
POLITECNICO DI TORINO

Department of Electronics and Telecommunications

MASTER’s Degree Thesis in
ICT FOR SMART SOCIETIES

Enhancing Arduino AI Assistant: Semi-supervised User
Intent Classification for RAG Optimization

Supervisors

Prof. Luca VASSIO

Claudio SCAFESI

Giulia BIAMINO

Candidate

Shurui CHEN

Academic Year 2024/25

Abstract

Recent advances in generative AI have enabled the integration of large language
models (LLMs) into development environments to assist users in programming, in-
terpreting, and debugging. This paper presents a complete data processing and
classification pipeline for a GenAI Chat Assistant embedded in the Arduino Cloud
Editor. We propose classifying user queries into distinct intent categories, specifi-
cally create code, explain, suggest, and fix errors, to optimize Retrieval-Augmented
Generation (RAG) responses. The goal is to improve the relevance and efficiency
of RAG by tailoring document retrieval and response generation strategies to the
specific user intent, thereby reducing irrelevant content and optimizing token usage
in LLM responses.
To support this classification, we first construct a text preprocessing framework that
filters out noises, prompts, code-only contents, and non-English inputs, retaining only
valid user queries for analysis. We benchmark multiple sentence embedding models
(e.g., MiniLM, mpnet, E5, BGE, Nomic AI) and ultimately select the intfloat/e5-
base-v2 for its balance between performance and efficiency.
Given that the raw dataset is unlabeled, we need to set corresponding principles
for manual labeling. The number of labeled categories need to be balanced so that
self-training can fully learn the characteristics of each category. By comparing the
performance of each classification model, we built a semi-supervised classification
framework based on calibrated ensemble models (LightGBM, CatBoost, logistic
regression).
During the self-training process, we designed a method to dynamically adjust the
category threshold to address situations where labels are unbalanced and some
category boundaries are blurred. We first set a high-confidence initial threshold to
select more accurate pseudo-labels. Then, in each new round of training sets, high-
confidence pseudo-labels are added to ensure that the model can continue to learn.
The new threshold is dynamically adjusted based on the number of pseudo-labels
added to the training dataset in each round. This method gradually expands the
labeled dataset while maintaining a balanced category distribution. In addition, in
order to make full use of a large amount of data for model learning and prevent
over-learning of erroneous pseudo-label data, we used an early stopping strategy
during the self-training process to obtain the best semi-supervised learning model.
Our method relatively improves the quality of pseudo-labels, achieves stable learning
in underrepresented categories, and achieves good macro F1-scores on the retained
validation set. When applied to a test dataset extracted from the production database,
the model predicts intent labels for new user queries and provides an estimated class
distribution. The resulting labeled data supports intent-aware retrieval and more
precise response generation within the GenAI system, enhancing user interaction,
improving token efficiency, and enabling further optimization of assistant performance.

Keywords: Retrieval-Augmented Generation (RAG),Semi-Supervised Learning,
large language models (LLMs), Sentence Embedding, Soft Voting Classifiers, Extract
Transform Load(ETL), Generative AI

II

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisor,
Professor Luca Vassio, for his continuous support, invaluable guidance, and insightful
feedback throughout the course of this research. It has been an honor to complete
this thesis under his mentorship.

Special thanks go to my company tutors and colleagues in the Arduino Data
team, including Claudio Scafesi and Giulia Biamino, for the fruitful discussions,
encouragement, and for fostering a collaborative and inspiring working environment.
Their expertise and assistance were essential to the completion of this research. I
also acknowledge the support from Arduino, which provided the necessary resources
to carry out this research.

Moreover, I am deeply grateful to Politecnico di Torino for providing a rich
academic platform that allowed me to meet outstanding individuals, improve my
skills, and build confidence to face future challenges. I especially thank the friends
and classmates for their support and encouragement, which have inspired me to
continuously strive for improvement in both my academic and personal life.

I would also like to extend my heartfelt appreciation to my family for their
unwavering love, patience, and support throughout my academic journey.

My last tribute is to those who know I am not perfect but still love me. May
your life set sail, heading towards great ideals.

III

Table of Contents

Acknowledgments III

1 Introduction 1
1.1 Background . 1
1.2 Objective . 4
1.3 Literature Review . 5
1.4 Overall Structure . 6

2 Methodology 7
2.1 Research Framework . 7
2.2 Algorithms . 8

2.2.1 Self-Training Framework . 8
2.2.2 Pseudo-Label Selection with Dynamic Thresholding 8

2.3 Models . 10
2.3.1 Sentence Transformers . 10
2.3.2 Classification Models . 11

2.4 Key techniques . 13

3 Data preparation 14
3.1 Data collection . 14
3.2 Data structure . 15

3.2.1 Data Format . 15
3.2.2 Dataset Overview . 16

3.3 Data Processing . 16
3.3.1 Purpose . 16
3.3.2 Processing Pipeline . 17
3.3.3 Preprocessing Output and Category Definition 17

4 Experiments and Results 19
4.1 Evaluation Metrics . 19
4.2 Experimental Setup . 20

4.2.1 Dataset Description . 20
4.2.2 Text Representation . 21
4.2.3 Classifier Architecture . 24

4.3 Dynamic Thresholds and Sampling Strategy 26
4.4 Self-Training . 28

IV

TABLE OF CONTENTS

4.4.1 Hyper-parameter Settings . 28
4.4.2 Self-Training Loop . 29

4.5 Results . 30
4.5.1 Hyperparameters in semi-supervised model 30
4.5.2 Validation Performance Between Supervised and Semi-supervised

Models . 31
4.5.3 Normalize Confusion Matrix Analysis 32
4.5.4 Word Cloud Visualizations 33
4.5.5 Self training observation . 35

4.6 Testing in new dataset . 37
4.7 Lookerstudio Dashboard . 38

5 Conclusion & Future work 40
5.1 Summary . 40
5.2 Key Contributions . 40
5.3 Limitations and Challenges . 41
5.4 Future Work . 42

A Appendix A 43
A.1 Visualization under Different Initial Thresholds 43

A.1.1 Initial Threshold = 0.82 . 44
A.1.2 Initial Threshold = 0.83 . 45
A.1.3 Initial Threshold = 0.84 . 46
A.1.4 Initial Threshold = 0.85 . 47
A.1.5 Initial Threshold = 0.86 . 48
A.1.6 Initial Threshold = 0.88 . 49

A.2 Visualization under Different max_pseuodo 50
A.2.1 max_pseuodo = 30 . 51
A.2.2 max_pseuodo = 40 . 52
A.2.3 max_pseuodo = 50 . 53
A.2.4 max_pseuodo = 60 . 54
A.2.5 max_pseuodo = 70 . 55
A.2.6 max_pseuodo = 80 . 56

Bibliography 57

V

List of Figures

1.1 GenAI Assistant Workflow . 2
1.2 GenAI services architecture . 4

2.1 Sketch context requirement workflow 7

3.1 Front-end Event Architecture . 15
3.2 Data Lifecycle Architecture . 15
3.3 Distribution of categories after data preprocessing 18

4.1 Embedding models comparison . 22
4.2 Confusion matrices of different embedding models evaluated on vali-

dation set . 23
4.3 Classifier comparison . 25
4.4 Matrics with different max_pseudo 30
4.5 Normalize Confusion Matrix with supervised learning 32
4.6 Normalize Confusion Matrix with semi-supervised learning 33
4.7 Word Clouds per Class . 34
4.8 Validation Matrics during self-training 35
4.9 Class Distribution with Pseudo Labels 35
4.10 Confidence Histogram . 36
4.11 Pseudo label Counts with 0.84 threshold 37
4.12 Label distribution in test dataset . 37
4.13 Prediction in test dataset . 38
4.14 GenAI general information in Lookerstudio 39

A.1 Visualization under threshold = 0.82: class distribution, confidence
histogram, pseudo-label counts, and validation metrics. 44

A.2 Visualization under threshold = 0.83: class distribution, confidence
histogram, pseudo-label counts, and validation metrics. 45

A.3 Visualization under threshold = 0.84: class distribution, confidence
histogram, pseudo-label counts, and validation metrics. 46

A.4 Visualization under threshold = 0.85: class distribution, confidence
histogram, pseudo-label counts, and validation metrics. 47

A.5 Visualization under threshold = 0.86: class distribution, confidence
histogram, pseudo-label counts, and validation metrics. 48

A.6 Visualization under threshold = 0.88: class distribution, confidence
histogram, pseudo-label counts, and validation metrics. 49

VI

LIST OF FIGURES

A.7 Visualization with max_pseuodo = 30: class distribution, confidence
histogram, pseudo-label counts, and validation metrics. 51

A.8 Visualization with max_pseuodo = 40: class distribution, confidence
histogram, pseudo-label counts, and validation metrics. 52

A.9 Visualization with max_pseuodo = 50: class distribution, confidence
histogram, pseudo-label counts, and validation metrics. 53

A.10 Visualization with max_pseuodo = 60: class distribution, confidence
histogram, pseudo-label counts, and validation metrics. 54

A.11 Visualization with max_pseuodo = 70: class distribution, confidence
histogram, pseudo-label counts, and validation metrics. 55

A.12 Visualization with max_pseuodo = 80: class distribution, confidence
histogram, pseudo-label counts, and validation metrics. 56

VII

List of Tables

3.1 Structure of the extracted query dataset 15
3.2 Dataset Information Summary . 16

4.1 Performance comparison of various embedding models 22
4.2 Performance comparison of various classifiers. 24
4.3 Performance metrics under different initial thresholds 26
4.4 Effect of Varying ∆ on Performance under Different Initial Thresholds 28
4.5 Performance under different max_pseudo values 30
4.6 Final Hyperparameter Settings for Self-training 31
4.7 Overall performance comparison on validation set 31
4.8 Performance comparison between supervised & semi-supervised . . . 31

VIII

Chapter 1

Introduction

1.1 Background

In recent years, with the rapid development of deep learning, artificial intelligence (AI)
has gradually become a dominant assistant technique in various domains, especially in
education and engineering domain. One important development is the emergence of
Generative Artificial Intelligence (GenAI) chat assistants, which leverage large-scale
language models (LLMs) for natural language interactions, assist users in processing
complex information, and facilitate further model learning and analysis [1]. GenAI
chatbots increasingly dominate the AI landscape and have played a significant role
in various industries and functional areas [2], including creative and knowledge
industries.

Generative AI refers to a class of machine learning (ML) models and techniques
that can generate new synthetic data (e.g., text, images, audio, and code). In the
field of software development, GenAI has the potential to revolutionize all aspects of
the development process. Developers can automate tasks such as code generation
(generating code function snippets and templates), documentation, or code review
and analysis based on natural language prompts on demand. This can accelerate
developers’ workflows, enhance coding capabilities, and explore new possibilities in
the software development lifecycle. AI-driven tools have proven particularly useful in
programming applications, enabling intelligent code generation, debugging support,
and context-aware explanations to boost developer productivity[3].

Our project is aim at improving performance of the GenAI assistant in Ardunio IoT
Cloud. Ardunio IoT Cloud service is a cloud-based platform that allows users to easily
connect, manage, and control their Internet of Things (IoT) devices and applications.
As a key component of this IoT Cloud ecosystem, the Arduino Cloud Editor provides
a web-based Integrated Development Environment (IDE) for editing, compiling, and
managing sketches. With the increasing integration of AI-powered tools, it’s more
and more essential to incorporating a GenAI chat assistant into the Cloud Editor.
This AI tool significantly enhances user experience by providing intelligent coding
assistance, improving development efficiency, and facilitating interactive learning, as
demonstrated in the workflow shown in Figure 1.1. The workflow illustrates how

1

Introduction

Figure 1.1: GenAI Assistant Workflow

users interact with the GenAI Assistant within the Arduino Cloud Editor IDE. The
design of interactive buttons (3 type of ‘Hint’ and ‘Fix Errors’) directly motivates
the use of four classification categories for user queries, ensuring alignment between
user intent and system response. The 3 type of‘Hint’ button provides clear examples
of typical user intents, such as:

• Create code to blink an LED without using delays

• Explain this function: map(input, 0, 255, 0, 10)

• Suggest a project idea using a strip LED

This classification framework is designed by Arduino and helps the GenAI Assistant
deliver more targeted and meaningful support, making it an essential component for
optimizing the user experience and advancing the project’s objectives.

As user queries often require domain-specific and contextually accurate answers,
Retrieval-Augmented Generation (RAG) is used to enhance the accuracy and rel-
evance of responses from large language models (LLMs) by incorporating external
data sources. RAG systems retrieve relevant documents (e.g., Arduino forums, docu-
mentation, and templates) and feed them to a generative language model to produce
informed, high-quality responses.

Critically, GenAI chatbots vary greatly in terms of effectiveness while generate
answer with RAG. While the assistant can generate context-aware code suggestions
and insightful explanations, its responses quality are inherently constrained by
the limitations of generative AI [4]. Even the best powerful GenAI chatbots can
misunderstand user queries, miscommunication, or produce low-quality or inaccurate
responses, which may lead to service failure or unsatisfied results [5]. Failure to
recover from a service breakdown through chatbot intervention can magnify its
adverse consequences, severely affecting a brand’s reputation and financial outcomes

2

Introduction

[6]. Paradoxically, while GenAI chatbots present promising new opportunities for
user service, they also present significant challenges and threats.

Despite these challenges, GenAI Assistants remain a valuable tool for assisting
users with great promise and commercial value. Ongoing improvements aim to
increase the accuracy and reliability of its responses in future iterations[7]. Therefore,
predicting the intent of user questions and improving the accuracy of GenAI answer
generation will be important keys to progress in this area.

In our current configuration of GenAI assistant, each user query to the AI assistant
in the Cloud Editor initiates a series of steps to fetch the complete open sketch,
which is then consistently included in the system prompt to provide context before
generating a response. While this guarantees that the assistant always has the full
context, in practice, when the query is not related to the current sketch, we are
sending information that’s not needed. When the assistant receives unnecessary
details, it’s more likely to become distracted, produce less accurate answers, or even
hallucinate. In this regard, I was able to consistently replicate a case of hallucination
due to too much information we pass in the context. This situation also leads to
slower responses, as well as extra token usage that adds up over time. Therefore, we
propose a quick preliminary check with a quick and low-cost LLM as an immediate,
low-effort improvement.

This additional layer will classify user queries to determine whether the open
sketch context is actually necessary. Integrating this step requires only minor
adjustments, as our backend service already supports multiple LLMs. Although it
adds a negligible amount of time and a small recurring cost, it streamlines the flow.
If the sketch isn’t needed for a particular question, we don’t include it in the process.
This reduces the cognitive load on the main LLM, prevents unnecessary confusion,
and ensures more reliable answers. In addition, this preliminary step may result in
some savings due to not sending unnecessary input tokens: potentially around $50
per month. Anyway, the focus is on ensuring a leaner, more efficient prompt that
keeps the assistant’s attention squarely on what matters, helping it respond more
accurately and consistently.

The graph in figure 1.2 illustrates the overall architecture of the GenAI Assistant,
which receives user queries, generates responses via the Arduino GenAI API and
stores in database. According to Arduino developing document, a rough estimate
costs for this phase, in excess, for the cost on Bedrock for this additional preliminary
step (with monthly volumes at around 10,000 messages and an input size of 7̃50
tokens) is as follows:

• Using the least expensive, less reliable model: $1.88/month

• Using an intermediate, slightly more reliable model: $6.02/month

• Using the most reliable model: $7.53/month.

3

Introduction

Figure 1.2: GenAI services architecture

In the following sections, we propose a semi-supervised user intent classification
model based on embedding representations to identify four main intent categories:
code generation, explanation, suggestions, and error fixing. This classification allows
the RAG pipeline to route queries appropriately, select relevant document sources,
and reduce unnecessary information noise to enhance response quality and speed.
These enhancements not only refine AI responses but also drive business value by
increasing user retention and reducing extra token usage, contributing to the product’s
long-term growth. As such, user intent prediction serves as a critical component for
optimizing retrieval and generation stages in the Arduino GenAI assistant.

1.2 Objective

The objective of this study is to enhance the Arduino GenAI Assistant’s ability
to understand and respond to user queries by introducing a semi-supervised intent
classification framework.

Once we gather enough data on which queries require the sketch and which do not,
we can move beyond the initial classification step and develop our own ML model.
By training a custom binary classifier that runs directly on our backend, we eliminate
the need for external LLM calls. This model will instantly determine whether to
include the sketch, avoiding delays and extra costs associated with another call to
Bedrock and still saving money not sending the unnecessary tokens.

In addition, pursuing this strategy does not interfere with our priorities, such
as integrating Retrieval Augmented Generation (RAG) and improving the assistant

4

Introduction

response quality. The incremental approach—starting with a simple LLM-based
filter, then graduating to an in-house model—allows us to develop these capabilities
in parallel. Our existing infrastructure and tools (such analytics for data collection
and EKS for deployment) are suitable for assisting the work, ensuring a smooth
integration process without derailing ongoing projects.

To achieve this, we mainly focus on four key objectives:

1. Develop a robust text preprocessing pipeline – to clean and normalize
user-submitted queries from the Arduino Cloud Editor.

2. Design an embedding-based semi-supervised classification model –
to categorize queries into four key intent classes: code creation, explanation,
suggestion, and error fixing.

3. Leverage user behavior analytics from Lookerstudio – to validate intent
taxonomy design, uncover dominant query patterns, and evaluate improvements
in user engagement and assistant performance.

4. Evaluate the classification model and overall assistant performance
– measuring improvements in classification accuracy, retrieval relevance, and
user guidance.

By addressing these goals, this study aims to enhance user experience, optimize
AI-driven interactions, and improve the efficiency of GenAI Assistant in practical
applications.

1.3 Literature Review

Intent detection and classification—also known as semantic utterance classification—is
a fundamental component of natural language understanding (NLU) in task-oriented
conversational agents. This process involves identifying the underlying intent of a
user utterance from a predefined set of intent categories, enabling the system to guide
the dialogue flow according to the recognized intent[8]. The current study found
that structured categorization can improve the adaptability of chatbots[9], thereby
providing more personalized and contextually relevant responses.

Prior researches have explored various methods for intent classification and dialog
act recognition across multiple domains. In the context of software engineering,
recent studies have examined how conversational AI can support developer workflows,
including automating low-level workflows[10], questions responding based on code
repositories[11], expert recommendation[12] and conflict resolution[13]. These studies
provide a foundational basis for designing the Arduino GenAI Assistant and guiding
the intent classification process, which includes four primary categories: code creation,
explanation, suggestion, and error fixing.

Sequence classification is a central technique in intent detection which assigns
labels to complete textual inputs such as user queries. Nowadays Recurrent Neural

5

Introduction

Networks (RNNs) and Transformers are widely used to analyze input sequences
and predict user intent, thus enabling conversational agents to provide targeted and
effective responses. However, many datasets have inherent limitations and challenges,
including limited labeled samples, class imbalance, rare technical terms, and limited
variability in query wording. These issues may lead to unstable and poor model
performance, thereby reducing its versatility in practical applications[14]. Addressing
these challenges is particularly critical for domain-specific systems like the Arduino
GenAI Assistant, where diverse user intents must be understood accurately despite
limited supervised data.

To address the aforementioned challenges, prior studies have explored a variety
of approaches for intent classification, ranging from traditional machine learning to
recent advances in transformer-based models. Al-Tuama et al. evaluated classical
classifiers—including Support Vector Machines (SVM), Random Forests, Logistic
Regression, and Multinomial Naive Bayes—for virtual assistant intent detection, and
investigated data augmentation techniques to boost performance in low-resource
settings [15]. In parallel, hybrid and transformer-based architectures have emerged
as powerful tools for intent classification. For example, BERT-BACBC and Co-
Interactive Transformer architectures combine transformer encoders with recurrent
layers to leverage both contextual and sequential information [16]. Shen et al.
proposed integrating BiLSTM with RoBERTa and applying soft voting, achieving
notable improvements in classification accuracy [17]. These research findings inform
our methodology, motivating the use of multiple machine learning models in an
ensemble framework. Specifically, we adopt a soft voting strategy through a Voting
Classifier to leverage the complementary strengths of individual classifiers.

Despite advancements, existing methods often struggle with unseen intents, low-
resource languages, and domain-specific applications, such as code-related question
classification in the Arduino ecosystem. Few-shot and zero-shot learning approaches,
such as adaptive clustering for unknown intents[18] show promise in addressing these
issues. In this context, our study explores a lightweight, embedding-based semi-
supervised classification pipeline that builds on these prior insights. By combining
transformer embeddings with ensemble classifiers and dynamic pseudo-labeling, we
aim to achieve robust intent categorization under limited supervision, while enabling
downstream integration with RAG-based response generation.

1.4 Overall Structure

• chapter 2 introduce the overall framework and Methodology for this study.

• chapter 3 collect users data, analysis data and process data.

• chapter 4 simulate different cases with different parameters settings.

• chapter 5 discuss the result and present the future works.

6

Chapter 2

Methodology

2.1 Research Framework

This study proposes a semi-supervised learning pipeline for classifying user queries
in the Arduino Cloud GenAI Assistant. The objective is to enhance the system’s
ability to understand user intent and selectively decide whether to trigger the
resource-intensive Retrieval-Augmented Generation (RAG) process. The framework
is composed of four primary components: query preprocessing, embedding-based
intent classification via a semi-supervised model, intent-aware retrieval, and final
response generation using an LLM-based assistant.

The proposed research framework is designed to pre-predict user queries prior to
invoking the GenAI API, enabling early prediction and classification of user intent.
Figure 2.1 shows whether system needs to refer to the sketch context to generate an
response when querying, which enables the optimization of the reply generation of
GenAI assistant by reducing unnecessary API calls during the process. This allows
the system to identify relevant knowledge sources in advance, optimize response
generation, and reduce unnecessary API calls, thereby improving both efficiency and
resource utilization. It also shows how user query data is stored and used as a data
source for our project.

The framework begins by collecting queries submitted by users within the Arduino
Cloud Editor. After preprocessing, the queries are encoded using sentence embeddings
and passed through a semi-supervised classifier trained to categorize them into four

Figure 2.1: Sketch context requirement workflow

7

Methodology

intent types: code creation, explanation, suggestion, and error fixing. Based on the
predicted intent, the system dynamically determines whether additional retrieval from
the user’s current sketch is necessary. This selective approach improves responsiveness
and reduces the computational cost of running full retrieval-based inference.

2.2 Algorithms

2.2.1 Self-Training Framework

We adopt a self-training semi-supervised learning strategy to combine a small labeled
dataset DL with a large unlabeled user queries DU . Initially, a supervised classifier
is trained on the labeled data for the first round and get a teacher model. In each
self-training iteration, the classifier predicts the class probabilities of the unlabeled
samples. The predictions with high confidence are selected as pseudo labels and
added to the labeled dataset for the next round of training.

The overall self-training procedure is illustrated in Algorithm 1. At each iteration,
the model is trained on a growing labeled set, comprising the original labeled data and
confident pseudo-labeled samples selected based on dynamic, class-wise thresholds
(as shown in Eq. 2.1). This threshold is adaptively adjusted according to the pseudo-
label distribution of each class to promote class balance during the iterative training
process.

To prevent overfitting or performance degradation, we apply an early stopping
mechanism during the self-training process. Specifically, after each iteration, we
evaluate the model on a reserved validation set. By comparing the evaluation results
of each round, the model checkpoint with the highest validation performance is
saved. If the validation performance does not improve in consecutive P rounds, the
self-training process is terminated. This ensures that the model can only benefit
from pseudo-labeled samples if they can improve generalization performance.

2.2.2 Pseudo-Label Selection with Dynamic Thresholding

To ensure both prediction reliability and balanced class representation during self-
training, we adopt a dynamic, class-wise thresholding strategy. For each intent
class, a separate confidence threshold θ

(t)
k is computed at each iteration t, based on

both the iteration number and the pseudo-label distribution observed in previous
rounds.

We start with a relatively high base threshold (e.g., θinit = 0.84) to ensure early
pseudo-labels are highly confident. This base threshold decays over time to allow
more diverse samples as the model improves. Specifically, at iteration t, the decayed
base threshold is computed as:

θ
(t)
0 = θinit −∆ · t

To address class imbalance, we dynamically adjust the threshold for each class k

based on its proportion in the pseudo-labeled data. Let c
(t)
k denote the cumulative

8

Methodology

Algorithm 1 Self-Training with Early Stopping and Dynamic Threshold
Require: Labeled dataset DL, Unlabeled dataset DU , max rounds T , patience P ,

max pseudo-labels per class M
Ensure: Trained classifier f

1: Initialize classifier f on DL

2: Initialize best validation score sbest ← −∞, patience counter p← 0
3: Initialize pseudo-label count tracker {ck ← 0} for all classes k
4: for round t = 1 to T do
5: Train classifier f on current DL

6: Predict class probabilities P (y = k | xi) for xi ∈ DU

7: Assign pseudo-labels ŷi = arg maxk P (y = k | xi)
8: Initialize pseudo-labeled set D(t)

P ← ∅
9: for each class k do

10: Compute threshold θ
(t)
k = AdjustThreshold(k, t, {ck})

11: Select top-M samples from DU where ŷi = k and P (y = k | xi) ≥ θ
(t)
k

12: Add selected (xi, ŷi) to D(t)
P , update ck

13: end for
14: if D(t)

P = ∅ then
15: Select top-N most confident predictions as fallback
16: Add them to D(t)

P

17: end if
18: Update DL ← DL ∪ D(t)

P

19: Remove used samples from DU

20: Evaluate on validation set to obtain score s(t)

21: if s(t) > sbest then
22: Save model fbest ← f , update sbest ← s(t), reset p← 0
23: else
24: p← p + 1
25: end if
26: if p ≥ P or DU = ∅ then
27: Break ▷ Early stopping or no data left
28: end if
29: end for

return fbest

9

Methodology

number of pseudo-labels assigned to class k up to round t, and K the number of
total classes. Define:

r
(t)
k = c

(t)
kqK

j=1 c
(t)
j + ε

, and r∗ = 1
K

We then compute an imbalance factor using a square root scaling:

δ
(t)
k =

ó
r

(t)
k

r∗

The threshold for each class is then adjusted non-linearly based on δ
(t)
k :

• If δ
(t)
k > 1.2, class k is over-represented; the threshold is increased to suppress

further pseudo-labeling.

• If δ
(t)
k < 0.8, class k is under-represented; the threshold is decreased to allow

more pseudo-labels.

• Otherwise, no adjustment is made.

The adjusted threshold is clipped within a valid range (e.g., [0.80, 0.98]) to prevent
extreme values and keep high quality examples. A pseudo-labeled instance xi ∈ DU

is selected into the training set only if:

max
k

P (y = k | xi) ≥ θ
(t)
ŷi

, where ŷi = arg max
k

P (y = k | xi) (2.1)

If no sample satisfies the current thresholds, a fallback mechanism selects the
top-N most confident predictions across all classes, ensuring that the model continues
to receive additional training data. After each iteration, the model is retrained on
the expanded labeled set, and its performance is evaluated on a held-out validation
set. The best-performing model is checkpointed, and early stopping is applied if no
validation improvement is observed for P consecutive rounds.

The threshold for each class is adjusted using the AdjustThreshold function
(Algorithm 2), which takes into account the class distribution of selected pseudo-
labels up to the current iteration.

2.3 Models

2.3.1 Sentence Transformers

Unlike standard BERT representations that focus on contextual token-level encoding,
sentence embedding models are trained to produce fixed-length semantic represen-
tations of whole sentences, optimized for similarity, classification, and clustering
tasks. Through empirical evaluation, we found that Sentence Transformer models
such as intfloat/ee5-base-v2 significantly outperform traditional BERT-based
methods in classification accuracy and pseudo-label stability. Furthermore, sentence

10

Methodology

Algorithm 2 AdjustThreshold Function
1: function AdjustThreshold(class k, round t, pseudo-label counts {ck})
2: Base threshold θ0 ← θinit −∆ · t
3: Total count C ←

q
j cj + ε

4: Class ratio rk ← ck
C , Expected ratio r∗ ← 1

K

5: Imbalance factor δ ←
ñ

rk
r∗

6: if δ > 1.2 then
7: θk ← θ0 + 0.02 ·min(δ, 2.0)
8: else if δ < 0.8 then
9: θk ← θ0 − 0.03 ·max(δ, 0.5)

10: else
11: θk ← θ0
12: end if
13: return min(0.98, max(0.80, θk))
14: end function

embeddings allow for efficient cosine similarity computations and downstream model
compatibility, making them well-suited for our semi-supervised learning pipeline.
For text representation, they offer a good trade-off between semantic richness and
computational efficiency. In the experiments, we employ different sentence embed-
ding models and compare their performance on supervised classification on labeled
datasets. This provided a basis to choose a sentence transformer model which is
suitable for this project.

2.3.2 Classification Models

To build a robust query intent classifier, we compared several model architectures.
Given that the preprocessed inputs are sentence embeddings generated by a trans-
former model, which already provides dense semantic representations, we opted for
lightweight and interpretable classifiers instead of end-to-end deep neural networks.

Feed Forward Neural Networks (FFNNs) can model non-linear interactions, but
their performance was not significantly superior to tree-based models when trained on
a relatively small labeled dataset (due to the cost of manual annotation). Moreover,
FF-NNs required more complex tuning, higher computational resources, and offered
less interpretability compared to classical models. However, as more labeled data
becomes available through ongoing collection and refinement, FF-NNs may provide a
promising avenue for future performance enhancement.

Ultimately, we selected LightGBM, CatBoost, and Logistic Regression models
using a combination of VotingClassifier meta-learners based on their performance
and characteristics. Tree-based models (LightGBM, CatBoost) are highly effective
for tabular data such as sentence embeddings and can handle small and imbalanced
datasets well. Logistic Regression adds a strong linear component that complements
the tree learners. The ensemble benefits from the strengths of each base model and
provides more stable and generalized predictions across classes. Furthermore, this
ensemble approach allows efficient training on CPU, faster experimentation, and

11

Methodology

better explainability — crucial for practical deployment in the GenAI Chat Assistant
pipeline.

• LightGBM: Light Gradient Boosting Machine (LightGBM) is a fast, dis-
tributed, high-performance gradient boosting framework based on decision
trees. It is particularly effective for structured data, supports leaf-wise tree
growth, and handles large-scale data with high efficiency. Its ability to capture
complex non-linear feature interactions makes it well-suited for modeling the
embedding representations of queries.

• CatBoost: CatBoost is another gradient boosting algorithm based on decision
trees, developed by Yandex. It is optimized for categorical feature handling
and reduces overfitting via ordered boosting. Unlike LightGBM, CatBoost is
more robust when working with smaller datasets or when categorical features
(like tokenized keyword IDs) are involved.

• Logistic Regression: We also include a regularized Logistic Regression
classifier as a linear baseline. Logistic Regression is efficient and provides
interpretable decision boundaries in the embedding space. Although limited
in modeling non-linear relationships, it often performs competitively when the
feature space is well-transformed.

• VotingClassifier Ensemble: To leverage the strengths of these diverse models,
we employ a soft voting ensemble using Scikit-learn’s VotingClassifier. Each
base learner outputs class probabilities, and the final prediction is derived
from the average of their predicted probabilities. This approach benefits the
robustness and generalization of semi-supervised learning on unseen data by
balancing the strengths of tree-based learners (non-linear expressiveness) and
linear models (stability and regularization). The ensemble classifier serves
as the teacher model in our self-training pipeline, responsible for generating
pseudo-labels during iterative training.

The final predicted label ŷ is obtained as:

ŷ = arg max
k

A
1

M

MØ
m=1

Pm(y = k | x)
B

(2.2)

where:

• M is the number of base classifiers,

• Pm(y = k | x) is the probability predicted by the m-th classifier for class k,

• ŷ is the final predicted class for instance x.

The final prediction for a given query is determined via soft voting, where the
class with the highest average calibrated probability across the ensemble is selected,
in 2.2. This ensemble design enhances robustness and generalization across intent
types, especially in low-resource scenarios.

12

Methodology

2.4 Key techniques

Several custom techniques contribute to the performance and applicability of the
proposed system:

• Domain-Specific Text Preprocessing: A tailored pipeline removes noisy code
blocks, template phrases, and compiler logs from user queries. This improves
input consistency and embedding quality.

• Confidence-Calibrated Ensemble Classifier: To enhance the reliability of pseudo-
labels, we employ an ensemble classifier calibrated with Platt scaling (sigmod).
This ensures that predicted probabilities are well-aligned with actual confidence.

• Dynamic Thresholding for Pseudo-Label Selection: Instead of using a fixed
global threshold for pseudo-labeling, we compute thresholds dynamically per
class to ensure balanced pseudo-label acquisition and prevent overfitting on
dominant classes.

• Self-Training with Early Stopping Based on Validation Feedback: To avoid
error accumulation from noisy pseudo-labels, we adopt early stopping based on
validation performance, storing the best model across iterations.

• Intent-Based RAG Triggering: The output of the intent classification model
informs whether retrieval from the user’s current sketch is needed. For example,
queries classified as "fix errors" are more likely to obtain information from
sketch context retrieval, while other user queries may be responded to directly.
This selective triggering mechanism reduces the need for continuous retrieval,
significantly reducing LLM inference cost and latency.

13

Chapter 3

Data preparation

3.1 Data collection

Arduino GenAI API is a cloud-based service that provides AI-powered assistance
for Arduino-related queries. While the API is designed with the potential to expand
to other Arduino-related contexts in the future, at present, its main focus is on
coding assistance.The API layer manages incoming HTTP requests through RESTful
endpoints for conversation management and message processing, secured by JWT-
based authentication.

A dedicated conversation management module maintains the state and history of
user interactions, enabling contextual responses. The natural language generation
(NLG) component is the core of the AI functionality, leveraging Langchaingo, a useful
library for building applications with large language models. This NLG component
interfaces with Language Model (LLM) runtimes, primarily utilizing AWS Bedrock
for AI processing. The use of Langchaingo in the NLG module allows for sophisticated
prompt engineering and efficient handling of conversation context.

A repository layer handles data persistence, storing conversation histories. AWS
Bedrock, as runtimes that run LLMs usually do, does not save messages sent previously
in a conversation. Arduino Gen AI API then uses a database to save conversations
and their message history. The dataset used in this study was collected from user
queries submitted through the Arduino Cloud Editor since released. Every time a
user uses GenAI Assistant, the front end is triggered to upload log details, each query
record includes raw text input, timestamp, user metadata, and etc.

For collecting GenAI assistants data, we need to build a ETL pipeline with
front-end events. Using the actual architecture for events is possible to expand
it by replicate the data split by events type in different tables in Big Query. To
populate these tables will be use the feature S3 Data Transfer of Google to read new
data from AWS S3 every day. Front-end Event Architecture in figure 3.1 illustrates
the flow of telemetry data from front-end user interactions to the cloud-based data
warehouse (BigQuery), including steps like event tracking, streaming collection, and
ETL (Extract Transform Load). Figure 3.2 shows the data architecture that powers
analytics and pipelines, covering data sources, centralized storage (data lake and

14

Data preparation

warehouse), and downstream activation for dashboards, personalization, and model
training.

Figure 3.1: Front-end Event Architecture

Figure 3.2: Data Lifecycle Architecture

The dataset used in this study was collected daily from AWS S3 and extracted
via SQL in BigQuery. In addition, Looker Studio and BigQuery were connected to
enable data visualization for the Arduino GenAI assistant.

3.2 Data structure

3.2.1 Data Format

The core dataset used for user query classification was extracted from the BigQuery
table. This table logs user interactions with the Arduino Cloud Editor, specifically
capturing events related to GenAI assistant usage. We filtered rows where the
event category is "ai-question submitted" and the submitted text field is not null.
Additionally, only events occurring after GenAI assistant release time were included
to ensure relevance and recency. A structured overview of the dataset is presented in
Table 3.1.

Field Name Type Description
d_user_id STRING Unique user identifier
time TIMESTAMP Local timestamp of the query event
dt DATE Event date in UTC format
d_question_submitted STRING The user-submitted query text to the GenAI assistant
label STRING Placeholder for human or model-assigned intent label

Table 3.1: Structure of the extracted query dataset

15

Data preparation

3.2.2 Dataset Overview

The dataset used in this study was collected from Arduino’s production environment
between April 15th, 2025 and May 17th, 2025, since the release of the GenAI
assistant module. A total of 20,892 user-submitted questions were extracted through
SQL queries from BigQuery logs. In the process of labeling data, we try to select
user queries of different styles but with clear intentions so that the model can learn
more generalized. To train the classification model, we manually labeled a subset
of samples according to the developed rules and evenly distributed them into four
predefined intent categories: Create code, Explain, Suggest, and Fix errors. Then
we select 800 items from all the labeled samples, which is about 10% of the total
training dataset. To prevent the model from being biased towards most types, we
select an average labeled data set, that is, 200 samples of each type. This labeled set
serves as the seed data for semi-supervised training.

For evaluation purposes, a hold-out testing dataset was collected from a later
time period, spanning May 18th, 2025 to June 17th, 2025.

Collection Details
Training dataset "2025-04-15" to "2025-05-17"
Total user queries extracted 20,892
Labeled samples 800 (200 per intent class)
Testing dataset "2025-05-18" to "2025-06-17"

Table 3.2: Dataset Information Summary

3.3 Data Processing

3.3.1 Purpose

The raw user-submitted questions collected from the Arduino Cloud Editor interface
contain various non-informative patterns, including fixed template hints, pure source
code, and compiler-generated error messages. This information is very difficult for
models to process because it is often difficult to extract useful semantic information.
In addition, the default language of the GenAI assistant is English, but users can send
arbitrary information in any language even if they know the usage rules. Therefore,
in order to prepare these inputs for downstream classification, we developed a robust
data processing pipeline with the following objectives:

• Filter out irrelevant or low-quality inputs that do not contain meaningful user
intent.

• Extract and normalize natural language queries suitable for intent classification.

• Annotate and categorize questions into predefined types for further modeling.

• Language detection, select valid user query statements in English.

16

Data preparation

3.3.2 Processing Pipeline

The preprocessing pipeline consists of multiple steps, implemented sequentially to
ensure high-quality input:

1. Template and Pattern Detection: Questions matching pre-defined system
templates (e.g., ‘Hints’, ‘Fix errors’) or button-triggered actions in the IDE are
tagged and removed.

2. Code Snippet Removal: The remove_code_snippets(text) function is
used to remove pure code blocks based on common C/C++ syntax structures,
including:

• C/C++ comments (//..., /*...*/)

• Preprocessor directives (e.g., #include, #define)

• Paths and error stack traces

• Enum, struct, and class definitions

• Variable and constant declarations

• Function definitions (including nested braces)

• Empty lines and redundant whitespace

3. Language and Validity Checks: Non-English inputs are identified and
excluded using language detection algorithms. Very short or malformed texts
are also discarded.

4. Text Normalization: Remaining natural language inputs are lowercased,
stripped of punctuation, and normalized to reduce noise and lexical variance.

3.3.3 Preprocessing Output and Category Definition

To filter out low-value or noisy inputs, we applied a multi-stage preprocessing pipeline
that removes code-only inputs, compiler error logs, fixed UI templates, and non-
English queries. Based on this logic, each question is categorized into one of the
following five groups:

• To Classify: Cleaned and valid English-language queries that are retained for
downstream classification (i.e., create code, explain, suggest, fix error).

• Fix Errors: Automatically submitted via the “Fix Errors” button in the
IDE. These often include compiler traces or problem statements with minimal
natural language.

• No English: Queries identified as non-English or without any meaningful
English content.

• Code: Inputs composed only of source code, with no accompanying natural
language context or question.

17

Data preparation

• Hints: Pre-filled instructional text provided by the UI, not authored by users
themselves.

Figure 3.3 shows the distribution of these categories. Notably, about 40% of the
total dataset falls into the ‘To Classify’ category, demonstrating that a substantial
portion of user input is suitable for intent understanding. The remaining categories,
while not directly used for classification, help identify patterns of user interaction
and behavior with the assistant system.

We will train and classify the model on the ‘To Classify’ dataset. We will take
about 10%-15% of the data for manual labeling, and then select non-repetitive and
high-quality labeled data for the initial learning of semi-supervised learning, as the
teacher model [19]. Subsequently, multiple rounds of self-training are performed on
the remaining unlabeled ‘To Classify’ dataset, and a new student model is generated
by adding model predictions and high-confidence pseudo labels. Each round of new
models needs to be verified on the validation set to find the best model for testing.

Figure 3.3: Distribution of categories after data preprocessing

18

Chapter 4

Experiments and Results

4.1 Evaluation Metrics

We evaluate our model on the validation set using standard classification metrics:
precision, recall, F1-score, and accuracy. To address the class imbalance present
in our dataset, we emphasize metrics that reflect per-class performance rather than
relying solely on overall accuracy.

Here are some important evaluation metrics:

• Macro F1-score: Reports the unweighted average of F1-scores across all
classes. This metric treats each class equally and is critical to ensure that
the performance on low-frequency but semantically important classes is not
overshadowed by the dominant class.

• Weighted F1-score: Computes the average F1-score weighted by class frequen-
cies, reflecting the overall performance more realistically when class imbalance
exists.

• Per-class Recall: Especially emphasized for the Suggest, Explain, and Create
Code categories, as these directly affect downstream Retrieval-Augmented
Generation (RAG) pathways. High recall ensures accurate routing of queries
to the appropriate knowledge modules.

• Accuracy: While providing a general performance overview, accuracy can be
misleading in imbalanced settings and is therefore interpreted in conjunction
with the above class-sensitive metrics.

We prioritize models with strong Macro F1-scores and balanced per-class re-
call to ensure consistent and robust user experience in the assistant’s multi-intent
environment.

Beyond general classification performance, we introduce additional metrics focused
on optimizing the injection of sketch context. The primary objective is to accurately
identify Fix Errors queries that genuinely require sketch context, while minimizing
unnecessary sketch loading to reduce inference cost and latency. We report the
following targeted indicators:

19

Experiments and Results

• Recall in ‘Fix errors’: Measures the proportion of true ‘Fix errors’ correctly
identified by the model. High recall is essential to avoid missing error-fix queries
that depend on sketch context.

• Precision in ‘Fix errors’: Measures the proportion of predicted ‘Fix errors’
that are actually true error-fix queries. High precision ensures that sketch
context is not injected unnecessarily.

• F1 in ‘Fix errors’: The harmonic mean of precision and recall for the ‘Fix
errors’ class. This balances the trade-off between missing true positives and
injecting context incorrectly.

In our cost-sensitive design, we prioritize reducing false sketch injections while
maintaining high recall on true ‘Fix errors’, striking a balance between performance,
resource efficiency, and user experience.

4.2 Experimental Setup

4.2.1 Dataset Description

The experiments are conducted on the preprocessed dataset toclassify.csv, which
contains user-submitted questions, filtered and processed data. The data collection
period is from April 15, 2025 to May 17, 2025, with a total of 8250 samples. A subset
of 800 instances was manually annotated into four intent categories, each with 200
samples. For training dataset, it includes 640 labeled data and 7450 unlabeled data.
Validation dataset includes 160 labeled data, 40 per each class.

To enable effective classification of user queries and guide appropriate AI assistant
responses, we define four semantic categories: Create code, Explain, Suggest, and
Fix errors. This categorization was derived through manual inspection of real-world
user submissions collected from the Arduino Cloud Editor platform. These categories
also corresponds to the function buttons designed by Arduino GenAI Assistant UI
(User Interface).

• Create code (label 0): Questions explicitly requesting code generation from
scratch. These queries typically contain functional descriptions or goals (e.g.,
“How to blink two LEDs alternately?”).

• Explain (label 1): Requests for explanation or clarification of code snippets,
hardware components, or abstract behaviors. Examples include “What does
this function do?” or “Why is the LED blinking irregularly?”

• Suggest (label 2): Open-ended questions asking for recommendations, im-
provements, or design strategies. This includes queries such as “What sensor
should I use?” or “How to make it more energy efficient?”

20

Experiments and Results

• Fix errors (label 3): Problem-oriented queries, often associated with compi-
lation errors, runtime bugs, or debugging symptoms. This category is closely
tied to the Cloud Editor’s ‘Fix Error’ feature.

This label classification is motivated by both empirical observations and UI design
features. The Arduino GenAI Assistant provides pre-defined ‘Hints’ and ‘Fix errors’
prompts, guiding users to interact with the assistant in ways that naturally reflect
these categories. Additionally, this classification aligns well with the functional needs
of a RAG framework, where identifying the type of question (e.g., code generation
vs. explanation) helps in:

• Deciding whether sketch-level context should be retrieved for grounding the
response.

• Reducing unnecessary retrieval overhead when the query is self-contained (e.g.,
suggest-style or simple explanations).

• Improving LLM response specificity by conditioning prompts on the query type.

In this way, our four-class setup not only reflects authentic user intent but also
enhances the efficiency and effectiveness of the downstream GenAI system by enabling
structured query understanding and response selection.

4.2.2 Text Representation

To effectively represent short user-submitted queries, we evaluated several pre-trained
sentence embedding models, focusing on the trade-off between semantic quality,
vector dimensionality, and computational efficiency. The models considered include:

• all-MiniLM-L6-v2

• all-mpnet-base-v2

• intfloat/e5-base-v2

• mixedbread-ai/mxbai-embed-large-v1

• moka-ai/m3e-base

• BAAI/bge-large-en-v1.5

• BAAI/bge-m3

• nomic-ai/nomic-embed-text-v1

When conducting supervised learning training, the entire labeled dataset is
standard scaled before sentence embedding. Each model was tested only with labeled
dataset and assessed based on key evaluation metrics and embedding dimension. The
accuracy of the validation set can more directly measure the model’s generalization

21

Experiments and Results

Model Accuracy Precision Recall F1-score Dimension
all-MiniLM-L6-v2 0.63750 0.642522 0.63750 0.639376 384
all-mpnet-base-v2 0.68750 0.691805 0.68750 0.687595 768
e5-base-v2 0.78750 0.799925 0.78750 0.789513 768
mxbai-embed-large-v1 0.73750 0.749781 0.73750 0.740385 1024
m3e-base 0.75000 0.762982 0.75000 0.752885 768
bge-large-en-v1.5 0.76875 0.780319 0.76875 0.771503 1024
bge-m3 0.77500 0.784872 0.77500 0.776229 1024
nomic-embed-text-v1 0.75625 0.768823 0.75625 0.759085 768

Table 4.1: Performance comparison of various embedding models

ability for ‘unseen data’, which meets our needs for evaluating the generalization
performance of the embedding model for real new samples. Table 4.1 summarizes
the performance of all models.

Figure 4.1: Embedding models comparison

After empirical comparison on downstream classification performance and infer-
ence efficiency (figure 4.1), we selected intfloat/e5-base-v2 as the final embedding
model. It achieved the best balance between accuracy and speed in our semi-
supervised classification pipeline. Specifically, it outperformed lighter models such
as all-MiniLM-L6-v2 on macro F1-score, while maintaining significantly faster in-
ference compared to larger models like mixedbread-ai/mxbai-embed-large-v1 or
BAAI/bge-large-en-v1.5. Furthermore, e5-base-v2 is optimized for embedding
short texts and questions, aligning well with the nature of our dataset.

Figure 4.2 shows the confusion matrix after using different sentence transformers,
reflecting the prediction results for each category. e5-base-v2 has relatively high
prediction accuracy in all categories and can better identify ‘Suggest’ category, which
is usually difficult to distinguish.

Considering both performance and efficiency, we selected intfloat/e5-base-v2
for the main experiments due to its balance between high evaluation metrics, fast

22

Experiments and Results

(a) MiniLM (b) MPNet

(c) E5-base-v2 (d) MXBai

(e) M3E (f) BGE-Large

(g) BGE-M3 (h) Nomic

Figure 4.2: Confusion matrices of different embedding models evaluated on valida-
tion set

23

Experiments and Results

inference time, and moderate embedding dimension. These sentence embeddings were
computed once and used as static input features to the classifier, enabling efficient
reuse during iterative self-training.

It should be noted that the selection of this sentence embedding model is only
performed in the labeled dataset, and the same validation set is used to compare the
performance. Because we only want to compare the embedding and understanding
capabilities of the sentence transformer for this type of queries, it is more time-
saving and resource-saving to directly use the supervised learning classification for
comparison.

4.2.3 Classifier Architecture

Before finalizing the ensemble-based classifier, we systematically evaluated a set
of baseline models on the cleaned and embedded textual dataset. The goal was
to identify models that offer complementary strengths in terms of generalization,
robustness, and efficiency, especially under the constraints of noisy, semi-supervised,
and imbalanced data. The experiments are based on the use of the intfloat/e5-base-v2
embedding transformer combined with supervised learning classifiers on a labeled
dataset.

We evaluate a range of individual classifiers and ensemble models to determine the
most suitable base learner for our self-training semi-supervised learning framework.
As shown in Table 4.2, several models demonstrate competitive performance across
Accuracy, Precision, Recall, and F1-score. As shown in the figure 4.3, VotingClas-
sifier2, which combines Logistic Regression, CatBoost, and LightGBM, achieves
the best overall performance with F1-score of 0.7895 and an accuracy of 0.7875,
outperforming all other models including single learners and alternative ensembles.

Model Accuracy Precision Recall F1-score
LogisticRegression 0.70625 0.704994 0.70625 0.704228
RandomForest 0.70625 0.733836 0.70625 0.707681
XGBoost 0.74375 0.750725 0.74375 0.744940
LightGBM 0.70625 0.730186 0.70625 0.710782
CatBoost 0.71250 0.721055 0.71250 0.714524
VotingClassifier1 (lr+cat+xgb) 0.76875 0.779535 0.76875 0.770529
VotingClassifier2 (lr+cat+lgb) 0.78750 0.799925 0.78750 0.789513

Table 4.2: Performance comparison of various classifiers.

24

Experiments and Results

Figure 4.3: Classifier comparison

Interestingly, although XGBoost achieves the highest performance among indi-
vidual models (F1-score = 0.7449), it does not lead to the strongest ensemble when
integrated into a voting classifier (VotingClassifier1). We hypothesize that this is due
to reduced model diversity when XGBoost is combined with CatBoost and Logistic
Regression, as XGBoost and CatBoost may produce similar decision boundaries,
limiting the benefit of ensembling. In contrast, LightGBM exhibits a more comple-
mentary behavior when combined with the other two models (VotingClassifier2),
possibly due to its histogram-based tree learning and leaf-wise split strategy, which
improves generalization on pseudo-labeled and noisy data.

The superior performance of VotingClassifier highlights the importance of model
diversity and complementarity in ensemble design, especially in semi-supervised
learning where label noise and distributional uncertainty are prominent. It was
constructed by combining LightGBM, CatBoost, and Logistic Regression, while
using soft voting. This combination exploits the linearity of Logistic Regression, the
efficiency of LightGBM, and the regularization robustness of CatBoost. Specifically,
the ensemble VotingClassifier includes:

• LightGBM: A fast and lightweight gradient boosting implementation opti-
mized for efficiency. It is particularly suitable for large-scale datasets and
handles categorical features well. The model uses 300 estimators, a learning
rate of 0.05, and a maximum depth of 6. Class balancing is handled via
class_weight=‘balanced’.

• CatBoost: Known for its robustness to categorical feature encoding and
hyperparameter sensitivity. It is configured with 300 iterations, depth of 6,
and learning rate 0.05. It uses class-specific weights calculated from the label
distribution to handle imbalance.

25

Experiments and Results

• Logistic Regression: Included for its simplicity, interpretability, and ability
to capture linear relationships. We use the SAGA solver with balanced class
weights and allow up to 1000 iterations for convergence.

LightGBM offers fast and efficient gradient boosting, CatBoost is robust to cat-
egorical features and hyperparameters, and Logistic Regression provides a simple,
interpretable baseline. The ensemble uses soft voting to aggregate model predic-
tions, further calibrated by CalibratedClassifierCV to improve probability reliability.
Additionally, class imbalance is addressed through balanced class weights, ensuring
better performance across minority classes. This ensemble design ultimately balances
interpretability, training efficiency, and generalization performance. It consistently
outperforms all individual classifiers in validation set accuracy and F1-score, making
it the first choice for downstream semi-supervised training processes.

4.3 Dynamic Thresholds and Sampling Strategy

To ensure both prediction reliability and class distribution balance in the pseudo-
labeling process, we adopt a dynamic, class-wise thresholding strategy. For each
class k ∈ {0, . . . , 3} and self-training round t, we compute a confidence threshold
θ

(t)
k based on two key factors: the training round index and the current pseudo-label

distribution.

Dynamic Thresholds The base threshold for each round t is defined as:

θ
(t)
0 = θinit −∆ · t

where θinit is the initial confidence threshold (e.g., 0.84), and ∆ is a hyperparameter
controlling the rate of threshold decay (e.g., 0.01). This decay enables the model to
start with highly confident pseudo-labels and gradually include more diverse samples
as its generalization ability improves.

Table 4.3 summarizes the model performance across different values of the ini-
tial confidence threshold θinit used in the dynamic thresholding strategy during
self-training. We observe that the choice of θinit has a noticeable impact on the
classification metrics.

Initial Threshold F1-score Accuracy Precision Recall
0.82 0.8071 0.8063 0.8193 0.8063
0.84 0.8074 0.8063 0.8193 0.8063
0.86 0.8019 0.8000 0.8107 0.8000
0.88 0.8019 0.8000 0.8159 0.8000
0.90 0.8016 0.8000 0.8160 0.8000
0.92 0.7974 0.7937 0.8174 0.7938

Table 4.3: Performance metrics under different initial thresholds

Notably, the best overall F1-score of 0.8074 is achieved at an initial threshold of

26

Experiments and Results

0.84, which also corresponds to a balanced precision (0.8193) and recall (0.8063) with
best performance. This suggests that starting with this threshold enables the model
to maintain high confidence in pseudo-labels while providing adequate coverage of
the various categories.

Thresholds slightly lower or higher than 0.84 generally result in a modest drop in
performance, indicating a sensitivity of the model to the initial threshold setting. In-
terestingly, thresholds above 0.90 do not further improve performance and sometimes
lead to reduced recall. It may be due to the reduced number of samples passing
through the confidence filter, thus limiting the augmentation of training data.

Overall, our experiments demonstrate that careful tuning of the initial confidence
threshold θinit is essential for balancing pseudo-label quality and quantity, which
directly impacts the effectiveness of the self-training pipeline.

Class Imbalance Adjustment To address the imbalance in pseudo-label frequency,
we compute the ratio of assigned pseudo-labels for class k up to round t:

r
(t)
k = c

(t)
kqK

j=1 c
(t)
j + ε

with r∗ = 1
K

We then define the imbalance factor as:

δk =

ó
r

(t)
k

r∗

and update the class-wise threshold nonlinearly:

θ
(t)
k =


θ

(t)
0 + α ·min(δk, 2.0) if δk > 1.2

θ
(t)
0 − β ·max(δk, 0.5) if δk < 0.8

θ
(t)
0 otherwise

where α and β are the imbalance adjustment coefficients. The values 0.02 and 0.03
were chosen empirically to reflect a mild asymmetric adjustment strategy: we penalize
dominant classes conservatively while encouraging under-represented classes more
aggressively. This asymmetry helps stabilize class balance over iterations without
overly sacrificing label confidence.

In our threshold adjustment function, we adopt hyper-parameters such as the
increase/decrease coefficients (0.02/0.03) and imbalance thresholds (1.2/0.8) to control
the sensitivity and response of the system to class distribution shifts. These values
are empirically chosen to provide a stable yet responsive mechanism for pseudo-label
correction. While we found the default values to work well across settings, future
work could explore tuning these coefficients to further optimize performance under
extreme class imbalance scenarios.

To ensure stability, we clip the final threshold to a valid range:

θ
(t)
k ∈ [0.80, 0.98]

27

Experiments and Results

Sample Selection A sample xi is added to the pseudo-labeled set only if the
predicted class confidence exceeds its class-specific threshold:

max
k

P (y = k | xi) ≥ θ
(t)
ŷi

, where ŷi = arg max
k

P (y = k | xi)

The specific threshold also changes dynamically with the amount of pseudo-label
data added.

Decay rate To investigate the effect of the confidence threshold decay rate ∆, we
conducted experiments using different decay rates ∆ ∈ {0.01, 0.02} under several
initial thresholdsθinit ∈ {0.82, 0.84, 0.86}. The results are shown in Table 4.4.

Initial Threshold ∆ F1-score Accuracy Precision Recall

0.84
0.1 0.8074 0.8063 0.8193 0.8063
0.2 0.7963 0.7937 0.8108 0.7937

0.86
0.1 0.8019 0.8000 0.8107 0.8000
0.2 0.8011 0.8000 0.8096 0.8000

0.88
0.1 0.8019 0.8000 0.8159 0.8000
0.2 0.7897 0.7875 0.8010 0.7875

Table 4.4: Effect of Varying ∆ on Performance under Different Initial Thresholds

For all initial thresholds, a smaller decay rate (∆ = 0.1) leads to consistently
higher or comparable F1-score and accuracy compared to a more aggressive decay
(∆ = 0.2). This supports the hypothesis that a more conservative threshold decay
allows the model to maintain higher quality pseudo-labels, especially in the early
rounds.

4.4 Self-Training

4.4.1 Hyper-parameter Settings

The hyper-parameters for the self-training framework were selected based on common
practices in semi-supervised learning and validated through empirical observations
on the validation set performance. The following key parameters were used:

• Max pseudo-labels per class per iteration (max_pseudo): Controls the
number of pseudo-labeled samples added per class in each iteration. To avoid
excessive noisy labels, max_pseudo was set to 30–80, approximately 18%–40%
of the labeled data per class.

• Maximum iterations (round): The self-training process was allowed to run for
up to 15 iterations. This setting provides sufficient opportunities for the model
to incorporate useful pseudo-labeled data, while avoiding excessive training
and low quality learning.

28

Experiments and Results

• Early stopping patience (patience): The training process was monitored on
the validation set F1-score. If no improvement was observed for 5 consecutive
iterations, the training would be stopped early to prevent overfitting.

Given that the labeled set contains 640 examples and the unlabeled pool con-
tains 7450 examples, we set max_pseudo to 30–80 per class per iteration during
experiments. This range corresponds to approximately 18%–40% of the labeled data
per class, striking a balance between introducing sufficient pseudo-labeled data and
mitigating the risk of noise accumulation. Then find the optimal maximum number
of pseudo labels introduced in each round of self-training.

We combined experience and multiple experiments to finally set the maximum
number of iterations to T = 15 and the early stopping patience to P = 5. These
settings allow the model to gradually incorporate confident pseudo-labeled data while
preventing overfitting in subsequent iterations. Too few training rounds or stopping
too early may result in insufficient training and the model may not be able to fully
learn. Too many training rounds or too high a patience may cause the subsequent
models to continue to learn incorrect pseudo-labels, resulting in poor results.

4.4.2 Self-Training Loop

The choice of max_pseudo and self-training rounds is critical in semi- supervised
learning, as they jointly determine the total number of pseudo-labeled samples added
during training. We set the number of self-training iterations to 15, with early
stopping to prevent overfitting noisy pseudo-labels. Early stopping was performed
with patience of 5 iterations based on the validation F1-score to avoid overfitting on
the noisy pseudo-labeled data.

The hyperparameter max_pseudo determines the maximum number of pseudo-
labeled samples added to the training set in each iteration. From the table 4.5 and
the figure 4.4, we observe an obvious trend:

• Performance improves consistently as max_pseudo increases from 30 to 60.

• The best results are achieved at max_pseudo = 60, where both the F1 score
(0.8074) and the accuracy (0.8063) reach their peaks.

• Beyond 60, the performance decreases slightly. This indicates that too many
pseudo-labeled samples may introduce noise and impair generalization ability.

29

Experiments and Results

max_pseudo F1-score Accuracy Precision Recall
30 0.7909 0.7875 0.8066 0.7875
40 0.7911 0.7875 0.8098 0.7875
50 0.8027 0.8000 0.8170 0.8000
60 0.8074 0.8063 0.8193 0.8063
70 0.8032 0.8000 0.8178 0.8000
80 0.8018 0.8000 0.8096 0.8000

Table 4.5: Performance under different max_pseudo values

Figure 4.4: Matrics with different max_pseudo

This suggests that moderate inclusion of high-confidence pseudo labels can enhance
the model’s learning. However, excessively aggressive inclusion (e.g., max_pseudo >
70) may dilute label quality, especially if pseudo-label thresholds are not sufficiently
strict.

4.5 Results

4.5.1 Hyperparameters in semi-supervised model

After the experiment, we found the best model parameters, as shown in the table 4.6.
We have to notice that during preprocessing, the supervised model applied standard
scaling based solely on the labeled training set, while the semi-supervised model fitted
the scaler on both labeled and unlabeled data. This difference reflects a more realistic
feature distribution in the semi-supervised setup and could contribute to better
generalization, as the model sees a broader range of variation during normalization.
All evaluation, however, is consistently conducted on the same validation set.

30

Experiments and Results

Hyperparameter Value
Initial threshold (θinit) 0.84
Decay per round (∆) 0.1
Threshold range [0.80, 0.98]
Maximum pseudo-labeled samples per class (max_pseudo) 60
Patience for early stopping (patience) 5
Maximum training rounds (rounds) 15
Top-k fallback selection (fallback_topn) 50

Table 4.6: Final Hyperparameter Settings for Self-training

4.5.2 Validation Performance Between Supervised and Semi-supervised
Models

To evaluate the effectiveness of our self-training approach, we compare the perfor-
mance of a purely supervised model trained on labeled data only with that of a
semi-supervised model incorporating both labeled and pseudo-labeled data. Table 4.7
and Table 4.8 summarize the performance on the same validation set.

Model Accuracy Precision Recall F1-score

Supervised Only 0.7875 0.7999 0.7875 0.7895
Semi-supervised (Self-training) 0.8063 0.8193 0.8063 0.8074

Table 4.7: Overall performance comparison on validation set

As shown, the semi-supervised model achieves consistent improvements across all
metrics, with an absolute gain of +1.8% in accuracy and F1-score. This suggests
that self-training can effectively leverage unlabeled data to enhance generalization.

Class Model Precision Recall F1-score

0 (create code)
Supervised 0.86 0.78 0.82
Semi-supervised 0.89 0.82 0.86

1 (explain)
Supervised 0.81 0.75 0.78
Semi-supervised 0.81 0.75 0.78

2 (suggest)
Supervised 0.67 0.85 0.75
Semi-supervised 0.69 0.90 0.78

3 (fix error)
Supervised 0.86 0.78 0.82
Semi-supervised 0.88 0.75 0.81

Table 4.8: Performance comparison between supervised & semi-supervised

Classification results reveal that the largest improvement is observed in class 0
and class 2. The F1-score for class 0 (Create code) improves from 0.82 to 0.86, while

31

Experiments and Results

class 2 (Suggest) benefits from a higher recall (0.90 vs. 0.85) and better F1-score
(0.78 vs. 0.75). This indicates that self-training allows the model to better generalize
to under-represented or more ambiguous categories by incorporating informative
pseudo-labeled examples.

Meanwhile, the performance of class 1 (Explain) remained stable after self training.
The performance of class 3 (Fix errors) changed slightly, with a relative improvement
in precision. However, the slight decrease in recall and F1-score could be due to
pseudo-label noise or category similarity.

Interestingly, while the F1-score for class 3 (Fix errors) remains comparable
between supervised and semi-supervised models, the semi-supervised model achieves
a higher precision (0.88 vs. 0.86) but slightly lower recall (0.75 vs. 0.78). This
indicates that the model becomes more conservative in assigning the ‘fix errors’
label. Such behavior can be beneficial in downstream applications like sketch update
systems, where it is more desirable to avoid introducing incorrect error-fix patterns
than to capture every possible fix scenario. Our goal is to save resources in the model
and reduce API calls to Sketch. Therefore, this model only identifies ‘fix errors’ when
it is more certain, reducing the risk of mistakenly introducing other types of problems
into the fix logic.

These results confirm the effectiveness of pseudo-labeling in improving both
overall accuracy and class-level balance, especially for categories where labeled data
is insufficient.

4.5.3 Normalize Confusion Matrix Analysis

Figure 4.5 and Figure 4.6 show the normalized confusion matrices of the supervised
baseline and the self-training model, respectively. Each row is normalized to represent
the distribution of predicted classes given a ground truth label.

Figure 4.5: Normalize Confusion Matrix with supervised learning

32

Experiments and Results

Figure 4.6: Normalize Confusion Matrix with semi-supervised learning

The normalized confusion matrices reveal that the semi-supervised model not only
enhances class-specific precision for categories like “create code” and “suggest,” but
also maintains or improves recall for most classes. In particular, although the recall
for “fix error” slightly decreased (0.78 → 0.75), the corresponding precision increased
(0.86 → 0.88), suggesting more reliable detection of error-fix requests—critical in
downstream sketch loading tasks. Nevertheless, the overall diagonal dominance in
the confusion matrix improves, highlighting better class discrimination. These results
support that semi-supervised training can achieve more precise decision boundaries
and higher generalization capabilities despite relying on noisy pseudo-labels.

4.5.4 Word Cloud Visualizations

We include class-specific word clouds and confusion matrices (sanity check vs self-
training) to illustrate classification effectiveness and data coverage.

To visualize the semantic characteristics of each class, we generated word clouds
for the data after using model prediction. Each cloud in figure 4.7 highlights the most
frequent and relevant tokens per class, reflecting typical user queries. For instance,
the Fix errors class frequently contains terms like ‘error’, ‘fix’, ‘sketch’ and ‘code’,
while Suggest or Explain categories show more diverse conceptual keywords and
verbs.

33

Experiments and Results

(a) Create code class

(b) Explain class

(c) Suggust class

(d) Fix errors class

Figure 4.7: Word Clouds per Class

34

Experiments and Results

4.5.5 Self training observation

Figure 4.8 shows the model performance in each round of training during the self-
training process. It can be observed that after the fifth round of semi-supervised
learning, the metrics reached the highest value, and then the early stopping strategy
began.

Figure 4.8: Validation Matrics during self-training

To better understand the behavior of the self-training mechanism, we analyzed
the number of pseudo labels accepted for each class at every training round. Figure
4.9 illustrates the class-wise distribution of pseudo-labeled samples added per round
throughout the iterative learning process.

Figure 4.9: Class Distribution with Pseudo Labels

In the early training stages (rounds 1–3), the pseudo labels are highly imbalanced
across classes. For instance, Class 3 quickly dominates with over 200 accepted
pseudo labels as early as round 1, while Classes 0, 1, and particularly Class 2 receive
very few. This suggests that the model initially exhibits high confidence for specific
classes, while struggling to distinguish samples from others due to insufficient decision
boundaries.

35

Experiments and Results

As training progresses, particularly between rounds 2 to 3, the model begins
to confidently assign pseudo labels to more classes. This rapid expansion indicates
that the decision regions become more refined as more high-confidence samples are
incorporated into training. By round 3, all classes reach or approach the upper limit
of accepted pseudo labels (200), marking a turning point in the self-training cycle
where class coverage is maximized.

The confidence histogram illustrates the distribution of softmax probabilities
across pseudo-labeled samples. A right-skewed distribution (i.e., high confidence)
indicates that the model is confident in its predictions, which is crucial for ensuring
pseudo-label quality in semi-supervised learning. Figure 4.10 illustrates the most
Frequency of confidence is between 0.91 and 0.95, which is a good sign for semi-
supervised learning.

Figure 4.10: Confidence Histogram

We also analyzed the distribution of pseudo labels assigned in each iteration. An
uneven distribution may indicate bias in the model or lower confidence in certain
categories when starts self- training. These insights guide threshold adjustments and
rebalancing strategies during self-training.

We observed the change in the number of accepted pseudo-labels across self-
training rounds. As shown in Figure 4.11, the first two rounds saw a consistent
increase in the number of high-confidence pseudo-labeled samples, indicating that
the model was successfully learning from easy-to-classify examples. Starting from
the third round, the growth plateaued, suggesting that the model had saturated its
confident coverage.

36

Experiments and Results

Figure 4.11: Pseudo label Counts with 0.84 threshold

4.6 Testing in new dataset

We test the model with the new dataset which is collected between May 18th, 2025
and June 17th, 2025, in total 97484 queries. After data pro-processing, we can get
39919 queries to process for further classifying. In addition, we can see that there are
about 53,165 ‘Fix errors’ triggered by buttons in the editor and about 431 prompts
from the GenAI assistant Hints button.

Figure 4.12: Label distribution in test dataset

In ‘toClassify’ dataset, we use our model to classify and predict the intent of user
queries. We can see that ‘Fix error’ only accounts for a small portion of the data,
because most of the ‘Fix errors’ are triggered directly by buttons after compilation.
The main intents here are ‘Explain’ and ‘Suggest’, which reflects that the main
needs of users when using the GenAI assistant are to consult and understand some
academic functions of Arduino and get some usage suggestions.

37

Experiments and Results

Figure 4.13: Prediction in test dataset

4.7 Lookerstudio Dashboard

For better showing the data, we also desgin the dashboard via Lookerstudio. In
Lookerstudio report, the graphs link the data directly from Bigquery datasets. Total
questions amount in report is same as the testing dataset in figure 4.12. We can
observe from the figure 4.14 that the number of ‘Fix errors’ data and ‘Hints’ data
is comparable to the number obtained after our data preprocessing. The small
differences due to the difference between data collecting time and report query time.
In the future, we can also add the intent prediction of the model to LookerStudio to
obtain data analysis charts of user purposes.

38

Experiments and Results

Figure 4.14: GenAI general information in Lookerstudio

39

Chapter 5

Conclusion & Future work

5.1 Summary

This work presents a comprehensive semi-supervised text classification pipeline tai-
lored for categorizing Arduino user queries into four actionable categories: Create
code, Explain, Suggest, and Fix errors. The system integrates advanced prepro-
cessing for noisy developer text, semantic embedding using pretrained transformers,
and ensemble classifiers with confidence calibration.

Starting with noisy user queries, we designed a robust preprocessing pipeline
that removes boilerplate code, compiler traces, and templates, and retains only valid
natural-language questions. To enhance the semantic representation of these short
and often informal queries, we evaluated several Sentence Transformers, including
MiniLM, intfloat/e5-base-v2, and nomic-ai/nomic-embed-text-v1. The best
empirical performance was obtained with intfloat/e5-base-v2, which balances
compactness, semantic fidelity and lightweight.

In the project, we extracted dense sentence embeddings and experimented with
multiple classifiers: Random Forest, Logistic Regression, XGBoost, LightGBM, and
CatBoost. We found that the ensemble method combined with probabilistic cali-
bration (CalibratedClassifierCV) significantly improved classification consistency
and confidence estimates.

A key challenge is the imbalance and noise introduced during pseudo-label
selection. To mitigate this, we proposed a class-wise adaptive thresholding
strategy where the threshold θ

(t)
k for each class k in round t is dynamically adjusted

based on the number of pseudo-labeled samples from the previous round. A slight
decay per round allows the threshold to gradually loosen, accommodating better
generalization as the model becomes more confident.

5.2 Key Contributions

• Design a concise preprocessing pipeline to effectively remove noise from technical
expertise and code-intensive user input.

• Evaluate and select an optimal Sentence Transformer model for semantic

40

Conclusion & Future work

encoding of user queries.

• Build an ensemble-based, calibrated classifier that performs well under label
sparsity.

• Propose a class-wise dynamic thresholding scheme for self-training, improving
recall on underrepresented classes.

• Empirically validate multiple pseudo-labeling strategies and visualize their
influence on class distributions and overall performance.

Experimental results show that our dynamic thresholding strategy improves recall
and F1-score for minority classes without harming accuracy, demonstrating its prac-
tical effectiveness in real-world coding assistant scenarios. In addition, optimizations
for sketch loading are also helpful, identifying repair requests more carefully but
accurately, which helps improve the quality of sketch modifications. The model
identifies repair errors only when it is more certain, reducing the risk of importing
other types of problem judgment errors into unnecessary sketches.

5.3 Limitations and Challenges

As the dataset is unlabeled competely, fully supervised learning is impractical due to
the large manual annotation cost and the difficulty of standardizing labeling criteria
in such subjective, technical domains. On the other hand, unsupervised clustering
struggles to yield meaningful partitions in short, domain-specific, and noisy inputs.
Therefore, we adopt a semi-supervised learning framework.

However, semi-supervised learning also introduces its own limitations:
First, its effectiveness diminishes in later rounds due to the accumulation of

low-confidence pseudo-labels, which may introduce noise and harm generalization.
Thus, careful control of training rounds and per-class sample caps is necessary. Our
method relies on empirical tuning of base thresholds and decay rates, which may not
generalize well across datasets or tasks without additional validation.

Secondly, and more fundamentally, our dataset presents unique challenges: the
user-submitted queries are highly diverse and subjective in nature, often combining
natural language with noisy, fragmented code snippets. Compared to large-scale text
classification benchmarks, this type of input reduces the effectiveness of standard
language models, including intfloat/e5-base-v2, in fully capturing semantic intent
and fine-grained class boundaries. Despite efforts to define clear labeling criteria
during manual annotation process, certain categories — particularly explain and
suggest — exhibit ambiguous boundaries. Label confusion can still occur even with
manual labeling. Furthermore, user questions sometimes contain multiple intents
in a single query, which makes assigning a single class label inherently difficult.
This introduces noise into the labeled dataset and may affect the model’s ability to
distinguish subtle intent differences, especially for complex or multiple queries.

41

Conclusion & Future work

In general, semi-supervised learning is sensitive to label noise and data distribution
mismatch. The effectiveness of model decreases when labeled data is limited or biased,
and when unlabeled data exhibits imbalanced or uneven distribution characteristics.
These factors together limit the model’s ability to achieve optimal and generalizable
performance on complex queries.

5.4 Future Work

While the current semi-supervised classification framework based on an ensemble
VotingClassifier (LightGBM, CatBoost, Logistic Regression) provides stable and
competitive performance on small-scale, partially labeled data, it also introduces
limitations in modeling complex user intent and interactions. However, feed-forward
neural networks (FF-NNs) have been shown in many experiments that neural archi-
tectures can capture more subtle patterns when there is enough labeled data. Due
to the current dataset size, imbalance between classes, and limited labeled samples,
FF-NN models require more resources and are prone to signs of overfitting, and fail
to surpass ensemble methods in overall generalization ability.

As the project progresses and more labeled and unlabeled user query data
becomes available (e.g., scaling up to 10k+ examples), future improvements will
include revisiting deep learning-based classifiers such as FF-NNs, Transformer-based
classifiers with fine-tuning, and potentially more advanced semi-supervised learning
frameworks (e.g., self-training with teacher-student models or contrastive learning).
These approaches an better utilize richer embedding representations and improve
intent classification, especially for complex or multi-intent user queries. Furthermore,
the end-to-end neural model helps reduce the reliance on manual pre-processing and
further enhances the retrieval augmentation generation (RAG) response optimization
in the GenAI system.

Future directions include:

• Uncertainty-aware pseudo-labeling: Integrating model uncertainty (e.g.,
via entropy or Bayesian dropout) can reduce noisy pseudo-labels in early
self-training rounds.

• Curriculum learning for self-training: Ordering unlabeled samples based
on confidence or embedding distance can make training more robust and
progressive.

• Scalable weak supervision: Leveraging labeling functions or prompt-based
distant supervision could enrich initial labeled data without human effort.

• Integration with GenAI code assistants: Extending the classifier to
interact with sketch context or generate code suggestions via RAG pipelines
could significantly enhance system utility.

42

Appendix A

Appendix A

A.1 Visualization under Different Initial Thresholds

This appendix presents the distribution and performance metrics under different
initial thresholds used in the self-training framework. For each threshold, we include
the following plots:

• Class distribution of selected pseudo-labeled samples.

• Confidence score histogram.

• Per-class pseudo-label count.

• Validation metrics over training rounds.

43

Appendix A

A.1.1 Initial Threshold = 0.82

(a) Class distribution (b) Confidence histogram

(c) Pseudo label counts (d) Validation metrics

Figure A.1: Visualization under threshold = 0.82: class distribution, confidence
histogram, pseudo-label counts, and validation metrics.

44

Appendix A

A.1.2 Initial Threshold = 0.83

(a) Class distribution (b) Confidence histogram

(c) Pseudo label counts (d) Validation metrics

Figure A.2: Visualization under threshold = 0.83: class distribution, confidence
histogram, pseudo-label counts, and validation metrics.

45

Appendix A

A.1.3 Initial Threshold = 0.84

(a) Class distribution (b) Confidence histogram

(c) Pseudo label counts (d) Validation metrics

Figure A.3: Visualization under threshold = 0.84: class distribution, confidence
histogram, pseudo-label counts, and validation metrics.

46

Appendix A

A.1.4 Initial Threshold = 0.85

(a) Class distribution (b) Confidence histogram

(c) Pseudo label counts (d) Validation metrics

Figure A.4: Visualization under threshold = 0.85: class distribution, confidence
histogram, pseudo-label counts, and validation metrics.

47

Appendix A

A.1.5 Initial Threshold = 0.86

(a) Class distribution (b) Confidence histogram

(c) Pseudo label counts (d) Validation metrics

Figure A.5: Visualization under threshold = 0.86: class distribution, confidence
histogram, pseudo-label counts, and validation metrics.

48

Appendix A

A.1.6 Initial Threshold = 0.88

(a) Class distribution (b) Confidence histogram

(c) Pseudo label counts (d) Validation metrics

Figure A.6: Visualization under threshold = 0.88: class distribution, confidence
histogram, pseudo-label counts, and validation metrics.

49

Appendix A

A.2 Visualization under Different max_pseuodo

This appendix presents the distribution and performance metrics under different
max_pseuodo setting used in the self-training framework. For differernt max_pseuodo
and initail threshold = 0.84, we include the following plots:

• Class distribution of selected pseudo-labeled samples.

• Confidence score histogram.

• Per-class pseudo-label count.

• Validation metrics over training rounds.

50

Appendix A

A.2.1 max_pseuodo = 30

(a) Class distribution (b) Confidence histogram

(c) Pseudo label counts (d) Validation metrics

Figure A.7: Visualization with max_pseuodo = 30: class distribution, confidence
histogram, pseudo-label counts, and validation metrics.

51

Appendix A

A.2.2 max_pseuodo = 40

(a) Class distribution (b) Confidence histogram

(c) Pseudo label counts (d) Validation metrics

Figure A.8: Visualization with max_pseuodo = 40: class distribution, confidence
histogram, pseudo-label counts, and validation metrics.

52

Appendix A

A.2.3 max_pseuodo = 50

(a) Class distribution (b) Confidence histogram

(c) Pseudo label counts (d) Validation metrics

Figure A.9: Visualization with max_pseuodo = 50: class distribution, confidence
histogram, pseudo-label counts, and validation metrics.

53

Appendix A

A.2.4 max_pseuodo = 60

(a) Class distribution (b) Confidence histogram

(c) Pseudo label counts (d) Validation metrics

Figure A.10: Visualization with max_pseuodo = 60: class distribution, confidence
histogram, pseudo-label counts, and validation metrics.

54

Appendix A

A.2.5 max_pseuodo = 70

(a) Class distribution (b) Confidence histogram

(c) Pseudo label counts (d) Validation metrics

Figure A.11: Visualization with max_pseuodo = 70: class distribution, confidence
histogram, pseudo-label counts, and validation metrics.

55

Appendix A

A.2.6 max_pseuodo = 80

(a) Class distribution (b) Confidence histogram

(c) Pseudo label counts (d) Validation metrics

Figure A.12: Visualization with max_pseuodo = 80: class distribution, confidence
histogram, pseudo-label counts, and validation metrics.

56

Bibliography

[1] Martin R. Chavez, Thomas S. Butler, Patricia Rekawek, Hye Heo, and Wendy L.
Kinzler. “Chat Generative Pre-trained Transformer: why we should embrace
this technology”. In: American Journal of Obstetrics and Gynecology 228.6
(2023), pp. 706–711. issn: 0002-9378 (cit. on p. 1).

[2] Ajay Agrawal, Joshua Gans, and Avi Goldfarb. “ChatGPT and how AI disrupts
industries”. In: Harvard Business Review 12 (2022), pp. 1–6 (cit. on p. 1).

[3] Dickey E., Bejarano A., and Garg C. “AI-Lab: A Framework for Introducing
Generative Artificial Intelligence Tools in Computer Programming Courses.”
In: SN COMPUT. SCI. 5 (2024), p. 720 (cit. on p. 1).

[4] Cai (Mitsu) Feng, Elsamari Botha, and Leyland Pitt. “From HAL to GenAI:
Optimizing chatbot impacts with CARE”. In: Business Horizons 67.5 (2024).
SPECIAL ISSUE: WRITTEN BY CHATGPT, pp. 537–548. issn: 0007-6813.
doi: https://doi.org/10.1016/j.bushor.2024.04.012. url: https:
//www.sciencedirect.com/science/article/pii/S0007681324000570 (cit.
on p. 2).

[5] Sean Sands, Carla Ferraro, Colin Campbell, and Hsiu-Yuan Tsao. “Managing
the human–chatbot divide: how service scripts influence service experience”.
In: Journal of Service Management 32.2 (2021), pp. 246–264 (cit. on p. 2).

[6] Yu-Shan (Sandy) Huang and Paula Dootson. “Chatbots and service failure:
When does it lead to customer aggression”. In: Journal of Retailing and Con-
sumer Services 68 (2022), p. 103044. issn: 0969-6989. doi: https://doi.org/
10.1016/j.jretconser.2022.103044. url: https://www.sciencedirect.
com/science/article/pii/S0969698922001370 (cit. on p. 3).

[7] Fiona Fui-Hoon Nah, Ruilin Zheng, Jingyuan Cai, Keng Siau, and Langtao
Chen. “Generative AI and ChatGPT: Applications, challenges, and AI-human
collaboration”. In: Journal of Information Technology Case and Application
Research 25.3 (2023), pp. 277–304. doi: 10.1080/15228053.2023.2233814
(cit. on p. 3).

[8] Abdelrahman H. Hefny, Georgios A. Dafoulas, and Manal A. Ismail. “Intent
Classification for a Management Conversational Assistant”. In: 2020 15th
International Conference on Computer Engineering and Systems (ICCES).
2020, pp. 1–6. doi: 10.1109/ICCES51560.2020.9334685 (cit. on p. 5).

57

https://doi.org/https://doi.org/10.1016/j.bushor.2024.04.012
https://www.sciencedirect.com/science/article/pii/S0007681324000570
https://www.sciencedirect.com/science/article/pii/S0007681324000570
https://doi.org/https://doi.org/10.1016/j.jretconser.2022.103044
https://doi.org/https://doi.org/10.1016/j.jretconser.2022.103044
https://www.sciencedirect.com/science/article/pii/S0969698922001370
https://www.sciencedirect.com/science/article/pii/S0969698922001370
https://doi.org/10.1080/15228053.2023.2233814
https://doi.org/10.1109/ICCES51560.2020.9334685

BIBLIOGRAPHY

[9] Barry J. Zimmerman and Manuel Martinez Pons. “Development of a Structured
Interview for Assessing Student Use of Self-Regulated Learning Strategies”.
In: American Educational Research Journal 23.4 (1986), pp. 614–628. doi:
10.3102/00028312023004614 (cit. on p. 5).

[10] Nick Bradley, Thomas Fritz, and Reid Holmes. “Context-Aware Conversational
Developer Assistants”. In: 2018 IEEE/ACM 40th International Conference
on Software Engineering (ICSE). 2018, pp. 993–1003. doi: 10.1145/3180155.
3180238 (cit. on p. 5).

[11] A.Abdellatif, Ahmad Abdellatif, Khaled Badran, and Emad Shihab. “MSRBot:
Using bots to answer questions from software repositories”. In: Empirical
software engineering. 25.3 (May 2020). issn: 1382-3256 (cit. on p. 5).

[12] Jhonny Cerezo, Juraj Kubelka, Romain Robbes, and Alexandre Bergel. “Build-
ing an Expert Recommender Chatbot”. In: 2019 IEEE/ACM 1st International
Workshop on Bots in Software Engineering (BotSE). 2019, pp. 59–63. doi:
10.1109/BotSE.2019.00022 (cit. on p. 5).

[13] Elahe Paikari et al. “A Chatbot for Conflict Detection and Resolution”. In:
2019 IEEE/ACM 1st International Workshop on Bots in Software Engineering
(BotSE). 2019, pp. 29–33. doi: 10.1109/BotSE.2019.00016 (cit. on p. 5).

[14] Stefan Larson et al. “An Evaluation Dataset for Intent Classification and Out-of-
Scope Prediction”. In: Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Ed. by Kentaro Inui, Jing
Jiang, Vincent Ng, and Xiaojun Wan. Hong Kong, China: Association for
Computational Linguistics, Nov. 2019, pp. 1311–1316. doi: 10.18653/v1/D19-
1131. url: https://aclanthology.org/D19-1131/ (cit. on p. 6).

[15] Alaa T. Al-Tuama and Dhamyaa A. Nasrawi. “Intent Classification Using
Machine Learning Algorithms and Augmented Data”. In: 2022 International
Conference on Data Science and Intelligent Computing (ICDSIC). 2022, pp. 234–
239. doi: 10.1109/ICDSIC56987.2022.10075794 (cit. on p. 6).

[16] Libo Qin, Tailu Liu, Wanxiang Che, Bingbing Kang, Sendong Zhao, and Ting
Liu. “A Co-Interactive Transformer for Joint Slot Filling and Intent Detection”.
In: ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2021, pp. 8193–8197. doi: 10.1109/ICASSP3
9728.2021.9414110 (cit. on p. 6).

[17] Yilin Shen, Yen-Chang Hsu, Avik Ray, and Hongxia Jin. “Enhancing the
generalization for Intent Classification and Out-of-Domain Detection in SLU”.
In: Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Ed. by Chengqing Zong, Fei Xia, Wenjie
Li, and Roberto Navigli. Online: Association for Computational Linguistics,

58

https://doi.org/10.3102/00028312023004614
https://doi.org/10.1145/3180155.3180238
https://doi.org/10.1145/3180155.3180238
https://doi.org/10.1109/BotSE.2019.00022
https://doi.org/10.1109/BotSE.2019.00016
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://aclanthology.org/D19-1131/
https://doi.org/10.1109/ICDSIC56987.2022.10075794
https://doi.org/10.1109/ICASSP39728.2021.9414110
https://doi.org/10.1109/ICASSP39728.2021.9414110

BIBLIOGRAPHY

Aug. 2021, pp. 2443–2453. doi: 10.18653/v1/2021.acl- long.190. url:
https://aclanthology.org/2021.acl-long.190/ (cit. on p. 6).

[18] Ting-En Lin, Hua Xu, and Hanlei Zhang. “Discovering New Intents via Con-
strained Deep Adaptive Clustering with Cluster Refinement”. In: Proceedings
of the AAAI Conference on Artificial Intelligence 34.05 (Apr. 2020), pp. 8360–
8367. doi: 10.1609/aaai.v34i05.6353. url: https://ojs.aaai.org/index.
php/AAAI/article/view/6353 (cit. on p. 6).

[19] Wulian Yun, Mengshi Qi, Fei Peng, and Huadong Ma. Semi-Supervised Teacher-
Reference-Student Architecture for Action Quality Assessment. 2025. arXiv:
2407.19675 [cs.CV]. url: https://arxiv.org/abs/2407.19675 (cit. on
p. 18).

59

https://doi.org/10.18653/v1/2021.acl-long.190
https://aclanthology.org/2021.acl-long.190/
https://doi.org/10.1609/aaai.v34i05.6353
https://ojs.aaai.org/index.php/AAAI/article/view/6353
https://ojs.aaai.org/index.php/AAAI/article/view/6353
https://arxiv.org/abs/2407.19675
https://arxiv.org/abs/2407.19675

	Acknowledgments
	Introduction
	Background
	Objective
	Literature Review
	Overall Structure

	Methodology
	Research Framework
	Algorithms
	Self-Training Framework
	Pseudo-Label Selection with Dynamic Thresholding

	Models
	Sentence Transformers
	Classification Models

	Key techniques

	Data preparation
	Data collection
	Data structure
	Data Format
	Dataset Overview

	Data Processing
	Purpose
	Processing Pipeline
	Preprocessing Output and Category Definition

	Experiments and Results
	Evaluation Metrics
	Experimental Setup
	Dataset Description
	Text Representation
	Classifier Architecture

	Dynamic Thresholds and Sampling Strategy
	Self-Training
	Hyper-parameter Settings
	Self-Training Loop

	Results
	Hyperparameters in semi-supervised model
	Validation Performance Between Supervised and Semi-supervised Models
	Normalize Confusion Matrix Analysis
	Word Cloud Visualizations
	Self training observation

	Testing in new dataset
	Lookerstudio Dashboard

	Conclusion & Future work
	Summary
	Key Contributions
	Limitations and Challenges
	Future Work

	Appendix A
	Visualization under Different Initial Thresholds
	Initial Threshold = 0.82
	Initial Threshold = 0.83
	Initial Threshold = 0.84
	Initial Threshold = 0.85
	Initial Threshold = 0.86
	Initial Threshold = 0.88

	Visualization under Different max_pseuodo
	max_pseuodo = 30
	max_pseuodo = 40
	max_pseuodo = 50
	max_pseuodo = 60
	max_pseuodo = 70
	max_pseuodo = 80

	Bibliography

