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Introduction 
 

In recent years, the Robot Operating System (ROS) has established itself as a 

foundational framework for the development, simulation, and integration of robotic 

applications. Its flexible and modular architecture enables rapid prototyping, 

seamless communication between distributed components, and broad 

compatibility with a variety of hardware platforms. However, as robotic systems 

grow in complexity and are increasingly deployed in real-world, production-level 

environments, the limitations of ROS 1, particularly in areas such as real-time 

performance, security, and support for multi-robot systems, have become more 

apparent. 

To address these challenges, ROS 2 was introduced as a complete redesign of 

the original framework, incorporating modern middleware, real-time capabilities, 

improved reliability, and enhanced support for embedded and distributed 

systems. As a result, migrating legacy ROS 1-based systems to ROS 2 has 

become an important step for developers and organizations aiming to maintain 

long-term maintainability, scalability, and performance in their robotics solutions. 

This thesis focuses on the development of a ROS 2 wrapper to use Moveit 2 with 

Comau industrial robots, based on the already present ROS 1 example. The 

approach involved integrating the MoveIt motion planning framework to enable 

trajectory generation and execution on Comau robotic systems. The motion 

planning pipeline was initially validated using RViz, a visualization and simulation 

tool widely used in ROS development, followed by further testing in Comau's 

proprietary simulation environment, RoboShop. Final validation was carried out 

on actual hardware using a Comau e.DO educational robot. 

Throughout the testing phase, a range of trajectories with varying levels of 

complexity were planned and executed, both in simulation and on the physical 

robot. The results demonstrated reliable performance and accurate execution, 



indicating that the developed ROS 2 interface is capable of supporting real-world 

applications. This work contributes to the broader effort of bringing ROS 2 support 

to industrial robotics platforms and offers a replicable methodology for similar 

porting efforts in the future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1: State of the art, robotic 

manipulators and ROS. 

1.1 State of the Art of Industrial Manipulators 

 

[1] [2] Industrial manipulators have undergone a transformative evolution in recent 

years, becoming more intelligent, flexible, and integrated into modern 

manufacturing 

ecosystems. 

Traditionally 

used for 

repetitive and 

high-precision 

tasks such as 

welding, 

painting, and 

material 

handling, today’s 

manipulators are 

increasingly 

characterized by 

their adaptability and ability to operate in dynamic, human-centric environments. 

A significant trend shaping the current landscape is the rise of collaborative 

robots, or cobots, manipulators specifically designed to work safely alongside 

human operators without the need for physical barriers. According to the 

International Federation of Robotics (2024), cobots now constitute over 11% of 

all industrial robot installations, reflecting their growing adoption by small and 

medium-sized enterprises (SMEs) due to their lower cost, ease of programming, 

and enhanced safety features. 

Figure 1.1: A comau racer5-cobot working alongside a human  



Major industrial players are increasingly deploying robotic manipulators at scale 

to achieve higher levels of automation and productivity. For instance, Hyundai’s 

new electric vehicle plant in Georgia employs more than 475 robotic arms and 

over three hundred autonomous guided vehicles, illustrating how modern 

manipulators are integral to highly automated and synchronized manufacturing 

systems [3]. These systems are not only capable of performing physical tasks but 

are also interconnected with digital infrastructure, forming part of cyber-physical 

systems that align with the principles of Industry 4.0 and 5.0. The synergy 

between physical robots and digital twins allows real-time simulation, monitoring, 

and optimization, significantly improving the efficiency and reliability of production 

lines. 

Advances in artificial intelligence, machine learning, and edge computing have 

further empowered manipulators to perform complex operations that were 

previously limited to human dexterity. Modern manipulators are equipped with rich 

sensor arrays, including 3D vision, tactile sensors, and force feedback, enabling 

them to perceive and respond to their environments in more sophisticated ways. 

Research shows that manipulators are increasingly being integrated into 

intelligent robotic work cells, where AI-driven decision-making enhances 

flexibility, especially in high-mix, low-volume production scenario. 

[4] A critical enabler of these developments is the growing adoption of the Robot 

Operating System (ROS) and its industrial extension, ROS-Industrial. ROS 

provides a standardized and modular software framework for building complex 

robotic systems, facilitating greater interoperability, rapid prototyping, and reuse 

of software components. ROS-Industrial extends these capabilities to industrial 

hardware, offering drivers, libraries, and tools tailored to real-world manufacturing 

use cases. This has significantly lowered the barrier to entry for deploying 

sophisticated manipulation systems in industry and has also enabled greater 

collaboration between academia and industrial stakeholders. Case studies have 

shown how legacy robotic systems have been successfully upgraded to ROS-



based architectures, resulting in improved modularity, diagnostics, and 

integration with machine vision and planning systems (ScienceDirect, 2024). 

In summary, the state of the art in industrial manipulators reflects a convergence 

of mechanical sophistication, intelligent control, and software-driven 

customization. The transition from isolated, task-specific robots to flexible, 

interconnected, and semi-autonomous manipulators is a defining characteristic of 

current developments. These systems are not only increasing productivity and 

precision in manufacturing but are also paving the way for a new generation of 

intelligent automation that is safer, more adaptive, and aligned with the goals of 

sustainable and human-centric industrial innovation. 

 

As of 2025, the Robot Operating System has solidified its position as a 

foundational framework in both academic research and the robotics industry. With 

the advent and maturation of ROS 2, the platform has addressed many of the 

architectural and functional limitations of ROS 1, evolving into a robust, real-time-

capable, and security-conscious middleware for developing scalable and 

distributed robotic systems. ROS 2 leverages the DDS (Data Distribution Service) 

protocol to support real-time communication, quality of service (QoS) policies, and 

multi-platform interoperability, including support for Windows, macOS, and 

embedded systems. This has opened the door for ROS adoption in industrial and 

mission-critical applications, ranging from autonomous vehicles and industrial 

automation to healthcare and service robots. 

 

The ecosystem surrounding ROS 2 continues to expand rapidly, with actively 

maintained projects such as Navigation 2 (Nav2) for autonomous navigation, 

MoveIt 2 for robotic manipulation, and micro-ROS for resource-constrained 

embedded platforms. Integration with modern development tools, 

containerization (e.g., Docker), and simulation environments like Gazebo and 

Ignition further support advanced testing, deployment, and continuous integration 



workflows. Backed by major stakeholders such as Open Robotics, NVIDIA, Intel, 

and Tier IV, ROS 2 is now at the centre of many robotics R&D initiatives, 

benefiting from strong community contributions and commercial investment. As 

the framework continues to evolve through long-term supported releases and 

modular architecture, ROS 2 stands as the current state of the art for building 

adaptable, intelligent, and interoperable robotic systems. 

1.2 ROS Communication Infrastructure 

 

[5] To better understand the working of the proposed solution it is vital to 

understand how the ROS (robotic operating system) framework works; ROS is an 

open-source middleware for robots, it is not an operating system (it runs on unix 

systems), but it provides the services you would expect from one, including 

hardware abstraction, low-level device control, implementation of commonly-used 

functionality, message-passing between processes, and package management. 

The ROS runtime "graph" is a peer-to-peer network of processes (potentially 

distributed across machines) that are loosely coupled using the ROS 

communication infrastructure. ROS implements several different styles of 

communication, including synchronous RPC-style communication over services, 

asynchronous streaming of data over topics, and storage of data on a Parameter 

Server. ROS consists of a distributed framework of processes (or nodes), allowing 

executables to be individually designed and coupled at runtime. These processes 

can be grouped into Packages and Stacks, which can be easily shared and 

distributed, as one of the core tenets of ROS is the reuse of the code; for this 

reason, ROS supports many different programming languages and the code 

written for it can work with and on other robotics frameworks. The modularity and 

flexibility provided by this architecture enable developers to incrementally build 

complex robotic systems by integrating off-the-shelf packages or custom 

modules, often significantly reducing development time. Additionally, ROS offers 



a rich set of tools for debugging, visualization, and simulation, such as rviz for 3D 

visualization and rosbag for data recording and playback, which facilitate the 

design, testing, and evaluation of robotic algorithms. Its widespread adoption 

across academia and industry has led to a vibrant ecosystem and extensive 

community support, making it an invaluable platform for both research and 

application development in robotics. 

Nodes 

 

A node really isn't much more than an executable file within a ROS package. ROS 

nodes use a ROS client library to communicate with other nodes. Nodes can 

publish or subscribe to a Topic. Nodes can also provide or use a Service. Each 

node can have a name and a namespace it belongs to and the name must be 

unique under the node’s namespace; ROS manages a graph of each active node 

and the topics by which these communicate. The design philosophy behind nodes 

promotes modularity, as each node can encapsulate a specific functionality, 

which enhances the reusability and scalability of robotic applications. Nodes can 

be run individually or in groups, and developers often design systems where 

nodes are loosely coupled and interact solely through message passing, reducing 

dependencies and increasing system robustness. ROS provides tools such as 

rosnode to inspect, list, and manage nodes during runtime, making the debugging 

and orchestration of systems more accessible. 

Figure 1.2: a graph showing nodes connected by topics, created with ROS tools  



Topics 

Topics are named buses over which the nodes exchange messages, they 

decouple the information production and consumption as nodes are not aware of 

which other nodes they are communicating with, instead a node can be either a 

subscriber (which consumes the data) or a publisher (which creates the data), 

multiple nodes can be subscribers/publishers for the same topic. Each topic is 

strongly typed, meaning that only one type of message can be published on it and 

the subscribers will receive the message only if they match the type. This publish-

subscribe mechanism allows for real-time, scalable, and flexible communication 

between components. For example, a sensor node might continuously publish 

laser scan data on a topic, while several subscriber nodes may simultaneously 

process it for tasks such as mapping, obstacle detection, or localization. Topics 

can also be visualized using tools like rqt_graph or monitored using rostopic, 

which helps in understanding the flow of data and debugging communication 

issues in complex systems. 

 

Figure 1.3: A diagram showing topic communication [5] 



Services 

 

Whereas topics work based on a publisher-subscriber communication model, 

services are based on a one-to-one transport paradigm, making them suitable for 

a request/reply communication paradigm. A service is defined by a pair of ROS 

messages: one for the request and one for the reply. A providing ROS node offers 

a service under a string name, and a client calls the service by sending the 

request message and awaiting the reply. Client libraries usually present this 

interaction to the programmer as if it were a remote system call. Services are 

useful for actions that require a definite response, such as querying a parameter, 

commanding a robot to move to a specific position, or initializing a process. 

Although less flexible than topics for continuous data streams, services provide a 

synchronous and deterministic way of executing specific commands. Tools like 

rosservice enable users to inspect available services, their types, and to call them 

manually for testing purposes, enhancing the development workflow. 

Parameter Server 

The Parameter Server is a shared, multi-variable dictionary that is accessible via 

the ROS API and is used to store static, non-binary data such as configuration 

parameters or settings needed at runtime. Parameters are typically loaded at 

startup and remain unchanged throughout the execution of the system, although 

Figure 1.4: A diagram showing service communication [5] 



they can be updated during runtime if needed. Nodes can read from, write to, and 

delete parameters on the server, enabling a centralized and flexible mechanism 

for configuration management. For instance, tuning parameters for a PID 

controller or defining robot-specific properties like dimensions or sensor offsets 

can be managed through the Parameter Server. It is especially useful in dynamic 

systems where parameters need to be shared across different nodes without 

hardcoding them. The command-line tool rosparam allows users to set, get, and 

list parameters on the server, making it easier to adjust system behavior without 

modifying source code. 

1.2 ROS 2 Communication Extensions 

 

First released in 2017, ROS 2 was developed to address some of the architectural 

and technical limitations of the original ROS framework, particularly in areas such 

as real-time programming, scalability, and cross-platform support. One of the key 

differences is that ROS 2 is built on top of the Data Distribution Service (DDS), a 

middleware protocol that allows for more reliable, secure, and scalable 

communication, particularly in distributed systems. This shift enables ROS 2 to 

support a broader range of use cases, including industrial and embedded 

systems, where deterministic behaviour and strict timing requirements are 

essential. Furthermore, ROS 2 introduces multi-threaded execution models, 

enabling improved performance and better utilization of multi-core processors. It 

also enhances support for multiple programming languages and operating 

systems, expanding its applicability in diverse development environments. In 

alignment with its support for real-time systems, ROS 2 introduces a new 

communication paradigm known as actions, designed to handle complex, long-

running operations that require periodic feedback and the ability to cancel 

execution. 

 



Actions 

 

An action is a communication type introduced in ROS 2, designed for operations 

that take a significant amount of time to complete and require intermediate 

updates or the possibility of pre-emption. Unlike services, which follow a simple 

request-response model, actions consist of three components: a goal, feedback, 

and a result. When a client sends a goal to an action server, the server processes 

the goal while continuously publishing feedback messages, allowing the client to 

monitor progress. Upon completion, the server returns a result message. Actions 

are implemented using both topics and services, services are used to initiate and 

conclude the interaction, while topics are used to provide asynchronous feedback 

throughout the task. This makes actions ideal for tasks such as motion planning, 

navigation, or any process where continuous monitoring and the option to cancel 

or replace the goal are critical. The action interface aligns well with the design 

philosophy of ROS 2, enhancing modularity and responsiveness in real-time 

applications. 

Figure 1.5: A diagram showing Action communication [5] 



1.4 Comparison Between ROS and ROS 2 

 

While ROS and ROS 2 share the same foundational goal of facilitating the 

development of robot software through modularity and reuse, they differ 

significantly in architecture and capabilities. The original ROS (often referred to 

as ROS 1) was designed primarily for research and academic use, focusing on 

simplicity and rapid prototyping. It relies on a centralized architecture, with a 

master node that manages the registration and coordination of other nodes. This 

model, while effective for small-scale systems, presents limitations in terms of 

scalability, fault tolerance, and real-time capabilities. 

 

ROS 2, on the other hand, was built from the ground up to overcome these 

limitations. It adopts a decentralized, peer-to-peer communication model using 

the Data Distribution Service as its middleware layer, eliminating the need for a 

master node and enabling native support for multi-host, distributed systems. This 

architecture greatly enhances scalability and robustness, making ROS 2 more 

suitable for industrial and mission-critical applications. 

 

Furthermore, ROS 2 introduces support for real-time execution, leveraging 

features like deterministic message delivery and memory-safe designs, which are 

essential in environments with strict timing constraints. It also provides enhanced 

security features, cross-platform compatibility (including real-time operating 

systems), and improved support for multi-threaded applications. While ROS 1 

supports multiple programming languages and operating systems, ROS 2 

extends this flexibility by enabling better integration with modern development 

tools and standards. 

In terms of communication paradigms, ROS 2 expands on the original by 

introducing actions, a construct for handling long-duration tasks that require 

periodic feedback and pre-emption. Additionally, many of the ROS tools have 



been updated or replaced in ROS 2 to align with the new architecture and 

capabilities. 

Despite their differences, ROS 1 and ROS 2 are not entirely incompatible—ROS 

1 bridges exist to facilitate migration, and many concepts and APIs remain familiar 

to developers transitioning between the two versions. However, the structural and 

functional improvements in ROS 2 mark a significant evolution aimed at meeting 

the growing demands of robotics in both academic and industrial contexts. 

Another important feature introduced by ROS 2 are the lifecycle nodes, a 

structured approach to controlling the state and behaviour of nodes throughout 

their execution. Unlike traditional nodes that are either running or stopped, 

lifecycle nodes pass through well-defined states such as unconfigured, inactive, 

active, and finalized. This enables better control over system startup, shutdown, 

and error handling, which is particularly useful in complex or safety-critical robotic 

applications. By explicitly managing transitions between states, developers can 

implement predictable and deterministic behaviour, improving system reliability 

and maintainability. 



  

Figure 1.6: The lifecycle of a managed node [4] 



1.5 Comau Industrial Manipulators 

 

 

 

 

 

 

 

 

 

 

[7]Comau is a worldwide technological leader in industrial automation and 

robotics, designing and manufacturing high-performance robotic manipulators for 

a wide range of industries including automotive, aerospace, and general industrial 

manufacturing. Renowned for their precision, flexibility, and seamless integration, 

Comau manipulators allow for extensive customization and adaptability. This 

enables them to support a variety of tasks, such as welding, material handling, 

assembly, painting, and pressing, through the use of interchangeable tools. 

These robots are equipped with advanced control systems and are fully 

compatible with Industry 4.0 technologies, making them ideal for deployment in 

smart manufacturing environments. 

Comau offers a broad portfolio of robots, divided into different series according to 

their purpose. For example, the NJ series supports high payloads and large 

workspaces, making it well-suited for heavy-duty industrial applications. In 

contrast, the Racer series, with its high-speed performance, is optimized for 

precision tasks in confined workspaces. All Comau robots are compatible with the 

company’s ROS (Robot Operating System) driver, enabling flexible development 

across the full range of platforms. 

Figure 1.7: The Comau industrial manipulators family [7] 



For the purposes of this thesis, two robots were selected for integration and 

testing: the Racer5 COBOT and the e.DO educational robot. The wrapper was 

initially developed for the Racer5 COBOT and was later extended to ensure 

compatibility with additional Comau robots. The e.DO platform was chosen as 

second due to its suitability for testing on real hardware. 

Comau Racer-5 COBOT 

 

The first robot considered for testing with the new wrapper was the Comau 

Racer5 COBOT, a collaborative robot that represents a significant advancement 

in the field of industrial automation. It combines the high-speed capabilities of 

traditional industrial robots with the safety features required for human-robot 

interaction. This six-axis articulated robot features a 5 kg payload, an 809 mm 

reach, and a repeatability of ±0.03 mm. 

A key feature of the Racer5 COBOT is its ability to automatically switch between 

industrial and collaborative modes. When no human operator is present, the robot 

functions at full industrial Cartesian speeds of 6 m/s. However, when a person is 

detected nearby, it seamlessly transitions to a safer collaborative speed of 500 

mm/s, in compliance with ISO/TS 15066 safety standards. This adaptive 

Figure 1.8: A Comau Racer-5 Cobot [7]  



behaviour is made possible by integrated safety systems, including TÜV Süd-

certified Safe Collision Detection and environmental monitoring via LiDAR 

sensors. 

The Racer5 COBOT is suitable for a range of applications, including assembly, 

material handling, machine tending, dispensing, and pick-and-place operations. 

Its compact design, along with electrical and air connectors located near the wrist, 

minimizes external cabling and simplifies integration into various workspaces. An 

additional safety feature includes an LED light strip on the robot, which glows 

green during collaborative operation and turns off when operating at full speed—

providing visual feedback to enhance operator awareness and safety. 

Furthermore, its ability to operate without protective barriers not only improves 

space efficiency but also reduces installation and maintenance costs. 

 

Comau e.DO Robot 

 

Figure 1.9: A Comau e.Do robot [7] 



The second robot adapted for testing was the Comau e.DO, a versatile, open-

source educational robot designed to support learning and experimentation in 

robotics, automation, and STEM-related disciplines. The e.DO is a 6-axis 

articulated robot with a 500 g payload, a reach of approximately 559 mm, and 

repeatability of ±0.5 mm, making it particularly well-suited for academic, training, 

and demonstrative use cases. 

A key advantage of the e.DO platform is its rich educational ecosystem, which 

includes a variety of software applications, modular learning programs, and 

compatibility with e.DO Experience kits. These tools facilitate hands-on learning 

in subjects like robot programming, mechanical design, problem-solving, and 

collaborative teamwork. The e.DO is widely used in schools, universities, 

makerspaces, and corporate training programs, offering a user-friendly 

introduction to robotics and automation technologies. 

In addition to its educational value, the e.DO can also be applied in basic 

automation and prototyping tasks, thanks to its flexible I/O ports, vision system 

options, and compact footprint. Its modular architecture allows it to be easily 

integrated with other hardware and control systems, making it a practical tool not 

only for education but also for light industrial applications and research. 



 

 

Comau provides a series of apps for the e.Do that is a collection of interactive 

software packages that are intended to further develop the educational 

and experiential learning experience offered by the e.DO robot 

platform. The apps provide intuitive, easy-to-grasp interfaces allowing users to 

program and operate the robot with no programming know-how, making them 

ideal for training and classroom applications. The applications cover a wide 

range of functionalities, from simple movement commands to task scheduling, 

logic design, and sensor integration and supporting both visual and text-based 

programming. Through these apps, students can learn basic concepts in STEM, 

automation, and robotics while teachers can create personalized lessons and 

challenges for different skill levels. This flexible and modular approach 

helps fill the gap between practice and theory, confirming the e.DO robot as 

a valuable tool for learning technology. 

 

Figure 1.10: The Edo control App 



Chapter 2: The Comau ROS driver: 

 

[8] To better understand the work carried out in this thesis, it is essential to first 

analyse the structure of the existing ROS and ROS 2 drivers developed by Comau 

for their robotic manipulators. In both implementations, the Comau ROS library is 

divided into two main components. 

The first component, the server side, runs on a cabinet IPC and consists of a 

collection of PDL (Programming Description Language) programs. These 

programs are responsible for direct communication with the robot, sending motion 

instructions and reading the feedback data returned by the robot’s control system. 

It is also possible to use the library in virtual mode. In this case, the user only 

needs a laptop where both Windows and Linux run. The former is necessary to 

support RoboShop Comau’s simulation tool; the latter is used for ROS. 

 

The second component of the Comau library, and the primary focus of this thesis, 

is the ROS client module, which operates on an external PC running ROS 

Melodic, typically on Ubuntu 18.04 or in the case of ROS 2, Humble, typically on 

Ubuntu 22.04. This side comprises a set of ROS packages that handle various 

tasks such as motion planning, robot state monitoring, and communication with 

the server via a TCP/IP channel. Through this channel, the client can also access 

and control the robot’s I/O interface, as well as configure and monitor external 

Figure 2.1: A diagram showing the functioning of the Comau ROS driver with a real robot [8] 



sensors. This modular and distributed architecture enables flexible integration 

into broader robotic systems and simplifies the development and testing of 

advanced functionalities. 

To start the Comau ROS driver the first step is to launch this command in the 

terminal: 

roslaunch comau_bringup <robot_model>_bringup.launch \ 

 robot_net_config_file:=<robot_net_config_file> 

where <robot_model> specifies the robot in use and <robot_net_config_file> 

refers to a file containing the network configuration. Afterwards a service need to 

be called to connect to the TCP/IP communication channel, like this:  

rosservice call /tcpip_conn_manager “openConnection: true” 

Finally, the driver can now be used to send trajectory commands to the robot. 

The ROS 2 driver is similarly started by: 

 

2.1 ROS Client Architecture 

 

The following section provides a detailed explanation of the ROS client 

architecture. Serving as the central interface between the user and the robotic 

system, this module integrates the essential logic for planning, communication, 

and control, and forms the core focus of the work carried out in this thesis. As 

previously mentioned, the client is composed of multiple ROS packages, which 

are then instantiated as nodes, each with its own dedicated functionality. 

Two of these packages are not directly associated with any ROS nodes but serve 

a foundational role by holding data used by the rest of the system. In particular, 

the comau_description package contains the URDF models and launch files for 

each robot supported by the driver, while the comau_msgs package defines the 

custom ROS messages, services, and actions employed throughout the system. 



The first step in utilizing the client is to launch the bring-up package. This package 

uploads the selected robot’s description to the ROS parameter server and initiates 

the main nodes of the driver, each with a specific role. These nodes include: 

• ComauRobot Node: This node sets all necessary parameters defined in 

the configuration files and launches three key nodes required for TCP/IP 

communication: 

o robot_client, used for setting I/O and configuring sensors. 

o arm1_client, responsible for sending trajectories to the robot. 

o state_client, which monitors the robot’s state, position, and 

feedback messages. 

These communication nodes are defined in the comau_tcp_interface package, 

while the ComauRobot node itself is implemented within the comau_driver 

package. 

• HardwareInterface Node: The hardware interface is a central abstraction 

layer in ROS, designed to decouple the robot’s physical hardware from the 

software controllers that operate it. Rather than having controllers directly 

interact with low-level hardware such as motors or sensors, the hardware 

interface provides a standardized method for reading sensor data and 

sending actuator commands. This abstraction makes controllers 

hardware-agnostic and highly reusable. By supporting consistent 

interfaces for position, velocity, or effort control, the same control logic can 

be applied across different robotic platforms as long as they implement the 

corresponding interface. 

• controller_manager Node: This node advertises the ControllerWrapper 

service, which allows users to switch between available controllers at 

runtime. By changing the active controller, the robot’s operational mode 



can be adjusted, defining how it executes motions. This dynamic control 

selection is not yet implemented in the ROS 2 version of the client. In ROS, 

controllers are modular software components that implement specific 

strategies to control robot actuators. They run on top of the hardware 

interface, processing sensor inputs, such as joint positions or velocities, 

and generating output commands, like desired joint targets. Thanks to their 

modularity and independence from hardware specifics, controllers can be 

reused across a wide range of robots that comply with the standard 

interfaces. 

The ControllerWrapper service is defined as follows: 

 

 

• Trajectory Handler Nodes: Two additional nodes handle trajectory 

execution: one for Cartesian trajectories and another for joint-space 

trajectories. These nodes expose action servers that accept asynchronous 

trajectory commands from ROS action clients. However, they only function 

when the joint_state_controller is the only active controller, which is the 

default state of the hardware interface. If the robot is in a ready state and 

the async_enable topic is set to true, the action servers will send the goal 



to the real robot for execution; otherwise, they will abort. Once the 

arm1_handler PDL program is started, a trajectory can be sent to the ROS 

action server for execution. The action definitions can be found in the 

comau_msgs package. Although actions are native to ROS 2, the ROS 1 

version of the driver uses a supporting library to implement them. 

The execute trajectories used by the actions are defined as arrays of custom 

messages:  

#goal definition                            

comau_msgs/CartesianPoseStamped[] trajectory # desired cartesian positions to 

move to        

--- 

#result definition 

comau_msgs/ActionResult action_result 

--- 

#feedback 

comau_msgs/ActionFeedback action_feedback 

 

#goal definition                            

comau_msgs/JointPose[] trajectory # desired cartesian positions to move to        

--- 

#result definition 

comau_msgs/ActionResult action_result 

--- 

#feedback 

comau_msgs/ActionFeedback action_feedback 

The cartesian one is called CartesianPoseStamped and is thus defined as:  

## Definition: A euler pose with a tf frame to transform the pose relative 

from. 
## If the frame is "" will not transform the pose 
Header header 
float64 x 
float64 y 
float64 z 
float64 roll 
float64 pitch 



float64 yaw 

 
float64 lin_vel 
uint64  seg_ovr 
string  move_type 

where:  

• header is the reference frame 

• {x, y, z, roll, pitch, yaw} is the goal pose of the node in [m, rad] 

• lin_vel is the maximum linear velocity that the robot can reach during the 

execution of the node in [m/s] (default default_linear_velocity m/s in 

config.yaml file. Always check the limit value $LIN_SPD_LIM)  

• seg_ovr is an integer value and it represents the override of the node 

(default 100) 

• move_type is a case-insensitive string which defines the type of robot 

movement to reach the node.  

The join one is instead called JointPose and is defined as:  

float64[] positions 

 
uint64  seg_ovr 
string  move_type 

where:  

• positions is an array of float which contains the joints position in radiants. 

• seg_ovr is an integer value and it represents the override of the node 

(default 100) 

• move_type is a case-insensitive string which defines the type of robot 

movement to reach the node. 

 



Another operating mode supported by the Comau ROS driver is sensor tracking. 

In robotics, sensor tracking refers to the use of real-time feedback from internal 

or external sensors to dynamically adjust a robot’s motion. This capability is 

typically used to follow moving targets, compensate for drift, or adapt to 

environmental changes that occur during task execution. Within the Comau ROS 

framework, sensor tracking enables the robot to adjust the position of its end-

effector either relatively or absolutely, based on Cartesian feedback. 

The sensor tracking mode is implemented through two dedicated controllers: 

Relative Tracking Controller: This controller accepts velocity commands in the 

form of geometry_msgs/TwistStamped messages via the /arm_cmd_vel topic. 

This controller will transform the velocity message into cartesian correction based 

on the control loop frequency of the hardware interface and send the command 

to the robot controller. 

Absolute Tracking Controller: This controller receives Cartesian position 

commands via the /arm_cmd_pos topic. Instead of applying incremental 

adjustments, it sends explicit target positions to the robot, guiding the end-effector 

to reach specified poses in space. 

Key parameters for configuring sensor tracking—such as sensor type, gain 

values, unit conversion factors, and translational or rotational limits—can be 

defined statically in the controllers.yaml file. Additionally, these parameters can 

be updated dynamically at runtime using a ROS service call to 

/set_sensor_tracking_params, allowing for adaptive tuning of the controller during 

operation. 

The driver also supports teleoperation during sensor tracking. Two dedicated 

scripts, arm_vel_teleop and arm_pos_teleop, enable manual control of the robot 

through keyboard inputs, sending either velocity or position commands 

depending on the tracking mode.  

Lastly, the system provides real-time plotting capabilities through the 

/sensor_tracking_controller/plot topic. This feature logs the target values, actual 



positions, and tracking errors across all six degrees of freedom: x, y, z, roll, pitch, 

yaw.  

 

2.2 Examples of applications 

 

Pick and Place 

Pick and place operations are essential robotic tasks widely used in industrial 

automation, where robotic manipulators are programmed to identify, grasp, and 

transfer objects from one location to another with high precision and speed. These 

operations typically involve several coordinated steps, including object detection, 

positioning of the robotic arm, secure gripping using end-effectors such as 

mechanical grippers or vacuum suction devices, and accurate placement at a 

designated target area. Industrial manipulators performing pick and place tasks 

are often integrated with vision systems and advanced sensors, enabling them to 

handle objects of varying shapes, sizes, and orientations, even in dynamic or 

cluttered environments. This adaptability is crucial in sectors such as electronics 

assembly, food packaging, pharmaceuticals, and automotive manufacturing, 

where consistency, speed, and reliability are vital. 



 

The Comau ROS driver supports pick and place operations through multiple 

control strategies. For dynamic or sensor-driven tasks, the robot can use sensor 

tracking, either in relative or absolute mode, to adjust its motion in real-time based 

on feedback from external sensors or vision systems. This allows the robot to 

follow or respond to moving targets, such as items on a conveyor belt. 

Alternatively, for more structured environments, asynchronous or synchronous 

controllers can be employed. These allow the robot to move to the item’s location, 

secure it with the end-effector (e.g., gripper or suction tool), and then follow a 

planned trajectory to the designated placement location 

 

Manufacturing 

Manufacturing tasks such as welding, painting, are some of the most common in 

industrial settings. These tasks require extremely precise movement, consistent 

Figure 2.2: A Racer5-Cobot performing a pick and place operation [7] 



speed, and careful coordination with tools and sensors. A welding robot, for 

example, must follow a seam with accuracy while maintaining a steady torch 

angle and travel speed. Painting requires smooth, continuous motion to ensure 

even coating without drips or overspray.  

 

The Comau driver can handle such tasks thanks to its many operational modes 

and controllers, once again, sensor tracking can be used to handle the feedback 

from the system while the other trajectory handlers can be used to plan set paths 

while keeping the end effector in the correct orientation. 

 

Assembly 

Robotic assembly is one of the most complex and demanding tasks in industrial 

automation. Unlike welding or painting, which often follow predefined paths, 

assembly typically involves interacting with parts of varying shapes, sizes, and 

positions, requiring the robot to be both precise and adaptive. A typical assembly 

operation might involve multiple sequential steps such as picking a component 

from a bin, orienting it correctly, inserting it into a tight-fitting space, and fastening 

it with a tool. Each of these steps demands accurate motion, but also coordination 

with external tools like grippers, screwdrivers, or pneumatic actuators. In many 

cases, vision systems are used to detect the exact position and orientation of 

Figure 2.3: Comau robots of the NJ series working on a welding task. [7] 



parts, allowing the robot to adjust its motion in real time. Force and torque sensors 

may also be employed to guide insertion processes or detect misalignment. 

Thanks to the ROS driver, robots can integrate sensor feedback into motion 

planning and control loops, enabling them to make decisions on the fly, such as 

retrying a failed insertion, re-aligning a part, or reporting errors for human 

intervention. As a result, robotic assembly systems are becoming increasingly 

capable of handling not just repetitive tasks, but also variant-rich, precision-critical 

operations that were once considered too unpredictable for automation. 

 

 

 

 

 

 

 

 

Figure 2.4: An assembly line made of Comau NJ Robots [7] 



Chapter 3: The implementation 

Prior to the work carried out in this thesis, the ROS 2 driver for Comau robotic 

manipulators was already under development. However, the driver was still in its 

early stages and provided limited functionality compared to the more mature ROS 

1 implementation. In particular, key features such as motion planning, trajectory 

simulation, and seamless integration with the broader ROS 2 ecosystem were 

lacking or incomplete. To address this gap, the primary goal of this thesis was to 

implement a wrapper that enables the use of MoveIt 2, a motion planning 

framework for ROS 2, as both a simulation tool and a trajectory planner, 

integrated into the existing Comau driver. 

3.1 Moveit 

 

[6] MoveIt 2 is the ROS 2 version of the widely used MoveIt motion planning 

framework. It represents a substantial redesign of the original MoveIt system 

developed for ROS 1, aiming to fully exploit the features introduced in ROS 2. 

These include improved middleware based on DDS, enhanced support for real-

time and deterministic behaviour, lifecycle-aware node architecture, and a 

modular, scalable structure more suited to modern robotic applications. 

MoveIt 2 provides a comprehensive set of tools and libraries for robotic arm 

manipulation, including components for motion planning, inverse kinematics, 

collision detection, trajectory generation and execution, as well as planning scene 

management. These tools make MoveIt 2 one of the most complete and flexible 

solutions available for robotic manipulation tasks in the ROS 2 environment. 

Importantly, MoveIt 2 has been designed to integrate smoothly with ros2_control, 

the ROS 2 control framework, enabling trajectory execution on both simulated 

and real hardware. 



A central component of any MoveIt 2 setup is the move_group node. This node 

acts as the primary interface between the planning system and external clients, 

whether they are user interfaces such as RViz2, or custom applications written in 

Python or C++. In ROS 2, the move_group node is implemented as a lifecycle-

aware node, which allows for more robust and controlled startup, shutdown, and 

runtime behaviour. It exposes a unified set of ROS 2 services and actions used 

for executing core functions, including motion planning, inverse kinematics, and 

trajectory control. 

Specifically, the move_group node provides functionality for: 

• Motion Planning: It handles planning requests such as moving the robot’s 

end-effector from one pose to another, utilizing motion planners like OMPL, 

STOMP, or CHOMP. 

• Inverse Kinematics: It computes the necessary joint angles for achieving 

a given pose in Cartesian space. 

• Collision Checking: It ensures that the planned motions are free from 

self-collisions and collisions with objects in the environment. 

• Trajectory Execution: It sends generated trajectories to the robot 

controller, typically using ros2_control as the middleware interface. 

• Planning Scene Management: It monitors and updates the robot’s 

understanding of its environment, incorporating dynamic obstacles or 

changes in the workspace. 

To begin using MoveIt 2 with a robot, it is first necessary to create a dedicated 

MoveIt configuration package. This is efficiently accomplished using the MoveIt 

Setup Assistant, a setup wizard that allows users to load the robot's URDF 

(Unified Robot Description Format) file and interactively generate the 

configuration needed for motion planning. The output includes all necessary files 

and parameter definitions, such as the SRDF (Semantic Robot Description 

Format), joint limits, kinematic solvers, planning groups, and controller 

configurations. 



After launching the move_group node, the user can interact with MoveIt 2 through 

various interfaces. One of the most common is RViz2, which provides an 

interactive 3D visualization of the robot and the planning scene. Using RViz2, 

users can manipulate end-effector targets, preview planned trajectories, and 

initiate execution. Alternatively, developers can use the C++ interface 

(moveit_cpp) or the Python interface (moveit2_commander) to integrate planning 

and control directly into their applications. 

Although not all plugins from MoveIt 1 have been fully ported to ROS 2, the 

majority of core functionality is stable and actively maintained by the MoveIt 

community. MoveIt 2’s compatibility with ROS 2 standards and its support for 

modern robotics requirements make it a powerful tool for both research and 

industrial applications. The integration of MoveIt 2 into the ROS 2 Comau driver—

as implemented in this thesis—adds critical capabilities such as motion planning, 

trajectory simulation, and real-time execution, substantially enhancing the driver’s 

usability and functionality. 

 

 

Figure 3.1: Rviz being used to generate a trajectory with Moveit [6] 



3.2 First tests with Moveit 

 

The initial step in creating a wrapper for Comau robots that would integrate with 

the existing ROS 2 driver involved making MoveIt 2 compatible with these robots. 

To accomplish this, development began using the 

ros2_control_demo_example_7 package, an official example designed to 

demonstrate how ros2_control works with a six-degree-of-freedom (6-DoF) 

manipulator. The robot model included in the example was replaced with the 

Comau Racer5 Cobot, by substituting the existing URDF with the one provided in 

the comau_description package. This approach allowed testing and 

experimentation with the robot’s hardware interface without needing to launch the 

entire driver stack, thereby simplifying development and reducing complexity. 

 

Once a basic test environment was established, the next phase involved 

generating a MoveIt 2 configuration package tailored to the Racer5 Cobot. Using 

the MoveIt Setup Assistant, the URDF of the cobot, manually edited to remove 

xacro macros for compatibility, was loaded to generate the necessary planning 

configuration. Several key parameters were specified during this setup process: 

Figure 3.2: The Moveit setup assistant [6] 



a collision matrix, which defines pairs of robot links that are known never to collide 

and thus can be excluded from collision checking; a planning group, which groups 

joints together for coordinated trajectory planning; and two controllers, which are 

responsible for executing planned motions. The OMPL planner was selected as 

the default motion planner, and an inverse kinematics solver appropriate for the 

robot's structure was chosen. Upon completion, the setup assistant generated a 

full configuration package named racer5_cobot_moveit_config. This package 

included the SRDF (Semantic Robot Description Format) file, kinematic limit 

definitions, controller configuration files (YAML), and the necessary launch files 

to start the move_group node and associated MoveIt components, including a 

standalone demo launch. 

This setup enabled initial testing of MoveIt 2 with the Comau Cobot. Using RViz2, 

it became possible to plan and visualize motion trajectories interactively, as well 

as to execute them in simulation. Additionally, the configuration included auto-

generated C++ demo applications that could be used to test basic planning and 

execution pipelines programmatically. 

The final and most critical stage of this integration involved combining the 

previous steps to enable MoveIt planners to work in conjunction with the 

ros2_control_demo_example_7 hardware interface, replacing the simple KDL-

based planner previously used. To achieve this, an in-depth understanding of the 

MoveIt Motion Planning C++ API was necessary. The API offers a modular and 

extensible interface for defining and solving motion planning problems within 

custom applications. The typical workflow starts by loading the robot's URDF and 

SRDF using the RobotModelLoader, then creating a RobotState object and a 

PlanningScene that reflects the robot's state and environment. Through MoveIt’s 

plugin-based architecture, planners such as OMPL and STOMP can be 

dynamically loaded and configured at runtime. 

A crucial part of the Motion Planning API is the MoveGroupInterface, which 

provides a high-level abstraction for setting start and goal states, invoking 



planning algorithms, and executing trajectories. This interface connects directly 

to the move_group node and allows developers to generate motion plans either 

in joint space or in Cartesian space with minimal overhead. After generating a 

trajectory using MoveIt, the final step was to extract the resulting trajectory 

message and redirect it through the appropriate ROS 2 topic (e.g., 

/joint_trajectory) to the existing controller defined in the example_7 hardware 

interface. 

By successfully executing trajectories via this pipeline, originating from MoveIt 

and terminating in the existing ros2_control infrastructure, it became possible to 

confirm that MoveIt could be fully integrated into the Comau ROS 2 driver. This 

laid the foundation for future development involving real-time planning, sensor 

feedback integration, and higher-level robotic applications using Comau 

manipulators within the ROS 2 ecosystem. 

 

3.3 Virtual Tests on Roboshop 

 

The next phase of the development process involved integrating the MoveIt-

based wrapper into the Comau driver. To achieve this, a new trajectory handler 

package was created, designed specifically to employ the MoveIt planner for 

generating trajectories to be executed by the robot. 

To facilitate this integration, new launch files were created, and the 

comau_bringup package was updated. These modifications allowed the launcher 

to load all necessary MoveIt resources, including the URDF and SRDF files, 

kinematic limits, planner configuration files, and a parameter specifying which 

planner to use. 

The first handler to be adapted was the one managing joint trajectories. The 

existing logic responsible for validating joint positions and interpolating between 

them was removed and replaced with the MoveIt trajectory planner. Concurrently, 



a new action interface was defined: ExecuteJointTrajectoryMoveIt, within a newly 

created package called wrapper_msgs. The server for this action was 

implemented in a revised joint trajectory handler node, functioning similarly to the 

original version. It accepts an array of poses as a goal, leverages the MoveIt API 

to generate a valid trajectory through those poses, and transmits the resulting 

trajectory to the robot via a TCP/IP channel. 

This new implementation was initially tested with single-point joint trajectories. To 

launch the updated wrapper, the same command used for starting the original 

system could be used (start_comau_client.launch.py from the comau_bringup 

package) by selecting the MoveIt-enabled robot type instead of the default. The 

new handler remains compatible with the same set of services, including TCP 

communication. Additionally, to enable trajectory planning, the move_group node 

must be launched in a separate terminal. Once the virtual robot server in 

Roboshop is running and a TCP/IP connection is established, the robot is ready 

to execute incoming trajectory commands. 

After verifying that the new handler functioned correctly with single-point 

trajectories, the next step was to test multi-pose trajectories. This extension 

required minimal code changes. With the joint trajectory handler completed, 

development turned to the Cartesian trajectory handler. Thanks to MoveIt’s native 

support for both joint and Cartesian goal types, along with built-in support for path 

constraints, this transition was relatively straightforward. Notably, all trajectories 

generated by MoveIt are in joint space, eliminating the need for manual inverse 

kinematics calculations in the code. Once completed, the Cartesian handler was 

also subjected to more demanding trajectory scenarios. 

The first complex trajectory tested on the Racer5 Cobot was an hourglass-shaped 

path, illustrated in the accompanying figure. This trajectory was defined in joint 

space. The necessary joint values were determined by manually positioning the 

robot in Roboshop and writing down the corresponding joint states. 

These were (other joints were positioned at 0, throughout the whole trajectory): 



 

 
Table 3.1: The written down positions for the hourglass trajectory 

 Joint 1 Joint 3 

Point A 120° -45° 

Point B 120°  45° 

Point C 60°  45° 

Point D 60° -45° 

 

. 

Using ROS 2's ros2 bag feature, the joint values and their time evolution were 

recorded. These logs were then processed using MATLAB's dedicated ROS bag 

analysis package. The generated plots were compared against the trajectory 

produced by MoveIt, which was saved in a JSON format. Roboshop’s 

Figure 3.3: The shape of the desired trajectory 



visualization tools were also employed to compare the executed trajectory with 

the intended path. 

 

 

Figure 3.4: The hourglass trajectory simulated on Roboshop 

Figure 3.5: The positions of the joints (blue for joint 1 and orange for joint 3) 
recorded by rosbag 



 

The recorded trajectory was then compared to the one generated by Moveit: 

 

The results showed a high degree of alignment between the planned and 

executed trajectories. Joint values from the simulation closely matched those from 

the MoveIt-generated plan, and the system’s response was deemed both fast and 

reliable. 

The next trajectory tested on the Cobot followed a Cartesian triangular path. As 

before, the tool center point positions were calculated using Roboshop. Initially, 

the performance of Cartesian trajectories was less satisfactory compared to joint-

space planning, an expected result, as MoveIt is generally more optimized for 

Figure 3.6: The positions of the joints generated by moveit 



joint space. However, the situation improved significantly with the appropriate 

application of path constraints. 

 

Roboshop visualizations confirmed that the robot followed the desired trajectory 

with acceptable precision. These results validated the use of the new wrapper for 

Cartesian trajectories as well. 

Figure 3.7: The shape of the desired triangular shape 



 

Figure 3.8: The triangular trajectory simulated on Roboshop 

The subsequent test focused on deploying the wrapper with another Comau 

robot: the educational e.DO. This robot was chosen for its accessibility and the 

ability to conduct tests on actual hardware. A MoveIt configuration package was 

generated for e.DO by adapting its URDF file and importing it into the MoveIt 

Setup Assistant. The resulting files were added to the comau_description 

package, and new options were integrated into the bringup launcher to support 

switching between robots. With only minor code adjustments, support for multiple 

robot types was successfully implemented, demonstrating the scalability and 

modularity of the wrapper. 

The first trajectory tested on the e.DO robot mirrored the hourglass-shaped joint 

trajectory previously executed on the Cobot. The results, visualized using 

MATLAB and Roboshop, were consistent with prior tests: the trajectory was well-

formed, the joint values were accurate, and the execution response was prompt. 

These were the recorded positions (other joints were positioned at 0, throughout 

the whole trajectory):  

 

 



Table 3.2: The written down positions for the e.Do hourglass trajectory 

 Joint 1 Joint 5 

Point A -30° -20° 

Point B -30°  20° 

Point C  30°   20° 

Point D  30° -20° 

 

 

 

 

Figure 3.9: The e.DO hourglass trajectory simulated on 

Roboshop 



 

Again, the recorded trajectory was compared to the generated one: 

 

 

Figure 3.11: The positions of the joints generated by Moveit 

Figure 3.10: The positions of the joints (blue for joint 1 and orange for joint 5) 
recorded by rosbag 



A more challenging test followed, where the robot was programmed to "write" its 

own name using its end-effector. Roboshop was used to record the joint positions 

for each letter. These poses were then interpolated and validated by MoveIt, 

which produced a feasible trajectory. As shown in the accompanying figures, the 

robot successfully followed the desired path. The system maintained a fast 

response time, and the difference between planned and executed positions 

remained minimal. The shape of the trajectory was the following: 

 

 

These were the recorded joint positions:  

Table 3.3: The written down positions for the e.DO sign trajectory 

 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 

Point 1 2° 55° -94° 0° 40° -2° 

Point 2 -90° 45° -93° 0° 48° 90° 

Point 3  -26° 44° -93° 0° 48° 27° 

Point 4 2° 55° -94° 0° 40° -2° 

Point 5 -153° 50° -93° 0° 45° 56° 

Point 6 -153° 44° -93º 0° 49° 54° 

Point 7  -135°  41° -92° 0° 51° 35° 

Figure 3.12: The desired shape of the sign trajectory. 



Point 8 -47° 41° -93° 0° 51° -52° 

Point 9 -18° 22° -83° 0° 60° 81° 

Point 10 -64° 33° -89° 0° 56° -35° 

Point 11 -135°  41° -92° 0° 51° 35° 

Point 12 -109° 22° -83° 0° 61° 11° 

Point 13 -91° 11° -75° 0° 63° -9° 

Point 14 -72° 22°  -83° 0° 61° -27° 

Point 15  -92° 35° -90° 0° 55° -8° 

Point 16 -109° 22° -83° 0° 61° 11° 

 

Roboshop was used to visualize the trajectory: 

 

Matlab was again used to visualize the joint positions recorded by rosbag and the 

ones generated by Moveit’s trajectory planner. 

 

 

Figure 3.13: The shape of the sign trajectory simulated on Roboshop 



 

 

Figure 3.14: The positions of the joints (blue for joint 1, orange for joint 2, yellow for joint 3, purple for joint 
4, green for joint 5 and cyan for joint 6) recorded by rosbag 

Figure 3.15: The positions of the joints generated by Moveit 



Encouraged by the consistency and quality of the results in simulation, the next 

logical step was to validate the wrapper using real hardware. 

 

3.4 Real Hardware tests 

 

As previously mentioned, the robot selected for real-world testing was the e.DO 

educational robot. This choice was motivated by its ease of access and the 

encouraging results obtained during simulated experiments on Roboshop. Both 

trajectories developed in simulation, the hourglass-shaped path and the name-

writing sequence, were replicated on the physical robot. 

To carry out these tests, a specific setup was required. The e.DO robot was 

connected via Ethernet to a network comprising a Windows PC, an Ubuntu 22.04 

machine, and a TP switch. The Windows computer was used to interface with the 

robot through the e.DO Controller application, a Comau Progressive Web 

Application accessible by navigating to the robot’s IP address and accepting its 

web certificate.  

 

Figure 3:16 The Comau e.Do control APP 



This app provides a visual interface for commanding the robot, although in this 

context it was used solely for joint calibration and to initialize the robot with the 

onboard ROS 2 server. 

 

Once the robot was initialized, it became ready to receive commands from the 

Ubuntu computer, which was running the ROS 2 environment. The same 

procedure used to communicate with Roboshop was employed here, with the only 

difference being the need to update the IP address in the driver configuration files 

to match that of the physical robot. 

 

 

Figure 3.17: Calibrating joints on the control app 

Figure 3.18: The control app showing the positions of the calibrated joints 



 

With the setup complete, testing on the real robot began. The first trajectory to be 

executed was the hourglass shape, mirroring the earlier simulation. During 

execution, ROS 2 bags were used to record the real-time joint states from the 

robot's feedback, while the planned joint values from MoveIt were stored in a 

corresponding JSON file. MATLAB was then used to generate comparative plots 

from both datasets. 

 

As illustrated below, despite a minor initial offset due to a different starting pose, 

the real robot's behavior closely matched the simulation. The difference between 

the planned and actual joint positions was minimal, and the system exhibited a 

Figure 3.19: The e.Do robot setup 



comparably short response time. This level of consistency was anticipated, given 

Roboshop’s accuracy as a simulation environment. 

 

Figure 3.20: The positions of the joints (blue for joint 1 and orange for joint 5) 
recorded by rosbag during the test on the real robot 



The recorded positions were compared to the ones created by moveit: 

 

Following the successful execution of the hourglass trajectory, the second path, 

spelling out the robot’s name, was tested on the real hardware. The results were 

equally satisfying, with the robot precisely tracing the intended path. This final test 

reinforced the validity of the developed MoveIt-based wrapper as a reliable and 

flexible trajectory planner, capable of handling both joint-space and Cartesian 

trajectories on real robotic platforms. 

Figure 3.21: The positions of the joints generated by Moveit during the real 
robot test 



 
Figure 3.22:  The positions of the joints (blue for joint 1, orange for joint 2, yellow for joint 3, purple for joint 
4, green for joint 5 and cyan for joint 6) recorded by rosbag during the real robot test 

Again, the recorded trajectory was compared to the generated one: 

 
Figure 3.23: The positions of the joints generated by Moveit during the real hardware test 



Chapter4: Conclusions and future 

developments 

 

4.1 Conclusions 

 

This thesis set out to address the growing need for transitioning robotic software 

frameworks from ROS 1 to ROS 2 by focusing on a critical module within Comau’s 

ROS ecosystem: the integration of MoveIt for motion planning and trajectory 

generation. After a careful assessment of the existing ROS 1 Moveit package, the 

objective was to replicate a similar behaviour in the ROS 2 one. 

Through this work, a fully functional wrapper was developed that connects MoveIt 

2 with the Comau ROS 2 driver, enabling both joint-space and Cartesian-space 

trajectory planning. This wrapper was designed to be as modular and reusable as 

possible, replicating the structure and logic of the original ROS 1 implementation 

while embracing the benefits of ROS 2, including its node lifecycle management, 

enhanced communication middleware and improved real-time capabilities. 

The new wrapper was rigorously tested in both simulation and on physical 

hardware. The simulation tests, conducted using Roboshop and MATLAB 

analysis, demonstrated a high degree of accuracy between the trajectories 

planned by MoveIt and those executed in the simulation. These results were 

further validated in real-world tests using the Comau e.DO robot, where 

performance in terms of trajectory precision and system responsiveness mirrored 

that observed in simulation. 

Importantly, the development effort emphasized not only functionality but also 

extensibility. The wrapper was designed with generality in mind, capable of 

supporting additional robot models with minimal code changes. This was 

confirmed through successful adaptation and execution of trajectories on both the 

Racer5 Cobot and the e.DO educational robot. 



Overall, this thesis demonstrates that MoveIt 2 can be successfully integrated into 

a ROS 2-based industrial robot driver to enable robust and flexible motion 

planning. The solution not only meets current requirements but also opens the 

door to a wide range of future enhancements. By achieving seamless execution 

of both joint and Cartesian trajectories, with reliable performance on simulated 

and real robots, this work significantly advances the ROS 2 driver’s utility for both 

research and industry applications. 

Furthermore, the alignment of this development with the modular and scalable 

principles of ROS 2 ensures that the wrapper can serve as a foundational 

component in broader robot control architectures, including applications involving 

perception, task planning, and adaptive control. Given its success and stability, 

the MoveIt wrapper developed in this thesis is well-positioned to be integrated 

into the mainline ROS 2 driver for Comau robots, contributing directly to ongoing 

open-source efforts and future industrial deployments. 

 

 4.2 Future Developments 

 

Although this thesis successfully demonstrates the core integration of MoveIt 

within the Comau ROS 2 driver, there remain numerous opportunities to build 

upon this work and expand its functionality. These avenues of future development 

span improvements in planning flexibility, support for more complex 

environments, integration of sensing, and real-time performance optimization. 

A logical first step is to extend the wrapper to support Comau’s full range of 

industrial robots. The architecture designed during this thesis has already shown 

its scalability through tests on two different robot platforms. Extending support 

further would primarily involve updating URDF descriptions and reconfiguring the 

MoveIt Setup Assistant for each model. Given that the controller and planning 

logic remain consistent, this task is both feasible and efficient. Such an extension 



would significantly increase the utility of the wrapper for Comau’s clients and 

collaborators. 

Another promising direction is the enhancement of planning capabilities. While 

this thesis used OMPL as the default planner, MoveIt supports multiple planning 

backends, such as STOMP and CHOMP, each with different strengths. Adding 

the ability to switch dynamically between planners, depending on the application 

or trajectory constraints, could greatly improve the system’s adaptability. For 

instance, CHOMP may be better suited for smooth path generation in cluttered 

environments, while OMPL may excel in open, high-speed scenarios. 

A deeper understanding of MoveIt’s APIs and configuration options could also 

lead to improved use of constraints, enabling finer control over trajectory 

execution. This could include orientation constraints, velocity or acceleration 

bounds, and end-effector path constraints. Supporting complex constraint sets 

would allow the robot to perform tasks that require precision and adherence to 

strict physical limitations, such as welding or surgical assistance. 

An important area for future work lies in the integration of sensor feedback. By 

incorporating real-time data from cameras, LiDAR, or force-torque sensors, the 

robot could dynamically update its planning scene in MoveIt. This would allow it 

to react to changes in its environment and perform tasks such as obstacle 

avoidance, object manipulation, or human-robot interaction. MoveIt already 

supports a planning scene interface that can be updated during execution; 

leveraging this capability would enable the development of reactive and adaptive 

systems. 

Beyond the motion layer, combining the MoveIt wrapper with higher-level task 

planners (such as behavior trees or task planning frameworks like PDDL or 

FlexBE) could allow the robot to perform sequences of actions intelligently, based 

on task goals rather than raw trajectory inputs. This would move the system closer 

to autonomous operation in semi-structured or dynamic environments. 



Finally, a significant long-term goal is achieving real-time deterministic behavior, 

which is increasingly essential for industrial robotics. While ROS 2 offers 

improved real-time support compared to ROS 1, achieving full real-time 

capabilities requires careful design, including the use of appropriate real-time 

operating systems, real-time safe middleware configurations, and control loops 

with bounded latency. MoveIt 2 and ros2_control provide the foundation for this, 

but additional optimization and testing would be necessary to meet strict industrial 

standards. 

In conclusion, the wrapper developed in this thesis provides a robust, modular, 

and extensible foundation for motion planning with Comau robots in ROS 2 using 

Moveit. With continued development, it can evolve into a powerful motion layer 

for advanced robotic applications, capable of real-time, sensor-aware, and 

adaptive control in both research and industrial domains. 
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