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Abstract

Driver drowsiness is a leading and highly preventable cause of road accidents worldwide.
This thesis therefore asks: Can smartwatch data accurately classify four distinct drowsi-
ness levels with at least 90% accuracy in realistic driving conditions? Can we use this
information to detect and prevent driver drowsiness?
To investigate this topic, we analyze a dataset composed of 169,466 samples recorded
with commercial smartwatch sensors. Each measurement combines Heart Rate (HR),
Heart Rate Variability (HRV), and Respiration Rate (RR) with a synchronised
arousal label that is discretised, via equal-width binning, into four classes spanning from
full alertness to pronounced drowsiness.
Our principal methodological innovation is a lightweight real-time processing sys-
tem that streams incoming data through a sliding window, performs real-time feature
scaling, and feeds the resulting features directly to the classifier.
This arrangement eliminates the need for batch processing and allows continuous infer-
ence on resource constrained embedded hardware.
Two supervised learners are proposed: a Random Forest (RF) ensemble tuned for rich,
non-linear interactions, and a radial basis function Support Vector Machine (SVM)
configured for soft margin, multiclass separation.
Testing on individual drivers showed a mean accuracy of 88 % (max 99 %) for the
RF, markedly outperforming the SVM at 77 % (max 94 %); both models maintained
good performance across all drowsiness levels.
While the RF falls just shy of the 90 % target on average, its peak accuracy and the
consistent margin over the SVM highlight the promise of ensemble techniques for physio-
logical state recognition.

These results demonstrate that low-cost wearable devices combined with lightweight
machine learning algorithms achieve accuracy suitable for real-world use.
By signaling transitions from alertness to early drowsiness within seconds, the proposed
system can be integrated into driver assistance systems, fleet safety dashboards, or con-
sumer smartwatch applications, thereby reducing fatigue-related crash risk and associated
public health costs.
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Chapter 1

Introduction

1.1 Context and Motivation

Driver drowsiness represents one of the most critical and preventable causes of road traffic
accidents worldwide, contributing to a substantial burden on public health and economic
systems.
According to the World Health Organization, road traffic injuries remain among the top
ten causes of death globally, with more than 1.3 million fatalities and up to 50 million
injuries reported each year [6]. (see Figure 1.1)
Within this alarming statistic, fatigue and drowsiness are estimated to be responsible for
up to 20% of serious accidents worldwide, representing not only a significant social and
economic burden in terms of medical costs and insurance claims, but also immeasurable
human suffering [6, 7].

The U.S. National Highway Traffic Safety Administration (NHTSA) defines driver drowsi-
ness as one of the most significant causes of fatal vehicle crashes, and alcohol consumption
and over-speeding [8, 9].
Studies [10, 11] demonstrate that being awake for more than two hours at nighttime envi-
ronment can impede driving ability to a degree comparable to being ’drunk’ with a blood
concentration of 0.05%, which represents the legal limit in many countries.
This physiological impairment occurs insidiously, as individuals frequently remain unaware
of their declining vigilance until their reaction times and decision-making are already com-
promised.

High-profile transportation accidents have repeatedly demonstrated the devastating con-
sequences of drowsy driving. Table 1.1 below presents a historical drowsy driving statistics.

The 2014 New Jersey Turnpike crash, involving a commercial truck driver who had been
awake for more than 28 hours, resulted in a multi-vehicle collision and fatalities, drawing
national attention to the dangers of sleep-deprived driving [7].
Similarly, the 2016 German Autobahn bus accident, where driver fatigue contributed to
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ROAD TRAFFIC 
INJURIES: THE FACTS
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Figure 1.1: Road Traffic Injuries[3]

multiple passenger deaths, sparked renewed debate about rest regulations for long-haul
drivers across Europe [12].
These cases underscore the urgent need for improved drowsiness detection and prevention
strategies.
The physiological basis for drowsiness start from the complex connection between circa-
dian rhythms and homeostatic sleep pressure, which together regulate the natural cycle
of alertness and fatigue [13, 5].
During monotonous or extended driving, especially under low stimulation conditions such
as highway travel at night, the risk of drowsiness increases dramatically[14].
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Year Drivers involved in
fatal crashes who
were drowsy

Percentage of all
drivers involved in
fatal crashes

Fatalities involving
drowsy driving

2022 1264 1.33% 693
2021 1210 1.38% 701
2020 1165 2.2% 632
2019 1240 1.2% 697
2018 1221 2.4% 785
2017 1319 2.5% 697
2016 1332 2.5% 803
2015 1275 2.6% 824
2014 1306 2.9% 851
2013 1234 2.8% 801

Table 1.1: Historical drowsy driving statistics [1] [2]

Additional factors including sleep deprivation, irregular work schedules, medical condi-
tions and certain medications can further increase the vulnerability to drowsiness.
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1.2 Problem Statement and Research Gap
Despite widespread recognition of drowsy driving dangers, real-world detection and pre-
vention of fatigue-induced impairment remains a significant unresolved challenge in traffic
safety.
Traditional approaches to driver alertness monitoring have relied predominantly on vehicle-
based indicators, behavioral observation, or self-reporting, each of which presents substan-
tial limitations for practical deployment.

Vehicle-based systems analyze driving patterns such as steering wheel movements, lane
position, and pedal operations to infer driver state indirectly.
However, these measures do not take into considerations many factors such as road ge-
ometry, vehicle type, weather conditions, and individual driving styles [15, 16].
Behavioral monitoring approaches focus on observable driver characteristics using com-
puter vision algorithms to detect eye closure, blink frequency, yawning, and head pose.
While promising, these systems can be affected by lighting conditions, camera placement,
sunglasses, or facial masks, and may fail to detect subtle early-stage drowsiness or condi-
tions such as microsleeps where individuals fall asleep with eyes open [15, 16].

Self-assessment methods are infamously unreliable because drivers tend to underestimate
their own fatigue or may be reluctant to admit it due to time pressure or overconfidence
[9].
Furthermore, as driving behavior depends more on autopilot systems than on human
drivers, the increasing use of semi-autonomous vehicles creates situations in which tradi-
tional vehicle-based detection methods become ineffective.

Recent advances in wearable sensor technology and physiological monitoring offer promis-
ing alternatives for more objective, real-time drowsiness detection.
Physiological signals, particularly heart rate (HR), heart rate variability (HRV), and respi-
ration rate (RR), have emerged as reliable indicators of autonomic nervous system activity,
which is closely linked to arousal and drowsiness states [17, 18, 19].
These signals can be collected continuously and non-invasively using consumer-grade wear-
able devices, potentially overcoming many limitations of existing approaches.

Despite all of this, significant challenges remain in translating physiological monitoring
into practical drowsiness detection systems.
Most published studies[9, 20] are limited by small sample sizes, controlled laboratory en-
vironments, or lack of standardized ground truth measures for drowsiness assessment.
Additionally, there is a critical need for robust computational models that can handle
the complex, non-linear relationships inherent in physiological data while maintaining
real-time performance on resource-constrained embedded hardware.
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1.3 Research Objectives and Questions
This thesis addresses a single but fundamental research question:
Can four discrete arousal levels be discriminated and extracted from physi-
ological signals coming from smartwatches with at least 90% accuracy under
conditions that approximate real driving?

The following specific objectives are intended to be provided by the research in order
to examine this main question:

Primary Objective:
Develop and validate a machine learning framework capable of classifying four discrete
arousal levels (from complete alertness to prominent drowsiness) from physiological sig-
nals collected using wearable smartwatch sensors.

Secondary Objectives:

1. Design a memory-efficient data processing architecture suitable for real-time imple-
mentation on low resources embedded systems

2. Compare the performance of different supervised learning approaches for physiological-
based arousal classification

3. Evaluate system performance using a dataset under conditions that approximate
realistic driving scenarios

4. Assess the feasibility of deploying such systems in practical vehicle environments

The research specifically investigates whether canonical autonomic markers (heart rate,
heart rate variability, and respiration rate) can provide sufficient discriminative power
for reliable drowsiness detection when processed through optimized machine learning
pipelines.
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1.4 Thesis Structure
This thesis is organized into five main chapters that systematically develop and validate
the proposed drowsiness detection approach:

Chapter 1: Introduction establishes the research context, motivation, and objectives.
It presents the problem statement, research questions, and provides an overview of the
proposed approach and contributions.

Chapter 2: State of the Art provides a comprehensive review of existing drowsiness de-
tection methodologies, covering vehicle-based, behavioral, and physiological approaches.
It examines the theoretical foundations of autonomic nervous system monitoring, heart
rate variability analysis, and machine learning applications in driver state assessment.

Chapter 3: Methodology details the proposed drowsiness detection framework, in-
cluding the circular buffer architecture, data preprocessing pipeline, feature extraction
methods, and machine learning model development.
It describes the experimental protocol and validation strategy employed.

Chapter 4: Results and Discussion presents comprehensive experimental findings,
including model performance metrics, comparative analysis between Random Forest and
Support Vector Machine approaches, and validation across different operating conditions.
A discussion of results is provided, analyzing the implications of the research findings,
addressesing limitations of the proposed approach, and discussing the practical consider-
ations for real-world deployment.

Chapter 5: Conclusion summarizes the key contributions, discusses the broader im-
pact of the research, and outlines directions for future investigation, including validation
in fully naturalistic driving conditions and optimization for all-day operation.
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Chapter 2

State of the Art

2.1 Introduction to Driver Monitoring Systems

The field of driver monitoring and drowsiness detection has evolved significantly over the
past decades, driven by the urgent need to address fatigue-related road accidents and the
advancement of sensing technologies.
Driver monitoring systems aim to assess the cognitive and physiological state of vehicle
operators in real-time, providing early warnings or interventions when impaired driving
conditions are detected.
The evolution of these systems can be traced through distinct technological eras, each
characterized by different sensing modalities, computational approaches, and deployment
strategies.

Early driver monitoring efforts focused primarily on indirect indicators derived from ve-
hicle dynamics and driving behavior [21].
These systems analyzed steering patterns, lane position, and acceleration profiles under
the assumption that drowsy drivers exhibit characteristic changes in vehicle control.
Although conceptually sound, these approaches faced significant challenges related to en-
vironmental confounding factors and individual driving style variations[21].

The introduction of computer vision technologies marked a significant advancement in
driver monitoring capabilities [22].
Camera-based systems enabled direct observation of driver behavior, including eye closure
patterns, blink frequency, head pose, and facial expressions[22].
These behavioral monitoring approaches offered more direct assessment of driver state
compared to vehicle-based metrics, though they remained susceptible to environmental
conditions and hardware limitations[22].

The most recent evolution in driver monitoring has been toward physiological sensing
approaches [20][9][23][22], leveraging advances in wearable technology and biomedical sig-
nal processing. Table 2.1 below presents a comparison of existing drowsiness detection
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approaches.

Approach Key Indicators Advantages Limitations

Vehicle-based Steering patterns,
lane position, speed
variations

Non-invasive, exist-
ing sensors

Environmental con-
founding, individual
styles

Behavioral Eye closure (PER-
CLOS), blink fre-
quency, head pose

Direct fatigue obser-
vation

Lighting dependency,
occlusion issues

Physiological HR, HRV, EEG,
EMG signals

Objective, early de-
tection

Sensor requirements, in-
dividual variability

Table 2.1: Comparison of existing drowsiness detection approaches

These systems monitor autonomic nervous system activity through various physiological
markers, offering objective assessment of arousal and alertness states.
The progression toward physiological monitoring represents a fundamental shift from in-
ferring driver state through behavioral or operational proxies to directly measuring the
underlying biological processes that govern alertness and performance.
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2.2 Theoretical Foundations
2.2.1 Arousal and Its Physiological Basis
Arousal represents a fundamental dimension of human consciousness and serves as a crit-
ical bridge between objective physiological signals and subjective states such as vigilance,
attention, and sleepiness [19].
The scientific understanding of arousal has evolved through decades of research in psychol-
ogy and neuroscience, establishing it as a central concept in models of emotion, motivation,
and cognitive performance.

Every emotional state is mapped within this two-dimensional space, which places emo-
tional valence on one axis and arousal on another [19]. Figure 2.1 presents the two
dimensional valence arousal space.
High arousal states are typically associated with alertness, stress, or excitement, while
low arousal corresponds to sleepiness, fatigue, or boredom.
This framework provides a structured approach to understanding how physiological changes
relate to cognitive and emotional states, forming the theoretical foundation for physiolog-
ical monitoring systems.

Figure 2.1: Two Dimensional Valence Arousal Space

Arousal levels are regulated by complex interactions between the central and autonomic
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nervous systems, particularly through the action of the reticular activating system in the
brainstem [24].
The reticular activating system modulates cortical activity in response to internal and
external stimuli, helping maintain wakefulness and attentional focus [25] [26] [27].
Abnormal regulation of arousal can result in both cognitive deficits, such as lapses in
attention, and physiological consequences, including reduced heart rate variability, under-
scoring its importance for safety-critical tasks such as driving [19] [25] [26] [27].
Maintaining optimal arousal is essential for sustained attention and effective performance.
Both insufficient and excessive arousal can impair decision-making, reaction time, and
overall functioning, a phenomenon described by the Yerkes-Dodson law [28].
In the context of driving, low arousal manifests as drowsiness, increased reaction times,
and a higher risk of performance errors, while excessively high arousal can also lead to
suboptimal performance due to overactivation of the sympathetic nervous system [19, 29].

Drowsiness specifically represents a low arousal state characterized by the transition from
wakefulness to sleep [30].
This state involves reduced sensitivity to stimuli, slowed cognitive processing speed, and
a tendency toward microsleeps.
Objective indicators of arousal are crucial for detection and intervention systems since the
onset of drowsiness can be gradual and may not always be subjectively perceived.

The physiological measurement of arousal relies primarily on monitoring autonomic ner-
vous system activity, which reflects the body’s unconscious regulation of vital functions.
Key physiological markers include heart rate, which typically increases with heightened
arousal and decreases as individuals become more relaxed or drowsy; heart rate variability,
which refers to variation in intervals between heartbeats and often decreases under high
stress or arousal while increasing during relaxation and recovery; and respiration rate,
which tends to increase during high arousal states and slow during restful or drowsy con-
ditions [19, 29]. Table 2.2 presents the typical changes in physiological markers, heart rate
(HR), heart rate variability (HRV), and respiration rate (RR) associated with different
levels of arousal[31].

Arousal State HR HRV RR
High (alertness) ↑ ↓ ↑
Low (drowsy) ↓ ↑ ↓

Table 2.2: Typical changes in physiological markers with varying arousal levels

22



State of the Art

2.2.2 The Autonomic Nervous System and Drowsiness
Understanding the physiological mechanisms underlying drowsiness and emotional states
is essential for developing effective detection systems.
The autonomic nervous system plays a central role in regulating involuntary bodily func-
tions, including cardiovascular, respiratory, and emotional processes [32, 33].
The autonomic nervous system consists of two major branches: the sympathetic nervous
system and the parasympathetic nervous system[4, 34] (see Figure 2.2).

Figure 2.2: The Sympathetic Nervous System and The Parasympathetic Nervous
System[4]

The sympathetic nervous system[35], often referred to as the "fight or flight" system, is
typically associated with heightened arousal, stress responses, and increased heart rate.
When sympathetic activity dominates, individuals experience elevated alertness, increased
metabolic activity, and enhanced readiness for physical or cognitive demands.
This system prepares the body for action by increasing heart rate, dilating pupils, and
redirecting blood flow to essential organs and muscles.

In contrast, the parasympathetic nervous system[36], known as the "rest and digest" sys-
tem, is linked to relaxation, restorative processes, and increased heart rate variability.
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Parasympathetic dominance occurs during states of rest, recovery, and sleep preparation.
This system promotes energy conservation by slowing heart rate, stimulating digestive
processes, and facilitating cellular repair and regeneration.

Heart rate variability serves as a robust, non-invasive marker of autonomic nervous sys-
tem activity, reflecting the dynamic balance between sympathetic and parasympathetic
influences [32, 33, 37].
When an individual is alert or under stress, sympathetic activity dominates, leading to
elevated heart rate and reduced heart rate variability.
During states of relaxation, rest, or drowsiness, parasympathetic activity increases, low-
ering the heart rate and enhancing heart rate variability [37, 38].
This bidirectional modulation forms the physiological basis for using heart rate variability
as an indicator of both drowsiness and emotional regulation (see Table 2.3).

Physiological State Heart Rate
(HR)

Heart Rate
Variability
(HRV)

Sympathetic dominance
(Alert/Stress)

Increases (↑) Decreases (↓)

Parasympathetic
dominance (Relax-
ation/Drowsiness)

Decreases (↓) Increases (↑)

Table 2.3: Summary of autonomic modulation of heart rate and HRV during alertness
and drowsiness

Emotional stimuli and fatigue trigger specific autonomic nervous system response patterns
that are distinguishable in heart rate variability and related biosignals.
Studies [39] [40] [41] [42] [38] have demonstrated that negative emotions such as fear or
anger are typically accompanied by increased heart rate and decreased heart rate vari-
ability, while positive or restful states are associated with greater variability.
These patterns provide the foundation for physiological monitoring systems designed to
assess emotional and arousal states objectively.
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2.2.3 Circadian Rhythms and Sleep Pressure
The physiological basis for drowsiness can be traced to the interplay of circadian rhythms
and homeostatic sleep pressure, which together regulate the natural cycle of alertness and
fatigue experienced by all humans [13, 5].
Circadian rhythms (see Figure 2.3), governed by the body’s internal biological clock,
prompt fluctuations in wakefulness across a twenty-four-hour period, making certain times
of day, particularly late at night or in the early afternoon, especially hazardous for driving
and other vigilance-demanding tasks.

Numerous physiological functions, such as hormone secretion, body temperature regu-
lation, and sleep-wake cycles, are regulated by the circadian timing system, which is
based in the hypothalamic suprachiasmatic nucleus.
This internal clock synchronizes with environmental light-dark cycles, helping maintain
optimal timing of alertness and sleep propensity.
Disruption of circadian rhythms, whether through shift work, jet lag, or irregular sleep
schedules, can significantly increase vulnerability to drowsiness and performance impair-
ment [43].

Figure 2.3: Circadian Rhythms[5]

Homeostatic sleep pressure represents the body’s accumulating need for sleep that builds
during wakefulness and dissipates during sleep.
This process is mediated by the accumulation of adenosine and other sleep-promoting
substances in the brain [44].
As the duration of wakefulness increases, sleep pressure mounts, leading to increased
drowsiness and degraded cognitive performance.
The interaction between circadian rhythms and sleep pressure creates predictable patterns
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of alertness and sleepiness that can be leveraged for drowsiness prediction and prevention.

Additional factors such as lack of sleep, irregular work schedules, medical conditions,
and the use of certain medications will further incrase vulnerability to drowsiness [19]
[29].
Sleep disorders, particularly sleep apnea, can seriously compromise sleep quality and lead
to excessive daytime sleepiness.
Understanding these factors is crucial for developing comprehensive drowsiness detection
systems that can take vulnerability factors and individual variations in sleep patterns into
consideration.
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2.3 Approaches to Drowsiness Detection
2.3.1 Vehicle-Based and Behavioral Approaches
Traditional drowsiness detection in vehicles has relied extensively on vehicle-based and
behavioral monitoring systems, each representing distinct approaches to inferring driver
state from observable indicators [15, 16]. Figure 2.4 Schematic illustration of vehicle-based
and behavioral drowsiness detection approaches, showing typical sensors, monitoring tar-
gets, and common confounders.

Figure 2.4: Schematic Illustration of Vehicle-Based and Behavioral Drowsiness Detection

Vehicle-based methods assess driver alertness indirectly by analyzing driving patterns and
vehicle control characteristics, operating under the premise that drowsy drivers exhibit
characteristic changes in their vehicle operation patterns.

Vehicle-based monitoring systems analyze multiple driving performance metrics including
steering wheel movements, lane position stability, and pedal operation patterns.
These systems employ algorithms that establish baseline driving patterns for individual
drivers and detect deviations that may indicate declining alertness.
Steering wheel angle variations, measured through steering sensors, can reveal character-
istic patterns associated with drowsy driving, such as increased steering corrections or
reduced responsiveness to road curvature[45][46][47].

Lane departure monitoring represents another significant vehicle-based approach, utilizing
cameras or other sensors to track vehicle position relative to lane markings.
Drowsy drivers often exhibit increased lane departure frequency or duration, providing
measurable indicators of impaired attention[48][49].
Similarly, analysis of acceleration and braking patterns can reveal changes in driving
smoothness and reaction time that correlate with fatigue levels[50][51].

However, vehicle-based approaches face significant limitations that constrain their reli-
ability and practical applicability.
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Road geometry variations, such as curves, construction zones, or varying lane marking
quality, can confound the interpretation of driving patterns.
Weather conditions including rain, snow, or wind can introduce external factors that af-
fect vehicle control independent of driver state.
Vehicle characteristics such as suspension setup, tire condition, and electronic stability
systems can also influence the measured parameters, making it difficult to establish uni-
versal thresholds for drowsiness detection [15, 16].

Behavioral monitoring approaches focus on directly observable driver characteristics using
in-cabin cameras and computer vision algorithms.
These systems analyze facial features, eye movements, and head position to assess alert-
ness levels.
Common behavioral indicators include prolonged eye closure measured through the per-
centage of eye closure time, blink frequency and duration patterns, yawning detection
through facial expression analysis, and head pose tracking to identify head nodding or
tilting associated with drowsiness.

Advanced driver assistance systems increasingly integrate behavioral monitoring tech-
niques, employing visible or infrared cameras to monitor driver state even in challenging
lighting conditions[52].
Computer vision algorithms have become sophisticated enough to detect subtle changes
in facial expressions and eye movements that precede overt drowsiness manifestations.
Some systems incorporate machine learning approaches that adapt to individual drivers’
baseline behaviors and improve detection accuracy over time[53].

Despite their technological sophistication, behavioral monitoring approaches encounter
several significant limitations.
Environmental factors such as lighting conditions, particularly during night driving or in
bright sunlight, can severely compromise camera-based detection accuracy.
Driver accessories including sunglasses, prescription glasses, or face masks can obstruct
facial feature detection.
Individual differences in facial anatomy, ethnicity, and age can affect the reliability of
facial recognition algorithms [15, 16].
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2.3.2 Physiological Approaches
Physiological monitoring represents a fundamental advancement in drowsiness detection,
offering more direct and objective assessment of driver state compared to vehicle-based or
behavioral approaches [17, 18].
These systems monitor autonomic nervous system activity through various physiological
markers, providing insights into the underlying biological processes that govern alertness
and performance.
The most widely used physiological signals include heart rate, heart rate variability, and
respiration rate, which can be acquired non-invasively using wearable sensors or embedded
vehicle systems. Figure 2.5 provides a schematic overview.

Figure 2.5: Schematic Overview of Non-Contact and Wearable HR/HRV Sensing Methods

The theoretical foundation for physiological drowsiness detection rests on the well-established
relationship between autonomic nervous system activity and arousal states.
As individuals transition from alertness to drowsiness, characteristic changes occur in
cardiovascular and respiratory patterns that can be detected and quantified through ap-
propriate signal processing techniques [19, 29].
These changes often precede behavioral manifestations of drowsiness, enabling earlier de-
tection and intervention.

Heart rate monitoring represents one of the most accessible physiological approaches,
utilizing either electrocardiography or photoplethysmography to measure cardiac rhythm.
During the transition from wakefulness to drowsiness, heart rate typically decreases as
parasympathetic nervous system activity increases and sympathetic activity diminishes.
This relationship provides a reliable indicator of changing arousal states, though individ-
ual variations and external factors must be considered in practical applications. Figure 2.6
illustrates the key physiological changes that occur during the transition from wakefulness
to drowsiness.
Heart rate variability analysis offers more sophisticated insights into autonomic nervous
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Figure 2.6: Physiological Changes During the Transition from Wakefulness to Drowsiness

system balance by examining the variation in intervals between successive heartbeats
[54, 32, 33].
Time domain measures such as the standard deviation of normal-to-normal intervals and
the root mean square of successive differences provide indicators of overall autonomic ac-
tivity and parasympathetic function, respectively.
Frequency domain analysis, including low-frequency and high-frequency power compo-
nents, can reveal specific patterns associated with different autonomic states.

The practical implementation of physiological monitoring has been facilitated by advances
in wearable sensor technology and signal processing algorithms [20, 9].
Consumer-grade devices such as smartwatches and fitness trackers now incorporate so-
phisticated physiological monitoring capabilities that were previously available only in
clinical settings.
These devices enable continuous and non intrusive monitoring throughout driving sessions
without requiring specialized hardware installation or driver preparation.
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2.3.3 Multi-Modal and Integrated Systems
Multi-modal drowsiness detection systems represent the current state-of-the-art approach,
combining data from physiological, behavioral, and vehicle-based sources to achieve more
reliable and robust detection performance [23].
These systems leverage the complementary strengths of different sensing modalities while
compensating for the individual limitations of each approach. Figure 2.7 provides a
schematic overview of multi-modal approaches.
The integration of multiple data streams enables more comprehensive assessment of driver
state and reduces the likelihood of false alarms or missed detections.

Figure 2.7: Multi-Modal Drowsiness Detection Systems

The development of multi-modal systems addresses several critical limitations of single-
modality approaches.
Physiological signals may be affected by motion artifacts, sensor displacement, or individ-
ual physiological variations.
Behavioral monitoring can be compromised by lighting conditions, driver accessories, or
certain types of drowsiness that do not manifest obvious behavioral changes.
Vehicle-based indicators may be confounded by road conditions, weather, or external fac-
tors affecting vehicle dynamics.
By combining multiple modalities, systems can maintain detection capability even when
individual sensors or approaches are compromised.

Data fusion strategies for multi-modal drowsiness detection can be implemented at differ-
ent levels of the processing pipeline.
Feature-level fusion combines preprocessed signals from different modalities before classi-
fication, enabling algorithms to identify complex patterns that span multiple data types.

31



State of the Art

Decision-level fusion combines the outputs of separate classification systems for each
modality, using voting schemes or weighted combination approaches to reach final drowsi-
ness assessments [55].
Hybrid approaches may employ both feature-level and decision-level fusion to optimize
detection performance [23].

Modern implementations of multi-modal systems frequently utilize Internet of Things
architectures to enable real-time, wireless data collection and fusion across wearable de-
vices, in-cabin sensors, and vehicle systems [56].
These architectures support the integration of diverse sensor types and communication
protocols while maintaining the low-latency requirements essential for real-time drowsi-
ness detection.
Cloud-based processing capabilities can augment local computational resources when more
sophisticated analysis algorithms are required.
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2.4 Heart Rate Variability in Drowsiness Detection

2.4.1 Fundamentals of Heart Rate and Heart Rate Variability

Heart rate and heart rate variability represent two of the most important and widely
studied physiological markers for drowsiness detection, providing complementary insights
into autonomic nervous system activity and arousal states.
Heart rate, defined as the number of heartbeats per minute, reflects the immediate de-
mands placed on the cardiovascular system and responds dynamically to changes in phys-
ical activity, emotional state, and arousal level.
Heart rate variability, representing the variation in time intervals between successive heart-
beats, provides more nuanced information about the balance between sympathetic and
parasympathetic nervous system activity [57, 32, 33].

The physiological foundations of heart rate regulation involve complex interactions be-
tween the autonomic nervous system, circulating hormones, and local cardiovascular con-
trol mechanisms[58][59].
The sinoatrial node, serving as the heart’s natural pacemaker, receives continuous input
from both sympathetic and parasympathetic nerve fibers that modulate heart rate in re-
sponse to physiological demands.
Sympathetic stimulation increases heart rate and contractility, preparing the cardiovascu-
lar system for increased activity, while parasympathetic stimulation decreases heart rate
and promotes recovery and restoration.

Heart rate variability emerges from the dynamic interplay between these autonomic influ-
ences, creating a constantly changing pattern of interbeat intervals even during apparently
steady-state conditions.
This variability is not random noise but rather reflects the healthy responsiveness of the
cardiovascular system to ongoing physiological regulation [60].
Reduced heart rate variability often indicates compromised autonomic function and has
been associated with various pathological conditions as well as states of stress, fatigue,
and drowsiness.

Heart rate usually falls as people go from being alert to being drowsy in the context
of drowsiness detection, reflecting the change in sympathetic nervous system dominance
to parasympathetic nervous system dominance that occurs during relaxation and sleep
preparation [17, 18].
This decrease is often gradual and may precede subjective awareness of drowsiness, mak-
ing heart rate monitoring valuable for early detection applications.
However, individual differences in baseline heart rate and responsiveness to drowsiness
require personalized calibration for optimal detection performance.
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2.4.2 Measurement Techniques for Heart Rate and Heart Rate
Variability

The accurate measurement of heart rate and heart rate variability forms the foundation
for reliable physiological drowsiness detection systems.
Several measurement modalities have been developed and refined over decades of clinical
and research applications, each offering distinct advantages and limitations for different
application contexts [54].
Understanding these techniques and their characteristics is essential for selecting appro-
priate approaches for vehicle-based drowsiness detection systems.

The gold standard for measuring heart rate and heart rate variability is still electrocar-
diography, which offers excellent signal quality and high temporal resolution in controlled
settings [33, 61].
Electrocardiogram signals directly reflect the electrical activity of the heart, with R-wave
peaks providing precise timing references for interbeat interval calculation. Figure 2.8
(below) illustrates how HR is calculated from successive R-R intervals in an ECG or PPG
signal.
Clinical electrocardiography systems achieve exceptional accuracy and reliability, making
them ideal for research applications and ground truth establishment.

However, traditional electrocardiography requires skin contact electrodes and careful prepa-
ration, limiting its practical applicability in vehicle environments.
The need for conductive gel, proper electrode placement, and protection from motion ar-
tifacts makes conventional electrocardiography unsuitable for routine driver monitoring
applications.
Modified approaches using dry electrodes or textile-integrated sensors have been devel-
oped to address these limitations, though often with some compromise in signal quality.

Photoplethysmography has emerged as the most practical alternative for wearable heart
rate monitoring, utilizing optical sensing techniques to detect blood volume changes as-
sociated with cardiac cycles [54, 61].
Photoplethysmography sensors employ light-emitting diodes to illuminate tissue and pho-
todetectors to measure the amount of light absorbed or reflected.
As blood volume increases during systole, light absorption changes, creating a pulsatile
signal that corresponds to heart rate.

The advantages of photoplethysmography for drowsiness detection applications include
non-invasive measurement requiring only skin contact, compatibility with wearable device
form factors, relatively low power consumption suitable for battery-operated devices, and
the ability to provide continuous monitoring for prolonged periods of time.
Modern photoplethysmography implementations achieve heart rate accuracy comparable
to electrocardiography for most applications, though heart rate variability measurement
may be somewhat less precise due to the indirect nature of the measurement [61].
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Figure 2.8: ECG and PPG signals

2.4.3 HRV Analysis Methods and Metrics

Heart rate variability analysis encompasses a diverse range of mathematical and statisti-
cal techniques designed to quantify different aspects of autonomic nervous system activity
[33, 60, 61].
These analysis methods have been developed and validated over decades of clinical re-
search, providing standardized approaches for extracting meaningful information from
heart rate variability signals.
Understanding these methods and their appropriate applications is crucial for developing
effective drowsiness detection systems based on physiological monitoring.

Time domain analysis methods provide the most straightforward approach to heart
rate variability quantification, utilizing statistical measures applied directly to sequences
of interbeat intervals.
The standard deviation of normal-to-normal intervals serves as a global measure of heart
rate variability, reflecting overall autonomic nervous system activity over the measurement
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period.
This measure increases when autonomic nervous system activity is high and decreases
during conditions of reduced variability such as stress or certain disease states [60].

The root mean square of successive differences between interbeat intervals provides a
more specific measure of short-term heart rate variability that is primarily influenced by
parasympathetic nervous system activity.
This measure is particularly sensitive to rapid changes in autonomic balance and can pro-
vide early indicators of drowsiness onset when parasympathetic activity begins to domi-
nate.
The sensitivity of this measure to high-frequency variations makes it valuable for real-time
monitoring applications [60].

Frequency domain analysis techniques transform heart rate variability signals into
the frequency domain to examine the spectral characteristics of autonomic nervous system
activity.
Power spectral density analysis reveals the distribution of heart rate variability power
across different frequency bands, each associated with different physiological mechanisms
[33, 60].
Very low frequency components, typically below 0.04 Hz, are influenced by thermoregu-
lation, hormone fluctuations, and other long-term regulatory processes.

Low frequency components, generally defined as the frequency range from 0.04 to 0.15 Hz,
reflect both sympathetic and parasympathetic influences on heart rate, with sympathetic
activity thought to predominate [62] [63] [64].
High frequency components, spanning approximately 0.15 to 0.4 Hz, are primarily medi-
ated by parasympathetic nervous system activity and closely related to respiratory pat-
terns [62] [63] [64].
The ratio of low frequency to high frequency power is often used as an indicator of
sympathetic-parasympathetic balance, though its interpretation requires careful consid-
eration of various factors [60].

Detrended Fluctuation Analysis, entropy measures, and Poincaré plots are examples of
Nonlinear Analysis techniques. These techniques can offer extra prognostic value in
particular situations and capture intricate and chaotic heart rate dynamics behaviors that
linear approaches frequently overlook. The primary steps in the heart rate variability
(HRV) analysis pipeline are depicted in Figure 2.9 (below).
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Figure 2.9: Schematic Workflow of HRV Analysis: From Signal Acquisition to Clinical
Application

2.4.4 Factors Influencing Heart Rate Variability
Heart rate variability is influenced by numerous physiological, psychological, and environ-
mental factors that must be understood and accounted for in drowsiness detection systems
[65, 66].
These factors can significantly affect baseline heart rate variability levels and responses
to drowsiness, making personalization and calibration essential components of practical
monitoring systems.
A comprehensive understanding of these influences enables the development of more robust
and reliable detection algorithms that can maintain accuracy across diverse populations
and conditions.

Age represents one of the most significant factors affecting heart rate variability, with
well-documented decreases in most heart rate variability measures throughout the human
lifespan [65, 66].
Heart rate variability increases rapidly during childhood, reaches peak values during ado-
lescence and early adulthood, and then gradually declines with advancing age.
This age-related decline reflects changes in autonomic nervous system function, including
reduced parasympathetic activity and altered sensitivity to autonomic stimulation.
Drowsiness detection systems must account for these age-related changes to establish ap-
propriate baseline values and detection thresholds.

Physical fitness and cardiovascular health significantly impact heart rate variabil-
ity patterns, with regular aerobic exercise generally associated with increased heart rate
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variability and enhanced vagal tone [65, 66].
Well-trained athletes typically exhibit higher baseline heart rate variability and greater
parasympathetic activity compared to sedentary individuals.
However, acute exercise can transiently decrease heart rate variability, and overtraining
may lead to chronic reductions.
These fitness-related variations must be considered when interpreting heart rate variabil-
ity in the context of drowsiness detection.

Lifestyle factors including smoking, alcohol consumption, and caffeine intake can sig-
nificantly affect heart rate variability patterns [65, 60].
Smoking is generally associated with reduced heart rate variability, reflecting adverse ef-
fects on autonomic function.
Alcohol consumption can have complex effects depending on dose and timing, with moder-
ate amounts sometimes increasing heart rate variability acutely while chronic consumption
typically reduces it.
Caffeine intake can increase sympathetic activity and affect heart rate variability patterns,
with effects lasting several hours after consumption.
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2.5 Machine Learning in Physiological State Recog-
nition

2.5.1 Feature Extraction and Engineering

The transformation of raw physiological signals into meaningful features suitable for ma-
chine learning analysis represents a critical step in developing effective drowsiness detec-
tion systems [9, 20].
Feature extraction and engineering techniques must be developed in order to capture the
essential characteristics of physiological patterns, while reducing dimensionality and com-
putational requirements for real-time applications.
The quality and, especially, relevance of extracted features often determine the ultimate
success of machine learning approaches in physiological state recognition.

Traditional feature extraction approaches for heart rate variability analysis have focused
on established time domain, frequency domain, and nonlinear measures that have been
validated through decades of clinical research [60].
Time domain features such as the standard deviation of normal-to-normal intervals and
the root mean square of successive differences provide robust indicators of autonomic ner-
vous system activity that can be computed efficiently from inter beat interval sequences.
These features offer the advantages of simplicity, computational efficiency, and well-
understood physiological interpretations.

Frequency domain features derived from power spectral analysis offer complementary in-
formation about autonomic nervous system activity by revealing the spectral characteris-
tics of heart rate variability.
Low frequency power, high frequency power, and their ratio provide insights into sympathetic-
parasympathetic balance that may be particularly relevant for drowsiness detection [33,
60].
The implementation of frequency domain feature extraction requires careful consideration
of spectral estimation techniques, window functions, and frequency band definitions to
ensure reliable and comparable results.

2.5.2 Classification Algorithms for Drowsiness Detection

The selection and optimization of machine learning algorithms for drowsiness classification
represents a critical component in developing effective physiological monitoring systems
[9, 20, 67, 68].
Various classification approaches have been investigated for this application, each offering
distinct advantages and limitations that must be carefully considered in the context of
real-time, safety-critical deployment requirements.
This choice for the classification problem significantly affects system performance, com-
putational requirements, and interpretability.
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Support Vector Machines have been extensively investigated for drowsiness detection ap-
plications due to their strong theoretical foundations and effectiveness in handling high-
dimensional feature spaces [68, 29].
These models work by finding optimal hyperplanes that separate different classes in fea-
ture space, with the ability to handle non-linearly separable problems through kernel
functions.
In fact, radial basis function kernels are commonly employed for drowsiness detection,
enabling the algorithm to capture complex, non-linear relationships between physiological
features and arousal states.

On the other hand, Random Forest algorithms represent an easier learning approach
that has demonstrated excellent performance for physiological state classification tasks
[67, 9].
By constructing multiple decision trees using different subsets of features and training
samples, they then combine their predictions through voting mechanisms.
This approach provides robust performance by reducing overfitting and improving gener-
alization compared to individual decision trees.

2.5.3 Model Validation and Performance Assessment
The validation and performance assessment of machine learning models for drowsiness
detection requires specialized approaches that account for the unique characteristics of
physiological data and the safety-critical nature of the application [9, 20].
Traditional machine learning validation techniques must be adapted to address temporal
dependencies, individual variations, and the practical requirements of real-world deploy-
ment scenarios.
Comprehensive validation strategies ensure that developed models will perform reliably
when deployed in real vehicle environments.

In addition, temporal validation considerations are particularly important for drowsiness
detection applications, because physiological data exhibit strong temporal correlations
and the drowsiness state evolves gradually over time.
Traditional random cross-validation approaches, that randomly distribute samples be-
tween training and test sets, can lead to overly optimistic performance estimates by in-
cluding temporally adjacent samples in both sets.
This temporal leakage allows models to exploit short-term correlations rather than learn-
ing generalizable patterns associated with drowsiness onset.

Person-independent validation represents another critical consideration for drowsiness de-
tection systems that must generalize across diverse populations.
Individual differences in physiological baselines, autonomic nervous system responsiveness,
and drowsiness manifestations can significantly affect model performance when applied to
new users[69].
Person-independent cross-validation, where complete individuals are held out from train-
ing and used only for testing, provides essential insights into model generalization.
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Chapter 3

Methodology

3.1 Overview and Research Design

This chapter presents the comprehensive methodological framework developed to detect
and classify driver drowsiness and arousal states using physiological data collected from
smartwatch devices.
The methodology represents a systematic approach to ensure four discrete arousal levels
can discriminate between drowsiness and the awake state.

The overall research design follows a supervised machine learning paradigm, where phys-
iological features serve as input variables and discretized arousal levels function as target
classifications.
This approach was selected to enable real-time or online processing capabilities while
maintaining the precision necessary for safety-critical applications.
The methodology integrates several innovative components, including a novel circular
buffer architecture for memory-efficient and lightweight data processing, feature engineer-
ing techniques optimized for physiological signals and comparative evaluation of multiple
machine learning algorithms.

The research framework was designed to address critical limitations identified in existing
drowsiness detection systems, particularly the need for robust performance across diverse
individuals, real-time or near real-time processing capabilities suitable for embedded de-
ployment and scalability to large datasets representative of real-world driving conditions.
Each methodological component was carefully selected and optimized to maximize both
detection accuracy and practical feasibility.

The experimental approach emphasizes ecological validity while maintaining rigorous sci-
entific controls.
Rather than relying solely on laboratory-induced drowsiness, the methodology incorpo-
rates physiological data collected under conditions that approximate realistic driving sce-
narios.
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This design choice reflects the understanding that laboratory findings may not translate
directly to real-world performance (this is often called domain shift [70]), showing the
importance of validation approaches that capture the complexity and variability of actual
driving environments.

The methodology also incorporates principles of reproducible research, with detailed doc-
umentation of all processing steps, parameter selections, and validation procedures.
This emphasis on reproducibility ensures that findings can be independently verified on
their correctness and that the developed approaches can be effectively transferred to prac-
tical implementation contexts in an easy and reliable manner.

3.2 Data Acquisition and Dataset Description
The foundation of this research is built on a substantial dataset of physiological data that
was provided from a company, eliminating data collection as a component while enabling
focus on advanced analysis and modeling techniques.
The dataset, while not publicly available due to copyright reasons, represents one of the
largest collections of synchronized physiological and arousal data available for drowsiness
detection research, providing robust statistical power for machine learning algorithm de-
velopment and validation.

The physiological data component consists of fifteen Excel files, each containing approxi-
mately five thousand observations.
These files capture a comprehensive range of physiological parameters and metadata fea-
tures collected through smartwatch-class sensors during extended monitoring sessions.
The systematic organization of these files reflects careful experimental design principles,
with consistent sampling protocols and standardized measurement procedures across all
data collection sessions.

Corresponding to each physiological data file, the dataset includes fifteen arousal and
valence annotation files that provide synchronized annotation labels for every observa-
tion.
This pairing ensures precise temporal alignment between physiological measurements and
subjective state assessments, creating the foundation for supervised learning approaches.
The arousal annotations represent expert assessments of alertness levels, providing the
target variables necessary for classification model development.

The dataset’s substantial size, encompassing 169,466 individual observations after
preprocessing and integration, provides exceptional statistical power for machine learning
applications.
This scale enables robust cross-validation procedures, supports the development of person-
alized models for individual users, and allows for comprehensive evaluation of algorithm
performance across diverse conditions and populations.
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The temporal structure of the data, with observations collected over extended periods,
captures the natural progression of arousal state changes that occur during realistic mon-
itoring scenarios.
This temporal richness enables the development of algorithms that can detect gradual
transitions between alertness and drowsiness, rather than simply classifying discrete time
points in isolation.

The multi-dimensional physiological measurements allow for complex feature engineer-
ing and selection.
However, this study focuses specifically on heart rate (HR) and heart rate variability
(HRV) as the primary indicators, due to their well-established associations with auto-
nomic nervous system activity and arousal states[31, 17, 18, 19].

3.3 Data Preprocessing Pipeline
The transformation of raw physiological measurements into analysis-ready datasets re-
quires a systematic preprocessing pipeline that addresses data quality issues, ensures tem-
poral consistency, and prepares features for machine learning analysis. This preprocessing
pipeline, illustrated in Figure 3.1, represents a critical component of the methodology that
directly impacts the reliability and validity of subsequent analyses.

Figure 3.1: Schematic of the Data Preprocessing Workflow

3.3.1 Data Cleaning and Synchronization
The initial preprocessing pipeline was implemented in Python using Pandas and NumPy
libraries to ensure robust and efficient data handling.
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All Excel files from both physiological and arousal folders were batch-imported using sys-
tematic procedures that maintain data integrity and traceability.
Appropriate column headers were programmatically assigned to the physiological data,
addressing the original files lack of standardized headers through systematic naming con-
ventions.

A new identifier column, "File_Name," was added to each dataframe to track data origin
throughout the merging process, enabling comprehensive traceability and supporting file-
specific analyses. The "Progressivo" identifier was added to provide sequential numbering
within each file, supporting temporal analysis and ensuring proper ordering of time-series
data.
Only the relevant columns, Time, HR, RR, and HRV were retained for further analysis,
streamlining the dataset while preserving essential physiological information.
All files were concatenated into unified dataframes using efficient pandas operations that
maintain temporal ordering and data relationships.

Rows with missing or invalid values in key columns were automatically identified and
removed to maintain dataset integrity.
This cleaning process employed multiple validation criteria, including null value detec-
tion, range validation based on physiological norms, and consistency checks across related
measurements.
The physiological and arousal dataframes were temporally aligned by merging on both
"File_Name" and "Time" columns, ensuring strict one-to-one correspondence for every
observation in the merged dataset.

This careful alignment was critical for the validity of machine learning analysis, as any
misalignment could lead to erroneous or deceptive model predictions.
The automated and programmatic approach not only ensured data integrity but also
enables reproducibility and scalability for similar datasets in future studies.

3.3.2 Feature Extraction and Standardization
Once the datasets were merged, the final dataframe included columns for Time, Valence,
Arousal, File_Name, Progressivo, HR, RR, and HRV.
These variables were standardized and renamed for consistency, with additional identifier
columns (File_Name, Progressivo) included to track the source of each record and enable
file-specific or session-based analyses.
This comprehensive tracking facilitates traceability and supports potential stratified anal-
ysis by data source.

All extraction and quality control steps were performed programmatically in Python to
ensure efficiency and reproducibility.
Programmatic checks were implemented to identify and resolve any duplicate rows or
inconsistencies, ensuring the quality and integrity of the dataset through systematic vali-
dation procedures.
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The selection of these specific features was guided by their documented relevance in the
literature for detecting autonomic changes and drowsiness [19, 29, 17, 18].
No further feature engineering or advanced HRV metric computation was performed at
this stage, as the physiological variables provided were used directly for model training
and evaluation.
This approach maintains the integrity of the original measurements while ensuring com-
patibility with real-time processing requirements.

3.3.3 Label Engineering and Discretization
The continuous "Arousal" column was discretized into four equal-width bins using Pan-
das’ cut function, producing categorical classes that represent different levels of arousal
or drowsiness (from 0 to 3).
This binning approach was chosen to transform the regression problem into a multiclass
classification task, making the model’s output more robust to small fluctuations in the
original signal while providing meaningful distinctions between arousal states.

Each bin was mapped to a progressive integer identifier, stored in the new "Bin_Num"
column, enabling direct use as class labels in supervised classification models.
This binning approach provided a robust and interpretable target variable for the down-
stream machine learning framework while maintaining the granularity necessary for mean-
ingful drowsiness detection.

The four-class discretization scheme reflects careful consideration of both theoretical
frameworks and real world implementation.
From a theoretical perspective, four classes provide sufficient granularity to capture the
major phases of alertness transition, spanning from full alertness through progressive
drowsiness stages to pronounced sleepiness.
From a practical implementation perspective, the four-class scheme balances classification
complexity with deployment feasibility, avoiding both the oversimplification of binary
classification and the excessive complexity of highly granular schemes.
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3.4 Circular Buffer Architecture
The development of a memory-efficient circular buffer architecture represents one of the
principal methodological innovations of this research, addressing critical constraints im-
posed by embedded hardware deployment while maintaining computational sophistication
for accurate drowsiness detection.

The circular buffer operates on fixed-size data structures that overwrite older observations
as new measurements arrive, creating a continuously updated window of recent physio-
logical activity. This approach eliminates memory overhead associated with maintaining
complete historical datasets while preserving temporal context necessary for meaningful
arousal state assessment. Buffer size is optimized to balance temporal coverage with mem-
ory constraints of embedded automotive systems.

The implementation utilizes ring buffer principles with head and tail pointers manag-
ing data insertion and removal without memory reallocation or copying operations. This
design ensures constant-time complexity for data updates, maintaining predictable per-
formance characteristics regardless of buffer size or operation duration. Feature scaling
and normalization operations are integrated directly into the buffer architecture using
running statistics maintained within the buffer structure. This integration eliminates sep-
arate preprocessing stages while ensuring processed features are immediately available for
classification.

The architecture enables continuous inference through streaming data processing capa-
bilities. As the buffer updates with new measurements, feature extraction algorithms
operate on current contents to generate appropriately formatted input tensors for clas-
sification models. These tensors conform to model input requirements while preserving
temporal relationships inherent in physiological signals, providing the resolution necessary
for early warning systems. This streaming approach facilitates real-time drowsiness detec-
tion without compromising the temporal dependencies crucial for accurate physiological
state assessment.
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3.5 Machine Learning Framework

3.5.1 Problem Formulation
The model is trained to predict the discrete arousal level for each observation, as defined
by the four-class binning of the continuous arousal signal described in Section 3.3.3
This formulation enables the system to robustly differentiate between multiple states of
alertness, supporting early detection and potential real-time interventions in realistic op-
erational environments.

The classification framework treats physiological features as input variables and discretized
arousal levels as target outputs, enabling supervised learning algorithms to automatically
discover complex relationships between autonomic nervous system activity and subjective
arousal states.
This approach leverages the substantial dataset size to learn generalizable patterns that
can accurately predict arousal levels from physiological measurements alone.

3.5.2 Model Selection and Development
Random Forest (RF) and Support Vector Machine (SVM), the two main classifiers, were
assessed according to their complementary advantages and appropriateness for physiolog-
ical signal analysis.
For managing the properties present in physiological data, such as feature interaction
modeling, noise tolerance, and non-linear relationships, each algorithm has unique bene-
fits.

Random Forest Implementation

Random Forest was selected for its exceptional ability to model complex, non-linear rela-
tionships between physiological features and arousal states while maintaining robustness
to noise and outliers commonly present in wearable sensor data [67].
The ensemble approach provides natural protection against overfitting through bootstrap
aggregation and random feature selection, making it particularly suitable for physiological
signal classification.

The Random Forest implementation employs the following carefully optimized hyper-
parameters determined through systematic grid search procedures:

• Number of Trees: 150 trees (optimized through grid search, as 100 trees proved
insufficient for capturing the complexity of physiological patterns)

• Maximum Leaves per Tree: 30 leaves (controls model complexity while preserv-
ing discriminative capability)

• Maximum Depth: 10 levels (limits tree growth to prevent overfitting while main-
taining sufficient depth for feature interactions)
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• Minimum Samples per Split: 5 samples (ensures sufficient statistical evidence
for tree splits)

• Minimum Samples per Leaf: 2 samples (prevents overly small leaves while main-
taining model flexibility)

These hyperparameter selections reflect extensive optimization procedures that balance
model complexity with generalization performance, ensuring optimal classification accu-
racy while maintaining computational efficiency suitable for real-time applications.

Support Vector Machine Implementation

Support Vector Machine algorithms provide complementary capabilities for arousal clas-
sification, particularly through their ability to find optimal decision boundaries in high-
dimensional feature spaces [68].
The non-linear separability inherent in physiological arousal relationships necessitates the
use of kernel functions to capture complex decision boundaries.

The SVM implementation incorporates the following optimized parameters:

• Kernel Function: Radial Basis Function (RBF) kernel, selected after systematic
evaluation revealed superior performance compared to linear kernels

• Regularization Parameter: C = 500, providing soft margin classification that
balances model flexibility with overfitting prevention

• Kernel Parameters: Optimized through grid search to ensure appropriate scaling
for physiological feature distributions

The selection of RBF kernels reflects empirical evaluation demonstrating that physiologi-
cal data exhibit non-linear separability characteristics that require sophisticated decision
boundary modeling.
Linear kernels consistently produced poor results, confirming the non-linear nature of the
classification problem.
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3.6 Experimental Protocol and Validation Strategy
The experimental protocol establishes rigorous procedures for model training, validation,
and performance assessment that ensure reliable and generalizable results [9].
The validation strategy specifically addresses the unique characteristics of physiological
data, including temporal dependencies, individual differences, and the safety-critical na-
ture of drowsiness detection applications.

The primary validation approach employs stratified, per-driver train-test splits that
respect individual boundaries while maintaining representative arousal class distributions.
This validation strategy recognizes that physiological responses exhibit significant indi-
vidual variation and that models must demonstrate effectiveness across different people
rather than simply different time periods from the same individuals.

Complete separation of individuals between training and testing sets provides conser-
vative but realistic estimates of generalization performance.
This approach ensures that the model’s ability to generalize to new users is properly as-
sessed, reflecting the real-world deployment scenario where systems must work effectively
for individuals not included in the training data.

The train-test split proportions allocate approximately 70% of individuals to training
and validation sets and 30% to testing sets, balancing statistical power in both phases
while maintaining individual-level separation.
This allocation ensures adequate sample sizes for robust model development while pro-
viding sufficient test data for reliable performance evaluation.

Cross-validation procedures within the training set employ person-independent folds that
further validate model robustness across different individuals.
These internal validation procedures guide hyperparameter selection and model refine-
ment while maintaining strict separation from the final test set.
The cross-validation approach uses stratified sampling to ensure representative arousal
class distributions across all folds.

3.6.1 Performance Evaluation Metrics
Performance evaluation employs comprehensive metrics that capture different aspects of
classification quality relevant to drowsiness detection applications:

• Overall Accuracy: Primary measure of classification performance across all arousal
states

• Class-specific Precision: Proportion of correct predictions for each arousal level

• Class-specific Recall: Proportion of actual arousal states correctly identified

• Class-specific F1-scores: Harmonic mean of precision and recall for balanced
evaluation
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• Macro-averaged Metrics: Unweighted average across all classes for balanced as-
sessment

The emphasis on class-specific metrics ensures that model performance is evaluated com-
prehensively across all arousal states, preventing optimization bias toward common classes
at the expense of critical but less frequent drowsiness states.

3.6.2 Statistical Significance and Robustness Assessment
The experimental protocol includes statistical significance testing to ensure that observed
performance differences between models reflect genuine effects rather than random varia-
tion.
Appropriate statistical tests account for the dependencies inherent in physiological data
and the specific experimental design employed.

Robustness assessment procedures evaluate model performance under various data quality
conditions that might be encountered in real-world deployment scenarios.
These assessments include evaluation with simulated sensor noise, missing data patterns,
and signal quality degradation that could occur due to poor sensor contact or motion
artifacts.

Confidence interval estimation provides essential information about the uncertainty in
performance estimates, particularly crucial for safety-critical applications where under-
standing the range of possible performance outcomes is vital for deployment decisions.
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Results and Discussion

4.1 Results

4.1.1 Overall Performance Summary

The experimental evaluation of the proposed drowsiness detection methodology yielded
comprehensive performance results that demonstrate the feasibility of using physiological
signals for real-time arousal state classification.
The stratified, per-driver validation approach provided robust assessment of model gener-
alization capabilities across diverse individuals while maintaining the temporal integrity
essential for physiological data analysis.

The Random Forest ensemble method achieved a mean classification accuracy of
88.1% across all arousal states, with individual file accuracies ranging from a minimum
of 78.4% to a maximum of 99.4%.
This performance level approaches the 90% target accuracy threshold established for prac-
tical deployment in safety-critical applications, demonstrating the viability of the proposed
approach for real-world implementation.
The substantial variation in per-file performance reflects the individual differences inherent
in physiological responses to drowsiness, highlighting the importance of personalization
strategies in practical deployments.

The Support Vector Machine implementation with radial basis function kernel achieved
a mean accuracy of 77.1%, with performance ranging from 70.1% to 93.9% across
individual files.
While demonstrating competent classification capability, the SVM approach consistently
underperformed relative to the Random Forest method across all evaluation metrics.
The 11-percentage-point performance gap between algorithms provides clear evidence for
the superiority of ensemble methods in this application domain.

Both algorithms demonstrated the ability to maintain class-wise F1-scores above 70%
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across all arousal states, indicating balanced performance that avoids bias toward partic-
ular alertness levels.

4.1.2 Detailed Performance Metrics
The comprehensive evaluation framework employed multiple metrics to capture different
aspects of classification performance, providing detailed insights into algorithm behavior
across all arousal states.
Table 4.1 presents the complete performance metrics for both Random Forest and Support
Vector Machine approaches, including per-class precision, recall, and F1-scores that reveal
classification characteristics for individual arousal levels.

Metric Class 0 Class 1 Class 2 Class 3 Overall

Random Forest

Precision 0.91 0.87 0.85 0.89 0.88
Recall 0.89 0.85 0.88 0.91 0.88
F1-Score 0.90 0.86 0.86 0.90 0.88

Support Vector Machine

Precision 0.82 0.75 0.73 0.78 0.77
Recall 0.79 0.77 0.75 0.81 0.78
F1-Score 0.80 0.76 0.74 0.79 0.77

Table 4.1: Comprehensive Performance Metrics for Random Forest and Support Vector
Machine

The Random Forest algorithm demonstrates superior performance across all arousal classes,
with particularly strong results for the extreme arousal states (Class 0 representing high
alertness and Class 3 representing pronounced drowsiness).
The balanced performance across all classes indicates that the ensemble approach effec-
tively captures the physiological patterns associated with different arousal levels without
exhibiting systematic bias toward particular states.
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4.2 Computational Performance Analysis
The evaluation of computational performance characteristics addresses critical require-
ments for real-time deployment in embedded automotive systems.
Table 4.2 presents comprehensive timing and resource usage measurements for both algo-
rithms across training and inference phases, providing essential information for practical
implementation decisions.

Algorithm Training Time (s) Inference Time (ms) Memory Usage (MB) Model Size (MB)

Random Forest 127.3 ± 12.4 2.8 ± 0.3 45.2 ± 3.1 18.7
Support Vector Machine 892.7 ± 89.3 5.4 ± 0.8 67.8 ± 5.2 24.3

Table 4.2: Computational Performance Metrics

Training time analysis reveals substantial differences between algorithms, with Random
Forest requiring approximately seven times less computation time than Support Vector
Machine approaches.
The Random Forest training time of 127.3 seconds for the complete dataset represents
acceptable duration for offline model development, while the SVM training time of 892.7
seconds may constrain practical model updating or personalization procedures.

Inference time measurements demonstrate that both algorithms meet real-time processing
requirements for drowsiness detection applications.
Random Forest inference averages 2.8 milliseconds per classification, easily supporting
continuous monitoring with sub-second update intervals.
SVM inference time of 5.4 milliseconds, while nearly twice that of Random Forest, remains
within acceptable bounds for real-time operation.

Memory usage analysis indicates moderate resource requirements for both algorithms,
with Random Forest consuming 45.2 MB and SVM requiring 67.8 MB during operation.
These memory footprints are compatible with modern embedded automotive systems
while remaining substantially below typical memory constraints for safety-critical appli-
cations.

Model size measurements reveal compact representations suitable for embedded deploy-
ment.
Random Forest models require 18.7 MB storage, while SVM models consume 24.3 MB.
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4.3 Discussion
4.3.1 Performance Interpretation and Algorithm Comparison
The substantial performance advantage of Random Forest over Support Vector Machine
approaches reflects fundamental differences in how these algorithms handle the character-
istics inherent in physiological data.
Random Forest’s ensemble architecture provides natural robustness to the noise, outliers,
and individual variations that are inevitable in wearable sensor measurements.
The bootstrap aggregation and random feature selection mechanisms inherent in Random
Forest methods create multiple decision pathways that can accommodate the complex,
non-linear relationships between physiological features and arousal states [67, 9].

Support Vector Machine performance, while competent, appears constrained by the as-
sumption of optimal decision boundaries that may not align with the natural structure of
physiological arousal data.
Even with radial basis function kernels designed to capture non-linear relationships, the
SVM approach demonstrates systematic limitations in distinguishing intermediate arousal
states.
This limitation may reflect the inherent complexity of physiological patterns that exceed
the representational capacity of kernel-based decision boundaries [68, 29].

The performance levels achieved by both algorithms compare favorably with existing
literature in physiological drowsiness detection.
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Conclusion

5.1 Research Overview and Key Achievements
This thesis investigated the fundamental question of whether four discrete arousal levels
can be discriminated from smartwatch physiological signals with at least 90% accuracy
under conditions that approximate real driving scenarios.
Through the development and evaluation of a comprehensive machine learning framework
incorporating a novel circular buffer architecture, this research has demonstrated the prac-
tical feasibility of using consumer-grade wearable devices for real-time driver drowsiness
detection in automotive safety applications.

The investigation addressed critical limitations in existing drowsiness detection method-
ologies by developing a physiological monitoring approach that overcomes the constraints
of traditional vehicle-based and behavioral systems.
The research employed a substantial dataset of 169,466 multivariate samples collected
from smartwatch sensors, representing one of the largest synchronized physiological and
arousal datasets available for drowsiness detection research.
This scale enabled robust statistical validation and comprehensive evaluation of machine
learning algorithms under realistic conditions.

The core contribution of this work lies in bridging the gap between laboratory research
and practical implementation through the development of memory-efficient processing ar-
chitectures suitable for embedded automotive deployment.
The circular buffer implementation enables continuous real-time processing without ex-
tensive memory allocation, addressing a critical constraint that has historically limited
the practical deployment of sophisticated physiological monitoring systems in resource-
constrained automotive environments.
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5.2 Contributions and Significance
This research makes several significant contributions to the field of physiological-based
drowsiness detection:

Technical Contributions:

1. Novel Architecture Design: Introduction of a memory-light circular buffer archi-
tecture that enables real-time physiological signal processing on embedded hardware
without batch preprocessing requirements.

2. Large-Scale Validation: Comprehensive evaluation using a sizable dataset of
169,466 samples, providing robust statistical validation of the proposed approach
across diverse conditions and individuals.

3. Comparative Analysis: Systematic comparison of Random Forest and Support
Vector Machine approaches for physiological arousal classification, providing insights
into optimal algorithmic choices for this application domain.

4. Practical Implementation: Development of a complete pipeline from raw sensor
data to classification output, demonstrating feasibility for real-world deployment in
vehicle environments.

Scientific Contributions:

1. Methodology Advancement: Demonstration that consumer-grade wearable de-
vices can approach the reliability threshold required for safety-critical drowsiness
detection applications.

2. Performance Benchmarking: Establishment of performance baselines for four-
class arousal discrimination using wrist-worn physiological sensors, achieving mean
accuracy of 88% with peak performance of 99%.

3. Real-Time Processing: Validation that sophisticated machine learning pipelines
can operate within the computational and memory constraints of embedded auto-
motive systems.

Practical Significance:
The research demonstrates that low-cost wearable devices combined with lightweight ma-
chine learning pipelines can approach reliability thresholds required for in-vehicle deploy-
ment. Moreover, it can be deployed not only from car manufactures but the modulariza-
tion of this approach allows other companies to develop such integrated systems or DIY
solutions.

By enabling early detection of drowsiness transitions within seconds, the proposed sys-
tem can be integrated into driver assistance stacks, fleet safety dashboards, or consumer
smartwatch applications, thereby reducing fatigue-related crash risk and associated public
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health costs.

The work addresses a significant gap between research on laboratory-based drowsiness
detection and real-world deployment needs, providing a pathway for physiological moni-
toring to be widely used in transportation safety applications.
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5.3 Current Limitations and Research Gaps
Despite significant advances in drowsiness detection research over the past decades, sev-
eral fundamental limitations and research gaps continue to constrain the development and
deployment of reliable, practical systems.
These limitations span technical, methodological, and practical domains, creating barri-
ers to the widespread adoption of physiological monitoring approaches for driver safety
applications [20, 23].
Understanding these limitations is essential for guiding future research directions and es-
tablishing realistic expectations for current technology capabilities.

Generalization across diverse populations represents one of the most significant challenges
facing current drowsiness detection approaches.
Most published studies are limited by small sample sizes, narrow demographic ranges, or
specific population characteristics that may not reflect the broader driving population [9].
Age-related changes in autonomic nervous system function, sex differences in physiological
responses, cultural variations in sleep patterns, and individual differences in physiological
baselines all contribute to the challenge of developing universally applicable detection al-
gorithms.

The majority of existing research has been carried out in controlled laboratory envi-
ronments or driving simulators that may not accurately represent the complexity and
variability of real world driving situations.
Laboratory studies typically employ standardized protocols, controlled environmental con-
ditions, and artificial drowsiness induction methods that may not capture the natural
progression of fatigue during actual driving.
The transition from laboratory validation to real-world deployment often reveals perfor-
mance degradation due to factors not present in controlled settings.

Ground truth establishment for drowsiness assessment remains a fundamental challenge
that affects the validity of all detection system evaluations [9].
Current approaches rely on subjective self-reporting scales, expert observation, or indi-
rect measures such as reaction time testing, each with inherent limitations and potential
biases.
The lack of objective, universally accepted criteria for defining and measuring drowsiness
states creates difficulties in comparing different detection approaches and establishing
performance benchmarks.
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5.4 Future Research Directions
The findings and limitations of this research suggest several critical directions for future
investigation that could address current constraints and advance the field toward more
robust and widely applicable drowsiness detection systems.

Semi-Supervised Learning for Annotation Efficiency: The development of semi-
supervised learning approaches represents a high-priority direction for reducing the sub-
stantial annotation requirements that currently constrain personalized drowsiness detec-
tion systems.
By leveraging unlabeled physiological data to augment limited supervised training ex-
amples, semi-supervised methods could enable effective model adaptation with minimal
expert annotation effort.
Active learning strategies could further optimize annotation efficiency by intelligently
selecting the most informative samples for labeling, potentially reducing annotation re-
quirements by an order of magnitude while maintaining classification performance.

Driver Adaptation and Personalization Algorithms: Advanced personalization al-
gorithms should be prioritized to address the substantial individual differences observed
in physiological responses to drowsiness.
Adaptive learning approaches that continuously refine detection parameters based on ac-
cumulated usage data could improve classification accuracy while maintaining ease of use.
Transfer learning techniques could enable rapid adaptation to new individuals by leverag-
ing patterns learned from large population datasets while customizing decision boundaries
to individual physiological characteristics and driving patterns.

Vehicle CAN Data Integration and Multi-Modal Fusion: Integration with ve-
hicle Controller Area Network (CAN) data and other automotive sensors represents a
significant opportunity for enhancing drowsiness detection through multi-modal fusion
approaches.
Vehicle speed, steering patterns, lane position, brake pressure, and environmental sensors
could provide contextual information that improves interpretation of physiological signals.
Advanced sensor fusion algorithms could combine physiological monitoring with existing
driver assistance technologies to create more comprehensive and robust driver state as-
sessment systems.

Comprehensive Field Trials and Real-World Validation: Field trials conducted
in realistic driving environments with diverse driver populations are essential for validat-
ing laboratory findings and identifying practical deployment challenges.
Naturalistic driving studies incorporating extended monitoring periods, various weather
conditions, different vehicle types, and diverse traffic scenarios would provide crucial in-
sights into real-world performance characteristics.
Longitudinal studies tracking individual drivers over weeks or months could reveal adap-
tation effects, seasonal variations, and long-term system reliability patterns.
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Advanced Machine Learning Architectures: Investigation of advanced machine
learning approaches, including deep learning architectures and attention mechanisms,
could potentially improve classification performance beyond traditional ensemble meth-
ods.
Convolutional neural networks designed for time-series physiological data could automat-
ically learn relevant temporal patterns without requiring manual feature engineering.
Recurrent neural networks with long short-term memory units could capture longer-term
dependencies that might enhance drowsiness prediction accuracy and enable detection of
gradual arousal state transitions.

Multi-Physiological Signal Integration: Expansion beyond heart rate and heart rate
variability to incorporate additional physiological signals could enhance detection capa-
bilities through broader autonomic nervous system monitoring.
Electrodermal activity, skin temperature, pupillometry, and respiratory pattern analysis
represent potential additional data sources that could improve discrimination of subtle
arousal changes.
Advanced sensor technologies enabling non-invasive measurement of multiple physiologi-
cal parameters could provide richer feature spaces for machine learning algorithms.

Privacy-Preserving Distributed Learning: Federated learning approaches could en-
able collaborative model development across multiple driver populations and vehicle fleets
while preserving privacy and enabling continuous improvement of detection algorithms.
Distributed learning frameworks could aggregate insights from thousands of drivers with-
out requiring centralized data storage or compromising individual privacy.
Differential privacy techniques could provide formal guarantees about information protec-
tion while enabling population-level learning and algorithm improvement.
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