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Summary

Modeling and simulation are essential tools in science, enabling researchers to
analyze complex systems and predict their behavior. High Performance Computing
(HPC) plays a crucial role by providing the computational power necessary to
run large-scale simulations, driving breakthroughs across various scientific fields.
For example, an ongoing challenge is climate modeling, which relies on HPC to
predict and understand the effects of climate change, helping to guide global
mitigation efforts. In addition, recent years have seen machine learning take on
a growing role in technological development, enabling progress in areas such as
audio and image processing, natural language processing, and autonomous driving.
High-performance, efficient computing systems are essential for both training and
real-time inference of these models.

To address these challenges, computer architects have leveraged Data-Level
Parallelism (DLP), a processing approach in which a single instruction operates on
multiple data elements simultaneously. This results in improved performance and
reduced demands on instruction and memory bandwidth, contributing to lower
power consumption. A key implementation of DLP is found in vector processors,
which feature two essential components: a vector register file (VRF), capable of
holding a large number of elements, and multiple deeply pipelined functional units
(FUs). To further enhance the performance of vector processors, design concepts
from superscalar architectures can be applied. This is exemplified by the analyzed
RISC-V-V 1.0 Vector Processing Unit (VPU), which features register renaming and
lightweight out-of-order execution. This work details the complete design process,
from conceptualization to RTL implementation, of an optimized register renaming
mechanism. The mechanism introduces a new scheme for vector registers utilization
in specific ISA instructions, leading to improvements in both performance and power
efficiency. Its effectiveness is evaluated using state-of-the-art benchmarks from
high performance computing and machine learning domains, analyzing trade-offs
in power consumption and area.
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Chapter 1

Introduction and
Motivations

This chapter introduces several key technical concepts, including RISC-V, the
vector extension, and register renaming. It also discusses the motivations behind
the design choices made in this thesis.

1.1 Introduction

1.1.1 Vector processing

Vector processors implement an instruction set where the instructions are designed
to operate on large one-dimensional arrays of data called vectors. This is in contrast
to classical General Purpouse processors, whose instructions operate on single data
items.

The Cray-1 [1], designed by Seymour Cray in 1975, was the first supercomputer
to successfully implement the vector processor architecture and SIMD instructions.
Due to the success of this design, vector machines quickly became the preferred
choice for supercomputing.

However, advancements in microprocessor integration led, during the 90s, to
their replacement by systems featuring multiple out-of-order superscalar cores [2].

The slowdown of Moore’s Law [3] is making engineers reconsider SIMD ar-
chitectures. The primary advantage of these systems lies in their efficiency, as
many scientific models inherently exhibit data-parallel characteristics. Furthermore,
leveraging data parallelism reduces code size, memory bandwidth requirements and
lowers power consumption [4], reducing the need for repetitive instruction fetching
and decoding.
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1.1.2 Vectorization example

The following snippet shows how vectorization can be used to operate on entire
arrays, rather than processing elements one at a time inside a loop.

Starting from a simple vector sum written in C:
for (i = @; i < vector_length; i++)

Sum[i] = A[i] + B[il;

The following is its equivalent implementation in scalar assembly:

li t0, 64 # Initialize loop counter to 64
loop:

1w t1, 0(a0) # Load A[i]

1w t2, 0(al) # Load B[i]

add  t3, t1, t2 # Compute A[i] + B[il]

Sw t3, 0(a2) # Store result in Sum[i]

addi a0, a0, 4 # Increment pointer A by 4 bytes (integer)
addi al, al, 4 # Increment pointer B by 4 bytes
addi a2, a2, 4 # Increment pointer Sum by 4 bytes
addi to, to, -1 # Decrement loop counter

bnez t@, loop # Loop if counter not zero

The following is its equivalent implementation in vector assembly:

li t1, 64 # Set vector length to 64
setvl t1 # Configure vector length register
vle.v v8, (a0) # Load vector from A
vle.v v9, (al) # Load vector from B

vadd.v v10, v8, v9 # Vector addition of A and B

vse.v v10, (a2) # Store vector result in Sum

Vectorization brings several benefits:

e The number of instructions is reduced, and the program becomes more concise
and readable. A smaller instruction count lowers the required instruction fetch
bandwidth, which is the rate at which a processor retrieves instructions from
memory and delivers them to the decoding stage.

2
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o The loop is eliminated, avoiding the need for branch prediction and the latency
caused by mispredicted branches. This results in more efficient and faster
execution.

1.1.3 RISC-V

RISC-V is an open-source, customizable, and free Instruction Set Architecture
(ISA). Started at UC Berkeley in 2010 as an academic project, the standard is now
managed by RISC-V International and supported by a wide range of members,
from academia to industry [5].

The relevance of RISC-V lies not only in its royalty-free nature and simplicity,
but also in its modular architecture, which allows for the inclusion of various
extensions [6)].

In particular, the Vector Processing Unit studied in this work implements the
RISC-V Vector Extension (RVV) Version 1.0, ratified by RISC-V International
in 2021 [7]. A key defining feature of the RISC-V Vector ISA is that it is vector
length agnostic. Software written for any RISC-V vector-compliant processor will
work on any other RISC-V vector processor. This is valuable to the customer from
a software reuse perspective.

1.1.4 RVYV 1.0: the RISC-V vector extension

The Vector Extension includes 32 vector registers, each with a width of VLEN
bits. These registers are capable of holding elements up to a maximum size of
ELEN bits. An important parameter in this context is VLMAX, which denotes
the maximum number of elements that can be stored in a single vector register. It
is defined as the ratio of VLEN to SEW (Single Element Width), i.e.

VLEN
LMAX = ——
v SEW

This extension has been designed to allow the same binary code to work across
variations in VLEN. In addition to the fundamental instructions typically found
in a Vector Architecture (such as move, add, xor, etc.), there are also operations
specifically designed to leverage the characteristics of vector computations. Here is
a summary of the most important ones:

» Vector load/store: These are used to move data between vector registers
and memory. These instructions can be strided or indezed.

— Strided loads/stores index the vector elements by referring to a starting
element and then adding (or subtracting) a certain stride to the base

3
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CEENN]

address. These are particularly fast, especially in cases like unit-strided
or optimized powers of 2.

— Indexed loads/stores use a vector of indexes, added to a base address,
to directly select elements. While more flexible, this method is generally
slower.

Widening/narrowing: These operations are used to increase or decrease
the size of the vector’s contents. For example, a multiplication between two
32-bit integers results in a 64-bit output to avoid loss of information. Some
operations require the inverse resizing (narrowing).

Vrgather: These are specialized operations that allow indexing a vector using
another vector as the index, enabling complex data access patterns. The index
values in the second vector are treated as unsigned integers The pseudocode
for this operation is:

for (i

= 0; 1 < N; ++1i)
x[i]l =

yLidx[i]];

where y is the source vector, idx is the index vector, and x is the result.
Vector-scalar and vector-immediate forms of the vrgather also exists. These
special cases allow a scalar or immediate value to be used as the index. A
single element is read from the source vector at this index and broadcast to
the active elements of the destination vector. Note that the same element is
written to all active elements of the destination vector.

vrgather.vx vd, vs2, rs1, vm uses the value in the scalar register rsi as
the index.

The pseudocode for this operation is:

for (int i = @; i < VL; ++i)
if (vmask[il])
vd[i] = (rs1 >= VLMAX) ? @ : vs2[rsi1];

w N

vrgather.vi vd, vs2, uimm, vm uses an unsigned immediate value as the
index.

The pseudocode for this operation is:

4
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S L O S

for (int i = @; i < VL; ++i)
if (vmask[il])
vd[i] = (uimm >= VLMAX) ? @ : vs2[uimm];

w N

Reductions: Apply a binary operator across a group of elements in a vector
register, combining them with an initial scalar value stored in element 0. The
final reduced result (scalar) is written back to element 0 of the same or another
vector register. Example: vredsum.vs vd, vs2, vsl, vin

int result = vs1[0];
for (int i = @; i < VL; ++i) {
if (vmask[il]) {
result += vs2[il];
}

3
vd[@] = result;

Vector moves: The vector integer move instructions copy a source operand
to a vector register.

— vmv.V.V copies one vector register group to another.

—vmv.v.x and vmv.v.i splat a scalar register or immediate to all active
elements of the destination vector register.

Integer scalar moves: These instructions transfer a single value between a
scalar x register and element 0 of a vector register:

vs2[0] (vs1=0)
x[rs1] (vs2=0)

—vmv.x.s rd, vs2 # x[rd]

—vmv.s.x vd, rsi # vd[o]

The vmv.x.s instruction copies a single SEW-wide element from index 0 of
the source vector register to a destination integer register. Given that XLEN
denotes the number of bits in a scalar register

— If SEW > XLEN, only the least-significant XLEN bits are transferred
and the upper SEW - XLEN bits are ignored.
— If SEW < XLEN, the value is sign-extended to XLEN bits.
Floating-Point scalar moves: Similar to the integer scalar moves, but for

floating-point values. These instructions transfer a single value between a
scalar floating-point register and element 0 of a vector register.

5
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1.1.5 Register renaming

Register renaming is a technique used in out-of-order processors to eliminate WAR
(Write After Read) and WAW (Write After Write) hazards. These dependencies are
considered name dependencies and exist only due to the scarcity of architectural
registers. To eliminate false dependencies between instructions, enabling more
parallelism, the number of available registers can be increased. In particular, the
Vector Register File of the VPU contains 40 physical registers, eight more than the
32 logical, ISA-defined registers.

When an instruction reaches the renaming unit, its destination register is
mapped to a free physical register. The source registers, previously renamed, are
also mapped to their corresponding physical registers.

Multiple implementations of register renaming exist, but the simplest approach
is supported by two data structures:

» Register Alias Table (RAT): A lookup table with one entry per logical
register. Each entry stores the physical register currently associated with that
logical register.

» Free Register List (FRL): A FIFO queue containing all physical registers
that have not yet been allocated. When a new destination register is needed,
a register is popped from this list.

Implementation details of the RAT and FRL will be provided in the next chapter.

1.2 Motivations and proposed idea

As highlighted in Section 1.4.1, the RVV 1.0 ISA features vector instructions that
produce scalar values as their result:

e Scalar moves: both integer and floating point: vmv.s.x, vmv.s.f
» Vector moves with scalar source : vmv.v.x, vmv.v.1

e Scalar vrgather: vrgather.vx, vrgather.vi

e Reductions: e.g., vredsum.vs

To optimize the use of register resources, a small additional scalar register file,
referred to as the Squeezed Vector Register File (SVRF), is introduced. This
register file is not be confused with the register file of the scalar core. The purpose
of the SVRF is to store the results of these instructions within the Vector Processing
Unit.
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With register renaming, an instruction can only be issued if physical registers
are available. This optimization prevents the inefficient allocation of an entire
vector register, such as one capable of holding 256 double-precision elements, when
only a single scalar value needs to be stored. Instead, the scalar result is written
directly to the SVRF, providing a more compact and efficient storage solution.

In a standard vector processing unit, scalar move instructions (e.g., vmv.v.1i,
vmv.v.x, vmv.s.X, vmv.s.f) are handled similarly to other arithmetic operations:
a physical register is allocated through renaming, the instruction is issued to the
lanes and the value is written to the Vector Register File. With this optimization,
however, the scalar result is written directly to the Squeezed Register File during
the renaming stage, completing the operation in a single clock cycle. This frees
the previously allocated vector register (the old destination) and improves overall
performance by reducing execution time, since these instructions no longer enter
the lanes pipeline, saving multiple clock cycles.

This approach not only optimizes register usage but also reduces power con-
sumption. In instructions like vmv.v.i and vmv.v.x, all active elements of the
destination vector register are written. This leads to unnecessary power consump-
tion, as the same scalar value may be written up to 256 times, in contrast to a
single write operation to the SVRF enabled by this optimization. In addition, all
the scalar moves are executed directly at the renaming stage, bypassing the lanes
pipeline and avoiding the activation of internal buffers and control logic. This
results in additional dynamic power savings.



Chapter 2

Context

2.1 VPU microarchitecture

This section describes the microarchitecture of the VPU.
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Figure 2.1: VPU architecture
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The VPU presented in this work is fully designed at BSC and it is designed to

operate as a co-processor to a scalar core also developed at BSC [8].

2.1.1 Front End

The front end acts as the interface responsible for receiving and decoding instructions
from the scalar core. It is composed of two main modules:

VPU_CORE
issue_i ( \
! > ack_i
_, issue_credit_o! <«
CORE gispatch_isb ¢ | Pre_issue_queue ——aldo UNPACKER
== instr_o
dispatch_i.kill ———>
b\ _/
.~

Figure 2.2: Front End stage

Pre-Issue Queue: handles communication with the interface of the scalar
core.

Unpacker: decodes instructions using the OPCODE, FUNCTION6, and FUNCTION3
fields. The decoded information is packed into appropriate structures and
forwarded to the subsequent VPU modules. Instruction flags are set based on
the operation type, such as widening, narrowing, slide-up, or slide-down. Most
importantly, this component classifies each instruction as either arithmetic or
memory-related, allowing it to be routed to the appropriate queue.

Renaming Unit: further detailed in the next chapter, this unit resolves false
dependencies such as write-after-read (WAR) and write-after-write (WAW)
through register renaming. It contains a Register Alias Table (RAT) that
maps logical registers to physical ones, and a Free Register List (FRL) that
tracks available physical registers. By eliminating naming conflicts, it prevents
data hazards and ensures correct instruction execution.

Queue Demultiplexer: simple combinational module that separates memory
and arithmetic instruction streams and dispatches them to different queues,
enabling decoupled execution.
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<€—ack_i
€«—ack_o .
valid_o—>»
PRE_ISSUE_QUEUE valid_i—> Unpacker Renaming unit
instr_o
 ——
instr_info_i ="
\ / decoded_instr_o

vrob_info_o

ROB

Figure 2.3: Unpacker

2.1.2 Issue Stage

The issue stage includes the arithmetic queue, the memory queue, the Valid Bits
module, and the Mask Valid Bits module.

After leaving the front end, instructions are routed to either the arithmetic or
memory queue. Each instruction at the head of the FIFO is issued to the lanes as
soon as its requirements are met, which depend on whether the instruction is over-
lappable. Overlapping means back-to-back execution, allowing a new instruction to
start before the previous one finished, maximizing vector pipeline utilization. This
behavior is controlled by the issue stage logic. Overlappable instructions are sent
directly, in order, to the lanes, while non-overlappable instructions send a request
signal and are issued only after receiving a grant.

The Valid Bits module monitors register availability. The arithmetic queue
sends enable signals and physical addresses to this module, which may activate
one, two, or three source operands depending on the instruction.

When an instruction is renamed, the valid bit of its destination physical register
is cleared, and set again only after the instruction writes to that register. Since
source operands become ready at different times, the Valid Bits module tracks
groups of physical registers to finely control operand readiness.

The Mask Valid Bits module functions similarly but focuses on masked instruc-
tions, tracking mask register valid bits. It uses a two-dimensional structure to
handle instructions composed of two micro-instructions.

2.1.3 Memory Units

The VPU does not have direct access to the memory hierarchy; instead, the scalar
core handles memory accesses for vector memory operations. The memory system
consists of the Load Management Unit and the Store Management Unit, along

10
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with their associated buffers.

Load Path:

o Load Management Unit (LMU): responsible for managing load requests from
the VPU and performing the necessary data processing. When a full memory
line arrives at the LMU, the offset must be removed, and the correct data
selected and compacted based on the stride. The data must then be aligned
for distribution to the appropriate lanes.

o Load Buffer: receives data from the LMU prepares it for writing into the
Vector Register File.

Store Path:

o Store Buffer: reads data from the Vector Register File (VRF) during a store
operation and sends it to theStore Management Unit (SMU).

o Store Management Unit (SMU): collects information from the store buffers
and transmits the data to the scalar core for memory write.

2.1.4 Vector Lanes

The lanes are the central components responsible for computation within the VPU.
This architecture exploits parallelism by allowing each lane to work concurrently
on different chunks of vector data. This version of the VPU features 16 lanes, ecah
one contains several key submodules:

» Vector Register File (VRF): the Vector Register File consists of 40 physical
registers, each capable of storing up to 256 double-precision elements. These
registers are organized into slices distributed across 16 lanes, with each lane
storing a 5 KB slice. Fach lane’s slice of the VRF is implemented using five 1
kB 1-read/1-write SRAM banks. This design choice balances area, timing, and
power efficiency while ensuring the VRF can sustain the required throughput.
It supports interleaved access to maximize data throughput during vector
loads, avoiding stalls in the pipeline.

 Finite State Machine (FSM): each lane features a 5-state FSM (plus idle)
that manages read/write operations to the VRF. The FSM coordinates access
to the VRF banks and buffers data for the functional units, ensuring efficient
pipeline utilization by issuing 64-bit results every cycle after startup.

11
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Figure 2.4: Vector Lane

Execution Unit Wrapper: this includes the lane’s Floating Point Unit
(FPU) and Arithmetic Logic Unit (ALU). Both units are fully pipelined and
support SIMD operations, handling floating-point and integer /fixed-point
computations respectively. They support a wide range of operations including
FMA, division, narrowing, widening, and reductions according to the RVV
specification.

Write-Back Buffer (WB), Load Buffer (LB), and Store Buffer (SB):
these buffers temporarily store data during write-back, load, and store opera-
tions, ensuring smooth data flow and avoiding pipeline bubbles.
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Figure 2.5: Finite state machine and lane buffers

2.1.5 Reorder Buffer

As the execution of arithmetic and memory instructions in this vector processing
unit can complete in an out-of-order fashion, a mechanism is needed to ensure
instructions still commit in the correct order. A Reorder Buffer (ROB) is used
for this purpose, maintaining program order at the commit state, even though
instructions may finish execution out of order. The ROB operates as a First-In,
First-Out (FIFO) buffer, tracking the order of issued instructions and ensuring
that only one instruction is committed per cycle.

The Control Unit (CU) signals the ROB whenever an instruction has finished
executing. Once notified, the ROB checks if the associated scoreboard ID is ready
to be committed back to the scalar core, and sets the appropriate interface signals
to carry out the commit. When the scalar core issues a vector instruction, the
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ROB logs the corresponding scoreboard ID for tracking.

If an exception occurs during execution, the ROB triggers an internal rollback
process to restore the vector unit to a previously known good state. During this
phase, the ROB blocks any new instructions from entering the front-end, ensuring
the rollback completes safely and system consistency is maintained.

2.1.6 Interlane Crossbar

The interlane crossbar is used for permutations that require communication and data
movement between vector elements, such as slides, gathers, reductions, narrowing,
and widening operations. The current interlane interconnect employs a full crossbar
network topology.

It takes two clock cycles to transmit an item, whether data or an index, from
one lane to another. The datapath consists of a series of configurable switches that
establish a connection between any source lane and any destination lane.

2.2 Methodology

In this section the experimental setup and the tools used are described

2.2.1 Design and Simulation

The Vector Processing Unit is fully designed at the Register Transfer Level (RTL)
using SystemVerilog. SystemVerilog is a hardware description and verification
language standardized by the IEEE. Originally developed as an extension of
Verilog [9], it enhances the capabilities of the language for the design, simulation,
and description of digital and mixed-signal systems. It introduces features such
as parameterizable modules, interfaces, and advanced data types, which enable
designers to create scalable, modular, and reusable hardware components. The
design is simulated using QuestaSim, a commercial simulation and verification
tool for digital designs developed by Mentor Graphics (now part of Siemens EDA).
QuestaSim is widely used for hardware description languages such as SystemVerilog,
Verilog, and VHDL, as well as for mixed-language designs.

2.2.2 Verification

The design is verified using an environment built in SystemVerilog. When used for
verification, SystemVerilog follows object-oriented programming (OOP) paradigms,
offering a wide range of classes and libraries that enable the development of reusable
and powerful tests.
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The verification structure follows the Universal Verification Methodology (UVM),
a standardized framework that defines best practices for building reusable, ex-
tensible, and scalable testbenches. The key components of a UVM testbench
are:

TESTBENCH
ENVIRONMENT
SCOREBOARD
GOLDEN
MODEL
AGENT
SEQUENCER
SEQUENCE
‘ MONITOR ‘ DRIVER
‘ INTERFACE ‘
Fo Y
-~ oy

Figure 2.6: UVM environment architecture

o Test: The top-level UVM component that instantiates the environment and
configures it by overriding parameters or objects as needed.
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o Environment: A container for all the verification components targeting the
DUT. It defines the reusable component topology of the UVM tests It contains
the Scoreboard: the component that compares DUT outputs against a
reference model to check for correctness.

e Agent: The core building block of the UVM testbench, containing the
following sub-components:

— Sequencer: Generates and sends transactions (sequence items) to the
driver.

— Driver: Receives transactions from the sequencer and drives them to the
DUT through a virtual interface.

— Monitor: Observes signals from the DUT via the virtual interface and
forwards them to the scoreboard.

— Virtual Interface: Facilitates communication between the testbench
and the DUT, connecting all agents and enabling signal-level interactions.

2.2.3 Synthesis

In digital design, register-transfer level (RTL) descriptions are transformed into
gate-level implementations through the synthesis process. This process explores
different ways of implementing a logic function in order to optimize it according to
specific design constraints.

Synthesis is typically divided into two main phases:

o Logic Synthesis: This phase focuses on optimizing the logic structure to
improve efficiency and meet performance requirements. The goal is to generate
a functional netlist that is independent of any specific technology.

o Technology Mapping: This critical step in technology-dependent optimiza-
tion maps the optimized netlist onto available logic gates and cells from a
specific standard cell library, composed of pre-designed and pre-characterized
components. At this stage, initial estimates of power consumption and chip
area are also obtained.

For this study, the TSMC 7 nm technology library was used, as it is the designated
platform for the European projects in which the Barcelona Supercomputing Center
is involved. The synthesis process was carried out using Cadence Genus, a widely
adopted industry-standard tool.
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2.2.4 Power analysis

For the power analysis, the Joules RTL Power Solution has been used. This is
a commercial tool developed by Cadence, widely adopted in both industry and
academia for performing power measurements at both the register-transfer-level
and gate level.
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Chapter 3
Design

After a brief introduction to the baseline architecture of the renaming unit and an
explanation of the fast-move feature, this chapter explains how the optimization
works and provides the microarchitectural details of the modules designed to
support it.

3.1 Baseline renaming architecture

This section provides a detailed explanation of the data structures used by the
renaming mechanism in the baseline architecture.

3.1.1 Register Alias Table

The Register Alias Table (RAT) is a structure that stores the mapping between
logical and physical registers. In this architecture, the table contains 32 entries,
one for each logical vector register, as specified by the RVV 1.0 ISA.

To support the rollback mechanism required for lightweight out-of-order exe-
cution, there are as many copies of the RAT as there are entries in the Reorder
Buffer, 32 in this case. If an instruction needs to be killed, the correct state is
restored by using the RAT associated with the vrob;q of the last valid instruction.

When a new instruction is renamed (i.e., when a new vector or squeezed register
is assigned as the physical destination), the RAT corresponding to the current
vrobyq inherits all the information from the RAT of the previous vroby, with the
addition of the new mapping for the current logical destination register. At the
same time, the RAT is accessed using the indices of the logical source registers to
retrieve their corresponding physical registers This information is then packaged
into a parameterized struct, which is passed to subsequent modules, such as the
queue demultiplexer and the instruction queues. The same logic is used for the
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mask register alias table.

3.1.2 Free Register List

The Free Register List (FRL) is a data structure that tracks the availability of free
physical registers. It is implemented as a FIFO queue. When an instruction is
renamed, a new physical register is allocated by reading the queue entry pointed to
by the frl_read_ptr. Logic is included to detect when the queue is empty, which
triggers the rename_stall signal. This signal halts the issue of new instructions
until a previous instruction commits and frees a physical register.

The commit of a register back to the FRL occurs when an instruction completes
execution and is controlled by a signal from the Reorder Buffer. The register that
is committed back is the old physical destination of the instruction that has just
completed execution. Subsequent instructions will now require and access the new
value stored in the newly assigned register. Since the old physical register is no
longer needed, it can be safely returned to the Free Register List (FRL).

3.2 Fast Moves feature

The RISC-V-V 1.0 ISA includes the vector-vector move instruction, encoded
as vinv.v.v vd, vsl, which copies the contents of the source register vsl into the
destination register vd, up to the current vector length vl. The baseline architecture
implements an optimized version of these vector-to-vector moves, known as Fast
Moves [10]. This optimization is discussed in this section because the logic and
modules required are closely related to the designed optimization.

In particular, the fast mowve instruction is fully resolved during the renaming
stage. To support this optimization, two additional structures are introduced:

o Element Table: For each logical register, it stores the number of vector
elements assigned to the destination register.

« Alias Counters: A set of 40 counters, one for each physical register, tracks
how many logical registers are currently mapped to the same physical register.
The counter is incremented when a physical register is assigned to a logical
one and decremented when that logical register is renamed again to a different
one.

When a fast move is executed, no new physical register is allocated. Instead,
the RAT is accessed using the index of the source register, and the physical register
value retrieved is directly written into the RAT entry of the destination logical
register. The instruction is completed by updating the Element Table with the
current value of v1.
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This approach allows a single physical register to be associated with multiple

logical registers. The alias counter tracks how many logical registers are mapped
to the same physical register, increasing with each fast move.

The alias counters are essential for the proper management of the Free Register

List (FRL). As discussed in the previous section, a physical register can only be
returned to the FRL when it is no longer needed, that is, when the value it holds
is no longer required by any logical register. With fast moves, a physical register
is not immediately freed when a logical register is renamed; instead, it is only
returned to the FRL when the alias counter reaches zero, indicating that all logical
registers previously mapped to that physical register have been renamed to new
physical registers.
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Figure 3.1: Baseline renaming unit architecture

3.3 Implementation
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In this section the modules required to support the optimization are described
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3.3.1 Register Renaming Module

Squeezed Free Register List The Free Squeezed Register List (FSRL) serves
the same purpose as the standard FRL, but it tracks the availability of Squeezed
registers instead. Its length matches the total number of entries in the SVRF
(which is parameterized, in this thesis both the version whti 16 and 8 SVREGS
have been studied). Initially, at the start of the program, all vector logical registers
are mapped to physical vector registers, meaning all squeezed registers are free.

The FSRL receives requests for registers through signals from the unpacker.
These signals are asserted (set to 1) when an instruction is marked for optimized
execution.

There are situations where many vmv.v.x or vmv.v.i instructions arrive at
the VPU simultaneously, typically during the initialization of counters (e.g., for
accumulation registers). This can lead to a rapid consumption of squeezed registers.
In these cases, if no squeezed register is available, the instruction is renamed to
a standard vector register to avoid stalling the issue stage, allowing execution to
proceed as normal.

When a instruction enters the renaming stage and the FSRL grants a new
squeezed register, the squeezed register’s ID is written into the corresponding RAT
entry.

A commit to the FSRL occurs when a destination register, previously mapped
to a squeezed register, is renamed and completes execution, meaning the old value
is no longer needed.

Register Map Table The register map table can be considered an extension
of the RAT. It has the same number of entries as the number of logical registers.
For each logical register, it indicates whether the register is currently mapped to
a squeezed or a standard vector register. This distinction is necessary because,
during instruction issue, the information in the RAT alone is not sufficient; it is
also essential to know whether the logical register is mapped to a squeezed or a
vector register. A single bit per entry is enough to represent this distinction:

o The bit is set to 1 if the destination is renamed to a squeezed register, or if a
fast move instruction (e.g., vmv.v.v with a squeezed register source is issued.

o The bit is set to 0 if the destination is mapped to a standard vector register,
or if a fast move instruction with a vector register source is issued.

For rollback support, we need as many copies of the register map table as there
are entries in the ROB (as explained in the previous chapter regarding the RAT).

Squeezed Alias Counters It is a table with as many entries as the number of
registers in the SVRF. Each entry is a counter that tracks how many logical registers
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are currently mapped to the same (squeezed) physical register. Counts greater
than zero are the result of fast moves. All counters are initialized to zero, since at
the beginning, all logical registers are mapped to standard vector registers. The
counter, for a squeezed register and for the current vrobID, is incremented when
that squeezed register is piacked from the FSRL and assigned to a new destination.
At the same time, the counter corresponding to the previous destination must be
decremented:

o If the previous destination was a squeezed register, the corresponding Squeezed
Alias Counter entry (indexed by old_dest_address_d) is decremented.

» Otherwise (if the previous destination was a standard vector register), the
corresponding alias_cnt is decremented instead (see Section 3.2).

The check to determine whether a register was mapped to a squeezed or a
standard vector register is done by accessing the Register Map Table using the
logical register ID (rat_waddr), before the table is updated in the next clock cycle
(via vregs_map_q).

3.3.2 Squeezed vector register file

The Squeezed Vector Register File (SVRF) is instantiated in the top module
of the VPU (vpu_core.sv). It is implemented using the multiport_regfile_ff
module, which is a parameterized register file based on flip-flops.

The SVRF has two write ports, necessary because the register file interacts with
both the renaming unit and the lanes. Specifically, two types of instructions can
write into a squeezed register:

e VmMV.V.X, vmv.Vv.1i, vmv.s.x, vmv.s.f which are resolved during renaming.

e Reductions, , vrgather.vx, and vrgather.vi, which enter the pipeline and
are executed in the lanes.

Each write port has its own enable signal, one coming from the renaming unit, and
the other from the lanes.
Regarding the read ports:

o Three read ports for arithmetic instructions. This is because the RISC-V
Vector ISA allows for vector instructions with up to three source operands,
and each source may be mapped to a squeezed register.

» Two read ports for memory instructions, to support stores: one to read the
base address and another to read the data to be stored in memory.
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Each entry in the SVRF is 64 bits wide, which is necessary to store a full scalar
value when the architectural parameters are such that VSEW is equal to ELEN = 64
(i.e., the maximum size of a vector element in the RISC-V Vector extension).
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Figure 3.3: Squeezed Vector Register File
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3.3.3 Impact on other architectural modules

This section describes the design changes made to various modules to support the
optimization.

Unpacker The unpacker sets specific bits when an instruction produces scalar
data, making it a candidate for optimized execution. In particular, two distinct cases
are identified using separate flags (squeezed_valid and squeezed_valid_vmv):
reductions and gathers executed in the lanes, and moves handled during renaming.
These flags, generated through combinational logic from other flags obtained during
the decoding, are passed to the renaming unit.

Instruction Queues An arithmetic instruction may use a source operand
stored in a squeezed register. In such cases, indicated by specific bits set in
the decoded_instruction signal from the renaming, the arithmetic queue issues a
request to the valid_bits module to determine the availability of the operands.
Once the data becomes available, the value is retrieved from the Squeezed Register
File and encapsulated into a structure suitable for execution by the vector lanes.
For store instructions, the memory queue also interacts with the Squeezed Vector
Register File (SVRF) to obtain the data that needs to be written to memory.

Valid Bits Another valid_bits module, svregs_valid_bit_i, is instantiated
to track the availability of squeezed registers. It interacts with the renaming logic to
set the corresponding bits once instructions such as vmv.v.x, vmv.v.i complete. It
also communicates with vector lane 0, since its the lane responsible for performing
the last step in reduction operations. The output of this module consists of valid
bits, which inform the queues about the availability of operands.

Vector Lane The execution of instructions in the lanes is managed by a finite
state machine, implemented in the fsm_lane module. The execution process is
divided into several states. In the FSM_FILL_A, FSM_FILL_B, and FSM_FILL_C states,
the squeezed_operand signal is asserted. This signal prevents reading from the
vector register file when the operand is squeezed, and while it is active, the squeezed
data is directly forwarded to the lanes. In the WRITE_BACKstate, the write-enable
signal for the squeezed vector register file (SVRF) is asserted if the destination
register is squeezed, as determined by the FSM.

Reorder Buffer The Reorder Buffer (ROB) is the key module responsible
for instruction commit. Instructions arriving from the renaming unit also carry
information indicating whether the old destination register was a squeezed register.
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In such cases, when the commit is performed, the old destination register is returned
to the free squeezed register list instead of the standard free register list.
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Code execution example

In this section, an example of code execution is provided, showing how various
data structures are updated.

vadd.vv  v2, v1, v0 VL=35

vredsum.v v3, v2, vl VL=30
Vmv.V.X vd, rsi VL=25
vmv.v.v  v6, v4 VL=30

vadd.vv  v4, v1, v2 VL=30

4.1 Initial state of modules

Note: There are 32 copies of the following structures, one per ROB entry, to
support the rollback mechanism in case an instruction is killed. For simplicity, only
a single instance is shown and discussed here. The version discussed corresponds
to a system with 16 physical squeezed registers.

» Register Alias Table (RAT): 32 entries, one per logical register. Each
logical register is initially mapped to the physical register with the same index
(i.e., logical register Rn — physical register pn).

» Free Register List (FRL): A first-in, first-out queue with a total capacity
of 40 physical registers. Initially, 8 registers (physical registers 32 to 39) are
free. The number of physical registers in the list can increase dynamically if
fast move instructions are executed.

o Free Squeezed Register List (FSRL): First-In, First-Out queue with a
total capacity of 16 entries, equal to the total number of squeezed vector
registers (SVRF). Initially, all 16 registers are present in the list.
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o Element Table: 32 entries, one for each logical register.

» Register Mapping Table (RMT): 32 entries, one per logical register. All
entries are initially set to zero, indicating that logical registers are mapped to
the default vector physical registers.

» Vector Register Usage Counters (VREG Counters): 40 entries, one
per physical vector register. Entries 0-31 are initialized to 1 (each physical
register is currently assigned to its corresponding logical register). Entries
32-39 are initialized to 0 (indicating those physical registers are free and listed
in the FRL).

» Squeezed Register Usage Counters (SVREG Counters): 16 entries,
all initialized to 0, meaning all squeezed physical registers are currently free
(available in the FSRL).

4.2 Code execution

The execution of the assembly code is presented step by step, with a summary of
the changes in the register renaming modules for the optimized version. Tables are
included to provide a more schematic overview.

vadd.vv v2, vl, vO VL=35

Standard vector add instruction. The destination register v2 is renamed to a new
physical register allocated from the Free Register List (e.g., register 32). The
RAT entry for v2 is updated, and the Element Table is written with the VL value
(35). The alias counter for the previously assigned physical register (e.g., vreg2)
is decremented to 0 and the counter for the new physical register (32) is set to
1. vreg2 can be committed back to the FRL, at the tail of the queue, pointed by
frl _commit_ ptr.

FRL FSRL
Rdest = FRL[fr]_read_ ptr] = 32

frl read ptr = frl read ptr + 1 /

p2 committed back

RAT RMT ELEM__TABLE
RAT[2] « 32 RMT[2] «+- 0 element table[2] < 35
logical destination = 2 vector register logical destination = 2
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V-REGS COUNTERS S-REGS COUNTERS
old destination mapping = 0

new destination mapping = 32
ent[0] = 0 /
cnt[32] =1

vredsum.v v3, v2, vl VL=30

This is a reduction instruction, so the destination v3 can be renamed to a squeezed
register. The first available squeezed physical register is selected from the Free
Squeezed Register List (e.g., register 0). The Register Alias Table, Register Map
Table, and Element Counter at entry number 3 are updated accordingly: the RAT
is updated with the new destination, the Element Table is set to 1 because it is
a reduction, and the Register Map Table is set to 1 to indicate that the logical
register is now mapped to a squeezed register. The Squeezed Alias Counter for
the selected squeezed register is incremented, and the alias counter for the old
destination vector register is decremented accordingly. That register, p3, can then
be committed back into the FRL.

FRL FSRL
Rdest = FSRL[fsrl_read ptr] =0
fsrl read ptr = fsrl read ptr + 1

p3 committed back

RAT RMT ELEM__TABLE
RAT[3] <~ 0 RMT[3] « 1 element table[3] < 1
logical destination = 3 squeezed register reduction operation
V-REGS COUNTERS S-REGS COUNTERS
old destination mapping = 3 new destination mapping = 0
vreg_cnt[3] =0 svreg_cnt[0] = 1

vmv.v.x v4, rs1  VL=25
Scalar-to-vector move. The destination register v4 is renamed to a new squeezed
physical register taken from the Free Register List (e.g., register 1). The RAT and
Element Table are updated with the new mapping and VL value (25). The alias
counter of the previously assigned physical vector register is decremented, and the
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counter for the new squeezed physical register is set to 1. The old destination
vector register can then be committed back to the FRL.

FRL FSRL
Rdest = FSRLIfsrl read ptr] =1
fsrl read ptr = fsrl _read ptr + 1

p4 committed back

RAT RMT ELEM__TABLE
RAT[M4] «+ 1 RMT[4] « 1 element table[4] < 25
logical destination = 4 squeezed register VL elements
V-REGS COUNTERS S-REGS COUNTERS
old destination mapping = 4 new destination mapping = 1
vreg_cnt[4] =0 svreg_cnt[l] =1

vmv.s.x vb, rs1  VL=25
Scalar-to-vector element move. It executes similarly to the previous instruction. A
new squeezed register is taken from the FSRL, and the RAT and RMT are updated
accordingly. The only difference is that, according to the ISA, this instruction
writes only to element 0 of the vector. Therefore, the VL stored in the Element
Table is set to 1. The counters are updated, and the vector register is committed

back to the FRL.

FRL FSRL
Rdest = FSRL[fsrl_read ptr] = 2
fsrl read ptr = fsrl_read ptr + 1

p5 committed back

RAT RMT ELEM__TABLE
RATI[5] < 2 RMT[5] « 1 element table[3] « 1
logical destination = 2 squeezed register scalar to VREGI0]
V-REGS COUNTERS S-REGS COUNTERS
old destination mapping = 5 new destination mapping = 2
vreg_cnt[5] =0 svreg_cnt[2] =1
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vmv.v.v v6, v4 VL=30

This is a vector move that executes as a fast move; no new physical register is
allocated. The RAT entry for v6 is updated to match that of v4. Same for Register
Map Table, set to 1 beacuse the source is mapped to a squeezed register. The
Element Table is updated with the minimum between the current VL (30) and the
VL previously associated with the source register (v4, which is 25). Since both
v4 and v6 now map to the same physical register, its Squeezed Alias Counter is
incremented to reflect the additional logical alias.

FRL FSRL
p6 committed back /
RAT RMT ELEM__TABLE
RAT[6] < 0 RMTI[6] « 1 element table[6] < 25

logical destination = 6 squeezed register VLeource < V6Linstruction

V-REGS COUNTERS

S-REGS COUNTERS

old destination mapping = 6
vreg_cnt[6] = 0

new destination mapping = 1
svreg_cnt[l] = 2

vadd.vv v4, vl, v2 VL=30
This instruction overwrites v4 again. A new physical vector register (e.g., 34) is
allocated from the Free Register List. The RAT entry for v4 is updated, and the
Element Table is set with VL. = 30. The alias counter for the old physical squeezed
register is decremented, while the counter for the new physical vector register is set
to 1. No commit to the FSRL occurs because, due to a previous fast move, the
alias counter for that register is still 1 (i.e., greater than 0).

FRL FSRL
Rdest = FRL][fr] _read_ptr| = 33 /
frl read ptr = frl read ptr + 1
RAT RMT ELEM__TABLE
RAT[4] < 33 RMT[4] «+- 0 element table[4] < 30

logical destination = 4

vector register current VL
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V-REGS COUNTERS S-REGS COUNTERS
new destination mapping = 33 old destination mapping = 1
vreg_cnt[33] = 1 svreg_cnt[l] =1
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Chapter 5
Verification

Verification is a critical step to ensure that the Vector Processing Unit still behaves
correctly after the microarchitectural optimization and complies with the ISA
specifications. To achieve this, a UVM (Universal Verification Methodology)
environment has been developed. UVM is a standardized, reusable verification
methodology based on SystemVerilog, widely adopted in the industry for verifying
complex digital designs. It provides a structured framework for building testbenches,
generating stimuli, and checking functional correctness (see Chapter 2.2.2). In this
setup, the UVM environment takes as input the RTL-level design,a RISC-V-V
golden reference model, and the binary of a test to perform

5.1 VPU simulation wrapper

In the UVM environment, the scoreboard is the component responsible for verifying
the functionality of the design. It does this by comparing the output from the
Design Under Test (DUT) with that from a golden reference model.

In this implementation, the VPU is encapsulated within the vpu_sim_wrapper,
an interface module that provides access to internal signals for verification purposes.

With the introduction of two separate register files in the VPU, the Squeezed
Vector Register File (SVRF) and the standard Vector Register File (VRF), the
vpu_sim_wrapper requires several modifications.

In the standard setup, data is retrieved from a mirrored data structure that
replicates the contents of the VRF. This mirror is accessed using information
provided by the Reorder Buffer (ROB) and the renaming logic. Specifically, the
scoreboard uses the logical destination of the instruction (obtained from the ROB)
to query the Register Alias Table (RAT) in the renaming unit. The RAT returns
the corresponding physical register index, which is then used to access the mirrored
VRF.
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IN the new version, each time an instruction is renamed, the register mapping
table is queried to indicate whether the register has been mapped to a squeezed
or a standard vector register. This mapping information is stored in an internal
table indexed by the ROB ID, allowing it to be retrieved later when the instruction
completes.

When an instruction completes, the Destination Mapping Table (data structure
inside the VPU simulation wrapper) is accessed using the associated ROB ID. If
the result was mapped to a squeezed register, data is retrieved from the SVRF and
forwarded to the scoreboard. Otherwise, the data is taken from the VRF mirror.

5.2 ISA Tests

The ISA tests consist of a variety of tests categorized to cover different types of
instructions in the ISA. These tests, written in RVV 1.0 assembly and compiled
using the GNU toolchain for RISC-V [11], are used by the sequencer to apply
stimuli to the Device Under Test. The main categories include:

o Vector loads and stores

Integer arithmetic instructions

Fixed-point arithmetic instructions

Floating-point instructions

Reductions

Mask instructions

Permutation instructions

Each of these instruction categories includes numerous tests to ensure compre-
hensive coverage of all instructions. The tests also vary key parameters such as
VSEW (Vector Standard Element Width) and VL (Vector Length) defined in the
RISC-V Vector Extension (RISC-V-V).

5.3 Spike

Spike is a RISC-V ISA simulator maintained and updated by the RISC-V Foun-
dation [12]. It includes support for many extensions (V included) and serves as a
reference implementation of the RISC-V architecture. In the verification environ-
ment, Spike is used as the golden model to compare against the results produced
by the Vector Processing Unit.
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5.4 Simulation workflow and verification

The simulation, along with the test environment and test cases described, is carried
out using Questasim. The output is a simulation transcript file that contains
detailed information about all executed instructions and the internal state of the
scoreboard. If an error occurs, the simulation halts, and the debugging phase is
conducted by analyzing the waveforms within Questasim.

Once all ISA tests pass, a first stage of architectural verification is considered
complete. At this point, performance evaluation can proceed using more complex
and comprehensive kernels.
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Chapter 6
Performance evalutaion

Benchmarking a processor involves evaluating its performance across a variety
of scenarios using code from different application domains. In this study, the
developed Vector Processing Unit (VPU) targets domains such as High Performance
Computing (HPC) and Machine Learning (ML), and benchmarks have been selected
accordingly.

In the context of this study, the performance evaluation aims to compare the
simulation results against the baseline architecture, while varying the number
of elements in the Squeezed Vector Register File. The optimized VPU exhibits
behavior identical to the baseline VPU when executing instructions not impacted
by the optimization. Performance improvements become evident as the number of
optimized instructions increases.

6.1 Code vectorization and benchmark suites

A key advantage is that the RISC-V Vector Extension (RVV) version 1.0 is fully
supported by modern compilers. However, the compiler’s auto-vectorization capa-
bilities are still limited and often unable to fully exploit the vectorization potential
of the hardware [13]. To achieve optimal performance, code must be explicitly
vectorized by developers. This is typically done using RISC-V intrinsics [14], built-
in compiler functions that map directly (one-to-one or many-to-one) to specific
assembly instructions, enabling fine-grained control over vector execution. Existing
vectorized benchmarks from academic literature were used as an initial reference
for this work:

« RiVEC Benchmark Suite [15]: The RiVEC suite is a collection of data-
parallel applications from diverse domains, developed specifically to address the
lack of comprehensive vectorized benchmark suites. It focuses on evaluating
vector microarchitectures and is particularly well-suited for this study, as it
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targets the RISC-V architecture. RiVEC supports the latest RVV 1.0 intrinsics
and can be compiled using the up-to-date RISC-V GNU toolchain.

o Ara2: Ara is a vector processing unit designed to operate as a coprocessor
alongside the CVAG6 core, developed as part of the PULP platform at ETH
Zurich [16]. In line with the open-source hardware philosophy, all benchmarks
and programs used to evaluate the VPU are publicly available. Since Ara
supports the RISC-V Vector Extension version 1.0, the benchmarks are written
using RVV intrinsics, making it a suitable reference for this project.

6.2 Other challenges

The performance of the VPU is evaluated through RTL simulation using Questasim.
While RTL simulation offers cycle-accurate results, it becomes increasingly inefficient
for large and complex designs like the VPU. As an event-driven process, the
simulation time and computational load grow significantly due to the large number
of events the simulator has to manage. This problem is especially pronounced when
running long benchmarks, such as those described earlier.

In contrast, FPGA emulation executes the design on actual hardware, providing
much faster performance. It is typically preferred when a large number of test
cycles are needed. The speed and scalability of hardware emulation make it ideal
for evaluating extensive workloads. However, at the time of this work, the FPGA
emulation environment was not yet ready. Therefore, the performance evaluation
in this project is conducted exclusively through RTL simulation.

Evaluating performance at the RTL level introduces another important limitation:
all tests and benchmarks must be compiled for a pure bare-metal environment. This
requirement significantly constrains the range of usable benchmarks, as many rely
on operating system services or runtime libraries. As a result, the benchmark suites
described previously cannot be used directly without adaptation and reworking to
remove dependencies and ensure compatibility with a bare-metal setup.

6.3 Microbenchmarks

To address both the long simulation times and the limitations imposed by the
bare-metal environment, a set of targeted microbenchmarks has been used for the
initial performance evaluation.

Microbenchmarks are small, focused programs designed to test specific functions
or segments of code. In this work, different microbenchmarks have been developed
starting from the existing benchmark suites mentioned before, compiled using the
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GNU toolchain, and refined through manual inspection of the disassembled output
to conform with the constraints of the simulation environment.

The selected microbenchmarks include:

o Matrix Multiplication (matmul): based on the matrix multiplication
kernel from the Ara2 benchmark suite, this benchmark was tested with various
matrix dimensions. Matrix multiplication is a fundamental operation in linear
algebra, signal processing, and machine learning. The benchmark features key
vector instructions such as vmv.v.x and vmv.v.1i.

e Dot Product: also sourced from the Ara2 suite, this benchmark implements
a vectorized dot product kernel. Widely used in linear algebra and scientific
computing, the kernel highlights the use of vector reductions.

o Particle Filter: taken from the Rivec benchmark suite, this kernel implements
a powerful methodology for sequential signal processing with a wide range
of applications in science and engineering [17]. It is characterized by a high
number of scalar move instructions, offering insight into mixed scalar-vector
workloads.

» Layer Normalization (Layer Norm): a custom microbenchmark developed
specifically for this evaluation. It directly implements the Layer Normalization
function using RVV 1.0 assembly. The kernel includes both vector reductions
and scalar moves. Layer Normalization is a common operation in deep learning
models [18], used to accelerates training by normalizing neuron activations.

6.3.1 Results

Here we present the performance results in simulation, comparing the optimized
architecture to the standard one. The speedup is expressed as a percentage and is
computed using the following formula:

C aseline — C10 imize
Speedup (%) = ( b IC’ pt d) x 100 (6.1)
baseline

where Chaseline and Coptimized Tepresent the number of clock cycles required to
complete the benchmark on the standard and optimized architectures, respectively.

The number of cycles for each configuration was determined by analyzing the
Questasim simulation waveforms at the end of each test.
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Figure 6.1: Comparison of the execution time of matmul for the Optimized and
Baseline VPUs
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Figure 6.2: Comparison of the execution time of microbenchmakrs for the
Optimized and Baseline VPUs 39
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Microbenchmark | Architecture | SVRF size | Result [ns] | Speedup [%)]
Baseline - 401625 -
Matmul 64 Optimized 8 364525 10.18
Optimized 16 360985 11.26
Baseline - 1040325 -
Matmul 128 Optimized 8 959945 8.37
Optimized 16 953345 9.12
Baseline - 3130025 -
Matmul 256 Optimized 8 2812745 11.28
Optimized 16 2806785 11.52
Baseline - 21225 -
Dot Product Optimized 8 19935 6.47
Optimized 16 19935 6.47
Baseline - 35755 -
Particle Filter Optimized 8 33155 7.84
Optimized 16 31755 12.60
Baseline - 3709845 -
LayerNorm Optimized 8 3620915 2.46
Optimized 16 3569235 3.94

Table 6.1: Performance results and speedups across Baseline and Optimized
architectures.

Comment

As expected, the microbenchmarks that show the most significant performance
improvements are those with a higher number of scalar move instructions (vmv.v.1i,
vmv.v.x. These instructions benefit from the optimized architecture because the
scalar value from the core is directly written into the squeezed register file at the
renaming stage. As a result, they bypass the issue stage and are never dispatched
to the vector lanes, saving a considerable number of clock cycles.

On the other hand, register reductions operations, do not exhibit a visible
speed-up. This is because they still involve instruction dispatch to the vector lanes,
and only the destination register is altered.

6.4 Low-Area VPU design exploration

The performance improvements observed in the optimized VPU motivate the design
exploration of a low-area version of the unit. A major contributor to the overall
VPU area is the vector register file. By leveraging the availability of squeezed
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registers, the length of the vector register file can be reduced, thereby decreasing
the total area. After

6.4.1 Results

[ Baseline [ Low Area 8 SVRES Low Area 16 SVREGS

1,25

1,00

0,75

0,50

0,25

0,00
Matmul 64 Matmul 128 Matmul256

Figure 6.3: Comparison of the execution time of matmul for the Low-Area and
Baseline VPUs
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Figure 6.4: Comparison of the execution time of microbenchmakrs for the Low-
Area and Baseline VPUs

Microbenchmark | Architecture | SVRF size | Result [ns] | Speedup [%)]
Baseline — 401625 —
Matmul 64 Low-Area 8 411885 -2.49
Low-Area 16 402005 -0.09
Baseline — 1040325 —
Matmul 128 Low-Area 8 990365 5.04
Low-Area 16 974185 6.79
Baseline - 3130025 -
Matmul 256 Low-Area 8 2924985 7.01
Low-Area 16 2806785 11.52
Baseline — 21225 —
Dot Product Low-Area 8 20045 5.89
Low-Area 16 20045 5.89
Baseline — 35755 —
Particle Filter Low-Area 8 33155 7.84
Low-Area 16 31755 12.60
Baseline — 3709845 —
LayerNorm Low-Area 42 8 3615575 2.61
Low-Area 16 3594665 3.20

Table 6.2: Performance results and speedups comparing Baseline and Low-Area
Optimized architectures.
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6.4.2 Comment

Given the promising performance results shown in the table, where speedup is
observed across most benchmarks despite a reduced number of vector registers, it is
reasonable to proceed with synthesis in order to assess whether the area reduction
is significant. All synthesis results are presented in the following chapter.
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Chapter 7

Synthesis

7.1 Area

The area results obtained from the synthesis process are presented in this section.
Both the Optimized VPU and the Low-Area Optimized VPU have been
synthesized. The first one refers to the optimized VPU configuration featuring 40
physical vector registers, while the area-optimized version reduces this number to
36 in an effort to lower the overall area footprint. Each version has been evaluated
with both 16 and 8 squeezed registers. The results are compared against the
baseline standard architecture.

Note that there is a significant difference in the area result values between the
optimized version and the low-area optimized version of the VPU. This disparity
stems primarily from how the vector register file is implemented in each case.

In the standard optimized version, the vector register file is synthesized using
memory instances available in the technology portfolio. These are compiled using
foundry-compatible memory compilers. Specifically, the total size of the register
file is calculated as:

Tot Bytes VRF = Num_VRegs x VReg Max Elements x Element Bytes

which results in a total of 80 kB. Given that the architecture includes 16 lanes,
each lane requires 5 kB of storage. To implement this, the design instantiates five
1 kB 1RW SRAM banks per lane. This approach ensures efficient use of memory,
avoiding unused memory space and minimizing area overhead.

However, in the area-optimized version, the design features only 36 physical
vector registers. The issue is that the available SRAM memory instances in the
technology library are precompiled to support a 40-register configuration. Using
these memory blocks directly would result in underutilized memory, leading to the
same synthesis results in terms of area.
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To enable a meaningful comparison of area efficiency when reducing the number
of registers, the vector register file in the low-area optimized version was synthesized
entirely using flip-flops. While flip-flops are not a practical choice for large register
files due to their significantly higher area and power consumption, they were used
here to estimate the potential area savings from register count reduction. The
standard baseline VPU was also synthesized using flip-flops to provide a consistent
basis for comparison.

It is important to note that this is a preliminary analysis aimed at exploring
area reduction strategies. In future implementations, memory instances more
closely aligned with the reduced register count can be compiled and used to achieve
better area efficiency. The key result is the variation in total area compared to the
standard baseline VPU, regardless of the specific technology used for the register
file implementation.

7.1.1 Standard optimized VPU

1000000
750000
LT
=
= 500000
4]
2
=T
250000

Baseline Optimized 8 SWYREGS Optimized 16 SWREGS

Figure 7.1: Area comparison with optimized VPU
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Table 7.1: Area comparison: Standard Optimized VPU

Architecture Area [pm?] | Difference (%) with baseline
Baseline 944079.493 -

Optimized 8 SVREGS | 975042.117 +3.28%

Optimized 16 SVREGS | 977448.511 +3.57%

7.1.2 Low-Area optimized VPU
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SVREGS SVREGS
Figure 7.2: Area Comparison with Low-Area Optimized VPU
Table 7.2: Area comparison: Low-Area Optimized VPU
Architecture Area [pm?] | Difference (%) with baseline
Baseline 1513877.345 -
Low-Area 8 SVREGS | 1494336.927 -1.29%
Low-Area 16 SVREGS | 1495049.635 -1.24%

The observed area reduction is up to 1.29% in the low-area variant of the VPU.
Given that this optimization maintains comparable performance levels, it makes
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the design well-suited for low-area implementations of the VPU without significant
performance trade-offs

7.1.3 Detailed area breakdown

As shown in the previous section, the area of the Optimized VPU increases by
3.57% in the version with 16 squeezed registers, and by 3.28% in the version with 8
squeezed registers.

The table below highlights the modules that exhibit the most significant area
increases. The version analyzed is the one featuring 8 Squeezed Vector Registers.

Table 7.3: Modules area comparison for the 8 SVRF VPU

Module Area [pm?] Area Increase (%)
Baseline Optimized
Lane 48781.331  49772.382 2.03
Renaming 49466.433  60992.866 23.30
Arithmetic Queue | 4698.112 4939.077 5.13
Memory Queue 801.392 803.711 0.29
Reorder Buffer 4966.448 5185.550 4.41
VCU Splitter 2911.715 3254.632 11.78

From the Area breakdown shown in Figure 7.3, it’s clear that the major con-
tributions to the area increase come fron the Renaming Unit and the Vector
Lanes.

Renaming Unit The Renaming Unit exhibit a 23.30% area growth, which is
expected due to the additional data structures required to support the optimization.
Specifically, this includes the Squeezed Alias Counter and the Register Map Table,
with 32 copies instantiated to support the rollback mechanism.

Vector Lane The overall area of the lanes increased by 2.03%. More detailed
graphs below illustrate the area increase for the different sub-modules of the Vector
Lane.

This increase is primarily due to the additional hardware required to execute
an instruction that has one or more squeezed registers as sources. In such cases,
data is fetched from the Squeezed Register File to the Instruction Queues, routed
through the VCU Splitter, and temporarily stored in a buffer inside the Vector
Control Unit. Once the instruction begins execution, the data is forwarded to the
Finite State Machines, which distribute it to the internal buffers according to the
instruction’s execution state.
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Other Modules
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Renaming
52%
Crossbar
6 8%
Lanes
82 7%
Figure 7.3: VPU area breakdown
Table 7.4: Lanes modules area comparison
Module Area [um?] Area Increase (%)
Baseline Optimized
VRF Slice | 7403.391 7600.776 2.67
FSM 275.553 470.797 70.86
VCU 1163.874 1596.206 37.15

This entire process requires both sequential and combinational logic to be
instantiated, resulting in the observed area increase within the Vector Lanes. As
shown in the Table 7.4, the modules vcu_lane and fsm_lane exhibit the largest
area increases, with smaller increases also observed in the vrf_slice_wrapper and

the source wrapper.

In the area breakdown of the Vector Lane (Figure 7.4), the major contribution
to the Lane area increase clearly comes from the VCU and the VRF slice wrapper.

Additional Modules

The additional modules instantiated in the VPU core: the
Squeezed Vector Register Files and the SVREG valid bit, account for only 0.09%

and 0.02% of the total area of the optimized VPU, respectively.
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others
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Figure 7.4: Lane area breakdown

7.2 Frequency

The maximum operating frequency of a digital design is limited by the critical path,
defined as the longest combinational path in the circuit in terms of signal delay.
Additional factors influencing the timing include clock uncertainty, a synthesis-
defined parameter that accounts for variations in clock arrival times caused by
jitter and skew, and the flip-flop setup time, which represents the minimum interval
before the clock edge during which the input signal must remain stable to be
correctly sampled.

1

tcritical_path + tsetup + tclk_uncertainty

fmax -

As shown in the table below, the optimization does not affect the existing
critical path. Synthesis timing reports indicate that the critical path lies in the
routing path of the interlane crossbar. This structure is unrelated to the additional
hardware introduced by the optimization, and therefore the critical path remains
unchanged. As a result, there is no impact on the maximum operating frequency.
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Table 7.5: Timing results and maximum operating frequency

Metric Perte SRAM | Optimized 40-16
Setup [ps] 7 7
Uncertainty [ps] 68 68

Data Path [ps] 625 627

Frnae [GHZ] 1.429 1.425
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Chapter 8

Power Analysis

8.1 Power Contributions in CMOS

This section provides a brief introduction to the main sources of power consumption
in CMOS technology.

« Static power: the power dissipated regardless of circuit activity, primarily
due to leakage currents.

e Dynamic power: the power consumed during the switching of logic gates,
resulting from the charging and discharging of load capacitances.

8.1.1 Static power

For technologies below 100 nm [19], transistors exhibit a phenomenon known
as subthreshold conduction, in which a leakage current flows even when the
transistor is neither active nor switching. This effect results in a static power
consumption component that depends on both the circuit configuration and the
specific technological parameters of the standard cell.

8.1.2 Dynamic power

Switching power Switching power refers to the power required to charge and
discharge the internal nodes of the system. In CMOS logic gates, the load can
be modeled as a capacitance C'p, which is driven by a pull-up network of pMOS
transistors, responsible for charging the capacitance and pulling the output to a
logic high, and a pull-down network of nMOS transistors, which discharges the
capacitance and pulls the output to ground. Consider for simplicity an inverter,
the simplest CMOS logic gate:
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o

Vout
Vin
—o
4{ N
nmos
Figure 8.1: CMOS inverter
E= / P(t) dt (8.1)
0
Energy for a commutation, during a period of time 7'
T
E= / I(t) - V() dt (8.2)
0

Since the energy is provided by the constant source V;; and the current charges a
capacitance:

T dV(t
E:/ . VO v (8.3)
0 dt
Vid
E:C-Vdd-/ v (8.4)
0
Total energy during the commutation:

Egyiten = C- ‘/dZd (85)

During the charging phase, when the output goes to a high logical state and the
capacitance is charged, half of the energy is dissipated across the on-resistance of the
pMOS transistor and half is stored in the capacitance. In the opposite transition,
when the output goes to ground, the load capacitance discharges through the nMOS
transistor, dissipating the stored energy as heat.

1
Eron = Ee. = §CL : VdZd (86)
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Equation (8.4) represents the energy consumed per transition (i.e., per 0-to-1
or 1-to-0 logic change) in a CMOS gate with load capacitance C, assuming ideal
charging and discharging through a full voltage swing.

The average dynamic power over time, for a periodic switching signal, is given
by:

E
P=—=F. 8.7
S=B] (5.7)
However, not all gates switch at every clock cycle. The actual switching activity
is modeled by a factor «, representing the probability that a node toggles during a

clock period. Incorporating this into the average switching power gives:
P=a-Cp-V}-f (8.8)

Short circuit power Another contribution to dynamic power arises from the fact
that input signals are not ideal step functions, but instead exhibit finite rise and fall
times, and transistors do not behave as perfect switches. During a logic transition
in a CMOS gate, there exists a short period in which both the pull-up (pMOS) and
pull-down (nMOS) networks are conducting simultaneously. In this interval there
is direct current path from Vj; to ground. This results in a short-circuit current,
denoted as I., which flows only during the switching event.

Since this power dissipation occurs only during signal transitions and is propor-
tional to the switching frequency, it is modeled similarly to the switching power
with an equivalent capacitance C,.. This capacitance depends on technological
parameters as well as the rise and fall times of the input signal. Thies gives the
equation for the sshort circuit power:

Psc=a-Cs- f- V3 (8.9)

The total power consumption of a system is the sum of the contributions from
all instantiated standard cells within the design. At the architectural level, various
strategies can be employed to reduce the switching activity of specific submodules,
thereby decreasing overall dynamic power consumption. This is the goal of the
proposed optimization.

8.2 Power implications of the optimization

An increase in the static power of the VPU is expected due to the additional
hardware required to support the proposed optimization. However, a reduction in
dynamic power is also expected. The optimization enables the direct execution of
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vmv.v.x, vmv.v.i, vmv.s.x, and vmv.s.f instructions during the renaming stage,
bypassing the need to issue them to the execution lanes.

In a conventional execution flow, these instructions are first placed into the
Arithmetic Queue, then dispatched by the Splitter across multiple lanes. Once
received by the VCU lanes, each instruction, along with its associated data and
operands, is encapsulated in a structured format, and stored in internal buffers
awaiting for execution. In the execution stage, the operand (in this case, scalar
data from the scalar core) is written into the Source Buffers and then transferred
to the Vector Register File.

This entire process triggers significant switching activity in internal logic, particu-
larly in sequential elements such as queues and buffers, in addition to combinational
logic. Moreover, in the standard execution model, vmv.v.x and vmv.v.i write the
same scalar value to all vl active elements of the Vector Register File, distributing
the data across multiple lanes and banks. This redundant replication leads to
substantial switching activity within the VRF. The proposed optimization avoids
this unnecessary replication, thereby reducing dynamic power consumption by
preventing excessive toggling in both internal logic and memory structures.

8.3 Power estimation steps

To get a precise evaluation of the power impact introduced by the optimization,
a workload-aware power estimation must be performed. The process involves the
following steps:

Gate-Level Simulation The output of the synthesis stage is a netlist in Verilog
format (.v file), which contains all the instantiated logic gates of the design. This
netlist represents a lower level of abstraction compared to the RTL, as high-level
constructs such as registers and processes are translated into logic gates. However,
the netlist can still be simulated using tools like Questasim to verify the functional
correctness at the logic level. From this simulation, a Value Change Dump (VCD)
file is generated. VCD files store simulation data, capturing changes in signal values
over time. Since these files are generated during gate-level simulation, they reflect
accurate gate-switching activity and can be used for more precise dynamic power
calculations.

Power Estimation Joules takes as input the gate-level netlist of the design
along with the corresponding technology library. These inputs alone are sufficient
for estimating the leakage power. To evaluate dynamic power, Joules additionally
requires a VCD file, previously generated from a gate level simulation.
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When the VCD is read, Joules correlates each net and gate in the netlist with
their corresponding signals in the VCD. This mapping enables the tool to measure
actual transition rates across the circuit, which are then used to compute dynamic
power consumption based on realistic toggling behavior.

8.4 Results

Due to the timing constraints of the project, the power analysis was conducted
focusing on only two workloads. These workloads, matrix multiplication (matmul)
and layer normalization (layernorm), were selected because they are highly repre-
sentative: matmul exhibits the highest number of scalar moves, while layernorm is
a more typical workload, involving both scalar moves and reductions, though to a
lesser extent. Power consumption was estimated based on synthesis using TSMC’s
7 nm technology, a supply voltage (Vdd) of 0.75 V. and an operating frequency
during gate-level simulation of 1 GHz.

8.4.1 Matrix multiplication

Table 8.1: Matmul: Baseline vs Optimized VPU power consumption

Power type Baseline [W] Optimized [W] % Variation

Static 1,58 x 102 1,69 x 102 711%
Dynamic 4,85 x 1071 4,61 x 1071 -4,92%
Total 5,01 x 107* 4,78 x 1071 -4,54%
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Figure 8.2: Power results Matrix Multiplication workload

8.4.2 Layer Normalization

Table 8.2: LayerNorm: Baseline vs Optimized VPU power consumption

Power type Baseline [W] Optimized [W]| % Variation

Static 1,60 x 1072 1,68 x 1072 5,07%
Dynamic 4,95 x 1071 4,78 x 1071 -3,45%
Total 5,11 x 10! 4,94 x 107! -3,18%
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Figure 8.3: Power results Layer Normalization workload

8.5 Comments

As expected, static power consumption increases, reaching up to 7.11%. It is
important to note that static power is independent of switching activity, as it
depends solely on the netlist and the technology libraries. The observed variation
in static power values is due to the inherent margin of error of the analysis tool.
The increase in static power is a direct consequence of the additional hardware,
which leads to a higher leakage contribution. Nevertheless, static power accounts
for only approximately 3% of the total power consumption.

In contrast, dynamic power shows a reduction of 4.92% and 3.44% across the
evaluated workloads, resulting in a notable decrease in total power consumption of
up to 4.54%. This is a promising result, as it qualifies the proposed optimization as
a suitable candidate for low-power VPUs, achieving reduction in power consumption
without compromising performance.
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Chapter 9
Conclusions

After an in-depth analysis of the Vector Processing Unit microarchitecture, the
RISC-V Vector Extension (V 1.0), and the applicability of register renaming
techniques to vector processors, this thesis focused on the design and evaluation of
an efficient register renaming mechanism aimed at improving register utilization in
a RISC-V VPU. The implementation and testing of the proposed solution led to
the following key conclusions:

o Performance was evaluated using microbenchmarks from domains such as
linear algebra, high-performance computing, and machine learning. The results
show performance improvements of up to 12.60%.

o The area overhead of the optimized architecture after synthesis is minimal,
with a maximum increase of only 3.57%.

o The optimization does not impact the operating frequency of the processor.

o A low-area variant of the VPU was explored, leveraging the benefits of the
register renaming mechanism and additional scalar registers, while reducing
the number of vector registers. This approach achieved an area reduction
of up to 1.29% and still delivered performance improvements in nearly all
benchmarks (best case: +11.52%, worst case: —2.49%)).

o An initial evaluation of power consumption was conducted, with preliminary
results indicating a reduction up to 4.54%, classifying this optimization a
suitable candidate for low-power VPUs.

It is worth noting that the performance gains are closely related to the instruc-
tion mix of the evaluated applications, which feature patterns well-suited to the
optimized renaming scheme. In any case, three key observations hold:
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o Scalar moves and scalar-to-vector moves are consistently frequent across all
the analyzed applications, even in those not covered in this thesis.

o The optimized design never degrades performance compared to the baseline
architecture, as instructions that are not targeted by the optimization are
executed using the standard execution flow.

o The optimization offers minimal area overhead and a reduction in power
consumption.

These results demonstrate that the proposed register renaming mechanism is
a valuable enhancement for vector architectures, offering significant performance
improvements and energy efficiency benefits. As such, it is a strong candidate
for inclusion not only in future versions of the VPUs developed at the Barcelona
Supercomputing Center, but also in any vector architecture implementing the
RISC-V V extension.

The work and the results presented in this thesis serve as a foundation for
future work, outlined in the following section, and are expected to contribute to the
development of one or more research articles for submission to leading conferences
in Computer Architectures.

9.1 Future work

9.1.1 System-level evaluation and FPGA emulation

The current evaluation of the proposed optimization has been limited to the VPU,
which operates as a co-processor to a scalar core. The VPU UVM environment
integrates a Spike-based model of the scalar core; however, this model is highly
idealized and does not accurately reflect real-world system behavior. As a result,
the performance improvements measured in this setup may not fully capture the
impact of the optimization at the system level. For this reason, future work should
include:

1. Full-system evaluation with RTL simulation
A complete system-level RTL simulation should be conducted by integrating
the VPU with the scalar core. Running microbenchmarks in this environment
would allow for a more accurate analysis of performance improvements and
any possible interactions between subsystems.

2. Full-System FPGA emulation
FPGA-based emulation of the entire system should be explored. Due to its
significantly faster execution compared to RTL simulation, this approach would

59



Conclusions

enable the evaluation of full application benchmarks. This would provide
deeper insights into the real-world performance and energy efficiency impact
of the optimization under realistic workloads.

9.1.2 Optimization of Vector-Scalar operation

The current design does not fully exploit the potential benefits offered by the
availability of the Squeezed Register File and the optimized register renaming
mechanism. The RISC-V Vector ISA supports vector-scalar arithmetic operations,
which involve instructions that operate between a vector and a scalar operand.
When such an instruction reaches the renaming stage, a squeezed physical register
can be used to delay the actual execution of the operation.

Specifically, the execution can be transformed into a fast move: the destination
register’s entry in the Register Alias Table (RAT) is updated to point to the same
physical register as the vector source operand, effectively allowing the two vector
registers to share the same physical register. Meanwhile, a new squeezed physical
register is allocated from the Free Squeezed Register List (FSRL), and the scalar
data is stored into this squeezed register.

The Register Map Table is extended to distinguish not only between vector
and squeezed mappings but also to recognize a new mapping type related to
vector-scalar operations. Additionally, it stores the type of arithmetic instruction
to be executed (e.g., add, sub, mul). The execution of the arithmetic operation is
postponed and is only performed if a store targeting the destination register occurs.

Otherwise, if the destination register is used as a source by a subsequent
instruction, that instruction can be transformed into a three-operand instruction,
using the new vector source register, the squeezed register (original scalar operand),
and the original vector source register. The hardware already supports three-
operand operations, as it is used in fused multiply-add instructions. This approach
can save many clock cycles by delaying the execution of the original instruction
and avoiding unnecessary immediate computation.
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