative of the difference in perceived game-induced challenge. Results clear
that Airplane and Ski are the hardest games, while Skewer appears to be the most
inclusive exergame.
Apart from subject 20, which can be considered a slow, progressive learner, all
other subjects (1, 13, 14, 18, 22) that reached peak levels in all games took at most
7 sessions. Interesting is the case of patient 7 and 19: despite mastering only 2 or
3 out of the 5 exergames, they managed to do so in at most 6 sessions, indicating
how different game requirements influenced the outcomes. Patient 19 succeeded in
Gym and Skewer which require slow movements and have a static, non-dynamic
background. Patient 7 also performed well in the Ski, despite being the only one
to play in the preferred standing position.
To rank patients by multi-modal performance, a composite scoring approach was
applied on a DataFrame composed of 1163 records (each row is an exergame attempt
in a session for a subject, for which also survey answers are reported). It contained:

• Positively-weighted metrics: score, game level, self evaluation, satisfaction,
repeatability.

• Negatively-weighted metrics: game time, errors, session overall duration,
difficulty and fatigue.

All metrics were normalized, then for negative-weight metrics sign was inverted. A
composite score was evaluated per row as mean of features. Finally, aggregating by
patient and computing the mean of the new score, ranking was obtained, displayed
in Table 3.2. The score difference between top-ranked Patient 14 and bottom-
ranked Patient 17 is outstanding. Only the top 6 subjects have positive scores.
These value are proportionally influenced (since features were standardized) by
questionnaires answers. This is why patient 21, which did not reach top level in all
exergames) is in third position, while patient 20 (with highest perceived difficulty
through sessions) is third to last. Questionnaire answers will be analyzed in next
section.

3.4.2 Global Progression Analysis
This study was conducted by computing the maximum level reached in each
gamified session by each patient, considered collectively rather than individually
and in some cases grouped by UPDRS tertiles. Analysis was performed using
stacked bar plots and point plots.
Point plots are used to illustrate the mean maximum game level reached in each
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Table 3.2: Final Patient Ranking.

Ranking Patient ID Composite Score
1 14 0.689257
2 13 0.460066
3 21 0.235544
4 1 0.183399
5 18 0.126259
6 22 0.081800
7 6 -0.004346
8 2 -0.066756
9 5 -0.105916
10 7 -0.180273
11 10 -0.319574
12 20 -0.463665
13 19 -0.666743
14 17 -0.799093
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session for patients grouped by UPDRS tertiles. These plot show both the average
trend and the variability within each group, making it easier to compare progress
across severity levels. For each exergame, two versions are presented: one includes
all patients contribution, while the other excludes the outlier (patient 18) to show
how impactful it was on the per tertile computation.
Cumulative stacked bar plots are used to show how many patients reached each
maximum level in each session. This visual representation makes it clear how the
distribution of levels shifts over time, highlighting the overall progression pattern
and the persistence or disappearance of lower performance levels. It is important to
highlight that stacked bar height changes with the session progression, since from
session number 5 some patients ceased to participate: total number of participants
was 14 at start, 12 in session 6 and 7, 10 in ninth one and 9 in the last.

Airplane

Figure 3.26: Point Plot showing patients’ maximum game level evolution in
sessions, divided into UPDRS tertiles.

In Figures 3.26, 3.27 tertiles-divided patients’ evolution in game level is analyzed:
by session aggregation, the maximum session game level for each patient is added
and the total is divided by the number of total players for that session, obtaining
the mean value of the peak session level. Together with the mean, also the
std by session is displayed. Notably, the standard deviation for the high tertile
increases with session number, while medium and low UPDRS classification trend is
inversely proportional. This indicates that less severe patients tend to adapt to their
respective tertile means, especially in last 3 sessions. Most severe patients, instead,
appear to be more heterogeneous in their evolution. In Figure 3.27, tertiles evolution
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Figure 3.27: Point Plot showing patients’ maximum game level evolution in
sessions, divided into UPDRS tertiles. No patient 18 in higher tertile.
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looks almost totally well separated according to clinical evaluation. Considering
instead also the outlier, for all the 7 sessions to which it took part, higher UPDRS
score patients appear to be more performative. Stacked bar plot in Figure 3.28

Figure 3.28: Display of number of patients that reached a certain maximum level
in sessions.

indicates how level distribution mutated through sessions. Aside from persistent
low-level performance attributed to the most severe patient (17), a clear upward
trend is observed, with metrics lasting from 5 to 7 sessions.

Tile

By investigating Figures 3.29 and 3.30, it is evident that the Tile game has a
differential impact on each severity level patient. For least severe patients it
appears to be an easy to master game, with upper ceiling level reached from session
4 and without variance. Medium UPDRS group perceived the game as stimulating,
with no global difficulty plateau that slowed down the progression curve. Their std
however increased until last two sessions, where lowered, indicating an increment
on total number of medium condition patients that successfully reached the top
level. Most severe patients’ attempts generated on average a learning curve which
is not strictly monotonic, having a total of 4 sessions where performances remained
identical to the previous ones.
These conclusion are further supported in Figure 3.31, where it is clear how learning
curve was overall gradual, with all levels present in all sessions, from the second to
the last one. First level persistence is again attributable to most severe patient,
number 17, confirming consistent difficulty for the most impaired subject.
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Figure 3.29: Point Plot showing patients’ maximum game level evolution in
sessions, divided into UPDRS tertiles.

Figure 3.30: Point Plot showing patients’ maximum game level evolution in
sessions, divided into UPDRS tertiles. No patient 18 in higher tertile.
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Figure 3.31: Display of number of patients that reached a certain maximum level
in sessions.
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Skewer

Figure 3.32: Point Plot showing patients’ maximum game level evolution in
sessions, divided into UPDRS tertiles.

Figure 3.33: Point Plot showing patients’ maximum game level evolution in
sessions, divided into UPDRS tertiles. No patient 18 in higher tertile.

Considering point plots in Figures 3.32, 3.33, it is evident that patients across all
severity categories quickly reached the maximum ceiling, showing a steep progression
curve. Variances decreased progressively until session 5, where reached near zero
values. This session is also the one where upper ceiling was reached by all players
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(except number 17, which was unable to conclude also basic level due to motor
impediments). In session 3, the mean for low-severity patients was unexpectedly
low: they played on average easier modes than medium UPDRS classification
participants. In example, patient 13 in that session made just one attempt at level
1. Figure 3.34 illustrates that Skewer was perceived as the least difficult exergame.

Figure 3.34: Display of number of patients that reached a certain maximum level
in sessions.

Base level gets mastered at the end of session 3, with peak levels reached from
the early second session. Starting from the fifth session, the distribution of levels
within the stacks is concentrated on peak level unique contribution, as seen by the
predominance of one color in the session bars.

Ski

Figures 3.35 and 3.36 demonstrate the Ski game’s sensitivity in discriminating
Parkinson’s severity. The low UPDRS group exhibited the highest and most
consistent performance, reaching elevated difficulty levels quickly and uniformly
throughout all its members. The high UPDRS group showed a less steep and not
strictly monotonic progression curve, with greater intra-group variability across
sessions compared to the other two groups. The moderate group displayed a steady,
monotonic progression, with a standard deviation that, after growing until session 6,
decreased towards uniformity in later attempts. From the stacked bar plot in Figure
3.37, it is evident how Ski learning curves, previously described, resulted in a well
distributed and consistent pattern across sessions. The only level which all patients
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Figure 3.35: Point Plot showing patients’ maximum game level evolution in
sessions, divided into UPDRS tertiles.

Figure 3.36: Point Plot showing patients’ maximum game level evolution in
sessions, divided into UPDRS tertiles. No patient 18 in higher tertile.
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Figure 3.37: Display of number of patients that reached a certain maximum level
in sessions.
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passed before the end of the collection process was the base level, while participants
were dealing with multiple levels until last tries. Given the flexibility granted by an
11-level scale, patients were able to face appropriately scaled challenges over time,
without stagnating due to difficulty plateaus. By the end of the data collection,
participants either confronted gradually with more challenging scenarios, until
finding the right difficulty for them or reached peak level.

Gym

Figure 3.38: Point Plot showing patients’ maximum game level evolution in
sessions, divided into UPDRS tertiles.

In Figures 3.38 and 3.39, the results clearly show that in Gym exergame, as for the
Skewer one, all classes patient learning curves were steep. For low severity patient,
upper ceiling was reached uniformly by all members by session 5. For medium
UPDRS cases, curve is strictly monotonic with contained standard deviations,
which reached near zero value in the last session. Most compromised class patients
exhibited greater variability throughout the collection, but still managed to attain
average game levels comparable to the medium severity group. By looking at
Figure 3.40, it is noticeable how base level was easily surpassed after first session
by all patients except the most severe one, which, however, managed to move to
the next level after session 5. In the last session, due to personal preference, one
participant opted to play at level 1, which was surpassed by all patients by session
6. This is why the final session’s stacked bar is not uniform; otherwise, the level
distribution would show no inter-patient variability, with all participants playing
at maximum level.
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Figure 3.39: Point Plot showing patients’ maximum game level evolution in
sessions, divided into UPDRS tertiles. No patient 18 in higher tertile.

Figure 3.40: Display of number of patients that reached a certain maximum level
in sessions.
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3.4.3 Exergames Difficulty Ranking
Since game ranking is directly linked to patient progression, regardless of whether
patients are analyzed individually or as a group, in order to evaluate which are
the most challenging games two plots are examined. First, session-wise patients
heatmaps on game level reached in session 1, 5 and 10 are inspected. Then a
custom UpSet plot is considered, showing the number of participants that reached
peak level in different game combinations. In Figure 3.41, three adjacent heatmaps

Figure 3.41: Maximum game level matrix for each patient and exergame. Analysis
on sessions 1, 5 and 10

are presented, showing the maximum game level achieved by each patient across
three distinct time points: Session 1, Session 5 (or the last available session before
it) and Session 10 (or last available).
At the end of the first session, the majority of patients managed to reach only
relatively low difficulty tiers across all exergames, with higher initial performances
observed in Skewer game. By Session 5, a clear upward shift is visible in most games:
the majority of patients exhibit improved level attainment, with few individuals
able to reach global maximum level in Ski (4 subjects) and Airplane (2).For the
remaining games, between 6 and 13 patients were able to arrive at upper ceiling
level.
This progression is even more pronounced in last session, which can be used as a
meter to rank games:

1. Airplane: most difficult game, with the slowest learning curve and least top
level players (8 out of 14).

2. Ski: second hardest game, characterized by a slow improvement trend and
with final 10 players able to deal with maximum difficulty.
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3. Tile: exergame with a steeper learning curve that flattened in central session
for the final best performers, except for subject number 5. Final number of
top level players is 10, but is technically 11 in total, since patient 6 regressed
in the final sessions.

4. Gym: second to last ranked game, with a steep learning curve and final 11
patients that reached top level.

5. Skewer: simplest-perceived game, with high difficulty modes reached by most
players already at the end of the first session. Final number of top performers
is 13 out of 14, the highest.

Figure 3.42: Display of number of patients that reached peak level according to
different game combinations.

Custom UpSet plot in Figure 3.42 serves as a ranking tool based on the number of
patients that succeeded in reaching top level in game combinations. Basing on the
values of combination where either Airplane or Ski were included, these two are
the most challenging games. In particular, Airplane seems to be the most difficult.

3.5 Questionnaires Analysis
This section is dedicated to the investigation on Likert-scale questionnaire answers.
Due to their subjective nature, survey responses may be influenced by external fac-
tors such as mood or personal circumstances and thus may result to be uncorrelated
with game performances. Results will be firstly divided by type of aggregation,
then separated between items. Chosen indicators were:

• Self Evaluation: Pre-session self-assessment on overall conditions. Values
equal to 5 are intended for best possible conditions.

• Satisfaction: Index from 1 to 5 directly proportional to selected value.

• Replayability: Item capturing a participant’s willingness to continue with
the rehabilitation protocol. Maximum value means total patient disposability.
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• Fatigue: Used to assess the physical impact on participants. Higher values
indicate increased tiredness,

• Difficulty: Differently from fatigue, allows consideration not only from the
motor point of view, but also on cognitive complications.

3.5.1 Per Patient Aggregation
This section aims to identify trends in patient-reported feedback aggregating survey
responses across sessions. To achieve this, the survey DataFrame was grouped by
patient ID, computing the overall mean, standard deviation and maximum values
for each survey question of interest. For every survey item, a summary DataFrame
was created containing one row per patient, ordered by descending mean value.
Summaries were visualized using Matplotlib bar charts, where for each patient:

• The bar height represents the patient’s average response for that question.

• The gray shaded area indicates the ± standard deviation.

• The black triangle marker denotes the maximum response given by the
patient.

A dashed red line shows the overall mean response across all patients and sessions.
The standard deviation was computed using the .std() method from the pandas
library, which measures how much the individual responses deviate from their mean
value:

s =
öõõô 1

n − 1

nØ
i=1

(xi − x̄)2 (3.2)

where:

• s is the sample standard deviation,

• x̄ is the mean survey score,

• xi represents each individual survey response,

• n is the total number of answers for that patient.

Self Evaluation

In Figure 3.43, per patient ranking of self evaluation is displayed. Top performers
like 14, 13 and 1 respectively answered 5, 4 and 4 for all sessions, with no variance,
showing how their stability in perceived condition also reflected on game metrics.
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Figure 3.43: Display of patients ranking based on Self Evaluation metric.

75



Analysis & Results

Subjects 18, 22 and 20 instead, despite being able to complete all the exergame at
peak difficulty as seen previously in Figure 3.24, responded with lower values and
a bigger variability (std is near 0.5 units). Participants 17 and 19, which played
games mostly at basic levels, have the lowest average self evaluations. Number 7
has the biggest variability, which was reflected in inconsistent session performances
across the collection process. Finally, patient number 21 appear to be among
participants with higher metric, even if in previous analyses on game metrics was
not one of the bests. For this reason, attention will be paid in successive metric
inspections to see if this behavior is recurrent.

Satisfaction

Figure 3.44: Display of patients ranking based on Satisfaction level metric.

By considering Figure 3.44’s satisfaction levels, it is immediately noticeable that
best performers like 1, 13 and 14 have higher metric mean values. Inversely, the
most critical patient 17 was the least satisfied. Subject 19, which is among the
ones with slowest learning curve, kept across sessions a mean value identical to
subject 22’s one, which is a top performer. Despite being able to succeed in all
exergames at upper bond levels, numbers 18 and 20 again gave low-point answers.
Also for this metric, patient 21 showed to be more satisfied than expected based on
performance metrics. Overall average for participants was 4.2 out of 5, indicating
high usability and patients’ approval of the exergames.
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Figure 3.45: Display of patients ranking based on Replayability metric.
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Replayability

Repeatability answers reported in Figure 3.45 are also a good indicator on quality
of gaming experience proposed to the group. Overall, this metric was rated 4.5 out
of 5, showing how positively games were welcomed by patients. In particular, most
of top performers plus number 21 answered with maximum score in all sessions
with no variance. Most severe cases (subjects 17 and 19) replied with overall means
value below global average. Interesting are the cases of subject 18 and 2: these
participants performed well but may have experienced diminishing engagement due
to limited challenge.

Fatigue

Figure 3.46: Display of patients ranking based on Fatigue metric.

Analyzing Fatigue metric in Figure 3.46, there is a clear inverse relationship between
top performers and fatigue: best players perceived less fatigue overall, while most
severe patients were more tired at the end of each session. Interesting is the case
of patient 20: despite being able to complete all games with peak level, reported a
fatigue mean value of 4.8 out of 5, which is the highest. Inversely, subject 21 was
the least exhausted participant. Overall mean group fatigue was near 3 units out
of 5, which is a good value for rehabilitation-marked games. Subject 2’s elevated
fatigue score may explain his lower replayability rating highlighted before.
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Figure 3.47: Display of patients ranking based on Difficulty metric.
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Difficulty

Patients ranking based on difficulty metric is displayed in Figure 3.47. Overall
mean difficulty is just below Fatigue’s one, indicating correctly that exergames are
focused more on energy exertion than on cognitive difficulty. As for the previous
metric, subject 20 is the one with highest mean metric value. Lowest-metric patients
are the top performers (13, 14 and 18) with the exception of number 19. Most
severe patient 17 expectedly has the second highest mean value. Finally subject
22, ranked as one of the best in game metrics, self-reported his gaming experience
as the fourth more in difficulty.

3.5.2 Per Session Aggregation
This analysis examines patient-reported survey responses across rehabilitation
sessions, aiming to uncover trends and fluctuations in the selected metrics over
time. To achieve this, questionnaire DataFrame was grouped by session number.
For each metric, the mean, standard deviation and maximum value were
computed across all participating patients.
The resulting session-level summaries were used to generate Matplotlib bar charts,
structured as follows:

• The bar height represents the mean value of the selected metric across all
patients for that session.

• The gray shaded rectangle visualizes one standard deviation (±σ) around
the mean.

• A black triangle marker denotes the maximum value reached for that metric
in the corresponding session.

Additionally, a dashed red line indicates the global average across all session
entries in the dataset for that metric.

Self Evaluation

The first metric examined in session-level aggregation is self evaluation, displayed
in Figure 3.48. Intra-session averages span between the lowest 3.5/5 (obtained in
the first one) and the highest 4.2/5, obtained in the eighth. Being a non game
dependent metric, its general trend is erratic, with standard deviations that can
reach values up to 22%. This parameter results to be influenced not only by the
heterogeneity of the group, but also by inter-sessions intra-patient variations.
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Figure 3.48: Display of session-based progression considering only Self Evaluation
metric.

Figure 3.49: Display of session-based progression considering only Satisfaction
level metric.
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Satisfaction

Figure 3.49, which shows the satisfaction levels averaged through patients per
session, suggests that the intervention was positively received throughout the study.
Starting with an initial mean value of 3.9 out of 5, value increased until stabilization,
reached around its overall mean of 4.2/5. Interesting is also to notice how first and
last sessions were respectively the one with highest standard deviation and the one
with the lowest.

Replayability

Figure 3.50: Display of session-based progression considering only Replayability
metric.

In contrast, replayability trends displayed in Figure 3.50, reveal different dynamics:
a positive trend characterized the first 4 sessions, becoming negative in fifth and
sixth. From session number 7, another positive trend can be found, lasting until
the end of the collection process. Standard deviation values range between 0.5 and
0.9 units, with highest found in first session and lowest found in session 8 and 10.
Overall replayability is really high, with a value of 4.53/5, indicating study’s success
in keeping patients entertained and willing to continue playing. The alternating
trend across sessions (positive, then negative, then positive) may reflect perceived
difficulty in exercises like Ski or Airplane.

82



Analysis & Results

Figure 3.51: Display of session-based progression considering only Fatigue metric.
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Fatigue

Considering the fatigue index displayed in Figure 3.51, a general positive trend
is visible, starting from the lowest value of 2.4/5 obtained in session 1 up to
3.1/5 in the last one. Specifically first positive trend ends with the highest value
of 3.5/5 in session 7 to later decrease in next one and incrementing in last two.
Standard deviation captures participants’ varied responses to evolving gameplay
demands throughout sessions: values ranged between ±1.0 and ±1.6 on a scale with
maximum mean score of 5, suggesting how differently this metric was evaluated
by participants. Overall fatigue is near 2.9/5, which, as concluded in the analysis
of same metric but for patient aggregation, is very good since one of main goal of
exergame is physical rehabilitation.

Difficulty

Figure 3.52: Display of session-based progression considering only Difficulty
metric.

Analysis of the difficulty metric displayed in Figure 3.52 indicates an erratic trend.
Considering that overall inter-sessions metric mean is close to 50% of the maximum,
game levels progression kept experience cognitively stimulating, promoting more
an increment of fatigue rather than of difficulty. Standard deviation, whose inter-
session average is around 1 unit out of 5, captures heterogeneity of participants’
response to the games evolution.

84



Analysis & Results

3.6 Correlation Heatmaps

Heatmaps were computed to visualize the correlation between multiple exergame
performance metrics, session-specific survey responses and clinical evaluations
for each patient. Specifically, for each exergame and for the aggregated dataset,
relevant numeric variables (game times, levels, scores, errors) and questionnaire
responses were merged with patient-level UPDRS assessments and characteristics.
Specifically, these included years since diagnosis, Hoehn & Yahr stage and domain-
specific UPDRS sub-scores like item involved in the estimation of bradykinesia,
limb movements and postural instability & gait difficulty (PIGD).
To estimate these relationships, three standard correlation coefficients (Pearson,
Spearman and Kendall) were compared systematically. Based on summary statistics
of mean, minimum and maximum absolute correlation values, Spearman’s rank
correlation was ultimately selected for the final heatmaps. This choice is particularly
appropriate given the repeated-measures structure of the dataset (up to ten sessions
per patient with multiple game attempts per session) and the ordinal nature of
some variables (Likert-scale questionnaire answers and UPDRS severity stages).
Spearman’s method does not assume linear relationships or normality and it
captures monotonic relationships more robustly than Pearson’s correlation, which
is limited to linear dependence.
The resulting correlation matrices were masked for the upper triangle to enhance
readability and were formatted to point out even weak but potentially meaningful
relationships. This approach provides an interpretable, comprehensive overview
of how motor performance and patient self-reported sensations relate to clinical
disease severity across different exergames and over multiple sessions. In Figure
3.53 is displayed a global correlation heatmap considering game data, survey
data and clinical scores. Starting by game data, it is important to notice that,
considering all tries ever done by any patient for whichever exergame, variance
across gameplay metrics is substantial: correlation exceeding 25% can be thus
considered high. Keeping this in mind, game level and score metrics showed the
strongest connections with items from questionnaire answers and clinical evaluation.
In particular, high correlations are obtained with medication time delay (time shift
from last levodopa-based medicament), self evaluation, satisfaction index, total
UPDRS score and its feature regarding limbs movement. Among game metrics,
game time is connected with game level, which is correlated with score and errors.
Survey answers appear to be well connected with all clinical score, with values
bigger or equal to 20%. Due to the volatile and variable nature of PD disease,
the variable indicating the years since diagnosis is mostly uncorrelated, while
the age item is connected with game score, errors and all survey and clinical
variables, describing how influent it is on playing experience and perception, usually
aggravating symptoms. Clinical scores are intuitively well bonded among themselves
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Figure 3.53: Global correlation heatmap involving game data, survey data and
UPDRS clinical evaluations.
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and correlated the most with level and score, two key metrics to evaluate patient
learning curve.
Below, single games correlation matrices will be displayed and analyzed. Since
survey responses were collected once per session and clinical condition were evaluated
only one time before the data collection, focus will be put mainly in game-specific
metric correlations with these two other classes of data.

Figure 3.54: Airplane-specific correlation heatmap involving game data, survey
data and UPDRS clinical evaluations.

Considering Figure 3.54’s Airplane correlation heatmap, it is easily noticeable
how score and game level metrics are similarly linked with survey and clinical
items as in precedent global heatmap. Game time and error are not shown since
for this exergame they were not significant: the first was heavily linked with the
velocity but, for the level formulation, could have been misleading, while the latter
was mostly non-informative due to the possibility to commit errors only in more
challenging levels. However, also in these, values were close to zero on average and
thus not selected for the heatmap. The key insight is that UPDRS is well linked
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with game metrics, the limb movement sub-score in particular. H& Y scale instead
seems to be less correlated. Game level is in general more connected with other
items, while score is less linked, with the exception of difficulty, year since diagnosis
and limbs movement. The two examined game indices are highly correlated. While

Figure 3.55: Tile-specific correlation heatmap involving game data, survey data
and UPDRS clinical evaluations.

examining Tile’s heatmap in Figure 3.55, it is immediately clear that score and
game level are deeply tied. These metrics, together with errors made, seems to have
affected significantly questionnaires’ difficulty and satisfaction and to be linked
with medication’s timing. On the other hand, the perceived condition expressed
in self evaluation parameter appear to influence the average time needed to press
a tile. UPDRS’ metric regarding limbs movement and its total score are fairly
correlated to game metrics.
By focusing on tile time, it looks like this parameter is correlated also with
bradykinesia, PIGD and H&Y classification. For the Skewer heatmap analysis
presented in Figure 3.56, only game metrics reported are game time and game
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Figure 3.56: Skewer-specific correlation heatmap involving game data, survey
data and UPDRS clinical evaluations.
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level, since score and errors were respectively identical and close to zero on average.
Two new clinical parameters are displayed, which are the tremor and the finger
tapping evaluation, divided into left and right sides. Game level, due to the steep
learning curve described in previous sections is uninformative, while game time
looks correlated with most survey answers and to the clinical metrics of limbs
movement and tremor. Game-specific newly included clinical tasks of finger tapping
appear to influence survey parameter differently: the right evaluation affinity with
those items is on average 10% higher with respect to the left. Finger tapping
parameters result to be correlated also with other clinical meters. Tremor instead
is only linked clearly with satisfaction and repeatability indices, closely related
to finger tapping and total UPDRS scores. As for the Skewer, Ski’s heatmap in

Figure 3.57: Ski-specific correlation heatmap involving game data, survey data
and UPDRS clinical evaluations.

Figure 3.57 displays a game-specific clinical item: leg agility, divided in left and
right evaluations. These parameters are well correlated with other clinical metrics,
always differently for the same parameters between left and right. The left-leg
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item exhibited, on average, 10% stronger correlations. The new clinical item is
significantly correlated with game time, which makes sense overall.
The game metrics analyzed are game time, level, score and error: the first three
are relatively connected with all survey and medical items, while the fourth can be
considered in general uninformative. Game time in particular is influenced by limbs
movement task, bradykinesia and total UPDRS value. Notably, the correlation
between game time and errors reflects a plausible mechanism: every time a patient
collided with the sides of a track, he lost velocity, resulting in longer completion
executions.

Figure 3.58: Gym-specific correlation heatmap involving game data, survey data
and UPDRS clinical evaluations.

Finally, Gym’s heatmap is considered in Figure 3.58 for the analysis. Considered
metrics include game time, level and score, divided into total left and right arm
scores. By a first inspection, looks clear that there are no significant differences
between arms. Performances seem to be influenced by self evaluation and appear
to influence the responses on satisfaction and repeatability (if excluding game time)
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and on fatigue and difficulty (if considering only game time). Limbs movement
metric, together with PIGD and total UPDRS are the most correlated clinical
evaluations. Years since diagnosis showed negligible correlation across variables.

3.7 Special Patients Analysis
In previous sections of this chapter, three patients were designed as "special". In
particular they were referred to as follows:

• Patient 14 - Best: subject that exhibited the steepest learning curve and
most positive game metrics. Clinical evaluations, displayed in Figures 3.59
and 3.60, reflect his performances.

• Patient 17 - Most Severe: participant which, accordingly with his highest
total UPDRS assigned, concluded the study period with almost no improve-
ment in major game parameters, resulting in far from the mean survey answers.

• Patient 18 - Outlier: One participant showed substantial mismatches
between clinical severity ratings and actual in-game performance, consistently
ranking as a top performer despite a higher UPDRS score. This inconsistency
may be explained by the timing of the clinical assessment, which was conducted
roughly 210 minutes after the last Levodopa dose, likely coinciding with an “off”
state characterized by more severe motor symptoms and possible dyskinesia.
In contrast, gameplay sessions occurred predominantly during the “on” state,
within 66 to 100 minutes after medication intake.

Table 3.3: Average Game Metrics per Special Patient

ID AS AL TT TE SKT SL ST SE GL GS
(%) # (s) # (s) # (s) # # (%)

14 90.0 6.3 3.5 0.4 71.9 6.8 123.0 0.9 2.7 92.3
17 73.0 0.0 9.2 9.9 307.0 0.2 439.0 3.1 0.9 48.3
18 84.0 4.8 4.0 0.5 59.1 5.6 161.0 1.4 2.1 78.9
OA 79.0 3.7 5.3 2.9 101.0 4.9 208.4 2.6 1.9 71.0

Note: Metric prefixes indicate the game—A = Airplane, T = Tile, SK = Skewer, S = Ski,
G = Gym. Metric suffixes denote: S = score (percentile), L = level, T = time (seconds), E
= errors. OA = overall average.

In order to compare these patients, a focused summarization on average game
metrics, main clinical evaluation and survey responses in showed below. Firstly
games metrics results are displayed in Table 3.3:
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Figure 3.59: Total UPDRS values of special patients, colored by H&Y scale.

Figure 3.60: UPDRS’ main motor features values per special patient, colored by
H&Y scale.
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• Patient 14: exhibited the strongest overall performance, reaching the highest
levels in all games (e.g., AL = 6.3, SL = 6.8) and obtaining elevated scores
in both Airplane and Gym (AS = 90%, GS = 92.3%). Reaction times were
rapid across games (TT = 3.5s, SKT = 71.9s, ST = 123.0s) and error rates
remained negligible (TE = 0.4, SE = 0.9), suggesting effective motor planning
and sustained engagement throughout the sessions.

• Patient 18: demonstrated a moderate performance profile, with high scores
(AS = 84%, GS = 78.9%) and relatively high game levels (AL = 4.8, SL =
5.6). While gameplay times were slightly elevated (SKT = 59.1s, ST = 161.0s),
they remained within functional range. Notably, tile error rates were minimal
(TE = 0.5), but errors increased within the Ski context (SE = 1.4).

• Patient 17: struggled significantly across most metrics. Score percentages
and game levels were the lowest (AS = 73%, GS = 48.3%; AL = 0.0, SL = 0.2),
indicative of limited progress or engagement and gameplay durations were
considerably prolonged (SKT = 307.0s, ST = 439.0s), accompanied by high
error counts (TE = 9.9, SE = 3.1). These values correspond to pronounced
motor impairment, difficulties in task initiation and reduced adaptability.

Then in Figures 3.59 and 3.60 main clinical evaluations are displayed. By analyzing
them, it is clear how the best, despite not being the subject with lowest total
UPDRS (see Figure 3.2), has main features well below group average. Inversely
the most severe is also the one with highest main motor features, UPDRS score
and H&Y classification.
A less intuitive insight regards the outlier: total UPDRS and all main motor
parameters are far above the mean values. Despite that, patient was labeled as a
top performer, being a fast learner able to reach all maximum levels with notably
positive other games’ indicators. Finally, a brief summary of survey data of these
patients is reported in Table 3.4.

Table 3.4: Average Questionnaire Answers for Special Patients: self-evaluation,
satisfaction, repeatability, fatigue and difficulty.

ID Self-Ev. Sat. Rep. Fat. Diff.
14 5.0 5.0 5.0 1.6 1.3
17 3.1 3.5 3.9 4.2 3.5
18 3.9 4.0 4.0 1.9 1.7
Overall Avg. 3.86 4.22 4.53 2.89 2.48

The focus of this section is to compare special patients in more informative
exergames’ performances. In order to do so, patient-scoped correlation matrices
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are shown below. In each of them, as for the global matrices presented in previous
section, also survey relationship are considered.

3.7.1 Special Patients Correlation Heatmaps
Games for which patient-specific correlation matrices are shown are Airplane
and Ski: these proved to be the two most difficult (and informative in general)
games. Alongside intra-game correlations between exergame metrics, also the
survey connection with games is displayed. It is important to remember that
questionnaires were filled only at the end of each session, so answers are not directly
connected with specific games.
Clinical evaluations are not present in successive plots since no variability is present
intra-patient, thus no correlation: neurologist derived the medical profiles just once
before the collection process started.
Due to the nature of questionnaires, asked to be filled just once per session after
playing the games, survey parameter correlations across games differ by no more
than 10% due to dataset construction. Since all rows correspond to a certain
attempt of a game, the only way to insert survey data in it was by putting the
same session answers on all exergames multiple tries given a session and a patient.
Result of this procedure is the following: if a certain patient in a specific session
did more total tries than the average of tries done in other sessions, survey data in
current one will weight more. For this reason, intra-survey correlation will not be
considered.

Airplane exergame

As seen in previous sections, Airplane most informative game parameters are score
and game level. For completion, also game time and errors are reported, but
will not be considered. From the inspection of correlation heatmap for patient
14’s Airplane performances in Figure 3.61, it is clear how the two game metrics
are positively linked. In particular, for this subject, it appears that only fatigue
is directly proportional with score and game level, while difficulty is negatively
correlated. Despite the negative and quite strong connections with difficulty are
too extreme due to the variability of data, this reflects the intended design goal to
which these exergames aspire: purpose is to increase fatigue while keeping difficulty
contained, ensuring patients have the possibility to rank up without encountering
insurmountable difficulty barriers. For the case of individual number 17 displayed
in Figure 3.62, it is immediate to see that since he never surpassed base level, no
game level and errors (which were possible only on successive difficulties) are shown.
Since game time is not informative in Airplane exergame, only score is discussed.
This metric correlates positively with satisfaction but negatively with replayability.
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Figure 3.61: Special patient number 14 correlation heatmap - Airplane game.

Figure 3.62: Special patient number 17 correlation heatmap - Airplane game.
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This might be caused, as seen in Table 3.4, by low overall mean patient scores,
which are then linked to low satisfaction values and high repeatability evaluations.
Fatigue is quite positively linked with score, while self evaluation given by patient
seems not to have been a factor. Game metric is uncorrelated with difficulty.

Figure 3.63: Special patient number 18 correlation heatmap — Airplane game.

For subject 18 inspected in Figure 3.63, it is noticeable how score and game level
differ in relationships with other survey parameters. This subject reached maximum
level within 7 sessions, always keeping a score greater than 80% of the total. This
is why score parameters appear uncorrelated, weakly linked or negatively bonded
with all survey items. Game level instead is highly correlated with self evaluation,
satisfaction and difficulty: as levels increased, more effort was required, enhancing
excitement.

Ski exergame

Despite not having been included in game analysis section, score correlations were
computed as a supplementary insight on the impact on survey answers generated
by collecting coins in the tracks. Inspecting Ski’s correlation related to patient 14
in Figure 3.64, evident is how score is connected with game time and level. Since
subject average less than an error per session, corresponding metric is uninformative,
while game time and level are well positively linked with fatigue. Difficulty is

97



Analysis & Results

Figure 3.64: Special patient number 14 correlation heatmap - Ski game.
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inversely connected with all metrics since subject average value throughout all
session was 1.3/5. In Figure 3.65 patient 17’s Ski correlation heatmap is displayed.

Figure 3.65: Special patient number 17 correlation heatmap - Ski game.

Relevant is the connection between fatigue and game time. Satisfaction seems to
be partially linked to score and game level, while errors to self evaluation. Score
and game level are negatively correlated to replayability since patient hardly moved
beyond base level. Finally, in Figure 3.66, ski game and survey parameters are
inspected. Notably, the strong positive correlations between game metrics (game
time, score, game level) and perceived fatigue and difficulty indicate how exergame
was impactful on those parameters: an increase in level corresponds with higher
motor and cognitive challenges. Game time and errors are correctly inversely
connected with, respectively, game time and satisfaction. Replayability in general
does not appear to be influenced by game performances, which instead appear
dependent on self-evaluation scores.

3.8 Session Unsupervised Classification
To categorize rehabilitation sessions into interpretable performance tiers (“basic”
vs. “advanced” executions), each patient-session record was treated as an unlabeled
observation to which unsupervised clustering was applied. The final dataset
comprised 123 rows (one per patient and session) described by 20 features: 15
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Figure 3.66: Special patient number 18 correlation heatmap - Ski game.
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primary performance metrics from exergames (e.g. game level, percentile-normalized
score, errors, completion time) and the 5 self-report survey metrics (self-evaluation,
satisfaction, repeatability, fatigue, difficulty). Identifier columns (’id_patient’
and ’med_delta’, regarding time passed since last medicament assumption) were
removed prior to analysis and all remaining features were standardized (zero mean,
unit variance).

Three families of clustering algorithms were employed:

• Partitional clustering via K-Means: with number of clusters k = 2 . . . 9

• Hierarchical Agglomerative Clustering: ranging from k = 2 to k = 9, consistent
with the partitional approach

• Density-Based Spatial Clustering (DBSCAN): considered parameters:

– Epsilon (ε): ε ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}

– Minimum samples threshold: min_samples ∈ {2, 3, 4, 5, 10, 20}

In order to select the most appropriate clustering approach, silhouette coefficient1

for both K-Means and Agglomerative Clustering across described k values were
calculated. In addition, a grid search was conducted for DBSCAN over listed values,
selecting the optimal configuration by maximal silhouette score (excluding noise
points). The resulting performance metrics for all algorithms and parameter settings
were summarized in a JSON file (reported in Table 3.5), enabling quantitative
comparison of each method’s ability to produce cohesive, well-separated session
groupings.

1calculated utilizing the mean intra-cluster distance between points and the mean nearest-
cluster distance
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Table 3.5: Clustering Performance Metrics (Silhouette Scores)

Method k Silhouette ϵ min. samples noise count
K-Means 2 0.2533 – – –
Agg. Clustering 2 0.2115 – – –
K-Means 3 0.1794 – – –
Agg. Clustering 3 0.2050 – – –
K-Means 4 0.1856 – – –
Agg. Clustering 4 0.1824 – – –
K-Means 5 0.2112 – – –
Agg. Clustering 5 0.1923 – – –
K-Means 6 0.2099 – – –
Agg. Clustering 6 0.1735 – – –
K-Means 7 0.1485 – – –
Agg. Clustering 7 0.1682 – – –
K-Means 8 0.1145 – – –
Agg. Clustering 8 0.1775 – – –
K-Means 9 0.1185 – – –
Agg. Clustering 9 0.1816 – – –
DBSCAN – 0.6785 1.5 3 112

From Table 3.5, best model settings result to be:

• Kmeans, k = 2

• AgglomerativeClustering, k = 3

Low values for silhouette were expected due to high inter-individual variability
and the gradual nature of patient progression, making strong inter-cluster separa-
tion unlikely. K-Means provides a computationally efficient partitional approach,
particularly appropriate when spherical clusters are expected and the dataset is
continuous and uniformly scaled. Its ability to minimize intra-cluster variance
aligns well with the goal of grouping sessions based on overall performance profiles.
AgglomerativeClustering complements this by offering a hierarchical perspective,
making no assumptions about cluster shape and allowing more flexibility in identi-
fying nested structures among session patterns. It is particularly advantageous for
revealing latent transitions or substructure in patient progressions across sessions.
DBSCAN’s high score for the silhouette is related to its high noise ratio: 112 points
out of 123 were not labeled, resulting in an artificially high silhouette score due to
limited clustered samples. In general, this model is not suitable for this kind of
dataset and thus was discarded: having 20 features, regardless of model parameter
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choice, the high-dimensional space consistently led to excessive noise labeling.
Output of unsupervised clustering, obtained using selected best model parameters,
were integer-based cluster labels, automatically generated without semantic mean-
ing. To enable interpretation and consistent visual labeling, a custom reordering
strategy was applied to map clusters onto a performance spectrum ranging from
low to high adaptation.

Feature Weighting Strategy

Each input feature was first classified as either performance-enhancing or
impairment-indicative. The attributes game_level, score, self_evaluation,
satisfaction and repeatability were considered positive indicators of engage-
ment and motor-cognitive adaptation and thus assigned a weight of +1. Con-
versely, features associated with difficulty or fatigue (errors, time, fatigue and
difficulty) were assigned a weight of −1.

Cluster Scoring and Relabeling

For each cluster label produced by the model, the mean value of each feature was
computed over all samples belonging to that cluster. These standardized feature
means were then combined using the custom weight vector via a dot product:

Cluster Scorei =
nØ

j=1
wj · µij (3.3)

where wj is the weight for feature j and µij is the standardized mean of feature
j within cluster i.

Clusters were then sorted by their total scores in ascending order. The final
relabeling remapped the original cluster indices to enforce a consistent semantic
order (e.g., Cluster 0 = “Initial”, Cluster 1 = “Setup”, Cluster 2 = “Intermediate”,
Cluster 3 = “Advanced”).
This methodology allowed for unsupervised cluster labels to be post-processed
into interpretable categories aligned with rehabilitation progression stages without
requiring external supervision or manual annotation.
After reordering of clusters and relabeling, for each k-algorithm configuration, each
single session point clustering was used to compute the distribution of cluster labels
within each session. Two complementary visualizations were produced: separate
bar charts (one subplot per cluster) showing the percentage of session records
assigned to that cluster and stacked-bar plots illustrating the full composition
of clusters per session. Only stacked bar plots are reported in Figures 3.67 and
3.68. This approach was crucial to inspect session-by-session consistency (e.g. does
Session 3 predominantly fall into the “Intermediate” cluster?).
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Figure 3.67: Stacked Bar Plots - Percentage of clusters per session, based on
KMeans, k = 2.

Figure 3.68: Stacked Bar Plots - Percentage of clusters per session, based on
AgglomerativeClustering, k = 3.

From the comparative inspection of Figures 3.67 and 3.68, it is clear how increasing
cluster numbers (thus the corresponding difficulties and learning abilities), distribu-
tions shift towards later sessions. In particular, for the 2 clusters selected scenario,
sessions 4, 5 and 6 are the most uncertain ones with similar percentages of cluster
points. This is expected, since these sessions are the ones in the middle, where best
performers reached peak level in most games while more severe subjects were still
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dealing with lower difficulties. For the 3 clusters obtained with the Agglomerative
method, sessions appear to be more clearly separated, apart from session 7: this
is the first advanced session, even if still transitional, since only in two cases a
personal best or global peak level was reached by any participant in any exergames.
This unsupervised classification pipeline thus provided a fully data-driven means
of labeling sessions from “initial” to “advanced”, without relying on external an-
notations: this offers an insight into the natural stratification of rehabilitative
performance over time. Additional clustering using aggregated single-session fea-
tures (mean or max) was evaluated. Since by aggregation the granularity of possible
different clustering within a session gets lost, results are perfectly clustered. This
causes a loss of information, removing all variability coming from different learning
curves from patients. For this reason, these solution were discarded. Finally, after
computing the per session clusters distribution, the median for each cluster for the
2 solutions with highest silhouette scores was computed. Results are reported in
Tables 3.6 and 3.7 and show clearly how Ski’s game performances are the most
heterogeneous among all exergames, for all clusters and both solutions. Purpose was
to find, for each exergame, the most suitable session in relation to each cluster, so
that mean selected session features values could be calculated to find the prototype
for an initial/setup or more advanced session.

Table 3.6: KMeans, k = 2 – Median Session per Cluster–Exergame Pair Based on
Minimum Distance to Centroid

Cluster Exergame Session Number Distance to Centroid
0 A 3 0.000
0 S 3 4.243
0 G 2 0.000
0 SK 2 0.000
0 T 3 0.400
1 A 9 0.100
1 S 5 3.211
1 G 4 0.000
1 SK 8 0.250
1 T 9 0.000

Note: For each cluster–exergame pair, the listed session corresponds to the observation with
minimum Euclidean distance to the cluster centroid and therefore serves as its empirical
prototype. For example, Cluster 0’s behavioral pattern is best approximated by Session 3 of
Airplane, Session 3 of Ski, etc. Column abbreviations: A = Airplane, S = Ski, G = Gym,
SK = Skewer, T = Tile.
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Table 3.7: AgglomerativeClustering, k = 3 - Median Session per Cluster–Exergame
Pair Based on Minimum Distance to Centroid

Cluster Exergame Session Number Distance to Centroid
0 A 3 0.000
0 S 2 3.162
0 G 2 1.000
0 SK 2 4.000
0 T 4 2.256
1 A 5 0.000
1 S 4 4.153
1 G 2 0.000
1 SK 5 0.000
1 T 6 0.100
2 A 6 0.000
2 S 9 3.041
2 G 4 0.000
2 SK 9 0.000
2 T 10 0.100

Note: For each exergame and cluster, the session listed corresponds to the observation with
the minimal Euclidean distance to its cluster centroid. These sessions serve as empirical
prototypes—meaning that a typical Cluster 0 pattern is best approximated by the feature
values in Session 3 of Airplane, Session 2 of Ski and so on. Column abbreviations follow: A
= Airplane, S = Ski, G = Gym, SK = Skewer, T = Tile.

In both cases, centroid distances are reported. Non-zero distances are all related
to exergames where relevant metrics include time, a factor of great variability,
especially if compared with integer number values as levels or scores. Interesting is
to notice how the reference sessions change intra and inter clusters, depending on
the game. For the two methods, Gym’s fast learning curve proved to be a factor
for the prototypes, since, to distinguish between type of sessions, close and within
half process sessions are sufficient.
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Table 3.8: Cluster-Averaged Game Metrics Based on KMeans, k = 2

Cluster AS AL ST SS SE SL GS
# # sec # # # #

0.0 5.16 2.71 237.00 7.50 4.86 2.71 3893
1.0 8.18 6.70 246.84 7.96 4.71 5.43 5561

Cluster GL SKT SKL TE TL TT
# sec # # # sec

0.0 1.07 153.68 3.21 7.36 1.00 5.19
1.0 1.71 83.05 4.50 4.30 1.60 4.58

Note: Values represent cluster-specific game metrics averaged within each prototype exergame-
specific session. A = Airplane, S = Ski, G = Gym, SK = Skewer, T = Tile; S = score, L =
level, E = errors, T = time. TT is tile time, not total tile game time.
Cluster 0: Initial & Setup; Cluster 1: Intermediate & Advanced.

Table 3.9: Cluster-Averaged Game Metrics Based on AgglomerativeClustering,
k = 3. These feature values can be used as a prototype for an average, cluster-
relative session.

Cluster AS AL ST SS SE SL GS
# # sec # # # #

0.0 5.16 2.71 188.88 6.34 1.93 0.07 3893
1.0 5.41 3.36 236.79 7.63 4.21 4.50 3893
2.0 6.25 3.58 259.25 9.15 2.10 9.20 5561

Cluster GL SKT SKL TE TL TT
# sec # # # sec

0.0 1.07 153.68 3.21 6.79 1.20 5.75
1.0 1.07 102.75 4.64 6.92 1.42 5.17
2.0 1.71 72.15 4.50 4.00 1.60 5.30

Note: Values represent cluster-specific game metrics averaged within each prototype exergame-
specific session. A = Airplane, S = Ski, G = Gym, SK = Skewer, T = Tile; S = score, L =
level, E = errors, T = time. TT is tile time, not total tile game time.
Cluster 0: Initial & Setup; Cluster 1: Intermediate; Cluster 2: Advanced.

Tables 3.8 and 3.9 present cluster-averaged metric profiles for all exergames, em-
ployable to describe a cluster-specific prototype session, derived respectively from
the KMeans (k = 2) and AgglomerativeClustering (k = 3) methods. These values
serve as reference patterns for session classification across exergames.

107



Chapter 4

Discussion

This chapter provides synthesis of the principal findings presented in chapter 3
and offers a critical interpretation of their implications. The results discussed are
derived from extensive analyses of heterogeneous data collected continuously during
Phase 2 of the project. This discussion is structured into four main sections:

• Usability and patient engagement.

• Correlation between game data, survey answers and clinical evaluations.

• Implications on telemedicine

• Limitations

4.1 Usability and Patient Engagement
Analysis of session-aggregated game results highlights clear trends that demonstrate
the usability of the exergames and the progressive learning of participants. Across
all exergames, performance-related metrics designed to be maximized generally
displayed an increasing trend, while those intended to be minimized showed a
decreasing pattern. Some parameters values like Tile’s tile time and errors (Figures
3.16, 3.17) or Ski’s game time and errors (Figure 3.20 and 3.21) remained relatively
stable across sessions despite the progressive increase in difficulty, suggesting overall
performance improvements.
Session-aggregated questionnaire responses showed no major directional trend for
individual items. However, their consistency provides valuable insight into how the
study and exergames were perceived by participants. Average per session values of
satisfaction and repeatability remained high (respectively 4.22/5 and 4.53/5, see
Figures 3.49 and 3.50), while fatigue and difficulty low (respectively 2.89/5 and
2.48/5, see Figures 3.51 and 3.52). Notably, the overall mean perceived difficulty
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remained close to 50% of the maximum possible, indicating that progression in
game levels maintained sufficient cognitive challenge, promoting more an increment
of fatigue rather than of difficulty.
Games linked with self-reports evolution trends, steeper or not depending on the
exergame-specific cognitive and physical stimuli, led to the definition of up to three
(depending on the method and number of clusters) "prototype" sessions, reflecting
the stage of study: Initial & Setup, Intermediate or Advanced. This confirms an
evolution from familiarization to mastery for the games and is useful to define a
personalized strategy for a new patient, able to start the rehabilitation process
with the most suitable game level for his condition.

Airplane
The Airplane exergame emerged as the most challenging overall: only 8 out of
14 participants reached the maximum level (see Figure 3.24), typically requiring
on average more than seven sessions (Figure 3.25). Considering the cumulative
distribution in Figure 3.28, this exergame can be considered pretty versatile, with
a peak of patients dealing with 7 out 8 levels in the same session.
Airplane’s metrics showed a monotonic trend and great variability among par-
ticipants. Particularly, inter-tertile learning curves throughout sessions differ
significantly (Figure 3.26): less severe patients had a steeper curve ending in an
on average maximum level plateauing since third to last session. Medium severity
group’s curve reflects an overall slower learning process (with average differences of
group peak level reached throughout session between 2.5 and 5 with respect to low
severity cohort, starting from third session) ended still on ceiling level. Most severe
group mean advancement was characterized by relevant standard deviations and
was notably slower, never surpassing medium difficulty level (4/8). In conclusion,
this solution, given the 8 levels division, is suitable for heterogeneous patients: can
be considered an easy to learn, hard to master exergame.

Tile
This exergame was labeled as "medium" difficulty: 11 out of 14 patients succeeded
in reaching maximum level (see Figure 3.24). Hidden complication was precision,
which directly involved upper arms ability to move at a controlled pace. This is
why, combining Figures 3.25, 3.3 and 3.7, results indicate a clear tendency for less
severe patients to master exergame in 5 sessions on average, while more severe
cases are unable to reach peak level. Mean tile-press times declined steadily after
session 3 (Figure 3.16) and error rates stabilized at end near the group average
(Figure 3.17). In conclusion, despite the performance gaps inter-tertile, all patients
showed progression, proving Tile usability and clinical validity.
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Skewer
Skewer was ranked as easiest game, with all but one (with severe upper-limbs
movement limitations that caused impracticability to deal with the exergame)
participants able to reach mastery and in just 4 sessions at most. Rapid attainment
of peak levels by session 3 (Figure 3.34) and low intra-patient variance (Figure
3.32) indicate that Skewer posed minimal barriers, making it highly accessible even
to more severely affected individuals. Despite the early in sessions level mastery,
learning and adaptation process continued until the end, with a negative trend for
completion time (Figure 3.18).

Ski
This exergame resulted to be the second most difficult, with 10 out of 14 participants
mastering it. As for the Airplane, the total number of levels available granted
adaptability for all profiles, with at most 7 modes played in the same session.
Learning curve was monotonic for the majority of the study, considering participants
individually and grouped by clinical condition similarities. This solution was the
only one which required full body activation, requiring effective motor coordination.
For this reason, game times and errors standard deviations in each session were
high and fluctuant (Figures 3.20 and 3.21). Variability among high-severity patients
suggests that Ski effectively discriminates clinical stages, which top performers
in game metrics being the subjects with lower criticality profiles. In conclusion,
this solution can be applied to the examined group in total. Ski results, however,
more suitable as a mid-phase exergame within a progressive rehabilitation protocol,
since mostly only less severe participants are able to start dealing with it since
beginning.

Gym
Gym was ranked second to last, with a final number of 11 out of 14 players that
reached maximum level, taking, on average, 5 sessions (Figures 3.24 and 3.25).
Progression was consistent among each UPDRS tertile, showing a clear upward
trend. Only most severe group members were not able to reach mean ceiling level
in last session (Figure 3.38) but, however, successfully surpassed basic mode by
half of the study (Figure 3.40). Metric outcomes from Figure 3.22) and Figure 3.23
confirm that Gym provided a suitable motor-cognitive workload without impeding
patient engagement, more indicated for advanced disease stages. For this solution,
additional high performers (patients 10 and 21) emerged (Figures 3.12 and 3.13),
showing how challenge mostly regarded resistance and willing of the individual to
execute a more fatiguing modes.
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4.2 Insights on Correlation Between Game Per-
formances, Clinical Scores and Survey An-
swers

Spearman correlation analyses revealed robust associations between game level/s-
core and UPDRS total and sub-scale scores (Figure 3.53). Airplane and Ski games
reported the higher correlations with clinical scores, in particular the total UPDRS
value, the sub feature regarding the limb ability to move correctly, bradykinesia
and, specifically for the second, leg agility (Figures 3.54 and 3.57). Patients in
lower UPDRS tertiles consistently achieved higher maximum levels with less vari-
ability, whereas higher-severity tertiles exhibited wider dispersion in both objective
metrics and self-reports. Composite patient ranking based on multi-modal metrics
(self-evaluations and game performances, Table 3.2) aligned closely with clinical
evaluations: the top six ranked patients, with the exclusion of 18 (the "outlier") and
1 (PD severity mainly derived from vocal impairments), belonged to lower UPDRS
stages, confirming that game-based performance metrics serve as valid proxies for
functional severity. In addition, these participants reported above overall average
mean satisfaction and replayability scores and below overall average mean difficulty
and fatigue scores, demonstrating alignment between objective performance, clinical
severity, and subjective self-assessment.

4.3 Implications for Telemedicine and Telereha-
bilitation

These findings support the deployment of webcam-based exergames as scalable,
home-based rehabilitation tools. Prototype session profiles enable the definition of
adaptive training phases (from initial to advanced) that can be prescribed according
to patients’ clinical characteristics. High satisfaction and replayability scores imply
good patient acceptance, while metric-clinical correlations justify use of in-game
data for remote monitoring and tailoring of therapeutic intensity. In addition,
games’ levels division ensures a proper adaptability for all necessities. The implicit
data collection is crucial both for following evolution of disease in patients and for
having in availability a an amount of data that grows time by time, facilitating
more robust modeling and enabling the use of predictive algorithms to anticipate
future session performance.
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4.4 Limitations
• Sample size and dependence. The inclusion of fourteen participants, pre-

dominantly classified as H&Y stages 2-3, limits the extrapolation of findings
to more advanced or diverse Parkinson’s Disease cohorts. In addition, the
small sample size and the dependence among repeated sessions for the same
individual rendered the application of supervised learning models impractical
for classifying patients by disease stage solely on the basis of game-derived
metrics and self-evaluation data. Likewise, unsupervised grouping of patients
into clinically meaningful clusters was infeasible for the same reasons. While
correlations among features are desirable to some extent, high inter-correlation
complicated attempts to identify the most informative metrics. The de-
pendence among consecutive sessions, combined with high inter-individual
variability and challenges in robust feature selection, contributed to silhouette
scores near 0.2 for session clustering, indicating only modest cohesion.

• Absence of game-specific questionnaires. The surveys designed for
this study did not include exergame-specific items on usability or perceived
difficulty, potentially reducing the precision of subjective feedback related
to each game modality. This limitation constrains the interpretability of
per-game correlation heatmaps and reduces the value of subjective perception
as an input for personalized exergame-based intervention planning.

• Lack of per-session clinical evaluations. The study design did not incorpo-
rate repeated clinical assessments across the exergame sessions. Consequently,
short-term fluctuations in motor status could not be directly aligned with
session-level performance data. All clinical evaluations were conducted only
once, prior to the start of the data collection phase. This approach likely
contributed to the outlier status of Patient 18, whose clinical assessment
occurred approximately 210 minutes after the last Levodopa dose, plausibly
coinciding with an "off" state characterized by more pronounced motor symp-
toms and potential dyskinesia. In contrast, all recorded exergame sessions
were completed predominantly in the "on" condition, within 66 to 100 minutes
of medication intake, which may explain the observed discrepancies between
clinical severity scores and in-game performance.

• Highly variable number of attempts. The number of trials completed
per exergame varied substantially across patients and sessions, which may
introduce bias in aggregated metrics and reduce comparability. For example,
Gym, Skewer and Ski were typically attempted only a few times per session
per patient, whereas Airplane and Tile were often repeated multiple times,
either until progression was achieved or the participant requested to advance
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to the next task. This variation was partly due to structural differences among
the exergames themselves, as shorter-duration games inherently required more
repetitions to provide adequate practice and learning opportunities.

• Impossibility to track failed Airplane attempts. The number of failed
attempts in the Airplane game could have represented a meaningful perfor-
mance indicator. However, efforts to estimate this metric by subtracting the
sum of individual execution times from the total session duration produced
inconsistent results due to idle periods, despite attempts remove them by
inter-attempt intervals subtraction using timestamp differences.

• Differences in inter-patient attendance. The frequency and consistency
of session attendance varied among participants, with some individuals com-
pleting all planned sessions and others discontinuing earlier. This variation
further limits the generalizability of progression trends and affects overall
means for key metrics. The reduction from an initial 14 participants to 9 in
the final session amplified the sample size and dependence limitations noted
above.

• Limited observation window. The duration of the data collection phase,
covering at most ten sessions per patient within a relatively short timeframe,
did not allow for the investigation of longer-term adaptation, sustained adher-
ence, or possible fluctuations in motor condition over several months. A longer
observation window, ideally extending up to six months, would be necessary
to capture more gradual disease progression trends and potential effects that
may affect exergame engagement and rehabilitation outcomes.
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Conclusion and Future Work

This work investigated whether webcam and markerless tracking-based exergames
can offer a usable, engaging and clinically meaningful solution for telerehabilita-
tion in Parkinson’s Disease. Through the continuous monitoring of five custom
exergames, supported by detailed session-level gameplay metrics, patient survey
responses and clinical scores, this study demonstrates the technical feasibility and
patient acceptance of this approach in a cohort with moderate disease stages.

The progression patterns found in objective metrics, alongside consistently high
satisfaction and repeatability scores, confirm that the exergames maintained us-
ability and engagement over repeated sessions. In addition, the fact that perceived
difficulty remained slightly lower than perceived fatigue, which was overall around
50% of the scale, indicates that the games sustained an appropriate cognitive
challenge while progressively increasing motor load through repetition: a balance
well aligned with home-based rehabilitation solutions.

The correlations observed between in-game metrics and UPDRS scores, as well as
the game trends of patients divided by their corresponding UPDRS tertile, further
indicate that gameplay performance can reflect underlying motor status, supporting
the potential for remote monitoring.

Unsupervised clustering highlighted distinct prototype session phases, from fa-
miliarization to mastery, providing a practical basis for tailoring adaptive telereha-
bilitation plans to individual motor profiles and disease stages.

However, several limitations must be acknowledged. The small sample size con-
strained the use of supervised learning methods for classification tasks and reduced
the generalizability of correlation and clustering results. The absence of repeated
clinical assessments across the study sessions limited the ability to align short-term
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motor fluctuations with game performance, also likely contributing to outlier effects
due to timing discrepancies regarding last medication assumptions between clinical
assessments and gameplay sessions. The lack of exergame-specific usability items in
the surveys narrowed the precision of subjective feedback at the game level, limiting
the possibility for patients-oriented exergames patches. Variability in the number
of attempts per session and differences in patient attendance further contributed to
inconsistencies in aggregated metrics and modest unsupervised clustering results.

Future work should aim to address these constraints. Scaling up the
participant cohort and ensuring consistent session completion would allow for more
robust statistical modeling and validation of results, especially if combined with
a longer observation window (ideally extending up to six months) during which
progressive changes in motor status could become more observable.

A longer timeframe would also increase the total number of sessions per patient,
expanding the available dataset and enabling more reliable detection of individual
progression trends, sessions clustering and potential adaptation or dropout patterns,
offering valuable evidence for refining exergame content and session scheduling to
sustain long-term adherence.

Incorporating repeated clinical evaluations per session would enable finer alignment
between objective gameplay indicators and motor status. Designing and deploy-
ing exergame-specific survey items could refine usability insights and strengthen
subjective-objective metric correlations.

From a technical perspective, in order to support completely a telerehabilita-
tion protocol, could be useful to develop new solutions in order to target all PD
stages. With larger datasets, obtained by longer observation windows and more
participants (since it is a remote solution, this should be a natural consequence once
platform is released and accepted as one of the standard rehabilitation solutions),
supervised machine learning models could be explored to predict session-level
outcomes or dynamically adapt difficulty to maximize benefit.

In addition, as described in chapter 2, the data collection included also game-
play recordings and UPDRS tasks executions, which were not used in this study.
The first could be used in the future to qualitatively assess user engagement, any
discrepancies with tracked motion data and specific clinical items like dyskinesia.
The recorded sessions may be reprocessed by third parties to extract motion data
from the video material without requiring patients to undergo the rehabilitation
protocol again.
The latter included video captures of patients performing selected items of the
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MDS-UPDRS scale, recorded both before and after each session for clinical com-
parison. Tasks included Sit-To-Stand, Leg Agility, Gait (from two perspectives,
frontal and horizontal), Finger Tapping, Toe Tapping and Hands Movement. This
material could be useful for future works to enrich the analysis done by including
partials per session clinical evaluations to ensure correct initial medical profiles and
track eventual motor differences generated by the rehabilitation process.

Finally, also motion data (frame-by-frame tracking of joint positions using 3D
Cartesian coordinates x, y, z) analysis represents a crucial next step to build on the
correlations and performance-based findings already obtained. Integrating detailed
kinematic features could uncover some "micro-level" movement patterns, such as
compensatory strategies, tremor fluctuations or bradykinesia markers, that are not
fully captured by score and level metrics alone.

In particular, analyzing raw motion trajectories may reveal movement interruptions
and smoothness profiles, providing direct quantification of motor hesitations or
freezing episodes. It would also allow for a detailed comparison of limb-specific
motor capacity, highlighting asymmetries typical of Parkinson’s Disease and enable
precise estimation of maximum ranges of motion (ROM), which could be correlated
with disease severity and progression. Postural stability could be assessed through
tracking trunk and head coordinates, revealing compensatory balance strategies
not visible in task scores.

Furthermore, motion data would support the computation of trial-to-trial consis-
tency indicators, describing how stable or variable a patient’s motor execution is
across repeated attempts, which is particularly relevant for the Gym exergame.
These new kinematic variables could be correlated with both clinical scores and
self-reported outcomes, providing a richer basis for unsupervised clustering and
refinement of prototype session phases.

Finally, as UPDRS tasks video recordings, motion tracking data can be reprocessed
independently, eventually by third parties.

In summary, this thesis demonstrates that accessible webcam-based exergames
represent a promising, scalable approach for remote motor-cognitive rehabilitation
in Parkinson’s Disease. By combining usability, patient engagement and meaningful
correlation with clinical measures, they form a robust basis for developing adaptive,
individualized care pathways that complement traditional treatments. Moreover,
by reducing the need for travel and in-person sessions, such systems can ease the
burden on clinics and improve access for patients with mobility limitations.
In conclusion, the combination of telemedicine with exergames and related data
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collection also ensures individuals correctly follows their at-home rehabilitation
therapy, crucial for a degenerative disease like Parkinson’s Disease.
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