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Abstract

The noticeable rise of drones, or UAVSs, in business, rescue operations, and general ap-
plications necessitates increased safety due to their growing presence. As drones begin
to operate alongside humans and existing structures, there is a need for preventing

collisions with objects and/or people.

This thesis presents a potential solution to the obstacle avoidance problem, enabling
drones to avoid possible collisions during navigation. The algorithm relies on an
Archimedean spiral to identify an escape point in real time based on environmental
data perceived by the depth Camera. During navigation, the algorithm continuously
processes the point cloud information, generating a suitable escape point if an obstruc-

tion is detected within a safety cylindrical volume.

The implementation leverages the co-simulation between ROS 2 and PX4 Autopilot via
uORB messages for seamless communication between high-level setpoint tracking and
low-level flight controllers. Octomap processes the point cloud provided by the depth
camera to retrieve a probabilistic 3D representation of the surrounding environment
while maintaining reduced memory occupancy. Extensive Gazebo simulation validates

system effectiveness across different scenarios.

Keywords: UAV, Collision Avoidance, ROS 2, PX4, Depth Camera, Real-time Sys-

tems, Autonomous Navigation
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Chapter 1

Introduction

1.1 Background and Motivation

In recent years, the UAV market has been experiencing a rapid expansion, affecting
multiple industries based on macro-drivers. Improvements in battery efficiency, au-
tonomous systems, sensor miniaturization, and advanced communication technologies
generate interest among players in the commercial, industrial, and civilian sectors. Au-
tonomous flight, and in general, UAVs, are increasing their usage in various fields, as
their applicability can be varied and highly efficient, or, in some cases, they are the

only way to complete tasks that involve human risk in hazardous environments.

At the same time, some market trends are leveraging UAV technologies to achieve bet-
ter efficiency; for instance, increasing demand from the e-commerce market can drive a
rise in drone usage, particularly for last-kilometer delivery, leading to a more efficient
service, reduced energy consumption (with a clear lower environmental impact), and
increased accessibility at lower costs. While efficiency and profitability are important
drivers, these technologies demonstrate their greatest value when deployed to address
urgent humanitarian needs. Zipline’s operations in Rwanda provide a compelling ex-
ample of UAVs being utilized to transport essential medical supplies to hospitals in

remote areas.

All the described application examples demonstrate the variety of advantages that
UAVs offer, with autonomous navigation representing the most critical enabling tech-
nology in drastically reducing human intervention. In this context, safety plays a crucial
role, particularly in low-altitude navigation operations, where proximity to people, in-
frastructure, and buildings can significantly limit the scalability of UAVs, not only for

commercial deployment.
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Waypoints navigation can be a challenging task for an autonomous entity due to
complex environmental challenges, dynamic obstacles, unpredictable disturbances, and
other factors. In most cases, a pre-loaded path from the origin to the destination point
may not suffice, as it cannot account for dynamic obstacles encountered along the way.
Additionally, although the locations of buildings could theoretically be known in ad-
vance, implementing this strategy would necessitate substantial memory usage to store
information about all possible buildings, and there may also be instances where such
knowledge is simply unavailable. For this reason, to enable UAV’s safe autonomous
navigation, a real-time obstacle avoidance approach is required to achieve a fully au-

tonomous entity.

1.2 Problem Statement

While autonomous navigation offers clear advantages, implementing effective obsta-
cle avoidance algorithms faces several challenges arising from algorithmic limitations,
hardware constraints, and complexities in system integration. From an algorithmic
perspective, many existing solutions risk becoming trapped in local minima or gener-
ating suboptimal trajectories that fail to achieve the desired objectives, particularly
those related to local planners. Additionally, many available solutions focus on framing
the obstacle avoidance problem in a 2D context, which simplifies algorithm complexity
but comes at the cost of losing essential altitude information. In this context, resource
limitations pose a significant bottleneck that restricts the deployment of advanced ob-
stacle avoidance systems, particularly for small and medium-sized UAVs with restricted
payload capacity and power. These systems typically rely on embedded computing so-
lutions, which provide only a fraction of the processing power available in ground-based
applications while simultaneously needing to manage various concurrent tasks, such as
flight control, sensor processing, data management, communication, and navigation.
Real-time obstacle avoidance algorithms are particularly resource-intensive, as percep-
tion sensors require complex processing that often exceeds the capabilities of standard

onboard computers in UAVs.

Furthermore, carrying the necessary payload for adequate perception increase power
consumption, thereby limiting the UAV’s operational range. These challenges limit
the broader application of UAVs, resulting in suboptimal performance, particularly in
vision-based solutions, where a UAV’s speed is closely tied to the processing capabili-
ties of the perception system that generates point clouds. Addressing these limitations

could enhance both safety and expand applicability into new fields.
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1.3 Objectives

The primary goal involves adapting and integrating the spiral-based collision avoid-
ance algorithm, initially developed by Azevedo et al. [7], into the ROS 2 framework.
This integration involves establishing seamless communication with the PX4 flight
stack through Software-in-the-Loop (SITL) simulation, utilising uORB messages to fa-
cilitate effective coordination between high-level navigation commands and low-level

flight control systems.

The second objective centres on comprehensive validation and performance assessment
of the integrated system through extensive simulation testing. The overall effective-
ness of the spiral-based obstacle avoidance solutions, subject to different operational

scenarios, was evaluated using Gazebo Sim with PX4 SITL.

Through these integration and validation efforts, this thesis contributes to the practical
advancement of UAV autonomous navigation by demonstrating how existing, proven
algorithms can be successfully adapted to modern robotics frameworks while providing
a stable and documented platform that enables future algorithm developers to build
upon this work without requiring a fundamental re-implementation of the integration

layer.
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1.4 Thesis Organization

This thesis work is organised into nine chapters, providing detailed coverage from the

theoretical foundations to its integration and validation in a simulated environment.

e Chapter 2 presents the state of the art of obstacle avoidance available solutions.

e Chapter 3 details the theoretical background of the spiral-based obstacle avoid-

ance algorithm, perception sensors and its processing methodologies.

e Chapter 4 explains the overall system architecture and design decisions, de-
scribing the ROS 2 node structure, PX4 integration framework, and coordinate

transformations required for accurate simulation implementation.

e Chapter 5 focuses on the core implementation details of both ROS 2 nodes and
their interaction with high-level flight control systems, representing the primary

technical contribution of this work.
e Chapter 6 provides insights about the simulation environment and its setup.
e Chapter 7 shows the results obtained in this thesis work.

e Chapter 8 discusses implementation achievements, limitations encountered dur-

ing the development process, along with conclusions and future works.

e Appendix A provides quick-start setup procedures, enabling reproduction of

the experimental framework.

e Appendix B integrates an overview of supporting algorithms used for main ROS

2 nodes and related resources.



Chapter 2
Literature Review

UAVs operating at low altitudes face a significant threat from non-cooperative obsta-
cles, which include both static objects, such as buildings or trees, and dynamic ones,
like other UAVs. This scenario poses a substantial risk of collision due to increased
obstructions and reduced operational speeds compared to higher altitudes. Conse-
quently, obstacle avoidance is a critical capability for low-altitude applications. To
address this, various non-cooperative obstacle avoidance techniques have been devel-

oped. These methods can be divided into two main categories:

e Global Path Planning: This involves determining the optimal route between
the starting point and the final goal. However, it requires prior knowledge of
the exact environment map. Such methods can be computationally expensive
to build and update and prone to errors due to map latency and dynamic actors

that cannot be known a priori.

e Local Obstacle Avoidance: These techniques operate without prior knowl-
edge of the area map. They continuously monitor the UAV’s proximity and
decide on the avoidance action based on the perception sensor feedback. Contin-
uous sensing and real-time map updating, contribute to reducing the likelihood
of latency issues. Local methods are generally preferred for onboard processing
on small robotic devices due to their low computational cost. Therefore, they
are ideal for quick responses, but at the same time, they may not find the optimal

path or risk being trapped in dead-end situations.

A complete approach is often a combination of both strategies, using a low-level re-
active layer for immediate safety and a high-level global planner for optimized long-term
paths [11]. This review focuses on non-cooperative local obstacle avoidance methods,
which can be further categorized into gap-based, geometric, repulsive force-based, and

Al-based approaches.
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2.1 Gap-based methods

Gap-Based methods are effective for collision-free UAV navigation by identifying and
utilizing admissible gaps between obstacles. They are often computationally efficient
and suitable for real-time applications, solving the avoidance problem for both static

and dynamic obstacles [1], [12].

2.1.1 Open Sector

The Open Sector (OS) method, presented in [13|, enables aerial robots to navigate
reactively without maps by leveraging a 2D laser scan. It identifies open sectors
(clear, wide angular arcs) and calculates a virtual target by incorporating a short-term
memory of past actions to guide the robot and prevent it from being trapped in dead-
end scenarios. Safety boundaries are applied within chosen sectors to ensure smooth,
tangential, and safe travel around obstacles. Additionally, virtual walls are used to
manage the laser scanner’s blind spot. For robust operation, the system includes
emergency actions for close obstacles and switches to a PF-IPA (Potential Field that
Incorporates Past Actions) method if no open sectors are found or when approaching
a waypoint closer than the look-ahead distance. It can achieve a smooth trajectory
at relatively high speeds (e.g., 3 m/s on a physical system) and effectively handles
multiple obstacles. A limitation is that it does not account for the aerial robot’s

dynamics, which may reduce its effectiveness in highly dynamic environments.

2.1.2 Nearness Diagram

The Nearness Diagram (IND) method, presented in [1], utilizes two primary dia-
grams: the Nearness Diagram from the central Point (PND) and the Nearness Diagram
from the Robot bounds (RND). These diagrams serve as crucial tools for analyzing the
relationships between the robot, the distribution of obstacles, and the goal location.
The construction of both the PND and RND begins by processing sensory information,
which is assumed to be available as depth point maps. This raw sensory data is used to
divide the plane into sectors. For each sector ¢, a function min_dist (i) is computed,
which determines the minimum distance to an obstacle point within that sector.

Each diagram is constructed as follows:

e PND : This diagram represents the nearness of obstacles as perceived from the
robot’s centre. Its values are directly derived from the min_dist(i) function
for each sector. The PND is fundamental for identifying gaps in the obstacle
distribution, which are defined as discontinuities in the PND between adjacent
sectors. From these gaps, regions are then obtained, which are identified as valleys

in the PND, formed by two contiguous gaps.
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e RND : This diagram, in contrast, represents the nearness of obstacles from the
robot’s boundary, taking into account the robot’s radius. It is computed using
the min_dist (i) function and the robot’s radius R, such that if min_dist (i)
is less than or equal to R, the RND value is R, otherwise it is min_dist(i).
The RND is specifically used to evaluate the robot’s safety by checking if any

obstacles are within a predefined "security zone" around the robot’s bounds.

PND RND

40 60 80 100 120 140

Seoal SELECTED VALLEY 2
VALLEY | o ALLEY

SECURITY
NEARNESS

xxxxxxx

20
SECTORS SECTORS

(b) (c)

Figure 2.1: (a) Gaps, regions and free walking area. (b) PND. (¢) RND. [1]

After these diagrams are constructed, the robot’s environment is categorized into
a set of "situations" with a corresponding "action" to perform. The situation identifi-
cation process leverages PND and RND to evaluate the environment. This process is

described in the decision tree shown in fig. 2.2

Criterion 1 ‘ 4

LOW SAFETY
Criterion 3

DECISION
TREE

Criterion 2

EHTUKHONS

Figure 2.2: Nearness diagram architecture 1]
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The decision tree navigation is based on the following criteria:

Criterion 1: Safety Criterion - Checks leveraging RND, whether there are ob-
stacles within a "security zone" around the robot’s bounds leading to Low Safety
(LS) if obstacles are present within the security zone or to High Safety (HS)

otherwise

Criterion 2: Dangerous obstacle distribution criterion - Leads to Low Safety
1 (LS1) if obstacles are located only on one side of the gap, or Low Safety 2
(LS2) if they are on both sides of the gap

Criterion 3: Goal within the free walking area criterion - If the goal is within
the free walking area, it leads to High Safety Goal in Region (HSGR)

Criterion 4: Free walking area width criterion - Differentiates between wide
and narrow free walking areas based on their angular width, leads to High Safety
Wide Region (HSWR) if the selected free walking area is wide, to High Safety
Narrow Region (HSNR) otherwise

For each of these five situations (LS1, LS2, HSGR, HSWR, HSNR), a specific action

design is associated with producing the desired navigation behaviour. The associated

actions are:

LS1 Action: Calculates a motion direction that moves the robot away from the
closest obstacle and toward the gap (closest to the goal) of the free walking area.
The translational velocity is reduced proportionally to the distance to the nearest

obstacle.

LS2 Action: Centres the robot between the two closest obstacles on both sides
of the gap in the free walking area while simultaneously moving the robot toward
this gap. The translational velocity is also reduced in proportion to the proximity
of the obstacle.

HSGR Action: Directly drives the robot toward the goal location. The robot

moves at maximum translational velocity.

HSWR Action: Moves the robot alongside the obstacle towards the goal. The

robot moves at maximum translational velocity.

HSNR Action: Directs the robot through the central zone of the free walking
area, computed as the bisector of the discontinuities defining the valley. The

robot moves at maximum translational velocity.

In conclusion, it successfully navigates through cluttered environments, including

avoiding common trap situations like U-shaped obstacles. However, a successful mission

relies heavily on the quality of sensor data.
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2.1.3 VFH and evolutions

One of the most effective algorithm is the Vector Field Histogram (VFH), along
with its subsequent evolutions (VFH+ and VFH*), which forms a cornerstone in the
field of mobile robot obstacle avoidance. Developed to enable real-time, local navigation
in unknown environments, this family of algorithms has continuously evolved to address
inherent limitations and enhance reliability, particularly for fast-moving platforms like
mobile robots and Unmanned Aerial Vehicles (UAVs).

The original VFH algorithm, introduced by Borenstein and Koren [14], was designed
as a real-time local obstacle avoidance method for robots equipped with proximity sen-
sors. It aimed to overcome some of the shortcomings of earlier potential field methods,
such as susceptibility to local minima, enabling robots to travel at faster and more
stable speeds.

VFH operates by processing a local environment map, often referred to as a "his-
togram grid," which is derived from certainty or occupancy grids. The algorithm

employs a two-stage data reduction process to determine the robot’s steering direction:

e Primary Polar Histogram Construction: A circular "active region" around the
robot’s momentary location within the two-dimensional map grid is transformed
into a one-dimensional "primary polar histogram". Each active cell in the grid
contributes as an "obstacle vector". The direction of this vector points from the
active cell to the robot’s centre, and its magnitude is directly proportional to the
square of the cell’s "certainty value" and inversely proportional to the square of
its distance from the robot. This ensures that closer and more certain obstacles

exert a stronger influence.

e Steering Direction Selection: From the primary polar histogram, the algorithm
identifies "valleys" or openings that represent free space. The original VFH is
highly goal-oriented, selecting the opening that most closely aligns with the target

direction to define the robot’s new steering command.

The VFH method was a notable advancement because it allowed robots to per-
form real-time obstacle avoidance at high speeds. Compared to earlier potential field
methods, VFH was less prone to getting trapped in local minima and demonstrated
greater stability, even when the robot travelled quickly. Despite its advantages, the
original VFH algorithm had several weaknesses. It did not explicitly account for the
robot’s physical width, instead relying on an empirically determined low-pass filter for
compensation. This filter was difficult to tune and could lead to the robot cutting
corners. Furthermore, VFH neglected the robot’s dynamics and kinematics, assuming
it could change direction instantaneously. This fundamental assumption could result

in the robot being incorrectly guided into obstacles, particularly if its turning radius
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prevented an immediate course correction. The use of a fixed threshold for identifying
free paths could also cause indecisive or oscillatory behaviour in environments with
narrow openings. Being a purely local algorithm, it could sometimes make undesirable

choices or lead the robot into dead-ends.

The first evolution, named VFH-, was introduced by Ulrich and Borenstein in 1998
[15] and addressed key limitations of the original VFH method, resulting in smoother
robot trajectories and enhanced reliability.

It introduces a four-stage data reduction process (histogram grid, primary polar
histogram, binary polar histogram, masked polar histogram) to compute the new di-
rection of motion. One significant improvement is the explicit compensation for robot
width. VFH+ analytically determines a low-pass filter and enlarges obstacle cells by
the robot’s radius (and a safety distance), effectively treating the robot as a point-like
vehicle. This eliminates the complex tuning required for the original VFH’s low-pass
filter. Crucially, VFH+ takes into account the robot’s trajectory, assuming movement
along circular arcs and straight lines, preventing the algorithm from selecting paths
that the robot’s physical turning capabilities would make impossible, thereby avoiding
collisions that the original VFH might not. To combat indecisive behaviour, VFH+ in-
corporates a threshold hysteresis using two thresholds (minimum and maximum) when
constructing the binary polar histogram, which makes trajectories less oscillatory. Fi-
nally, VFH-+ features an improved direction selection based on a cost function which
considers goal-oriented behaviour, path smoothness, and steering command smooth-
ness, allowing the robot to "commit" to a direction. This commitment prevents the
robot from hesitating and potentially bumping into obstacles when faced with a sin-
gle object in its path. VFH+ demonstrated safety at higher speeds (up to 1 m/s
in Guidecane tests) and proved to be insensitive to its parameter values, simplifying
implementation. It also gained the ability to detect when the robot is trapped in a
dead-end situation.

Despite these significant enhancements, VFH+ remained a purely local obstacle
avoidance algorithm. This inherent local nature meant that in some complex or am-
biguous situations (e.g., a long, narrow corridor with obstacles), it could still make
undesirable choices that might lead the robot into dead-ends or suboptimal paths that

could have been avoided with a broader perspective.

To address the main limitation, VFH* [16] was implemented , combining VFH+ with
the A* search algorithm to create a look-ahead tree and evaluate candidate directions.
This approach overcomes the limitations of both VHF and VFH+. However, since
VFH* does not function as a local planner, the working principles, advantages, and

limitations of this method will not be discussed in this thesis.
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Since its early 2D implementation, VHF algorithm, have been significantly extended
and refined for three-dimensional environments, leading to the SDVFH+ and its sub-
sequent evolutions, culminating in 3DVFH* |3].

The 3DVFH+ algorithm, as introduced by Vanneste et al. [2], extends the histogram-
based obstacle avoidance approach to 3D environments, addressing the needs of plat-
forms such as UAVs.

It operates by first building a global map of the environment, typically utilizing
an Octomap data structure. From this global map, the algorithm extracts local in-
formation within a bounding box around the robot to perform histogramic obstacle
avoidance. This process involves constructing a 2D primary polar histogram from the
3D occupancy map, where the location of an active voxel is determined by its azimuth
and elevation angles relative to the Vehicle Center Point (VCP). The size of the robot
is compensated by enlarging active voxels in the histogram based on the robot’s radius
and safety radius. This primary polar histogram is then converted into a 2D binary
polar histogram using two thresholds to distinguish real obstacles from measurement
errors. Finally, the algorithm identifies openings in the binary histogram by using a
moving window. It selects the optimal path by evaluating candidate directions with a
cost function that considers the target angle, robot rotation, and previous selections.

The chosen direction is then converted into a robot motion.

. ‘S 2
Figure 2.3: 2D Polar Histogram [2]

A key advantage of the 3DVFH+- is its reliance on a global map, which allows it to
remember previously seen obstacles even if they are no longer within the UAV’s im-
mediate field of view. This characteristic positions it as an approach that lies between
purely local and purely global methods. It can calculate a new robot motion with an
average time of 300 ps, making it suitable for real-time applications. The algorithm
explicitly accounts for the robot’s physical characteristics, such as size and turning

speed, which contribute to smoother trajectories.
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The primary limitation of the 3SDVFH+ is the significant computational overhead as-
sociated with building and maintaining a global map. This can be a considerable
challenge for UAVs, which typically have limited onboard computing power and strict
weight constraints. The algorithm’s parameters are often chosen empirically, suggest-

ing a need for configuration tailored to specific robot requirements.

To address the high computational demands associated with the global map in SDVFH+-,
a localized version of the 3SDVFH method was developed as part of the thesis [3]. This
adaptation transforms 3DVFH into a purely local and reactive algorithm, eliminat-
ing the need for a persistent global map. Additionally, this version was updated with
a memory strategy to incorporate previously encountered obstacles without incurring
the computational costs associated with maintaining a full global map. Finally, further
advancements were made by integrating these concepts with the A* search algorithm,

resulting in the creation of the SDVHF* approach.

Pointcloud
Determine
Strategy

Update Cost
Parameters
Reproject Points
create Histogram

| Stop in front | | Reach height | | Back off

Get direction
from Tree

Get direction
from Costma

Go directly
towards Goal

Get next Waypoint

Adapt Waypaint:
sphere,
stop and yaw,
speed

Smooth Waypoint

Figure 2.4: Decision-making pipeline for 3DVFH* [3]

fig. 2.4 illustrates the 3DVFH* decision-making pipeline, outlining the process from
point-cloud data acquisition to the output of the next waypoint for the UAV. The figure
emphasizes how the algorithm integrates concepts from both the 3DVFH+ and VFH*

algorithms, incorporating a novel memory strategy.



2.2. Geometrics methods 13

2.2 Geometrics methods

2.2.1 Collision Cone

The first geometric method discussed is the Collision Cone approach, described in [17];
it distinguishes itself by relying on direct velocity information rather than position data
to predict and avoid potential collisions. The basic working principle of the collision
cone involves identifying a conic area in geometric space around an object where a
collision is most likely to occur. The vertex of this cone is typically located at the
robot’s current position. This cone represents the range of velocities that, if the robot
were to maintain, would inevitably lead to a collision with an obstacle. Once a potential
collision is detected because the robot’s velocity vector lies within this cone, evasive
manoeuvres are executed by directing the UAV’s velocity vector outside the collision
cone region. These manoeuvres can involve changing speed, heading direction, or both,

depending on the robot’s capabilities and time constraints.

Cone boundary

Figure 2.5: Collision Cone construction from [4]

A significant advantage of the collision cone approach is its applicability to dy-
namic environments with obstacles that have unpredictable trajectories and arbitrary
shapes, a notable relaxation from limitations in other obstacle avoidance literature. The
method’s roots in well-established aerospace guidance theory, particularly for intercep-
tion problems, contribute to its robustness and provide a strong theoretical foundation.

Furthermore, it has low computational requirements for its core implementation and
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has been extended to manage multiple obstacles and multi-UAV formations or swarms,
offering a solution for complex multi-agent navigation problems. Despite its strengths,
the collision cone approach has some limitations. For irregularly shaped objects, deter-
mining the precise angle required for computation can pose practical difficulties, and
approximating these shapes with simpler forms, such as circles, results in an inexact
collision cone compared to a theoretically exact one. Additionally, the fundamental
method, particularly as presented in earlier works, does not inherently account for
real-world complexities such as communication delays between agents, sensor noise,
or environmental factors like wind and turbulence, especially when applied to multi-
UAV systems. The accuracy of the system can also be critically dependent on the
precision of sensing technologies, such as LiDAR, and filtering techniques. Some older
collision cone techniques also did not initially consider time as a constraint for collision

avoidance manoeuvres.

2.2.2 Velocity Obstacle

Another geometric collision avoidance algorithm is the Velocity Obstacle (VO), pre-
sented in [18], similar to the Collision Cone method, which can be considered a first-
order model because it directly utilises velocity information to determine potential
collisions. It maps the dynamic environment into the robot’s velocity space. For a
robot (actor A) and an obstacle (actor B), the first step is to conceptualize the obsta-
cle in the robot’s configuration space by treating the robot as a point and enlarging

the obstacle by the robot’s radius.

VO

Figure 2.6: Velocity obstacle of UAV A induced by obstacle B [4]
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A collision cone is then defined, representing the set of relative velocities between
the robot and the obstacle that would result in a collision. Any relative velocity within
this cone signifies a potential collision. To establish the velocity obstacle (VO), this
collision cone is then translated by the absolute velocity of the obstacle Vg. This VO
effectively partitions the robot’s absolute velocities into those that would cause a col-
lision and those that would avoid it. To avoid an obstacle, the robot selects a velocity
that lies outside of its corresponding velocity obstacle. When multiple obstacles are
present, the robot considers the union of all individual velocity obstacles. The method
also incorporates a "time horizon" to focus on imminent collisions, modifying the VO
to exclude collisions predicted to occur beyond this horizon. It computes a set of reach-
able avoidance velocities (RAV) by taking the velocities the robot can feasibly achieve
given its constraints and subtracting the velocity obstacles, thus ensuring both colli-
sion avoidance and dynamic feasibility. A complete trajectory from start to goal is

built as a sequence of these avoidance manoeuvres, computed at discrete time intervals.

A significant strength is its ability to unify the avoidance of both moving and sta-
tionary obstacles and to handle any number of moving obstacles by considering the
union of their individual VOs. Crucially, it allows for the direct consideration of robot
dynamics and actuator constraints by restricting the choice of avoidance velocities to

those reachable by the robot’s admissible accelerations.

Despite its strengths, the velocity obstacle approach has certain limitations. As a
first-order method, it does not integrate velocities to yield positions as functions of
time. This means its predictions about potential collisions rely on the assumption that
the obstacle maintains its current shape and speed. Consequently, using the VO for
predicting remote collisions may be inaccurate if the obstacle’s actual trajectory is not
a straight line, as the VO is based on a linear approximation of the obstacle’s path.
Furthermore, the method tends to generate conservative trajectories. Each segment
of the path is designed to avoid all obstacles that are reachable within the specified
time horizon, potentially excluding other feasible trajectories that involve avoiding an

obstacle at a later point.
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2.3 Repulsive force-based methods

Repulsive force-based algorithms are fundamentally based on the concept of modelling
the drone’s operational area as a potential field. Within this field, the target is con-
ceptualized as generating an attractive force that pulls the drone towards its desired
location. Conversely, any obstacles present in the environment create a repulsive force,
which pushes the drone away from them. This mechanism resembles the interaction
between electric charges, where the target functions as a positive charge, creating a
gravitational field, while obstacles act like negative charges, producing repulsive fields.
The cumulative sum of these attractive and repulsive forces determines the drone’s

subsequent movement or velocity [5].

Starting Location

‘"" Robot Path

Target Location:

Figure 2.7: Example of potential field [5]

A significant advantage of potential field methods is their simplicity, elegance, and
low computational demands, which enable real-time performance and make them a
frequently used method for navigation. This simplicity also makes them easy to im-

plement, contributing to a smooth path-generation process.

Despite their utility, traditional repulsive force-based algorithms have inherent limi-
tations, especially in complex or cluttered environments. One major issue is the local
minima problem, where the drone can become trapped in a position where opposing
forces balance each other, resulting in a zero resultant force and preventing it from
reaching the actual target. Another common limitation is the Goal Not Reachable
with Obstacles Nearby (GINRON) problem, where the drone cannot approach a
target if it is too close to an obstacle because the obstacle’s strong repulsive force over-
rides the attractive force to the target. This occurs because the repulsive force increases
significantly as the drone gets very close to an obstacle. In contrast, the attractive force

may decrease as it approaches the goal, leading to repulsion dominating and pushing
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the drone away from its intended destination. To address these shortcomings, extensive
research has been conducted, including modifying repulsive force functions, incorpo-
rating past actions, introducing virtual target points [19], or employing methods like
the regular hexagon-guided (RHG) method [20].



18 Chapter 2. Literature Review

2.4 Al-based methods

Al-based methods for Unmanned UAV obstacle avoidance are categorised by their
learning techniques, primarily into supervised and unsupervised learning algorithms.
These methods leverage machine learning (ML) and Deep Reinforcement Learning
(DRL) to process and analyze the large volumes of data generated by UAV sensing
systems. Advancements in cloud computing, Graphics Processing Units (GPUs), and
parallel computing have made it computationally feasible for these AI algorithms to
process extensive data in real-time. Deep Reinforcement Learning, specifically, com-
bines reinforced learning with deep neural networks, allowing a UAV to learn actions
based on feedback in the form of rewards or penalties. A significant advantage of DRL
is its suitability for applications that do not inherently have a pre-existing training
dataset, as decisions are made based on real-time feedback from the environment. For
instance, one DRL method utilises recurrent neural networks with temporal attention
to retain relevant information from a monocular camera, thereby enabling better future
navigation decisions in unknown indoor environments. Machine learning algorithms,
on the other hand, are trained on images and sensor datasets to identify potential ob-
stacles and hazards in the environment. The quality and size of the training dataset
significantly impact their performance. Despite their advantages, Al-based methods
come with limitations. Machine learning algorithms can be computationally expen-
sive as their performance hinges on the scale and quality of the training dataset. DRL
methods, while powerful, have limited applicability in some safety-critical environments
because the UAV may need to repeatedly operate in the same workspace to collect suf-

ficient data for effective learning.

The field of Al-based obstacle avoidance techniques is still considered to be in its
infancy, indicating that ongoing research is needed to address challenges such as opti-
mising energy consumption in AI models and exploring low-power hardware solutions
for extended operational endurance in small UAVs. Due to these maturity and resource

constraints, Al-based approaches were not actively considered for this thesis work.
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Background

3.1 Environment Perception

Perception in robotics refers to a system’s ability to sense, process, and understand
its surrounding environment, which is crucial for autonomous navigation and decision-
making. For UAVs, perception sensors are a critical component of low-altitude naviga-
tion systems, enabling intelligent, real-time decisions such as navigation, path optimi-

sation, localisation, motion planning, and, most critically, obstacle avoidance.

Perception sensors for UAV autonomous navigation are broadly categorised into
visual and non-visual. Non-visual sensors operate on the principle of active sensing,
emitting their energy to illuminate the environment and receive reflected signals. This
category includes sensors such as LIDAR, radar, and ultrasonic sensors. LiDAR (Light
Detection and Ranging) is highly valued for its precise and accurate obstacle detection,
working as a Time of Flight (TOF) sensor to generate 2D or 3D point cloud data rep-
resenting the UAV’s proximity. LiDAR performs well in adverse weather conditions;
however, 3D LiDAR sensors can be constrained by higher payload and computational
requirements, potentially reducing flight time in small UAVs. Radar (Radio Detection
and Ranging) systems are effective in obstacle avoidance and terrain mapping, particu-
larly advantageous in adverse weather where image-based systems may struggle. Radar
determines distance by measuring the time it takes for transmitted electromagnetic
waves to return and can detect relative speed. However, radar can be computationally
challenging, produce false readings in cluttered environments due to multiple path re-
flections, and may have limited range resolution, making it less suitable for detecting
small, distant obstacles. Ultrasonic sensors use sound waves to determine the distance
and direction of an obstacle. They are lightweight and inexpensive, making them suit-
able for UAVs; however, they have a limited detection range and can be affected by
ambient noise and weather conditions, which can impact their performance and limit

their ability to accurately measure obstacle size and shape.

19
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Figure 3.1: Perception sensors [4]

Visual sensing primarily uses passive sensors like cameras, capturing visual data
in forms such as RGB, stereo, color infrared and thermal images. These sensors are
known for their low cost, lighter payload, and wider field of view, providing significant
information for obstacle detection, tracking, and depth perception. Monocular vision
systems utilize a single camera to capture images and extract features, often relying on
algorithms like Size Explanation Algorithm, Vanishing Point algorithm, Convolutional
Neural Networks (CNN), or optical flow techniques to estimate depth from multiple
frames. While low-cost and lightweight, monocular systems inherently lack direct depth
perception and can be sensitive to lighting conditions. RGB-D cameras, on the other
hand, capture both color and depth information simultaneously, typically using an

infrared projector and camera to create a full 3D model of the scene.

Stereo vision systems are a key type of visual perception sensor that provide depth
perception and spatial information, which is highly beneficial for UAVs. These systems
operate by using two cameras placed a fixed distance apart to capture two images of
the same scene from slightly different perspectives. By analyzing the disparity (the
difference in position of a given object in the two images), stereo vision systems can
compute the distance between objects. This capability allows UAVs to accurately

detect and avoid obstacles in their path, thereby improving their safety and maneuver-
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ability. Despite these advantages, employing stereo vision systems introduces certain
challenges. They tend to add more computational cost and complexity to the hardware
architecture of the UAV system. Moreover, studies have shown that while they can
yield promising results, stereo vision systems exhibit vulnerability to poor calibration,
particularly under varying lighting conditions, which can significantly impact their per-
formance. The accuracy of depth estimation can also degrade as the distance to the
object increases, making them more suitable for short-range obstacle detection.

Stereo vision, like other perception systems, generates a collection of 3D points that

represent surfaces and objects, resulting in what is known as a point cloud.

3.2 Octomap Framework

Point clouds contain raw measurement points, but this approach is not memory-
efficient. Additionally, point clouds do not distinguish between obstacle-free areas
and unmapped regions, nor do they offer a method for probabilistically fusing multiple
measurements. For these reasons, this thesis utilizes the Octomap Framework [6]to

process and organize data obtained from a stereo camera.

The OctoMap framework is an open-source C++ library designed for generating vol-
umetric 3D environment models, which is extensively applied in robotics applications.
It is based on octrees and employs probabilistic occupancy estimation to represent
occupied, free, and unknown areas within a 3D space. At its core, OctoMap utilises
octrees, a hierarchical data structure for spatial subdivision in 3D space. Each node in
an octree represents a cubic volume, known as a voxel, and this volume is recursively

subdivided into eight sub-volumes until a predefined minimum voxel size is reached.

/ hﬁj N D
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Figure 3.2: Octree spatial subdivision showing free (shaded white) and occupied (black)
voxels with its volumetric representation (left) and hierarchical tree structure (right). (6]

Octrees overcome a significant drawback of fixed grid structures by delaying the
initialization of map volumes until measurements are integrated, meaning the extent

of the mapped environment does not need to be known beforehand, and the map only
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contains measured volumes. A central property of OctoMap’s approach is its ability
to efficiently and probabilistically update occupied and free space. Occupied space is
determined by the endpoints of distance sensors (like laser range finders), while free
space corresponds to the observed area between the sensor and the endpoint. The
hierarchical nature of octrees also allows for multi-resolution representations, as the

tree can be queried at different depths to obtain broader subdivisions of the 3D space.

Figure 3.3: Resolution differences in Octree, 0.08m, 0.64m and 1.28m |[6]

OctoMap integrates sensor readings using probabilistic occupancy grid mapping.
This approach estimates the probability of a leaf node being occupied based on cur-
rent and previous sensor measurements using a recursive update formula. Furthermore,
OctoMap addresses the memory efficiency problem by utilising an octree map compres-
sion method. The framework introduces a compression method that locally combines
coherent map volumes in both mapped free areas and occupied space, significantly
reducing memory requirements. Compared to traditional 3D grids, which have large
memory requirements and require their extent to be known beforehand, OctoMap’s
octree-based approach is much more compact, especially for large environments or fine
resolutions. Implementation details, such as avoiding the explicit storage of node co-
ordinates and voxel size (which can be reconstructed during navigation) and using
a single child pointer to an array of eight pointers for inner nodes, further minimise
memory overhead. For instance, leaf nodes only store mapping data and a null pointer,
while inner nodes additionally store eight pointers. In practice, this design can save

60-65% memory compared to allocating eight pointers for each node.

Another key advantage of the Octomap Framework is its accessibility; it offers
a variety of well-structured functionalities for data manipulation. When integrating
individual range measurements, the insertRay() method is called (insertScan()
for batch point cloud). This operation updates the endpoint of the measurement as
occupied, while all other voxels along the ray from the sensor origin to the endpoint are
updated as free. Ray intersection queries, executed through the castRay() method,

are fundamental in robotics applications and hold particular significance for this thesis
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work. This method allows for the simulation of "firing" a ray from the sensor’s origin
in a specified direction. The ray proceeds until it either intersects with an occupied
volume or reaches a predefined maximum distance, effectively returning information

on whether it encountered any occupied cells along its path.

3.3 Spiral-Based Escape Algorithm

After a deep-dive into the reviewed literature proposal, the algorithm that will be
implemented in this thesis work is the Efficient Reactive Obstacle Avoidance Using
Spirals for Escape algorithm, developed by Azevedo et al. [7]. This solution provides a
reactive approach to collision avoidance, distinguishing itself by its focus on simplicity,
robustness and efficiency in responding to unforeseen obstacles. The original article
details implementations for both CPU and GPU map representations, enabling broader
coverage of potential applications. However, within the scope of this thesis, the focus
will be exclusively on the CPU-based implementation of the algorithm. The core

pipeline of this algorithm involves three main stages:

e Environment Perception and Representation: Data from perception sen-
sors, specifically a depth camera, is acquired and transformed into a global ref-
erence frame. For the CPU-based implementation, this environment is then ef-
ficiently represented using Octomaps, which provide an occupancy grid based
on the octree data structure. The map insertion process in the CPU approach
is optimized by directly accessing octree keys without fully converting occupied

nodes into 3D Euclidean space until necessary.

e Obstacle Detection: The algorithm identifies threatening obstacles by checking
for objects that intersect a cylindrical safety volume around the UAV. In the
CPU approach, this cylindrical volume is geometrically approximated by firing n
rays along the drone-waypoint direction, leveraging Octomap’s efficient ray cast
implementation. This search begins from the center of the safety volume and

returns the nearest intersecting obstacle.

e Avoidance Path Calculation: Upon obstacle detection, the algorithm com-
putes an escape trajectory. This is achieved by searching for valid escape points
along an Archimedean spiral centred on the closest threatening object. This spi-
ral is chosen for its continuous function, which moves away from the origin with
linear angle growth, providing an approach that prioritises paths that minimally
affect the original desired trajectory. The validity of an escape point is confirmed
by ensuring a clear path from the UAV’s current position to the escape point and

then from the escape point towards the final goal along a predefined distance. If
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no viable alternative path is found within the maximum number of iterations, a
recovery procedure is triggered, instructing the drone to navigate to the previous
waypoint to re-evaluate the problematic area with more comprehensive environ-

mental knowledge.

Point Cloud
Global Frame

Obstacle
List
Obstacle

Insertion | Voxels Detection

Figure 3.4: General algorithm pipeline [7]

The figure 3.4 presents a flowchart depicting the high-level pipeline, showcasing
the flow of data and processes from initial sensor input to the generation of control
commands. For each iteration, the process starts with Point Cloud data and the UAV
Pose serving as initial inputs. This raw point cloud data, acquired from a depth
camera, is first subjected to a transform operation to convert it into a global reference
frame, ensuring the coherence of the data over time. Following the transformation,
the data proceeds to the "Map Insertion" stage. For the CPU-based implementation,
this step utilises the Octomap framework specifically to represent the environment.
A distinguishing feature highlighted in fig. 3.4, through the explicit bypassing of a
full "3D Conversion" block, is a crucial optimization: to accelerate processing, the
map insertion process in the CPU approach neglects the conversion of occupied nodes
into 3D Euclidean space at this early stage. Instead, the "Obstacle Detection" phase
directly accesses the octree keys, performing the inverse conversion of 3D points only

when necessary during the evaluation process.

The following central stage, shown in green, is "Obstacle Detection". Here, the
algorithm identifies potentially threatening obstacles by checking for objects that in-
tersect a cylindrical safety volume around the UAV. The outcome of this detection

phase is an "Obstacle List".

Finally, if an obstacle is detected, the pipeline proceeds to the orange-coloured
"Avoidance Calculation" stage. This module is responsible for computing an escape
trajectory by searching for valid escape points along an Archimedean spiral. This spiral
is specifically centred on the closest threatening object. The ultimate output of this

entire pipeline is "Control Commands" that direct the UAV to execute the necessary



3.3. Spiral-Based Escape Algorithm 25

avoidance manoeuvre. It is essential to note that the low-level specifics of UAV control
are considered beyond the scope of this particular work and are executed using the
PX4 flight stack.

3.3.1 Obstacle detection

The method employed for obstacle detection is based on earlier works by Hrabar,
and Azevedo et al. [11], [21], which involves implementing a cylindrical safety volume
around the UAV to check for such threats. To leverage the Octomap’s highly efficient
raycast implementation, the cylinder is approximated by firing a series of n rays (dots

in fig. 3.5) along the drone’s intended path, specifically in the drone-waypoint direction.

Accepted
center

Rejected
center

Figure 3.5: Cross section example [7]

The number of these rays is determined by the desired safety radius (Rgy) and the
voxel size (V') of the Octomap representation. These rays are positioned in parallel
and are spaced by V to ensure comprehensive coverage of all internal voxels within the
designated safety volume. Although the external part of the cylindrical volume may
not be entirely covered, any resulting tolerance is considered negligible, as the vehicle’s
subsequent motion will eventually encompass these areas. For a center calculation
involving ¢ horizontal steps and j vertical steps, a candidate center is deemed acceptable

for firing a ray only if the geometric condition, given by Equation 3.1 , is met:

V@ V)24 (j-V)2< Roy & Vi2+52-V < Rgy (3.1)

Once validated, the starting positions of these rays, denoted as ray e, ;, are cal-

culated relative to the UAV’s current position r and the goal position p, using the

normalized direction d = ﬁ as per Equation 3.2:

IaYeenter,; = I+ (4 dy, —i - dy,j) -V, where i,j € Z (3.2)
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The search for an obstacle with this ray-firing method initiates from the center of
the safety volume and expands outwards up to its defined radius limit. The algorithm
is designed to return the nearest obstacle that intersects this volume. The precise
length of the cylinder, L, is dynamically calculated as the minimum value between a
predefined maximum search range (Lgeqrcn) and the sum of the distance to the current

waypoint and the safety radius, as described in Equation 3.3:
L = min(Lsearen, ||P — || + Rsv) (3.3)

3.3.2 Avoidance path calculation

The avoidance calculation stage represents the crucial phase where the collision avoid-
ance algorithm determines a safe path to circumvent detected obstacles. It leverages

the closest identified object to compute a reactive avoidance trajectory.

The core of this process involves searching for a valid escape point, a method in-
spired by earlier research [11], [21], but distinctively employing an Archimedean spiral
instead of an ellipse. The Archimedean spiral is chosen due to its continuous function
that systematically moves away from its origin with a linear angle growth. This char-
acteristic ensures that the search prioritises avoidance paths that deviate minimally
from the UAV’s original desired trajectory. The first valid point found along this spiral

is considered the most optimal in terms of least deviation, facilitating collision-free

operation.
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Figure 3.6: Archimedean spiral example |7]

When an obstacle, denoted as o = (04,0y,0.), is detected, the spiral search for

escape points starts. This spiral is centred on the obstacle. The search follows a
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horizontal direction that is orthogonal to the UAV’s current drone-waypoint direction,
d = ﬁ, where r is the current UAV position and p is the goal position. The
candidate escape points, denoted as e = (e,, e, €,), are calculated using the following

set of equations 3.4:

radiusp, = a - 0 - cos(0)
€z = 0y + radiuspe, - dy (3.4)
ey = 0y — radiusher - dy
e, =o0,+a-0- sin(h)

A critical aspect of this calculation is the rejection of candidate escape points that
would lead to very low-altitude flights. Specifically, if e, — 0, < —3m, the candidate
point is immediately discarded, and the algorithm continues its search. This prefer-
ence for horizontal avoidance or altitude increase arises from the observation that the
probability of encountering obstacles tends to rise with decreasing altitude. In the
implemented approach, the constant arc length (I,,.) used was equal to the voxel size
(V), and the winding separation (w) was set to 7 - V', which implies that the spiral pa-
rameter a = V/2. As the spiral’s radius increases, the angle step required to maintain
a constant arc length naturally decreases. An iterative search approach is employed,
where the current angle 6 can be approximated based on the previous angle 6., by

solving Equation 3.5:

1% 2 2 02,cy
e:\/(?eprw) FVES m g [ (3.5)

Once a candidate escape point e is generated, the algorithm performs a validation

procedure. This involves re-applying the obstacle detection process to verify that the
path is clear. This verification encompasses two segments: from the current UAV
position to the candidate escape point and then from the escape point to the final goal
point along a predefined length (e.g., 10 m). If the escape point satisfies these collision-
free conditions, it is deemed valid and transmitted to the UAV as an intermediate goal

point.

Should no valid escape point be found after iterating through a maximum number
of candidates, a recovery procedure is initiated. In this scenario, the drone is instructed
to navigate back to its previous waypoint, effectively gaining more knowledge about
the environment before attempting to navigate the problematic area again. The UAV

maintains a record of its waypoints to facilitate this recovery.
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System Architecture and Design

4.1 Overall System Architecture

At the core of the autonomous UAV obstacle avoidance system are four distinct soft-
ware components that collaborate through established communication protocols. This
architecture illustrated in fig. 4.1 is characterized by a distributed design, where each
primary actor plays a specialized role. The Gazebo Simulator is a powerful 3D en-
vironment that provides physics-based environmental simulation and realistic sensor
models, including point cloud data from the stereo camera of the simulated environ-
ment. ROS 2 (Robot Operating System 2) is responsible for processing perceived data,
executing core avoidance algorithms, and commanding action, which is performed at
a lower level by the PX4 flight stack. Finally, the Ground Control Station (GCS)
provides essential human oversight and intervention capabilities, allowing to monitor
vehicle status, adjust parameters, and take manual control when necessary, often being

a prerequisite for arming the vehicle in simulation.

t Gazebo 1(* Gazebo AP 4){ PX4 ](7 MAWLink 4){ Ground Confrol Station 1

Fy

uXRCE-DDS
{UORB messages)

— GZ bridge 4’[ ROS 2 1

Figure 4.1: General communication architecture

The inter-component communication relies on three fundamental protocols. In dy-

29
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namics simulation, Gazebo directly interfaces with PX4 using its native API, instead of
MAVLink, for the core exchange of sensor data and actuator commands, unlike other
simulators. Real-time command and telemetry exchange between ROS 2 and PX4 is
facilitated by the uXRCE-DDS middleware, which bridges PX4’s internal uUORB mes-
saging system with the ROS 2 environment. This uXRCE-DDS architecture involves
a client running on PX4 and an agent running on the companion computer (which
hosts ROS 2), enabling bi-directional data flow typically over serial or UDP links.
Furthermore, to handle high-bandwidth data streams such as point clouds and cam-
era imagery, a dedicated Gazebo-ROS 2 Bridge (implemented via the ros_gz_bridge
package) allows for direct sensor data flow from the simulated environment to ROS 2’s

perception pipeline, thereby bypassing the flight controller.

This modular architecture ensures that each component can operate independently
while maintaining real-time performance requirements critical for obstacle avoidance
applications. The design also facilitates seamless transition from simulation-based de-
velopment to real hardware deployment, as the same communication interfaces are

maintained across both environments.

4.2 ROS 2 Framework

ROS 2 (Robot Operating System 2) is a modern, open-source middleware framework
designed for developing distributed robotic applications. It serves as the communica-
tion backbone that enables complex robotic systems to coordinate multiple software
components in real-time. The framework operates through individual software com-
ponents called nodes that communicate through well-defined interfaces. Each node
represents an independent process responsible for specific functionality. For example,
in this thesis work, one node might manage the overall navigation algorithm, while
another node focuses exclusively on processing point cloud data, detecting obstacles,
and generating escape points. This distributed architecture allows the decomposition
of complex systems into manageable, testable components that can be developed inde-

pendently.

Communication in ROS 2 occurs through three primary patterns. Topics provide
asynchronous message passing for continuous data streams, such as sensor readings.
Services enable synchronous request-response interactions for immediate queries, and
actions support long-running operations with feedback capabilities. One of ROS 2’s
key advantages over its predecessor (ROS 1, utilised in [7]) is real-time performance
capability. The framework supports deterministic communication patterns essential
for time-sensitive applications, allowing developers to specify message priorities and

latency constraints. This is particularly crucial for UAV obstacle avoidance, where
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delayed commands could result in collisions.

4.2.1 Node Architecture

The node architecture consists of three main ROS 2 nodes that communicate with each
other through topics, as illustrated in fig. 4.2. Point cloud data is sourced from the
simulated environment by leveraging the ros_gz_bridge, while drone information is
retrieved from PX4 using the uXRCE-DDS middleware, which facilitates communica-
tion between ROS 2 and PX4 over ROS 2 topics.
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Figure 4.2: Nodes architecture
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The Octomap Server Node is responsible for constructing and maintaining the
Octree, providing a variety of information, including a three-dimensional representation

of the surrounding space through the topic /octomap_binary.

The Obstacle Detector and Avoidance Node is responsible for maintaining an
internal octree representation by processing data retrieved from the /octomap_binary
topic. Using the octree information and the drone’s pose provided by PX4 through
the /fmu/out/vehicle_local_position topic, this node performs obstacle detection
using the raycasting method described in 3.2. If an obstacle is detected, the node
computes an avoidance manoeuvre based on the Archimedean spiral highlighted in
3.3.2. Additionally, the node communicates the retrieved information to the Reac-
tive Navigation Controller Node via the /obstacle_avoidance/escape_point and
/obstacle_avoidance/obstacle_detected topics. It also offers debugging features
that can be accessed through RVIZ2, which is the primary visualization tool provided
by the ROS 2 framework.

The last node, the Reactive Nav Controller Node, acts as the high-level mission
coordinator and flight control interface for the UAV system. Its primary function is
to manage the UAV’s navigation state machine while also maintaining a list of target
positions that guide the UAV through each desired waypoint. Additionally, it is re-

sponsible for requesting control actions through /fmu/in/trajectory_setpoint topic,
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arming and disarming the UAV, requesting offboard control mode, and publishing the
heartbeat required by PX4 through the topics /fmu/in/offboard_control_mode and

/fmu/in/vehicle_command.

4.3 PX4 Autopilot

PX4 is an open-source autopilot flight stack that functions as the central control sys-
tem for various unmanned robotic vehicles, including multicopters, fixed-wing aircraft,
Vertical Takeoff and Landing (VTOL) vehicles, ground vehicles (rovers), and under-
water vehicles. It operates on a real-time operating system (RTOS), such as NuttX. It
provides essential capabilities, including stabilisation, safety features, pilot assistance
for manual control, and the automation of tasks like takeoff, landing, and mission
execution. A key aspect of PX4 is its strong integration with companion computers
and robotics APIs, particularly ROS 2 and MAVSDK.A comprehensive PX4 system

architecture is presented in fig. 4.3.
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Figure 4.3: PX4 architecture [§]

At its core is present the flight controller running the PX4 flight stack, which can
be considered as the "brain" of the unmanned vehicle. The diagram illustrates the
critical hardware interconnected with the flight controller, including motors and Elec-
tronic Speed Controllers (ESCs) for vehicle movement, as well as various sensors such
as GPS and IMUs that provide data for determining the vehicle’s state and enabling
autonomous control. A key element of this description is the companion computer, also

referred to as a "mission computer" or "offboard computer," which operates alongside
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the flight controller. This companion computer typically runs a Linux operating sys-
tem, making it a superior platform for general software development, computer vision,
networking, and other advanced features not directly handled by the flight controller.
The diagram shows that the flight controller and companion computer are connected
via a fast serial or IP link, usually communicating using the MAVLink protocol. Fur-
thermore, interactions with ground control stations, such as QGroundControl, and

cloud services are generally routed through the companion computer.

The key component of PX4 on which this thesis work relies is the Software In The
Loop (SITL) simulation, which enables the PX4 flight code to interact with a software-
based model of a vehicle within a simulated environment. In a SITL setup, the entire
PX4 flight stack runs on a computer, which can be the same machine that hosts the
simulator or a separate networked computer. This approach is highly effective and
crucial in the PX4 context primarily because it offers a safe, rapid, and cost-efficient
means to develop and thoroughly test changes to the PX4 firmware without requiring
physical hardware. It also serves as an accessible entry point for new users who may
not possess a real drone. PX4 SITL and the simulators operate in a lockstep fashion,
ensuring they are synchronized to run at the same speed, which facilitates precise
testing and debugging by allowing simulations to be run at various speeds or even

paused for detailed code inspection.

4.3.1 Communication

CDR FAST-CDR

uORB topic |« _ .| ROS2
~ | node
eee
LORB topic | <—| MXRCE-DDS |_ || uXRCE-DDS || oo ¢ 2
client agent eee
. ROS 2
uORB topic |+ node

FAST-DDS

Figure 4.4: uXRCE-DDS middleware [9]

Within the PX4 autopilot system, uORB serves as the foundational asynchronous pub-
lish /subscribe messaging API for internal communication among its various software
components, enabling inter-thread and inter-process data exchange. This architecture
ensures that functionality is modular and reactive, with components updating instantly

upon receiving new data. As previously anticipated, the uXRCE-DDS middleware acts
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as the PX4-ROS 2/DDS Bridge, specifically designed to extend uORB’s internal mes-
saging to the external world, allowing uORB messages to be published and subscribed

on a companion computer as if they were native ROS 2 topics.

This bridge operates through a client-agent architecture illustrated in fig. 4.4: a
uXRCE-DDS client runs on the PX4 flight controller, while a uXRCE-DDS agent
runs on a companion computer, communicating via serial or UDP links. The agent
functions as a proxy, enabling the client to interact with the broader DDS data space
where ROS 2 applications reside. The specific uORB topics exposed to ROS 2 (both
publications from PX4, typically under /fmu/out/, and subscriptions to PX4, typically
under /fmu/in/) are defined in the dds_topics.yaml file.

4.3.2 Offboard Control Mode

PX4 offers various flight modes, which are special operational states that dictate how
the autopilot responds to user input and controls vehicle movement. Offboard control
mode is one of the flight modes in which an external source, typically a companion
computer running software like ROS 2 or MAVSDK, directly commands the vehicle’s
movement and attitude. This mode is fundamental for advanced applications, such as
obstacle avoidance, since it allows an external system to provide high-level setpoints for
position, velocity, acceleration, attitude, attitude rates, or thrust/torque rather than
relying solely on PX4’s internal controllers for high-level manoeuvres. In this thesis
context, the output of the avoidance calculation and waypoint navigation is obtained
by imposing a trajectory waypoint to reach, which is possible if the offboard mode is

selected.

To request and maintain offboard control, PX4 requires a continuous "proof of life"
signal from the external controller, which must be received at a rate of at least 2 Hz.
This signal is conveyed either by streaming any of the supported MAVLink setpoint
messages or, when using ROS 2, by continuously publishing the OffboardControlMode
message. PX4 will only enable offboard control after receiving this signal for more than
one second. Critically, if this signal ceases, PX4 will automatically regain control and

switch to a predefined failsafe action, such as landing, after a configurable timeout.
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Figure 4.5: Offboard control mode

The OftboardControlMode ROS 2 message itself plays a crucial role beyond simply
serving as a heartbeat. Its fields, as illustrated in fig. 4.5, are prioritised (from top to
bottom) to dictate the level of the PX4 control architecture at which external setpoints
are injected: position, velocity, acceleration, attitude, body rate, thrust and torque, and
direct actuator. The first field with a non-zero value determines which valid estimate
(e.g., position or velocity) is required by PX4 and which specific setpoint message (e.g.,
TrajectorySetpoint, VehicleAttitudeSetpo int, VehicleRatesSetpoint, VehicleThrust-
Setpoint, VehicleTorqueSetpoint, ActuatorMotors, ActuatorServos) should be used to
provide the actual setpoints. This allows the external system to bypass and disable
lower-level internal PX4 controllers effectively. For example, if the velocity field is
set, PX4 expects a valid position estimate and setpoints via the TrajectorySetpoint

message.

4.4 Coordinate Transformations

In the domains of PX4 and ROS 2, a crucial aspect for coherent communication and
vehicle control involves understanding and converting different coordinate frame con-
ventions. PX4 predominantly utilises the NED (North, East, Down) frame for its
local /world and body frame conventions, which corresponds to FRD (Front, Right,
Down) for the body frame. In this system, the X-axis points North, the Y-axis points
East, and the Z-axis points Down. Conversely, ROS 2 commonly employs the ENU
(East, North, Up) standard, with its body frame often being FLU (Front, Left, Up).
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Here, the X-axis points East, the Y-axis points North, and the Z-axis points Up.

Gravity

Figure 4.6: PX4 - ROS 2 frame conventions (FRD on the left/FLU on the right) [9]

The fundamental difference in these conventions necessitates explicit frame conver-
sions when ROS 2 applications interact with PX4, as there is no implicit conversion
handled automatically when topics are published or subscribed. To transform a vec-
tor from ENU to NED, two sequential rotations are performed: first, a m/2 rotation
around the Z-axis (which is "Up" in the ENU frame), followed by a 7 rotation around
the X-axis (which was the "East" direction but becomes the "North" direction after
the first rotation). Conversely, to convert a vector from NED to ENU, the process
involves a 7/2 rotation around the Z-axis (which is "Down" in the NED frame), suc-
ceeded by a 7 rotation around the X-axis (which was "North" and becomes "East"
after the initial rotation). It is important to note that these two resulting operations
are mathematically equivalent. For body frame conversions, specifically from FLU to

FRD or vice versa, a simpler 7 rotation around the X-axis (front) is sufficient.

These transformations are vital for various data types, including vectors found in
setpoint messages and quaternions representing vehicle attitude. For example, all fields
within the TrajectorySetpoint message, which define position, velocity, and accelera-
tion, must undergo ENU to NED conversion before being transmitted to PX4. To
facilitate these necessary conversions, a dedicated Python class was developed. This
careful handling of coordinate frame conventions ensures the integrity and correctness

of data exchanged between PX4 and ROS 2 systems for robust control and operation.
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Implementation Details

To achieve the objectives outlined in section 3.3, two primary ROS 2 nodes were de-
veloped and validated. The provided high-level algorithm, outlined in algorithm 1,
describes the general system in which the Obstacle Detector and Avoidance Node, as
well as the Reactive Navigation Controller Node, cooperate to enable autonomous ob-
stacle avoidance for the drone. This cooperation occurs in parallel as the system runs

continuously.

These core nodes interact with external components such as the PX4 Autopilot, a
Depth Camera, and an Octomap Server. The Octomap Server, as specified in fig. 4.2
provides the 3D environment map to the Obstacle Detector and Avoidance Node via
the /octomap_binary topic, which is then converted into an internal OcTree. Both the
Obstacle Detector and Avoidance Node and the Reactive Nav Controller Node receive
the drone’s current position, velocity, and heading from the PX4 Autopilot through

the /fmu/out/vehicle_local_position topic.

A crucial feedback loop is established in which the Reactive Navigation Controller
Node publishes the drone’s intended target waypoint to the Obstacle Detection and
Avoidance Node via the /drone/current_target topic. This enables the percep-
tion system to direct its focus effectively. When an obstacle is detected, the Ob-
stacle Detection and Avoidance Node communicates this status (True or False) to
the Reactive Navigation Controller Node on the /obstacle_avoidance/obstacle_
detected topic. If an obstacle is identified, the Obstacle Detection and Avoidance
Node also publish the coordinates of a computed safe escape point (if available) on
the /obstacle_avoidance/escape_point topic to the Reactive Navigation Controller
Node. Lastly, the Reactive Navigation Controller Node sends velocity commands for
flight execution to the PX4 Autopilot through the /fmu/in/trajectory_setpoint
topic.Pseudocode related to all relevant methods of both nodes can be found in Ap-

pendix B.
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Algorithm 1 High-Level System Architecture: Reactive Nav Controller Node and
Obstacle Detector and Avoidance Node Cooperation

1

37:
38:
39:

40

: System Components:
e Obstacle Detector and Avoidance Node (Perception & Planning)
e Reactive Nav Controller Node (Navigation & Control)
e External: PX4 Autopilot, Depth Camera, Octomap Server
: Communication Channels:
e /octomap_binary — Obstacle Detector and Avoidance
e /fmu/out/vehicle_local_position — Both Nodes
e /drone/current_target — Obstacle Detector and Avoidance
e /obstacle_avoidance/obstacle_detected — Reactive Nav Controller
e /obstacle_avoidance/escape_point — Reactive Nav Controller
e /fmu/in/trajectory_setpoint < Reactive Nav Controller
: while System is running do
Parallel Node Execution:
Obstacle Detector and Avoidance Node:
Receive 3D environment map from octomap server
Monitor drone position and current target
Detect obstacles in safety volume
if Obstacle detected in path then
Compute escape point using spiral search
Publish obstacle status: True
Publish escape point coordinates
else
Publish obstacle status: False
end if
Reactive Nav Controller Node:
Monitor vehicle status and position
Manage waypoint mission execution
Receive obstacle detection status
if Obstacle status received then
if Obstacle detected then
Switch to AVOIDANCE mode
Wait for escape point message
Navigate to escape point
else
Continue normal MISSION mode
end if
end if
Publish velocity commands to PX4
Publish current target for perception feedback
: end while
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5.1 Obstacle Detector and Avoidance Node

This section presents a node responsible for processing environmental perception infor-
mation provided by the Octomap Server Node and suggesting alternative paths when
obstacles are encountered. Therefore, it can be considered the core algorithm imple-

menting the concepts described in section 3.3.

The first point to address is how the environmental perception data are handled.
This implementation relies on the octomap_binary topic provided by the Octomap
Server node. The obstacle detection and avoidance node internally builds an Octree
based on the information received. However, this may not be the most efficient method
for processing perception data, as the onboard computer (the simulation computer in
the context of this thesis) processes the Octree almost twice: first in the Octomap
Server node and then again during the execution of the obstacle detection and avoidance
node. This approach was chosen to enable a quick and reliable implementation of the
core algorithm, which focuses more on the steps involved in obstacle detection and
manoeuvre calculation.

The node continuously receives environmental data, along with the drone’s cur-
rent position and its target. Within a defined safety volume around the drone’s pro-
jected path, the node actively detects obstacles. This detection is achieved by casting
rays from the current position in the direction of the drone, following the approach
shown in Figure fig. 3.5. The range of this search is determined by the parameters
safety_radius and search_max_length. The safety radius is designed to ensure that
the drone can physically travel in the desired direction, taking into account a safety
margin to provide robustness against unknown or unpredictable noise factors. As
both nodes are implemented in Python, ray casting is performed using the castRay ()
method from the C++ octomap library, accessed through a Python wrapper.

If any rays hit an occupied voxel in the octomap, an obstacle is considered detected,
and a hit_list is generated. Upon detecting an obstacle, the node publishes True on
/obstacle_avoidance/obstacle_detected. Subsequently, it computes a safe escape
point by performing an Archimedean spiral search starting from the closest detected
obstacle point as described in section 3.3.2. This search iteratively evaluates potential
escape points, checking if a clear path exists to them from the drone’s current origin
using an additional ray cast. If a valid escape point is found within max_iterations,
it is published on /obstacle_avoidance/escape_point. If no valid escape point is
found after the maximum iterations, it can publish a None value, which will be managed
later on by the Reactive Navigation Controller Node. The Obstacle Detector and
Avoidance also provides visual markers for RViz2, which help debug and illustrate
detected obstacles, the safety volume, ray casts, and the proposed escape point. If

no obstacle is detected, the node publishes a false value for the obstacle_detected
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Algorithm 2 Obstacle Detector and Avoidance Node - High Level Working Scheme

O W W W N NN DNDRNDDNDDNDINIDNR P H = B B = = /& &

34:

Initialize
Initialize
Initialize
Initialize

: Parameters (Rsafetya Lsearcha ‘/voxela Nmax_iter)

: Subscribers (Octomap, Drone Position, Drone Target)
: Publishers (Escape Point, Obstacle Status, Markers)

: Timers (Obstacle Detection, Marker Publishing)

while Node is running do

Callback Processing:
if Octomap message received then
Update octree structure from binary message
end if
if Drone position message received then
Convert NED to ENU coordinates
Update current drone position and orientation
end if
if Drone target message received then
Update target position
Calculate direction vector: d =
end if
Obstacle Detection Timer:
if All required data available then
Clear visualization markers
Calculate search length: L = min(Lsearcn, ||Drarget — Paronel| + Rsafety)
Generate safety volume visualization
ray centers <— CalculateRayCenters(pyrone, cf)
hit_list < CastRaysFromCenters(ray _centers, d, L)
obstacle detected < |hit_list| > 0
Publish obstacle detection status
if obstacle detected then
closest hit + FindClosestHit(hit list, P one)
escape point «<— ComputeEscapePoint(closest hit, pyone, cf)
Publish escape point
end if
end if
Marker Publishing Timer:
Publish all visualization markers

ﬁta'rget _ﬁdrone
‘ |ﬁtarget _ﬁdrone | |

35: end while
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topic. The proposed algorithm is summarized in algorithm 2.

5.2 Reactive Navigation Controller Node

The Reactive Navigation Controller Node, handles high-level flight control, mission
management, and dynamic reaction to obstacle detection. It continuously monitors the
drone’s vehicle status and local position from PX4 via /fmu/out/vehicle_local_position
and /fmu/out/vehicle_status, ensuring the drone is armed and in offboard control

mode, and sends commands to PX4 if necessary.

The node manages the execution of a predefined waypoint mission, using a state
machine with DroneState values like INIT, READY, MISSION, AVOIDANCE, and
LAND to govern the drone’s overall behavior. It subscribes to the obstacle detec-
tion status on /obstacle_avoidance/obstacle_detected and escape point messages
on /obstacle_avoidance/escape_point from the Obstacle Detector and Avoidance
Node. When an obstacle is detected and an escape point is received via escape_point_
callback the node transitions to AVOIDANCE mode. In this state, the received es-
cape point becomes the drone’s temporary target, overriding any mission waypoints to
bypass the obstruction. If the escape point is deemed invalid (e.g., containing None
values), the drone can switch to the LAND state. Conversely, if no obstacle is de-
tected, the node continues in its normal MISSION mode, navigating towards the next
waypoint in its list. The node calculates and publishes appropriate velocity commands
to the PX4 Autopilot on /fmu/in/trajectory_setpoint. It also includes logic to
calculate and command the drone’s yaw based on its horizontal velocity, with mea-
sures to prevent rapid, unstable yaw changes. Crucially, the Reactive Navigation
Controller Node constantly publishes the drone’s current target (whether a mission
waypoint or an avoidance point) to the Obstacle Detector and Avoidance Node via
/drone/current_target, providing the necessary feedback for the perception system
to focus its obstacle detection efforts. It also publishes its current operational state via
/drone/state.

In contrast to what was proposed in [7], if the escape point calculation reaches the
maximum number of iterations and returns none to Reactive Navigation Controller
Node, the immediate action from the state machine’s perspective is to transition in-
stantly to the LAND state. This will cause the drone to halt its mission. This approach
was intentionally designed to facilitate future work by integrating a global planner. In
this scenario, the global planner could suggest the next course of action, whether it
involves returning to the previous drone waypoint or providing a new waypoint based
on updated information gathered during navigation. The proposed algorithm is sum-

marized in algorithm 3.
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Algorithm 3 Reactive Navigation Controller Node - High Level Working Scheme

1: Initialize:
2: Initialize:

w

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

Parameters (Rsafetya Vmal‘7 Qaccels Adecel 5pos)
Waypoint list W = [wy, wy, ..., w,]
Subscribers (Vehicle Position, Vehicle Status, Obstacle Status, Escape

Initialize:

Point)

Initialize: Publishers (Offboard Control, Trajectory Setpoint, Vehicle Command)
Initialize: Timers (Main Control Loop, Offboard Mode)

drone state <— INIT
while Node is running do

Callback Processing:
if Vehicle position message received then
Convert NED to ENU coordinates
Update ﬁdronea ﬁdronea wdrone
end if
if Vehicle status message received then
Update arming and navigation states
if not ready for offboard then
Send arm and offboard mode commands
drone state <— INIT
else
drone_state «+— READY (if was INIT)
end if
end if
if Obstacle status message received then
Update path clear status
end if
if Escape point message received then
avoidance point < escape point
drone_state <~ AVOIDANCE
end if
Main Control Loop:
Publish current drone state

if |W| =0 then
drone_state < LAND
end if

StateMachine(drone _state, W, avoidance _point)
Offboard Mode Timer:
Publish offboard control mode

37: end while
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Experimental Setup and Methodology

6.1 Simulation Environment

The development and validation of autonomous UAV obstacle avoidance algorithms
require a robust simulation environment that accurately mimics real-world conditions
while allowing for controlled and repeatable testing scenarios. Simulation-based testing
offers several advantages, including risk-free algorithm development, precise control
over environmental conditions, and the ability to systematically evaluate performance

across varying complexity levels without hardware constraints or safety concerns.

Gazebo Simulator was chosen as the primary simulation platform due to its ad-
vanced physics engine capabilities, comprehensive sensor modelling, and native ROS 2
integration. This simulator provides a high-fidelity representation of the environment,
which is essential for validating perception algorithms. Additionally, its modular archi-
tecture enables systematic testing of individual system components. The selection of
Gazebo aligns with established practices in robotics research and ensures compatibility

with the broader ROS 2 ecosystem used throughout the project.

This specific version of the Gazebo Simulator, Harmonic, was selected due to its
proven compatibility with PX4 despite not being the recommended pairing for the ROS
2 Humble distribution. Because of this "non-default" pairing between ROS 2 and the

Gazebo Simulator, it became necessary to rely on a specific ros_gz_bridge.

6.1.1 Vehicle Platform

The experimental platform is based on the Holybro X500 quadcopter frame, a ro-
bust and widely adopted research platform that provides an optimal balance between
payload capacity, flight performance, and integration flexibility. The X500 features a
500mm motor-to-motor wheelbase with carbon fibre construction, ensuring structural

rigidity while maintaining relatively lightweight characteristics essential for efficient

43
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flight operations.

Figure 6.1: Holybro x500 (left) and its representation in Gazebo Sim (right) [10]

The frame features built-in vibration-dampening mechanisms and specific mounting
points for sensor payloads, flight controllers, and companion computers, including the
OAK-D Lite camera utilized in this thesis work.

6.1.2 Sensor Configuration

The perception system utilises a Luxonis OAK-D Lite camera (see fig. 6.1), which
serves as a specialised tool for robotic vision by integrating a stereo depth camera and
a high-resolution colour camera, along with on-device neural network and Computer
Vision capabilities. This design approach enables real-time depth estimation directly
on the device, thereby eliminating the need for additional computational demands on
the flight computer. For depth perception, its stereo cameras feature global shutters
and operate at a resolution of 480P (640x480), capable of up to 120 frames per second,

while the central RGB camera offers a 13MP resolution.

Regarding its specifications, the camera is designed with a baseline separation of 75
mm between its stereo cameras, which is crucial for depth accuracy. It offers an ideal
depth sensing range of 40 cm to 8 meters, extending to approximately 20 cm under
extended 480P configurations. The Fixed-Focus variant of the OAK-D Lite is specifi-
cally recommended for applications with heavy vibrations, such as drones, highlighting
its effectiveness in UAV obstacle avoidance. Although the stereo cameras are capable
of generating 480P depth maps at high framerates, in the simulated scenario, a more
conservative resolution of 640 x 480 at 30 Hz is employed for depth maps to balance

detection accuracy with computational efficiency effectively.
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Additionally, the OAK-D Lite incorporates an integrated BMI270 6-axis Inertial
Measurement Unit (IMU), which is particularly suitable for drone applications. This
IMU is comprised of a 16-bit tri-axial gyroscope and a 16-bit tri-axial accelerometer,
providing precise measurements of acceleration and angular rate. This integrated IMU
supports enhanced sensor fusion for improved pose estimation and serves as a com-
plementary data source for vehicle state estimation, providing additional redundancy
for attitude and motion sensing during critical obstacle avoidance manoeuvres, even

though the primary navigation system relies on the PX4 flight controller’s IMU.

The simulation of the sensor is managed through the configuration SDF file, which
includes all the relevant information discussed earlier, along with the physical details
of the sensor, such as a 3D model for visualization. Within the ROS 2 framework,
camera integration requires establishing a spatial relationship between the coordinate
frames of the point cloud origin (camera frame) and the world coordinate frame. This

relationship is illustrated using the TF tree shown in fig. B.1.

6.1.3 World Modelling and Obstacle Placement

The design philosophy for the simulation world focuses on creating specific test envi-
ronments that effectively validate obstacle avoidance capabilities while ensuring com-
putational efficiency. Test worlds were developed to address key challenges faced by
UAVs, concentrating on scenarios that assess the core functionality of the spiral-based
avoidance algorithm. Each environment incorporates static obstacles that evaluate the

algorithm’s performance under varying levels of complexity.

Two primary test environments were created for validation purposes. The first, a
simplified test world, features a simple setup with three obstacles positioned in the flight
path. This controlled environment enables the verification of fundamental avoidance
behaviour and the functionality of the spiral search. In this scenario, the algorithm’s
ability to detect obstacles, compute escape points, and execute successful avoidance

manoeuvres is validated in an uncluttered setting.



46 Chapter 6. Experimental Setup and Methodology

"ér
)

Figure 6.2: Simplified Simulated Scenario

The second environment, the cluttered test world, presents a significantly more
challenging scenario than typical operational conditions. It contains multiple static
obstacles of varying shapes and sizes distributed throughout the area. These include
cylindrical structures that represent trees or poles, as well as rectangular blocks that
simulate buildings or other structural elements. The increased obstacle density and
spatial arrangement create multiple potential collision scenarios, requiring the algo-
rithm to navigate through constrained passages and demonstrate robust avoidance

capabilities.
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Figure 6.3: Cluttered Simulated Scenario

6.1.4 Physics Engine and Vehicle Dynamics

The Gazebo physics engine is configured with the appropriate temporal resolution
and solver parameters to ensure stable and realistic vehicle dynamics simulation. The
physics timestep is set to 4 ms (with a 250 Hz update rate) to strike a balance between
computational efficiency and sufficient resolution for simulating the drone control sys-
tem. The real-time factor is maintained at 1.0 to provide realistic timing behaviour
for algorithm validation. This configuration is particularly suitable for testing obsta-
cle avoidance algorithms, as it offers adequate resolution for the control frequencies

commonly used in UAV navigation systems.

Vehicle dynamics modelling incorporates the specific mass properties, including
a base frame weight plus additional payload mass for the OAK-D Lite camera and
mounting systems. The vehicle model includes accurate mass distribution and inertial

properties that influence flight stability and control response characteristics, ensuring
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that the simulated behaviour of the vehicle closely matches the expected performance

of the physical platform.

6.1.5 Development Platform Specifications

The primary development platform consists of a desktop computer equipped with an
AMD Ryzen 9 7900X processor, which features 12 cores, 24 threads, and a base fre-
quency of 4.7 GHz. It has 32 GB of DDR5 RAM and an NVIDIA GeForce GPU
with 12 GB of GDDR6X memory. This configuration provides substantial computa-
tional resources, making it ideal for complex simulation scenarios, and enables detailed
performance profiling and algorithm optimisation with excellent parallel processing ca-
pabilities. The development platform runs Ubuntu 22.04 LTS, offering a stable and
well-supported environment for robotics development. For storage, it uses an NVMe
SSD, providing high-speed I/O performance essential for data logging and processing

large point clouds.

The core software environment is built on the ROS 2 Humble distribution, which
acts as the middleware foundation for inter-process communication and system inte-
gration. The primary simulation platform is Gazebo Harmonic. The PX4 flight stack,
version 1.15, serves as the foundation for flight control and navigation, integrated with
the px4_ros_com bridge package to enable ROS 2 communication. QGroundControl
version 4.4.2 functions as the ground control station software, facilitating mission plan-
ning and parameter configuration during simulations and testing phases. The software
environment also includes specific versions of essential dependencies, such as Python
3.10 and NumPy 1.24.

The experimental framework incorporates comprehensive data collection and analy-
sis capabilities, which are essential for systematic performance evaluation and algorithm
optimisation. The primary data logging mechanism is ROS 2 bag recording, which
captures all relevant system topics during experimental runs, including sensor data,
algorithm outputs, and vehicle states. The ROS 2 bags infrastructure enables selective
topic recording with configurable compression settings, allowing for the management of
storage requirements while preserving data fidelity. Real-time monitoring capabilities
utilize RQT (ROS Qt-based tools) for live system visualization and debugging during
experimental execution. The RQT framework offers modular graphical interfaces, in-
cluding real-time plotting of numerical data, topic monitoring for message inspection,
parameter configuration for dynamic system tuning, and node graph visualisation for
analysing system architecture. For time-series analysis, PlotJuggler is employed as the
primary tool for offline data visualization and performance assessment. PlotJuggler

enables comprehensive analysis of recorded bag files through advanced plotting capa-
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bilities, such as multi-variable correlation analysis, statistical processing of time-series

data, and customizable dashboard creation for systematic performance comparison.
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Results and Analysis

7.1 Spiral Implementation

As discussed in previous chapters, the obstacle avoidance node utilizes Archimedean
spirals as described in Section 3.3.2. This mechanism is implemented within the Obsta-
cle Detector and Avoidance Node detailed in Section 5.1. fig. 7.1 provides a graphical

representation of the spiral computation using Rviz2.

Figure 7.1: Spiral computation example

The green dots represent candidate escape points that were evaluated during the
computation process, while the blue dot indicates a candidate escape point that pro-
vides a safe waypoint with minimal deviation from the current path. The red marker
in the picture represents the closest collision point, meaning it is the one most likely

to result in a collision. The Obstacle Detector and Avoidance Node initiate the com-

20
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putation of escape points, starting the spiral from the closest point while moving on a
plane that is normal to the line connecting the drone’s current position and its current

waypoint.

7.2 Simplified Scenario

This section presents results obtained from the simplified simulated scenario that serves
as a foundational validation of the proposed drone navigation algorithm, demonstrating
its core functionalities in a controlled environment before advancing to more complex
operational conditions. This preliminary testing phase is essential for establishing the
algorithm’s baseline performance and ensuring that all fundamental components work
together accurately. The simplified obstacle environment that forms the foundation of
this testing scenario is illustrated in fig. 6.2.

The three blue rectangular obstacles are strategically positioned to create a clean
and minimalist environment. This design allows for a focused evaluation of the core
navigation algorithms without the complexities introduced by more realistic or clut-

tered scenarios.

XY Drone trajectory plot (Top View)

—=-- Ideal Path
—— Drone Actual Trajectory

Y [m]

=2 0 2 4 6 8 10 12 14 16
X [m]
XZ Drone trajectory plot (Side View)

===~ Ideal Path
—— Drone Actual Trajectory

Z[m]

Figure 7.2: Top view and Side view

The spacing between the obstacles is carefully calibrated to ensure that viable paths
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exist while still requiring the obstacle avoidance algorithm to navigate to the final goal
without collisions successfully. fig. 7.2 presents the XY and XZ trajectory plots, which
serve as the primary visualization for understanding the drone’s horizontal and vertical
navigation behaviour.

The XY and X7 plots clearly illustrate the ideal path, which is the connection
between the starting point (green dot) and the ending point (red dot), along with the
path followed by the drone as it reaches the final waypoint without colliding with any
obstacles. This path is generated dynamically by the obstacle avoidance algorithm,
which provides necessary escape points (orange dots) at runtime to successfully avoid

the obstacles.
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Figure 7.3: Positions and Drone state timeseries

fig. 7.3 illustrate a general temporal analysis of the drone’s position tracking perfor-
mance by comparing the actual trajectory (represented by the red lines) with the target
waypoints (shown by the blue lines) across all three spatial dimensions. Additionally,
the plot depicts the evolution of the drone’s state over the simulation period. It is
important to note that from the beginning of the simulation until the drone reaches
the first waypoint (indicated by the green dot in fig. 7.2), the drone remains in the
READY state. After approaching this point, the main simulation begins, and the

drone navigates through the pre-defined list of waypoints. During this navigation, the
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obstacle avoidance algorithm is active and prepared to intervene in the case of obstacle
detection. If an obstacle is detected while the drone is in the normal navigation state
(MISSION state), the state machine transitions to the AVOIDANCE state. An escape
point (if available) is then assigned as the new target for the drone. Once the obstacle
has been bypassed, the state machine returns to the MISSION state, resuming naviga-
tion from the next waypoint in the list. When the final waypoint is reached, the state
machine transitions to the LAND state, enabling the PX4 to safely handle the drone’s
landing.

ARMED -

Arming State

—— Arming State
DISARMED -

0 20000 40000 60000 80000 100000

AUTO_LAND - gimim Navigation State

Navigation State

OFFBOARD -

0 20000 40000 60000 80000 100000

LAND ™ Drone state

AVOIDANCE -
MISSION -

READY -

Drone State

INIT -

0 20000 40000 60000 80000 100000

Figure 7.4: PX4/Avoidance state diagram

To ensure proper cooperation between PX4 and ROS 2 nodes, as discussed previ-
ously in 4.3.2, the PX4 must be in OFFBOARD mode, and the drone must be armed.
fig. 7.4 illustrates that at the start of the simulation, while the avoidance node is in
the INIT state, the drone is armed, and offboard control mode is activated. From this
point onward, the Reactive Navigation Controller Node is responsible for controlling
the drone. This configuration must remain unchanged throughout the drone’s opera-
tions. Once the operations are complete and the last waypoint is reached, the state
machine transitions to the LAND state, allowing PX4 to handle the landing operation

safely using its Auto Landing Navigation state. After landing, the drone is disarmed.
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7.3 Cluttered Scenario

The cluttered scenario, illustrated in fig. 6.3 features a comprehensive three-dimensional
obstacle course that is 55 meters long and rises up to 12 meters in height. It is designed
to systematically evaluate the navigation capabilities of autonomous drones across
various challenges. The environment includes twenty-seven distinct obstacles, each
with different geometric shapes, such as large rectangular barriers, cylindrical pipes,
and thin wire-like structures. These obstacles are arranged in a progressive difficulty

order to test increasingly advanced navigation skills.
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Figure 7.5: Top View and Side view

The XY and XZ plots shown in fig. 7.5 provide a top view and a side view of the
simulation, respectively. The area around x = 20 m was quite cluttered, leading to
multiple escape point calculations. However, all obstacles were successfully avoided,

allowing the drone to reach the final waypoint without any collisions.

Furthermore, fig. 7.6 depicts the drone’s position in relation to its target, as well as
its operational state throughout the mission. This provides valuable insight into the
drone’s performance during its flight. Meanwhile, fig. 7.7 illustrates both the requested
velocities—derived from the TrajectorySetpoint message—and the current state of the

drone.
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Chapter 8
Conclusions

This thesis work presents an effective implementation of a spiral-based reactive obsta-
cle avoidance algorithm as a robust and real-time solution to the complex problem of
preventing collisions during UAV navigation. The central contribution of this work
lies in the successful adaptation and integration of this spiral-based algorithm within
the modern ROS 2 framework, ensuring seamless communication with the PX4 flight
stack via SITL simulation. The algorithm leverages depth camera data processed by
Octomap for efficient probabilistic 3D environment representation with reduced mem-
ory occupancy. Its reactive approach fundamentally relies on an Archimedean spiral
to identify real-time escape points derived from environmental data. The system’s
distributed architecture, encompassing Gazebo for high-fidelity simulation, ROS 2 for
high-level command and data processing, and PX4 for low-level flight control, demon-
strated a cohesive and modular design. The effectiveness of the proposed system was
rigorously validated through Gazebo simulation testing across both simplified and clut-
tered scenarios. These tests unequivocally demonstrated the system’s ability to detect

and successfully avoid obstacles while guiding the drone to its target waypoint.

8.1 Future Work

Building upon the current achievements, several key areas have been identified for
future work and improvement, addressing technical limitations and expanding the sys-

tem’s capabilities.

Firstly, to optimise environment perception processing, remove the Octomap Server
Node and integrate its capabilities into the Obstacle Detector and Avoidance Node, as
previously mentioned. Secondly, the current core ROS 2 nodes, including the Obstacle
Detector and Avoidance Node and the Reactive Navigation Controller Node, are im-
plemented in Python. Implementing them in C++ would offer superior performance

and lower latency.

o6
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Thirdly, to fully leverage GPU capabilities, while the thesis primarily focused on a
CPU-based spiral algorithm, the original Azevedo et al. paper discusses both CPU and
GPU map representations. The GPU approach, specifically using GPU-Voxels with its
Voxel Map storage method, offers faster point cloud insertion and updates. In real-
world scenarios on resource-constrained hardware like the Jetson Nano, GPU-Voxels

can outperform Octomap for map updates.

Finally, to enhance efficient path planning, the current system relies solely on a lo-
cal planner. Consequently, if no valid escape point is identified in complex situations,
the system defaults to an immediate landing. A viable next step is to implement a
global recovery strategy by integrating a global planner with the existing local avoid-
ance system. This hybrid approach combines a low-level reactive layer for immediate
safety with a high-level global planner for optimized long-term paths, enabling the
UAV to overcome local minima and make more informed decisions based on a broader

understanding of the environment.
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Appendix A

System Installation Guide

The installation and setup process generally involves four main steps:

1. Installing ROS 2
2. Installing PX4
3. Setting up the Micro XRCE-DDS Agent and Client

4. Building and running a ROS 2 workspace

These steps are detailed in the PX4 ROS 2 Installation Guide. Additionally, this
guide includes installation instructions for properly pairing ROS 2 Humble with the
Gazebo Harmonic bridge. For further reference, you can also find the official guide
here: ROS 2 Humble/ Gazebo Harmonic Bridge. An example of a topic that can be
bridged is the following:

1|- ros_topic_name "depth_camera/points"

N

gz_topic_name "depth_camera/points"
ros_type_name "sensor_msgs/msg/PointCloud2"
1 gz_type_name "gz.msgs.PointCloudPacked"
direction "GZ_TO_ROS"

Listing A.1: Bridging configuration example for point cloud topic

To customize Gazebo worlds and models, refer to this comprehensive guide: Adding
New Worlds and Models for PX4 SITL.

Octomap mapping package can be found at Octomap mapping, it contains also

the octomap_server package.

1 Tos2 run octomap_server octomap_saver_node --ros-args -p octomap_path

:=(path for saving octomap)

Listing A.2: Octomap server run example
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In this step, the /cloud_in topic should be remapped to /depth_camera/points,
which corresponds to the ros_topic_name specified in the bridge configuration exam-

ple.



Appendix B

Algorithms and References

Algorithm 4 CalculateRayCenters

—

Require: g, d (normalized direction vector)
Ensure: List of ray center positions

1: ray_centers < ||

2: max_ range < [ R fety/Vooer| + 1

3: for i = —max_range to max_range do

4 for j = —max_range to max range do

5 if V 2 + j2 ' V;)oxel < Rsafety then

6: ray _center <— Porigin + [0 - dy, =1 - dy, 7] - Viorer
7: ray centers.append(ray center)

8 end if

9: end for

10: end for

11: return ray centers

Algorithm 5 CastRaysFromCenters

—

Require: ray centers, d, max range
Ensure: List of obstacle hits

1: hit_list « ]

2: for each ray center in ray centers do

3: result «— octree.castRay(ray _center, cf, max_range)
4 if result indicates hit then

5 hit_list.append({ray center,end point})

6: Create hit visualization marker

7 end if

8: end for

9: return hit_list
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Algorithm 6 ComputeEscapePoint (Archimedean Spiral)

—

ReqUire: ﬁobstaclea ﬁorigina d
Ensure: Escape point or None

1. a < ‘/vomel/Z

2: Gpm 0.0

3: for iteration = 1 to Nyuz iter do

> Spiral parameter

> Skip points too far vertically

> Clear path found

4 0 2.0\/0,3%1)/4.0 +1.0
5: radiusy,, <— a - 60 - cos(6)
6: ey < 0y + radiusye, - dy
7 ey < 0y — radiusye, - d,
8: e, < 0, +a-0-sin(f)
9: ﬁescape — [61E7 €y, ez]
10: if |e, — 0] > 2.0 then
11: Qprev 0
12: continue
13: e_)nd if ) .
14: descape — %
15: ray_ centers <— CalculateRayCenters(prigin, cZ;scape)
16: hit _list «— CastRaysFromCenters(ray centers, dzscape, Lsearch)
17: if |hit_list| = 0 then
18: Create escape point visualization marker
19: return pescope
20: end if
21: Hpm — 6
22: end for

23: return None

> No valid escape point found




Algorithm 7 StateMachine

Require: drone_state, waypoint list W, puuoidance

Ensure: Updated drone state and published velocity commands
1: if drone state = READY then
2: Publish current target: 1W[0]

3: if IsAtPosition(W[0]) then
4: W.pop(0)

5: Publish new target: W0
6: drone _state < MISSION
7: else

8: UpdateVelocity (W10])

9: end if

10: else if drone state = MISSION then
11: if IsAtPosition(1/[0]) then

12: if [W| =0 then

13: drone _state +— LAND
14: end if

15: W.pop(0)

16: Publish new target: W0
17: else

18: UpdateVelocity (W10])

19: end if

20: else if drone state = AVOIDANCE then
21: if IsAtPosition(p,poidance then
22: Publish target: W10]

23: drone state +— MISSION
24: else

25: Publish target: puvoidance
26: UpdateVelocity (Duvoidance)
27: end if

28: else

29: Send land command

30: end if

Algorithm 8 UpdateVelocity

Require: pigpget

Ensure: Published velocity setpoint

gpos A @arget - ﬁdrone

b d < [ €pos]|

if d < dpos then
Uema < (0,0, 0]
PublishVelocitySetpoint (Ue,q)
return

end if

J;LOT”H’L — gpos/d

T — —Tporm_ s Y

[|dnormll

PublishVelocitySetpoint (Temq)

H
@
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