
POLITECNICO DI TORINO
Master’s Degree in MECHATRONIC ENGINEERING

Master’s Degree Thesis

Scenario-Based Simulation for Advanced
Driver Assistance Systems Validation

Supervisors

Prof. ANDREA TONOLI

PhD Candidate STEFANO FAVELLI

Candidate

YUWEI ZHANG

JULY 2025

Abstract

Advanced Driver Assistance Systems (ADAS) and intelligent vehicle control
technologies require rigorous validation before deployment. While real-world testing
offers realism, it remains expensive, time-consuming, and often limited by regulatory
constraints or unsuitable for evaluating early-stage control strategies or edge-
case behaviors. Virtual simulation provides a safe, configurable, and repeatable
environment for functional testing, particularly for systems that rely on rule-based
activation and real-time control response.

This thesis presents a co-simulation framework for function-level vehicle control
validation. The platform integrates MATLAB/Simulink for control algorithm
design with RoadRunner, which implements road scenario generation and traffic
modeling. Real-time interaction is achieved through standardized interface blocks,
allowing the control system to dynamically respond to lane geometry, lead vehicle
behaviors, and other driving events defined in simulation.

To evaluate system performance, a range of representative test scenarios has
been designed. These include typical highway and urban driving cases involving
speed regulation, stopping behavior, and lateral tracking. System behavior is
assessed based on control smoothness, rule compliance, and activation thresholds.
In addition, the platform supports the integration of custom controllers and real-
world GPS-based map data, allowing adaptation to tasks such as trajectory tracking,
motion planning, and performance-oriented driving.

The proposed framework introduces a modular and simulation-driven strategy
for testing ADAS functions and demonstrates its potential as a practical foundation
for academic research, early-stage controller development, and regulation-oriented
intelligent vehicle validation.

Keywords: Advanced Driver Assistance Systems (ADAS), co-simulation, function
validation, MATLAB/Simulink, RoadRunner, scenario-based testing, virtual control
evaluation, vehicle automation

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Problems and Motivations . 3
1.3 Thesis Outline . 4

2 Background and Tools 6
2.1 ADAS Overview . 6

2.1.1 Functional Scope and Classification of ADAS 7
2.1.2 Simulation Pipeline Structure 8

2.2 Simulation Tools . 10
2.2.1 MATLAB . 10
2.2.2 Simulink . 12
2.2.3 RoadRunner . 13
2.2.4 Summary . 17

3 Scene Construction and Simulation Configuration 18
3.1 Scene Construction . 18
3.2 Scenario Configuration . 21

3.2.1 Scenario and Actor Setup in RoadRunner 21
3.2.2 Ego Vehicle Behavior and Simulink Integration 25
3.2.3 Ego and Actor Pose . 27
3.2.4 Sensor Models . 28
3.2.5 Controller and Vehicle Dynamics Integration 32
3.2.6 Coordinate Transformation and Metrics Logging 37

3.3 MATLAB Environment Setup . 40

4 Simulation Results 42
4.1 Simulation Results . 42

4.1.1 Senario 1: Lead Car Deceleration 45
4.1.2 Senario 2: Lead Car Stop and Go 48
4.1.3 Senario 3: Cut-In and Out 51

ii

4.2 Additional Simulation: Shanghai International Circuit 54
4.2.1 Real-World Map Data Import and Scene Generation 54
4.2.2 Vehicle Dynamics and Controller Integration 55
4.2.3 Results and Summary . 57

5 Conclusions and Future Works 58

List of Tables 62

List of Figures 63

Bibliography 67

iii

Chapter 1

Introduction

1.1 Background

As the automotive industry continues to advance towards higher level of driving
automation, the integration of automated driving technologies becomes a critical re-
search and development focus. Among these, Advanced Driver Assistance Systems
(ADAS) play an increasingly important role in improving vehicle safety, comfort,
eco-driving performance and automation. ADAS not only addresses real-world
safety challenges but also serves as the foundation for higher levels of autonomous
driving.

To standardize and classify the levels of driving automation, the Society of
Automotive Engineers (SAE) introduced the widely accepted SAE J3016 taxonomy
in 2014 and updated it in 2021, which defines six levels of driving automation
from Level 0 (No Automation) to Level 5 (Full Automation)[1]. The six levels
of automation defined in SAE J3016 are summarized in the figure below, which
illustrates the increasing degree of driving automation and decreasing reliance on
the human driver.

ADAS functionalities are primarily associated with Level 1 (Driver Assistance)
and Level 2 (Partial Driving Automation), where the system provides limited
assistance under driver supervision. At Level 1, ADAS functions focus more on
single aspect of driving – either longitudinal or lateral control. Level 2 systems
combine both, allowing for simultaneous control of speed and steering. However, in
both cases or levels, the driver is expected or requested to monitor the environment
and maintain full responsibility for current driving tasks.

As different systems and functions are increasingly integrated into production
vehicles, ensuring the safety, reliability and regulatory compliance has become a

1

Introduction

Figure 1.1: SAE Levels of Driving Automation

major concern for the automotive industry. ADAS functions must be evaluated
through simulation under diverse conditions before deployment, because improper
behaviors, even at low levels of automation, can also lead to dangerous situations.
Therefore, a structured approach to function-level validation is essential to support
the wider adoption of ADAS and build a solid foundation for the development of
higher-level autonomous driving systems.

In this context, virtual testing environments have emerged as a valuable tool
for evaluating ADAS behavior under diverse, repeatable and controlled conditions.
Simulation platforms such as MATLAB/Simulink, RoadRunner, CarSim, SCANeR
Studio enable developers to model vehicle dynamics and control systems, generate
diverse scenarios, and evaluate system behaviors without the limitations of physical
testing. Among these platforms, the integration of MATLAB/Simulink and Road-
Runner provides a convenient, lightweight, and flexible solution that is suitable for
early-stage function verification and academic research.

2

Introduction

1.2 Problems and Motivations
As interest in automated driving technologies grows, regulatory authorities around
the world have increasingly introduced stringent requirements for the design, testing,
and validation of Advanced Driver Assistance Systems (ADAS) and higher-level
autonomous functions. However, the diversity of regional policies, safety regula-
tions, and infrastructure constraints poses significant challenges to the standardized
development and deployment of such systems.

In the European Union, the United Nations Economic Commission for Europe
(UNECE) has issued the R157 regulation, which governs the approval of Level 3
Automated Lane Keeping Systems (ALKS)[2]. The regulation requires not only
real-world tests but also scenario-based virtual validation, including edge cases that
are difficult to replicate on real-world or open roads. Compliance with UNECE
R157 thus necessitates simulation frameworks that can accurately recreate or real-
istically simulate complex traffic environments in a repeatable and traceable manner.

In the United States, the National Highway Traffic Safety Administration
(NHTSA) has adopted a more flexible, voluntary safety assessment framework[3].
While NHTSA promotes innovation and public trust through consumer information
and federal guidelines, the actual enforcement of testing regulations varies by state.
Several jurisdictions may require strict road-testing permits, safety driver protocols
and incident reporting for autonomous vehicle trials. Furthermore, due to the
lack of unified federal legislation for Level 2 automation, developers often face a
fragmented compliance landscape that complicates nationwide deployment and
validation.

Notably, NHTSA recognizes the critical role of driver assistance technologies in
improving road safety. As stated on its official website, “We now know that driver
assistance technologies are the right path toward safer roads. We will work diligently
to bring you updated information whenever there are breakthroughs with new
driver assistance technologies” (National Highway Traffic Safety Administration,
n.d.)[3]. This highlights the agency’s supportive stance toward ADAS development,
while also reinforcing the need for robust validation procedures to ensure system
safety and public acceptance.

In China, where the development of Intelligent and Connected Vehicles (ICVs) is
regarded as a national strategic priority, the Ministry of Industry and Information
Technology (MIIT), along with other government bodies, has actively promoted
pilot programs and closed test zones for intelligent driving. In 2024, MIIT launched
a large-scale “Vehicle-Road-Cloud Integration” pilot program across 20 major

3

Introduction

cities including Beijing and Shanghai[4]. This initiative aims to establish unified
standards, develop intelligent road infrastructure, and support scenario-driven
testing environments through cloud-based control platforms. In parallel, China
also approved nine major Original Equipment Manufacturers (OEMs), including
Changan, BYD, GAC, and SAIC, to participate in national pilot projects for
L3-level automated driving access and road testing, marking a significant step
toward commercializing higher-level autonomous driving[5].

These real-world limitations — high testing costs, regulatory fragmentation, and
restricted access — highlight the need for flexible and reproducible alternatives
during early ADAS development. In particular, many Level 1-2 ADAS features,
such as ACC, AEB and LKA, rely heavily on control logic and rule-based responses
that can be effectively evaluated in structured virtual environments. Simulation-
based testing provides a safe, scalable, and repeatable approach for verifying such
functionality without the risks or logistical burdens of physical road testing.

The main motivation of this thesis work is to narrow the gap between theoretical
control design and functional scenario testing by employing a co-simulation approach
that integrates MATLAB/Simulink for control modeling with RoadRunner for the
scenario generation. Rather than targeting high-level autonomy or perception-
driven behavior, the focus is on function-level validation of ADAS modules under
simplified but representative driving situations. By leveraging the accessibility,
modularity, and extensibility of these tools, the thesis work aims to support
academic research, early-stage development, and educational applications aligned
with the SAE Level 1–2 automation scope.

1.3 Thesis Outline
The structure of this thesis is as follows:

• Chapter 2 reviews the theoretical background and simulation tools relevant
to this study. It introduces the core principles of key ADAS functions—such
as Adaptive Cruise Control (ACC), Autonomous Emergency Braking (AEB),
and Lane Keeping Assist (LKA)—and provides an overview of simulation
platforms including MATLAB/Simulink and RoadRunner. Their respective
roles in control modeling and scenario generation are discussed in the context
of co-simulation.

• Chapter 3 describes the setup of the simulation framework and the imple-
mentation of ADAS functions. It outlines the vehicle dynamics model, the
control logic for each ADAS module, and the integration method between

4

Introduction

Simulink and RoadRunner. This chapter also introduces a series of simplified
yet representative test scenarios designed to evaluate each function individually
or in combination.

• Chapter 4 presents the simulation results across different scenarios. For each
scenario—such as straight-line following, sudden stop response, lane departure,
or curve tracking—the system’s behavior is analyzed in terms of response
correctness, rule compliance, and control smoothness. Visual outputs and
behavioral evaluations are provided to demonstrate system performance.

• Chapter 5 concludes the thesis by summarizing the research findings and
reflecting on the effectiveness of the proposed co-simulation approach. Limita-
tions of the current implementation are discussed, and possible directions for
future work are suggested, including the integration of perception models and
expansion to higher-level autonomous driving functions.

5

Chapter 2

Background and Tools

Before introducing the proposed simulation framework, this chapter provides the
theoretical background and technical tools relevant to this thesis. While the goal
of this project is not to achieve full autonomous driving, it addresses the functional
verification of ADAS modules that form the core of SAE Level 1–2 automation.
These systems—such as Adaptive Cruise Control (ACC), Autonomous Emergency
Braking (AEB), and Lane Keeping Assist (LKA)—rely heavily on control logic and
structured environmental interaction.

The chapter begins with a brief overview of the operational principles and
control objectives of the selected ADAS functions. It then introduces the simulation
tools used in this study—MATLAB/Simulink for control system modeling, and
RoadRunner for generating realistic traffic scenarios. Together, these platforms
enable modular and reproducible validation of control-layer behavior. The concepts
and tools presented here serve as the foundation for the simulation setup and
co-simulation platform described in the following chapter.

2.1 ADAS Overview

While Chapter 1 has introduced the basic concept, importance, and industrial
context of Advanced Driver Assistance Systems (ADAS)—including a graphical
summary of the SAE automation levels (see Figure 1.1)—this section provides a
more detailed technical analysis of ADAS functional architecture, system classifica-
tion, operational pipelines, and their relationship with simulation-based validation.
The aim is to establish a comprehensive theoretical foundation for the subsequent
discussion on simulation tools, co-simulation environments, and ADAS controller
evaluation.

6

Background and Tools

2.1.1 Functional Scope and Classification of ADAS

ADAS are engineered to augment driver awareness, support vehicle control, and
automate specific driving tasks under defined conditions. Their core functions can
be grouped as follows:

• Longitudinal Assistance:Managing speed and headway, e.g., Adaptive
Cruise Control (ACC), Autonomous Emergency Braking (AEB).

• Lateral Assistance: Maintaining lane position or assisting in lane changes,
e.g., Lane Keeping Assist (LKA), Lane Departure Warning (LDW), Lane
Centering.

• Surround Awareness: Monitoring blind spots, cross-traffic, or other poten-
tial hazards, e.g., Blind Spot Detection (BSD), Rear Cross-Traffic Alert.

• Information and Compliance: Identifying traffic signs, navigation aids, or
road conditions, e.g., Traffic Sign Recognition (TSR), Traffic Light Detection.

The SAE J3016 standard provides the widely recognized taxonomy for classifying
driving automation. As summarized in Figure 1.1 (see Chapter 1), SAE Levels
0–2 define the scope of ADAS, with Level 1 corresponding to single-function
driver assistance (either lateral or longitudinal), and Level 2 enabling combined
assistance under constant human supervision. Table 2.1 summarizes the main
ADAS functionalities and their typical sensor suites[6]:

Function Control Objective Key Sensors
Adaptive Cruise Con-
trol (ACC)

Maintain time gap to lead vehicle Radar, Camera

Lane Keeping Assist
(LKA)

Keep vehicle within lane bound-
aries

Camera

Autonomous Emer-
gency Braking (AEB)

Prevent or mitigate frontal colli-
sions

Radar, Camera, Li-
DAR

Traffic Sign Recogni-
tion (TSR)

Detect and display road signs Camera

Blind Spot Detection
(BSD)

Warn of vehicles in adjacent lanes Radar, Ultrasonic

Table 2.1: Common ADAS Functions and Typical Sensor Suites

7

Background and Tools

2.1.2 Simulation Pipeline Structure
A typical ADAS simulation workflow is generally structured as a closed-loop
pipeline that connects perception, control module, and vehicle dynamics. This
setup supports systematic testing of control strategies in a virtual environment and
is compatible with a range of simulation tools such as Simulink and RoadRunner.

(1) Perception
• Scenario Configuration: Virtual environments, including roads, lane geome-

try, and dynamic actors such as other vehicles or pedestrians, are defined using
scenario editors such as RoadRunner and imported into modeling environments
such as Simulink.

• Virtual Sensor Models: Simulated sensor models such as radar, camera
and LiDAR capture environmental information, such as lane positions and
nearby objects, based on the predefined scenario setup.

• Detection and Processing: Dedicated components process sensor outputs
to extract lane geometry, identify surrounding vehicles, and estimate their
motion characteristics.

(2) Control Module
• Decision Logic: The control module begins with decision-making logic

that interprets perception outputs and determines the appropriate behavioral
response. This includes identifying the most relevant target, such as the lead
vehicle, computing the relative distance drel and velocity vrel, and determining
whether to accelerate, decelerate, or maintain speed. A common metric used
in Adaptive Cruise Control (ACC) is the time gap tgap, defined as:

tgap = drel

vego
, (2.1)

where vego is the ego vehicle’s speed.

• Controller Design: Based on decision outcomes, the controller generates
actuation commands for longitudinal and lateral movement. These are often
implemented using Proportional–Integral–Derivative (PID) control or Model
Predictive Control (MPC)[7]. A typical longitudinal control law may take the
form:

aego = Kp(drel − ddes) + Kv(vlead − vego), (2.2)

8

Background and Tools

where ddes is the desired following distance, vlead is the velocity of the lead
vehicle, and Kp, Kv are controller gains.

• Mode Management: Control logic may also include supervisory mechanisms
for handling operational mode transitions, such as switching from regular
following to emergency braking. These transitions are typically triggered by
threshold conditions derived from sensor inputs and vehicle dynamics.

(3) Vehicle Dynamics
• Dynamics Modeling: Once the control module generates control outputs

such as acceleration and steering angle, the vehicle dynamics model simu-
lates the corresponding motion of the vehicle. Many simulation setups adopt
simplified models (e.g., the bicycle model) for real-time performance and ex-
plainability. These models approximate both longitudinal and lateral behavior
while capturing essential physical constraints[8][9][10].

• State Update: The vehicle’s motion is updated based on its current state
and control inputs. In the longitudinal direction, the update equations are
typically given by:

v̇ego = aego, ẋego = vego (2.3)
where vego is the ego vehicle’s velocity, aego is the applied acceleration, and
xego is the vehicle’s longitudinal position.
Lateral motion is often modeled using yaw angle and curvature-based updates
in more advanced configurations.

• Feedback Integration: The updated vehicle states—position, velocity, orien-
tation—are continuously fed back into the simulation environment to maintain
a closed-loop system. This enables dynamic interaction with surrounding
traffic and road features, allowing scenario evolution to be sensitive to vehicle
behavior. Such feedback is critical for evaluating the robustness of control
logic under diverse and changing driving conditions.

Figure 2.1: Overview of Simulation Pipeline Structure

9

Background and Tools

2.2 Simulation Tools
As Advanced Driver Assistance Systems (ADAS) continue to evolve, virtual sim-
ulation has become a critical part of the development and validation pipeline.
Compared to physical prototyping and on-road testing, simulation tools provide a
safe, repeatable, and cost-efficient environment for testing complex driving scenarios,
edge cases, and control logic in early development stages.

This section introduces three software tools used in this thesis: MATLAB,
Simulink, and RoadRunner. Each plays an important role in the simulation and
validation of ADAS functions.

2.2.1 MATLAB
MATLAB is a high-level programming language and an integrated development
environment (IDE). It plays an important role in the simulation framework for
ADAS development, particularly through its Driving Scenario Designer app and
the Automated Driving Toolbox. These tools provide a dedicated environment for
building, visualizing, and simulating driving scenarios, as well as for configuring
virtual sensors and actors for perception and decision-making studies.

(a) Driving Scenario Designer app
The Driving Scenario Designer app, included in MATLAB’s Automated Driving
Toolbox, provides a graphical interface to build and simulate driving scenarios.
It is commonly used in the early stages of ADAS development, where traffic
environments and sensor setups need to be quickly defined and tested. Its main
functions include:

• Interactive Scenario Creation: Users can design multilane roads, intersec-
tions, and actor trajectories using drag-and-drop operations. The app uses a
grid layout and supports intersections with traffic lights.

• Sensor Configuration: The ego vehicle can be equipped with virtual sensors
such as camera, radar, lidar, ultrasonic, and inertial sensors. These provide
simulated outputs for detection, localization, and control testing. The app can
generate MATLAB code or Simulink models of sensors for further simulations
and testing.

• Map and Geometry Import: Road data can be imported from OpenDRIVE
(v1.4–1.6), OpenStreetMap, and HERE HD Live Map, allowing realistic or
standards-compliant layouts to be used in simulation.

10

Background and Tools

• Scenario Export and Integration: Scenarios can be exported to OpenSCE-
NARIO, RoadRunner HD Map, or automatically translated into MATLAB
scripts and Simulink models for further development and testing.

Figure 2.2: Driving Scenario Designer app of MATLAB

(b) Automated Driving Toolbox
The Automated Driving Toolbox provides functions for modeling and testing
perception, planning, and control components used in advanced driver assistance
systems. It supports simulations of camera, radar, and lidar sensors, and includes
tools for visualizing sensor outputs, tracking objects, and analyzing dynamic scenes.
Functions are available for tasks such as lane detection, object tracking, and
trajectory planning.

Driving scenarios can be generated through scripting and actor behaviors can be
programmatically adjusted under different test conditions. Road network data can

11

Background and Tools

be imported from formats such as OpenDRIVE and HERE HD Live Map, allowing
scenes to reflect real-world layouts.

The toolbox also supports integration with Simulink for closed-loop simulation
and enables C/C++ code generation for hardware-in-the-loop testing.

By combining scenario modeling, sensor simulation, and code-level integration,
the toolbox can work as a link between scene-level testing and the implementation
of control algorithms.

2.2.2 Simulink
Simulink is a graphical modeling and simulation platform. In ADAS function
development and simulation, Simulink is commonly used to build controller models,
vehicle dynamics models, and to perform closed-loop simulations together with
other software tools with other software tools. Its main roles include:

• Controller modeling and Strategy Implementation: The control archi-
tecture is built using block diagrams, enabling modular design of acceleration
commands, time gap policy execution, and driver response logic. This ap-
proach allows the controller to be tested independently from the plant model
and facilitates systematic tuning of decision layers.

• Vehicle Dynamics Modeling: A high-fidelity vehicle dynamics model is
implemented within Simulink, incorporating components such as electric driv-
etrain behavior, resistive forces, and tire-road interaction. These elements
provide realistic feedback to the controller, ensuring that performance eval-
uation—especially in terms of energy consumption—is grounded in physical
constraints.

• Integration of Sensor Models and Perception Feedback: Simulated
sensors, including camera, radar, and lidar models, are connected to the
control loop to emulate perception of the lead vehicle’s motion. These inputs
supply real-time distance, speed, and relative position data, which the control
algorithm uses to adjust vehicle behavior in response to traffic flow.

• Scenario Co-simulation with External Platforms: Simulink supports
co-simulation with various external platforms that provide traffic scenarios or
perception environments. In this thesis, Simulink interfaces with RoadRunner
through dedicated blocks for importing scenario data and exporting ego vehicle
data. During simulation, other actors are governed by predefined behaviors,
while the ego vehicle is controlled by the Simulink model in a closed-loop
setup. This co-simulation architecture can also be extended to other tools
designed for more complex, high-fidelity, and physically realistic simulation
environments.

12

Background and Tools

Figure 2.3: Automatic Emergency Braking (AEB) Test Bench with Sensor Fusion
in Simulink

2.2.3 RoadRunner

(a) RoadRunner Core Capabilities
RoadRunner is a 3D scene design tool used to create driving environments for the
simulation and testing of automated driving systems. It allows for the construction
of detailed road networks, customization of traffic infrastructure, and integration
with various geographic and simulation data. Its core capabilities include:

• 3D Road and Environment Modeling: Users can create complex layouts
involving intersections, tunnels, bridges, ramps, and elevation changes. The
tool supports the addition of guardrails, road surface damage, vegetation,
buildings, and other 3D assets to reflect realistic environments.

• Traffic Signs and Signal Control: RoadRunner enables the placement of
region-specific or customized road signs and markings. It also provides tools
for configuring traffic light logic, including phase timing and transitions at
intersections.

• Map Data and GIS Integration: Aerial imagery, LiDAR point clouds, and
digital elevation models can be imported to accurately replicate real-world

13

Background and Tools

Figure 2.4: Road and 3D Scene Modeling in RoadRunner

Figure 2.5: Functional Road Networks and Traffic Signals Design in RoadRunner

road networks. Support is provided for OpenDRIVE-based road layouts and
external SD/HD maps, including those from OpenStreetMap and commercial

14

Background and Tools

Application Programming Interfaces (APIs).

Figure 2.6: Map Import in RoadRunner

• Cross-Platform Scene Export: RoadRunner scenes can be exported to
industry-standard formats (OpenDRIVE®, FBX®, glTF™, USD, etc.), al-
lowing compatibility with platforms such as CARLA, dSPACE ASM, IPG
CarMaker, and Unreal Engine.

• Programmatic API and Automation: Scenes can be generated or modi-
fied programmatically using MATLAB functions or a gRPC interface. This
facilitates the batch creation of test environments and automated scenario
variation.

• Asset Library and Custom Models: With the RoadRunner Asset Library,
users can populate scenes using a broad set of built-in and user-defined 3D
assets, including barriers, signs, signal poles, and roadside objects.

• Surface Feature Modeling: The tool supports OpenCRG formats for high-
fidelity road surface modeling. Surface anomalies such as potholes, rumble
strips, and speed bumps can be added to evaluate vehicle response in realistic
terrain.

15

Background and Tools

Figure 2.7: RoadRunner Scenes Export to Other Simulators

(b) RoadRunner Product Family
RoadRunner is not just a single application, but a group of related tools designed
to support different stages of scene creation and simulation. Each product serves a
specific purpose and can be used individually or together, depending on the needs
of the simulation setup.

• RoadRunner: The main application used to build 3D road networks, edit
lane structures, place traffic signs and signals, and add visual elements such
as buildings, sidewalks, or roadside objects.

• RoadRunner Scenario: This tool is used to create and play back driving
scenarios within RoadRunner scenes. It supports the definition of vehicle
paths, actor behavior, and traffic control logic for simulation testing.

• RoadRunner Asset Library: This tool provides a library of 3D mod-
els—such as signs, barriers, and poles—that can be used to populate Road-
Runner scenes with region-specific and realistic roadside elements.

• RoadRunner Scene Builder: This tool is used to automatically generate 3D
road scenes from HD map data, streamlining the process of building accurate
road geometry and network structure.

16

Background and Tools

Figure 2.8: RoadRunner Product Family

2.2.4 Summary
In summary, MATLAB, Simulink, and RoadRunner together can form a flexible
and powerful toolchain for simulating and validating advanced driving systems.

Figure 2.9: Automated driving simulation within a RoadRunner scene

17

Chapter 3

Scene Construction and
Simulation Configuration

Following the introduction of the simulation pipeline structure and software tools
in Chapter 2, this chapter focuses on the configuration process of a co-simulation
environment for scenario-based testing. The objective is not to develop new
algorithms or models, but to establish a functional simulation setup that integrates
key components—such as virtual environments, sensors, vehicle dynamics, and
control logic—into a unified workflow.

The configuration is centered around RoadRunner, which provides the test
scenario, including the virtual environment, road layouts, path definitions, and
the behavior or action configuration of actors. Simulink functions as the ego
vehicle’s behavior, where sensor models, controllers, and vehicle dynamics blocks
are connected to form a closed-loop system.

The controllers and vehicle dynamics model used in the simulation are from the
Simulink library or are prebuilt modules that have been integrated into the system
for validation purposes. Similarly, sensor blocks such as radar and camera modules
are from the Automated Driving Toolbox or the Simulink library. The focus here
is on how these components are organized or customized, and how they can work
together to support our testing under various scenarios.

Other parts, such as coordinate system transformation and metrics logging, are
also included, as they are essential for generating simulation outputs and evaluating
performance.

3.1 Scene Construction
The first step in scenario-based simulation is to establish the scene that serves as the
foundation for the dynamic testing. Most scenarios are built on a straight or curved

18

Scene Construction and Simulation Configuration

Figure 3.1: Overview of Co-Simulation Workflow

multi-lane highway, created using the basic road editing tools in RoadRunner or
the official example provided by RoadRunner. The layout typically features one
lane or two lanes in each direction, with standard lane widths and markings for
clarity.

The road network for each simulation is constructed using the basic and advanced
road editing tools available in RoadRunner. Typically, I start by laying out straight
road segments and multi-lane highways, but the software also supports more
complex features like curves, roundabouts, and intersections if needed. Road
geometry can be adjusted by setting curvature, slope and cross-sectional details
such as banking and crowning to better reflect real-world road conditions.

Figure 3.2: RoadRunner Toolbar

Lane attributes—including the number of lanes, their widths, and markings—are
easily modified with dedicated lane tools. Detailed surfaces can be created using
standard lane markings, stencils, and road paint. For scenarios that require realistic
or site-specific environments, RoadRunner also allows importing map data in
formats such as OpenDRIVE, enabling rapid generation of road networks based on
actual GPS or HD/SD map sources. This flexibility makes it possible to adapt the
test scene to a wide range of research or validation requirements.

Although the scenes used in this study are kept deliberately simple, RoadRunner
provides a range of features that make it straightforward to expand the simulation

19

Scene Construction and Simulation Configuration

Figure 3.3: Straight Road Created in RoadRunner

Figure 3.4: Insertion of Shanghai International Circuit OpenDRIVE Data

environment in future work. For example, surface and terrain properties can be
adjusted to create custom driving surfaces or to introduce roughness and elevation
changes for more advanced dynamics testing. This makes it possible to recreate
urban areas, rural roads, or any other real environment with a high degree of
fidelity.

20

Scene Construction and Simulation Configuration

Figure 3.5: Main Scene Used for Simulation Testing: Curved Road

3.2 Scenario Configuration
With the static road environment in place, the next step is to configure each
scenario with the required vehicles and behaviors. In RoadRunner, this involves
placing the necessary actors, defining their motion logic, and adjusting relevant
parameters to reflect the intended test conditions[11].

3.2.1 Scenario and Actor Setup in RoadRunner
• Actor Placement: Actors are placed directly onto the road network using

the scenario editor. Each actor (such as a lead vehicle or cut-in vehicle) is
assigned a specific starting lane and initial position.

• Vehicle Customization: For clarity during testing, each actor is given a
unique name (e.g., “Lead Vehicle”, “Cut-In Vehicle”) and, if needed, its visual
model or color can be selected from the RoadRunner asset library or the
actor panel, and even can be imported from external resources to distinguish
between vehicle types in multi-actor scenarios.

• Behavior and Path Definition: Actor’s behavior can be defined by assigning
a sequence of actions. In most test cases, this means setting the initial speed,
using “follow lane” as the default movement, and then adding action types
such as lane changes, stops, or accelerations at specific times or positions
during the simulation. The Path can be created and customized by selecting
the actor and right-clicking on the road to set waypoints.

• Simulation Properties Editing: Simulation properties such as simulation
time, step size, fail conditions and other conditions can be edited or customized

21

Scene Construction and Simulation Configuration

in the attributes panel or the simulation panel.

Figure 3.6: Actor Vehicle Placement

Figure 3.7: Actor Vehicle Customization

22

Scene Construction and Simulation Configuration

Figure 3.8: Actor Vehicle Behavior Definition

Figure 3.9: Actor Vehicle Path Definition

23

Scene Construction and Simulation Configuration

Figure 3.10: Simulation Properties Editing(1)

Figure 3.11: Simulation Properties Editing(2)

24

Scene Construction and Simulation Configuration

3.2.2 Ego Vehicle Behavior and Simulink Integration
The ego vehicle’s behavior in each scenario is managed externally using Simulink,
rather than being assigned a fixed action sequence in RoadRunner. During scenario
setup, the ego vehicle is placed in the desired lane and position, but its subsequent
motion is determined by the real-time output of the connected Simulink model.

To establish this link, we have to configure both Simulink and RoadRunner. In
Simulink, we have to use three blocks in the Automated Driving Toolbox:

• RoadRunner Scenario block: The RoadRunner Scenario block defines the
interface of a Simulink model and must be present at the root level of the
model. In the Block Parameters dialog box, inputs are grouped under Actions,
Events, and Configuration.

Figure 3.12: RoadRunner Scenario block

• RoadRunner Scenario Reader block: The RoadRunner Scenario Reader
block is used to extract different types of scenario data during simulation. By
adjusting the Topic Category parameter, it is possible to access information
related to actors, actions, sensors, or custom events as needed for the test.

25

Scene Construction and Simulation Configuration

For example, when configured to the "Actor" topic, the block provides details
such as actor specifications and real-time pose. If set to "Action," it outputs
information on state changes like speed or lane shifts for each actor. Data is
read one time step behind the simulation, and the block can be filtered to
focus on a specific actor within the Simulink model.

When the topic is set to "Sensor," the block returns sensor-specific information,
such as target positions or lane boundaries, based on the sensor ID assigned
in the scenario. Selecting the "Event" topic allows the block to deliver outputs
related to user-defined events specified by name.

Figure 3.13: RoadRunner Scenario Reader block

• RoadRunner Scenario Writer block: The RoadRunner Scenario Writer
block is used to send dynamic information—such as actor states, events,
or diagnostics—from Simulink back into a running RoadRunner scenario.
Typically, this involves passing real-time data generated by a Simulink behavior
model, packaged as Simulink messages.

By setting the Topic Category to "Actor," the block can update attributes like
actor ID, velocity, and angular velocity within the scenario. The Writer block
operates using bus objects, which define the structure and data types of the
information being sent. To ensure compatibility, the required bus types must
first be loaded into the MATLAB workspace, and a Bus Creator block is used
to build the corresponding signals in the Simulink model.

26

Scene Construction and Simulation Configuration

When controlling a group of actors, the block supports different usage patterns:
you can use a single Writer block and combine outputs with a Message Merge
block, or assign separate Writer blocks to each actor, specifying their ActorID
as needed. This setup enables flexible, step-by-step control over the behavior
of any child actor in the scenario, all from within the Simulink environment.

Figure 3.14: RoadRunner Scenario Writer block

3.2.3 Ego and Actor Pose

In the integrated simulation framework, the poses of the ego vehicle and other
actors are exchanged between RoadRunner and Simulink at each time step to
enable accurate closed-loop control. The key data flow starts with the RoadRunner
Scenario Reader block with Topic ’Actor Pose (Driving Scenario Compatible)’,
which receives current positions and states of all vehicles from the RoadRunner
scenario.

In practice, a user-defined helper function block is used to process actor pose data
from RoadRunner. This block takes in the raw messages, extracts the necessary
fields—such as position, velocity, and orientation—for each relevant actor, and
organizes them into a structured output bus. The resulting TargetPoses signal is
then fed into the rest of the Simulink model, supporting downstream modules like
perception modeling or controller feedback. This setup makes it easy to adjust
to different scenario configurations and ensures that pose data stays consistent
throughout the simulation workflow.

27

Scene Construction and Simulation Configuration

Figure 3.15: Actor Pose Packaging in Simulink

Figure 3.16: Actor Properties in Customized Helper Function Script

3.2.4 Sensor Models
Sensor modeling in this project is handled entirely within the Automated Driving
Toolbox, with multiple options available depending on the level of fidelity and the
requirements of each test.

• Sensor Models in the Simulink Library: For many scenarios, sensors
such as radar and camera are added directly from the Simulink library. These
blocks provide configurable models that simulate typical sensor outputs—like
detections, lane boundaries, and object tracks—based on the actor and en-
vironment data coming from the scenario. This approach is straightforward

28

Scene Construction and Simulation Configuration

and computationally efficient, making it well-suited for rapid prototyping and
controller development.

Figure 3.17: Radar and Camera Models in the Simulink Library

• Driving Scenario Designer Generation: When a more tailored setup is
needed, the Driving Scenario Designer app can be used to lay out scenes and
generate matching sensor models for Simulink. This workflow supports quick
configuration and direct export of sensor blocks that match the test case setup,
including customized field of view, range, resolution, and mounting position.
It is helpful when working with repeatable 2D scenarios or batch-generating
models for a large number of test cases.

• 3D-Simulation Sensor Models in Simulink: For more detailed and
realistic simulations, the simulation can also use 3D sensor models—such
as the Simulation 3D Camera or Simulation 3D Radar—linked to vehicles
rendered in the Unreal Engine environment. These blocks not only generate
realistic images and detections, but also support the integration of ground
truth, sensor noise, and even complex occlusion or lighting effects. This setup
is more involved, but necessary for sensor fusion development and evaluating
algorithms under more realistic perception conditions.

In practice, the choice of sensor model depends on the simulation objectives. All
options are compatible with the co-simulation between Simulink and RoadRunner,
and sensor data from any of these models can be routed directly to the sensor
fusion algorithm or block for perception modeling.

Since the main focus of this thesis is on function testing and validation rather
than on the development of perception algorithms, all perception modeling in this

29

Scene Construction and Simulation Configuration

thesis is implemented using the standard sensor models and built-in blocks provided
from the official reference case.

Figure 3.18: Sensor Models Generated by the Driving Scenario Designer app

30

Scene Construction and Simulation Configuration

Figure 3.19: 3D-Simulation Sensor Models in Simulink

31

Scene Construction and Simulation Configuration

3.2.5 Controller and Vehicle Dynamics Integration
The starting point of this thesis is the validation of ADAS functions in simulation,
with a primary focus on testing and evaluating adaptive cruise control (ACC)
strategies under various scenarios. Two types of controllers are integrated into the
simulation framework: one based on a model predictive control (MPC) approach,
and the other implementing a classical ACC logic[12].

(1) Control Logic Layer

Before reaching the controller, outputs from the perception layer are pro-
cessed by a control logic module. This module identifies the lead vehicle and
extracts relevant variables, including relative distance, relative speed, and
lane information. The logic is not custom-developed in this study, but is
directly utilized from the official platform to relay necessary parameters to
the controller modules.

Figure 3.20: Controller Configuration(1)

32

Scene Construction and Simulation Configuration

Figure 3.21: Controller Configuration(2)

(2) Model Predictive Controller (Path Following Control System)
One of the main controllers evaluated is the Path Following Control System
block, which applies MPC to simultaneously manage lane keeping and car-
following. The block receives the lane centerline, curvature, and a previewed
trajectory as references, and computes steering and acceleration commands
to keep the ego vehicle centered in the lane while maintaining a target speed
and safe following distance. The controller automatically enforces constraints
on speed, acceleration, and steering angle, optimizing control inputs at each
time step. This structure integrates lane keeping and ACC functions within a
unified MPC framework.

(3) Classical Adaptive Cruise Control (ACC) Controller
The simulation also incorporates a classical ACC module based on a standard
time gap policy. The safe distance to the lead vehicle is computed as:

Dsafe = Ddefault + Tgap · Vx (3.1)

where Ddefault and Tgap are design parameters, and Vx is the ego vehicle’s
longitudinal velocity. The controller calculates the required acceleration or

33

Scene Construction and Simulation Configuration

Figure 3.22: Path Following System Controller

deceleration to maintain this gap, using current speed, relative distance, and
relative velocity between the ego and lead vehicle as inputs. Control outputs
are saturated to remain within acceleration limits. In this work, the classical
ACC controller and its logic are directly adopted from toolbox examples
without modification.

(4) Vehicle Dynamics Model

The plant dynamics are modeled using standard vehicle models from the
Automated Driving Toolbox. For most cases, a bicycle model with force
input is used to represent both longitudinal and lateral vehicle motion, while
some scenarios employ a higher-fidelity 3DOF model as needed. All vehicle
models use default parameter settings, since the primary goal is to assess
controller performance rather than detailed physical modeling. The plant
receives acceleration and steering commands from the controller and outputs
the updated ego pose, velocities, and orientation.

34

Scene Construction and Simulation Configuration

Figure 3.23: Classical Adaptive Cruise Control (ACC) Controller

All controller and plant modules are modular and can be replaced or reconfigured
for further testing if required. This modular design allows a consistent and fair
comparison of different control strategies under identical scenarios and vehicle
conditions.

Figure 3.24: Vehicle Dynamics Using Bicycle Model

35

Scene Construction and Simulation Configuration

Figure 3.25: Vehicle Dynamics Using 3DOF Dual Track and Stanley Controller

36

Scene Construction and Simulation Configuration

3.2.6 Coordinate Transformation and Metrics Logging
• Coordinate Transformation: In practice, when running co-simulation

between Simulink and RoadRunner, it’s necessary to convert vehicle pose data
between different coordinate systems. Each tool may use its own convention, so
a coordinate transformation block is typically added before sending signals from
Simulink to RoadRunner. In this setup, dedicated conversion modules—such as
“NED to ENU” or “SAE J670E to ISO 8855 (NED to NWU)”—are used to map
simulation outputs from the vehicle model into the format that RoadRunner
expects[13][14].
Here, NED (North-East-Down), ENU (East-North-Up), and NWU (North-
West-Up) refer to common 3D spatial coordinate frames. Depending on how
the scenario or map is set up, the underlying scene may use any of these
conventions. To keep vehicle trajectories, velocities, and orientations consistent
throughout the simulation, coordinate mapping is always performed before
data is passed to RoadRunner.
This transformation is a routine part of data handling in co-simulation. It
can be managed using standard conversion blocks provided in the toolbox,
and does not require any custom code. As long as the coordinate axes and
physical meanings are aligned at each step, scenario playback and validation
proceed as intended.

Figure 3.26: Coordinate Transformation(1)

• Metrics Logging: For performance evaluation, a set of standardized metrics
modules from the official Automated Driving Toolbox examples are used.
These modules are not custom developed but are adopted directly from the
reference implementations. System-level metrics such as lane keeping, time
gap, collision detection, and acceleration are recorded based on the ground

37

Scene Construction and Simulation Configuration

Figure 3.27: Coordinate Transformation(2)

Figure 3.28: Coordinate Transformation(3)

truth and detected signals. On the component level, outputs like lane detection
accuracy, vehicle bounding boxes, and sensor fusion results are also logged.
The metrics structure is fully modular, allowing for batch comparison across
different controllers or scenarios without further redesign.

All results—including trajectory, speed profile, relative distance, and scenario
events—are saved at each run and provide the basis for later analysis and
benchmarking.

38

Scene Construction and Simulation Configuration

Figure 3.29: Coordinate Transformation(4)

Figure 3.30: System Metrics Assessment

39

Scene Construction and Simulation Configuration

3.3 MATLAB Environment Setup
Scenario-based experiments can be initialized and managed through MATLAB
scripts. Instead of manually opening RoadRunner and Simulink projects, the
simulation environment is configured programmatically to ensure repeatability and
streamline the setup process.

The workflow begins by specifying the installation path for RoadRunner and the
directory of the active project within MATLAB. Using a set of built-in commands,
MATLAB connects to the RoadRunner application, opens the desired project, and
loads the required scenes or scenarios. This enables one-click switching between
different test environments and simplifies the management of multiple simulation
runs.

Typical setup steps include[15]:

(1) Setting the path to the RoadRunner installation and project folder.

(2) Initializing a RoadRunner application object in MATLAB.

(3) Programmatically loading the target scene or scenario file for each test.

(4) (Optional) Copying or updating relevant asset files, such as behavior scripts
or scene definitions, as needed for batch processing.

By centralizing environment configuration within MATLAB, the entire simula-
tion pipeline—from scenario selection to result collection—can be run as a single
script or automated job. This reduces manual intervention, eliminates potential
configuration errors, and supports efficient parameter sweeps or regression testing.

40

Scene Construction and Simulation Configuration

Figure 3.31: Example of MATLAB Environment Setup Script

41

Chapter 4

Simulation Results

4.1 Simulation Results
Before the simulations start, here are some default setups:

• Ego Vehicle Parameter Setups: see Figure 4.1.

• Ego Vehicle Velocity Setup: The velocity of the ego vehicle is set to 25
meters per second (see Figure 4.2).

• Simulation Time Setup: The simulation time is set to 30 seconds (see
Figure 4.3)

• Simulation Step Size Setup: Step size of the simulation is set to 0.1 second
(see Figure 4.4).

• Sensor Models Setups: see Figure 4.5.

42

Simulation Results

Figure 4.1: Ego Vehicle Setups

Figure 4.2: Ego Vehicle Velocity Setup

43

Simulation Results

Figure 4.3: Simulation Time Setup

Figure 4.4: Simulation Step Size Setup

Figure 4.5: Sensor Models Setups

44

Simulation Results

4.1.1 Senario1: Lead Car Deceleration
• Description: This scenario examines the ACC controller’s response to a

typical highway situation where the lead vehicle, initially cruising at a constant
speed, begins to decelerate unexpectedly. The ego vehicle follows the lead car
in the same lane, maintaining a steady time gap before the deceleration event
is triggered.
The test is conducted on a multi-lane road with gentle curves, designed in
RoadRunner and simulated in Simulink. The initial relative distance and
velocities are set to represent real-world car-following conditions. As the lead
car initiates a deceleration maneuver, the performance of both ACC controllers
is evaluated, particularly their ability to maintain a safe gap, ensure smooth
deceleration, and avoid abrupt braking.

Figure 4.6: Overview of Scenario 1(1)

Figure 4.7: Overview of Scenario 1(2)

45

Simulation Results

• Results: The figures below show the main outputs from the simulation of
Scenario 1. Figure 4.8 illustrates the ego vehicle’s forward view, where lane
markers and the detected lead vehicle are clearly identified. The right panel
shows the corresponding lane detection results.
Figure 4.9 presents another perspective, combining the camera view with
a bird’s-eye plot of the scene. The detection zones for the ego vehicle and
the trajectory of the lead car are displayed, allowing for a straightforward
assessment of relative position and safety margin throughout the maneuver.
These results confirm that the perception system correctly identifies both the
lanes and the lead vehicle during a typical car-following scenario, providing
reliable inputs to the ACC controller.

Figure 4.8: Output of Scenario 1(1)

Figure 4.9: Output of Scenario 1(2)

46

Simulation Results

• Data Plots: These results demonstrate that the simulation framework is
effective in distinguishing the behavioral differences between controllers under
identical driving conditions. By applying the same scenario to both controllers,
the platform makes it possible to directly compare their performance in terms
of safety, responsiveness, and comfort.

Figure 4.10: Data plots of Path Following Control System Controller

Figure 4.11: Data plots of Classical Adaptive Cruise Control (ACC) Controller

47

Simulation Results

4.1.2 Senario2: Lead Car Stop and Go
• Description: This scenario replicates typical stop-and-go traffic conditions

often encountered in urban expressways or during congestion on highways.
The blue ego vehicle follows a red lead car in the same lane, while other
vehicles travel in adjacent lanes.
During the simulation, the lead vehicle suddenly decelerates to a complete
stop and then accelerates back to cruising speed, mimicking the unpredictable
nature of dense traffic flow. The ego vehicle must continuously adjust its
speed, maintaining a safe and comfortable following distance while responding
smoothly to each stop-and-go event.

Figure 4.12: Overview of Scenario 2(1)

Figure 4.13: Overview of Scenario 2(2)

48

Simulation Results

• Results: The figures below show the main outputs from the simulation of
Scenario 1. Figure 4.14 illustrates the ego vehicle’s forward view, where lane
markers and the detected lead vehicle are clearly identified. The right panel
shows the corresponding lane detection results.
Figure 4.15 presents another perspective, combining the camera view with
a bird’s-eye plot of the scene. The detection zones for the ego vehicle and
the trajectory of the lead car are displayed, allowing for a straightforward
assessment of relative position and safety margin throughout the maneuver.
These results confirm that the perception system correctly identifies both the
lanes and the lead vehicle during a typical car-following scenario, providing
reliable inputs to the ACC controller.

Figure 4.14: Output of Scenario 2(1)

Figure 4.15: Output of Scenario 2(2)

49

Simulation Results

• Data Plots: These results demonstrate that the simulation framework is
effective in distinguishing the behavioral differences between controllers under
identical driving conditions. By applying the same scenario to both controllers,
the platform makes it possible to directly compare their performance in terms
of safety, responsiveness, and comfort.

Figure 4.16: Data plots of Path Following Control System Controller

Figure 4.17: Data plots of Classical Adaptive Cruise Control (ACC) Controller

50

Simulation Results

4.1.3 Senario2: Cut-In and Out
• Description: In this scenario, the ego vehicle (blue) follows a lead car (red) in

the middle lane, while a black vehicle executes a cut-in and cut-out maneuver.
The black car, initially traveling in the adjacent lane, suddenly merges into
the ego vehicle’s lane between the ego and lead cars, stays momentarily, and
then changes back out to its original lane.
This type of situation is common in real-world highway driving, especially
during dense or unpredictable traffic. The maneuver is designed to test the
ACC controller’s ability to respond promptly to sudden intrusions, maintain
safe following distances, and avoid unnecessary or harsh braking.
The simulation is set up on a multi-lane curved road to reflect realistic driving
conditions. By introducing unexpected lane changes, the test challenges
each controller’s robustness and adaptability to abrupt changes in the traffic
environment.

Figure 4.18: Overview of Scenario 3(1)

Figure 4.19: Overview of Scenario 3(2)

51

Simulation Results

• Results: The figures below show the main outputs from the simulation of
Scenario 1. Figure 4.20 illustrates the ego vehicle’s forward view, where lane
markers and the detected lead vehicle are clearly identified. The right panel
shows the corresponding lane detection results.
Figure 4.21 presents another perspective, combining the camera view with
a bird’s-eye plot of the scene. The detection zones for the ego vehicle and
the trajectory of the lead car are displayed, allowing for a straightforward
assessment of relative position and safety margin throughout the maneuver.
These results confirm that the perception system correctly identifies both the
lanes and the lead vehicle during a typical car-following scenario, providing
reliable inputs to the ACC controller.

Figure 4.20: Output of Scenario 3(1)

Figure 4.21: Output of Scenario 3(2)

52

Simulation Results

• Data Plots: These results demonstrate that the simulation framework is
effective in distinguishing the behavioral differences between controllers under
identical driving conditions. By applying the same scenario to both controllers,
the platform makes it possible to directly compare their performance in terms
of safety, responsiveness, and comfort.

Figure 4.22: Data plots of Path Following Control System Controller

Figure 4.23: Data plots of Classical Adaptive Cruise Control (ACC) Controller

53

Simulation Results

4.2 Additional Simulation: Shanghai International
Circuit

This additional simulation is designed to validate the capability of the platform to
recreate real-world scenarios using measured GPS data. It also allows for testing
custom vehicle dynamics and control algorithms under complex and realistic driving
conditions.

4.2.1 Real-World Map Data Import and Scene Generation

The process starts with collecting high-resolution GPS data along the full lap of
the Shanghai International Circuit. The raw coordinates are imported and used to
define the centerline of the track. In MATLAB, the road geometry is reconstructed
using the drivingScenario function, allowing for both the basic track shape and
lane configurations to be accurately recreated.

To create an optimized reference path, the raw GPS data is fed into a racing
line optimizer. Here, vehicle parameters (mass, acceleration limits, maximum
lateral force, etc.) are defined, and the tool computes a minimum-curvature or
time-optimal trajectory. This reference line serves as the target for controller testing
and velocity profiling[16][17].

This workflow combines real-world measurement with simulation, enabling tests
that reflect true track geometry and dynamics rather than idealized or synthetic
road models.

Figure 4.24: Map Data Transformation

54

Simulation Results

Figure 4.25: Shanghai International Circuit imported in RoadRunner

4.2.2 Vehicle Dynamics and Controller Integration
The simulation framework supports any custom vehicle dynamics model. For
this test, we used a vehicle model implemented in Simulink, together with a
raceline optimizer controller. The setup is straightforward: the controller takes the
optimized path and speed profile as input, and then computes steering, throttle,
and brake commands for the vehicle model[18].

This approach makes it easy to swap in different vehicle models or controllers as
needed. The main point here is to verify that our workflow handles both the actual
Shanghai track geometry and a user-defined dynamics-control stack without issues.

Figure 4.26: Raceline Optimizer

55

Simulation Results

Figure 4.27: Vehicle Dynamics and Controller Integration

Figure 4.28: Behavior Integration in RoadRunner

56

Simulation Results

4.2.3 Results and Summary
The simulation ran smoothly with the custom vehicle model and raceline optimizer
controller on the Shanghai International Circuit scene. The car was able to follow
the optimized path for a full lap without leaving the track or triggering faults.

Overall, this test shows that the platform can handle real-world track geometry
and user-defined vehicle-control setups without extra tuning or adjustments. It
confirms that the workflow is practical for validating new control strategies or
vehicle models on actual road layouts.

Figure 4.29: Simulation in Shanghai International Circuit

57

Chapter 5

Conclusions and Future
Works

This thesis systematically investigated the scenario-based evaluation of ADAS/ACC
algorithms under different driving conditions. Three typical traffic scenarios—Cut-
In and Out, lead vehicle stop-and-go, and lead vehicle deceleration—were con-
structed to comprehensively assess the performance boundaries and robustness of
the control strategy in urban, suburban, and mixed-traffic contexts. Additionally,
by integrating GPS-derived trajectory data from the Shanghai International Circuit,
the methodology was further extended to a motorsport environment, enabling the
quantitative study of lap-time minimization and optimal trajectory planning in a
highly dynamic and competitive context.

Through the development of a modular simulation environment and the design of
representative traffic scenarios, this work demonstrated the effectiveness of scenario-
based validation for advanced control algorithms. The results from Cut-In/Out
scenarios confirmed the algorithm’s capacity to maintain safe following distances
and perform timely, stable responses to sudden lane changes by adjacent vehicles.
In stop-and-go and deceleration cases, the strategy exhibited robust adaptation
to varying lead vehicle behaviors, ensuring longitudinal safety and comfort even
under frequent acceleration and deceleration cycles.

The introduction of the Shanghai Circuit simulation not only validated the flex-
ibility of the control framework under non-standard conditions but also showcased
the algorithm’s potential for trajectory optimization. By incorporating real GPS
track data, the simulation environment successfully reproduced realistic racing
scenarios, providing a new perspective for the integration of ADAS/ACC functions
in high-performance and motorsport applications.

Despite the promising results obtained in this study, several limitations and
future research directions remain:

58

Conclusions and Future Works

1. Scenario Diversity and Coverage: The current scenarios, while represen-
tative, do not fully capture the entire operational design domain (ODD) of
real-world traffic. Future work should extend the scenario library to include
more complex situations, such as multi-agent interactions, vulnerable road
users (VRUs), adverse weather, and night-time conditions, to improve the
completeness and stress coverage of the validation framework.

2. Sensor and Perception Model Fidelity: In this thesis, perception errors
and sensor noise were not explicitly modeled. A logical next step is to introduce
realistic sensor simulation—integrating noise, delays, and misdetections—so as
to evaluate the closed-loop robustness of the controller against perception-level
uncertainties.

3. Closed-Loop Testing with Physical Vehicles: While the current work
is grounded in high-fidelity simulation, transitioning to hardware-in-the-loop
(HIL) or vehicle-in-the-loop (VIL) testing would provide more practical in-
sights. Real-time validation with physical vehicles, especially in controlled
proving ground scenarios, will further bridge the gap between simulation and
deployment.

4. Adaptive and Learning-Based Control: The control strategy in this thesis
was implemented in a rule-based or model-driven manner. Future studies could
explore the integration of data-driven and learning-based approaches, such
as reinforcement learning, to enhance adaptability in complex or unforeseen
traffic situations, and to enable continuous policy improvement with real-world
feedback.

5. Generalization to Different Road Classes: The Shanghai International
Circuit experiment illustrates the extensibility of the approach to special road
networks. Expanding the methodology to cover a wider variety of real-world
road geometries—such as mountainous highways, rural roads, and complex
intersections—will help assess the universality and transferability of the control
policies.

6. Standardization and Benchmarking: Establishing standardized metrics
and public scenario benchmarks, especially for time-optimal control and safety-
critical events, would facilitate comparison across different algorithms and
research groups, supporting the broader advancement of scenario-based ADAS
validation.

In summary, the scenario-based validation methodology proposed in this thesis
provides a solid foundation for further research and development in the field of
advanced driver assistance systems. Future work will look at adding more types of

59

Conclusions and Future Works

scenarios, making the perception and control modules closer to what you’d find in
real cars, and finding ways to bring the simulation results closer to what actually
happens on the road.

60

List of Tables

2.1 Common ADAS Functions and Typical Sensor Suites 7

62

List of Figures

1.1 SAE Levels of Driving Automation 2

2.1 Overview of Simulation Pipeline Structure 9
2.2 Driving Scenario Designer app of MATLAB 11
2.3 Automatic Emergency Braking (AEB) Test Bench with Sensor Fusion

in Simulink . 13
2.4 Road and 3D Scene Modeling in RoadRunner 14
2.5 Functional Road Networks and Traffic Signals Design in RoadRunner 14
2.6 Map Import in RoadRunner . 15
2.7 RoadRunner Scenes Export to Other Simulators 16
2.8 RoadRunner Product Family . 17
2.9 Automated driving simulation within a RoadRunner scene 17

3.1 Overview of Co-Simulation Workflow 19
3.2 RoadRunner Toolbar . 19
3.3 Straight Road Created in RoadRunner 20
3.4 Insertion of Shanghai International Circuit OpenDRIVE Data . . . 20
3.5 Main Scene Used for Simulation Testing: Curved Road 21
3.6 Actor Vehicle Placement . 22
3.7 Actor Vehicle Customization . 22
3.8 Actor Vehicle Behavior Definition 23
3.9 Actor Vehicle Path Definition . 23
3.10 Simulation Properties Editing(1) 24
3.11 Simulation Properties Editing(2) 24
3.12 RoadRunner Scenario block . 25
3.13 RoadRunner Scenario Reader block 26
3.14 RoadRunner Scenario Writer block 27
3.15 Actor Pose Packaging in Simulink 28
3.16 Actor Properties in Customized Helper Function Script 28
3.17 Radar and Camera Models in the Simulink Library 29
3.18 Sensor Models Generated by the Driving Scenario Designer app . . 30

63

List of Figures

3.19 3D-Simulation Sensor Models in Simulink 31
3.20 Controller Configuration(1) . 32
3.21 Controller Configuration(2) . 33
3.22 Path Following System Controller 34
3.23 Classical Adaptive Cruise Control (ACC) Controller 35
3.24 Vehicle Dynamics Using Bicycle Model 35
3.25 Vehicle Dynamics Using 3DOF Dual Track and Stanley Controller . 36
3.26 Coordinate Transformation(1) . 37
3.27 Coordinate Transformation(2) . 38
3.28 Coordinate Transformation(3) . 38
3.29 Coordinate Transformation(4) . 39
3.30 System Metrics Assessment . 39
3.31 Example of MATLAB Environment Setup Script 41

4.1 Ego Vehicle Setups . 43
4.2 Ego Vehicle Velocity Setup . 43
4.3 Simulation Time Setup . 44
4.4 Simulation Step Size Setup . 44
4.5 Sensor Models Setups . 44
4.6 Overview of Scenario 1(1) . 45
4.7 Overview of Scenario 1(2) . 45
4.8 Output of Scenario 1(1) . 46
4.9 Output of Scenario 1(2) . 46
4.10 Data plots of Path Following Control System Controller 47
4.11 Data plots of Classical Adaptive Cruise Control (ACC) Controller . 47
4.12 Overview of Scenario 2(1) . 48
4.13 Overview of Scenario 2(2) . 48
4.14 Output of Scenario 2(1) . 49
4.15 Output of Scenario 2(2) . 49
4.16 Data plots of Path Following Control System Controller 50
4.17 Data plots of Classical Adaptive Cruise Control (ACC) Controller . 50
4.18 Overview of Scenario 3(1) . 51
4.19 Overview of Scenario 3(2) . 51
4.20 Output of Scenario 3(1) . 52
4.21 Output of Scenario 3(2) . 52
4.22 Data plots of Path Following Control System Controller 53
4.23 Data plots of Classical Adaptive Cruise Control (ACC) Controller . 53
4.24 Map Data Transformation . 54
4.25 Shanghai International Circuit imported in RoadRunner 55
4.26 Raceline Optimizer . 55
4.27 Vehicle Dynamics and Controller Integration 56

64

List of Figures

4.28 Behavior Integration in RoadRunner 56
4.29 Simulation in Shanghai International Circuit 57

65

Bibliography

[1] On-Road Automated Driving (ORAD) Committee. Taxonomy and Definitions
for Terms Related to Driving Automation Systems for On-Road Motor Vehicles.
Apr. 2021. doi: https://doi.org/10.4271/J3016_202104. url: https:
//doi.org/10.4271/J3016_202104 (cit. on p. 1).

[2] United Nations Economic Commission for Europe. UN Regulation No. 157 –
Automated Lane Keeping Systems (ALKS). Standard. 2021. url: https://
unece.org/transport/documents/2021/03/standards/un-regulation-
no-157-automated-lane-keeping-systems-alks (cit. on p. 3).

[3] National Highway Traffic Safety Administration. Automated Vehicles for
Safety. Online; accessed 2025-07-14. 2024. url: https://www.nhtsa.gov/
vehicle-safety/automated-vehicles-safety (cit. on p. 3).

[4] Central Desk. China Launches Pilot Program for Vehicle-Road-Cloud Integra-
tion in ICVs. Auto World Journal, published July 3, 2024. Online; accessed
2025-07-14. 2024. url: https://autoworldjournal.com/china-launches-
pilot-program-for-vehicle-road-cloud-integration-in-icvs (cit. on
p. 4).

[5] Gabriella. China approves nine automakers for L3 intelligent connected vehicle
pilot program. Gasgoo Auto News, published June 6, 2024. Online; accessed
2025-07-14. 2024. url: https://autonews.gasgoo.com/icv/70033401.
html (cit. on p. 4).

[6] Grant Maloy Smith. Types of ADAS Sensors in Use Today. DEWESoft Blog,
published Feb. 14, 2023. Online; accessed 2025-07-14. 2023. url: https:
//dewesoft.com/blog/types-of-adas-sensors (cit. on p. 7).

[7] Stefan Chamraz and Richard Balogh. «Two approaches to the adaptive
cruise control (ACC) design». In: 2018 Cybernetics & Informatics (K&I).
IEEE, 2018, pp. 1–5. doi: 10.1109/CYBERI.2018.8337542. url: https:
//ieeexplore.ieee.org/document/8337542 (cit. on p. 8).

67

https://doi.org/https://doi.org/10.4271/J3016_202104
https://doi.org/10.4271/J3016_202104
https://doi.org/10.4271/J3016_202104
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-157-automated-lane-keeping-systems-alks
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-157-automated-lane-keeping-systems-alks
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-157-automated-lane-keeping-systems-alks
https://www.nhtsa.gov/vehicle-safety/automated-vehicles-safety
https://www.nhtsa.gov/vehicle-safety/automated-vehicles-safety
https://autoworldjournal.com/china-launches-pilot-program-for-vehicle-road-cloud-integration-in-icvs
https://autoworldjournal.com/china-launches-pilot-program-for-vehicle-road-cloud-integration-in-icvs
https://autonews.gasgoo.com/icv/70033401.html
https://autonews.gasgoo.com/icv/70033401.html
https://dewesoft.com/blog/types-of-adas-sensors
https://dewesoft.com/blog/types-of-adas-sensors
https://doi.org/10.1109/CYBERI.2018.8337542
https://ieeexplore.ieee.org/document/8337542
https://ieeexplore.ieee.org/document/8337542

BIBLIOGRAPHY

[8] Antonio Sciarretta and Ardalan Vahidi. Energy-Efficient Driving of Road
Vehicles: Toward Cooperative, Connected, and Automated Mobility. Cham:
Springer, 2020. isbn: 978-3-030-24127-8. url: https://link.springer.com/
book/10.1007/978-3-030-24127-8 (cit. on p. 9).

[9] Simona Onori, Lorenzo Serrao, and Giorgio Rizzoni. Hybrid Electric Vehicles:
Energy Management Strategies. Springer, 2015. isbn: 978-1-4471-6779-2. url:
https://books.google.it/books/about/Hybrid_Electric_Vehicles.
html?id=HCY3CwAAQBAJ (cit. on p. 9).

[10] Abdussalam Ali Ahmed, Johnson Santhosh, and Ftema W. Aldbea. «Vehicle
Dynamics Modeling and Simulation with Control Using Single Track Model».
In: 2020 IEEE International Women in Engineering (WIE) Conference on
Electrical and Computer Engineering (WIECON-ECE). IEEE, 2020, pp. 1–5.
doi: 10.1109/WIECON-ECE52138.2020.9397983. url: https://ieeexplor
e.ieee.org/document/9397983 (cit. on p. 9).

[11] Bingjian Yue, Shuming Shi, Shuo Wang, and Nan Lin. «Low-Cost Urban
Test Scenario Generation Using Microscopic Traffic Simulation». In: IEEE
Access 8 (2020), pp. 122194–122203. doi: 10.1109/ACCESS.2020.3006561.
url: https://ieeexplore.ieee.org/document/9129787 (cit. on p. 21).

[12] Liangyao Yu and Ruyue Wang. «Researches on Adaptive Cruise Control
system: A state of the art review». In: Proceedings of the Institution of
Mechanical Engineers, Part D: Journal of Automobile Engineering 236.2-
3 (2021), pp. 509–529. doi: 10.1177/09544070211019254. url: https:
/ / journals . sagepub . com / doi / 10 . 1177 / 09544070211019254 (cit. on
p. 32).

[13] SAE International. Vehicle Dynamics Terminology, SAE Standard J670_202206.
Reaffirmed 2022-06-09. 2022. url: https://www.sae.org/standards/
content/j670_202206/ (cit. on p. 37).

[14] International Organization for Standardization. ISO 8855:2011(en): Road
vehicles — Vehicle dynamics and road-holding ability — Vocabulary. Accessed:
2025-07-14. 2011. url: https://www.iso.org/standard/50685.html (cit.
on p. 37).

[15] MathWorks. Connect MATLAB and RoadRunner to Control and Analyze
Simulations. Online; accessed 2025-07-14. 2025. url: https://ww2.mathwor
ks.cn/help/driving/ug/connect-matlab-and-roadrunner.html (cit. on
p. 40).

[16] putta54. MW208_Raceline_Optimization. GitHub repository; accessed 2025-
07-14. 2020. url: https://github.com/putta54/MW208_Raceline_Optimi
zation (cit. on p. 54).

68

https://link.springer.com/book/10.1007/978-3-030-24127-8
https://link.springer.com/book/10.1007/978-3-030-24127-8
https://books.google.it/books/about/Hybrid_Electric_Vehicles.html?id=HCY3CwAAQBAJ
https://books.google.it/books/about/Hybrid_Electric_Vehicles.html?id=HCY3CwAAQBAJ
https://doi.org/10.1109/WIECON-ECE52138.2020.9397983
https://ieeexplore.ieee.org/document/9397983
https://ieeexplore.ieee.org/document/9397983
https://doi.org/10.1109/ACCESS.2020.3006561
https://ieeexplore.ieee.org/document/9129787
https://doi.org/10.1177/09544070211019254
https://journals.sagepub.com/doi/10.1177/09544070211019254
https://journals.sagepub.com/doi/10.1177/09544070211019254
https://www.sae.org/standards/content/j670_202206/
https://www.sae.org/standards/content/j670_202206/
https://www.iso.org/standard/50685.html
https://ww2.mathworks.cn/help/driving/ug/connect-matlab-and-roadrunner.html
https://ww2.mathworks.cn/help/driving/ug/connect-matlab-and-roadrunner.html
https://github.com/putta54/MW208_Raceline_Optimization
https://github.com/putta54/MW208_Raceline_Optimization

BIBLIOGRAPHY

[17] Alexander Heilmeier. racetrack-database. GitHub repository; accessed 2025-07-
14. 2019. url: https://github.com/TUMFTM/racetrack-database (cit. on
p. 54).

[18] MathWorks Student Competitions Team. Vehicle Path Tracking Using Stanley
Controller. MATLAB Central File Exchange; version 1.0.2; accessed 2025-
07-14. 2021. url: https://ww2.mathworks.cn/matlabcentral/fileexcha
nge/88977-vehicle-path-tracking-using-stanley-controller (cit. on
p. 55).

69

https://github.com/TUMFTM/racetrack-database
https://ww2.mathworks.cn/matlabcentral/fileexchange/88977-vehicle-path-tracking-using-stanley-controller
https://ww2.mathworks.cn/matlabcentral/fileexchange/88977-vehicle-path-tracking-using-stanley-controller

	Introduction
	Background
	Problems and Motivations
	Thesis Outline

	Background and Tools
	ADAS Overview
	Functional Scope and Classification of ADAS
	Simulation Pipeline Structure

	Simulation Tools
	MATLAB
	Simulink
	RoadRunner
	Summary

	Scene Construction and Simulation Configuration
	Scene Construction
	Scenario Configuration
	Scenario and Actor Setup in RoadRunner
	Ego Vehicle Behavior and Simulink Integration
	Ego and Actor Pose
	Sensor Models
	Controller and Vehicle Dynamics Integration
	Coordinate Transformation and Metrics Logging

	MATLAB Environment Setup

	Simulation Results
	Simulation Results
	Senario 1: Lead Car Deceleration
	Senario 2: Lead Car Stop and Go
	Senario 3: Cut-In and Out

	Additional Simulation: Shanghai International Circuit
	Real-World Map Data Import and Scene Generation
	Vehicle Dynamics and Controller Integration
	Results and Summary

	Conclusions and Future Works
	List of Tables
	List of Figures
	Bibliography

