
Politecnico di Torino

M.Sc in ICT for Smart Societies - LM 27
A.Y. 2024/2025

July 2025

Design and implementation of a
deployment tool for modular DNN

inference using ZeroMQ-based
GPU-aware communication

Supervisors:

Prof. Carla Fabiana Chiasserini
Dott. Corrado Puligheddu

Candidate:

Dario Antonio Ruta

ii

Summary

Deep Neural Networks (DNNs) are the fundamental structure adopted to provide
smart service in a wide range of AI applications. However, DNN-based tasks
have high computing requirements, posing huge challenges on their deployment on
small and resource-constrained devices such as mobile phones or IoT devices. To
address this issue, some solutions consider model compression techniques to limit
the computational burden on the device as well as the model memory footprint.
Other strategies involve partial or full task offloading towards more powerful
computing platforms placed at the edge of new-generation mobile networks (5G-
MEC), ensuring low latency and near-zero computing cost for the mobile device.
In such context, mobile devices can consider DNN tasks as on-demand services.
However, for the fact that MEC platforms are more resourceful than mobile devices,
MEC radio and computing resources are limited. Therefore, it is of paramount
importance to manage and optimize them to maximize the task exectution rate.
In this context, promising results emerge from sharing parts (blocks of layers) of
DNN models among similar offloaded tasks. However, coping with parallel model
execution in a scenario with high dynamism and strict latency requirements during
offloading poses some challenges to be solved.

This thesis work presents BlockFlow, a high-performance deployment and man-
agement tool for modular and dynamic DNN inference. It incorporates TensorMQ,
a novel contribution in GPU-aware communication for inter-block tensor forwarding
at inference time based on ZeroMQ library. A detailed system design and technical
motivation of the adopted choices for the practical implementation are widely
discussed. BlockFlow provides a high degree of flexibility and adaptability across
different computing scenarios such as single-node-single-GPU, single-node-multi-
GPU, multi-node, and it can be adopted when offering DNN as service to the users.
The performance of the inference pipeline has been tested under different operating
conditions and for the most common object detection and object classification DNN
architectures. TensorMQ addresses the ping-pong problem between CPU and GPU
in single-node-single-GPU and single-node-multi-GPU setups for modular DNN
architectures presenting a zero-copy solution, thus reducing the communication

iii

overhead, increasing the pipeline throughput and avoiding redundant data move-
ments while still maintaining a high degree of system modularity and dynamicity.
Experimental results in single-GPU setup, considering the popular Resnet50 model,
demonstrate how TensorMQ outperform standard ZeroMQ, achieving up to 2.89x
faster inference time, 8.30x reduction in pipeline communication overhead in
ResNet50 architecture split into 4 blocks. In multi-GPU setups, it allows for up to
5.26x communication latency gains.

iv

"A mia madre"

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Prof. Carla Fabiana
Chiasserini, for giving me the opportunity to work on one of my most cherished
topics. My sincere thanks also go to Dr. Corrado Puligheddu for his valuable
advice and for incredible generosity with his time.
I would also like to thank all the people I have met along the way and with whom
I have shared unforgettable experiences, both inside and outside the classrooms of
the Politecnico. I could not name everyone, but a special mention goes to Tanucci,
Nanni, Francesco, Ettore, to whom I wish all the best.
If we are reading this document today, it is undoubtedly thanks to my Papà, whom
I cannot thank enough for allowing me to become who I am today.
Finally, I would like to thank Martina for being an integral part of my life.

vii

Table of Contents

List of Tables xi

List of Figures xii

Acronyms xv

1 Introduction 1
1.1 Offloading Computer Vision Tasks at the Edge 2
1.2 Thesis Motivations & Objectives . 4

1.2.1 Motivations . 4
1.2.2 Objectives . 5

1.3 Thesis Contributions . 6
1.4 Thesis structure . 6

2 Background 9
2.1 AI & Deep Neural Networks . 9

2.1.1 Deep Neural Networks . 10
2.1.2 Convolutional Neural Networks 12

2.2 Deep Learning at scale . 15
2.3 Inter-process Communication (IPC) 18
2.4 Multi-access Edge Computing (MEC) 19
2.5 OffloaDNN . 21

3 BlockFlow 27
3.1 System Requirements . 28
3.2 Technical Challenges . 28
3.3 BlockFlow used tools . 30

3.3.1 ZeroMQ . 30
3.3.2 PyTorch . 31
3.3.3 CherryPi . 32
3.3.4 Pickle . 32

ix

3.3.5 Psutil . 33
3.3.6 Python NVIDIA Management Library 33
3.3.7 Nvidia nvprof . 33
3.3.8 Taskset & Numactl . 34

3.4 TensorMQ: tensor-aware inter-block communication via CUDA-IPC
and ZeroMQ . 34

3.5 Architectural Design . 35
3.5.1 Block Design . 38
3.5.2 Dispatcher Design . 39

3.6 System Workflow . 39
3.6.1 Block workflow . 40
3.6.2 Dispatcher workflow . 47

4 Experimental Results 49
4.1 Experimental setup . 49

4.1.1 Split-ResNet50 Offline analysis 51
4.1.2 ZeroMQ forwarding performance analysis 52

4.2 Pipeline performance analysis . 53
4.2.1 Mathematical model . 54
4.2.2 Single-host-single-GPU . 55
4.2.3 Single-host-Multi-GPU . 64

4.3 Modular DNN deployment vs Standard Deployment 66
4.3.1 Mathematical formulation 66
4.3.2 Numerical Comparison . 68

5 Conclusions & Future research 73

Bibliography 75

A Awenode GPU topology 79

B ZeroMQ vs TensorMQ time distributions per Block 81

x

List of Tables

2.1 ResNet Architecture Comparison. 16

4.1 Comparison between single-GPU-server and multi-GPU-server. . . . 50
4.2 Comparison of memory and latency metrics for scripted and traced

blocks. 51
4.3 RTT Comparison on awenode (ms). 52
4.4 Task distribution across different classes, for the considered scenarios. 68
4.5 ResNet50 modular vs traditonal deployment VRAM occupancy

analysis. 69
4.6 ResNet152 modular vs traditonal deployment VRAM occupancy

analysis. 70

A.1 GPU Topology and Affinity (multi-GPU-server) 79

xi

List of Figures

1.1 Simple CNN structure for Handwritten Digit Recognition 3

2.1 AI, ML, DL relationship. 9
2.2 Simple Feed-Forward neural network with fully connected layers. . . 12
2.3 Convolution operation with kernel size [2,2]. 13
2.4 Generic Feature map creation procedure. 13
2.5 VGG19 Architecture [10]. 14
2.6 ResNet50 Architecture. 15
2.7 Model (left) and Data (right) parallelism conceptual schema. 17
2.8 Single-threaded and multithreaded processes [12]. 18
2.9 MEC overview. 20
2.10 MEC platform Schema [13]. 21
2.11 OffloaDNN’s innovations. (fig.1, p.2 at [9]) 23
2.12 OffloaDNN architecture and workflow (fig.4, p.4 at [9]). 24

3.1 (left) Traditional DNN deployment for each admitted task, (right)
modular DNN architecture with shared block. 29

3.2 Ping-pong effect between RAM and VRAM. 29
3.3 IPC handle deliver through TensorMQ. 35
3.4 BlockFlow application components. 36
3.5 BlockFlow application planes. 37
3.6 Block Components. 38
3.7 System Update workflow. 40
3.8 Data Object in TensorMQ. 42
3.9 TensorMQ Tensor transfer procedure between 2 blocks over 2 different

GPUs . 44

4.1 ResNet50 Splitting points. 50
4.2 ResNet50 Parameters (millions) per Block. 52
4.3 4-block pipeline average computing time. 56
4.4 Time components per block. 56

xii

4.5 Pipeline inference and overhead time distributions. 57
4.6 GPU and CPU utilization. 58
4.7 Pipeline Computing time under different batch size 59
4.8 Pipeline Computing time under different batch size (zoomed) 59
4.9 Data Movement analysis with NVIDIA nvprof for 2 consecutive

inferences with ZeroMQ. 59
4.10 Energy consumption per inference. 60
4.11 Pipeline scalability in multi-client scenario. 61
4.12 4-blocks Pipeline Throughput analysis. 62
4.13 Average VRAM occupancy under different arrival rates. 63
4.14 Average VRAM occupancy per block. 64
4.15 Blocks average computing time with different deployment scenarios. 65
4.16 Blocks average overhead time with different deployment scenarios. 65

B.1 ZeroMQ vs TensorMQ inference time distributions per block 82
B.2 ZeroMQ vs TensorMQ overhead time distributions per block 83

xiii

Acronyms

SoTA
State of The Art

ASIC
Application-Specific Integrated Circuits

GPU
Graphical Processing Unit

CV
Computer Vision

DNN
Deep Neural Network

CNN
Convolutional Neural Network

LLM
Large Language model

ETSI
European Telecommunication Standard Institute

MEC
Mobile Edge Computing

DOT
DNN for scalable Offloading of Tasks

xv

IPC
Inter-Process Communication

RTT
Round-Trip-Time

PDF
Probability density function

ePDF
Empirical Probability density function

PDI
Path Distribution Index

xvi

Chapter 1

Introduction

In recent years, the number of digital services based on Artificial Intelligence (AI) is
growing exponentially, bringing a digital revolution of our society. In this vein, the
main form of technological progress can be attributed to the large-scale deployment
of services based on Deep Neural Networks (DNNs) jointly with Deep Learning
(DL) algorithms.
DNNs are the essential paradigm that enabled smart use-cases in a variety of
industries such as smart city, precision agriculture, smart health, autonomous-
driving and many others.

One of the major factors contributing to this digital revolution has undoubtedly
been the increased availability of data to be processed, available computational
resources and specialized hardware like Application-Specific Integrated Circuits
(ASICs) and Graphical Processing Units (GPUs), effectively enabling the creation
of increasingly intelligent and, at the same time, large and complex models.
Indeed, over the past few years model sizes have grown dramatically. This rate of
scaling is outpacing Moore’s Law, creating a significant gap between the supply and
demand for computing power. This poses a serious challenge in the deployment of
DNNs in devices with small computational capabilities like IoT and Edge devices.
This scenario gets even more complicated if Edge devices are battery powered.
One solution to tackle this problem lies on algorithmic procedures to reduce the
computational burden and the memory footprint of the model (e.g., using pruning
and quantization techniques). However, model compression techniques usually
lead to a reduction in model performance (e.g., accuracy) [1]. Moreover, often the
compressed model fails to provide an adequate trade-off between power consumed
and required performance. Conversely, the edge device in some cases can take
advantage of high-speed wide-band connectivity to offload the full computation
or a part of it to a cloud server with more computational power. Nonetheless,
applications with strict latency constraints fail to benefit from this solution as
they experience large delays due to the network signal propagation to remote hosts

1

Introduction

and back. To cope with these issues, the European Telecommunication Standard
Institute (ETSI) introduced the concept of Multi-Access Edge Computing (MEC)
[2], bringing cloud computing capabilities to the network edge thereby reducing
the latency and enhance the overall performance of user applications [3].

In a scenario where AI tasks based on DNNs can be seen as services, the end
user can enjoy the above benefits by offloading computer vision tasks to the edge.
However it is important to ensure that certain performance levels are guaranteed
while respecting systemic constraints.

1.1 Offloading Computer Vision Tasks at the
Edge

Among the huge number of DNN based tasks, Computer Vision (CV) tasks may
be a great candidate to be offloaded.

Offloading computer vision tasks at the edge-cloud is a promising approach able
to reduce latency required for computation due to higher computational capabilities
and reduce energy consumption due to the shorter path the data has to travel
through the network to reach the remote-cloud. In particular, those who benefit
most are small devices that are unable to handle the required calculations due to
strict constraints on their hardware.

Offloading computer vision tasks to a Multi-Access Edge computing platform,
significantly outperforms traditional remote cloud offloading schemes (more on
Multi-Access Edge Computing paradigm can be found in sec. 2.4). In [4], the
authors implemented an end-to-end solution, demonstrating the goodness of the
5G-MEC architecture in the context of offloading of computer vision tasks from
mobile devices. Specifically, they focused on offloading emotion recognition tasks
through CNNs running at the edge. They proved that 5G-MEC architecture
improves the throughput of more than 250% and reduces the response time of
71.3% compared to the remote-cloud-based offloading. For small packet sizes, even
to a cloud service located in the same country, the RTT could be halved.[5]. The
reduction factor is due to a smaller network propagation delays (i.e. fewer number
of hops to be traversed) and a more efficient radio communication under 5G-NR
with respect to previous RAN generation.

Offloading to the edge-cloud implies the transmission of information over a
wireless channel, thus the number of bits transmitted over the channel is a key
factor that needs to be taken into account in latency constrained applications.
Often, edge devices experience signal quality degradation and transmission bit-rate
variability due to their relative movement with respect to the closest Base Station
(BS) they are connected to.

For that reason, a variation of the Edge Computing paradigm gained attention

2

1.1 – Offloading Computer Vision Tasks at the Edge

in recent times where the edge device does not offload the full task but only a part
of it. This approach refers to split-computing, where the main actors involved (i.e
edge-device, edge-cloud, cloud) are in charge of only a part of the computation. In
the context of DNN based tasks like CV tasks this approach refers to the split-DNN.

Several works take into consideration split-DNN as a potential solution to jointly
optimize the radio and computing resources and the total energy consumption of
the inference pipeline over a multi-tiered interconnected mobile-edge-cloud system
to serve multiple DNN based tasks [6]. However, the optimization problem stated
above is hard to be solved also due to the Data Amplification Effect [7], where
quite often in CNNs intermediate feature maps are bigger in size with respect to
the input images.

Figure 1.1: Simple CNN structure for Handwritten Digit Recognition

For example, even considering a trivial CNN as the one reported fig 1.1, one
can notice that given as input an image of size [H, W, C] = [28,28,1], after the first
convolutional layer with 32 filters, kernel size of [H, W] = [5,5], stride = 1 and
padding = 0, the output feature map is of shape [H, W, C] = [24,24,32], increasing
the size by almost 32x with respect to the input tensor. 1

Solutions to these problems are linked again to model compression techniques or
the use of encoders-decoders between the entities involved to shrink the amount of
bits sent over the channel.
However, in a scenario where the same base model is shared to perform multiple
tasks, there is a risk of irreparably compromising accuracy performance in sensitive
tasks to them. A possible approach is to enrich the system with a degree of
flexibility, thus making it flexible and adaptable to the required context. The

1more on CNNs functional is reported in sec. 2.1.2

3

Introduction

work at [8] perfectly marries the problem of data amplification effect. Indeed, the
authors introduced Slimmable Encoders to cope with limited channel capacity in
IoT wireless networks.

The Data Amplification Effect must be taken into account even in simpler
contexts such as traditional Offloading to the Edge Server. There could be cases
in which, the split-DNN architecture lies on a single host. In these scenarios, the
inference is done by means of a DNN block’s pipeline. Hence, it is of paramount im-
portance to ensure efficient communication between the parts of the DNN structure.

Valuable research works such as OffloaDNN [9], focus on this use-case providing
a framework able to increase the computing platform efficiency by minimizing the
system resources (both radio and computational) in 5G-MEC infrastructure. The
main idea is to share dynamically one or more DNNs blocks between one of more
than one admitted task at the edge. As a result, the forward pass of a DNN is
no longer a static sequence of layers belonging to the same entity but becomes a
logical execution path, where different blocks are involved in the inference process
depending on the active tasks.

1.2 Thesis Motivations & Objectives
As discussed, OffloaDNN provides meaningful insights in the context of offloading
CV tasks at the edge, demonstrating and validating the effectiveness of the proposed
solution under different scenarios.

1.2.1 Motivations

When adopting a modular DNN architecture it is essential to consider not only
the pure computation time—represented by the cumulative time spent in each
block—but also additional overhead factors such as communication latency, inter-
block data transfers, and serialization/deserialization operations. Furthermore,
computing time itself can vary significantly depending on the current load of each
block, introducing complications on accurate latency estimation. Indeed, latency
depends on the processing time of each block in the pipeline and on the waiting
time spent before being processed by the block.
Mathematically speaking, the average total time Tb spent by a generic tensor t in a
generic block b of the pipeline depends on the block load ρ and on the device d
hosting the block (e.g, GPU or CPU) and it is:

Tb(ρ, d) = Tw(ρ) + Tc(d) + Ttx + Ob (1.1)

4

1.2 – Thesis Motivations & Objectives

where Tw is the waiting time of the generic tensor t spent waiting to be served
and it depends by the block load ρ, Tc is the computing time and it depends on
the device d that is hosting the block while Ttx is the inter-block transmission
time. The term Ob is the overhead component of each inference and it is related
to computing operations like serialization and deserialization etc. The load ρ is
function of the tensor arrival rate at the block b and its processing time and it is:

ρ(λ, d) = λ

µ(d) . (1.2)

where µ is the average service rate of the generic block b computed as the reciprocal
of the computing time.

In Eq.1.1, the inter-block transmission time Ttx has quite often been overlooked
in the context of branchy and modularly deployed DNNs in the same computing
platform. Indeed, an efficient transmission procedure between blocks is of paramount
importance since it can directly impact the total computing time, the computing
effort and the energy consumption of the pipeline.

Clearly, due to the DNN computation itself and by the presence of hardware
accelerators, the development of efficient communication strategies between blocks
poses some challenges to overcome, otherwise there could be the serious risk that
the advantages in terms of memory and resource reduction would be nullified by
prohibitive latency times and excessive overhead.

Moreover, the nature of a distributed application imposes a careful management
and orchestration of the active entities involved in the architectural schema.

1.2.2 Objectives
This thesis work has the following objectives:

Objective 1: Analyze the intra-host modular-DNN paradigm under the sce-
nario of minimizing computational resources given by the pos-
sibility to share blocks between different tasks;

Objective 2: Research possible solutions related to efficient communication
between DNN’s blocks instantiated in a computing platform in
order to achieve a good trade-off between the advantages offered
by the modular architecture itself while avoiding prohibitive
overhead;

Objective 3: Design and realize a tool able to manage modular-DNN inference
architecture applying the main concepts found as outcome of
objective 2;

5

Introduction

Objective 4: Make the tool integrable to an optimization engine that might
command the deployment of DNN modules and their connection
for each offloaded task;

Objective 5: Validate its reliability and performance with both single-GPU
and multi-GPU setup.

1.3 Thesis Contributions
This study presents BlockFlow, an open-source tool that aims to manage split-
DNN architectures intra-node and inter-node providing strong flexibility on DNNs
AI services.

The main features of BlockFlow are:

• TensorMQ: a near-zero communication overhead tensor exchanging paradigm
between DNN blocks in presence of hardware acceleration devices2,

• complete life-cycle management of the Blocks instantiated in the machine,

• real-time system KPI monitoring during inference.

BlockFlow can be widely used in all applications that require a certain degree
of flexibility, taking advantage of the possibility of having multiple shared DNN
structures.

1.4 Thesis structure
The presented thesis work is articulated into 5 main chapters each of them with
specific goals:

Chapter 1: This is the introductory chapter, which serves to lay the founda-
tions for the understanding of the context on which the thesis
is based. It presents offloading to the edge procedures with a
particular focus for DNN based tasks, discusses its advantages,
but highlights some limitations. It analyzes related works on
the Literature and finally, it presents the objectives and main
contributions of this thesis.

2Nvidia GPUs compatible with CUDA library

6

1.4 – Thesis structure

Chapter 2: It it serves as a theoretical background (sec 2.1 presenting a
general overview of the related concepts used in the thesis. Hence,
it provide a broader overview of OffloaDNN.

Chapter 3: It aims to present in detail the work carried out for the prac-
tical implementation of the tool, discussing the technical and
implementation aspects.

Chapter 4: It presents the performance results obtained by the tool and
discusses its strengths.

Chapter 5: It concludes the work by briefly summarizing the main answers
to the research questions posed and the objectives set. Finally, it
presents a brief overview of how the research may be continued.

7

8

Chapter 2

Background

2.1 AI & Deep Neural Networks
The term Artificial Intelligence (AI) refers to a set of methods and techniques
used to enable machines to solve problems through the use of computer science.
According to that definition, AI spans the concepts of Machine Learning (ML),
Deep Learning (DL) and finally Neural Networks (NNs), as: neural networks are a
type of deep learning models which are subfield of machine learning which, in turn,
is a subset of AI (Figure 2.1).

Figure 2.1: AI, ML, DL relationship.

Machine Learning (ML) and Deep Learning (DL) refer to methodologies designed
to train models capable of performing specific tasks effectively, thereby enabling

9

Background

machines to exhibit intelligent behavior.
These methodologies are grounded in the assumption that, for a given phe-

nomenon, there may exist an underlying mathematical relationship between a set
of variables (features) and the observed outcome. In other words, given a collection
of input data (features) and corresponding output values (labels or targets), a
machine learning model aims to approximate the functional relationship that maps
inputs to outputs. The process of developing a machine learning model typically
involves three fundamental stages: model selection, feature extraction, and
decision making for prediction. Since ML models are mathematical in nature,
they rely on parameters whose values influence the model’s performance. These
parameters—either fully or partially—are learned through a data-driven training
process, in which the model adjusts its internal configuration to best capture the
patterns present in the data.
This introduction allow us to formulate a difference between classical machine
learning and deep learning:

• Machine Learning: the model selection process encompasses the use of a
statistical model to be selected among many available, the feature extraction
process is handcrafted and the decision making is data-driven

• Deep Learning: the model selection process encompasses the use of Neural
Networks, the feature extraction process is data-driven and the decision making
process is data-driven.

It is important to notice that choosing the most appropriate model and selecting
the right set of features can be complex for some problems.
The idea behind NNs is that if a NN is sufficiently powerful and well trained, it
will be able to compute the best possible feature extraction which leads to good
performance in the decision making stage.

2.1.1 Deep Neural Networks
Neural networks are mathematical structures designed to mimic the human brain,
whose main component is the neuron.
In the AI context, the neuron is the base component of a neural network that
performs a weighted sum of several inputs and eventually the weighted sum passes
through a non-linear function. The neuron’s mathematical formulation is:

y = ϕ

AØ
i

wixi + b

B
(2.1)

or in matrix formulation:
y = ϕ(wT x + b) (2.2)

10

2.1 – AI & Deep Neural Networks

where y is the output (scalar) of the neuron, w is the set of weights, x is the input
feature vector and b is the bias. The ϕ stands for the non-linearity eventually used
after the weighted sum and it is chosen arbitrarily. The most common non−linear
functions are: ReLU, Sigmoid, Leaky ReLU etc. each of them with a specific
behavior and use case.

Neurons arranged in parallel create a NN layer and layers placed in a sequential
way create a neural network structure.
Deep Neural Networks refers to a sequential composition of multiple layers,
each of them composed by several neurons, able to work in a complex latent space;
the first layer is also called input layer, the last one is known as output layer while
the ones in the middle are called hidden layers. In feed-forward Neural networks,
each layer takes as input the output of the previous layer. A layer whose neurons
are connected with all the neurons of the next layer is called fully connected layer
or linear layer whose mathematical formulation is:

y = ϕ(Wx + b) (2.3)

where y : (Foutput; 1) is the output vector of the layer, x : (Finput; 1) is the input
vector, W : (Foutput;Finput

) is the weight matrix and b(Fout; 1) is the bias vector.
The output vector of a NN ynet given an input vector x is given by the composition
of the function f of each layer (eq.2.4 and fig. 2.2).

y = (fL ◦ fL−1 ◦ . . . ◦ f1)(x) (2.4)

As discussed in the previous section, the final goal of each machine learning
model is to fit its parameters over a set of data samples and train them to learn the
statistical dependency between the input provided and the output desired. In other
words, given a set of observations we try to estimate a mathematical function that
is able to generalize the observed phenomenon and thus, make prediction when
new data are provided. Since Deep Neural networks perform feature extraction by
themselves, they are universal function approximator. In practice, they are able
to provide good approximation of functions in N dimensions and the accuracy of
the approximation depends on: the amount and the quality of data provided, the
number of parameters of the NN itself and their relative connections between them
and finally the training strategy. The training process is an iterative procedure
devoted to retrieve the set of optimal parameters of the NN and it is based on the
backpropagation of the error that the neural network makes at each forward pass.
The error made by the NN is measured by an error function known as loss function,
that is chosen arbitrarily among several available based on the task the NN is going
to be trained for. Afterward, the gradient of the loss function is backpropagated
and finally the weights are updated according the chosen optimization logic (e.g,
gradient descent, Adaptive moment estimation).

11

Background

.

.

.

Input layer Output layer

Hidden Layers

.

.

.

Figure 2.2: Simple Feed-Forward neural network with fully connected layers.

2.1.2 Convolutional Neural Networks
Convolutional Neural networks (CNN) belong to a subset of neural networks
that incorporate the convolution operation into their layers. These structures are
particularly useful for all those problems whose data presents locality properties
such as images, music, timeseries.
In a convolutional layer, each neuron performs convolution over a subset of output
values coming from the previous layer’s neurons. More generally, the idea behind
convolutional layers is based on the fact that each neuron is in charge of extracting
some knowledge in a specific spatial area of the data (i.e. set of adjacent pixels in
an image, number of consecutive samples in a signal) through multiple filtering
stages. This provides several advantages such as:

• the network can work with input data of variable size;

• reduced number of parameters due to less connections between neurons.

The portion of space over which a neuron performs convolution is called local
receptive field and it depends by the filter size. The output of a convolutional layer

12

2.1 – AI & Deep Neural Networks

presents one or more than one feature maps that are latent representation of the
input features. The number of feature maps in output of a convolutional layer
depends on the number of filters used. Mathematically speaking, a generic neuron
performs the following operation over a feature map:

yn = w ∗ x + b (2.5)

where yn is the output of the neuron, w is the filter or kernel, x is the corresponding
values of the feature map in the same position of the filter and b is the bias term.
A visual representation of convolution operation over a feature map is reported in
Figure 2.3.

1 0 2 0

-2 1 1 0

-1 0 1 2

0 -2 -1 0

0 1 -1 1

4 -2 1

-1 0 -2

1 3 2

-1 -2 -1
1 0

-1 -1 -2 x 1 +
-1 x 0 +
1 x -1 +
-1 x -1 = 2

kernel

Figure 2.3: Convolution operation
with kernel size [2,2].

CH 1

CH 2

CH 3

+
=+ +

Figure 2.4: Generic Feature map
creation procedure.

The image 2.4 illustrates the main steps carried out within a convolutional layer
to create a single feature map. Given an input of a generic shape with 3 channels,
the filter is slid over the first input channel, creating a temporary feature map. The
same operation is repeated on all input channels. Finally, the temporary feature
maps are summed element-wise. The parameter that determines how many steps
the filter slides is called stride. Jointly with the padding parameter and the kernel
size, it determines the shape of the feature map [h, w] as output from the layer.
The shape can be computed by as:

Output_size = Input_size−Kernel_size + 2× Padding
Stride + 1

A set of as many filters as the number of input channels once trained allows to
detect one single feature. Subsequently, for F features to be detected a number F of
filters needs to be used. In case of F filters, the same set of operations is repeated
for each of them. The dimensions of the feature map will therefore be [N, h, w].

13

Background

In a convolutional layer i the number of learnable parameters is

num_paramsi = KxKxCxF (2.6)

where KxK is the kernel size, C is the number of input channels and F is the
number of filters used.

CNNs used for CV tasks are structures that employ a high number of convo-
lutional layers, each with an adequate number of filters based on the number of
features to be extracted. Figure 2.5 shows the detailed architecture of VGG-19
network for object classification.

Figure 2.5: VGG19 Architecture [10].

From a practical point of view, most CNNs reduce the spatial size of feature
maps and increase their depth (or number of channels) with stride parameter larger
than 1 or with pooling operations. As consequence, even in the case of small
kernels (e.g., 3×3), the combined effect of multiple layers enlarge the field of view
of the final layers over a large portion of the input image. During training, the
filters of the initial layers tend to detect low-level features like angles, contours,
textures, while deeper layers detect high-level features such as parts of objects,
complex semantic structures. For an object classification problem, for example, the
backbone of the neural network consists of a set of convolutional layers aimed at
feature extraction; on top of the backbone is placed a classification head (linear

14

2.2 – Deep Learning at scale

layer) preceded by a flattening of the feature maps produced by the backbone.
Training of deep CNNs could suffer from the well-known phenomena of vanishing
gradient and/or exploding gradient. In the first case, traditional activation functions
such as sigmoid, ReLU produce derivatives in the interval (0,1), so the product of
gradients across many layers tends to decrease exponentially with the depth of the
network. Similarly, if the derivatives become large, gradient explosion can occur,
with unstable weight updates. To mitigate these effects, modern CNN architectures
introduce structural components such as residual blocks used in ResNet.

Resnet Architectures

ResNets were presented in 2015 for the first time in [11] as Convolutional Networks
aiming to tackle the vanishing gradient problem, improve weights stability during
training and allow to the creation of deeper architecture thus increasing accuracy
performance on image processing tasks. Residual blocks are based on the introduc-
tion of skip connection to allow the convolutional layer to only learn a correction
instead of the full transformation, leading to a reduced number of parameters used,
faster convergence due to the fact that gradients are better conditioned.

Figure 2.6: ResNet50 Architecture.

The architecture of ResNet50 has 4 stages as shown in Figure 2.6. Moving
from one stage to another, the channel width is doubled and the size of the
input is reduced to half. It is available in different versions with different depths:
18,34,50,101,152. The architecture of the stages is the same among all versions
but the amount of residual blocks per layer changes. Table 2.1 reports a complete
overview about different ResNet structures.

2.2 Deep Learning at scale
Deployment of large models, particularly Large Language Models (LLMs) on a
single device could be problematic due to the lack of available memory or computing

15

Background

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112×112 7×7, 64, stride 2

3×3 max pool, stride 2

conv2_x 56×56
3×3, 64
3×3, 64

×2
3×3, 64
3×3, 64

×3
1×1, 64
3×3, 64
1×1, 256

×3

1×1, 64
3×3, 64
1×1, 256

×3

1×1, 64
3×3, 64
1×1, 256

×3

conv3_x 28×28
3×3, 128
3×3, 128

×2

3×3, 128
3×3, 128

×4

1×1, 128
3×3, 128
1×1, 512

×4

1×1, 128
3×3, 128
1×1, 512

×4

1×1, 128
3×3, 128
1×1, 512

×8

conv4_x 14×14
3×3, 256
3×3, 256

×2

3×3, 256
3×3, 256

×6

1×1, 256
3×3, 256
1×1, 1024

×6

1×1, 256
3×3, 256
1×1, 1024

×23

1×1, 256
3×3, 256
1×1, 1024

×36

conv5_x 7×7
3×3, 512
3×3, 512

×2

3×3, 512
3×3, 512

×3

1×1, 512
3×3, 512
1×1, 2048

×3

1×1, 512
3×3, 512
1×1, 2048

×3

1×1, 512
3×3, 512
1×1, 2048

×3
1×1 average pool, 1000-d fc, softmax

FLOPs 1.8×109 3.6×109 3.8×109 7.6×109 11.3×109

Table 2.1: ResNet Architecture Comparison.

resources. Moreover, in case it could be possible, due to the need of always-up-to-
date, well-performing models, the repetitive nature of the training procedure would
mean that the entire training process for these structures would be very slow.

Training and deployment of deep learning models at scale present computational
and architectural challenges and it necessitates distributed training and/or deploy-
ment techniques such as Data and Model Parallelism (Figure 2.7).

Data Parallelism is the simplest form of parallelism. It is based on the
replication of the full model over multiple GPUs and dividing the training dataset
into independent batches to be delivered to each model copy. Each device performs
the forward and backward passes in parallel on its data shard, then they synchronize
by aggregating the gradients and finally they update the shared model parameters.
The main advantage is simplicity and the communication load between GPUs
which is relatively low. On the other hand, there is the strict limitation that the
model can fit on a single GPU.

Conversely, model parallelism divides the model across multiple devices. In
this strategy, each GPU hosts part of the model weights rather than a complete
copy. In general, this can be done in two complementary ways:

• Pipeline Parallelism: the model is divided vertically into sequences of layers.

16

2.2 – Deep Learning at scale

Model Parallelism Data Parallelism

GPU 1

GPU 2 GPU 3

GPU 4

GPU 1 GPU 2

GPU 3 GPU 4

Figure 2.7: Model (left) and Data (right) parallelism conceptual schema.

For example, on 4 GPUs, the first quarter of the layers could reside on GPU 1,
the second quarter on GPU 2, and so on. During the forward pass, intermediate
tensors are passed from one GPU to the next according to the model flow;
during the backward pass, the derivatives are propagated backward along the
same path. The model is therefore “pipelined” between GPUs: while one
GPU calculates the initial layers for a given batch, another can calculate the
subsequent layers of the same batch or a different batch. However, splitting
the model into a pipeline introduces temporal inefficiencies that can reduce
the total utilization of the device and thus, the system performance too; in
particular, this happens when a device remains in an idle state since it is
waiting for the previous block to send the intermediate tensor. In addition,
overall latency can increase because each batch must go through multiple
sequential stages. Efficiency is maximized when the computation times of
the various segments are balanced and when optimized intermediate tensor
transmission strategies are used, especially for serialization/deserialization
and transfer between device memory and host memory.

17

Background

• Tensor Parallelism: This method divides individual operations and tensors
within layers. In tensor parallelism, a matrix or tensor is partitioned horizon-
tally across multiple GPUs, each of which computes a portion of the operation
simultaneously. For example, in a linear layer C = A × B, the matrix B can
be divided by columns into blocks and assigning each block to different GPUs,
calculating (A × B_i in parallel. Finally, the partial results are combined to
obtain the complete result.

2.3 Inter-process Communication (IPC)
Inter-Process Communication (IPC) refers to a set of methods and protocols that
enable data exchange between separate processes running on a computer system.

Figure 2.8: Single-threaded and multithreaded processes [12].

As the Figure 2.8 reports, each spawned process has its own address space
in memory, opened files and assigned system resources, allowing it to execute
instructions independently with respect to other processes. This separation ensures
isolation and security: an error in one process does not directly compromise other
processes, and a malfunctioning process can be terminated without causing the
entire system to crash.
However, this leads to an increased overhead on the spawn of a new process with
respect to the launch of a new thread.

IPC techniques can be grouped in two basic models: shared memory and message
passing. Communication by means of shared memory is carried out by letting
multiple processes access a common memory area and read/write over this space.

18

2.4 – Multi-access Edge Computing (MEC)

On the other hand, message passing techniques let processes communicate by
sending messages through communication channels provided by the operating
system.
The most common message passing techniques for IPC are:

• Pipes which are simple communication channels between two processes. There
are two types of pipes: anonymous pipes and named pipes. Anonymous pipes
allow one-way information exchange only for parent-child processes and follow
the lifetime of the process that created them. In contrast, named pipes can
also be used to communicate between unrelated processes and have two-way
communication.

• Sockets, communication endpoints that can operate both locally (Unix domain
sockets) and on the network (TCP/UDP). They allow for bidirectional data
exchange between processes on different hosts or on the same host, using
various protocols (stream-oriented such as TCP, or datagram such as UDP).

• Queues are structures managed by the operating system where processes can
send or retrieve messages. The kernel is responsible for storing the messages
in order; senders and receivers do not need to be directly connected, reducing
the coupling between processes.

2.4 Multi-access Edge Computing (MEC)
Multi-access Edge Computing (MEC) is a technology standardized by the European
Telecommunication Standard Institute (ETSI) [2] in 2015 devoted to bring an IT
service environment and cloud-computing capabilities at the edge of the mobile
network, within the Radio Access Network (RAN) and in close proximity to mobile
subscribers. As a consequence, a reduced latency, improved customer experience
and a more efficient exploitation of network resources is ensured.

However, it is important to highlight the difference between Edge Computing
and Multi-access Edge-Computing.
While Edge-Computing stands for a computing paradigm in which computation is
performed close to the data source thus improving latency and bandwidth saving,
Multi-access edge computing is a telecommunication concept; a standardized
architecture to enable edge computing within mobile networks (e.g, 5G).
Since its standardization and its large-scale deployment, 5G improved end-user
connectivity providing faster, more reliable and more efficient communication
enabling thus economic growth and competitiveness in the creation of new use-cases
in different domains such as smart cities, telemedicine, 4.0 industry etc. In addition
to a better use of radio resources and the possibility of having multiple networks

19

Background

Figure 2.9: MEC overview.

with different requirements coexisting within the same network, 5G leverage more
programmable approaches to software networking (SDN) and use virtualization
technology within the telecommunications infrastructure (NFV), functions and
applications.
More in detail, NFV stands for Network function Virtualization meaning that tasks
that were previously carried out exclusively by specialized hardware devices such
as routers, firewalls etc. are now virtualized and executed as software components.
Indeed, jointly with NFV and SDN, MEC is considered one of the key emerging
technology of 5G mobile networks [2].
MEC is based on a virtualized platform, showing an approach that is complementary
to NFV. While NFV prioritizes network functions, the MEC framework facilitates
the execution of applications at the edge of the network. Each MEC server consists
of a hosting infrastructure and an application platform as it is shown in fig. 2.10.

The hosting infrastructure includes the hardware resources (such as the compu-
tation, memory, and networking resources) as well as a virtualization Layer. The
MEC application platform includes a MEC virtualization manager together with an
Infrastructure as a Service (IaaS) controller, and provides multiple MEC application
platform services. On top of the MEC application platform, the MEC applications
are deployed and executed within virtual machines, which are managed by their
related application management systems and agnostic to the MEC server/platform
and other MEC applications.
A possible set of MEC applications includes intelligent video surveillance, dynamic
traffic management, and real-time environmental monitoring. In the automotive
sector, it enables V2X communications and it can support autonomous driving.
Moreover, MEC allows local execution of AI models as application (e.g., CNN for
computer vision) enabling also devices with limited computing power to perform
tasks that they would otherwise be unable to perform.

20

2.5 – OffloaDNN

Figure 2.10: MEC platform Schema [13].

2.5 OffloaDNN [9]
In a 5G-MEC, end devices such as mobile phones and IoT devices can offload
computationally intensive tasks, such as those related to computer vision, to nearby
edge servers. This approach allows end devices to overcome hardware limitations
and achieve lower latencies than the central cloud. However, it is important to
consider that edge server resources are also limited. Although they offer greater
computational power than end devices, edge servers must simultaneously handle
several tasks from different devices.
In OffloaDNN [9], the authors formulated a weighted-tree-based heuristic to solve
the DNN for scalable Offloading of Tasks (DOT problem). It provides a novel
contribution on the jointly optimization of the:

• Edge-Cloud computing and radio resources,

• Offloaded task admission rate,

21

Background

• Optimal structure of the DNN used to execute the offloaded task.

OffloaDNN brings a new perspective considering DNN structures serving different
Computer Vision tasks as set of Blocks, each of them made by more than one
original layer of the DNN. However, the main contribution lies in considering
the possible structural correlations between the various DNNs required for the
execution of different CV tasks.
Indeed, during training, hidden layers of a DNN get specialized into the extraction
of different feature levels. Specifically, in CNNs, feature extraction process sees
early layers devoted to the construction of a visual basis by learning how to detect
low-level features such as corners, edges, colors etc. Final layers instead, uses the
extracted information from earlier layers to perform high-level decisions such as
object recognition, object classification. This hierarchical feature representation
forms the foundation of transfer learning, a technique designed to accelerate the
training of DNNs by leveraging pre-trained models. Specifically, the early layers
of a pre-trained NN, which capture general low-level features, are retained (i.e.,
their weights are frozen), while only the later layers are fine-tuned on the target
task. This approach not only reduces training time but also improves performance,
especially when labeled data for the new task is limited [14].
OffloaDNN exploits the structural redundancy among different DNNs serving
different tasks to reduce the Edge Server memory usage and increase the task
admission rate to the Edge Server.
The main intuition is to leverage DNN layers that can be shared at the
edge among DNNs serving different tasks.

In real-case scenarios where the edge device asks for a CV task offloading with
specific requirements such as accuracy or maximum admissible round-trip-time,
OffloaDNN should provide the most-valuable tradeoff that minimizes the edge
server resources while meeting the constraints imposed by the end-device. In these
cases, fine-tuning of task specific layers must be executed.
The second intuition is to choose which layers to share and which to fine-tune
based on the task needs.

Lastly, if the structure is accurate enough, OffloaDNN allows for structured
pruning to one or more than one block in order to reduce the model memory
footprint as well as the processing time.

For a more complete understanding, the main innovations proposed are depicted
fig 2.11 considering an object classification problem. In the left sub-picture, it
shows how the sharing of the first 2 blocks would result advantageous, in terms of
the total blocks deployed (6 total blocks vs 8 total blocks). The center sub-picture
shows how to actually improve the accuracy performance for the task model train
detection by fine-tuning only target specific layers. The latter (right), shows how
memory footprint and latency of the structures can be further optimized relying

22

2.5 – OffloaDNN

Figure 2.11: OffloaDNN’s innovations. (fig.1, p.2 at [9])

on pruning.1

OffloaDNN architecture

OffloaDNN can be seen as an application running on the Edge Computing Plat-
form, able to intelligently optimize the system resources, maximize the offloaded
task admission rate while matching the task related constraints such as minimum
accuracy and maximum round-trip-time.

For the sake of simplicity, we skip the mathematical formulation of the DOT
problem and its related heuristic (DOT solver), that the author presented in sec.
IV of [9], but rather focus on the architecture and the workflow reported in fig.
2.12. The full way of functioning of OffloaDNN can be summarized into 7 main
steps:

Step 1: Task admission request;

Step 2: DNN availability, network status and computing status check;

Step 3: DOT solution;

Step 4: Radio and computing resource allocation & DNN block selection;

Step 5: Activation of the selected DNN blocks;

Step 6: Task admission rate notification;

Step 7: Task result collection (end-device side);

To offload tasks, mobile devices first send a task admission request to the
OffloaDNN controller (step 1). Afterwards, the controller retrieve from the Virtual

1Single-Shot pruning. More on model compression techniques at ??.

23

Background

Figure 2.12: OffloaDNN architecture and workflow (fig.4, p.4 at [9]).

Infrastructure Manager (VIM) and the vRAN information about the system status
such as the available DNN blocks from the DNN repository and their resource
requirements, as well as the current computing resource available and radio resource
capacities (step 2) and then runs the DOT problem solver (step 3). Once the
DOT solver finds a solution, the controller proceeds to allocate the necessary radio
and computing resources (step 4) and deploys the selected DNN blocks for the
tasks that are about to be admitted (step 5). After that, the controller informs
the mobile device about the admitted task rates at which their tasks have been
accepted (step 6). Finally, the devices can start sending input data and receiving
the processed results (step 7).

OffloaDNN results

OffloaDNN aims to tackle the joint optimization of radio and system resources
by exploiting the structural correlation about 2 or more DNN structures serving
offloaded CV task at the edge. It exhibits significant gains in terms of memory
resource savings when compared to previous State-of-the-Art (SoTA) optimizer

24

2.5 – OffloaDNN

such as SEM-O-RAN [15]. In particular, it reduces the computational burden of
77.3% and the average memory occupancy of 82.5% as well as the radio resources
of 4.4% while increasing the offloaded tasks of 26.9%.

25

26

Chapter 3

BlockFlow

This Chapter presents BlockFlow, an open-source tool that aims to deploy, man-
age and serve modular inference pipeline intra and inter-host.
BlockFlow specifically targets application services based on DNNs, ensuring a
reduced end-to-end latency between the hosting machine and the client. Moreover,
it presents TensorMQ, a novel contribution for a low-overhead tensor transmission
in modular DNN architectures (Sec. 3.4).

In the following sections are presented the System Requirements (Sec. 3.1) that
BlockFlow has to fulfill, followed by the main Technical Challenges to be solved
(Sec.3.2).
Sec. 3.3 reports the tools used for the BlockFlow realization, explaining the rea-
sons why they were chosen while sec.3.5 provides a careful and detailed explanation
about the system design and the workflow.

The source code is available at https://github.com/darioruta/BlockFlow

27

https://github.com/darioruta/BlockFlow

BlockFlow

3.1 System Requirements
In a context where an application needs to provide service to remote users through
the network (e.g, Offloading through 5G), BlockFlow must be in charge of
deploying and maintaining the required software infrastructure. More specifically,
in a context where an application needs to fulfill DNN task based, it is fundamental
that the presented tool pursues the following requirements:

Requirement 1: receive as input the set of DNN structures to be deployed
from an optimization engine (e.g., OffloaDNN) as well as
the admitted tasks to be served and their optimal paths f;

Requirement 2: selectively deploy as processes the blocks needed to respect
1-to-1 the optimal solution about DNNs structures coming
from the optimization engine;

Requirement 3: create logical forward passes that respect 1-to-1 the optimal
paths for the admitted tasks by establishing an efficient data
transmission channel between the various active blocks;

Requirement 4: selectively terminate the unneeded blocks to free-up system
resources;

Requirement 5: monitor in real-time the system performance.

3.2 Technical Challenges
The realization of the tool with the requirements reported above (Sec. 3.1) includes
several technical issues to be solved.
A high level idea of the thesis contribution is depicted in Figure 3.1 where in both
cases, each block (right) or more generally each DNN (left) is deployed as a process.

In stark contrast to multi-threading, multiprocessing applications require Inter-
process communication (IPC) techniques to let processes exchange data, usually
coming with additional overheads in terms of communication latency, complexity
and efficiency.
Since DNNs benefit from hardware acceleration to speed up the calculation during
training and inference stages, in case of pipelined models, IPC latency overheads
become even more pronounced. Without the necessary precautions, the transmission
of intermediate tensors between blocks in the pipeline is CPU-bounded and could be
highly inefficient both in terms of total inference latency and energy consumption.
Figure 3.2 illustrates the ping-pong effect between RAM and VRAM during a

28

3.2 – Technical Challenges

Figure 3.1: (left) Traditional DNN deployment for each admitted task, (right)
modular DNN architecture with shared block.

generic tensor forwarding for 2 distinct processes operating on GPU. Red arrows
show the data flow across the pipeline.

Figure 3.2: Ping-pong effect between RAM and VRAM.

The main challenges to solve are related to the creation of:

• a light-weight tensor and GPU-aware IPC to cope with the ping-pong
problem improving communication efficiency and thus reducing latency;

• a modular architecture with an high degree of flexibility.

Although some existing solutions help to scale Deep Learning application they
do not offer a good degree of flexibility especially during inference stages. For
example, PyTorch Pipeline [16] only accepts nn.Sequential as input model and thus

29

BlockFlow

the network topology becomes static: as soon as a small update in the network
topology is needed the full pipeline must be turned-off and a secondary service
should rewrite a new one implying service discontinuity for the clients.
As a result, use-cases with high modularity requirements must rely on general
purpose communication frameworks which are known to be inefficient for tensor
based communication data-flow generating the ping-pong effect in presence of
hardware accelerators. In this direction, works like Pytorch RPC [17] takes into
account a communication aware messaging strategy specifically targeting the DL
applications. However, Pytorch RPC only provides high level APIs specifically
targeted to the implementation of training applications in distributed environments.
Moreover, it does not perfectly suit the goal of having a fully modular and branchy
inference pipeline that can vary according to the system updated of our system
optimization engine (i.e the distributed model training pipeline is created at the
beginning and once interpreted, the script lives as it is until the end).

3.3 BlockFlow used tools
In this section, the main software tools used to develop BlockFlow are listed. For
each tool, its main features are presented as well as the role it plays within the
system.

3.3.1 ZeroMQ
ZeroMQ [18] is a high-performance messaging library designed for concurrent or
distributed applications.
ZeroMQ enables the transmission of messages between thread or processes, in the
same or even across different machines, by leveraging in-process communication
mechanism (e.g, shared files) or TCP. The term "zero" is derived from the fact that
communication between two entities occurs without the use of message brokers.
ZeroMQ’s philosophy emphasizes simplicity of the library itself; it benefits from
low latency, zero licensing costs and simple administration. The added value
of this library is that, through high-level calls it is possible to create different
topologies between the various entities involved in a simple and efficient way and
with different communication patterns, making inter-process communication as
simple as inter-thread communication.
ZeroMQ provides different communication patterns:

• REQ/REP: Request/Response paradigm,

• PUSH/PULL: Producer/Consumer paradigm,

• PUB/SUB: Publisher/Subscriber paradigm,

30

3.3 – BlockFlow used tools

• ROUTER/DEALER: Asynchronous Master/Slave paradigm with built-in
routing capabilities.

Moreover, ZeroMQ is a multi-programming-language library, supported in C,
C++,C#, Java, Python, Ruby, Dart, GO etc.

Among different general-purpose communication frameworks like gRPC, ZeroMQ
was chosen for its lightness, efficiency and flexibility to be suitable for different
communication contexts, supporting different communication paradigms[19].
Several works involve the use of ZeroMQ to ensure a high-performance and light-
weight communication in parallel and/or distributed applications. For example,
in [20], the authors presented a novel methodology to accelerate the processing of
video live stream from IP cameras offloaded to remote devices. The work enforces
the use of distributed and multiprocessing architecture by using ZeroMQ as a
lightweight protocol to let the remote devices communicate in pipeline. Moreover,
ZeroMQ lies as high performance networking library used for the implementation
of RDA3 at CERN [21]. Compared with previous versions of RDA, RDA3 scales
much better and can handle high data loads and even bursts of requests.
TensorSocket [22] uses ZeroMQ as lightweight communication library in the context
of multiprocessing based DNN application. However, the use-case presented in the
work, takes into account the training stage. The main contribution is the reduction
of the CPU usage during training by sharing the same data loader to multiple
training processes (like different models or configurations) and thus reusing the
same input pipeline. It uses ZeroMQ to perform Inter Process Communication.

ZeroMQ is integrated into BlockFlow to facilitate IPC. Specifically, it is employed
to transmit both control and tensor-related data between distinct blocks that
execute a logical forward pass.

3.3.2 PyTorch
PyTorch is an open source deep learning framework used to create, train and develop
deep learning models. PyTorch offers a vast library of predefined modules such as
tensors, network layers, optimizers and supports a wide range of use cases—from
computer vision to natural language processing, from generative models to re-
inforcement learning. Furthermore, the official repository torchvision.models
gives the possibility to download the most common neural network structures
already pretrained. Among its advantages, the added value of PyTorch is its close
connection to Python, allowing developers to write intuitive and readable code and
simplify the prototyping and experimentation process.
PyTorch models can also be run in non-Python environments, helping to fill the
gap between research prototypes and production implementation.
Indeed, TorchScript [23] allows for high model portability across different platforms.
More in detail, it enables the export of trained and developed PyTorch models

31

BlockFlow

from a Python environment towards environments where Python is not available,
such as C++.
TorchScript facilitates three fundamental functionalities in this domain:

• optimization for production environments,

• optimized model serialization,

• Increased performance through computational graph optimization.

The creation of a TorchScript model file may be achieved through two different
methods: Tracing (torch.jit.trace) and Scripting (torch.jit.script).
A Traced TorchScript model registers the operations done during a generic forward
pass with an input example. Consequently, possible model dynamicity (network
with more branches to be taken based on some input specific magnitudes) is lost
since the export procedure depends on the input provided at that time. Conversely,
a Scripted model performs a static code compilation and thus it can handle model
dynamicity. This is particularly useful for those NNs structures like Recurrent
Neural Networks or Branchy−Nets.

PyTorch is used in BlockFlow to export, run and deploy the Blocks.

3.3.3 CherryPi
CherryPi [24] is a minimalist web framework written in Python that allows the
development of web applications, enabling server-side code to be written in a similar
way to a normal Python program. CherryPi incorporates a thread-pool HTTP/1.1
server, handles HTTP requests in a multi-threaded manner and provides built-in
tools such as flexible configuration, session management, caching and authentication.
CherryPi is particularly well suited for:

• Rest API implementation, due to the ease with which URIs and various HTTP
methods are handled;

• light−weight web applications realization;

In this work, CherryPi is used to create a REST API that will serve as an entry
point for system updates.

3.3.4 Pickle
Pickle is a Python module that implements binary protocols for the serialization
and deserialization of Python object structures. Serialization (pickling), is the
process of converting an object in memory into a stream of bytes that can be saved

32

3.3 – BlockFlow used tools

to a file or transmitted over a network. Conversely, the deserialization (unpickling)
involves the reconstruction of the original object from the byte stream. This
serialization/deserialization procedure is done every time information messages are
delivered through ZeroMQ.

The pickle library supports multiple versions of the protocol, numerically identi-
fied from 0 to 5 (the larger the prot. version the newer is the serialization algorithm).
This thesis work used the protocol number 5.

3.3.5 Psutil
Psutil [25] is a cross-platform Python library for accessing information about run-
ning processes and system resource usage.
In practice, Psutil offers the possibility to retrieve values such as CPU usage,
memory usage, both at the system level and in a more fine-grained way for each
individual process by providing the PID.

In this case, Psutil is used to create a resource monitoring system through the
use of an entity dedicated to this purpose.

3.3.6 Python NVIDIA Management Library
PyNVML [26] (Python NVIDIA Management Library) is a Python module that
allows to monitor NVIDIA GPUs directly from Python scripts.
In practice, it is a Python wrapper for the NVIDIA Management Library. PyNVML
allows to analyze the status of all GPUs equipped on a computing platform and
monitor metrics such as GPU load, memory usage, temperatures, driver status,
clock levels, etc.
This has made it possible to integrate the collection of GPU’s performance metrics
within the application code itself for a detailed and fine-grained analysis of each
component of the system (i.e., blocks, dispatchers).

PyNVML is used with the purpose to carefully assess how the various system
components occupy the GPU computing resources.

3.3.7 Nvidia nvprof
Nvidia nvprof [27] is a command-line tool from the CUDA Toolkit that collects
execution data for applications running on NVIDIA GPUs. It allows analysis of
CUDA kernel performance, memory transfers between host (CPU) and device
(GPU), and CUDA API calls. It offers the possibility to log or visualize the data
collected during testing.

33

BlockFlow

In this work, nvprof was of crucial importance in evaluating memory transfers
between the various blocks of the pipeline for each single inference.

3.3.8 Taskset & Numactl
Both of the tools presented in this section were used to ensure the reproducibility
of experiments and optimize the use of computational resources in multi-core and
multi-socket architectures. In practice, these tools were used to control process
affinity and ensure that the tests launched actually operated in the target cores in
order to provide clear explanations for the output results.

Taskset is a command available in Linux operating systems, used to set or
retrieve the CPU affinity of a process. Using Taskset, it is possible to specify the
set of cores on which the launched process can run.

Likewise, NUMA control (numactl) is a Linux command line tool that allows to
run processes with a specific scheduling and memory allocation policy for NUMA
(Non-Uniform Memory Access) architectures. In a more simplified way with
respect to Taskset, numactl allows to directly bind a running program in a target
NUMA node by setting the parameter cpunodebind. Moreover, for multiprocessing
appplications like BlockFlow, it forces the spawn of new processes over the same
NUMA node automatically.

3.4 TensorMQ: tensor-aware inter-block commu-
nication via CUDA-IPC and ZeroMQ

This section presents TensorMQ, the main contribution of this thesis work in line
with Objective 2 reported in sec 1.2.2 and in view of what has been said in the
previous section (3.2).
It uses ZeroMQ to deliver information-based communication messages between
blocks with low overheads and good adaptability to different inference contexts.
For a generic tensor t, TensorMQ exploits CUDA IPC jointly with ZeroMQ to
deliver tensors between blocks. More specifically, considering 2 blocks (e.g., block1,
block2) and a generic tensor tb1 coming out from block1, TensorMQ solves the
ping-pong problem by:

• generating an IPC handle (i.e GPU memory region address where the tensor
lives) through the cudaIpcGetMemHandle [28] enriched with some additional
tensor specific meta-data

• forwarding information rich message to the next block (tensor-handle & meta-
data).

34

3.5 – Architectural Design

Upon receiving the message, block2, maps a new empty storage torch object and
reconstruct the tensor using cudaIpcOpenMemHandle.
As consequence, once the tensor enters the system, it never leaves the GPU,
significantly increasing overall pipeline latency performance.
Figure 3.3 clearly shows the workflow. More detailed information about the handle
creation and tensor reconstruction procedures as well as the handle structure can
be found in sec.3.5.

Figure 3.3: IPC handle deliver through TensorMQ.

3.5 Architectural Design
According to what presented in the system requirements in sec 3.1, BlockFlow has
a modular architecture able to satisfy the system’s needs. In this section the design
schema is presented.

Figure 3.5 provides a visualization of the components in the system architecture.
The main characters are:

• REST API,

• Manager,

• Controller,

• Block (generic),

• Dispatcher.

35

BlockFlow

BlockFlow App

localhost:8082

R
E
S
T

A
P
I

Controller

Manager

BlockRepoDAO

http req

http rep

Figure 3.4: BlockFlow application components.

The first 3 elements of this bullet list belong to the Control Plane, responsible for
managing, orchestrating, and configuring the modular DNN architecture, respecting
1-to-1 the system updates provided by the resource optimization engine.
In particular, the system control entry-point is a REST API implemented in Cher-
ryPi, exposing some CRUD methods to manage the system such as selective block
pinging, system updates notification and termination of one or more blocks.
The Manager is a python object (class) in charge of handling the full block’s
life-cycle as well as keeping track about the processes alive. When a new system
update arrives, the manager instance is called and it spawns as processes the set of
new blocks to be deployed and selectively terminate the unneeded ones. In addition
to that, it periodically performs health checks to the active blocks by sending ping
messages through the controller.
The Controller is a python object devoted to deliver control messages with ZeroMQ
to the various active blocks in the systems. It serves the needs of the manager
offering the possibility to notify block specific messages such as ping, store and
termination messages as well as health-status messages for monitoring purposes.
It operates in a synchronous way and it incorporates a simple block fail detection

36

3.5 – Architectural Design

Controller

Control plane

Data forwarding plane (intermediate tensors)

Application

Block1 Block2
Block3a

Block3b

Block4a

Block4b

Block1 Block2
Block3a

Block3b

Block4a

Block4b

Router/Dealer ZeroMQ socket type

Push/Pull ZeroMQ socket type

http request

Task
reception
entrypoint

Class Obj

PID: 21 PID: 22

PID: 24 PID: 26

PID: 25PID: 23

PID: 21 PID: 22

PID: 24 PID: 26

PID: 25PID: 23

BlockRepoDAOManager

Class Obj Class Obj

Figure 3.5: BlockFlow application planes.

technique.
The Data Plane of BlockFlow is split into two logical topologies: one devoted to
the distribution of control messages while another devoted to the distribution of
intermediate results between blocks in the pipeline.
ZeroMQ offers several degrees of flexibility in terms of communication patterns
to be implemented as discussed in sec 3.3.1. Among the possible alternatives,
the ROUTER/DEALER pattern perfectly suits the role needed to deliver control
messages for the following reasons: it has an explicit entity handling engine, it can
work in a synchronous and asynchronous way at the same time, only the ROUTER
element occupies a TCP port in the host machine. As can be seen in Figure 3.5
layer 2, control messages flow over a star topology. Once deployed, each block
establishes a connection with the controller registering itself as a DEALER and
notifying its readiness.
On the contrary, intermediate results between blocks flows over an asynchronous
PUSH/PULL chain of connections. The PUSH/PULL communication paradigm
provided by ZeroMQ brings the logic of the Producer/Consumer architecture al-
lowing a loosely-coupled message exchange between blocks. It is straightforward

37

BlockFlow

to notice that each block is in charge to handle two communication channels,
the control channel and inference channel based on the two different data types
they carry. For that reason, each block manages the incoming messages with two
separate threads.

3.5.1 Block Design
The main block’s software components for a generic Block X are represented in
Figure 3.6.

BLOCKFLOW – Block Structure

Block X

PID: 210899

Monitor
Thread

Receiver Thread

Stats
Dict

Control Thread Inference & forward
Thread (main)

Control
Queue

Tensors/Handles Queue

Block X Variables

Control Plane

Data plane

ZMQ PULL socket

tcp://address:port

ZMQ DEALER socket

Figure 3.6: Block Components.

Each block launches three or possibly four threads at startup, each with specific
tasks. Messages are received by the receiver thread, which polls incoming messages
in both the channels and split them into the right message queue waiting to be
processed.

The Control thread is the actor devoted to the execution of control messages
received from the Controller. It performs GET operations in the Control Queue with
a blocking behavior (if the queue is empty, it remains blocked on that instruction

38

3.6 – System Workflow

line thus reducing the CPU utilization).
The Inference & forward thread (main thread) is the most important block

component. It iteratively GET tensors/handles from the dedicated queue and
perform inference plus forwarding of the intermediate result to the next block. A
detailed workflow of the Block functioning is reported in sec 3.6.

The Monitor thread collects process specific stats with resolution of 250ms
through the use of dedicated libraries such as pynvml or psutil. This thread can
be dynamically turned on or off through a dedicated control message. However,
it is essential to keep it up and running to provide useful insight during testing
procedure and performance assessment. Notice that each block does not perform
any routing decision since routing information of each tensor comes with it as
metadata. They operate in the data plane forwarding each tensor or the tensor
IPC handle if TensorMQ is active.

3.5.2 Dispatcher Design
The Dispatcher acts as an entry point for the entire block pipeline, exposing a
TCP port through which it can be contacted by various clients offloading tasks.
According to the system design proposed, the Dispatcher performs a simple but
delicate task: for each input tensor belonging to a specific task received from a
generic client, the dispatcher adds information about the optimal path that task
must follow and then forward it to the first block required. This taskID-path
translation mechanism is done by means of a translation table that reflects
the decision of the resource optimization engine. In particular, for each system
update, after deploying the missing blocks, the manager orders the controller to
send an updated translation table to the dispatcher. The software structure of
the Dispatcher does not differ much from that of a generic block, but it does not
perform any inference.

3.6 System Workflow
This section provides an overview of the general functioning of the system, with
particular emphasis on the most important phases.

As reported in figure 3.7, to deploy and/or terminate DNN blocks an optimiza-
tion engine submits a system update request towards the BlockFlow REST API
(step 1). A system update request takes the form of an http POST request that
contains information regarding the set of blocks needed and the set of admitted
tasks, each of them decorated with its optimal forward pass. The body of the
incoming http request is parsed and the manager is notified (step 2). It reads
a JSON file where the latest changes made are stored and calculates the missing
blocks to be deployed. At the same time, if a block that was active until then is no

39

BlockFlow

BlockFlow API
Optimization
engine (e.g.,
OffloaDNN)

1

System
update

notification

{ "active_blocks": ["block1", "block2", "block3car", "block4car ", "block3train",
"block4train ", "Full_ResNet50"],

"admitted_tasks": {
"task1": ["block1", "block2", "block3car", "block4car"],
"task2": ["block1", "block2", "block3train", "block4train"],
"task3": [" Full_ResNet50"]
}

}

2

Manager
Active
Blocks

info

3

DNN Repository

. . .

B1.pt B2.pt resnet50.pt

4

deployBlocks5

Controller

updateTranslation
Table7

6
BlockFlow Service

Active Blocks (processes)

. . .

PID: 6PID: 8 PID: 99PID: 21 PID: 63

FullResnet
50

block1 block2 block3car block4

5 DAO 4
POST http request body

Figure 3.7: System Update workflow.

longer present in the new system update, it marks it as a block to be terminated
(step 3). After obtaining the actual set of blocks to be deployed, it gets the
reference path of the blocks (step 4) and iteratively spawns the new processes
(step 5). Consequently, it updates the active_blocks_info json file (step 6) and
notifies the dispatcher about new tasks admitted with their respective optimal
paths through a control message (step 7).
It is important to notice that on the block deployment procedure, the manager
passes as parameters the block operating mode (e.g, TensorMQ or ZeroMQ), the
device where it has to move its own model (if more than one GPU is available in
the node), the communication protocol to be used, its port and contact information
of the controller (i.e controller port & controller address).

3.6.1 Block workflow
The Block’s life-cycle depends on three main phases:

• startup,

40

3.6 – System Workflow

• running

• termination.

The startup phase is devoted to the initial setup of the block, with operations
like model loading, ZeroMQ context initialization and channel binding. Once
the startup phase is ended and the method run is invoked, the block enters the
full-operating condition.
As discussed in sec 3.5.1, each block launches three additional threads in addition
to the main thread, devoted receive the incoming messages and put them in the
right data queue, process control message and perform KPI monitoring. The main
thread is responsible for inference and for forwarding the output tensor to the next
block.

Receiver Thread

The receiver thread receives messages in an intelligent way with low impact on the
CPU utilization (Algorithm 1).

Algorithm 1 Receiver Thread Routine
1: function Receiver Thread
2: Print: “receiver thread started...”
3: Initialize zmq.Poller object
4: Register control channel and data socket to poller (zmq.Poller.register)
5: while receiver thread is active do
6: Poll events or Wait for incoming events with short timeout
7: if One of the channel have data then:
8: if data socket has new data then
9: Receive message (sender, next hops, payload)

10: Record current time
11: Enqueue received data into processing queue
12: end if
13: if control channel has new message then
14: Receive control message
15: Enqueue control message into control queue
16: end if
17: end if
18: end while
19: Print: “receiver thread terminated...”
20: end function

41

BlockFlow

The proposed solution involves the use of a ZMQ.Poller object, which allows
efficient message polling between multiple ZeroMQ sockets in the same cycle. It
also allows to control the number of messages received per time unit by manually
setting parameters such as the receive high water mark. The main advantage of
this solution resides on the possibility to set a timeout interval in which, if there
are no messages in any of the registered channels, it adopts a blocking behavior,
saving CPU cycles. At the same time, a sudden arrival of a message in one of the
two channels interrupts the timeout.
The dummy solution that would not have included the use of the poller would have
been to instantiate two separate threads, one for receiving control messages and
one for receiving tensors or IPC handles, but this would have not only complicated
the code but also wasted system resources. Another solution could have been to
use a single thread for reception and inference, but this would have led to reduced
system modularity and the inability to monitor certain system statistics such as
the number of clients in the queue waiting to be served. Finally, it would have been
problematic to manage the incoming data since the two channels receive different
data types.

Inference Thread (main thread)

For each inference, the block performs a set of operations described in Algorithm 2.
The data object extracted from the queue at the i-th operation is a tuple containing
the following information: arrival time of the tensor within the block, sender,
remaining block to be traversed, and data object. What is extracted from
the queue is the same whether TensorMQ is active or not. If TensorMQ is active,
the “data object” component is a serialized dictionary-type object structured as is
reported in the Figure 3.8.

Figure 3.8: Data Object in TensorMQ.

Conversely, if TensorMQ is not active, the data object is a serialized torch.Tensor
obj. The serialization library used is pickle.
The parameter zeroCopy (line 3 of alg 2) indicates whether the block works with

42

3.6 – System Workflow

TensorMQ (if branch) or with normal ZeroMQ (else branch).

Algorithm 2 Block Inference Loop with TensorMQ Support
1: while inference_thread_on do
2: (arrival_time, sender, next_hops, data)← get element from tensor queue
3: if zeroCopy is True then ▷ TensorMQ branch
4: tensor_metadata← deserialize(data)
5: next_hops← deserialize(next_hops)
6: ipc_handle← tensor_metadata[“handle_bytes”]
7: tensor ← reconstruct_tensor_from_handle(ipc_handle)
8: output← model(tensor)
9: next_hop_device← GetNextHopDevice(next_hops)

10: if block_device is different to next_hop_device then
11: move output to next device
12: end if
13: new_handle← getIpcHandle(output)
14: new_metadata← create_new_metadata(new_handle, output)
15: serialized_metadata← serialize(new_metadata)
16: forwarding_socket← GetForwardingSocket(next_hops)
17: remaining_hops← remove first element from next_hops
18: forwarding_socket.send(serialized_metadata, remaining_hops)
19: else
20: tensor ← deserialize(data)
21: next_hops← deserialize(next_hops)
22: move tensor to device (CUDA)
23: output← model(tensor)
24: move output to host (CPU)
25: output← serialize(output)
26: forwarding_socket← GetForwardingSocket(next_hops)
27: remaining_hops← remove first element from next_hops
28: forwarding_socket.send(output, remaining_hops)
29: end if
30: end while

The pseudo code reported, clearly shows the main differences between the two
approaches: in the if branch, there are no explicit memory copies between system
memory (RAM) and video memory (VRAM) as in the else branch. The functions
reconstruct_tensor_from_handle, get_ipc_handle, and create_new_metadata
specific to the TensorMQ branch contain wrapper functions for low-level CUDA
functions provided by PyTorch.

43

BlockFlow

b1 b2

CUDA:0 CUDA:1

PID: 210899 PID:671963

• Torch B2 Memory
allocations

• CUDA context

t.to(CUDA:1)

• CUDA context

t@CUDA:1

0x7f8b2c000000

1

2

t@CUDA:1

3

4

• Torch B1 Memory
allocations

t@CUDA:0

0x7f8b30000000

Figure 3.9: TensorMQ Tensor transfer procedure between 2 blocks over 2 different
GPUs: (step1) block 1 invokes .to(device) Pytorch function, subsequently it
generates an IPC handle of the in the new device and forward it to block2 with
ZeroMQ(step2). Once received, the handle is deserialized and block2 can access
the tensor content outside its memory allocations (step3). Finally, it reconstruct
the tensor (step 4) and invoke cuda.ipc_collect() to free-up the occupied
temporary memory resources and avoid memory fragmentation.

In single-node-single-GPU scenarios, the ability to populate a memory address
directly on the GPU via IPC Handle means that the transmission of intermediate
results between one block and another one running on the same CUDA device
takes place without explicit transfers to system memory.
This mechanism of handle sharing and reconstruction to improve intermediate
tensor deliver latency, is particularly useful also in single-node-multi-GPU
scenarios. In this case, the transmitter block moves the tensor on the same device
the next block is operating through the function .to(device) of PyTorch, generate
the IPC handle and finally deliver it to the receiver block.
PyTorch automatically considers the most efficient channel to move tensors from a
device to another one such as NVlink, PCIe bridge and SYS basing on the physical

44

3.6 – System Workflow

connection available between devices.
It is essential to notice the role that TensorMQ plays in this case as well.

Figure 3.9 illustrates a hypothetical transfer of an intermediate tensor t between
two blocks b1 and b2, operating on two different GPUs (e.g, CUDA:0, CUDA:1).
If b1 moves tensor t from CUDA:0 to CUDA:1, this does not mean that b2 can
automatically access it because each process has its own isolated CUDA context
that maintains its own address space on the device. TensorMQ allows to notify
the successful transmission of the tensor from one block to another one and at the
same time, it allows the receiver block to reconstruct the tensor within its memory
space through the IPC handle generated.

The forwarding of intermediate results between one block and another is per-
formed using the GetForwardingSocket function, which takes as input the ordered
list of blocks remaining to be traversed for the specific tensor. The list is structured
as a list of tuples whose fields are: (hop_address, hop_port).

As reported in Algorithm 3, the GetForwardingSocket function extracts the

Algorithm 3 Get Forwarding Socket
1: function GetForwardingSocket(next_hops_list)
2: next_hop← first element of next_hops_list
3: for all connection in block_active_connection do
4: if connection[“name”] = next_hop[“name”] then
5: return connection
6: end if
7: end for
8: new_socket← zmq.socket(PUSH)
9: if protocol = “TCP” then

10: address← format_tcp_string(next_hop[“port”])
11: else
12: address← format_ipc_string(next_hop[“name”])
13: end if
14: new_socket.connect(address)
15: update_connection_list(new_socket)
16: return new_socket
17: end function

next_hop from the list (first element) and checks whether the block already has
an open connection to that block. If so, it returns the object of type ZMQ.Socket
to that block; otherwise, it instantiates a new connection to the block, updates the
list of open connections, and returns the object of type ZMQ.Socket.

It is important to notice that the number of open connections to next_hops

45

BlockFlow

must be aligned with the system updates delivered from the optimization engine;
this is done by means of update_connection function invoked by the Control thread
as soon as it receives the update command.

Algorithm 4 Get Next Hop device
1: function GetNextHopDevice(next_hops_list)
2: next_hop← first element of next_hops_list
3: for all block in block_devices_translator do
4: if block[“name”] = next_hop[“name”] then
5: return block[”device”]
6: end if
7: end for
8: end function

Control & Monitor Threads

Control and Monitor Threads are two threads launched at the block startup to
perform control operations and KPIs monitoring, respectively. They have a similar
implementation but the main difference lies on the fact that Control Thread
implements a blocking mechanism over the control message queue to improve
system resource consumption as it is shown in line 4 of alg. 5. Conversely, Monitor
thread, once launched, collects hardware specific magnitudes related to the block
with a predefined frequency (e.g, 10 Hz).

Algorithm 5 Control Thread Routine
1: function ControlThread
2: Print: “control thread started...”
3: while control thread is active do
4: Retrieve message from control queue or wait the reception if empty
5: Execute control action with the message
6: Sent result back to the controller over the control channel
7: end while
8: Print: “control thread terminated...”
9: end function

More in detail, the Monitor thread registers over time the following magnitudes:
process-specific allocated torch VRAM, process-specific cached torch VRAM, pro-
cess total VRAM, GPU utilization, GPU clock, GPU temperature, process RAM,
CPU clock, process CPU utilization etc.

46

3.6 – System Workflow

3.6.2 Dispatcher workflow
The dispatcher has a similar block’s workflow, but it does not perform any inference
in the main thread. Its main responsibility is to apply the taskID-optimalPath
translation mechanism and route the tensor to the first node requested in the
pipeline. If the dispatcher is located on the same host as the first hop, it also
generate the cuda IPC handle and forward it. The Dispatcher has a Control
thread and a Receiver thread that work in the same way as the one launched
in a generic block. Control thread messages play a crucial role since they carry
the information related to block topology updated and the taskID-optimalPath
translation dictionary.

The taskID-optimalPath translation mechanism is performed by the receiver
thread whose logic is reported in Algorithm 6.

Algorithm 6 Receiver Thread Routine with Task Path Translation
1: function ReceiverThread
2: Initialize poller
3: Register control channel and data channel to poller
4: while receiver thread is active do
5: Wait for incoming events with short timeout
6: if interface has received data then
7: Receive message (sender, payload)
8: Record current time
9: Determine next hops using task path translation

10: Enqueue data with metadata into processing queue
11: end if
12: if control channel has received message then
13: Print: “[name]: new control message received”
14: Retrieve control message
15: Enqueue control message into control queue
16: end if
17: end while
18: return
19: end function

47

48

Chapter 4

Experimental Results

In this chapter, the main findings regarding the implemented tools are presented.
BlockFlow has been extensively tested in different working conditions. This work
also focuses on the inference performance of the modular DNN architecture. We
collected time-related metrics and hardware-specific KPIs from two host machines
with different computing capabilities to conduct a thorough analysis. Subsequently,
those data were analyzed and insightful graphical illustrations were generated.
The main goal was to assess the effectiveness of TensorMQ in a scenario where
modular-DNN architecture are deployed in physical machines with one single
hardware accelerator device and more than one hardware accelerator device.

4.1 Experimental setup
Every experiment carried out in this thesis work was conducted in two different
computing platforms with different computing capabilities. Table 4.1 reports the
technical specifications of each of the two servers. FullSuper server which is a
single-GPU machine (NVIDIA Quadro GV100 1) while Awenode is equipped with
8 NVIDIA L40S GPUs 2. Since it has two distinct NUMA nodes, different GPUs
have different NUMA node affinity. The GPU topology is reported in Appendix
A.1.

The DNN architecture selected for the test was ResNet50, whose architectural
schema and details were provided in sec. 2.1.2. However, it is important to notice
that these tests can be performed with any neural network architecture whose

1https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/
quadro-product-literature/quadro-volta-gv100-data-sheet-us-nvidia-704619-r2-web.
pdf

2https://resources.nvidia.com/en-us-l40s/l40s-datasheet-28413?ncid=no-ncid

49

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-volta-gv100-data-sheet-us-nvidia-704619-r2-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-volta-gv100-data-sheet-us-nvidia-704619-r2-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-volta-gv100-data-sheet-us-nvidia-704619-r2-web.pdf
https://resources.nvidia.com/en-us-l40s/l40s-datasheet-28413?ncid=no-ncid

Experimental Results

forward pass can be divided into one or more parts.

Figure 4.1: ResNet50 Splitting points.

ResNet50 has been split into 4 main blocks in strategic points of its architecture as
represented in Figure 4.1. Afterwards, each block has been exported in TorchScript
by scripting and tracing and in both cases, each block copy (scripted version and
traced version) has been stored into the filesystem.

Component single-GPU-server multi-GPU-server

Host FullSuper Awenode
Operating System Ubuntu 22.04.5 LTS

(x86_64)
Ubuntu 24.04.2 LTS
(x86_64)

Kernel Linux 6.8.0-57-generic Linux 6.8.0-62-generic
CPU AMD EPYC 7601 @ 2.20

GHz
2× AMD EPYC 9374F @ up
to 4.3 GHz

RAM 256 GB 1.5 TB
GPU 1x NVIDIA Quadro GV100,

32 GB VRAM
8× NVIDIA L40S, 46 GB
VRAM

CUDA Version 12.7 12.6
NVIDIA Driver 565.57.01 560.35.05
NUMA Nodes 1 2

Table 4.1: Comparison between single-GPU-server and multi-GPU-server.

50

4.1 – Experimental setup

4.1.1 Split-ResNet50 Offline analysis

In this analysis, each block (one at time) has been instantiated on the target
device and 1000 inferences were performed collecting their relative computing time.
Simultaneously, a secondary tool implemented in python was collecting targeted
GPU related metrics over time such as the amount of VRAM used by PyTorch
as well as the cached torch VRAM memory and the total amount of VRAM used
by the process. For each of the process-specific timeline kpi collected, average and
standard deviation were computed whose values are reported in 4.2. The table
data core focus was to assess, if exists, differences in terms of inference performance
and resource consumption between traced and scripted models.

Type Model

Average
Inference
latency

(ms)

Std
Inference
latency

(ms)

Average
Torch

allocated
VRAM
(MB)

Std
Torch

allocated
VRAM
(MB)

Average
Torch

reserved
VRAM
(MB)

Average
Process

occupied
VRAM
(MB)

SCRIPTED

block1 2,401 0,142 4,858 1,230 26 394
block2 2,718 0,154 9,689 1,046 26 394
block3 4,021 0,253 29,755 0,967 56 424
block4 2,276 0,161 59,612 2,619 110 478
class_h 0,287 0,055 16,328 0,000 22 396

TRACED

block1 2,254 0,176 4,896 1,362 26 394
block2 2,641 0,145 9,536 0,763 26 394
block3 3,914 0,575 29,746 1,040 56 424
block4 2,233 0,170 59,442 0,989 110 478
class_h 0,287 0,067 16,339 0,104 22 396

Table 4.2: Comparison of memory and latency metrics for scripted and traced
blocks.

The data showed that there were no substantial differences between the two
approaches in terms of performance or resource consumption. For this reason, all
tests were performed with scripted blocks.
The summation of the average inference time for each block lies as a baseline for
future experiments, since it does not take into account the inter-block transmission
time hence allowing to understand the impact of the communication overhead.
Figure 4.2 shows the parameter distribution across ResNet50 blocks. Notably, most
of the model’s parameters are concentrated in the final layers (the tail) of the
network.

51

Experimental Results

Figure 4.2: ResNet50 Parameters (millions) per Block.

4.1.2 ZeroMQ forwarding performance analysis
In this test, pure forwarding performance of ZeroMQ were evaluated for the 2
different servers and for 3 different data-types: string, json and torch.Tensor.
The test has been realized by letting 2 distinct processes synchronously commu-
nicate with the REQ/REP communcation paradigm provided by ZeroMQ. The
performance were analyzed by collecting the Round-Trip-Time (RTT) in ms for
each message sent.
This test’s goal was twofold: firstly, it allowed to assess the suitability to adopt
ZeroMQ as high-performance and light-weight communication library and secondly,
it provided an idea on how much Awenode server outperforms FullSuper.

Data Type HTTP RTT (ms) ZeroMQ RTT (ms) Ratio (HTTP / ZeroMQ)
String 1.676 0.069 ∼24x
JSON 2.273 0.106 ∼21x
Tensor 10.885 1.054 ∼10x

Table 4.3: RTT Comparison on awenode (ms).

For each test, 10000 messages were sent and the average RTT was computed.
The test results are reported in tables 4.3. Please notice that the average com-
putation takes into account the system warm-up time by dicarding the first 250
subsequent inferences. Although the performance disparity between the two servers
is significant, the average RTT measured for FullSuper remains substantially below
1 millisecond, confirming the performance expectations that ZeroMQ had assured.

52

4.2 – Pipeline performance analysis

For completeness, the first column of the table 4.3 reports the KPI of the HTTP
test. This test was carried out with the same logic but exposing an uri of a REST
API implemented in CherryPi. Another process sends HTTP POST requests to
this URI and measure the RTT of each. Clearly, HTTP performance is drastically
worse than ZeroMQ performance with a reduction in average RTT up to 24x.

4.2 Pipeline performance analysis
This section presents an extensive performance analysis of the system, with a
particular focus on performance times under different operating conditions

BlockFlow uses multi-processing to deploy DNN blocks based on system updates
coming from a system resource optimization engine. Supposing a simple and
unique offloaded task (e.g, task1), the system update is received as payload of an
http POST request to the API and it can be structured as reported in listing 4.1.
Once received, BlockFlow is in charge to 1-to-1 recreate the modular architecture
requested by deploying the blocks and instantiate the communication channels
between them.

1 {
2 " blocks ": [" block1 ", " block2 ", " block3 ", " block4_class "],
3 "tasks": {
4 "task1": [" block1 ", " block2 ", " block3 ", " block4_class "

]
5 }
6 }

Listing 4.1: Generic System Update POST request.

To test the deployed pipeline, a TaskGenerator object was implemented and
launched. Its functioning simulates a client sending tasks toward the system. It
opens a communication channel towards the Dispatcher and it starts generating
tasks. In case of a simulated environment with N clients with N different tasks, N
different TaskGenerator were launched.
TaskGenerator object can operate with ZeroMQ or with TensorMQ and it can
handle synchronous or asynchronous communcation. Notice that if the asynchronous
mode is chosen, a parameter λ is needed. In this particular case, tasks are generated
according to an exponential distribution (poisson process) with parameter λ in
order to provide a more realistic scenario and introduce variability into the system.
Conversely, if the synchronous mode is chosen, the client receives the inference result
of the previous message before sending the subsequent one. It is straightforward
to understand that, in this case the client adopts a "gentle" behavior versus the
system respecting its computing time and avoiding to overwhelm its resources.

53

Experimental Results

4.2.1 Mathematical model
Considering a task t and with its optimal forward pass πt = [block1, block2, ..., blockn],
the pipeline computing time T i

t for the i− th inference of a task t is given by the
sum of the contributions of each block in the forward pass and it can be written as:

T i
t =

Ø
b

T i
b =

Ø
b

oi
b + mi

b + wi
b (4.1)

where:

• b ∈ πt and it stands for the set of blocks to be traversed;

• T i
b is the time spent in block b for inference i belonging to task t;

• oi
b indicates the overhead time spent in the block b for inference i;

• mi
b indicates the inference time of the block b for inference i (e.g, time related

to the model inference);

• wi
b indicates the waiting time before being served in block b for inference i.

The overhead component oi
b is had by the contribution of several operations

such as: deserialization, tensor reconstruction/tensor move to GPU ∗,IPC handle
creation/move to CPU, serialization, forwarding.

In this context, the term End-to-End delay, borrowed from networking as the
transmission delay for a packet from the source node to the destination node, is
synonymous with the pipeline computing time for a single inference.

Surrogate latency measurements of 4.1 for real case scenarios involve the trans-
mission time Ttx from the client to the inference pipeline and vice-versa Trx also
called Round-Trip-Time (RTT). Due to the setup of the experiments carried out,
since also the clients are running on the same physical machine the propagation
delays of the message is negligible. Experimental results confirm that Ttx and Trx

account on average for around 1 ms. For that reason we assumed that RTT for an
inference i of a task t can be the equal to T i

t + 2ms.
As introduced in the eq.1.1, T i

b depends on the device d hosting the block and
the block load ρb.
The block load ρb depends on the arrival rate λb and on the block service rate µb:

ρb = λb

µb

(4.2)

Notice that µb is the reciprocal of mb.
Finally, the actual arrival rate λb experienced from a generic block b is function

of the number N of different task t sharing the same block b. Since the assumption

54

4.2 – Pipeline performance analysis

of exponentially distributed arrival rates towards the system, given N different
tasks with N different arrival rates λ, the actual arrival rate λb in a generic block b
is had by the "competition" of N different Poisson processes and it can be written
as:

λb =
NØ

i=1
λi (4.3)

From queuing theory, a well conditioned system should not overpass the ergodic-
ity condition ρ < 1. In this case each block should have ρb < 1 but since a pipeline
is considered, the condition that hold is:

λb < µbottleneck,∀b ∈ πt

where µbottleneck = min(µb),∀b with b ∈ πt

The ergodicity condition is strictly maintained with clients operating in syn-
chronous mode.

4.2.2 Single-host-single-GPU
Pipeline average computing time

Figure 4.3 reports the average pipeline computing time using HTTP, ZeroMQ and
TensorMQ with a single client in synchronous mode. The last bar serves as baseline
and it reports the total computing time as a summation of each computing time
measured per block in the offline test described in sec 4.1.1. The offline term is
11.703 ms.
The average is computed over a 120 seconds long test and it takes into account the
system warmup discarding the first 250 inference times collected.

The asterisk in HTTP indicates a slightly different test procedure. That his-
togram represents the average round-trip time of an entire ResNet50 exposed via
a REST API. The result of the test with HTTP performed in the “split” version
shows unacceptable latencies, and since the difference in performance between the
HTTP-based solution and the others is enormous, it has not been included for
visualization reasons.
The solution implemented in HTTP shows an average computing time of around
200ms, while ZeroMQ values are almost a fourth of it (44.9 ms). However, Ten-
sorMQ reduced the pipeline computation time of ~2.8x against ZeroMQ and ~11x
with respect to HTTP in single block (up to ~40x in split architecture).

Overhead comparison ZeroMQ and TensorMQ

The efficiency of TensorMQ stems from its significantly reduced overhead in block-
level communication. Figure 4.4 presents the average inference time and the

55

Experimental Results

Figure 4.3: 4-block pipeline average computing time.

Figure 4.4: Time components per block.

56

4.2 – Pipeline performance analysis

corresponding overhead per block, categorized by the communication technique
employed. Since the inference times are nearly identical for both ZeroMQ and
TensorMQ, the primary advantage of TensorMQ lies in its ability to minimize
communication overhead, thereby improving overall system efficiency. Moreover,
TensorMQ overheads present much less variability between blocks and between
subesequent inferences. For a better visualization, the sum of each block contribu-
tion has been done and the ePDF of the inference times and overheads for both
ZeroMQ and TensorMQ is reported in fig. 4.5. Almost all the magnitudes collected
appear to be normally distributed but focusing on the overheads, while the pipeline
overheads of ZeroMQ present a large variance (third figure starting from left),
the one related to TensorMQ are perfectly wrapped around the mean value. The
average pipeline overhead of TensorMQ is 2.55ms while the one from ZeroMQ is
21.18 ms.
The ePDF of inference and overhead each block in the pipeline can be found in
Appendix B.

10 12 14 16 18
Time (ms)

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y
(%

)

ZeroMQ: inf. time dist.
Mean: 12.14
±1 : 0.81

10 15 20 25
Time (ms)

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y
(%

)

TensorMQ: inf. time dist.
Mean: 11.28
±1 : 1.10

15 20 25 30 35 40 45
Time (ms)

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y
(%

)

ZeroMQ: ovh. time dist.
Mean: 21.18
±1 : 7.49

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Time (ms)

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y
(%

)

TensorMQ: ovh. time dist.
Mean: 2.55
±1 : 0.31

Pipeline Inference (inf.) and Overhead (ovh.) Time empirical Distributions

Figure 4.5: Pipeline inference and overhead time distributions.

GPU & CPU utilization

Considering a generic client operating synchronously and transmitting at the
maximum allowed rate (transmit the new tensor as soon as it receive the result of
the previous one), CPU and GPU utilizations data were collected over time. GPU
utilization (%) can be directly monitored through PyNVML, while it was necessary
to consider only the CPU used by the processes involved. By the use of Psutil,
process-specific CPU utilization timelines were collected, summed element-wise
among all the processes active (blocks in the pipeline) and finally divided element-
wise by the number of the blocks. Experimental results are reported in Figure 4.6,
whose left subfigure presents the comparison between the GPU utilization between

57

Experimental Results

ZeroMQ and TensorMQ while the right one presents the same but for CPU.

0 10 20 30 40 50 60 70 80
time (s)

0

5

10

15

20

25

30

35

40

Ut
iliz

at
io

n
(%

)

GPU utilization
ZeroMQ
TensorMQ

0 10 20 30 40 50 60 70 80
time (s)

0

10

20

30

40

50

60

Ut
iliz

at
io

n
(%

)

CPU utilization
ZeroMQ
TensorMQ

GPU & CPU utilization

Figure 4.6: GPU and CPU utilization.

As Figure 4.6 shows, TensorMQ presents an almost doubled utilization (%) with
respect to ZeroMQ over time; this is originated by the fact that the number of
inferences performed in the time unit is greater, leading to a better exploitation of
resources due to less idle times of the GPU. Moreover, it is important to highlight
that the increment in average GPU utilization does not reflects the increased
amount of inferences performed in the time unit for both the solutions; indeed,
considering a single synchronous client the average pipeline computing time in
TensorMQ is 2.8x less with respect to ZeroMQ while the average GPU utilization
increases of only ~2.0x.

Pipeline scalability

The results presented in the previous subsection involved the use of tensors with
batch = 1. In order to understand how the pipeline would behaves with batch sizes
greater than 1, several tests were carried out varying this parameter and analyzing
how the latency performance were impacted.
The batch size values tested were: [2,4,8,16,32].

58

4.2 – Pipeline performance analysis

0 5 10 15 20 25 30
Batch size (b)

0

200

400

600

800

1000

1200

Co
m

pu
tin

g
tim

e
(m

s)

Batch size scalability
ZeroMQ
TensorMQ

Figure 4.7: Pipeline Computing time
under different batch size

0 1 2 3 4 5 6 7 8
Batch size (b)

0

50

100

150

200

Co
m

pu
tin

g
tim

e
(m

s)

Batch size scalability
ZeroMQ
TensorMQ

Figure 4.8: Pipeline Computing time
under different batch size (zoomed)

Figures 4.7 and 4.8 display the variation of the pipeline computing time versus
the tensor batch size. The rate of scaling of TensorMQ significantly outperforms
the one of ZeroMQ for a simple reason: by varying the batch size, the amount of
MegaBytes transmitted between a block and the subsequent one varies in a pro-
portional way. Conversely, in TensorMQ even if the tensor size increases, the IPC
handle remains of fixed size (around 180 Bytes). Hence, the increase of computing
time experienced is due only to the increased inference time (which scales very well
in GPUs) while the overheads remain constant.

0 20 40 60 80 100 120
time (ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Da
ta

 (M
B)

Instantaneous Data transfer
CPU->GPU
GPU->CPU

0 20 40 60 80 100 120
time (ms)

0

1

2

3

4

5

6

7

Cu
m

ul
at

iv
e

Da
ta

 (M
B)

Cumulative data transfer
CPU->GPU (cumulative)
GPU->CPU (cumulative)

0 20 40 60 80 100 120
time (ms)

0

2

4

6

8

10

Cu
m

ul
at

iv
e

Da
ta

 (M
B)

Bidirectional PCIe data movements
Cumulative Bidirectional Traffic

Intra-host data transfer ZeroMQ (2 inferences)

Figure 4.9: Data Movement analysis with NVIDIA nvprof for 2 consecutive
inferences with ZeroMQ.

In this context, figure 4.9 provides a good contribution about what physically
happens under the block’s hood during 2 consecutive inferences with ZeroMQ.
More in detail, during a test, one process among the available on the pipeline (e.g,
block1) was profiled with nvprof and cuda kernels were collected and stored in

59

Experimental Results

a .csv file. Among all, rows with [CUDA memcpy HtoD] and [CUDA memcpy DtoH]
kernels were extracted as well as their details. Figure on the left reports the
instantaneous data transfer (MB) from the host towards the device (Red line) and
vice-versa (Green line). The period of the signals is consistent with the results
since the distance between 2 consecutive peaks is around 50 ms.
Figure 4.9 (right) reports the cumulative amount of data exchanged over the PCIe
interface showing around 9MB for just 2 single inferences. By doing the same test
with TensorMQ active, no [CUDA memcpy HtoD] and [CUDA memcpy DtoH] were
reported in the log file, which indicates that no explicit memory copies between
GPU and CPU are performed at inference time.

Less data movement and more inferences per time unit lead to a more efficient
solution in terms of energy consumption. This hypothesis is confirmed by Figure
4.10 which reports on average the estimated pipeline energy consumption per
inference with a focus on increasing batch size scenarios.

4 blocks - ZeroMQ 4 blocks - TensorMQ
0

250

500

750

1000

1250

1500

1750

2000

2250

En
er

gy
 p

er
 te

ns
or

 (m
J)

Average Energy Consumption per inference (batch=1)

0 2 4 6 8 10 12 14 16 18
Batch size

0

250

500

750

1000

1250

1500

1750

2000

2250

En
er

gy
 p

er
 te

ns
or

 (m
J)

Energy Consumption per different batch sizes
4 blocks - ZeroMQ
4 blocks - TensorMQ

Energy Consumption per tensor inference

Figure 4.10: Energy consumption per inference.

On a 4-block pipeline, the solution that involves the use of TensorMQ presented
an average energy consumption of ~710 mJ per tensor when the batch size is
equal to 1. Conversely, for the same setting, ZeroMQ solution had an average
energy consumption of ~1920 mJ per tensor (2.71x more). These values decreases
exponentially if the batch size increases, as expected.

In sec 4.2.1, we introduced the concept of actual block arrival rate λb in case
the block b is shared among N different tasks. To understand how the pipeline
computing time varies when more than one client requests for the same forward
pass, a multi-client scalability test was performed. In particular, for each test run
the average Round-Trip-Time experienced by each client is reported by increasing
the number of clients from 1 to 10 operating in synchronous mode. In other words,
if 5 clients were active simultaneously, each block of the pipeline were shared among

60

4.2 – Pipeline performance analysis

5 different tasks. The results are shown in figure 4.11.

Figure 4.11: Pipeline scalability in multi-client scenario.

Both the lines show a similar pattern but with 2 main differences: clearly, the
TensorMQ one always stays under the ZeroMQ one since the computing time is
always less for the reasons discussed in the above sections. Secondly, there is
a plateau with client number ranging from 1 to 4 where the average RTT time
experienced by each client remains constant (approximately 18ms) in TensorMQ
or even decreases in the case of ZeroMQ (from 45ms to 35ms). Focusing on the
latter, this phenomenon is due to the fact that each block waits for a certain
amount of time in an idle state between one inference and the next; this results in
inefficient use of GPU resources by each block. Conversely, as soon as the number
of client starts increasing the experienced arrival rate increases as well leading to a
better GPU resource exploitation. From 5 clients on, the RTT increases linearly as
expected.

Ergodicity condition analysis

To determine the ergodicity condition, several system runs were performed. They
involved the use of a client sending tensors with batch_size = 1 asynchronously
and with increasing sending rate λ. The system throughput (TH) was measured
as the amount of results received from a Collector entity per time unit. The

61

Experimental Results

experimental results are presented in fig.4.12.

0 50 100 150 200 250 300
Arrival Rate - (tensor/s)

0

50

100

150

200

Th
ro

ug
pu

t (
te

ns
or

/s
)

Maximum Pipeline Throughput
ZeroMQ
ZeroMQZeroCopy

Figure 4.12: 4-blocks Pipeline Throughput analysis.

As expected, the pipeline saturation point is higher with the use of TensorMQ.
Both the communication paradigms present a linear behavior in the first part of
the plot according to the Little’s Law (i.e what enters in the system goes out)
but ZeroMQ solution reaches its maximum TH around 160 tensors/s and then it
continue with noisy results ranging between 125 and 97 tensors/s. Conversely, Ten-
sorMQ curve reaches the maximum at 217 tensors/s (on FullSuper) recording an
increased TH of ~42% over the same machine with the same computing capabilities.
It is important to notice that data of TH in absolute values are depending on the
hosting machine used for test.
For arrival rates larger than the one detected experimentally, the system would
end up accumulating tensors within their queues leading to an increased usage of
RAM and VRAM.

In this context, if the ergodicity condition is passed, TensorMQ exhibits more
aggressive VRAM usage as the Figure 4.13 shows. This particular behavior is due
to the intrinsic functioning of TensorMQ and handle sharing and it is simple to
explain. Whenever a block ends doing the inference, it puts the output tensor on
the shared memory and generate an IPC handle to be sent to the next block. For

62

4.2 – Pipeline performance analysis

0 50 100 150 200 250 300
Arrival Rate - (tensor/s)

1300

1400

1500

1600

1700

1800

1900

2000

VR
AM

 o
cc

up
an

cy
 (M

B)
Average VRAM occupancy

ZeroMQ
ZeroMQZeroCopy

Figure 4.13: Average VRAM occupancy under different arrival rates.

the time span in which this output tensor is waiting to be processed, it remains
in the VRAM causing an increased average VRAM occupancy. Clearly, this does
not happen when ZeroMQ with full tensor forwarding is used. The latter, is more
gentle with the VRAM but on the contrary, it is not with the RAM since for the
amount of time the serialized tensor is sent and it is waiting to be served by one of
the blocks, it is buffered in RAM.
The minimum average VRAM occupied coincides with the saturation point of
around 220 tesors/second. It is quite difficult to explain the reason behind that but
this can be originated by the fact that around this load values, the GPU computing
resources are perfectly exploited and with almost zero idle times but also small
waiting queue sizes.

VRAM occupancy components

In order to better understand how VRAM is used during the working period, we
carefully analyzed how each block occupies it. Taking into consideration Figure 4.2
and Table 4.2, results presented in Figure 4.14 faithfully reflect what has already
been discussed previously during the offline test.

The amount of average VRAM used by PyTorch is proportional to the number

63

Experimental Results

block1 block2 block3 block4
Blocks

0

100

200

300

400

500

600

VR
AM

 o
cc

up
an

cy
 (M

B)

367.76 367.76 367.75 367.73

24.54 24.78
54.36

107.98

367.83 367.74 367.71 367.69

22.51 24.71
54.17

105.91

Breakdown VRAM components per Block
ZeroMQ Cuda Context Overhead
ZeroMQ Torch reserved VRAM
TensorMQ Cuda Context Overhead
TensorMQ Torch reserved VRAM

Figure 4.14: Average VRAM occupancy per block.

of parameter of each block and no significant differences were recorded between
ZeroMQ and TensorMQ. It is important to recall that the allocated PyTorch VRAM
is aligned with the registered in the offline test while the cached is slightly more
(from 30 to 40 %).
However, the main purpose of this test was to assess how much fixed VRAM
overhead is needed to pay for the deployment of each process. In this case, this
amount is around 370MB per process.

4.2.3 Single-host-Multi-GPU
In order to assess how the system would perform in case it is not possible to host
all the required blocks in a single devices, a multi-GPU server was used for that
purpose. Another reason which led us to test the BlockFlow in such scenario was
to understand how TensorMQ would have helped into the management of tensor
movement between devices.
As discussed previously, each running process operating on GPU, occupies a portion
of VRAM that cannot be accessed by any other process. Coherently, if a process
moved a generic tensor from a GPU device di to another one di+1, the latter would
not be able to directly access or modify it.
TensorMQ helped on the successful tensor transfer notification from one device to

64

4.2 – Pipeline performance analysis

another one between blocks, allowing to access the portion of memory the tensor
resides and therefore its correct collection for subsequent handling.

Before delving into the test configuration details, we introduce the concept of
Path Distribution Index (PDI) computed as:

PDI(%) =
3

NGP U

NB

4
∗ 100 (4.4)

where NGP U is the number of different GPUs over which the blocks are hosted and
NB is the number of blocks within the optimal path.
The test carried involved the use of a multi-GPU server with blocks deployed on
different GPUs according to:

• PDI = 25: given 1 available device, 100% of the blocks on that device (4
Blocks-1 GPU),

• PDI = 50: given 2 available devices, 100% of the blocks equally divided on
that devices (4 Blocks-2 GPUs),

• PDI = 100: given 4 available devices, 100% of the blocks equally divided on
that devices (4 Blocks-4 GPUs).

4Blocks - 1 GPU 4Blocks - 2 GPUs 4Blocks - 4 GPUs
0

2

4

6

8

10

12

Ti
m

e
(m

s)

9.44 8.84 8.48

4.13 4.73 4.88

Pipeline average computing time
zeroMQ
TensorMQ

Figure 4.15: Blocks average comput-
ing time with different deployment sce-
narios.

4Blocks - 1 GPU 4Blocks - 2 GPUs 4Blocks - 4 GPUs
0

1

2

3

4

5

6

7

8

Ti
m

e
(m

s)

6.84
6.27 5.96

1.30
1.76 2.01

Pipeline average overhead time
zeroMQ
TensorMQ

Figure 4.16: Blocks average overhead
time with different deployment scenar-
ios.

In addition, a single client with exponential sending rate λc = 300 tensors/second
and tensor with batch size = 1 were used.
Figure 4.15 and Figure 4.16 report the average timings for computing and overheads
respectively per each block, collected in all the system configurations presented
above.

By looking at Figure 4.16, it is straightforward to notice that TensorMQ out-
performs ZeroMQ in all of the tested deployment scenarios. However, the 2

65

Experimental Results

communication paradigms show opposite trends. TensorMQ reports an average
overhead time reduction of ~5.26x, ~3.56x and ~2.96x for the configuration
4B-1GPU, 4B-2GPUs, 4B-4GPUs, respectively.

With TensorMQ, the average total communication overhead increases according
to the PDI. This result is consistent on what we expected from theory since when
all the blocks are hosted on the same GPU, TensorMQ allows for essentially a
ZeroCopy solution to share the intermediate tensors for one block to another one.
Conversely, if a least one block of the optimal forward path is hosted in a different
device, there is the need to transfer it physically. This latency depends on the
physical communication technology used (NVLink, Infiniband, direct PCIe or CPU
bounded transfer) and/or on the computing capability of the hosting machine (in
case of CPU bounded transfer).
On the other hand, with the use of ZeroMQ with full tensor forwarding, the
overhead decrease with an inverse proportionality with respect to the PDI. This
behavior could be originated by an high number of context switches when all the
blocks operates on the same device.

4.3 Modular DNN deployment vs Standard De-
ployment

In order to be aligned with the requirements of modularity, isolation and flexibility
on the deployment of different portion of the DNN over different GPUs or even
across different hosts, a multi-processing solution was chosen with huge attention
on performance based metrics such as latency and system throughput.
However, the initialization of a CUDA context for each process involves a fixed
overhead of approximately 370 MB (as it is shown in Figure 4.14).
Based on the experiments conducted and the data collected, we provide a comparison
between the modular DNN deployment based on multiprocessing and standard
deployment in different hypothetical working scenarios.
For better clarity of explanation, we provide a simple mathematical formulation of
the problem.

4.3.1 Mathematical formulation
Let T = {τ1, τ2, . . . , τN} be the set of N tasks admitted by the system. Let
B = {b1, b2, b3, b4, bresnet} be the set of DNN blocks obtained from the decomposition
of a base model such as ResNet50, plus a full-specialized Resnet50 (bresnet) for the
most accuracy and delay-sensible offloaded tasks.

In traditional deployment, a one-to-one mapping holds between each admitted
task and its corresponding deployed model. Hence, N tasks require N independent

66

4.3 – Modular DNN deployment vs Standard Deployment

DNN models to be deployed.
Conversely, modular deployment encompasses the possibility to decompose a full
DNN structure into blocks and thus, share one or more blocks among multiple
admitted tasks deploying only a subset of task-specific specialized block instead of
the full DNN structure.
Let H ∈ {−1, 0, 1}N×|B| be the specialization matrix, where entry hij indicates
whether block bj is required (and specialized) for task τi.
Specifically:

hij =


1 if bj is a specialized Block for task τi

−1 if bj = bresnet (i.e, full DNN specialization) for task τi

0 otherwise

Let O = [o1, o2, o3, o4, oresnet] denote the VRAM occupancy of each block in B,
where each element oj is given by:

oj = Mi_params + Mi_torch (4.5)

where: Mi_params (MB) is the contribution given by the number of parameters
for the i-th block and Mi_torch is the PyTorch VRAM allocation (excluding model
size) for block bj. Moreover, each deployed process presents an additional VRAM
occupancy contribution given by the CUDA context initialization (Ccontext) that
was experimentally proved to be constant and independent on the block size. It
accounts for around 370 MB in the tested environments.
The total amount of VRAM occupied by the traditional approach is:

Mtrad = N × (oresnet + Ccontext) (4.6)

The total amount of VRAM occupied by the modular approach is:

Mmodular = Mshared + Mspecialized (4.7)

Mspecialized =
NØ

i=1

|B|Ø
j=1

(oj + Ccontext)× |Hij| (4.8)

Assuming that Bshared = {b1, b2, b3}:

Mshared =
Ø

j∈Bshared

(oj + Ccontext) (4.9)

where Mspecialized is the total VRAM occupied by task-specific blocks (e.g, spe-
cialized blocks for a target application), Mshared is the total VRAM occupied by
shared blocks.

67

Experimental Results

The task-specific requirements of the N tasks admitted cause the algorithmic re-
sponse of the resource optimization engine (e.g., OffloaDNN) to differ from task to
task and, consequently, the number of shared blocks will also differ.
Hence, each task will have its own number of specialized blocks out of a total
number of blocks required for the forward pass. By observing the system in a
generic instant t, the total number of specialized block is:

Nspecialized_blocks =
Ø
j∈T

Ø
k∈O

1 if Hij > 0
0 otherwise

(4.10)

Let us introduce the Path Sharing Index for a task τi ∈ T as such that:

PSIi (%) =
Nspecialized_blocks

Nprocess

 ∗ 100 (4.11)

Scenario Class A Class B Class C
Scenario 1 33% 33% 33%
Scenario 2 10% 30% 60%
Scenario 3 5% 20% 75%
Scenario 4 5% 5% 90%
Scenario 5 1% 4% 95%
Scenario 6 60% 30% 10%
Scenario 7 75% 20% 5%
Scenario 8 90% 5% 5%

Table 4.4: Task distribution across different classes, for the considered scenarios.

In a simplistic scenario that could mimic real system working conditions, we
can assume that the admitted tasks can belong to 3 different service level classes.
Each class, is associated with a PSI value, as follow:

• Class A - PSIi = 0: specialized full-DNN (ResNet) for that task τi;

• Class B - PSIi = 50: 2 blocks specialized out of 4 blocks τi;

• Class C - PSIi = 75: 3 blocks specialized out of 4 blocks τi;

4.3.2 Numerical Comparison
Now, let us consider 8 different operational scenarios for partitioning (%) the N
admitted task into service classes. Table 4.4 reports the class distribution scenarios
tests. The analysis spans over different scenarios, with particular focus on the
variation in the number of highly specialized tasks (scenarios 6, 7, 8) compared to

68

4.3 – Modular DNN deployment vs Standard Deployment

Scenario MOD.
(MB)

MOD.
W/ B12
FUSED

(MB)

MOD.
W/ B12
& B34

FUSED
(MB)

TRAD.
DEP.
(MB)

MOD.
SAVINGS

MOD. W/
B12

FUSED
SAVINGS

MOD. W/
B12

& B34
FUSED

SAVINGS
scenario 1 64503 64113 51078 54100 -19,23% -18,51% 5,59%
scenario 2 62239 61849 49999 54100 -15,04% -14,32% 7,58%
scenario 3 57889 57299 49399 54100 -6,63% -5,91% 8,69%
scenario 4 51344 50954 48979 54100 5,09% 5,82% 9,47%
scenario 5 50188 49798 48218 54100 7,23% 7,95% 10,87%
scenario 6 65439 65049 53199 54100 -20,96% -20,24% 1,67%
scenario 7 62169 61779 53879 54100 -14,91% -14,19% 0,41%
scenario 8 56784 56394 54419 54100 -4,96% -4,24% -0,59%

Table 4.5: ResNet50 modular vs traditonal deployment VRAM occupancy analysis.

a low number of tasks with low latency and accuracy constraints (class C tasks)
and vice versa (scenarios 2,3,4,5). The results were obtained with N=100 and N =
1000, although no particular differences were found. Tables 4.5 and report and 4.6
the numerical results for all the tested scenarios with N=100.

For each scenario, the amount of VRAM memory occupied by the required
blocks in absolute terms was computed according to the equations presented and
with the data collected from the system runs and therefore compared with respect
to the one that a traditional deployment would have occupied. Moreover, results
of a slight variation of the modular system is presented with a small optimization
in the blocks deployment that takes into account the possibility to fuse block1 and
block2 and/or block3 and block4. Notice that, it is always possible to fuse block1
and block2 due to our assumption that the minimum Path Sharing Index is 50%
but on the other hand, fusion of block3 and block 4 can be performed only to Class
B tasks since they require both block3 and block4 to be fine-tuned and dedicated.
The idea of block fusion stems from the need to reduce CUDA context initialization
overhead by amortizing it over bigger blocks or by reducing the number or deployed
processes in absolute terms.
For completeness we provide the mathematical formulation of the optimized model
deployment with block fusion. In case of only b1 & b2 fused, the only term updated
is the Mshared:

Mshared = (o1 + o2)× Ccontext + o3 × Ccontext (4.12)
In case of b3 & b4 merging the updated formulation is:

Mspecialized =
Ø
j∈T

5 Ø
k∈O

ok × |Hjk|
6

+ Ccontext (4.13)

Mshared = (o1 + o2)× Ccontext + o3 × Ccontext (4.14)

69

Experimental Results

Table 4.5 reports the main outcomes of the experiments and provide a complete
overview of the numerical results. The best possible operating conditions for the
modular system are found to be in scenario 4 and scenario 5 where most of the
system admitted tasks belong to Class C and thus the system can benefit of the
maximum Path Sharing Index (75%). Indeed, with a modular deployment, saving
in terms of total average VRAM occupancy is 5.09% in Scenario 4 and 7.23% in
Scenario 5 for the modular deployment with no block-fusion. Moreover, numerical
results presents significant VRAM occupancy reduction when blocks are fused. In
particular, in almost all the tested scenarios, when Block1 & Block2 and Block3
& Block4 are fused (according to what discussed above) is registered an average
VRAM saving up to ~25% (scenario 1, from -19.23% to +5.59%).

Scenario MOD.
(MB)

MOD.
W/ B12
FUSED

(MB)

MOD.
W/ B12
& B34

FUSED
(MB)

TRAD.
DEP.
(MB)

MOD.
SAVINGS

MOD. W/
B12

FUSED
SAVINGS

MOD. W/
B12

& B34
FUSED

SAVINGS
scenario 1 74329 73940 60321 66830 -11,22% -10,64% 9,74%
scenario 2 63027 68938 56557 66830 5,69% -3,15% 15,37%
scenario 3 63048 62660 54406 66830 5,66% 6,24% 18,59%
scenario 4 54893 54504 52441 66830 17,86% 18,44% 21,53%
scenario 5 53176 52787 51136 66830 20,43% 21,01% 23,48%
scenario 6 77742 77353 64972 66830 -16,33% -15,75% 2,78%
scenario 7 74829 74441 66187 66830 -11,97% -11,39% 0,96%
scenario 8 69198 68801 66746 66830 -3,54% -2,96% 0,13%

Table 4.6: ResNet152 modular vs traditonal deployment VRAM occupancy
analysis.

For a better understanding, an additional numerical comparison between mod-
ular deployment and traditional was carried out, this time considering a bigger
DNN architecture. The main idea was to assess if bigger blocks in terms of number
of parameters would have contributed to better amortize CUDA context overhead
occupation. For this purpose, ResNet152 was selected, split in 4 blocks and tested.
Experimental results are reported in Table 4.6.

Clearly, the gains of the modular DNN deployment are also significantly evident
in scenarios 2 and 3 that see an higher portion of specialized task for which is
required less shared blocks. According to that line, in scenario 4 and 5 where the
majority of the task allows for high Task Sharing Index, average VRAM occupancy
savings reach up to ~20,5% and arrive to 23.48% if block fusion is enabled (when
possible) compared to traditional full-DNN deployment.

In conclusion, bigger models can benefit more from modular deployment if one
of the main goal is to maximize the number of logical "forward pass" offered to

70

4.3 – Modular DNN deployment vs Standard Deployment

clients and thus, in an offloading scenario, the task acceptance rate as it is stated
in OffloaDNN.

71

72

Chapter 5

Conclusions & Future
research

Offloading computationally-intensive AI tasks, particularly in Computer Vision, to
more powerful devices is a valid strategy for enabling services that would otherwise
be unusable on resource-constrained hardware. This research work focuses on the
development of BlockFlow, an open-source tool for the deployment of DNN models
at the Edge.
The main focus was to meet the requirements of high modularity and flexibility
of an inference system based on one or more DNN architectures distributed on
the same machine or on multiple hosts. Given these requirements, the best option
was to develop a dynamic multi-processing system whose management is handled
by BlockFlow based on algorithmic responses from a resource optimization engine
such as the one presented in OffloaDNN.
Indeed, BlockFlow bridges the gap between a purely algorithmic solution and the
real-world deployment allowing innovative research approaches to be validated.
A series of comprehensive experiments show that the communication latency be-
tween the blocks constituting a neural network structure plays a crucial role in
overall performance. In particular, communication that is not optimized for tensor
forwarding can cause overheads in terms of latency that can be up to 200% beyond
the baseline inference time.
The main contribution of this work was to implement a high-performance commu-
nication system for the transmission of intermediate tensors between the various
blocks deployed by BlockFlow, called TensorMQ.
TensorMQ is based on the open-source ZeroMQ library and implements a GPU-
aware communication pattern, ensuring extremely low overheads. It can operate in
scenarios where two consecutive blocks in the pipeline are on the same host and
GPU, on the same host but on separate GPUs, and potentially even on different

73

Conclusions & Future research

hosts as long as they are connected to the internet.
Experimental results confirm that using TensorMQ compared to ZeroMQ can
reduce the overheads of a ResNet50-based pipeline of 4 blocks by up to ~8.30x.
This reduction in total inference time improves the utilization of computational
resources. From an offloading perspective, it also increases the number of tasks the
system can accept per unit of time. Finally, more inferences performed per unit of
time with the same computational resources allow for better amortization of the
fixed energy consumption.

However, although BlockFlow with TensorMQ makes a novel contribution in
the field of optimized solutions for high-performance and practical Edge offloading,
sharing one or more blocks between one or more tasks leads to inefficiencies in
terms of memory usage. In fact, experiments have shown that each process requires
a significant amount of RAM (~700MB) but, above all, VRAM overhead due to
CUDA context initialization (~370MB). Although there are solutions that might
reduce this overhead in absolute terms, this type of design based on the block-
process relationship remains inefficient for blocks with a relatively small number of
parameters. Indeed, bigger models, and hence bigger blocks in terms of number
of parameters can, mitigate this issue and better benefit from a modular deployment.

Future investigations can be split into 2 main research paths: one possibility is to
test the feasibility and the performance of a single-process application with different
threads, analyzing how the system behaves in high traffic scenarios sacrificing a
relatively small amount of flexibility on the deployment. This design approach might
lead to a lower system resource consumption. On the other hand, an improvement
in terms of performance might be achieved by introducing a dynamic batching
capability within the data forwarding plane. Accordingly, we might observe a
dramatic increase in the overall system throughput while maintaining good latency
performance using TensorMQ.
Another scenario involves the introduction of optimization policies before the actual
deployment of the blocks, considering the possibility of joining two or more blocks
within a single process, ensuring the best tradeoff in terms of minimization of the
context initialization overhead while respecting the deployment strategy and the
task service level constraints.

74

Bibliography

[1] Zhuo Li, Hengyi Li, and Lin Meng. «Model compression for deep neural
networks: A survey». In: Computers 12.3 (2023), p. 60 (cit. on p. 1).

[2] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young.
Mobile Edge Computing – A Key Technology Towards 5G. Tech. rep. White Pa-
per No. 11. Sophia Antipolis, France: European Telecommunications Standards
Institute (ETSI), Sept. 2015. url: https://www.etsi.org/images/files/
ETSIWhitePapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
(cit. on pp. 2, 19, 20).

[3] Wazir Zada Khan, Ejaz Ahmed, Saqib Hakak, Ibrar Yaqoob, and Arif Ahmed.
«Edge computing: A survey». In: Future Generation Computer Systems 97
(2019), pp. 219–235 (cit. on p. 2).

[4] Marcelo VB da Silva, Maria Barbosa, Anderson Queiroz, and Kelvin L Dias.
«A 5G-Edge Architecture for Computational Offloading of Computer Vision
Applications». In: arXiv preprint arXiv:2501.04267 (2025) (cit. on p. 2).

[5] Matthias Frei, Piotr Karbownik, Reinhard German, and Anatoli Djanatliev.
«Accessing the Edge: Delay Evaluation to Distributed Edge Services in a
City-Level 5G Network». In: 2024 IEEE International Conference on Cloud
Engineering (IC2E). IEEE. 2024, pp. 197–205 (cit. on p. 2).

[6] Chetna Singhal, Yashuo Wu, Francesco Malandrino, Marco Levorato, and
Carla Fabiana Chiasserini. «Distributing Inference Tasks Over Interconnected
Systems Through Dynamic DNNs». In: IEEE Transactions on Networking
(2025) (cit. on p. 3).

[7] Jiawei Shao and Jun Zhang. «Communication-computation trade-off in
resource-constrained edge inference». In: IEEE Communications Magazine
58.12 (2021), pp. 20–26 (cit. on p. 3).

[8] Juliano S Assine, José Cândido Silveira Santos Filho, Eduardo Valle, and
Marco Levorato. «Slimmable encoders for flexible split dnns in bandwidth and

75

https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf

BIBLIOGRAPHY

resource constrained iot systems». In: 2023 IEEE 24th International Sympo-
sium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM).
IEEE. 2023, pp. 1–9 (cit. on p. 4).

[9] Corrado Puligheddu, Nancy Varshney, Tanzil Hassan, Jonathan Ashdown,
Francesco Restuccia, and Carla Fabiana Chiasserini. «OffloaDNN: Shaping
DNNs for Scalable Offloading of Computer Vision Tasks at the Edge». In:
2024 IEEE 44th International Conference on Distributed Computing Systems
(ICDCS). IEEE. 2024, pp. 624–634 (cit. on pp. 4, 21, 23, 24).

[10] Khadijeh Alibabaei, Pedro Gaspar, Tânia Lima, Rebeca Campos, Inês Girão,
Jorge Bordalo Monteiro, and Carlos Lopes. «A Review of the Challenges of
Using Deep Learning Algorithms to Support Decision-Making in Agricultural
Activities». In: Remote Sensing 14 (Jan. 2022), p. 638. doi: 10 . 3390 /
rs14030638 (cit. on p. 14).

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. 2015. arXiv: 1512.03385 [cs.CV]. url:
https://arxiv.org/abs/1512.03385 (cit. on p. 15).

[12] Jack Bell. Operating Systems: Threads. https://www.cs.uic.edu/~jbell/
CourseNotes/OperatingSystems/4_Threads.html. n.d. (Cit. on p. 18).

[13] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B Letaief.
«Mobile edge computing: Survey and research outlook». In: arXiv preprint
arXiv:1701.01090 (2017), pp. 1–37 (cit. on p. 21).

[14] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. «What is being trans-
ferred in transfer learning?» In: Advances in neural information processing
systems 33 (2020), pp. 512–523 (cit. on p. 22).

[15] Corrado Puligheddu, Jonathan Ashdown, Carla Fabiana Chiasserini, and
Francesco Restuccia. «SEM-O-RAN: Semantic and flexible O-RAN slicing
for NextG edge-assisted mobile systems». In: IEEE Infocom 2023-IEEE
Conference on Computer Communications. IEEE. 2023, pp. 1–10 (cit. on
p. 25).

[16] PyTorch Team. Pipeline Parallelism — PyTorch Distributed Documentation.
https://docs.pytorch.org/docs/stable/distributed.pipelining.
html. 2025 (cit. on p. 29).

[17] Pritam Damania et al. «Pytorch rpc: Distributed deep learning built on tensor-
optimized remote procedure calls». In: Proceedings of Machine Learning and
Systems 5 (2023), pp. 219–231 (cit. on p. 30).

[18] Pieter Hintjens. ZeroMQ: messaging for many applications. " O’Reilly Media,
Inc.", 2013 (cit. on p. 30).

76

https://doi.org/10.3390/rs14030638
https://doi.org/10.3390/rs14030638
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/4_Threads.html
https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/4_Threads.html
https://docs.pytorch.org/docs/stable/distributed.pipelining.html
https://docs.pytorch.org/docs/stable/distributed.pipelining.html

BIBLIOGRAPHY

[19] Vishesh Narendra Pamadi, Dr Ajay Kumar Chaurasia, and Dr Tikam Singh.
«Comparative Analysis OF GRPC VS. ZeroMQ for Fast Communication».
In: International Journal of Emerging Technologies and Innovative Research
(www. jetir. org) 7.2 (2020), pp. 937–951 (cit. on p. 31).

[20] Mekhriddin Rakhimov, Doniyor Mamadjanov, and Abulkosim Mukhiddinov.
«A high-performance parallel approach to image processing in distributed
computing». In: 2020 IEEE 14th International Conference on Application of
Information and Communication Technologies (AICT). IEEE. 2020, pp. 1–5
(cit. on p. 31).

[21] Joel Lauener, Wojciech Sliwinski, and Geneva CERN. «How to design &
implement a modern communication middleware based on ZeroMQ». In: Proc
of ICALEPCS. Vol. 17. 2017, pp. 45–51 (cit. on p. 31).

[22] Ties Robroek, Neil Kim Nielsen, and Pınar Tözün. «TensorSocket: Shared
Data Loading for Deep Learning Training». In: arXiv preprint arXiv:2409.18749
(2024) (cit. on p. 31).

[23] PyTorch Team. TorchScript — PyTorch JIT Documentation. https://docs.
pytorch.org/docs/stable/jit.html. 2024 (cit. on p. 31).

[24] CherryPy Team. CherryPy - A Minimalist Python Web Framework. https:
//cherrypy.dev/. 2024 (cit. on p. 32).

[25] Giampaolo Rodola. psutil: Cross-platform process and system utilities. https:
//psutil.readthedocs.io/en/latest/. 2024 (cit. on p. 33).

[26] NVIDIA Corporation. pynvml: Python Bindings for the NVIDIA Management
Library. https://pypi.org/project/pynvml/. 2024 (cit. on p. 33).

[27] NVIDIA Corporation. CUDA Profiler User’s Guide. https://docs.nvidia.
com/cuda/profiler-users-guide/index.html. 2024 (cit. on p. 33).

[28] NVIDIA Corporation. CUDA Runtime API Documentation. Accessed: July
13, 2025. 2025. url: https://docs.nvidia.com/cuda/cuda-runtime-api
(cit. on p. 34).

77

https://docs.pytorch.org/docs/stable/jit.html
https://docs.pytorch.org/docs/stable/jit.html
https://cherrypy.dev/
https://cherrypy.dev/
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/
https://pypi.org/project/pynvml/
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api

78

Appendix A

Awenode GPU topology

GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID

GPU0 X NODE NODE NODE SYS SYS SYS SYS 0–31,64–95 0 N/A
GPU1 NODE X NODE NODE SYS SYS SYS SYS 0–31,64–95 0 N/A
GPU2 NODE NODE X NODE SYS SYS SYS SYS 0–31,64–95 0 N/A
GPU3 NODE NODE NODE X SYS SYS SYS SYS 0–31,64–95 0 N/A
GPU4 SYS SYS SYS SYS X NODE NODE NODE 32–63,96–127 1 N/A
GPU5 SYS SYS SYS SYS NODE X NODE NODE 32–63,96–127 1 N/A
GPU6 SYS SYS SYS SYS NODE NODE X NODE 32–63,96–127 1 N/A
GPU7 SYS SYS SYS SYS NODE NODE NODE X 32–63,96–127 1 N/A

Table A.1: GPU Topology and Affinity (multi-GPU-server)

79

80

Appendix B

ZeroMQ vs TensorMQ time
distributions per Block

81

ZeroMQ vs TensorMQ time distributions per Block

1
2

3
4

5
6

7
8

Tim
e (m

s)

0.0

0.1

0.2

0.3

0.4

0.5

Probability (%)
Block1 - TensorM

Q
M

ean: 2.34
±1

: 0.30

2.5
5.0

7.5
10.0

12.5
15.0

17.5
20.0

Tim
e (m

s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Probability (%)

Block2 - TensorM
Q

M
ean: 2.69

±1
: 0.51

2
4

6
8

10
12

14
16

Tim
e (m

s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Probability (%)

Block3 - TensorM
Q

M
ean: 3.88

±1
: 0.67

2
4

6
8

10
12

Tim
e (m

s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Probability (%)

block4 - TensorM
Q

M
ean: 2.38

±1
: 0.38

1.5
2.0

2.5
3.0

3.5
Tim

e (m
s)

0.0

0.1

0.2

0.3

0.4

0.5

Probability (%)

Block1 - ZeroM
Q

M
ean: 2.68

±1
: 0.13

1.5
2.0

2.5
3.0

3.5
4.0

Tim
e (m

s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Probability (%)

Block2 - ZeroM
Q

M
ean: 3.05

±1
: 0.09

2
4

6
8

10
Tim

e (m
s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Probability (%)

Block3 - ZeroM
Q

M
ean: 3.84

±1
: 0.77

2
3

4
5

6
7

8
9

Tim
e (m

s)

0.0

0.2

0.4

0.6

0.8

1.0

Probability (%)

block4 - ZeroM
Q

M
ean: 2.57

±1
: 0.21

Inference tim
e D

istributions

Figure B.1: ZeroMQ vs TensorMQ inference time distributions per block

82

ZeroMQ vs TensorMQ time distributions per Block

0.5
1.0

1.5
2.0

2.5
Tim

e (m
s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Probability (%)
Block1 - TensorM

Q
M

ean: 0.66
±1

: 0.14

0.5
1.0

1.5
2.0

Tim
e (m

s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Probability (%)

Block2 - TensorM
Q

M
ean: 0.65

±1
: 0.13

0.5
1.0

1.5
2.0

2.5
3.0

Tim
e (m

s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Probability (%)

Block3 - TensorM
Q

M
ean: 0.64

±1
: 0.15

0.5
1.0

1.5
2.0

2.5
Tim

e (m
s)

0.0

0.1

0.2

0.3

0.4

0.5

Probability (%)

block4 - TensorM
Q

M
ean: 0.60

±1
: 0.14

2.5
5.0

7.5
10.0

12.5
15.0

17.5
20.0

Tim
e (m

s)

0.0

0.1

0.2

0.3

0.4

0.5

Probability (%)

Block1 - ZeroM
Q

M
ean: 6.39

±1
: 3.69

2.5
5.0

7.5
10.0

12.5
15.0

17.5
20.0

22.5
Tim

e (m
s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Probability (%)

Block2 - ZeroM
Q

M
ean: 9.08

±1
: 6.39

2
4

6
8

10
Tim

e (m
s)

0.00

0.05

0.10

0.15

0.20

0.25

Probability (%)

Block3 - ZeroM
Q

M
ean: 3.42

±1
: 1.19

2
3

4
5

6
7

8
Tim

e (m
s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Probability (%)

block4 - ZeroM
Q

M
ean: 2.28

±1
: 0.35

Com
m

unication O
verhead D

istributions

Figure B.2: ZeroMQ vs TensorMQ overhead time distributions per block

83

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Offloading Computer Vision Tasks at the Edge
	Thesis Motivations & Objectives
	Motivations
	Objectives

	Thesis Contributions
	Thesis structure

	Background
	AI & Deep Neural Networks
	Deep Neural Networks
	Convolutional Neural Networks

	Deep Learning at scale
	Inter-process Communication (IPC)
	Multi-access Edge Computing (MEC)
	OffloaDNN

	BlockFlow
	System Requirements
	Technical Challenges
	BlockFlow used tools
	ZeroMQ
	PyTorch
	CherryPi
	Pickle
	Psutil
	Python NVIDIA Management Library
	Nvidia nvprof
	Taskset & Numactl

	TensorMQ: tensor-aware inter-block communication via CUDA-IPC and ZeroMQ
	Architectural Design
	Block Design
	Dispatcher Design

	System Workflow
	Block workflow
	Dispatcher workflow

	Experimental Results
	Experimental setup
	Split-ResNet50 Offline analysis
	ZeroMQ forwarding performance analysis

	Pipeline performance analysis
	Mathematical model
	Single-host-single-GPU
	Single-host-Multi-GPU

	Modular DNN deployment vs Standard Deployment
	Mathematical formulation
	Numerical Comparison

	Conclusions & Future research
	Bibliography
	Awenode GPU topology
	ZeroMQ vs TensorMQ time distributions per Block

