
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Development of a Secure and Licensed
Mobile Framework for Real-Time

Physiological Data Analysis

Supervisors

Prof. MASSIMO VIOLANTE

Candidate

AMIR HOSSEIN RAHMANZADEH

JULY 2025

Abstract

For companies active in the domain of developing data-driven and proprietary
algorithms, a big challenge is always how to share or sell their solution to other
companies without exposing the internal logic. This problem is more highlighted,
especially in the use cases where the data processing should be done on the edge and
in real time, even in remote areas, eliminating the possibility of using a server-side
logic. The solution presented in this work provides a reliable way to securely share
the physiological prediction algorithms for third-party mobile applications, in the
domain of sleep, fatigue, and Alcohol misuse. It consists of a Swift XCFramework
for iOS and an Android AAR library, each providing a clear and consistent public
interface while keeping the logic secure and unreachable. The solution works
independently of the source of health data and provides the result in a defined
manner without exposing the core logic. To enhance the security and prevent
misuse of the library or framework, a comprehensive offline licensing system is
implemented to generate licenses to be shared with clients. Each license indicates a
list of features available in it, the bundle ID or package name of the app it can run
on, and the expiry date. To further increase the security of the solution, security
checks for jailbroken or rooted devices are added, in addition to the detection of
reverse engineering attempts.

Table of Contents

List of Figures v

Acronyms viii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2

2 Background 3
2.1 Cloud, Fog, Edge Computing and On-Device Processing 3

2.1.1 Cloud Computing in Mobile Health 3
2.1.2 Fog Computing in Mobile Health 4
2.1.3 Edge Computing in Mobile Health 5
2.1.4 On-Device Computing in Mobile Health 6
2.1.5 Choice justification . 7

2.2 IP Protection and Licensing Methods 8
2.2.1 Hardcoded License Keys . 9
2.2.2 Online License verification 9
2.2.3 Token-Based License Systems (JWT and Similar Tokens) . . 10
2.2.4 Offline Licensing with Digital Signatures 12
2.2.5 Choice justification . 13

2.3 Licensing Strategies for On-Device Frameworks 14
2.3.1 Hardware/Device-Bound Licensing 14
2.3.2 Feature-Limited and Modular Licensing 15
2.3.3 Time Limited Licensing . 16
2.3.4 Floating (Concurrent) Licensing 16
2.3.5 License Servers on Device 17
2.3.6 Choice Justification . 17

2.4 Security Risks in Mobile License Enforcement 18
2.4.1 Reverse Engineering and Patching 18
2.4.2 Key Leakage . 18

iii

2.4.3 Network Attacks . 19
2.4.4 Denial-of-Service or Bricking Risks 19

3 System Overview 21
3.1 System Objectives and Use Context 21
3.2 SDK Architecture (iOS and Android) 22

3.2.1 iOS: XCFramework Packaging and Architecture 22
3.2.2 Android: AAR Packaging, Native Code, and Architecture . . 23
3.2.3 Cross-Platform Architectural Principles 24

4 Framework and Library Implementation 26
4.1 Overview of SDK Structure . 26
4.2 iOS XCFramework . 28

4.2.1 Internal Modules (PredictS, License, Security, Features) . . . 28
4.2.2 Building and Integration in Customer’s App 33
4.2.3 What third-party developers have access to 34

4.3 Android AAR Library . 35
4.3.1 Architecture and Components of the Android SDK 35
4.3.2 Kotlin Layer . 36
4.3.3 C++ Native Layer . 36
4.3.4 Build Configuration: CMake and Gradle Integration for Na-

tive Libraries . 38
4.3.5 Integration in Customer’s App 39

5 Licensing System 41
5.1 Design Goals and Constraints . 41
5.2 License Creation and Verification Flow 42

5.2.1 Cryptographic Primitives . 42
5.2.2 License Signing Workflow 44
5.2.3 Offline Client Integration . 45

6 Conclusion and Future Work 47
6.1 Achievements . 47
6.2 Limitations . 48
6.3 Future Work . 48

Bibliography 50

iv

List of Figures

2.1 High-level view of JWT flow . 11

4.1 High-level Flowchart of system . 27

v

Listings

4.1 init function of PredictS class . 28
4.2 Drowsiness state detection function in PredictS file 29
4.3 Jailbreak check logic . 30
4.4 Public Interface of Fatigue Prediction 32
4.5 Commands for distributing .xcframework 33
4.6 How developers can use the framework 34
4.7 Public interface shared with third-party developers 34
4.8 Kotlin interface of License checker 36
4.9 Native root detection code . 37
4.10 Sample initializing of the library . 39
5.1 License Parameters . 45
5.2 License Sample . 45

vi

Acronyms

AAR
Android Archive

ABI
Application Binary Interface

API
Application Programming Interface

ECDSA
Elliptic Curve Digital Signature Algorithm

HMAC
Hash-based Message Authentication Code

HTTPS
Hypertext Transfer Protocol Secure

JNI
Java Native Interface

JSON
JavaScript Object Notation

JWT
JSON Web Token

MITM
Man-in-the-Middle

viii

NDK
Native Development Kit

OS
Operating System

RSA
Rivest–Shamir–Adleman

SDK
Software Development Kit

TEE
Trusted Execution Environment

TLS
Transport Layer Security

XCFramework
Xcode Framework (multi-architecture binary format)

SHA-256
Secure Hash Algorithm 256-bit

SHA-2
Secure Hash Algorithm 2

Base64
Binary-to-text encoding scheme

RSASSA-PSS
RSA Signature Scheme with Appendix – Probabilistic Signature Scheme

PKCS#1
Public-Key Cryptography Standard #1

SHA-256
Secure Hash Algorithm 256-bit

SHA-2
Secure Hash Algorithm 2

ix

Chapter 1

Introduction

1.1 Motivation

In recent years, wearable devices and mobile health (mHealth) technologies have
seen remarkable growth, reshaping how physiological data is gathered and analyzed
in real time. The global wearable tech market was valued at around USD 84 billion
in 2024, and is projected to more than double by 2030, with an average annual
growth rate of over 13%.[1] Even more impressive is the surge in medical-grade
wearables, a category expected to grow from USD 91 billion in 2024 to more than
USD 320 billion by 2032, driven by increasing demand for continuous monitoring
and preventative care.[2]

The capabilities of these devices are no longer limited to heart rate monitor-
ing, they now routinely track blood oxygen levels, sleep patterns, stress markers,
and other vital health metrics. What powers this shift behind the scenes are com-
plex machine learning and data processing algorithms capable of interpreting large
streams of physiological data and extracting meaningful insights from them. But,
building these algorithms is no small task. It requires time, domain expertise, care-
fully curated data sources gathered from reliable sources, and rigorous validation,
often in clinical or field settings. The financial and technical investment involved
makes these models extremely valuable assets the kind of intellectual property
(IP) that companies are understandably eager to protect.And that’s where a key
challenge emerges. To be useful, these algorithms often need to be integrated into
third-party apps. But distributing them in a way that preserves their value, while
also allowing them to run on a user’s device, is far from straightforward. This is
especially true in environments where constant internet access can’t be guaranteed,
like in remote clinics, mobile units, or field applications, making on-device, offline
execution essential.

1

Introduction

Cloud-based deployments offer some protection, since the logic never leaves the
server. But that model breaks down in low-connectivity contexts and can raise
privacy or latency concerns. Ultimately, developers face a difficult trade-off: how to
allow broader use of their algorithms without exposing them to reverse engineering,
misuse, or unauthorized redistribution.

1.2 Objectives
The goal of this project is to create a secure and practical way to run proprietary
physiological data analysis algorithms on mobile devices without putting the un-
derlying logic at risk and without relying on a constant internet connection.

To achieve this goal, this thesis focuses on developing a separate mobile framework
for iOS and a Library for Android, letting third-party companies and developers
integrate the logic in their apps while keeping the core logic secure and safe.
More specifically, the project sets out to:

• Build a shared architecture with two components: a Swift XCFramework for
iOS and an AAR library for Android, both exposing a simple and consistent
interface for sending data and receiving results.

• Keep the system platform-agnostic by accepting health data from any source
as long as it follows the expected format, whether it’s Garmin, Apple Health,
or something else.

• Protect the algorithm’s logic through binary obfuscation, compiled delivery,
and built-in checks that make reverse engineering significantly harder.

• Design and implement a license system that works entirely offline, where each
license defines which features are enabled, which app it can run on, and how
long it’s valid.

• Implement various security checks at runtime to detect rooted Android or Jail-
broken iOS devices, which are typically used for bypassing their OS standard
security standards.

• Test the system thoroughly to make sure everything works as expected: from
license validation to handling edge cases and security triggers.

Together, these objectives aim to provide a developer-friendly but secure way to
deliver sensitive algorithmic functionality to mobile apps without giving up control
over how and where it’s used.

2

Chapter 2

Background

2.1 Cloud, Fog, Edge Computing and On-Device
Processing

Mobile health (mHealth) applications increasingly rely on the continuous moni-
toring and real-time processing of physiological signals, such as heart rate, blood
pressure, and electrocardiogram (ECG) data, captured through wearable sensors
and smartphones. In such contexts, selecting an appropriate computational archi-
tecture is crucial to ensuring both performance and security. Four main models
are typically employed: cloud computing, fog computing, edge computing, and
fully on-device computation. Each paradigm presents a unique balance of factors,
including latency, offline operability, and the degree of data privacy, considerations
that carry particular weight in healthcare-related use cases.

2.1.1 Cloud Computing in Mobile Health
Cloud computing consists of delegating data storage and processing tasks to remote,
centralized servers that are accessible over the internet. In the scope of mHealth
applications, cloud-based platforms are often used to collect and analyze data
from multiple users, enabling large-scale analytics and the development of heavy
and expensive resource-intensive tasks. One of its key advantages is its virtually
unlimited scalability and flexibility, making it ideal for computationally demanding
operations.[3] Leading providers such as Amazon Web Services and Microsoft Azure
support easy scaling solutions and “pay as you go” plans reducing the need for
initial heavy investments both in terms of cost and time.[4]

Despite its scalability and processing power, cloud computing presents notable
limitations for real-time mobile health applications, most critically, in terms of

3

Background

latency. Since data must be transmitted from the user’s device to remote data cen-
ters and then returned, inherent network delays are introduced. Empirical studies
report that cloud-based processing typically incurs latencies in the range of 20 to 40
milliseconds, which may be insufficiently responsive for time-sensitive scenarios.[5]
Indeed, several researchers emphasize that fully cloud-reliant architectures are “not
suitable for real-time applications” due to these latency concerns.[6] In clinical
situations such as detecting arrhythmias or responding to falling sleep, especially
in dangerous scenarios such as driving, even minor delays can have serious conse-
quences. Furthermore, the dependency on continuous internet connectivity renders
cloud-based systems ineffective in offline or low-connectivity environments such as
rural areas or during emergency events, where uninterrupted health monitoring is
most needed. This lack of offline operability significantly undermines the reliability
and ubiquity required for continuous physiological assessment.

Another issue with cloud-based mHealth systems is data privacy. Potential weak-
nesses in data security and regulatory compliance arise when extremely sensitive
personal health data, like activity histories or heart rate patterns, is transmitted
to distant servers. Users of these systems must have a great deal of faith in
outside providers to protect their medical information. The act of moving data
outside of the user’s direct control is still a major concern, even though encryption
protocols and adherence to laws like HIPAA can reduce some risks. Attempts
to guarantee strong privacy protection are complicated by this trade-off, which
involves outsourcing computation at the expense of data being sent to the cloud.
In short, cloud computing has many benefits, such as centralized analytics and
large-scale processing, but it also has some serious disadvantages, such as the need
for reliable network connections, latency problems that prevent real-time feedback,
and a greater risk of personal health data exposure.

2.1.2 Fog Computing in Mobile Health
Fog computing is built upon the traditional cloud model by introducing a dis-
tributed layer of intermediary nodes (commonly referred to as fog nodes or fog
servers) which are closer to the data-generating devices.[6] These nodes are typically
located within local or regional networks, allowing data to be processed closer to
its source.
Handling computation at such closer distance, helps reducing the latency and the
network bandwidth usage significantly. This architectural approach enhances the
system’s capacity for real-time responsiveness, particularly in scenarios where rapid
feedback is essential. According to industry analyses, fog computing offers many of
the low-latency advantages available in edge computing, while having the flexibility
to send non-urgent processing tasks to the cloud. This hybrid capability makes

4

Background

it especially valuable for applications that require both immediacy and scalability.[4]

One key advantage of fog computing is its capability to keep a part of its function-
ality even in the event of an internet outage. As long as the local fog node remains
accessible, typically through Wi-Fi or a local network, data can still be processed
and stored locally. This capability it possible for vital services, like alert generation
and patient or driver conciseness monitoring, to function even when there isn’t a
reliable cloud connection.

By localizing computation inside a limited organizational or geographic boundary,
fog computing presents clear benefits in terms of data privacy. Unlike public cloud
solutions, fog architectures let sensitive health data be analyzed and pre-processed
near its source without instantaneous transmission to outside servers. Since raw
personal data can stay on the actual premises or institutional network, this proxim-
ity helps to improve data protection rules compliance. However, the introduction of
fog nodes also expands the potential attack surface, given that these nodes serve as
intermediaries between edge devices and the cloud. Without robust security mea-
sures, they may become susceptible to threats such as man-in-the-middle attacks.[4]
Still, fog computing offers a convincing middle ground: it preserves access to cloud
infrastructure for high-complexity chores or long-term storage while delivering lower
latency and enhanced privacy than cloud-only systems. In healthcare IoT systems,
where both strict data governance and real-time responsiveness are critical, this
hybrid approach is especially suited.

2.1.3 Edge Computing in Mobile Health
Edge computing advances the distribution of computation by locating processing
activities as near as possible to the source of data, usually at the boundary of the
network or on the gateway devices that are in direct connection with sensor devices.
In this architecture, processing occurs at edge nodes that are physically close
to data-gathering peripherals.[4] These nodes can include cellular base stations,
local servers on the same site, or specialized processing equipment co-located with
the sensor array. While on-device processing is sometimes grouped under edge
computing, it is treated as a distinct category in this thesis. The central idea
behind edge computing is to allow computation and information interpretation to
occur on-demand locally, in or near the location where it is generated, preventing
the latency involved with the usage of remote servers. The edge systems can
process data at ultra-low latency by storing and processing locally, making them
essential in real-time systems.[3] Experimental findings confirm the assertion that
edge computing has the potential to reduce latency to less than 5 milliseconds
far beyond the performance of the cloud, which records an average of 20 to 40

5

Background

milliseconds. Such degree of responsiveness is particularly crucial in time-dependent
mobile health situations.

Edge computing improves system resilience by the help of enabling data processing
on nearby nodes or devices, which reduces dependence on internet connectivity.
This makes edge computing particularly valuable in remote or low-infrastructure
environments. However, when the edge node is separate from the user’s device, a
local connection (e.g., LAN or cellular) is still required. Even though they are not
completely independent, edge systems are far more self-sufficient than cloud-based
models and, when paired with on-device processing, can continue vital monitoring
even when the internet is unavailable.

By allowing sensitive data to be processed close to its source, edge computing
improves data privacy. Edge systems can filter and analyze data locally, sharing
only aggregated insights or alerts, rather than sending raw health data to external
servers. This method lessens dependency on external cloud infrastructure while
maintaining control over personal health information. As a result, in addition to
enhancing privacy it also lowers the bandwidth usage, which is an important benefit
in healthcare settings. According to a systematic review, edge architectures are
widely employed in applications that have strict privacy and real-time requirements,
like medical monitoring, because they can satisfy both.[3] However, the edge nodes’
limited computational capacity is a significant drawback. Edge devices, in contrast
to cloud systems, are limited in how many users or tasks they can manage. Several
nodes may need to be deployed in order to scale such systems. Although, complex
analyses can now be conducted at the edge, however, thanks to developments in
mobile hardware and AI acceleration, which provide a workable balance between
privacy, scalability, and speed in mHealth applications.

2.1.4 On-Device Computing in Mobile Health
The most localized model of data-processing architectures is on-device computing,
using which all computations are carried out locally on the mobile or wearable
sensor that is used to capture the data, as opposed to being outsourced to remote
servers. The calculations are usually being done by the internal processors of a
smartphone, a smartwatch, or of a medical sensor. With recent advances in mobile
chipsets, running even heavy data processing tasks locally has become increasingly
feasible.[7] It is now possible to perform real-time, fully on-device tasks like fall
detection, driver drowsiness prediction, and heart rhythm classification. Processing
delays are usually lowered to a few milliseconds, completely eliminating network
latency.

6

Background

The implications of on-device computing for mobile health are particularly impact-
ful. It offers maximum offline availability: even in areas without network coverage,
users can receive health insights directly from their devices. This capability is
essential for continuous monitoring and timely alerts, regardless of connectivity.
From a privacy standpoint, on-device processing is also highly advantageous, as
sensitive physiological data remains confined to the device, minimizing risks of
exposure or misuse.[7] As one industry report observes, on-device AI “eliminates
the need to transmit data to the cloud,” offering stronger privacy safeguards for
sensitive information such as voice, images, or biomedical signals.[7] This localized
model aligns well with data protection regulations by ensuring that raw data
remains under the user’s direct control.

These properties make this paradigm appealing to mHealth applications which
need to serve privacy-aware users and contexts with inconsistent connectivity.

2.1.5 Choice justification
Out of all the computational models that were discussed, on-device computing
was found to be the most suitable for the goals of this thesis. Although cloud,
fog, and edge computing architectures each have unique benefits, none of them
simultaneously meet the three crucial requirements of robust data privacy, offline
operability, and real-time responsiveness.

To ensure that the technical design satisfies the demanding requirements of modern
mHealth applications, this thesis uses on-device computation as the fundamental
architectural principle for the suggested framework and library.

7

Background

2.2 IP Protection and Licensing Methods

When a company distributes proprietary algorithms through a mobile software
development kit (SDK) or library, implementing a robust licensing system is es-
sential to protect its intellectual property and sustain its business model. Unlike
standalone applications, SDKs are designed to be embedded within third-party
apps, meaning the vendor’s proprietary logic, or a part of it, is shared with external
developers. Without effective licensing, there is little to prevent different cases of
misuse, such as unauthorized deployment beyond agreed terms or repackaging of the
SDK into unlicensed products. Licensing acts like a safeguard, enabling the vendors
to enforce legal usage, restrict redistribution, and ensure that only authorized
clients have access to their product.[8] This makes the SDK a regulated, marketable
product rather than a resource that can be freely exploited.[8] Additionally, it is
essential for discouraging software piracy, which continues to pose a serious risk
to proprietary software. In order to reduce the risk of reverse engineering and
unauthorized replication, academic literature on software protection emphasizes the
significance of incorporating techniques like license verification, code obfuscation,
and watermarking. Since all protection systems are, in theory, vulnerable to attacks
over time, rigorous implementation is essential. A robust, structured licensing
framework, therefore, not only boosts commercial enforcement by maintaining
compliance with license terms and conditions but also keeps the IP safe.

In summary, licensing is the foundation of secure SDK distribution, providing
the ability for vendors to share high-value libraries only with known and verified
end users. Beyond protecting IP, it also enables the enforcement of revenue models,
such as subscriptions or usage-based fees, by forcing technical controls based on
the terms of the license.

Vendors of mobile and embedded software have created a variety of licensing
techniques to address the difficulties of preserving intellectual property and en-
forcing usage terms. The most effective solutions usually involve a combination
of techniques, suitable for the specific constraints of mobile environments, such
as intermittent connectivity, limited resources, and considerable vulnerability to
reverse engineering. The following section outlines commonly used licensing meth-
ods for mobile libraries, highlighting their practical applications, advantages, and
disadvantages.

8

Background

2.2.1 Hardcoded License Keys
One of the most straightforward licensing methods involves the use of static or
hardcoded license keys. A unique key is assigned to each client by the SDK vendor.
This key must be provided by the third-party application integrating the SDK,
usually by passing it through a runtime initialization function. The key is then
validated by the SDK using a validation algorithm or by comparing it to an in-
ternally stored list of permitted values. This approach is easy to implement and
works completely offline.

However, static license keys provide only a minimum level of protection. Since the
validation logic is simple, an attacker, with a few valid license keys, or moderate
reverse engineering skills, can find out the pattern or validation logic. Additionally,
hardcoded keys are not flexible by nature. Unless further validation layers are in
place, once a key is leaked, it can easily be used by unauthorized parties without any
restrictions. Due to the lack of built-in revocation or usage monitoring mechanisms,
vendors are unable to identify or prevent misuse after a key has been compromised.

2.2.2 Online License verification
Online licensing operates via a real-time communication between the application
and a remote server to check the license at runtime. In this model, the mobile
app, or the SDK embedded within it, sends a request to a licensing server, usually
operated by the SDK vendor or a third-party License-as-a-Service provider. The
server may respond with a confirmation of the validity of the license or particular
license parameters after authenticating the request using identifiers like an API key,
app package name, or unique client ID. Commercial SDKs and platforms frequently
use this technique as a component of all-inclusive licensing packages.

However, there are a number of drawbacks to depending on network connec-
tivity. Applications that need to run in offline or low-connectivity settings might
not be able to run license checks, which could result in startup errors or momentary
functionality loss. This is a huge problem when it comes to mHealth scenarios,
especially in cases where the patient or person of interest moves to areas with
weak connectivity potential, like drivers. If the license server cannot be reached,
online verification could introduce latency and possible points of failure even in
normal circumstances. Many systems use a hybrid approach to address these issues:
offline operation is allowed for a grace period after an initial online activation. For
instance, Cryptolens advises caching a digitally signed license token that permits
offline use for a specified amount of time (for instance, 30 days), after which the
application needs to reconnect in order to renew the license.[9]

9

Background

Another important factor in online licensing is security. To avoid spoofing and
unwanted access, the client-license server communication must be secured. Us-
ing API keys for client authentication, sending data over HTTPS, and using a
server-side private key to sign responses are examples of some common practices
to mitigate this threat. Using an embedded public key, the client can then con-
firm the response’s legitimacy, guaranteeing that only legitimate licenses from
the authorized server are accepted. In most cases, the developer registers the
app and receives a license or API key, which is then stored in the app. Upon
launch, the SDK sends a request to the licensing server, including identifying
information such as the app’s package name and device metadata. After confirming
the request, the server provides a signed license token with status and usage pa-
rameters, frequently in JSON format. The license server is still the final source of
truth, even if this token is saved on the device and used again for offline verification.

In conclusion, online licensing gives SDK vendors a great deal of control and
flexibility, but it needs to be properly planned to handle connectivity issues and
ensure secure client-server communication. It provides an efficient balance between
usability, security, and enforceability in mobile software licensing when put into
practice with the right safeguards and contingency plans.

2.2.3 Token-Based License Systems (JWT and Similar To-
kens)

One modern technique that combines online and offline licensing models is token-
based licensing. This method encapsulates the license in a digitally signed token,
usually a JSON Web Token (JWT) or a similar cryptographic payload. This token
includes encoded parameters that define the license terms, such as the purchaser’s
identity, permitted app or device, expiration date, and enabled features. Crucially,
the token is signed using the vendor’s private key, allowing the SDK to verify
its authenticity and integrity offline using the corresponding public key. This
eliminates the need for constant connectivity and allows for safe, impenetrable
license validation.

At its core, token-based licensing depends on the reliability of digital signatures.
Forging a legitimate token becomes computationally impossible as long as the
vendor’s private signing key is kept private and a secure cryptographic algorithm
(such as RSA or ECDSA) is employed. This counts as a major improvement over
static keys, as it removes the need to embed any secret in the client application.
There is no chance of client-side secret leakage because the SDK only contains the
public key, which is used to validate the signature. A high-level view of a typical
token-based licensing (here JWT) is shown at Figure 2.1.

10

Background

Figure 2.1: High-level view of JWT flow

However, implementation integrity becomes the primary vulnerability. By al-
tering the SDK, for example, to accept invalid or expired tokens or to omit the
signature check, an attacker could try to get around the verification logic. This can
be lessened by obfuscating and deeply integrating the signature validation process
into the codebase. A critical mistake to avoid is using symmetric cryptography
(e.g., HMAC) for signing and embedding the shared secret in the SDK; doing so
would allow attackers to generate valid tokens by themselves considering this, it
is highly recommended to use asymmetric keys for signing and verifying.[10] To
support long-term security, key rotation is also advisable. Vendors may choose
to allow connected applications to retrieve the current public key from a trusted
URL or, for offline use, to embed it in a protected area of the application.[11] In
fully offline environments where public key updates are not feasible, including an
expiration date in the token ensures that licenses must periodically be refreshed,
thereby reestablishing trust under a new key if needed.

In conclusion, token-based licensing, particularly JWT, is well-liked in contem-
porary SDK licensing due to its flexibility, self-contentedness, and cryptographic
security. It can encode device-bound or feature-bound restrictions, as it will be
covered next, and it performs well for mobile SDKs that might not always be
online.

11

Background

2.2.4 Offline Licensing with Digital Signatures

Conceptually, offline license files are comparable to token-based licensing and fre-
quently embody the same fundamental concept under a different moniker. This
method is still widely used, especially in specialized SDKs and embedded systems,
and it predates contemporary standards like JWT. Under this model, a license
file, usually a signed or encrypted text or binary blob, or occasionally a digital
certificate, is created by the vendor and sent to the client. The file is bundled with
the mobile application or included as an asset. At runtime, the SDK loads and
verifies the license file; if the signature is valid and the embedded parameters (such
as expiration date, allowed features, or device restrictions) are deemed acceptable,
the SDK enables its functionality. Otherwise, access is restricted or denied. This
method supports fully offline operation while preserving strong authenticity and
integrity guarantees.

The strength of the underlying cryptography and the privacy of the vendor’s
private signing key play a major role in the security of offline signed license files.
Because it is computationally impossible to forge a legitimate signature without
the private key, the system is extremely resistant to forgery when it is implemented
using robust algorithms, like RSA-2048 or its equivalent. The main risk is bypass
rather than cryptographic failure: an attacker can completely get around the system
if they alter the SDK to omit or fabricate the license validation logic, and this risk
applies to all licensing systems. This emphasizes how important tamper-proofing
is, which is covered in more detail in a later section.

While some vendors choose to encrypt license contents to obscure internal pa-
rameters and make them unreadable to end user developers, the most crucial
security element that guarantees the robustness of the licensing system is the
digital signature. It ensures that any unauthorized modification to the file will be
detected. License files can be distributed as binary blobs with extra opacity or
in human-readable formats like signed XML or JSON, which make it simpler for
clients to review the terms of the license and improves user experience. The SDK
usually parses the license at runtime and verifies parameters like the expiration
date, application or device identifiers, and allowed usage levels, regardless of the
format. The SDK should reject the license and limit access appropriately if any
of the conditions are not met or if the signature cannot be validated. Optionally,
it can also notify why the license failed, which will significantly improve user
experience but also lowers the security of the system, this is a known trade-off in
the cybersecurity world.

12

Background

2.2.5 Choice justification
Each of the licensing systems discussed have their own advantages and disadvantages,
but when it comes to utilizing them for an on-device mHealth use case, the ability
of utilizing the system offline becomes an important choice making factor, since as
discussed, in many scenarios there might not be a stable network connection and
failure to check license and subsequently to use the logic my result in life threating
outcomes. Keeping all these in mind, the Offline Licensing with Digital Signatures
has been chosen for this thesis due to its high security and offline using availability.

13

Background

2.3 Licensing Strategies for On-Device Frame-
works

2.3.1 Hardware/Device-Bound Licensing
Hardware-bound licensing links the use of an SDK to a particular physical device,
extending the scope of traditional license validation. In addition to checking if
the license is valid, it also checks if the device that is running the app is rec-
ognized and has access. This model is widely used in embedded systems and
enterprise software, and can also apply in mobile contexts where the software is de-
ployed on managed or dedicated hardware, such as a company-owned fleet of tablets.

A unique hardware identifier, such as a device serial number, IMEI, UDID, MAC
address, or CPU ID, is usually retrieved for implementation and is embedded to
the license file or. The SDK checks the licensed value against the identity of the
current device during runtime. The SDK activates if they match; if not, access is
restricted. By preventing license sharing or replication across unauthorized devices,
this provides an extra layer of control. Another limitation similar to this, used most
frequently in paid SDK sharing, is checking the application identifier rather than
device. Doing so, the vendor can be sure the SDK is used only for the application
that the client paid for, regardless of the device it’s running on.

Device-bound licensing offers a strong deterrent against unauthorized redistri-
bution by binding SDK functionality to a specific hardware identity. Even if an
attacker obtains both the application and a valid license file, they would still need
to spoof the licensed device’s hardware signature which is an added barrier that
discourages casual piracy. This method is especially effective in scenarios where
the SDK is intended for deployment on a single device or appliance, such as in
industrial or enterprise settings with per-device licensing models. This method
adds several levels of protection by requiring both hardware identity matching and
license validation, which makes it much more difficult for attackers to completely
get past security measures.

Despite its advantages, for consumer-based application, hardware-bound licensing
is rarely used since in such scenarios users and buyers expect to install the app
and use the SDK freely on as many device as they want.

Therefore, in enterprise or embedded scenarios, where the "user" is an organization
that manages a fixed set of devices, like kiosks, IoT hardware, or company-issued
tablets, device-binding is more appropriate.

14

Background

The growing privacy protections on contemporary mobile platforms also present
technical challenges. Since iOS no longer allows access to the original UDID,
developers are forced to use alternatives like “identifierForVendor” or demand that
a device code be manually entered.

2.3.2 Feature-Limited and Modular Licensing
Tiered licensing model is extremely popular among SDK vendors, where different
feature sets are enabled based on the purchased license level, for example, a tier
may give you access to only 1 feature, but the higher tier to all features. These
permissions are enforced at runtime by the SDK, which grants or prohibits access
to particular features based on the access level.

An industry standard is adding feature flags and granted rights in the license
token. The SDK determines whether the license contains the necessary rights when
an application calls a feature. Otherwise, the SDK might raise an error or turn
off the feature. This method eliminates the need for separate binaries by allowing
access to a matrix of features to be controlled by a single license file. A different
approach makes use of modular licensing, in which the main SDK components are
licensed separately.

Feature-based licensing, like other restriction methods comes with some secu-
rity challenges, particularly when the SDK uses on device computation method,
which results in code for advanced functionalities being shipped within the ap-
plication but gated by internal flags. In these situations, attackers might try to
circumvent these limitations and unlock premium features without permission by
manipulating the SDK, either by patching the binary or by changing memory
during runtime. This again highlights the important of designing the SDK and its
distribution method.

From a commercial perspective, feature-based licensing makes it possible for vendors
to offer specialized packages according to client requirements by enabling flexible
sales models. However, because every gated feature is now a possible target for
manipulation, it increases the attack potential from a security standpoint. Feature
flags should be used in combination with other security measures to reduce this
risk. To ensure that new features cannot be enabled by simply editing the license
file, for example, it should be digitally signed to prevent unauthorized modification.
In order to prevent static analysis and patching, license checks should also be
obfuscated and deeply ingrained in feature logic. Sensitive elements of premium
features may be implemented in native code or rely on secure hardware calls in
high-security scenarios, making them much more difficult to circumvent or reverse

15

Background

engineer.

2.3.3 Time Limited Licensing
Most licensing systems limit the functionalities by time, supporting models like
trial periods or time-bound subscriptions. This is usually accomplished in mobile
SDKs by including an expiration timestamp in the license, usually via fields such
as the exp claim in JWT-based tokens.[12] If the license has expired, the SDK
disables or restricts functionality at runtime by comparing the current system date
with the expiration value.

The potential for users to alter the system clock in order to prolong the validity of
licenses is the primary problem in offline environments. Some SDKs handle this by
flagging any detected clock rewinds and keeping track of the last known valid usage
timestamp in secure local storage. Others require recurring online verification to
verify license status, but this adds complexity and necessitates connectivity. In
completely offline scenarios, vendors frequently issue short-duration licenses that
need to be renewed frequently in order to mitigate or accept a certain amount of risk.

The grace period model, which requires revalidation after a limited period of
offline validity (such as 30 days) following an initial online activation, is a com-
monly used compromise. This method provides a useful compromise between
license integrity and user convenience, especially in mobile settings where sporadic
connectivity is typical.

2.3.4 Floating (Concurrent) Licensing
To enable a restricted number of SDK instances to operate concurrently across a
pool of devices, floating, also known as concurrent, licensing models are frequently
used in enterprise settings. Usually, this method relies on real-time communication
with a central license server that controls availability and license check-outs. Be-
cause it can be difficult to maintain constant network access, floating licenses are
less common in mobile applications than in desktop software.

However, companies can use on-premise license servers, even in closed networks, to
control floating license distribution for controlled deployments, like corporate fleets
of mobile devices. Such configurations are supported for large-scale deployments
by solutions such as those provided by Cryptolens.[9] Mobile apps can be set up
to connect to a local license server on the client’s internal network when offline
access is required. This shows the flexibility needed to satisfy various licensing
requirements in enterprise contexts, even though it differs from strictly on-device

16

Background

enforcement.

2.3.5 License Servers on Device

Deploying a lightweight license manager directly on the device, where the SDK
checks for validation, is a new strategy in embedded and high-security settings.
The license management component of these architectures usually functions in a
Trusted Execution Environment (TEE) or secure element, which are protected
hardware. TEEs are already present in many mobile devices, such as the Secure
Enclave on iOS and ARM TrustZone on Android. In theory, these devices could be
used to safely store license keys or carry out validation tasks that are not accessible
by standard user-level code.

Although this model provides robust defense against tampering and key extraction,
it usually requires extensive device platform integration. Because of the intricacy
and restricted accessibility of these environments, the majority of third-party SDKs
do not directly utilize TEEs as of 2025. However, such mechanisms are commonly
used in platform-level digital rights management (DRM) systems, such as those
used in secure media playback. In the future, mobile SDK licensing may use more
and more platform-provided secure storage options, like Apple’s Secure Enclave
or Android’s KeyStore, to keep cryptographic license materials. By making key
extraction and license forgery much more difficult, these technologies have the
potential to greatly improve security. However, the majority of SDK licensing is
still done at the user-space level for the time being.

2.3.6 Choice Justification

Since the aim of this thesis was to develop a secure framework and library for
sharing the physiological state prediction with third party application, security was
a very important subject to keep in mind. On the other hand, due to nature of the
target audience of this SDK, the ability to work offline all the time was also a very
important matter. Keeping these in mind, the thesis selected “Offline Licensing
with Digital Signatures” approach. Furthermore, to keep the proposed system
dynamic, “Feature-Limited” licensing is employed to give the vendor the ability to
define different access levels with just one license. Finally, to enhance the security
of this distribution system, similar to “Hardware/Device-Bound Licensing”, the
license is generated for a specific app identifier (bundle id for iOS and package
name for Android), this ensures that only the company that have paid for this
license can have access to it and sharing it with other companies will result in
license validation failure.

17

Background

2.4 Security Risks in Mobile License Enforcement
During the previous section, some security issues related to each licensing method
and limitations were covered, in this section, a summary of those and generic ones
are discussed.

2.4.1 Reverse Engineering and Patching
Reverse engineering is still a threat even with improvements in mobile applica-
tion security. Attackers can identify and alter license enforcement mechanisms by
analyzing app binaries, including embedded SDKs, using widely available tools
like APKTool, Jadx, Hopper, and Ghidra. Expert reverse engineers can examine
control flow, track execution paths, and try to disable protection mechanisms at
the assembly level, even in cases where licensing logic is deeply embedded.

When developing and distributing SDKs, many vendors, including the present
thesis, decide to distribute SDKs as precompiled binaries instead of source code in
order to reduce this risk. This is typically accomplished on iOS using XCFramework
bundles, and on Android, the AAR (Android Archive) library is the equivalent
format. Compared to open or semi-obfuscated source code, these binary formats
greatly complicate direct inspection or modification because they encapsulate the
compiled logic. Sharing only compiled code increases the barrier to tampering and
unauthorized use by limiting the exposure of proprietary algorithms and sensitive
licensing logic.

It is known, however, that no client-side protection is completely secure. Therefore,
the goal is to make reverse engineering unreasonably difficult and time-consuming.
Raising the cost of attack to a level where most adversaries cannot afford it is the
practical objective.

2.4.2 Key Leakage
The risk of key exposure is inherent in licensing schemes that depend on secret
data embedded in the client application, such as static lists of valid license codes or
symmetric decryption keys. By examining the binary’s strings, breaking down the
code, or performing runtime memory analysis, attackers can obtain this information.
For instance, static or dynamic analysis can often reveal an embedded private key
or a hardcoded license key, which puts the integrity of the licensing system in danger.

To address this issue, modern licensing architectures increasingly adopt public-key
cryptography, which avoids placing sensitive secret material in the client app.

18

Background

Instead, only a public key is embedded in the SDK, which is used to verify the
signatures generated by the vendor’s private key, which remains securely stored on
the server and is not shared with the clients. Advanced methods like white-box
cryptography are advised when a secret needs to be on the client, such as when
it’s required for decrypting encrypted code blocks. White-box cryptography seeks
to obscure cryptographic operations to the point where an attacker cannot easily
isolate the embedded key, even if they have complete visibility into the execution
environment.

In order to prevent key extraction in situations where attackers "have full vis-
ibility and control" over the application, vendors like Thales incorporate white-box
cryptography into their licensing solutions. These techniques greatly increase the
technical barrier, which delays or discourages attacks by making key recovery more
difficult, even though they are not perfect against highly skilled adversaries.[13]

2.4.3 Network Attacks
Network-level interference, particularly replay and man-in-the-middle (MITM)
attacks, is a frequent threat vector in online licensing systems. For example, if
the SDK casually asks a remote server, "Is license X valid?" and unlocks features
based on any positive answer, a malicious actor could intercept that request and
create a fake "yes," getting around licensing restrictions. To mitigate such risks,
licensing servers typically rely on TLS to encrypt communications and authenticate
the server, and often supplement this with signed responses or the use of one-time
nonces to prevent replay attacks.

To fool the SDK into accepting fabricates responses, attackers working in a com-
pletely offline environment might try to replicate the license server entirely by
rerouting DNS, creating a phony local server, or taking over endpoints. For this
reason, it’s essential that the SDK rigorously validates the authenticity of the
server, either by verifying a cryptographic signature in the response

2.4.4 Denial-of-Service or Bricking Risks
How the system reacts when tampering or an invalid license is detected is a fre-
quently disregarded aspect of SDK protection. An excessively aggressive SDK
may unintentionally allow denial-of-service attacks, such as when it intention-
ally crashes the host application when it detects abnormalities. Malicious actors
may purposefully set off the SDK’s tamper response in order to destabilize the
application and render it unreliable for authorized users, not to get around licensing.

19

Background

Well-designed SDKs usually handle such cases with restraint to prevent this.
The SDK should react to license problems or tampering attempts in a controlled,
predictable manner, like throwing a clear exception or silently disabling premium
features, rather than erasing data or violently stopping the process. The objective
is not to penalize the user or jeopardize the stability of the entire application, but
to ensure that protected features are unavailable while the rest of the app continues
to function normally.

20

Chapter 3

System Overview

3.1 System Objectives and Use Context

The objective of the system presented in this work is to provide a secure and
modular mobile software framework mainly designed for analyzing psychological
health data and predicting different health states, such as drowsiness, fatigue, or
Alcohol misuse state, without relying on any server-side infrastructure. It is worth
mentioning that developing such IPs are beyond the scope of this thesis, as here the
best way to distribute it with third-party developers as a plug and play solution is
discussed.

Third-party mobile developers can integrate this system to add sophisticated
health prediction algorithms to their own apps while strictly protecting the propri-
etary logic underlying the algorithms.

Each of the two platform-specific components that make up the system, a pre-
compiled Android AAR library and a binary Swift-based XCFramework for iOS,
encapsulates the essential detection logic in a format that is simple to embed but
cannot be examined or changed. The internal implementation is deliberately kept
totally hidden from the client application. The only interface that developers can
use is a well-defined one that manages feature-specific prediction outputs, license
validation, input ingestion, and security checks.

The SDK’s intended integration into third-party applications, which are outside
the direct control of its original developers, is a defining feature of the system’s
deployment. Significant difficulties in safeguarding the underlying intellectual
property are brought about by this external integration. Unlike standalone mobile
applications, where developers retain full authority over how the code is executed

21

System Overview

and secured, this solution must function as a plug-and-play component delivered to
external teams, many of whom will have access to the compiled binary. However,
that access must not extend to the proprietary algorithms embedded within. As a
result, safeguarding the algorithmic logic and enforcing licensing restrictions are
not optional design features but essential pillars of the overall architecture.

The system is designed with the following limitations in mind in order to achieve
these goals:

• No dependency on continuous connectivity to the internet, ensuring the
framework can function in remote and offline environments.

• strong licensing restrictions that restrict feature access in accordance with the
license terms and bind each instance to a particular application.

• Strong runtime security that can identify compromised environments and stop
devices that have been jailbroken or rooted from being used.

• Cross-platform compatibility, which maintains the same security guarantees
while enabling smooth deployment across iOS and Android.

This system’s structure, design principles, and component interactions are thor-
oughly examined in the following sections.

3.2 SDK Architecture (iOS and Android)
This section presents the high-level technical architecture of the mobile framework
as implemented on iOS and Android platforms. While the two ecosystems differ
significantly in terms of packaging formats and development environments, the
framework adheres to a common set of design principles—namely, modularity,
encapsulation, and functional parity. In the following discussion, the structure of
the framework on each platform is explained, along with the reasoning behind its
distribution as a precompiled binary (using AAR for Android and XCFramework
for iOS). It also describes the division of essential features into discrete parts,
including licensing, security enforcement, and physiological feature detection. In
addition to facilitating safe integration, this architectural strategy guarantees a
standardized and efficient developer experience on both mobile platforms.

3.2.1 iOS: XCFramework Packaging and Architecture
In 2019, Apple released Xcode 11 with the XCFramework format, a cutting-edge way
to distribute precompiled binaries across various architectures and platforms.[14]

22

System Overview

This format was designed to replace older "fat" frameworks and address their limi-
tations, particularly around multi-platform compatibility and architecture-specific
packaging. XCFrameworks’ support for true binary distribution is one of its main
advantages; their implementation is completely closed-source, which is crucial for
safeguarding proprietary SDK logic, and they only include compiled code and
public interface definitions.

By combining several architecture slices, like arm64 and x86-64, into a single
package, XCFrameworks also makes cross-platform support easier. This stream-
lines the development process and guarantees consistent behavior across devices
and simulators by doing away with the need for manual merging with tools like Lipo.
Furthermore, they support Swift module stability, which allows the binary to remain
compatible with future Swift compiler versions and architectures without requiring
the developer to recompile the framework. These advantages make XCFrameworks
particularly well-suited for distributing secure, multi-platform SDKs in the iOS
ecosystem.

Within this XCFramework, the internal architecture comprises:

1. Core module – Entry point for initialization, license and security enforcement,
and feature invocation.

2. License module – Verifies digital licenses using embedded public keys.

3. Security module – Detects jailbreak and runtime tampering.

4. Feature modules – Swift-based logic for each physiological state prediction.

3.2.2 Android: AAR Packaging, Native Code, and Archi-
tecture

The framework is distributed as a precompiled AAR (Android Archive), which
is the common packaging format for reusable libraries on the Android platform.
The framework can be easily incorporated into client applications thanks to the
AAR file, which contains compiled bytecode, resources, manifest entries, and, when
required, native binaries. Both Gradle and Android Studio fully support AARs,
which are the standard distribution method for modular Android components.
This makes it easy to integrate and configure AARs in third-party projects. This
format ensures that the SDK remains self-contained while adhering to Android
development conventions, making it a reliable vehicle for delivering secure, plug-
and-play functionality.[15] Android’s Java and Kotlin code is by default compiled
into .class files, which are then converted into Dalvik bytecode (.dex), which is

23

System Overview

easily decompiled with widely accessible tools. This ease of reverse engineering
poses a significant risk to intellectual property, particularly for proprietary frame-
works. In order to enhance security and improve runtime efficiency, the framework
implements its most sensitive components using the Android Native Development
Kit (NDK). By using C or C++ to write the core logic of the system and then
compiling them to .so shared libraries, we can increase the security of the system
and make it way more difficult to decompile and reverse engineer.

The modular layout parallels the iOS implementation:

1. PredictS (Core) – serves as the system’s initialization, license and security
check, feature request routing, and public-facing API.

2. LicenseVerifier – uses an embedded public key to validate signed license files
locally. Verifies feature authorization, package name, and expiration.

3. SecurityChecks – detects the presence of debuggers, runtime hooks such as
Frida or Xposed, and the device root. For more difficult detection resistance,
this logic can be implemented in native code.

4. Feature modules – A separate class for any feature that the SDK offers.

For performance and IP protection, the important logic of each module is written
in C++, with only a thin JNI bridge exposed to the Kotlin layer. Performance is
improved, and the bar for reverse engineering is raised when NDK is used.

3.2.3 Cross-Platform Architectural Principles
Both iOS and Android implementations of the framework follow a common ar-
chitectural design based on four fundamental principles, despite their different
packaging conventions:

• Modular structure: Clear division of responsibilities is made possible by the
organization of functionality into distinct modules, such as Core, Licensing,
Security, and Feature Detection. Code maintainability is enhanced, targeted
testing is supported, and future scalability is made easier by this modularity.

• Encapsulation of logic: Private modules contain all proprietary algorithms
and security measures. Internal logic is protected from external access and
inspection by the public interface, which only exposes the necessary APIs for
integration.

• Binary-only distribution: The SDK is only made available in compiled binary
form to preserve intellectual property. Since there is no source code provided,
the underlying implementation is kept closed and impenetrable.

24

System Overview

• Platform parity: The same logic flow, licensing structure, and runtime security
measures are enforced by both the iOS and Android versions. This simplifies
cross-platform development and support while guaranteeing consistent behavior
across platforms.

This consistent design philosophy allows the framework to deliver a secure, main-
tainable, and developer-friendly experience regardless of the target mobile platform.

25

Chapter 4

Framework and Library
Implementation

4.1 Overview of SDK Structure
The SDK architecture is structured around four principal components: the Core
controller, the License management module, the Security enforcement layer, and
a collection of feature-specific prediction modules. This modular organization is
mirrored across both the iOS and Android implementations, supporting the overar-
ching goal of platform parity and ensuring uniform behavior across environments.

A high level flowchart of system could be find in Figure 4.1, the client’s app
embeds the SDK and calls the SDK initialization and passes license payload and
signature, then the license is checked (to be discussed in depth in following sections),
if not valid for any reason, SDK stops and returns an error, if valid it checks the list
of available features and continues and runs security checks such as reverse engi-
neering, root and jailbroken devices (to be discussed in depth in following sections).
If it fails, the SDK again returns an error; otherwise returns the Predictor object on
which the user can call different features such as Sleep detection, Fatigue, and Al-
cohol. Upon calling, each the SDK checks if it’s licensed, otherwise returns an error.

The modular and single entry point makes the SDK more maintainable and scalable
since for adding new prediction features we will add a separate file and class and
just call it through a method in main PredictS class.

26

Framework and Library Implementation

Figure 4.1: High-level Flowchart of system

27

Framework and Library Implementation

4.2 iOS XCFramework
The PredictS SDK is provided on iOS as a precompiled XCFramework, which
bundles all required binary slices, including those for simulators and physical
devices, and the matching Swift module interfaces into a single bundle. This
distribution format gives developers a simplified, plug-and-play experience by
facilitating smooth integration into third-party iOS applications. The proprietary
nature of the framework’s core logic is maintained by using XCFramework to ensure
that the internal implementation details are hidden by encapsulating only compiled
binaries. In this section, different parts of the XCFramework are discussed. In
order to keep this thesis concise and efficient, only important parts of the code are
highlighted in the text.

4.2.1 Internal Modules (PredictS, License, Security, Fea-
tures)

Within the XCFramework, functionality is cleanly divided into four main internal
sections, each responsible for a distinct concern:

Core Controller (PredictS)

Located at PredictS.swift file, this is the start point of the SDK, as it can be seen
in its init function in Listing 4.1, it receives the licensePayload and licenseSignature
and passes them to the PredeictSLicense class, which will be discussed in depth
in a different section, where the license pair is checked and the list of available
features are extracted. After the license check, in case of success, a series of security
checks are done to ensure a safe environment for running the SDK.

Listing 4.1: init function of PredictS class
1 /// I n i t i a l i z e s Pred ictS with a l i c e n s e payload and s i gna tu r e
2 ///
3 /// − Parameters :
4 /// − l i c en s ePay load : The encoded l i c e n s e in fo rmat ion
5 /// − l i c e n s e S i g n a t u r e : The cryptograph ic s i gna tu r e o f the l i c e n s e
6 /// − Throws : ` Pred ic tSError . i nv a l i dL i c en s e ` i f the l i c e n s e

v a l i d a t i o n f a i l s
7 pub l i c i n i t (l i c en s ePay load : Str ing , l i c e n s e S i g n a t u r e : S t r ing) throws

{
8 pr in t (" [Pred ictS] new I n i t i a l i z i n g . . . ")
9

10 // Val idate the l i c e n s e : t h i s checks the payload s i gna tu r e match ,
bundle ID , expiry , and f e a t u r e s .

28

Framework and Library Implementation

11 s e l f . l i c e n s e = try Pred i c tSL i cense (payload : l i c ensePay load ,
s i gna tu r e : l i c e n s e S i g n a t u r e)

12

13 // Run s e c u r i t y checks to prevent use on compromised/ j a i l b r o k e n
dev i c e s or with tampered

14 // l i b r a r i e s
15 Secur i tyChecks . performAllChecks ()
16

17 // Log a v a i l a b l e f e a t u r e s a f t e r l i c e n s e v a l i d a t i o n
18 pr in t (" [Pred ictS] L i cense v a l i d with f e a t u r e s : \(l i c e n s e .

a l lowedFeatures) ")
19 }

In case of success in both license check and security check, then the third-party
developer can call the features they want, for example, for sleep detection which
is shown in Listing 4.2 user provided the needed inputs which are defined by the
SDK through its public interface and then the SDK checks if sleep is in the licensed
otherwise it will return an error. The same procedure is applied for other features
and any feature to be added in the future.

Listing 4.2: Drowsiness state detection function in PredictS file
1 /// Performs s l e e p de t e c t i on based on hea l th data and cur rent mode (e

. g . , n ight /day)
2 ///
3 /// − Parameters :
4 /// − input : The hea l th data used to a s s e s s s l e e p s t a t e
5 /// − isNightMode : A boolean i n d i c a t i n g i f n ight mode i s a c t i v e
6 /// − Returns : A ` SleepState ` i n d i c a t i n g the user ' s cur rent s l e e p

s t a tu s
7 /// − Throws : ` Pred ic tSError . f eatureNotLicensed ` i f s l e e p de t e c t i on

i s not l i c e n s e d
8 pub l i c func s l e epDet e c t i on (input : SleepHealthData , isNightMode : Bool)

throws −> SleepSta te {
9 // Ensure the " s l e e p " f e a t u r e i s l i c e n s e d be f o r e proceed ing

10 guard l i c e n s e . a l l ows (" s l e e p ") e l s e {
11 throw Pred ic tSError . f ea tureNotL icensed (" s l e e p ")
12 }
13

14 re turn s l e epDet e c to r . p r e d i c t (input : input , isNightMode :
isNightMode)

15 }

License Management

Located at PredictSLicense.swift file, it acts as the single source of truth for
all checks and processes regarding license and access management. Due to its

29

Framework and Library Implementation

importance and its diverse concepts, it will be discussed in a separate section for
both android and iOS.

Security Checks

In this file different tests are done in runtime to detect if the environment that the
app and as a result the SDK is running is safe. Since checks in this section are OS
specific, the contents of it are different on Android and iOS.
A main test employed within the SecurityChecks.swift module is to scan the file
system for indicators of a jailbroken environment. The process of getting root access
to an operating system on a closed-system device, like an iPhone, by getting around
its built-in security features, is known as jailbreaking. With this elevated access,
users can install unauthorized software, change system files, and exercise complete
administrative control over the device, circumventing restrictions imposed by the
manufacturer.[16] Searching for known filesystem artifacts that are frequently left
behind during the jailbreak process is one popular technique for identifying an iOS
device that has been jailbroken. Applications such as Cydia, a third-party package
installer, or configuration files linked to the APT package manager are clear signs
that the device has been compromised.

When such artifacts are found, platform integrity is usually compromised. These
file-based checks are relatively simple to implement using standard APIs such
as FileManager.fileExists(atPath:), or via lower-level system calls like stat() and
access(). The code snippet responsible for checking jailbroken devices is presented
at 4.3

Listing 4.3: Jailbreak check logic
1 /// Checks f o r s i g n s o f a j a i l b r o k e n dev i c e
2 ///
3 /// − Returns : ` true ` i f the dev i c e i s j a i l b r oken , o the rw i se ` f a l s e `
4 pr i va t e s t a t i c func i s J a i l b r o k e n () −> Bool {
5 // l i s t o f known j a i l b r e a k f i l e paths
6 l e t j a i l b r e akPa th s = [
7 " / App l i ca t i on s /Cydia . app " ,
8 " / Library / Mobi leSubstrate / Mobi leSubstrate . dy l i b " ,
9 " / bin /bash " ,

10 " / usr / sb in / sshd " ,
11 " / e t c /apt " ,
12 " / p r i va t e / var / l i b /apt/ " ,
13 " / p r i va t e / var /tmp/ cydia . l og "
14]
15

16 // Check i f any j a i l b r e a k f i l e e x i s t s

30

Framework and Library Implementation

17 f o r path in j a i l b r e akPa th s {
18 i f FileManager . d e f a u l t . f i l e E x i s t s (atPath : path) {
19 pr in t (" [S e cu r i ty] J a i l b r e a k f i l e found : \(path) ")
20

21 re turn true
22 }
23 }
24

25 // Also t e s t i f the app can wr i t e ou t s id e the sandbox
26 i f canWriteOutsideSandbox () {
27 pr in t (" [S e cu r i ty] Device i s j a i l b r o k e n : can wr i t e ou t s id e

sandbox . ")
28

29 re turn true
30 }
31

32 re turn f a l s e
33 }

Another detection strategy implemented in SecurityChecks.swift targets potential
violations of the iOS sandboxing model. Under Apple’s security architecture, all
applications are strictly confined to their own sandbox and executed under a non-
privileged user account typically the mobile user. As part of this model, apps are
prohibited from accessing system files or interacting with the data of other applica-
tions.[17] The SDK uses Apple’s dynamic loader APIs, like _dyld_image_count()
and _dyld_get_image_name(), to list all dynamically loaded libraries at runtime
in order to detect this kind of tampering. The names of these libraries are then
examined for known signs of compromise, specifically searching for substrings
linked to popular instrumentation tools like "frida," "FridaGadget," "libcycript,"
and "MobileSubstrate." Any such module found in the application’s memory is
interpreted as a clear indication that the process is being actively instrumented or
altered, and the check is initiated appropriately. This method essentially serves as
a safeguard against dynamic analysis and runtime hooking, two common methods
for evading licensing and deciphering proprietary logic. Combining runtime library
scans, sandbox violation tests, and file-path inspections creates a layered security
approach that complies with industry best practices.[18] Each technique focuses
on a different type of compromise: dynamic code injection, privilege escalation,
and filesystem anomalies, respectively. Combining these complementary methods
results in a more robust detection framework, which raises the overall barrier to
exploitation and significantly increases the effort needed for a successful attack.

31

Framework and Library Implementation

Feature Files

Each feature has its own class, making the framework completely modular and free
of entangled code. In each class the I/O of the class is defined as public so the
third-party developers who use the framework will have access to it and know in
advance how to provide data and what type of outcome to expect. For example, in
Listing 4.4, the public interface of Fatigue prediction class can be observed, in this
case the input is of type Struct which let’s third-party developers provide required
data in one object, and the output is of type enum which defines the possible states.

Listing 4.4: Public Interface of Fatigue Prediction
1

2 /// Represents the p o s s i b l e f a t i g u e l e v e l s detec ted from hea l th data
3 pub l i c enum Fat igueState : S t r ing {
4 case normal // No s i g n s o f f a t i g u e
5 case mild // Some i n d i c a t i o n s o f l i g h t f a t i g u e
6 case s eve r e // Strong s i g n s o f s eve r e f a t i g u e
7 }
8

9 /// Container f o r hea l th metr i c s r e l e v a n t to f a t i g u e de t e c t i on
10 pub l i c s t r u c t FatigueHealthData {
11

12 pub l i c var heartRate : Int ? // Heart ra t e (beats per minute)
13 pub l i c var hrv : Int ? // Heart Rate V a r i a b i l i t y
14 pub l i c var accZ : Int ? // Z−ax i s acce l e romete r va lue (

op t i ona l motion data)
15

16 /// I n i t i a l i z e s the hea l th data used f o r f a t i g u e p r e d i c t i o n
17 ///
18 /// − Parameters :
19 /// − heartRate : Optional heart ra t e va lue
20 /// − hrv : Optional heart ra t e v a r i a b i l i t y
21 /// − accZ : Optional Z−ax i s a c c e l e r a t i o n
22 pub l i c i n i t (heartRate : Int ? , hrv : Int ? , accZ : Int ?) {
23 s e l f . heartRate = heartRate
24 s e l f . hrv = hrv
25 s e l f . accZ = accZ
26 }
27 }

32

Framework and Library Implementation

4.2.2 Building and Integration in Customer’s App
After implementing, modifying or extending the framework, In accordance with
best practices in software release engineering, the vendor executes the following
stages:

1. Archive for Device: compile and archive the framework for physical iOS
devices.

2. Archive for Simulator: compile and archive the framework for the iOS Simula-
tor.

3. Create XCFramework: merge the two archived slices into a single multi-
architecture XCFramework.

4. Distribution: publish or share the finalized .xcframework bundle with third-
party integrators.

The commands illustrated in Listing 4.5 show this sequence.

Listing 4.5: Commands for distributing .xcframework
1

2 # 1 . Archive f o r iOS Devices
3 xcodebui ld a r ch ive \
4 −scheme PredictSFramework \
5 −d e s t i n a t i o n " g e n e r i c / plat form=iOS " \
6 −archivePath " . / bu i ld /PredictSFramework−iOS . xcarch ive " \
7 SKIP_INSTALL=NO BUILD_LIBRARY_FOR_DISTRIBUTION=YES
8

9 # 2 . Archive f o r iOS Simulator
10 xcodebui ld a r ch ive \
11 −scheme PredictSFramework \
12 −d e s t i n a t i o n " g e n e r i c / plat form=iOS Simulator " \
13 −archivePath " . / bu i ld /PredictSFramework−Sim . xcarch ive " \
14 SKIP_INSTALL=NO BUILD_LIBRARY_FOR_DISTRIBUTION=YES
15

16 # 3 . Create XCFramework
17 xcodebui ld −−create −xcframework \
18 −framework " . / bu i ld /PredictSFramework−iOS . xcarch ive / Products /

Library /Frameworks/PredictSFramework . framework " \
19 −framework " . / bu i ld /PredictSFramework−Sim . xcarch ive / Products /

Library /Frameworks/PredictSFramework . framework " \
20 −output " . / PredictSFramework . xcframework "

33

Framework and Library Implementation

Once the .xcframework is shared with the third-party developer they need
to embed the framework into their code base by going to application target’s
General, Frameworks, Libraries, and Embedded Content pane, drag PredictSFrame-
work.xcframework, and select Embed and Sign. This ensures that the framework’s
code signature is validated at install time and that its dynamic library is bundled
within the app’s .ipa. Once all these are done, they can use the framework as
shown in the Listing 4.6.

Listing 4.6: How developers can use the framework
1 do {
2 l e t p r e d i c t o r = try PredictS (
3 l i c en s ePay load : "<Base64−payload>" ,
4 l i c e n s e S i g n a t u r e : "<Base64−s ignature >"
5)
6 l e t f a t i g u e S t a t e = try p r e d i c t o r . f a t i g u e D e t e c t i o n (
7 input : FatigueHealthData (heartRate : 75 , hrv : 45 , accZ : n i l)
8)
9 pr in t (" Detected f a t i g u e s t a t e : \(f a t i g u e S t a t e . rawValue) ")

10 } catch {
11 // Handle i n v a l i d l i c e n s e or s e c u r i t y v i o l a t i o n
12 pr in t (" Pred ictS e r r o r : \(e r r o r) ")
13 }

4.2.3 What third-party developers have access to
After the successful distribution and embedding of the framework, if the third-party
developer wants to open the framework file and classes, they will only be able to
see the public interface of the system and not the actual core logic, as shown at
Listing 4.7, this protects the IP and aligns with the goals of this thesis.

Listing 4.7: Public interface shared with third-party developers
1 pub l i c c l a s s S l eepDetec t ion {
2

3 /// Defau l t i n i t i a l i z e r
4 pub l i c i n i t ()
5

6 /// Pred i c t s the cur rent s l e e p / drows ines s s t a t e based on hea l th
data and mode

7 ///
8 /// − Parameters :
9 /// − input : Health data to be used in p r e d i c t i o n

10 /// − isNightMode : A Boolean i n d i c a t i n g whether i t ' s c u r r e n t l y
n ight mode

34

Framework and Library Implementation

11 /// − Returns : A ` SleepState ` i n d i c a t i n g the cur rent drows ines s
l e v e l

12 pub l i c func p r e d i c t (
13 input : PredictSFramework . SleepHealthData ,
14 isNightMode : Bool
15) −> PredictSFramework . S l e epSta te
16

17 @objc d e i n i t
18 }

4.3 Android AAR Library

The Android implementation of the SDK is distributed as an Android Archive
(AAR) library, which combines Kotlin-based interfaces with C++ native components
to support a secure and modular design. The AAR format is the industry standard
mechanism for packaging Android libraries, allowing developers to bundle compiled
Java/Kotlin classes, resources, manifest entries, and native .so binaries into a single,
reusable module.[15] By using this format, the SDK makes it easier to integrate
into third-party applications by delivering all necessary components in a single
package.

4.3.1 Architecture and Components of the Android SDK

The SDK uses a modular design that divides duties between a native C++ layer
and a Kotlin-based layer. As the public-facing interface, the Kotlin module manages
the integration of the Android framework and makes the SDK’s API available
to client applications. However, the Java Native Interface (JNI), which serves
as a link between managed and native code, assigns security-critical tasks to the
C++ module. This separation is intentional and strategic. Native code, once
compiled into .so shared libraries, is translated into platform-specific machine code,
making it considerably more difficult to reverse-engineer than standard Java or
Kotlin bytecode.[19] As a result, implementing proprietary algorithms and license
validation routines in C++ substantially increases the complexity of static analysis
and tampering. By placing sensitive logic in the native layer, the SDK leverages one
of the most effective code protection techniques available in the Android ecosystem.

The overall structure of files is the same as iOS, so to prevent repetition, the
following sections go deeper in platform specific security and safeguard methods
that are used to protect the IP of the SDK.

35

Framework and Library Implementation

4.3.2 Kotlin Layer
The Kotlin layer of the SDK comprises the set of classes and methods exposed to the
host application, forming the primary interface through which third-party developers
interact with the framework. This component is responsible for managing Android-
specific functionality. It also serves as the bridge to the underlying C++ logic,
invoking native routines via the Java Native Interface (JNI). A Kotlin singleton or
companion object loads the native library and declares a set of external methods
that map to native C++ functions in order to initialize the SDK in a standard
implementation. The API can then internally delegate sensitive operations to the
native layer while maintaining a clear and idiomatic Kotlin interface by calling these
methods from Kotlin code as though they were regular functions. For example,
as shown in Listing 4.8, in the license checker file, instead of implementing the
actual logic, the native library is loaded, and the isValidNative function is called
to handle and check the authenticity of the license.

Listing 4.8: Kotlin interface of License checker
1 package com . sa t . p r e d i c t l i b r a r y
2

3 import android . content . Context
4

5 ob j e c t L i cense {
6 i n i t { System . loadLibrary (" p r e d i c t s l i b ") }
7

8 /∗∗
9 ∗ Returns t rue i f :

10 ∗ − l i c e n s e JSON i s wel l−formed
11 ∗ − s i gna tu r e i s v a l i d (RSA−SHA256)
12 ∗ − bundle ID matches the app
13 ∗ − exp i ry date i s in the fu tu r e
14 ∗/
15 @JvmStatic e x t e r n a l fun i sVa l idNat ive (
16 context : Context ,
17 payload : Str ing ,
18 s i gna tu r e : S t r ing
19) : Boolean
20 }

4.3.3 C++ Native Layer
The native component, compiled using the Android NDK, is responsible for all
security-critical functionality. This includes license key verification, runtime in-
tegrity checks, and the execution of proprietary algorithms that must remain
protected from inspection or tampering. The SDK makes sure that its most deli-
cate logic is hidden from common reverse engineering methods by separating these

36

Framework and Library Implementation

operations in native code. Same as the iOS section, since the licensing and license
check flows are similar, and due to its importance, it will be covered in a separate
section. In this section only runtime integrity checks, which are OS specific, are
covered.

A variety of security checks are implemented by the SDK’s native layer to deter-
mine whether the device environment has been compromised, specifically through
runtime instrumentation or rooting. Root detection usually involves scanning for
well-known indicators, such as the presence of privileged binaries like su in standard
filesystem locations, or packages like Superuser.apk, which are strong signals that
the device has been rooted. To find anomalies suggestive of elevated privileges,
further checks might analyze kernel-level data or query system properties. Low-level
system calls, like access(), are used to carry out these validations within the C++
layer in order to confirm the existence of suspicious paths. Since it reduces the
attacker’s surface area within the managed runtime, implementing such logic in
native code makes it much more resistant to tampering or bypass via Java-level
hooks. The native layer carries out anti-instrumentation checks in addition to
root detection. For example, it inspects /proc/self/status and flag the presence
of a non-zero TracerPid value, an established method for identifying whether a
debugger is attached. It also scans active processes and network ports for patterns
associated with dynamic analysis tools like Frida, which injects processes (e.g.,
frida-server) or opens specific ports to hook application logic. The SDK is way
more efficient at identifying and thwarting runtime manipulation attempts that
might jeopardize license enforcement or reveal proprietary algorithms by carrying
out these checks at the native level. A snippet of the native code in charge of root
detection is shown at Listing 4.9

Listing 4.9: Native root detection code
1 // A) Root paths
2 const char ∗ paths [] = {
3 " / system/ xbin / su " , " / system/ bin /su " ,
4 " / system/app/ Superuser . apk " , " / sb in / su "
5 } ;
6 s t r u c t s t a t s t ;
7 f o r (auto p : paths) {
8 i f (s t a t (p , &s t) == 0) {
9 LOGE(" root detec ted : %s " , p) ;

10 re turn JNI_FALSE;
11 }
12 }

37

Framework and Library Implementation

All native components developed in C++ are compiled into shared object libraries
(.so files), which encapsulate the platform-sensitive logic of the SDK. During the
build process, the system generates multiple versions of these binaries, each targeting
a specific Application Binary Interface (ABI), such as ARMv7, ARM64, or x86.
This multi-ABI compilation ensures that the final AAR package remains compatible
with a broad range of Android devices, accommodating variations in processor
architecture and delivering seamless integration across the Android ecosystem.
Although their goals are very different, it is crucial to understand that both
malicious actors and legitimate developers may use native libraries to hide code
from scrutiny.[20] The use of native code in this framework is strongly focused
on the former: protecting proprietary algorithmic logic and enforcing licensing
restrictions with strong, technically sound mechanisms.

4.3.4 Build Configuration: CMake and Gradle Integration
for Native Libraries

Building the SDK with its native component necessitated careful coordination
between the C++ and Android Gradle build systems to generate an AAR package
that includes the compiled .so binaries. The directory structure of the project
adhered to the standard Android NDK structure. The C++ source files and a
CMakeLists.txt file that specifies the native build configuration are located in the
src/main/cpp/ directory within the SDK module. This CMake script includes
all necessary source files, declares dependencies or compiler flags as necessary,
and specifies the library type.[19] Only JNI-required symbols are exported in this
implementation because the script sets the C++ language standard to C++17 and
uses flags like -fvisibility=hidden to limit symbol exposure. On the Gradle side, the
Android Gradle Plugin offers native support for integrating CMake through the ex-
ternalNativeBuild block. Within the module’s build.gradle file, CMake integration
was enabled by referencing the appropriate CMakeLists.txt script and specifying
any required NDK configurations. This setup allows Gradle to coordinate the
native build process alongside the Java/Kotlin build pipeline, ensuring that the
compiled native libraries are properly included in the resulting AAR artifact.

As a result of this configuration, when the library module is built, such as through
the assembleRelease Gradle task, the native .so libraries are compiled and automat-
ically packaged into the final AAR. Gradle’s adaptability also makes it possible to
customize the build output by defining build types or product flavors. For example,
a debug version of the SDK might have more logging, but the release version
might not have these security and performance checks. By passing conditional
compilation flags from Gradle to CMake, features such as verbose native logging
can be included selectively depending on the type of build.

38

Framework and Library Implementation

4.3.5 Integration in Customer’s App

The SDK can be made available as an AAR file or via a Maven repository. The
recommended approach is to host the SDK on a Maven repository, like Maven
Central, or a private Maven server. Alternatively, in scenarios where Maven dis-
tribution is not feasible, the AAR can be manually included by placing it in the
application’s libs/ directory and declaring it as a local file dependency within the
Gradle build script. In both cases, the Android build system will correctly package
the AAR into the final application.

Once successfully added to the project, customers can use the library similar
to the flow of the iOS .xcframework, a sample of use case which is aimed at testing
the license is shown at Listing 4.10. As it can be seen, license payload, signature
and app context should be passed to the constructor of the library, then based on
the required feature they can call the specific feature method that first checks if
that feature is licensed or not and then proceeds with it.

Listing 4.10: Sample initializing of the library
1 t ry {
2 va l p r ed i c t sS = PredictS (payload , s i gnature , context = t h i s)
3 when (f e a t u r e) {
4 " s l e e p " −> {
5 va l r e s u l t = pr ed i c t sS . s l e epDet e c t i on (SleepHealthData () ,

isNightMode = f a l s e)
6 showResult (message = " L icense v a l i d f o r

$featureDisplayName . \ nResult : $ r e s u l t " , s t a t e = " s u c c e s s ")
7 }
8 " f a t i g u e " −> {
9 va l r e s u l t = pr ed i c t sS . f a t i g u e D e t e c t i o n (FatigueHealthData

())
10 showResult (message = " L icense v a l i d f o r

$featureDisplayName . \ nResult : $ r e s u l t " , s t a t e = " s u c c e s s ")
11 }
12 " a l c o h o l " −> {
13 va l r e s u l t = pr ed i c t sS . a l c oho lDe t e c t i on (AlcoholHealthData

())
14 showResult (message = " L icense v a l i d f o r

$featureDisplayName . \ nResult : $ r e s u l t " , s t a t e = " s u c c e s s ")
15 }
16 }
17 } catch (e : Pred ic tSError . FeatureNotLicensed) {
18 showResult (message = " L icense i s NOT v a l i d f o r

$featureDisplayName . " , s t a t e = " f a i l ")
19 } catch (e : Pred ic tSError . I n v a l i d L i c e n s e) {
20 showResult (message = " L icense e r r o r : ${e . message} " , s t a t e = " f a i l

")

39

Framework and Library Implementation

21 } catch (e : Exception) {
22 showResult (message = "Unknown e r r o r : ${e . message} " , s t a t e = " f a i l

")
23 }

40

Chapter 5

Licensing System

5.1 Design Goals and Constraints

Protecting the SDK from unauthorized use while preserving a seamless experience
for authorized developers is the main goal of the licensing system. Full offline
operability is a crucial prerequisite; license verification cannot be dependent on
constant network access. For mHealth scenarios, where external connectivity may
be limited or nonexistent, this design consideration is crucial. To uphold security
in such conditions, the system relies on public-key cryptography. Each license file
is digitally signed using the vendor’s private key, ensuring that only authentic,
vendor-issued licenses are accepted. Any attempt to modify the license contents
invalidates the signature, effectively making the file tamper-evident and resistant
to forgery.

By embedding fields like expiry timestamps and lists of permitted capabilities, the
license structure supports a variety of distribution models, such as feature-based li-
censing and expiration-based (time-limited) licensing. Notably, the implementation
is platform-agnostic, although the SDK is delivered in Swift for iOS and Kotlin
(and native C++) for Android, the license verification logic remains consistent
across both environments, with a shared focus on cryptographic integrity.

The licensing system is designed with a number of fundamental limitations and
presumptions in mind. The most important of these is that the vendor’s private
key, which is used to sign all authentic license files, must be kept safe and never
be made public. Compromise of this key would undermine the entire licensing
mechanism, as it would enable malicious actors to generate counterfeit licenses that
appear valid. The matching public key is included in the SDK on the client side
only to confirm license signatures. The integrity of the system is maintained even

41

Licensing System

in untrusted environments thanks to this asymmetric cryptographic arrangement,
which guarantees that although the SDK can authenticate a license, it cannot create
or modify one. Second, the choice to allow offline license verification means that
expiration dates must be enforced using the client device’s system clock. Because
of this reliance, there is a chance that a user could try to manually backdate the
device’s clock in order to avoid the license expiration date. One known drawback of
offline licensing models is this kind of manipulation. To address this, the SDK can
implement mitigating strategies—such as persisting the most recent valid timestamp
in secure local storage or leveraging tamper-resistant time sources where available.
Nonetheless, complete immunity to time spoofing is difficult without periodic online
validation, and a degree of trust in the client environment is necessary.

Notwithstanding these drawbacks, the design effectively strikes a balance between
security and usability by maintaining complete offline operability and enforcing
license authenticity through digital signatures, thereby deterring unauthorized
usage without imposing online activation requirements on legitimate users.

5.2 License Creation and Verification Flow

This licensing system uses a secure, script-driven license generation process that
combines asymmetric cryptographic signing and structured data serialization. The
system ensures the integrity and authenticity of license data by digitally signing
each license using the private key of the vendor. This design guarantees that
only licenses issued by the vendor can be recognized as valid while enabling the
resulting license files to be validated locally on the device, without the need for
online validation.

5.2.1 Cryptographic Primitives

The licensing mechanism used in this SDK is based on proven cryptographic
primitives that were picked especially to guarantee the integrity, authenticity, and
impenetrability of license files. Key elements include RSA digital signatures, SHA-
256 cryptographic hashing, and Base64 encoding. Each of these components serves
a distinct role: RSA enables the secure verification of license origin, SHA-256
guarantees the integrity of the license contents, and Base64 encoding facilitates
safe transmission of the license data across text-based channels. Together, these
elements support a robust and offline-capable license validation process.

42

Licensing System

RSA Public-Key Cryptography and Digital Signatures

At the heart of the licensing system is the RSA algorithm, an established asym-
metric cryptographic method based on a pair of mathematically related keys: one
public, one private. In this design, the private key is securely maintained by the
software vendor and used solely to generate digital signatures, while the corre-
sponding public key is embedded within the mobile SDKs for iOS and Android to
verify those signatures.

The digital signature serves to attest to the integrity and genuineness of the
licensed material. When issuing a license, the vendor signs the license payload
with its private RSA key, producing a signature that cryptographically links the
data to the vendor’s identity. Only licenses that are actually issued by the vendor
are accepted because the SDK uses the public key to validate this signature on
the client side. The SDK would reject the license and the signature verification
would fail if the license data were altered or falsified. This application of RSA is
consistent with well-known standards like RSASSA-PSS and PKCS#1 v1.5, which
are both extensively used in secure software licensing and distribution. The imple-
mentation adopts a 2048-bit RSA key length, in accordance with NIST SP 800-57
and prevailing industry recommendations for long-term cryptographic resilience.

SHA-256 Hashing

The SHA-256 algorithm, part of the SHA-2 family of cryptographic hash functions,
is employed to compute a fixed-length digest of the license payload before it is digi-
tally signed. An arbitrary-length input is converted into a fixed-size, deterministic,
collision-resistant, and computationally irreversible output by a cryptographic hash
function like SHA-256. This effectively renders the digital signature invalid since
any alteration to the input, even a one-bit change, results in an entirely different
hash.

This behavior is essential for maintaining the integrity of the license data. It
ensures that an attacker cannot alter key fields, such as the bundle ID, expiry
date, or enabled features, without detection. In the licensing workflow, the vendor
computes the SHA-256 hash of the original license payload and signs it using RSA.
The same hash is later recomputed and verified by the client using the embedded
public key, ensuring that the license remains both authentic and untampered.

Base64 Encoding

The license payload and its digital signature are both fundamentally binary data
structures. The payload is a JSON object encoded in UTF-8, and the signature is

43

Licensing System

a cryptographic byte sequence produced by RSA. To ensure these binary elements
can be reliably embedded in license files and transmitted in JSON format they are
encoded using Base64. This encoding transforms binary data into an ASCII string
representation, preserving the integrity of the information across systems that may
not support raw binary formats. It also enables seamless parsing and transport
within standard software development workflows.[21]

5.2.2 License Signing Workflow
Building upon the cryptographic foundations discussed in the last section, this
section details the practical implementation of the license generation process.
By using public-key digital signatures, the process is intended to preserve the
fundamental values of authenticity, integrity, and offline verifiability. The software
vendor handles every step of license creation independently, so no client-side
intervention is needed during generation. The outcome is a digitally signed JSON
license file, which can be safely distributed to authorized third-party developers or
end-users for integration into their applications.

License Parameter Definition

Each license file encapsulates a compact set of structured fields that define the
usage rights granted to a specific application. These fields include:

• bundle_id: the unique identifier of the authorized application—corresponding
to the Bundle Identifier on iOS or the Package Name on Android;

• Expiry: a date string in YYYY-MM-DD format indicating the license’s
expiration

• Features: an array specifying the enabled capabilities (e.g., "sleep", "fatigue",
"alcohol"), which determine the functional modules accessible within the SDK.

A sample of such initialization is shown at Listing 5.1, as it can be seen, the
section of parameter definition is completely non-technical personnel friendly and
readable. After defining parameters, this data is encoded as UTF-8 bytes and
serialized into a minimal JSON object. The serialized payload is then Base64-
encoded to enable compatibility with text-based systems and enable dependable
transmission or storage. The end product is a single-line ASCII string that can be
easily embedded into files or API responses while maintaining the integrity of the
binary data.

44

Licensing System

Listing 5.1: License Parameters
1 # Path to PEM−encoded RSA pr i va t e key
2 PRIVATE_KEY_PATH = " private_key . pem"
3

4 # License parameters
5 BUNDLE_ID = "com . example . app " # The bundle ID the l i c e n s e i s

v a l i d f o r
6 EXPIRY_DATE = " 2026−12−31 " # Expi rat ion date in "YYYY−MM−DD"

format
7 FEATURES = [" s l e e p "] # L i s t o f enabled f e a t u r e s [" s l e e p

" , " a l c o h o l " , " f a t i g u e "]

Digital Signature Generation

To ensure both the authenticity and integrity of the license payload, the vendor ap-
plies a digital signature to the original UTF-8–encoded license data prior to Base64
encoding. This process begins by computing a SHA-256 hash of the raw payload.
The resulting digest is then signed using the vendor’s private RSA key, employing the
PKCS#1 v1.5 signature scheme. This cryptographic operation binds the payload
to the issuer and makes any subsequent modification to the data reliably detectable.

To ensure safe transport as a text string, the digital signature that is created
as a binary byte array is then Base64-encoded. Using the public key included in
the SDK, this encoded signature permits verification and binds the license payload
to the issuer in a unique way. The final JSON structure, which contains the
Base64-encoded payload and its matching signature, is what makes up the entire
license file that is sent to clients. A sample of what third-party developer receives
as a license is shown at Listing 5.2.

Listing 5.2: License Sample
1 {
2 " payload " : "

eyJjdW5kbGVfaWQiOiJiJ2b2uc2F0LmV4cGVyYWl1bnRhbCIsImV4cGlyeSI6Ij
3 IwMjY " ,
4 " s i gna tu r e " : "

MhE3a8luefqb7o4BilHbisxIgrxuIm3aClVfvDbzuji1xycE3aYhWoq4YXDtd1dy3o
5 4vRGcSXS "
6 }

5.2.3 Offline Client Integration
Authorized clients receive the generated license file for integration. Using the
embedded public key, the client-side SDK validates the accompanying signature,

45

Licensing System

decodes the payload, and recalculates the SHA-256 hash of its original content at
runtime. This enables secure, fully offline validation. If the signature fails to verify,
the license is immediately rejected. If the verification is successful, the SDK carries
out further checks, such as making sure the license hasn’t expired and comparing
the declared bundle_id with the host application’s identifier. The corresponding
features are only activated when all requirements are met.

Strong protection for proprietary logic is provided by this division of duties, where
the SDK enforces licenses and the vendor solely signs them. This keeps the archi-
tecture simple and network-independent, making it ideal for mobile environments.

46

Chapter 6

Conclusion and Future Work

6.1 Achievements

This thesis detailed the design and implementation of a secure, offline-capable licens-
ing system developed for a cross-platform mobile framework dedicated to real-time
physiological data analysis. The primary objective was to safeguard proprietary
algorithms, focused on detecting conditions such as fatigue, sleep disruption, and
alcohol misuse, while allowing their controlled deployment to third-party developers.
Although the real IP algorithms were not implemented, but as safeguarded place
holder for each was implemented. The system was engineered to balance robust
intellectual property protection with ease of integration, ensuring both commercial
viability and adherence to privacy standards.

To achieve these goals, a dual-platform architecture was implemented, comprising
a Swift-based XCFramework for iOS and an Android AAR library. Both SDKs
are designed to expose only the necessary interfaces for physiological prediction,
with all proprietary logic securely encapsulated within precompiled binaries to
deter reverse engineering. SHA-256 hashing, Base64 encoding, and RSA digital
signatures were used to create a safe offline licensing system. The framework
can verify the integrity and authenticity of license files using this cryptographic
technique without the need for internet access.

The license generation tool, implemented as a script-driven utility, enables the
software vendor to issue secure, parameterized license files tailored to individual
clients. On the client side, both the iOS and Android SDKs integrate robust
signature verification routines and enforce license checks at runtime. To further
strengthen protection against tampering and unauthorized use, the system incor-
porates device-level security measures, such as jailbreak detection on iOS and root

47

Conclusion and Future Work

detection on Android, aimed at identifying compromised environments.

When combined, these components show a full-stack approach to safe distribution
of mobile SDKs. With a distinct division between proprietary algorithmic logic
and third-party application code, the system effectively strikes a balance between
technical security requirements and pragmatic limitations like offline operation and
developer usability.

6.2 Limitations
The system has some drawbacks despite its strong technical foundation, especially
because of its offline architecture. Its reliance on the local system clock of the
device to ascertain whether a license has expired is one significant issue. This
creates a potential loophole: users could intentionally set the clock back in an
effort to extend license validity beyond its intended period. Since the framework is
built to function entirely without server interaction, it lacks a direct mechanism
to detect or prevent such manipulation. In the future, this restriction might be
overcome by integrating reliable time sources, like timestamps from safe hardware
components, or by creating a hybrid model that, when practical, allows for sporadic
online validation.

A second limitation lies in the fact that license enforcement, though grounded in
strong cryptographic principles, is performed entirely on the client device. This
design choice inherently exposes the verification process to tampering by technically
adept adversaries. The Kotlin-layer functions on Android, in particular, can be
accessed using reverse engineering tools and modified to get around checks, such
as by imposing return values that mimic legitimate licenses. Although offload-
ing sensitive operations to native code via the NDK strengthens resistance to
manipulation, purely client-side enforcement remains fundamentally vulnerable
in the absence of hardware-backed security measures such as Trusted Execution
Environments (TEEs) or server-side verification. In essence, while the current
setup offers meaningful deterrence, it cannot guarantee absolute protection against
sophisticated modification attempts.

6.3 Future Work
Several technically feasible and impactful enhancements are envisioned to extend
this work. The enhancement of tamper resistance is the most important of these.
More advanced code obfuscation techniques, internal integrity verification methods,
and runtime detection methods to spot debugging or code injection attempts may

48

Conclusion and Future Work

all be included in future iterations of the system.

A graphical user interface (GUI) or web-based license management system could be
used in place of the current script-based license generation tool, which is another
promising area for development. By allowing non-technical stakeholders to issue,
manage, and revoke licenses without needing to understand the underlying cryp-
tographic processes, such an interface would streamline operations. A web-based
dashboard could further enhance usability by providing centralized oversight of all
issued licenses, tracking their validity periods, and optionally capturing activation
events in connected environments. Over time, this system could be extended to
support more flexible licensing models, such as floating licenses, tiered feature sets,
or usage-based metering.

Lastly, secure license update mechanisms could be included in later versions of the
system, allowing vendors to remotely send notices of revocation, feature upgrades,
or renewals. Secure channels, like digitally signed license update files or authen-
ticated in-app update endpoints, could be used to distribute encrypted payloads.
Crucially, such functionality would need to be designed in a way that maintains
the framework’s offline-first philosophy, ensuring that core runtime capabilities
remain accessible even in the absence of connectivity, while still allowing dynamic
updates when a secure network connection is available. This hybrid model would
offer greater operational flexibility without compromising on the system’s core
security and usability goals.

49

Bibliography

[1] Grand View Research. Wearable Technology Market Size, Share & Trends
Analysis Report. 2024. url: https://www.grandviewresearch.com/indust
ry-analysis/wearable-technology-market (cit. on p. 1).

[2] Fortune Business Insights. Wearable Medical Devices Market Size, Share &
Industry Analysis. 2024. url: https://www.fortunebusinessinsights.
com/industry-reports/wearable-medical-devices-market-101070 (cit.
on p. 1).

[3] F. Andriulo, M. Fiore, M. Mongiello, E. Traversa, and V. Zizzo. «Edge
Computing and Cloud Computing for Internet of Things: A Review». In:
Informatics (2024) (cit. on pp. 3, 5, 6).

[4] M. Elissen. Fog Computing vs. Edge Computing: Their Roles in Modern
Technology. June 5, 2025. url: https://www.akamai.com/blog/edge/fog-
computing-edge-computing-roles-modern-technology (cit. on pp. 3, 5).

[5] L. Fourrage. Edge Computing in 2025: Bringing Data Processing Closer to the
User. Feb. 24, 2025. url: https://www.nucamp.co/blog/coding-bootcamp-
full-stack-web-and-mobile-development-2025-edge-computing-in-
2025-bringing-data-processing-closer-to-the-user (cit. on p. 4).

[6] Y.-A. Daraghmi, E. Daraghmi, R. Daraghma, H. Fouchal, and M. Ayaida.
«Edge–Fog–Cloud Computing Hierarchy for Improving Performance and
Security of NB-IoT-Based Health Monitoring Systems». In: Sensors (2022)
(cit. on p. 4).

[7] P. Szczygło. Beyond the Cloud: Pioneering Local AI on Mobile Devices with
Apple, Nvidia, and Samsung. Mar. 9, 2025. url: https://www.netguru.com/
blog/beyond-the-cloud-pioneering-local-ai-on-mobile-devices-
with-apple-nvidia-and-samsung (cit. on pp. 6, 7).

[8] Thales Group. SDK Licensing: Everything You Need to Know. url: https:
//cpl.thalesgroup.com/software-monetization/sdk-licensing (cit.
on p. 8).

50

https://www.grandviewresearch.com/industry-analysis/wearable-technology-market
https://www.grandviewresearch.com/industry-analysis/wearable-technology-market
https://www.fortunebusinessinsights.com/industry-reports/wearable-medical-devices-market-101070
https://www.fortunebusinessinsights.com/industry-reports/wearable-medical-devices-market-101070
https://www.akamai.com/blog/edge/fog-computing-edge-computing-roles-modern-technology
https://www.akamai.com/blog/edge/fog-computing-edge-computing-roles-modern-technology
https://www.nucamp.co/blog/coding-bootcamp-full-stack-web-and-mobile-development-2025-edge-computing-in-2025-bringing-data-processing-closer-to-the-user
https://www.nucamp.co/blog/coding-bootcamp-full-stack-web-and-mobile-development-2025-edge-computing-in-2025-bringing-data-processing-closer-to-the-user
https://www.nucamp.co/blog/coding-bootcamp-full-stack-web-and-mobile-development-2025-edge-computing-in-2025-bringing-data-processing-closer-to-the-user
https://www.netguru.com/blog/beyond-the-cloud-pioneering-local-ai-on-mobile-devices-with-apple-nvidia-and-samsung
https://www.netguru.com/blog/beyond-the-cloud-pioneering-local-ai-on-mobile-devices-with-apple-nvidia-and-samsung
https://www.netguru.com/blog/beyond-the-cloud-pioneering-local-ai-on-mobile-devices-with-apple-nvidia-and-samsung
https://cpl.thalesgroup.com/software-monetization/sdk-licensing
https://cpl.thalesgroup.com/software-monetization/sdk-licensing

BIBLIOGRAPHY

[9] A. Los. Offline License Verifications. July 2, 2024. url: https://cryptolens.
io/2024/07/offline-license-verifications (cit. on pp. 9, 16).

[10] B. Rocha. Creating a Licensing System for Paid Apps in Swift. Apr. 6, 2021.
url: https://swiftrocks.com/creating-a-license-system-for-paid-
apps-in-swift (cit. on p. 11).

[11] 10Duke. Handle and Store JWT License Tokens. url: https://docs.enter
prise.10duke.com/developer-guide/consuming-licenses/handle-and-
store-jwts (cit. on p. 11).

[12] Wacom. SDK Licensing Overview. url: https://developer-support.wa
com.com/hc/en-us/articles/9354475998103-SDK-Licensing-Overview
(cit. on p. 16).

[13] Thales. White Box Cryptography. url: https://cpl.thalesgroup.com/
software-monetization/white-box-cryptography (cit. on p. 19).

[14] Apple. WWDC 2019 – Secure Enclave White-Box Cryptography. 2019. url:
https://developer.apple.com/videos/play/wwdc2019/416/ (cit. on
p. 22).

[15] Android Developers. Create an Android Library. url: https://developer.
android.com/studio/projects/android-library (cit. on pp. 23, 35).

[16] McAfee. What Is Jailbreaking? url: https://www.mcafee.com/learn/what-
is-jailbreaking/ (cit. on p. 30).

[17] Apple. Security of Runtime Process in iOS, iPadOS and visionOS. Dec. 19,
2024. url: https://support.apple.com/en-au/guide/security/sec15b
fe098e (cit. on p. 31).

[18] Talsec. How Can Mobile Developers Detect Jailbroken Devices? May 2025.
url: https://docs.talsec.app/glossary/jailbreak-detection/how-
can-mobile-developers-detect-jailbroken-devices (cit. on p. 31).

[19] Adjoe. How Native Code Protects Sensitive Logic in Android. Apr. 28, 2025.
url: https://adjoe.io/company/engineer-blog/mobile-app-security-
android-native-code (cit. on pp. 35, 38).

[20] M. Stone. VB2018 Paper: Unpacking the Packed Unpacker: Reversing an
Android Anti-Analysis Native Library. https://www.virusbulletin.com/
virusbulletin/2019/01/vb2018-paper-unpacking-packed-unpacker-
reversing-android-anti-analysis-native-library. 2018 (cit. on p. 38).

[21] A. Critelli. Base64 Encoding: What Sysadmins Need to Know. Aug. 10, 2022.
url: https://www.redhat.com/en/blog/base64-encoding (cit. on p. 44).

51

https://cryptolens.io/2024/07/offline-license-verifications
https://cryptolens.io/2024/07/offline-license-verifications
https://swiftrocks.com/creating-a-license-system-for-paid-apps-in-swift
https://swiftrocks.com/creating-a-license-system-for-paid-apps-in-swift
https://docs.enterprise.10duke.com/developer-guide/consuming-licenses/handle-and-store-jwts
https://docs.enterprise.10duke.com/developer-guide/consuming-licenses/handle-and-store-jwts
https://docs.enterprise.10duke.com/developer-guide/consuming-licenses/handle-and-store-jwts
https://developer-support.wacom.com/hc/en-us/articles/9354475998103-SDK-Licensing-Overview
https://developer-support.wacom.com/hc/en-us/articles/9354475998103-SDK-Licensing-Overview
https://cpl.thalesgroup.com/software-monetization/white-box-cryptography
https://cpl.thalesgroup.com/software-monetization/white-box-cryptography
https://developer.apple.com/videos/play/wwdc2019/416/
https://developer.android.com/studio/projects/android-library
https://developer.android.com/studio/projects/android-library
https://www.mcafee.com/learn/what-is-jailbreaking/
https://www.mcafee.com/learn/what-is-jailbreaking/
https://support.apple.com/en-au/guide/security/sec15bfe098e
https://support.apple.com/en-au/guide/security/sec15bfe098e
https://docs.talsec.app/glossary/jailbreak-detection/how-can-mobile-developers-detect-jailbroken-devices
https://docs.talsec.app/glossary/jailbreak-detection/how-can-mobile-developers-detect-jailbroken-devices
https://adjoe.io/company/engineer-blog/mobile-app-security-android-native-code
https://adjoe.io/company/engineer-blog/mobile-app-security-android-native-code
https://www.virusbulletin.com/virusbulletin/2019/01/vb2018-paper-unpacking-packed-unpacker-reversing-android-anti-analysis-native-library
https://www.virusbulletin.com/virusbulletin/2019/01/vb2018-paper-unpacking-packed-unpacker-reversing-android-anti-analysis-native-library
https://www.virusbulletin.com/virusbulletin/2019/01/vb2018-paper-unpacking-packed-unpacker-reversing-android-anti-analysis-native-library
https://www.redhat.com/en/blog/base64-encoding

	List of Figures
	Acronyms
	Introduction
	Motivation
	Objectives

	Background
	Cloud, Fog, Edge Computing and On-Device Processing
	Cloud Computing in Mobile Health
	Fog Computing in Mobile Health
	Edge Computing in Mobile Health
	On-Device Computing in Mobile Health
	Choice justification

	IP Protection and Licensing Methods
	Hardcoded License Keys
	Online License verification
	Token-Based License Systems (JWT and Similar Tokens)
	Offline Licensing with Digital Signatures
	Choice justification

	Licensing Strategies for On-Device Frameworks
	Hardware/Device-Bound Licensing
	Feature-Limited and Modular Licensing
	Time Limited Licensing
	Floating (Concurrent) Licensing
	License Servers on Device
	Choice Justification

	Security Risks in Mobile License Enforcement
	Reverse Engineering and Patching
	Key Leakage
	Network Attacks
	Denial-of-Service or Bricking Risks

	System Overview
	System Objectives and Use Context
	SDK Architecture (iOS and Android)
	iOS: XCFramework Packaging and Architecture
	Android: AAR Packaging, Native Code, and Architecture
	Cross-Platform Architectural Principles

	Framework and Library Implementation
	Overview of SDK Structure
	iOS XCFramework
	Internal Modules (PredictS, License, Security, Features)
	Building and Integration in Customer’s App
	What third-party developers have access to

	Android AAR Library
	Architecture and Components of the Android SDK
	Kotlin Layer
	C++ Native Layer
	Build Configuration: CMake and Gradle Integration for Native Libraries
	Integration in Customer’s App

	Licensing System
	Design Goals and Constraints
	License Creation and Verification Flow
	Cryptographic Primitives
	License Signing Workflow
	Offline Client Integration

	Conclusion and Future Work
	Achievements
	Limitations
	Future Work

	Bibliography

