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Abstract

In recent years, the rapid advancement of autonomous driving and intelligent
connected vehicle technologies has significantly accelerated the development and de-
ployment of Advanced Driver Assistance Systems (ADAS). Among them, Adaptive
Cruise Control (ACC) plays a central role by automatically regulating inter-vehicle
distance and longitudinal speed, thereby improving both driving safety and ride
comfort. However, most existing commercial ACC systems still rely on a small
set of predefined, discrete time gap values (e.g., 1.0 s, 1.5 s, 2.0 s), which lack
adaptability to varying traffic conditions, driver intent, and road types. This
rigidity limits the system’s ability to achieve an optimal trade-off among multiple
performance objectives.

This study investigates the impact of different time gap policies on the over-
all performance of ACC systems. A unified simulation platform was developed,
comprising a vehicle dynamics model, a longitudinal controller, and three represen-
tative time gap strategies: Constant Time Gap (CTG), Constant Safety Factor
(CSF), and Human Driving Behavior (HDB). These strategies were systematically
tested under both urban and highway driving cycles—including WLTP Class 3,
Artemis Urban, China City Cycle, HWFET, US06, and Artemis Motorway—using
a multi-criteria evaluation framework that encompasses energy consumption, ride
comfort, and following safety.

Simulation results indicate that in urban environments, the HDB strategy—based
on statistical modeling of naturalistic human driving behavior—demonstrates supe-
rior responsiveness and adaptability in handling frequent acceleration, deceleration,
and short halts. In contrast, the CSF strategy, with its longer headway and speed-
dependent safe distance formulation, exhibits significant advantages in highway
scenarios by reducing acceleration fluctuations and stabilizing energy consumption.
The CTG strategy, while structurally simple, achieves a balanced performance
across all indicators, making it suitable as a conservative baseline. Notably, certain
HDB configurations yielded higher energy consumption than the ACC-free baseline
in high-speed conditions, highlighting the need for scenario-specific parameter
tuning.

Keywords: Adaptive Cruise Control (ACC), Time Gap Policy, Urban Driving Cycle,
Highway Driving Cycle, Energy Efficiency, Ride Comfort, Multi-objective Performance
Optimization
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Chapter 1

Introduction

1.1 Background
With the continuous evolution of artificial intelligence technologies and the in-
creasing deployment of in-vehicle communication systems, autonomous driving
has gradually become one of the core directions in the development of Intelligent
Connected Vehicles (ICVs). In order to standardize terminology and define ca-
pability levels for various automated driving systems, the Society of Automotive
Engineers (SAE) first published the taxonomy and definitions for on-road motor
vehicle automation systems in 2014 under the standard SAE J3016, which was
subsequently revised in 2021 as SAE J3016-202104 [1]. This standard systematically
categorizes driving automation into six levels, from Level 0 (no automation) to
Level 5 (full automation), thereby providing a unified reference framework for
technical development, regulatory policymaking, and commercial deployment of
automated driving systems. The core concepts of the standard revolve around two
key definitions: the Dynamic Driving Task (DDT) and the Operational Design
Domain (ODD).

• DDT encompasses all real-time operational and tactical functions required to
operate a vehicle in active traffic, including longitudinal control (acceleration
and deceleration), lateral control (steering), object and event detection and
response, and fallback performance.

• ODD refers to the specific conditions under which a given driving automation
system is designed to function safely, including parameters such as roadway
type, speed range, and environmental conditions (e.g., weather, lighting, and
traffic scenarios).

The SAE J3016-defined six-level classification is illustrated in the figure below,
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Introduction

clearly showing the progressive reduction in human driver involvement as the level
of automation increases [2].

Figure 1.1: Levels of Driving Automation

Within this classification framework, Level 1 (Driver Assistance) and Level 2
(Partial Automation) represent the most technologically mature and commercially
widespread stages of driving automation to date. A Level 1 system is capable
of performing either longitudinal or lateral control under specific conditions—for
instance, maintaining a preset speed through cruise control, or keeping the vehicle
centered within the lane via lane-keeping assist. Such systems typically rely on
onboard sensors such as radar and cameras to perceive the driving environment;
however, the human driver remains fully responsible for all aspects of the driving
task. The system merely offers limited assistance in well-defined scenarios.

In contrast, Level 2 systems exhibit a significant leap in both perception and
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control capabilities. These systems can simultaneously execute longitudinal (accel-
eration/deceleration) and lateral (steering) control within a defined Operational
Design Domain (ODD). Common functional combinations include Adaptive Cruise
Control (ACC) paired with Lane Centering Assistance (LCA), and may extend
to fully automated stop-and-go control in low-speed congested traffic. Level 2
systems rely heavily on multi-sensor fusion techniques and are often supported
by high-definition maps, enabling automation in more complex driving scenarios.
Nonetheless, the human driver is still required to maintain full attention and be
ready to take over control at any time to ensure operational safety.

Although Level 1 and Level 2 systems have made significant progress in terms
of functional design, they still face numerous technical challenges in areas such as
perception reliability, control decoupling, human–machine interface design, func-
tional safety, and regulatory compliance. The performance of single-sensor systems
is often degraded under adverse conditions such as glare, rain, or snow, necessi-
tating the integration of LiDAR or Vehicle-to-Everything (V2X) communication
to enhance redundancy. Furthermore, fault-tolerant behavior and system fallback
mechanisms must comply with the ISO 26262 functional safety standard to ensure
protection in the event of system failure. At the legal level, the allocation of liability
and driver monitoring requirements vary significantly across jurisdictions, adding
further complexity to cross-regional deployment.

Looking forward, the evolution of L1/L2 systems is expected to follow a trajec-
tory of gradual expansion of applicable scenarios, continuous refinement of control
strategies, and data-driven performance optimization, paving the way toward higher
levels of autonomous driving capability.

As for Level 3 and above, while these systems are theoretically capable of fully
executing the Dynamic Driving Task (DDT) without human intervention, real-
world deployment remains constrained by multiple factors—most notably the “long
tail” perception problem, the lack of a mature Safety of the Intended Functionality
(SOTIF) evaluation framework, and the regulatory lag across global markets. Con-
sequently, current research and industrial efforts are largely focused on enhancing
the robustness and multi-objective performance of L1/L2 systems in real-world
environments, thereby establishing a reliable foundation for the future transition
toward higher levels of driving automation.

As a core subsystem of ADAS, Adaptive Cruise Control (ACC) integrates sensor
technologies, control algorithms, and vehicle dynamics models to enable automated
longitudinal distance control. This significantly enhances driving safety and comfort
while serving as a critical foundation for the deployment of higher-level autonomous
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driving systems (Level 3 and above). The primary function of ACC is to monitor the
relative distance and velocity to the preceding vehicle in real time. By leveraging
accurate vehicle dynamics modeling and real-time responsiveness of the control
system, it dynamically adjusts the ego vehicle’s speed through closed-loop control
logic to maintain a preset time gap—the temporal spacing between the ego vehicle
and the preceding vehicle (measured in seconds). This time gap not only underpins
longitudinal vehicle control but also constitutes a key variable influencing the
system’s multi-objective performance, including energy efficiency, comfort, safety,
and traffic throughput [3].

Different time gap settings affect not only driving safety but also directly deter-
mine energy consumption levels, ride comfort, and traffic flow. While a shorter time
gap improves road capacity and responsiveness, it risks causing string instability
and increases the likelihood of collisions. Conversely, longer time gaps may reduce
energy efficiency and traffic throughput. Therefore, designing rational and adaptive
time gap policies is of vital importance for optimizing the overall performance of
ACC systems.

However, existing ACC systems still exhibit significant limitations in the design
of time gap policies. While some commercial vehicles support manual adjustment of
gap levels (e.g., “short,” “medium,” “long” modes), these presets are largely based
on empirical rules or fixed parameters and lack adaptability to dynamic driving
environments such as stop-and-go city traffic, highway cruising, or mountainous
roads. For instance, urban driving cycles demand shorter time gaps for prompt
reactions, whereas highway conditions prioritize energy efficiency and braking safety
over longer distances.

Moreover, conventional research has focused predominantly on control algorithm
optimization (e.g., PID, MPC), while systematic evaluation and multi-objective
trade-off analyses of time gap strategies remain at a preliminary stage. Discussions
of how time gap parameters influence traffic flow stability and capacity are also
relatively scarce [4]. As a result, existing ACC systems often encounter performance
bottlenecks such as delayed response, excessive energy consumption, or compro-
mised comfort in complex road environments, falling short of the performance
requirements expected from intelligent driving systems.

Against this backdrop, the present research focuses on the deep impact of time
gap policies on ACC system performance. By constructing a standardized simula-
tion platform, we systematically evaluate three representative policies—Constant
Time Gap (CTG), Constant Safety Factor (CSF), and Human Driving Behavior
(HDB)—in diverse driving scenarios. This study aims to uncover the internal
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patterns by which these policies influence energy consumption and comfort, provid-
ing both theoretical insights and engineering guidance for the next generation of
intelligent driving systems.

1.2 Problem Statement and Research Motivation

1.2.1 Static Nature of Existing Strategies and Limited
Adaptability to Dynamic Scenarios

Most current ACC systems adopt the Constant Time Gap (CTG) strategy, where
a fixed time gap (e.g., 1.5 or 2.0 s) is maintained regardless of driving context.
While this approach simplifies control logic, its static nature fails to account for
the dynamic characteristics of real-world traffic scenarios. For example, in urban
conditions, frequent stop-and-go movements and lane changes require shorter time
gaps for responsiveness, whereas highway cruising necessitates longer gaps to
optimize energy efficiency and ensure driving stability.

The "one-size-fits-all" approach of fixed-gap strategies often leads to suboptimal
performance in complex environments, manifested as frequent braking due to small
gaps in city traffic or low traffic efficiency due to overly large gaps on highways.
More critically, these static gaps can lead to increased fuel consumption and poor
energy utilization [5].

1.2.2 Conflicting Multi-Objective Requirements and Need
for Integrated Optimization

The design of time gap strategies must simultaneously address four core perfor-
mance objectives: safety, energy efficiency, ride comfort, and traffic throughput.
However, these goals often conflict. For instance, a shorter gap increases road
capacity but leads to frequent acceleration and deceleration, resulting in higher
energy consumption and discomfort. On the other hand, a longer gap reduces fuel
consumption and improves stability, but compromises road utilization efficiency.

Moreover, safety requires the minimum following distance to cover emergency
braking conditions, whereas energy-efficient driving prefers fewer throttle and
braking actions. Balancing these trade-offs and achieving an integrated optimization
framework poses a significant challenge in ACC strategy design.
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1.2.3 Lack of Systematic Evaluation and Quantitative Anal-
ysis Frameworks

Although alternative strategies—such as Human Driving Behavior (HDB) models
and Constant Safety Factor (CSF) methods—have been proposed, most studies
focus on optimizing individual strategies under limited conditions. A unified
evaluation platform that allows for cross-strategy comparisons under standardized
conditions remains absent.

Additionally, inconsistent use of driving cycles, controller designs, and perfor-
mance metrics across existing studies limits the universality and comparability of
their findings. This fragmented research landscape hinders the standardization and
real-world implementation of advanced time gap policies.

1.3 Challenges and Research Significance

1.3.1 Complex Parameter Design and Lack of Unified Stan-
dards

Optimizing time gap strategies requires multi-dimensional parameter tuning. Tak-
ing CSF as an example, its core parameters include maximum deceleration factors,
safety buffers, and braking thresholds. These must be adapted to the vehicle’s
dynamic characteristics, road adhesion conditions, and traffic density. However,
due to the absence of a standardized design framework, parameter calibration often
relies on expert heuristics, making large-scale deployment difficult.

1.3.2 High Requirements for Simulation Platform Integra-
tion

To fairly compare different time gap policies, a unified simulation platform must be
established with consistent control structures, vehicle models, and driving scenar-
ios. The vehicle dynamics model must accurately represent powertrain efficiency
and braking behavior, while the driving scenarios must reflect realistic features
of urban and highway conditions. Additionally, the quantification of energy and
comfort indicators must rely on physical models and human perception thresh-
olds, placing high demands on both computational efficiency and simulation fidelity.
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1.3.3 Complex Interactions Between Multidimensional Per-
formance Metrics

Trade-offs between energy consumption and comfort are especially prominent under
complex traffic conditions. For instance, to save energy, vehicles prefer steady
cruising, but if the lead vehicle frequently changes speed, large time gaps can cause
delayed responses and ride discomfort. Therefore, a multidimensional performance
analysis—including per-kilometer energy consumption, RMS of acceleration, and
peak jerk—is necessary to reveal the performance characteristics and applicable
domains of each policy.

Despite these challenges, this study aims to provide a comprehensive performance
evaluation of time gap strategies. The results will offer data support for current
ACC system optimization and lay a theoretical foundation for next-generation
intelligent driving technologies—such as cooperative ACC and V2X-integrated
control—highlighting the study’s academic and engineering value.

1.4 Research Objectives and Scope
This study adopts a “baseline without ACC or time gap policy” as the reference
condition. On top of this, a unified simulation platform is built to evaluate and
compare the performance of three policies (CTG, CSF, HDB) across both urban
and highway driving scenarios. The specific objectives are as follows:

• Establish a Unified Simulation Platform: Based on the MATLAB/Simulink
environment, develop a consistent framework integrating a longitudinal vehicle
dynamics model (including powertrain, drivetrain, and braking subsystems),
a PID controller, and a configurable time gap module to ensure fair and
repeatable comparisons.

• Model Time Gap Strategies and Define Parameters: Implement de-
tailed models of the CTG, CSF, and HDB strategies. Clearly define their
control logic, parameter definitions, and physical underpinnings, providing
standardized interfaces for simulation testing.

• Design Representative Driving Cycles: Select representative urban cycles
(e.g., WLTP Class 3, Artemis Urban, China City Cycle) and highway cycles
(e.g., HWFET, US06, Artemis Motorway) to cover a range of acceleration,
deceleration, and cruising scenarios.

• Construct a Multi-Metric Performance Evaluation System: Evaluate
system performance across four dimensions: energy consumption, comfort,
safety, and traffic efficiency. Metrics include energy per kilometer, peak jerk,
RMS acceleration, minimum distance, and maximum distance.
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• Comprehensive Comparison and Scenario-Based Recommendations:
Evaluate system performance across four dimensions: energy consumption,
comfort, safety, and traffic efficiency. Metrics include energy per kilometer,
peak jerk, RMS acceleration, minimum distance, and maximum distance.

1.5 Thesis Structure
The structure of the thesis is as follows:

• Chapter 1: Presents the research background, defines the problem, states the
motivation, outlines challenges and significance, introduces research objectives,
and describes the thesis framework.

• Chapter 2: Reviews ACC fundamentals, mainstream control methods, and
the current state of research on time gap policies.

• Chapter 3: Details the vehicle dynamics model, controller design, and math-
ematical modeling and parameterization of CTG, CSF, and HDB strategies.

• Chapter 4: Evaluates strategy performance under urban driving cycles,
comparing energy and comfort metrics.

• Chapter 5: Assesses strategy adaptability and stability under highway
conditions.

• Chapter 6: Summarizes key findings, identifies limitations, and outlines
directions for future research.

8



Chapter 2

Theoretical Background and
Related Work

2.1 Overview of Adaptive Cruise Control (ACC)
Systems

2.1.1 Development Background and Functional Framework
of ACC

With the rising demands for traffic safety and the rapid development of intelligent
vehicle technologies, Adaptive Cruise Control (ACC) has become one of the core
modules for longitudinal control and has been widely deployed in modern passenger
vehicles. By integrating multi-modal sensor fusion and advanced control algorithms,
ACC systems autonomously regulate the longitudinal motion of the vehicle. The
core function lies in perceiving the dynamic state of the preceding vehicle (e.g.,
relative velocity, distance, and trajectory) and outputting desired acceleration or
braking commands in real-time, thereby maintaining a safe, stable, and efficient
car-following state under various traffic scenarios [6].

From a control-theoretic perspective, the essence of ACC is a closed-loop feed-
back system with a target time gap or desired distance as the control objective.
Its design aims to dynamically balance the multi-objective conflicts among safety
(e.g., minimum safe distance), comfort (e.g., acceleration smoothness), and energy
efficiency (e.g., powertrain optimization) [7].

Key Definitions and Principles:

1. Target Time Gap (Time Gap): Time gap is defined as the time interval
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(in seconds) maintained between the ego vehicle and the preceding vehicle. A
shorter Tg (e.g., 1.0s) may increase road capacity but leads to frequent acceleration
and deceleration, reducing ride comfort. Conversely, a larger Tg (e.g., 2.5s) enhances
following stability but compromises traffic flow efficiency [8].

2. Perception Components and Sensor Fusion: Unlike conventional Cruise
Control (CC) systems that only rely on speed sensors, ACC systems utilize a fusion
of radar, LiDAR, and camera data to capture environmental information:

• Millimeter-wave radar: Operates in the 77GHz band to detect range
and relative velocity; works in all weather conditions but with low spatial
resolution.

• LiDAR: Emits laser pulses to generate precise 3D point clouds; offers accurate
object detection but is sensitive to weather (e.g., rain, fog).

• Cameras: Employ computer vision algorithms to detect lane markings,
preceding vehicles, and traffic signs; sensitive to illumination.

Sensor fusion methods such as Kalman filtering or deep learning enhance redun-
dancy and reduce the likelihood of misperceptions.

3. Control Algorithms and Closed-Loop Structure: Based on perceived
data, the control algorithm generates the desired acceleration command to actuate
the vehicle’s throttle or brake systems. Mainstream algorithms include:

• Proportional–Integral–Derivative Control (PID): A classic technique
adjusting output via proportional, integral, and derivative terms; simple but
limited in handling nonlinearities or constraints.

• Model Predictive Control (MPC): Uses receding-horizon optimization
to derive optimal control sequences satisfying multi-objective constraints;
computationally intensive.

• Linear Quadratic Regulator (LQR): Based on state-space modeling and
minimizing a quadratic cost function; effective but heavily reliant on model
accuracy.

All the above operate in a feedback loop to ensure system stability and adapt-
ability in dynamic traffic [7][9].

Comparison with Conventional Cruise Control (CC):
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Traditional CC systems only maintain a constant driver-set speed and cannot
adapt to the behavior of a lead vehicle. In scenarios such as sudden deceleration or
cut-ins, manual braking is required, creating safety risks. In contrast, ACC offers
the following enhancements:

• Dynamic following: Adjusts speed in real time to maintain a preset time
gap or safe distance.

• Multi-objective optimization: Balances safety, comfort (e.g., jerk mini-
mization), and energy efficiency.

• Emergency braking support: Activates Automatic Emergency Braking
(AEB) upon imminent collision risks to reduce accident probability.

2.1.2 ACC System Control Flow and Decision Hierarchy
As an advanced longitudinal driver assistance system, Adaptive Cruise Control
(ACC) adopts a hierarchical architecture comprising three key functional layers:
the Perception Layer, the Decision Layer, and the Execution Layer. These layers
operate collaboratively to ensure the system’s adaptability in dynamic traffic envi-
ronments.

Perception Layer:

The perception layer functions as the data input interface of the ACC sys-
tem, primarily responsible for acquiring dynamic information from both the ego
vehicle and the surrounding environment. It relies on multi-sensor fusion technolo-
gies to achieve environmental perception and object recognition. Core tasks include:

1. Data Acquisition:

• Ego vehicle state: Obtained via the vehicle CAN bus, including speed (vego),
acceleration (aego), etc.

• Preceding vehicle state: Detected by radar or LiDAR, including relative
distance (Drel), relative speed (∆v), and azimuth angle.

• Environmental features: Detected using cameras and deep learning algo-
rithms to recognize lane lines, traffic signs, and obstacles; combined with radar
point clouds for multi-target tracking (MTT).

2. Data Preprocessing:

• Signal filtering: Kalman Filter or Particle Filter is applied to denoise sensor
data and estimate states.
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• Sensor fusion: Algorithms integrate radar, camera, and vehicle dynamics
data to enhance perception accuracy and redundancy.

Decision Layer:

As the control center of the ACC system, the decision layer generates optimal
longitudinal motion commands based on perception inputs and predefined control
targets (e.g., time gap or desired distance). Its processes include:

1. Target Specification:

• Time gap strategy: Based on driver-selected gap level (e.g., 1.0s, 1.5s, 2.0s),
calculate the target distance Ddes = vego · Tg, where Tg is the selected time
gap.

2. Control Algorithms:

• Classical control: PID controllers adjust acceleration based on the error in
inter-vehicle distance.

• Model Predictive Control (MPC): Solves a receding-horizon optimization
problem with constraints for safety, comfort, and energy efficiency.

• Learning-based methods: Employ reinforcement learning or deep neural
networks to tune control parameters in complex traffic environments adaptively.

Execution Layer:

The execution layer translates control commands into vehicle motion through
actuation components. Key elements include:

1. Powertrain Actuation:

• Electronic throttle: Modulates engine torque by adjusting throttle valve
opening.

• Motor controller (for EVs): Regulates motor speed and output torque
based on control input.

2. Braking Systems:

• E-Booster: Adjusts hydraulic brake force in response to deceleration com-
mands.

• Brake-by-wire systems: Enable precise force distribution and redundancy
control.

12
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3. Feedback Monitoring:

• Real-time dynamic feedback is obtained via wheel speed sensors and Inertial
Measurement Units (IMUs) to correct actuation errors.

2.1.3 Common ACC Control Algorithms and Evolution
Since its inception, ACC control strategies have progressed from classical linear
control to advanced intelligent optimization control. Based on complexity and
modeling principles, mainstream ACC control algorithms fall into three categories:
PID control, Model Predictive Control (MPC), and intelligent control approaches.

Proportional–Integral–Derivative (PID) Control

As one of the most widely used traditional controllers, PID regulates system out-
put based on the error between the desired and actual values through proportional
(P), integral (I), and derivative (D) terms. The control law is given by:

u(t) = Kp · e(t) + Ki ·
Ú t

0
e(τ)dτ + Kd · d

dt
e(t) (2.1)

In ACC systems, PID typically adjusts the error between the desired and ac-
tual following distance. Advantages include simplicity, intuitive parameter tuning,
and low computational cost, making it suitable for constant-speed or gradually
changing scenarios. However, due to its low dependence on system models, PID
struggles with abrupt changes or predictive control requirements and may suffer
from overshooting or lagging behaviors [10].

Model Predictive Control (MPC)

MPC is an advanced control technique that uses dynamic models to predict
future system behavior and solve an optimal control sequence over a finite horizon,
executing only the first control input at each time step.

• Advantages of MPC:

– Handles system constraints (e.g., maximum acceleration, minimum gap)
– Supports multi-objective optimization (e.g., energy, comfort, responsive-

ness)
– Exhibits strong foresight and adaptability in complex scenarios

Due to its high computational load and dependency on accurate models, MPC
is currently more common in research or premium applications, with real-time
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implementation challenges in mass-production vehicles [11].

Intelligent Control Methods

With the advancement of artificial intelligence, intelligent control techniques
such as fuzzy logic, neural networks, and reinforcement learning are increasingly
being applied to ACC systems. These approaches emphasize data-driven modeling
and behavioral learning, providing adaptability and generalization in uncertain or
nonlinear environments.

• Reinforcement learning: Continuously optimizes control policies through
environmental interaction, enabling adaptive behavior in diverse traffic sce-
narios.

• Fuzzy control: Encodes human driving experience into rule-based systems,
suitable for high-uncertainty or nonlinear cases [12].

Despite their promising theoretical potential, intelligent methods currently
face challenges such as a lack of interpretability, high reliance on training data,
and weak transferability. Hence, PID and MPC remain dominant in practical
implementations, with intelligent control serving as a complementary or exploratory
direction [13].

2.2 Principles and Classification of Time Gap
policies

2.2.1 Definition and Control Significance of Time Gap
In Adaptive Cruise Control (ACC) systems, the time gap is a key control variable
that governs longitudinal car-following behavior. Its definition and optimization
directly influence the system’s safety, comfort, and energy efficiency. This section
elaborates on the concept from two perspectives: mathematical definition and
multi-objective impact.

Definition and Physical Interpretation of Time Gap

1. Mathematical Definition:

The time gap Tg is mathematically defined as:

Tg = Dactual

vego

(2.2)
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where Dactual represents the exact distance (m) between the ego vehicle and the
preceding vehicle, and vego is the current speed of the ego vehicle (m/s). The unit
of Tg is seconds, and it intuitively reflects the time required for the ego vehicle to
reach the preceding vehicle’s current position at its present speed.

2. Physical Significance:

Physically, the time gap can be interpreted as the time it would take for the
ego vehicle to collide with the lead vehicle if the latter suddenly stopped and no
additional braking were applied. For instance, when Tg = 2.0 s, the ego vehicle
must come to a complete stop within two seconds to avoid collision.

This parameter not only quantifies the longitudinal safety margin but also
implicitly reflects the conservativeness of the control strategy:

• Low Tg (e.g., 1.0 s): Indicates an aggressive policy that prioritizes shorter
gaps to improve traffic flow capacity.

• High Tg (e.g., 3.0 s): Reflects a conservative policy that favors increased
buffer time to reduce the risk of collisions.

Multi-Objective Impact Mechanism of Time Gap

The selection of time gap values in ACC systems entails a dynamic trade-off
among safety, comfort, and energy efficiency. The impacts are detailed as follows:

1. Safety Dimension:

• Short Time Gap (Tg < 1.5 s)

– Advantage: Shorter inter-vehicle spacing can increase traffic throughput,
particularly in congested urban scenarios.

– Risk: Inadequate braking buffer increases collision risk in case of sudden
deceleration by the lead vehicle. The safety condition must satisfy:

Dactual ≥ vego · Tg +
v2

ego

2amax

(2.3)

where amax is the maximum deceleration capability of the ego vehicle.

• Long Time Gap (Tg > 2.5 s)

– Advantage: Provides ample safety margin and significantly reduces the
likelihood of rear-end collisions.
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– Disadvantage: Excessive gap increases the chance of being cut in by other
vehicles, thereby elevating control complexity and triggering additional
braking events.

2. Comfort Dimension:

• Short Time Gap (Tg < 1.5 s)
Frequent acceleration and deceleration increase the rate of change of accelera-
tion (jerk), causing discomfort for passengers.

– Typical scenario: In urban stop-and-go traffic, excessively short gaps
often lead to the “nodding effect” where passengers experience abrupt
forward/backward movements.

• Long Time Gap (Tg > 2.5 s)
Smooth acceleration profiles result in better ride comfort. However, excessively
large gaps may undermine the driver’s perceived confidence in the system due
to the impression of sluggish system response.

3. Energy Efficiency Dimension:

• Short Time Gap (Tg < 1.5 s)
Frequent throttle-brake switching elevates energy consumption, including
higher fuel usage for ICE vehicles and greater electricity consumption in EVs.

– Research indicates that for every 0.5-second reduction in Tg, urban energy
consumption may increase by approximately 8%–12% under typical driving
conditions.

• Long Time Gap (Tg > 2.5 s)
Increases the proportion of steady cruising, reduces drivetrain load, and
improves powertrain efficiency. However, excessive gaps may result in inefficient
coasting when trailing a slower vehicle unnecessarily.

2.2.2 Constant Time Gap (CTG) Policy
The Constant Time Gap (CTG) policy is one of the most widely adopted time gap
control methods in Adaptive Cruise Control (ACC) systems, particularly dominant
in mass-produced passenger vehicles. This strategy maintains a constant time
interval Tgap, dynamically adjusting the expected inter-vehicular distance between
the ego and preceding vehicles. The primary goal is to ensure baseline safety while
simplifying control logic:

Ddes = Tgap · Vego + Dmin (2.4)
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Where:

• Ddes: Desired following distance

• Tgap: Constant time gap

• Vego: Ego vehicle speed

• Dmin: Minimum static safety distance, typically set to 2–5 meters

Due to its simplicity, clarity, and ease of engineering implementation, the CTG
strategy is favored in industry. The control logic of CTG can be easily embedded
into traditional PID or LQR control frameworks, and it has proven effective in
preventing rear-end collisions under low- to mid-speed conditions [14].

Control Logic Modeling

In simulation modeling, the CTG strategy operates by setting a constant Tgap

and updating the desired spacing Ddes in real-time based on the ego vehicle’s speed
Vego. The controller calculates the control error as the difference between the actual
spacing Dact and the desired spacing:

e(t) = Dact(t) − Ddes(t) (2.5)

This error is input into the controller (e.g., PID or MPC) to compute the re-
quired acceleration command, which is then executed via actuators (throttle/brake
system) to regulate the ego vehicle’s speed, achieving desired longitudinal motion.

Parameter Tuning and Vehicle Behavior Analysis

The key parameter in the CTG strategy is the value of Tgap, which influences
both steady-state and transient responses of the system, as well as ride comfort
and energy efficiency.

• Smaller Tgap (e.g., 1.0 s):
Provides quicker response and higher road utilization, but leads to more
frequent braking and acceleration, thereby degrading comfort and increasing
energy consumption-especially in low-speed stop-and-go traffic.

• Larger Tgap (e.g., 2.5 s):
Improves system stability and mitigates hard braking events, beneficial for
energy saving and comfort. However, it may reduce lane capacity and result
in excessive spacing in high-speed scenarios.
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To enhance user-friendliness, many commercial ACC systems offer selectable
discrete time gap modes, such as:

Mode Time gap
Near 1.0 s

Medium 1.5 s
Far 2.0–2.5 s

However, these settings are often empirical and lack adaptability to changing
traffic conditions, road topology, or driver intentions [15].

Advantages and Limitations

• Advantages:

– Simplicity:
Linear model and control logic integrate easily with classical controllers
such as PID, reducing development cost.

– Real-time efficiency:
Low computational overhead; suitable for embedded automotive ECUs.

– Baseline safety guarantee:
The inclusion of Dmin provides static redundancy, reducing risk in extreme
scenarios.

• Limitations:

– Low environmental adaptability:
A fixed Tgap cannot handle dynamic situations such as cut-ins or road
gradient changes.

– Multi-objective trade-off:
Cannot simultaneously optimize safety, comfort, and efficiency (e.g., short
gap improves efficiency but worsens comfort).

– Manual dependence:
Time gap selection often requires user input, increasing cognitive load and
risk of inappropriate selection (e.g., short gap in high-speed conditions).

Engineering Applications

Numerous automakers have implemented the CTG policy in production ACC
systems. For instance, drivers are often allowed to choose from three fixed time
gap levels. Alternatively, time gap values can be automatically linked to driving
modes (e.g., Eco, Normal, Sport), with each mode corresponding to a different Tgap

setting to match powertrain responsiveness and fuel economy strategies.
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2.2.3 Constant Safety Factor (CSF) Policy
The Constant Safety Factor (CSF) policy is a time gap strategy that emphasizes
physical constraints derived from braking dynamics and safety redundancy. Its
primary objective is to ensure collision avoidance capability in emergency braking
scenarios by explicitly modeling vehicle dynamics parameters such as maximum
deceleration and system latency.

Compared to empirically-based CTG strategies, CSF introduces a rigorous
formulation using safety coefficients, enhancing the physical interpretability and
theoretical soundness of control logic, making it particularly suitable for high-
demand safety applications such as commercial vehicles and autonomous driving
systems.

Control Logic Modeling

According to kinematic theory, the stopping distance of the ego vehicle under
emergency braking is expressed as:

Dstop =
v2

ego

2admax

(2.6)

Where:

• vego: Ego vehicle speed

• admax: Maximum deceleration

To ensure safety, the desired spacing Ddes must satisfy:

Ddes ≥ Dstop + Dmin (2.7)

To further enhance redundancy, a safety factor K (K ∈ [1.0, 2.0]) is introduced:

Ddes ≥ Dmin + K · Dstop (2.8)

In addition, the total system response delay σ is considered, representing the
end-to-end latency across perception, decision, and actuation stages (e.g., radar
signal processing time, control computation delay, brake actuation lag). The final
expression for the desired distance becomes:

Ddes = Dmin + σ · vego + K · Dstop (2.9)

Where:

• Ddes: desired distance
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• Dmin: Minimum static safety distance

• σ: Total system response time

• vego: Ego vehicle speed

• K: Safety factor

This model has been validated in multiple studies for its effectiveness in emer-
gency braking, especially when latency and deceleration limits are explicitly ac-
counted for [16].

Parameter Sensitivity Analysis

• System Response Time σ:

– Low values (e.g., 0.5 s):
The system reacts rapidly but may underestimate lead vehicle behavior,
leading to frequent acceleration modulation and peak jerk values exceeding
±2 m/s3, which compromises comfort.

– High values (e.g., 1.5 s):
Enables anticipatory buffering and smoother acceleration profiles, enhanc-
ing comfort and stability. However, increased spacing may lower traffic
throughput.

• Safety Factor K:

– Lower values (e.g., 1.0):
Reduces braking redundancy, suitable for high-adhesion road surfaces.

– Higher values (e.g., 1.5):
Improves braking safety under low-adhesion conditions (e.g., rain or snow)
but may result in excessively long following distances.

Advantages and Limitations

• Advantages

– Safety-prioritized design:
Explicitly models braking dynamics and system delay to ensure collision
avoidance in emergencies.

– Physical consistency:
Parameters such as amax and σ are directly linked to vehicle dynamics,
avoiding subjective empirical settings.
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• Limitations

– Model dependency:
Strong reliance on accurate estimation of amax; environmental variability
can lead to modeling errors and insufficient safety margins.

– Computational cost:
Includes nonlinear terms (e.g., speed squared), imposing higher processing
demands on automotive ECUs, especially at high speeds.

Engineering Applications

The CSF strategy shows strong potential in commercial vehicles, trucks, and
heavy-duty high-speed applications, where braking safety is paramount. The CSF-
based control logic can significantly reduce collision risks. Some studies integrate
CSF with driver intent recognition systems: in conservative modes, higher K
values are applied; in aggressive modes, they are lowered to match personalized
preferences.

Additionally, CSF can be embedded as a dynamic weighting term within ad-
vanced control architectures such as MPC, enabling adaptive time gap adjustment
and improving overall system intelligence and robustness [17].

2.2.4 Human Driving Behavior (HDB) Policy
The Human Driving Behavior (HDB) policy is an empirically driven time gap
control method derived from naturalistic driving data. Its core objective is to
enhance the human-likeness and scenario adaptability of Adaptive Cruise Control
(ACC) systems by modeling actual driver car-following behavior. Compared to
the physics-based Constant Time Gap (CTG) and Constant Safety Factor (CSF)
strategies, HDB captures the driver’s regulation of following distance under vary-
ing speeds through statistical modeling, striking a balance between behavioral
interpretability and engineering feasibility. This makes it a current hotspot in
human–machine cooperative driving research.

Control Logic Modeling

The classical HDB model was proposed by Fancher et al. based on naturalistic
driving data collected from 107 drivers[17]. The desired distance Ddes is modeled
as:

Ddes = Dmin + Tgap · vego + G · v2
ego (2.10)

Where:
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• Ddes: Desired following distance

• Dmin: Minimum standstill distance, typically 2–5 meters

• Tgap: Time gap

• vego: Ego vehicle speed

• G: Quadratic speed coefficient, accounting for increased safety margin at high
speeds due to nonlinear risks (e.g., sudden deceleration of lead vehicle)

Through regression analysis, Fancher et al. further identified a negative correla-
tion between Tgap and G [18]:

G = −0.0246 · Tgap + 0.010819 (2.11)

This implies that drivers tend to decrease the weight of the quadratic term as
Tgap increases to balance safety and following efficiency. This finding reveals the
underlying logic of the “risk–efficiency” trade-off in human driving behavior.

Advantages and Limitations

• Advantages

– Human-like consistency: Derived from real-world driving behavior
data, the model reflects natural driver logic and response patterns.

– Dynamic adaptability: The model includes both first- and second-order
speed terms to dynamically adjust following distance based on vehicle
speed.

– Structural simplicity: The model has a compact parameter structure
and is easy to integrate into existing control frameworks, suitable for
real-time embedded applications.

• Limitations

– Behavior dependency: Model parameters are based on statistical
averages of a driver population; universality may be limited under varying
individual behaviors or environmental scenarios.

– Limited responsiveness: The speed-squared term may be slow to
respond in extreme relative velocity changes, necessitating auxiliary de-
tection modules (e.g., abrupt braking detection).
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Applications and Future Directions

As a behavior-driven time gap strategy, HDB provides high human-likeness and
explainability, making it suitable for systems prioritizing naturalistic following and
smooth longitudinal control. Without requiring complex environment modeling, it
dynamically adjusts target distance using vehicle speed and acceleration profiles,
offering generality and modeling efficiency.

In practice, HDB is structurally compatible with classical controllers such as
PID or MPC, and can also be embedded as a behavioral module within higher-
level predictive or reinforcement learning-based control architectures to improve
human-like decision-making capability.

2.3 Evaluation Metrics for Time Gap Policies
As a critical component linking decision-making algorithms to vehicle dynamics in
ACC systems, the design of time gap policies directly influences vehicle stability,
passenger comfort, energy efficiency, and traffic safety. To enable systematic
and comparable evaluation of different strategies, this section proposes a multi-
dimensional, quantifiable, and extensible metric framework grounded in the ISO
26262 functional safety standard [19] and classical traffic flow theory.

Four main categories of metrics are defined in this study:

• Energy Efficiency

• Comfort

• Safety

• Traffic Flow Efficiency

2.3.1 Energy Efficiency
Energy consumption is a critical dimension in evaluating a time gap strategy’s
impact on energy optimization. The Energy Consumption Reduction Ratio (ECRR)
is introduced to quantify energy savings relative to a reference condition (e.g.,
manual driving):

ECRR = Eref − EACC

Eref

× 100% (2.12)

Where:

• EACC : Energy consumption per kilometer under ACC strategy
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• Eref : Baseline energy consumption per kilometer (e.g., manual driving)

A positive ECRR indicates energy-saving benefits; a negative value implies
excessive acceleration or braking, increasing consumption. ECRR is normalized
and thus facilitates cross-scenario and cross-vehicle comparisons.

2.3.2 Comfort
Comfort reflects the smoothness of longitudinal motion and human acceptability.
This study adopts the Acceleration Reduction Ratio (ARR) to evaluate how well a
time gap strategy reduces acceleration fluctuations:

ARR = arms,rel − arms,ACC

arms,rel

× 100% (2.13)

Where:

• arms,ACC : Root mean square (RMS) value of longitudinal acceleration under
adaptive cruise control (ACC) strategy

• arms,rel: Root mean square (RMS) value of longitudinal acceleration under
reference driving

A higher ARR means better suppression of acceleration variance and greater ride
comfort. ARR and ECRR are complementary and form the basis for multi-objective
trade-off analysis.

2.3.3 Safety
Safety remains the top priority in ACC control. This study evaluates safety from
three aspects:

1. Minimum Distance (Dmin)

• Definition: Smallest actual distance between ego and lead vehicle during
simulation

• Risk thresholds:

– Dmin < 2.0 m: Critical warning
– Dmin < 1.0 m: Potential collision (per SAE J3016[1])

2. Time-to-Collision (TTC)

TTC = Drel

|∆V |
(2.14)

24



Theoretical Background and Related Work

• Drel: Relative distance

• ∆V : Relative speed

• Risk levels:

– TTC < 3.0 s: High risk
– TTC < 1.5 s: Very high risk, triggers AEB

3. Braking Intervention Frequency (BIF)

• Definition: Frequency of maximum deceleration events per unit time

• Interpretation: High BIF indicates low adaptability to emergencies

This study does not include extreme lead vehicle braking scenarios. TTC is used
here for dynamic interaction analysis rather than collision avoidance verification.

2.3.4 Traffic Flow Efficiency
Although ACC primarily addresses individual vehicle control, time gap strategies
influence overall traffic performance.

Metrics include:

• Average Speed: Higher average speed indicates more efficient strategies

• Vehicle Density: Larger time gaps reduce lane capacity

• Following Delay: Time needed to reestablish desired spacing after lead
vehicle acceleration

In this study, traffic flow indicators are supplemental but critical for collaborative
scenarios (e.g., CACC, V2X systems).

2.4 Review of Existing Research
2.4.1 Research Progress
Since the 1990s, when Adaptive Cruise Control (ACC) systems were first applied in
production vehicles, countries such as the United States, Germany, and Japan have
continuously led technological and theoretical advancements in this field. Research
related to time gap policy optimization has primarily focused on three directions:

Constant Time Gap (CTG) Strategy
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CTG is one of the earliest and most widely adopted time gap control methods.
Its theoretical modeling and engineering validation are relatively mature. Treiber et
al., in their work Traffic Flow Dynamics, explored the impact of time gap settings
on platoon stability and traffic throughput, highlighting that shorter time gaps
may enhance capacity but also promote disturbance propagation and the formation
of “stop-and-go” waves, thus reducing overall stability.

Rajamani et al., in Vehicle Dynamics and Control [3], analyzed CTG-based
car-following performance from a control theory perspective, demonstrating its
practical value in ensuring stable car-following under low- and medium-speed
conditions. More recently, some studies have attempted to incorporate nonlinear
correction factors or adaptive gains into CTG to improve flexibility. However, as
CTG is fundamentally a static parameter model, its adaptability to dynamic and
complex scenarios remains limited.

Constant Safety Factor (CSF) Strategy

CSF was initially applied in commercial and heavy-duty vehicle systems, such
as truck platooning and railcar tracking. Research in this area focuses on modeling
the coupling between braking capacity and safe spacing. In a study published in
IEEE Transactions on Intelligent Vehicles, Nilsson et al. [20] proposed a CSF-
based yielding control strategy that incorporates maximum deceleration and safety
margins into gap estimation. Their approach significantly improved safety during
congested conditions.

In addition, some studies under Model Predictive Control (MPC) frameworks
have embedded CSF constraints into optimization problems to ensure safe braking
while minimizing energy consumption. This demonstrates CSF’s strength in bal-
ancing safety and energy efficiency.

Human Driving Behavior (HDB) Strategy

HDB has gained traction as a cutting-edge research topic, especially with the
growing emphasis on human-like behavior in autonomous systems. Several research
institutions have used naturalistic driving datasets to build behavior models that
capture human gap adjustment logic.

For example, the SHRP 2 Naturalistic Driving Study, jointly supported by
SAE and NHTSA, has provided extensive U.S. driving behavior data, enabling the
development of data-driven HDB models [21]. Based on this dataset, researchers
have proposed personalized time gap models using regression trees and clustering
analysis to enable adaptation to diverse driving styles and road conditions [22].
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2.4.2 Summary and Research Gaps
Despite the extensive progress made in ACC time gap policy research, several
systematic and practical issues remain unresolved:

• Lack of a unified testing platform:
Most studies employ different modeling tools, controllers, and evaluation met-
rics, making cross-study comparisons difficult and hindering the establishment
of a standardized assessment framework.

• Insufficient cross-policy comparisons:
The majority of research focuses on optimizing individual strategies without
systematic horizontal comparisons based on common vehicle and control
models, limiting holistic understanding.

• Limited scenario adaptability analysis:
Current studies lack conclusive results on which strategy performs best un-
der different driving conditions (e.g., urban vs. highway), which restricts
deployment effectiveness.

• Missing multi-objective trade-off frameworks:
There is no unified optimization methodology that balances safety, comfort,
energy consumption, and throughput in an integrated manner.

Therefore, it is necessary to construct multiple time gap strategy models under
a unified simulation platform and conduct multi-indicator, multi-scenario, and
multi-model comparisons to assess the applicability and limitations of each policy.
This forms one of the core objectives of this study.

2.5 Chapter Summary
This chapter provided a systematic review of time gap strategies within Adaptive
Cruise Control systems, including theoretical foundations, mainstream control
models, performance evaluation frameworks, and current research progress. It
establishes a solid foundation for the modeling and simulations to be discussed in
Chapter 3.

First, the control architecture of ACC systems was introduced, outlining their
three-layered structure (perception–decision–execution) and the central role of
speed–gap coupling. Common controllers such as PID, MPC, and learning-based
algorithms were reviewed. It was emphasized that the performance of these
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controllers is constrained by the rationality and flexibility of the underlying time
gap policy.

Second, three representative time gap strategies were analyzed:

• CTG: Prioritizes engineering simplicity and low computational cost, effective
in low-speed steady-state conditions, but lacks adaptability in dynamic traffic.

• CSF: Tightly links gap setting to vehicle braking capacity, enhancing physical
safety, especially at high speeds, but requires accurate system modeling and
environment perception.

• HDB: Focuses on imitating actual driver behavior, providing high human–machine
consistency and adaptability, suitable for future user-friendly ACC systems,
though it suffers from data dependency and uncertainty.

Third, a comprehensive multi-metric performance evaluation framework was pro-
posed, covering four dimensions: energy efficiency, comfort, safety, and traffic flow.
This framework provides a standardized basis for comparing strategy performance.

Lastly, the research review highlighted four main gaps: lack of a unified simula-
tion platform, insufficient cross-policy comparison, inadequate scenario adaptability
analysis, and the absence of multi-objective optimization tools. This underscores
the need for systematic and quantitative comparisons of the three strategies under
standardized simulation environments and typical driving conditions (urban and
highway), with the aim of offering practical recommendations.

This chapter thus provides the theoretical basis and research motivation for
Chapter 3, which will describe the vehicle modeling approach, controller design, and
implementation of the three-time gap strategies on the simulation platform, which
lays the groundwork for the performance evaluations and comparative experiments
that follow.
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Chapter 3

Control System Modeling
and Strategy Design

3.1 Longitudinal Vehicle Modeling

3.1.1 Modeling Objectives and Framework

This study develops a forward vehicle model tailored for electric vehicles (Battery
Electric Vehicles, BEV) on the MATLAB / Simulink Simscape platform, aiming to
evaluate the performance of Adaptive Cruise Control (ACC) systems. The model
treats the vehicle as a mass-point system and couples multiple key physical effects,
including aerodynamic drag, rolling resistance, gradient resistance, tractive force,
and vehicle mass. It is designed to accurately predict vehicle speed response and
energy consumption behavior under predefined control inputs.

This modeling approach is widely adopted in the development of Energy Man-
agement Strategies (EMS) and Advanced Driver Assistance Systems (ADAS). It
can be used directly to assess how different time-gap policies influence longitudinal
dynamic performance under real-world driving conditions.
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Figure 3.1: High-fidelity vehicle model developed in MATLAB/Simulink Simscape environment

3.1.2 Longitudinal Vehicle Dynamics

In the dynamic approach, the vehicle motion results from the net effect of all the
forces and torques acting on a point mass, represented by the vehicle’s center of
gravity (CoG). The equilibrium of forces is implemented in the Simscape environ-
ment by the block called Vehicle Body of the Driveline Blockset. The graphical
representation of the block and the body diagram of the equilibrium of forces are
presented in Figure 3.2.

Figure 3.2: Diagram of the vehicle’s longitudinal dynamics with forces acting on a point mass
on an inclined plane
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The fundamental equation of motion along the longitudinal axis of the vehicle
is:

mappV̇x = Fx − Fd − mg sin β (3.1)

where mapp is the apparent mass of the vehicle, which accounts for the inertia of
rotating components such as wheels, brake discs, driveshafts, and other drivetrain
elements. These components require additional torque to accelerate and therefore
contribute to an effective increase in the vehicle’s resistance to acceleration.

The apparent mass is computed as:

mapp = mλ = m(1 + kr) (3.2)

where m is the actual mass of the vehicle, and kr (sometimes defined also as λ)
is a dimensionless coefficient that quantifies the contribution of rotating inertias.

The remaining terms in equation (3.1) are defined as follows: Vx is the longitu-
dinal velocity, Fx is the total traction force, Fd is the aerodynamic drag force, and
β is the road slope angle, which is typically set to zero.

The traction force is distributed across the two axles:

Fx = n(Fxf + Fxr) (3.3)

The aerodynamic drag is modeled as:

Fd = 1
2CdρAf (Vx + Vw)2 · sgn(Vx + Vw) (3.4)

where Cd is the drag coefficient, ρ = 1.25 kg/m3 the air density in nominal
conditions, Af the frontal area, and Vw the wind speed (always in our analysis
Vw = 0).

The zero normal acceleration and the zero pitch torque are used to determine the
normal force on each front and rear wheel. The dynamic vertical load distribution
is computed respectively as:

Fzf = −h(Fd + mg sin β + mV̇x) + b mg cos β

n(a + b) (3.5)

Fzr = h(Fd + mg sin β + mV̇x) + a mg cos β

n(a + b) (3.6)

Finally, the wheel normal forces satisfy Fzf + Fzr = mg cos β
n

.
The vehicle parameters used to populate the longitudinal dynamics model of

the BEV are reported in Table 3.1.
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Table 3.1: Main parameters of the modeled BEV

Parameter Value Unit

Vehicle mass m 1443 kg
Apparent mass coefficient λ 1.006 −
Wheelbase l 2.332 m
Distance CoG to front axle a 0.45 l m
Distance CoG to rear axle b 0.55 l m
CoG height h 0.3 m
Frontal area Af 2.15 m2

Air density ρ 1.25 kg/m3

Wheel radius rw 0.3 m
Drag coefficient Cd 0.304 −

3.1.3 Tire Dynamics

The tires’ longitudinal behavior is modeled using a simplified formulation derived
from the Magic Formula originally developed by Pacejka (2002) [23], focusing only
on the peak longitudinal force and the corresponding slip value. This approach
allows for an efficient representation of the tire-road interaction in longitudinal
dynamics without involving the full complexity of nonlinear tire behavior. The
simplified model is implementable among the possibilities offered by the Tire (Magic
Formula) block of the Driveline Blockset [24]. The model block is shown in Figure
3.3.

Figure 3.3: Tire dynamics model implemented in Simscape. Tire-road interaction is handled
through the peak longitudinal force using a Magic Formula-based approach.
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The following assumptions are adopted in this tire model:

• No inertia: Tire rotational inertia is neglected.

• No compliance: No structural compliance is considered in the tire.

• Constant radius: The effective rolling radius is assumed constant.

• Constant coefficients: Rolling resistance and Magic Formula parameters are
constant and calibrated for nominal load conditions.

The longitudinal slip k and the tire’s tangential velocity VT are defined respec-
tively as follows:

This simplified tire model is suitable for forward simulations involving straight-
line acceleration or deceleration, where lateral effects and load sensitivity can be
neglected, as in the case of the driving cycles considered in our analysis. The tire
model is used as a power converter to pass from the translational mechanics domain
to the rotational mechanics domain in Simscape.

The longitudinal force Fx generated at the tire-road interface is converted into
a torque Twheel applied at the wheel axle. This transformation is achieved through
a translational-to-rotational converter, modeled in Simscape as a mechanical trans-
former. The torque at the wheel Twheel is calculated as:

Twheel = rwFx (3.7)
where rw is the effective rolling radius of the wheel. This torque is the wheel’s

rotational dynamics input, influencing angular acceleration and velocity.

3.1.4 Powertrain and Driveline
The electric driveline subsystem models a simplified powertrain from the DC bus to
the wheel axles using Simscape Driveline Blockset components. The architecture
consists of the following elements: a Motor & Drive (System Level) block connected
in rotational mechanics series to a reduction gear and a differential, both taken
from the standard blocks of the Gears library inside the Driveline Blockset. The
resulting electric machine and driveline model is shown in Figure 3.4.

The Motor & Drive (System Level) block allows for the implementation of a
closed-loop torque-controlled permanent magnet synchronous machine (PMSM). It
accepts torque requests in Nm via the input port, which arrive directly from the
driver or ADAS controller modules. On the electrical side, the motor is interfaced
with the battery system modelled with Simscape Electrical, thus implementing
a domain transformation between DC electrical power and mechanical rotational
power. On the mechanical side, the torque and speed sensors are placed to monitor
the respective values and obtain closed-loop control.

33

https://it.mathworks.com/help/sps/ref/motordrivesystemlevel.html
https://it.mathworks.com/help/sdl/gears.html


Control System Modeling and Strategy Design

Figure 3.4: Electric machine and driveline components implemented in simulation environment.

The EM is modeled using an efficiency map and its main mechanical parameters;
the rotor inertia is the primary dynamic component included in the model, as
electrical dynamics (e.g., current transients) are orders of magnitude faster than
inertial or mechanical responses. The relationship between mechanical shaft torque
and electrical power is governed by an efficiency map. The map is derived exper-
imentally as a function of rotational speed ωem and torque Tem. The electrical
power Pelec required at the battery is derived from mechanical power Pmech using
the efficiency map as follows:

Pelec =


1

ηem(ωem,Tem) ωemTem, Pelec ≥ 0 (traction),
ηem(ωem, Tem) ωemTem, Pelec < 0 (regeneration).

(3.8)

3.1.5 High-Voltage Battery
The battery is modeled with its equivalent circuit model with no dynamics. The
equivalent circuit is built as a controlled voltage source with a series resistor,
representing the open-circuit voltage (OCV) and internal resistance of the entire
pack, respectively. This simplified model leverages standard components of the
Simscape Electrical library combined to recreate the same setup proposed in
the example of the HV Battery Charge/Discharge. Although being a simplified
approach for battery systems modelling, the approach is one of the most effective
available in the literature to implement the battery model when limited knowledge
of the battery is available.

This formulation enables efficient computation of current for given power de-
mands in system-level simulations. The computation of the battery current is
the last part of the causality chain, which causes the consumption of energy to
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generate the vehicle motion (i.e., the power at the wheels and the vehicle speed).
To complete the energetic evaluation of the vehicle in the simulation environment,
the battery power Pbatt is integrated in time to derive the corresponding energy
consumption at the battery Ebatt and the power consumption of the auxiliaries
Paux is added to evaluate the total power consumption at the battery.

The following equations describe the energy consumption and the efficiency
metrics used to describe the results of the simulation data:

• Auxiliary Energy [kWh]: Eaux = 1
3600

s T
0 Paux(t) dt

• Total Battery Energy [kWh]: Ebatt = 1
3600

s T
0 [Pbatt(t) + Paux(t)] dt

• Distance Traveled [km]: dkm = 1
3600

s T
o vveh(t) dt

• Tank-to-Wheel Efficiency [kWh/100km]: TtW = (Ebatt/dkm) · 100

where the total time T is a function of the driving mission performed during
the test.

3.2 Controller Design
3.2.1 Controller architecture and operation logic
The primary objective of an Adaptive Cruise Control (ACC) system is to maintain
dynamic and safe following behavior under varying traffic conditions. To achieve
this, the controller is designed using a hierarchical decoupled architecture, which
consists of three main components: the upper-layer time gap policy module,
the mid-layer closed-loop controller, and the lower-layer vehicle dynamics model.
Among these, the closed-loop controller serves as the core of the intermediate
layer. It is responsible for converting the deviation between the desired and actual
inter-vehicular distance into executable longitudinal acceleration commands in real
time.

From a modeling perspective, this study adopts a modular and interface-
standardized design philosophy. The upper-layer strategy computes only the
target distance and does not participate directly in error compensation or physical
constraint handling. The controller independently processes the error signals, ap-
plies gain weighting and saturation logic, and outputs acceleration commands based
on the current dynamic state of the vehicle. The bottom-layer vehicle model reflects
the full physical dynamics, including the powertrain response, tire–road interac-
tion, braking, and energy consumption, ensuring that the final acceleration/torque
commands are physically executable.

The overall signal flow and control logic can be broken down into the following
steps:
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• Real-Time Signal Acquisition: The system continuously acquires key
dynamic variables, including the ego vehicle speed (vego), lead vehicle speed
(vlead), actual inter-vehicle distance (Dact), and relative velocity (vrel), either
through onboard sensors or simulation data sources. The data refresh interval
is determined by the sampling period (Ts, e.g., 0.2 s), which is selected to
balance response speed and overall system stability.

• Desired Distance Generation: The upper-layer strategy module (CTG,
CSF, or HDB) calculates and outputs the target following distance Ddes(t) for
each control cycle, according to real-time operating conditions and strategy-
specific parameters. Each policy enables dynamic adjustment based on the ego
vehicle’s instantaneous speed, acceleration, and other state variables, thereby
ensuring both safety and adaptability.

• Error Calculation and Gain Weighting: The primary control error e(t)
is computed as the difference between the desired and actual inter-vehicle
distances. To further enhance system stability, the controller incorporates
additional error terms such as speed error (the difference between the set speed
and the ego vehicle speed) and relative velocity, each weighted by specific gain
coefficients.

• Closed-Loop PID Regulation: The controller employs a PID algorithm to
calculate the target acceleration ades(t) based on the error signals. The gain
values and functional roles of each PID component are optimized through
scenario simulations and sensitivity analyses to ensure rapid error correction
and overall system stability.

• Physical Constraints and Saturation Protection: All acceleration out-
puts are subjected to physical saturation limits, typically constrained within
[−4, +4] m/s2, to prevent unrealistic or unachievable commands. This ensures
that the system operates within the physical capabilities of real vehicles.

• Acceleration Mapping and Torque Execution: The desired acceleration
is converted into the corresponding driving or braking torque and applied to
the lower-layer Simulink vehicle dynamics model, which governs the physical
vehicle response. Additional modules account for actuator delay, inertia, and
other real-world implementation factors to improve simulation fidelity.

This structure forms a tightly coupled feedback loop, supporting high-fidelity
simulation and real-time adjustment under various policies and driving conditions.
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3.2.2 Control Performance Objectives
The controller is required to meet multiple performance objectives to ensure safe,
smooth, and efficient operation under varying traffic scenarios. The specific goals
include:

• Stability
The system must maintain good stability in the presence of typical traffic
disturbances (e.g., sudden deceleration of the lead vehicle). It should exhibit
no sustained oscillation or divergence to ensure safe car-following behavior.

• Responsiveness
The controller should rapidly track the target distance, correcting errors within
a short time frame with minimal delay or lag.

• Comfort
The output acceleration and jerk (rate of change of acceleration) must remain
smooth. For passenger comfort, it is recommended that the root mean square
(RMS) acceleration does not exceed 1.5 m/s2, and jerk remains below 2.0 m/s3.

• Generality
A unified set of control parameters should apply to all time gap strategies
and typical driving scenarios without the need for frequent retuning, thereby
improving simulation efficiency and model portability.

3.3 Time Gap Policy Modeling
Time gap control policies are at the core of longitudinal decision-making in Adaptive
Cruise Control (ACC) systems. Their primary function is to dynamically determine
the target following distance between the ego and lead vehicles based on driving
scenarios and vehicle operating states. A well-designed time gap strategy can
significantly reduce the risk of rear-end collisions, enhance platoon stability, and
improve traffic throughput. It serves as a foundation for achieving multi-objective
optimization involving safety, comfort, and energy efficiency. Currently, mainstream
time gap strategies include the Constant Time Gap (CTG) strategy, the Constant
Safety Factor (CSF) strategy, and the Human Driving Behavior (HDB) strategy.
These approaches differ in their underlying modeling principles and parameter
definitions.

3.3.1 Constant Time Gap Policy (CTG)
The mathematical form of the CTG Policy is expressed as:
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Ddes = Tgap · Vego + Dmin (3.9)

Where:

• Ddes: Desired following distance.

• Tgap: Constant time gap. In this study, values of 1.5 s, 2 s, 2.5 s, 3 s, 4 s, and
5 s are selected as test groups to evaluate the performance under different
strategies.

• Vego: Ego vehicle speed.

• Dmin: Minimum static safety distance. In this study, it is fixed at 2 meters.

Figure 3.5: Modeling Structure of the Constant Time Gap Policy

The CTG Policy features a simple model structure, intuitive parameters, and
ease of engineering implementation. Owing to its linear characteristics, it offers
good adaptability to changes in traffic conditions and can operate stably in typical
urban or highway scenarios where traffic density is high and speed variations are
limited.

3.3.2 Constant Safety Factor Policy (CSF)
The CSF Policy extends CTG by incorporating physical braking constraints and
system response delays. The desired distance is computed as:

Ddes = Dmin + σ · vego + K ·
v2

ego

2admax

(3.10)

Where:

• Ddes: desired distance.
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• Dmin: Minimum static safety distance. In this study, it is fixed at 2 meters.

• σ: Total system response time. In this study, it is fixed at 1.5 seconds.

• vego: Ego vehicle speed.

• admax: Maximum deceleration. In this study, it is fixed at 4 meters per second
squared.

• K: Safety factor. In this study, values of 1.25, 1.5, 1.75, and 2 are selected as
test groups to evaluate the performance under different strategies.

Figure 3.6: Modeling Structure of the Constant Safety Factor Policy

The CSF Policy ensures physical feasibility and accounts for response delay and
emergency braking ability. It is particularly suitable for high-speed and emergency
braking conditions, providing greater safety margins. However, conservative values
for σ and amax may lead to overly large following distances, reducing road capacity
and energy efficiency.

3.3.3 Human Driving Behavior Policy (HDB)
The HDB Policy is built from large-scale naturalistic driving datasets using re-
gression modeling. It reflects how real drivers choose longitudinal spacing across
different speed ranges. A common formulation is a second-order polynomial:

Ddes = Dmin + Tgap · vego + G · v2
ego (3.11)

Where:

• Ddes: Desired following distance.

• Dmin: Minimum static safety distance. In this study, it is fixed at 2 meters.
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• Tgap: Constant time gap. In this study, values of 1.5 s, 2 s, 2.5 s, 3 s, 4 s, and
5 s are selected as test groups to evaluate the performance under different
strategies.

• vego: Ego vehicle speed.

• G: Quadratic speed coefficient, accounting for increased safety margin at high
speeds due to nonlinear risks (e.g., sudden deceleration of lead vehicle).

Through regression analysis, Fancher et al. further identified a negative correla-
tion between Tgap and G [18]:

G = −0.0246 · Tgap + 0.010819 (3.12)

Figure 3.7: Modeling Structure of the Human Driving Behavior Policy

The HDB Policy captures nonlinear behavioral adjustments at various speeds
and reflects comfort preferences and actual traffic flow behavior in mixed traffic.
It is widely used in academic studies and advanced autonomous driving research
to simulate human-like behaviors and evaluate ACC performance in hybrid hu-
man–machine environments.

3.3.4 Main Features of the Simulation Platform
The simulation platform developed in this study supports modular switching
between different time gap policies, including CTG, CSF, and HDB. Users can
conveniently select a desired Policy and adjust key parameters such as static distance
and time gap values to match specific research objectives or driving scenarios.

The platform also enables fair and consistent performance comparisons. All poli-
cies operate under identical vehicle models, controller configurations, and scenario
settings, ensuring that any observed differences in outcome can be attributed to
the policies themselves. This design safeguards scientific rigor and comparability.
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Furthermore, the platform accommodates a wide range of driving environments,
including both urban and highway conditions, and provides multi-dimensional
performance evaluation. Metrics span energy efficiency (e.g., energy consump-
tion per 100 kilometers), comfort (e.g., RMS acceleration and jerk), and safety
(e.g., minimum spacing and collision risk indicators). This comprehensive evalua-
tion framework lays a robust foundation for policy selection and multi-objective
optimization.

3.4 Chapter Summary
This chapter developed the key components of the Adaptive Cruise Control (ACC)
system, including a high-fidelity longitudinal vehicle dynamics model, controller
design, and modeling of three representative time-gap policies: Constant Time
Gap (CTG), Constant Safety Factor (CSF), and Human Driving Behavior (HDB).
By adopting a modular and hierarchical design framework, the ACC system was
divided into an upper-layer policy module, a mid-layer controller, and a lower-layer
dynamics response model. These layers function independently while maintaining
tight integration, ensuring flexibility, scalability, and engineering feasibility of the
overall system.

In terms of controller design, closed-loop PID-based logic was used. The con-
troller receives error signals derived from the deviation between the desired and
actual inter-vehicle distance, relative velocity, and set speed error, and outputs a
target acceleration command, which is subsequently mapped into torque to drive
vehicle response.

Regarding time gap policies, this study implemented a switchable modeling
framework for three representative approaches. The CTG policy emphasizes a
simple linear formulation; the CSF policy introduces braking constraints to enhance
safety under extreme conditions; and the HDB policy is constructed using empirical
driving data to replicate human-like behavior. All three policies were integrated into
the simulation platform through standardized interfaces, ensuring fair comparison
under identical control logic and driving conditions.

Additionally, this chapter established a policy selection and simulation schedul-
ing mechanism, allowing users to flexibly switch between policies and parameter
configurations. The platform supports various road scenarios, including urban and
highway environments, and provides multi-dimensional performance metrics such
as energy consumption, ride comfort, and safety. This facilitates comprehensive
evaluation and informed decision-making regarding policy effectiveness.

In summary, Chapter 3 not only laid the technical foundation for ACC system
modeling and policy implementation but also provided a unified and high-fidelity
simulation framework to support the subsequent performance analysis. The next
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chapter will leverage the models developed herein to conduct systematic comparisons
of time gap policies under urban driving cycles.
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Chapter 4

Performance Analysis of
Time Gap Policies in Urban
Driving Scenarios

4.1 Overview of Urban Driving Scenarios

Urban road traffic scenarios are characterized by high dynamism and uncertainty.
Unlike highway scenarios where vehicles typically engage in stable cruising, urban
traffic involves low-speed operation, frequent interference, and short-distance car-
following. In actual operation, vehicle motion is often influenced by traffic lights,
pedestrian crossings, and intersection congestion, resulting in significant speed
fluctuations and frequent stop-and-go behavior. Moreover, urban driving is often
subject to high traffic density and complex interactions, requiring Adaptive Cruise
Control (ACC) systems to possess both real-time perception capabilities and highly
responsive control performance.

In the performance evaluation of ACC systems, the use of representative driving
cycles is an essential approach to assess the effectiveness of control policies. To
accurately replicate the longitudinal dynamics typical of urban driving and conduct
fair comparative tests across different time gap policies (CTG, CSF, HDB), this
study adopts three internationally recognized urban driving cycles: the WLTP
Class 3 Driving Cycle, the Artemis Urban Driving Cycle, and the China Light-Duty
Vehicle Test Cycle for Passenger Car. These cycles represent various regional traffic
patterns, urban densities, and driving behaviors, offering strong representativeness,
wide applicability, and excellent generalization across testing conditions.

To ensure consistency and interoperability between different cycles on the
simulation platform, a modular driving input framework was developed in Simulink.
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The Driver Scenario Source module is used to load the reference speed profile of
each cycle and transfer it to the Car-Following Scenario module, which in turn
generates dynamic signals representing the behavior of the lead vehicle. All policy
simulations are executed under a unified controller structure, identical vehicle
dynamics model, and consistent sampling interval, thereby ensuring scientific
validity and comparability of the performance results.

4.1.1 Description of the WLTP Class 3 Driving Cycle
The Worldwide Harmonized Light Vehicles Test Procedure (WLTP) [25], issued by
the United Nations Economic Commission for Europe (UNECE), aims to enhance
the consistency and representativeness of global vehicle energy consumption and
emissions testing. Within the WLTP framework, the Class 3 Driving Cycle is
designed to simulate medium-density urban traffic conditions and has been widely
adopted in European and international standard evaluation procedures.

Figure 4.1: Speed–Time Curve of WLTP Class 3 Driving Cycle

As shown in the speed–time curve in Figure 4.1, the WLTP Class 3 Driving
Cycle has a total duration of approximately 1000 seconds, with a peak speed close
to 75 km/h and an average speed of around 34.2 km/h. The speed profile contains
numerous acceleration and deceleration segments within the moderate speed range
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of 20–50 km/h, interspersed with brief stopping and idling periods, effectively
replicating typical traffic patterns on urban arterials or during off-peak hours.

The primary control challenges of this cycle are twofold. First, although the am-
plitude of speed fluctuations is moderate, the fluctuation duration is relatively long,
requiring ACC policies to balance steady-state tracking with real-time adaptability.
Second, the medium-frequency disturbances in the cycle place higher demands
on the system’s filtering capability and parameter tuning, necessitating a control
policy that can achieve both fast responsiveness and smooth output to prevent
oscillatory behavior or unnecessary energy loss.

4.1.2 Description of the Artemis Urban Driving Cycle
The Artemis Urban Driving Cycle was developed by the European ARTEMIS
project team based on statistically derived real-world urban traffic data [26]. This
cycle emphasizes alignment with actual driving behaviors and is considered more
representative of real-world dynamics, particularly in terms of acceleration/deceler-
ation patterns, traffic signal responses, and congestion characteristics.

Figure 4.2: Speed–Time Curve of Artemis Urban Driving Cycle

As illustrated in the speed–time curve in Figure 4.2, the Artemis Urban Driving
Cycle exhibits high-frequency fluctuation characteristics, with a peak speed of

45



Performance Analysis of Time Gap Policies in Urban Driving Scenarios

approximately 58 km/h and frequent speed drops to 0 km/h. The average speed
is only 18.9 km/h, making it a typical “stop-and-go–dominated” urban driving
cycle. The profile clearly shows a segmented pattern, where every 100–200 seconds
a full sequence of “start–accelerate–decelerate–stop” is repeated. This structure
effectively simulates the driving rhythm in dense urban regions, such as city centers
and commercial districts.

From a control perspective, the Artemis Urban Driving Cycle poses significant
challenges to the dynamic responsiveness of ACC systems. The high-frequency
disturbances require the controller to execute rapid acceleration adjustments while
maintaining system stability and ride comfort. Overly aggressive responses may
result in unnecessary acceleration and braking, leading to increased energy con-
sumption and mechanical stress. Furthermore, due to the unpredictable behavior of
the lead vehicle, improper configuration of time gap policies can result in deviations
in the desired following distance, potentially causing delayed braking or unintended
acceleration events.

4.1.3 Description of the China Light-Duty Vehicle Test
Cycle for Passenger Car

The China Light-Duty Vehicle Test Cycle for Passenger Car was developed by
the Ministry of Transport of China based on on-road measurements collected in
key metropolitan areas such as Beijing, Shanghai, and Guangzhou. Designed to
reflect the current realities of urban traffic in China, this cycle incorporates distinct
localization characteristics and has been adopted in several national standards (e.g.,
GB 18352) as well as new energy vehicle assessment frameworks, making it highly
representative and policy-relevant [27].

As shown in the speed–time profile in Figure 4.3, the total duration of the cycle is
approximately 1250 seconds, with a peak speed of 63 km/h and an average speed of
about 27.3 km/h. The trajectory exhibits a strongly nonlinear rhythm, alternating
between intense acceleration phases and prolonged low-speed car-following segments.
Notably, during the 400–800 second interval, the vehicle speed fluctuates sharply
between 0 and 30 km/h, simulating typical traffic congestion conditions observed
during morning and evening peak hours on Beijing’s Second to Third Ring Roads.
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Figure 4.3: Speed–Time Curve of China Light-Duty Vehicle Test Cycle for Passenger Car

From a control standpoint, this cycle emphasizes the system’s ability to maintain
low-speed car-following stability and tolerate micro-level disturbances. Due to
generally smaller inter-vehicle gaps in Chinese urban traffic, the behavior of the
lead vehicle significantly affects the ego vehicle’s control response. Time gap
policies under this scenario must not only ensure safe spacing but also demonstrate
robustness in handling complex and heterogeneous driving styles. In particular,
adopting conservative policies (e.g., large time gaps) may lead to a decrease in
traffic throughput on high-density roads, while overly aggressive policies, if not
precisely controlled, may increase the risk of rear-end collisions.

4.2 Performance Comparison of Time Gap Poli-
cies under Different Urban Driving Cycles

To comprehensively evaluate the adaptability and performance of different time gap
policies under representative urban traffic scenarios, this section conducts a system-
atic comparative analysis of the Constant Time Gap (CTG), Constant Safety Factor
(CSF), and Human Driving Behavior (HDB) policies using the developed simulation
platform. During testing, a baseline scenario—defined as the case without ACC
control or time gap policy—is used as the reference condition. In this configuration,
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the vehicle operates solely based on the prescribed driving cycle velocity profile,
without any prediction of preceding vehicle behavior or adaptive buffer regulation.
The resulting performance in terms of energy consumption, longitudinal dynamics,
and jerk serves as a benchmark for evaluating the effectiveness of various policies.
For each policy, multiple configurations of key control parameters are defined. The
following metrics are recorded and compared across these configurations: target
following distance, energy consumption level, longitudinal dynamic responsiveness
(maximum and minimum acceleration), and ride comfort indicators (maximum
and minimum jerk). All simulations are executed using a unified vehicle model
and controller configuration, with the baseline scenario providing the reference
for cross-policy comparison. This ensures consistency and scientific rigor in the
evaluation process.

Figure 4.4: Typical comfort limits for longitudinal and lateral acceleration and jerk

To enhance the engineering relevance and comfort-oriented applicability of the
conclusions, this study introduces a comfort evaluation threshold. As illustrated
in Figure 4.4 [28], the physically acceptable range for longitudinal jerk is set
at ±2.0 m/s3. Any parameter configurations exceeding this threshold, such as
the jerk values observed under CTG and HDB policies when Tgap = 1.5 s, are
considered either excessively aggressive or insufficiently stable. These behaviors
may negatively affect the passenger experience. Therefore, such cases are excluded
from the subsequent performance comparison to maintain the practical validity
and scientific rigor of the analysis.

4.2.1 Performance of Time Gap Policies under the WLTP
Class 3 Driving Cycle

Under the WLTP Level 3 driving cycle, a series of system simulations were performed
based on the Simulink platform to evaluate the performance of each strategy under
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different parameter settings. The simulation results are shown in Table 4.1, which
provides the maximum target distance, maximum relative distance, battery energy
consumption, extreme longitudinal acceleration (maximum and minimum values),
and jerk value (maximum and minimum values) for the benchmark scenario and
the constant time gap (CTG), human driving behavior (HDB), and constant safety
factor (CSF) strategies. All performance indicators are evaluated based on the
benchmark conditions to ensure consistency and fairness in horizontal comparisons.

Table 4.1: WLTP Class 3 Driving cycle

Baseline vehicle on WLTP Class 3 0.648 1.643 -1.660 2.789 -2.808
CTG Tgap [s] ddes,max [m] drel,max [m] E [kWh] amax [m/s2] amin [m/s2] jmax [m/s3] jmin [m/s3]

1.5 34 34 0.634 2.094 -1.469 3.000 -2.053
2.0 44 44 0.617 1.342 -1.380 0.720 -0.602
2.5 55 54 0.605 1.263 -1.295 0.659 -0.563
3.0 65 65 0.594 1.193 -1.216 0.616 -0.528
4.0 86 85 0.576 1.073 -1.106 0.552 -0.487
5.0 107 104 0.561 1.006 -1.026 0.521 -0.456

HDB Tgap [s] ddes,max [m] drel,max [m] E [kWh] amax [m/s2] amin [m/s2] jmax [m/s3] jmin [m/s3]
1.5 22 27 0.655 2.115 -1.834 2.994 -2.569
2.0 27 28 0.641 1.443 -1.458 0.807 -0.654
2.5 32 33 0.633 1.373 -1.401 0.763 -0.646
3.0 37 38 0.625 1.307 -1.351 0.723 -0.638
4.0 47 48 0.612 1.259 -1.268 0.666 -0.623
5.0 58 58 0.601 1.200 -1.217 0.622 -0.610

CSF Ksafe [s] ddes,max [m] drel,max [m] E [kWh] amax [m/s2] amin [m/s2] jmax [m/s3] jmin [m/s3]
1.25 102 95 0.569 1.161 -1.122 1.201 -0.537
1.50 116 106 0.561 1.125 -1.059 0.903 -0.520
1.75 130 117 0.554 1.092 -0.999 0.836 -0.509
2.00 144 127 0.547 1.061 -0.943 0.848 -0.498

This section will conduct a comprehensive analysis of the behavioral charac-
teristics, energy-saving potential, and ride comfort of each strategy based on the
numerical results shown in Table 4.1.

Baseline performance analysis

The simulation data shows that under the benchmark conditions, the total energy
consumption reaches 0.648 kWh. The maximum acceleration is 1.643 m/s2, and
the minimum acceleration drops to −1.660 m/s2. The maximum acceleration rate
of change reached 2.789 m/s3 and the minimum acceleration rate of change reached
−2.808 m/s3, both significantly exceeding the acceptable comfort threshold. These
values indicate that the vehicle’s longitudinal response has significant dynamic
fluctuations. This pattern reflects that in the absence of a time gap management
mechanism, the vehicle exhibits discontinuous acceleration and braking responses
when subjected to external disturbances. This instability not only leads to reduced
energy efficiency but also has a negative impact on ride comfort.

These findings highlight the importance of implementing a time gap strategy to
improve control smoothness, reduce the acceleration rate of change, and improve
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energy efficiency. They also provide a quantitative reference benchmark for evalu-
ating the relative advantages and optimization potential of subsequent strategy
configurations.

Performance of the CTG policy

The Constant Time Gap (CTG) policy computes the desired following distance
using a linear function defined by a fixed time gap Tgap and a minimum static
distance Dmin. In this study, the time gap parameter was configured at 1.5 s, 2.0 s,
2.5 s, 3.0 s, 4.0 s, and 5.0 s.

In terms of energy consumption, simulation results indicate a clear optimization
trend as the time gap increases. When Tgap = 2.0 s, the energy consumption is
0.617 kWh. At Tgap = 5.0 s, the consumption drops to 0.561 kWh, representing
a reduction of approximately 13% compared to the baseline condition. This
improvement is attributed to the larger buffer distance maintained during car-
following, which reduces the frequency of aggressive acceleration and deceleration
events and supports smoother and more stable power output.

Regarding acceleration and jerk performance, the CTG policy demonstrates
relatively aggressive system responses at short time gaps (1.5 to 2.0 seconds). For
example, when Tgap = 1.5 s, the maximum acceleration reaches 2.094 m/s2, while
the minimum acceleration drops to −1.469 m/s2. This reflects the necessity for the
system to execute rapid braking and acceleration to maintain the target distance
under tight spacing, resulting in significant dynamic fluctuations. The corresponding
jerk value reaches 3.000 m/s3, which exceeds the acceptable comfort threshold
of ±2.0 m/s3. Therefore, this configuration is excluded from the subsequent
comparative analysis.

As the time gap increases beyond 3.0 s, the maximum jerk value decreases
to 0.616 m/s3. Compared to the baseline value of 2.789 m/s3, this indicates a
substantial improvement in ride comfort. Meanwhile, the extreme acceleration
values converge toward ±1.0 m/s2, highlighting the balance between smooth vehicle
dynamics and improved energy efficiency.

In terms of maximum relative distance, the CTG policy shows a proportional
increase in both target and actual inter-vehicle distance with increasing Tgap. At
Tgap = 5.0 s, the maximum actual relative distance reaches 104 m. This flexible
and adjustable buffer is beneficial for accommodating variable traffic densities,
though it may also lead to inefficient space utilization or delayed system responses
in congested urban conditions.

In summary, the CTG policy demonstrates significant improvements in energy
consumption and jerk performance relative to the baseline scenario. It is well-suited
for low-complexity car-following applications in urban environments. However, its
performance at short time gaps must be carefully managed by enforcing a lower
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limit to ensure passenger comfort.

Performance of the HDB policy

The Human Driving Behavior (HDB) policy is based on behavior regression
modeling using large-scale naturalistic driving datasets. It aims to capture the
variation in the desired following distance as a function of vehicle speed. In this
study, the time gap parameter Tgap is configured consistently with that of the CTG
policy. The core objective of HDB is to replicate real-world following behavior by
dynamically adjusting inter-vehicle spacing, thereby enhancing the coordination
between ACC systems and human-driven vehicles.

In terms of energy performance, the HDB policy exhibits slightly higher energy
consumption than CTG and CSF. At Tgap = 5.0 s, the minimum energy consumption
reaches 0.601 kWh, which is an improvement compared to the baseline (0.648 kWh)
but remains higher than the values observed for CTG (0.561 kWh) and CSF
(0.547 kWh). This is primarily attributed to the inclusion of a quadratic speed term
in the regression model, which causes greater variation in the desired distance at
medium to high speeds. Consequently, the system frequently adjusts acceleration
commands, leading to increased energy fluctuation.

The analysis of acceleration and jerk indicates that HDB exhibits overly sen-
sitive control responses at short time gaps. For instance, when Tgap = 1.5 s, the
maximum acceleration reaches 2.115 m/s2, the maximum jerk peaks at 2.994 m/s3,
and the minimum jerk reaches −2.569 m/s3. All these values exceed the comfort
threshold, indicating that while the controller closely mimics human-like responses,
it compromises ride smoothness and system stability. Therefore, this configuration
is excluded from further comparative analysis.

For configurations where Tgap ≥ 2.0 s, the jerk values decrease significantly,
and control stability improves. The maximum jerk converges to the range of 0.6–
0.8 m/s3, remaining within acceptable limits. The minimum acceleration gradually
approaches −1.2 m/s2, reflecting a more tempered braking behavior.

Regarding maximum relative distance, HDB maintains values below 58 m, which
is significantly shorter than those observed under CTG and CSF. This reflects
the human tendency toward close following. While this behavior promotes lane
capacity and road utilization, it may introduce elevated risks under high-frequency
disturbances or in congested urban traffic scenarios.

Overall, compared to the baseline scenario, the HDB policy significantly reduces
peak jerk and longitudinal acceleration, thereby improving ride comfort and energy
efficiency. Additionally, its strength in behavioral realism and interactive consis-
tency makes it particularly suitable for studies involving multi-vehicle coordination
or mixed traffic control. However, its aggressive behavior under short time gap
settings should be managed carefully to prevent degradation in passenger experience
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or increases in energy consumption.

Performance of the CSF policy

The Constant Safety Factor (CSF) policy defines the desired inter-vehicle dis-
tance based on the vehicle’s maximum braking capability and system reaction
delay. The safety adjustment factor K is set to four values in this study: 1.25, 1.5,
1.75, and 2.0. Oriented toward active safety, this policy enhances the buffer margin
during high-speed operations or abrupt traffic disturbances.

Energy performance is particularly outstanding. Simulation results show that
the CSF policy achieves the lowest energy consumption among all tested policies.
Specifically, at K = 2.0, energy consumption drops to 0.547 kWh, approximately
15% lower than the baseline value of 0.648 kWh. This highlights the CSF policy’s
potential for significant energy savings, making it well-suited for energy-efficient
driving scenarios.

Acceleration and jerk remain consistently smooth. Across all configurations,
the maximum acceleration remains within the range of 1.06 to 1.16 m/s2, and
the maximum jerk does not exceed 1.201 m/s3. These results indicate excellent
control of smoothness. The minimum acceleration is maintained around −1 m/s2,
ensuring moderate deceleration and minimizing passenger discomfort. Overall
output fluctuations are minimal, and none of the CSF configurations exceed the
safety threshold for jerk.

Maximum relative distance performance is also remarkable. When K = 2.0, the
maximum relative distance reaches 127 m, indicating substantial safety redundancy.
This characteristic is especially beneficial in multi-vehicle car-following or complex
urban traffic scenarios where risk mitigation is critical.

In summary, the CSF policy outperforms the baseline and other tested policies
across several key dimensions, including energy efficiency, control smoothness, and
safety margins. It demonstrates the most balanced and optimal performance under
the given test conditions.

4.2.2 Policy Performance under the Artemis Urban Driving
Cycle

Under the Artemis Urban Driving Cycle, a systematic simulation analysis was
conducted for each policy across different parameter configurations using the
established simulation platform. The summarized results are presented as follows:
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Table 4.2: Artemis Urban Driving cycle

Baseline vehicle on Artemis Urban 0.438 3.279 -3.437 6.768 -6.210
CTG Tgap [s] ddes,max [m] drel,max [m] E [kWh] amax [m/s2] amin [m/s2] jmax [m/s3] jmin [m/s3]

1.5 26 30 0.395 2.093 -2.461 2.974 -1.960
2.0 34 34 0.376 1.688 -2.243 1.343 -1.291
2.5 42 41 0.363 1.522 -2.055 1.304 -1.242
3.0 50 49 0.352 1.432 -1.894 1.271 -1.199
4.0 66 64 0.333 1.304 -1.634 1.209 -1.124
5.0 82 78 0.318 1.194 -1.436 1.149 -1.056

HDB Tgap [s] ddes,max [m] drel,max [m] E [kWh] amax [m/s2] amin [m/s2] jmax [m/s3] jmin [m/s3]
1.5 19 54 0.428 2.116 -3.042 2.966 -3.902
2.0 24 25 0.396 1.754 -2.443 1.346 -1.371
2.5 29 29 0.386 1.691 -2.302 1.305 -1.335
3.0 34 34 0.377 1.629 -2.177 1.272 -1.303
4.0 44 44 0.361 1.505 -1.964 1.210 -1.247
5.0 53 53 0.347 1.405 -1.790 1.150 -1.199

CSF Ksafe [s] ddes,max [m] drel,max [m] E [kWh] amax [m/s2] amin [m/s2] jmax [m/s3] jmin [m/s3]
1.25 66 60 0.337 1.585 -1.643 1.709 -1.153
1.50 74 67 0.330 1.523 -1.530 1.584 -1.152
1.75 82 73 0.324 1.459 -1.431 1.561 -1.149
2.00 90 78 0.319 1.395 -1.344 1.556 -1.146

Baseline performance analysis

In the baseline condition without ACC or time gap control, the battery en-
ergy consumption reached 0.438 kWh, the highest among all scenarios, indicating
significant energy waste due to frequent braking and acceleration. The maxi-
mum longitudinal acceleration peaked at 3.279 m/s2, and the minimum reached
−3.437 m/s2, suggesting a high occurrence of aggressive speed changes under urban
traffic conditions. The peak jerk values were 6.768 m/s3 and −6.210 m/s3, both
significantly exceeding the comfort threshold of ±2.0 m/s3. These results indicate
that while the system responds rapidly without gap regulation, it leads to excessive
dynamic shocks and inefficient energy use, severely compromising ride comfort.

Performance of the CTG policy

For the Artemis Urban cycle, the CTG policy was tested with time gap values
of 2 s, 2.5 s, 3 s, 4 s, and 5 s (1.5 s was excluded due to jerk exceeding the ±2.0 m/s3

threshold). As Tgap increased, the maximum relative distance expanded from 34 m
to 78 m.

In terms of energy efficiency, CTG demonstrated excellent performance. At
Tgap = 2 s, energy consumption was 0.376 kWh, 14.2% lower than the baseline.
When Tgap was extended to 5 s, consumption dropped to 0.318 kWh, representing a
27.4% improvement. This suggests that in the low-speed, high-frequency environ-
ment of the Artemis Urban cycle, increasing the time gap effectively reduces the
burden caused by repeated braking and acceleration.

Regarding acceleration and jerk, comfort improved consistently. Maximum
acceleration decreased from 1.688 m/s2 to 1.194 m/s2, and minimum acceleration
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eased from −2.243 m/s2 to −1.436 m/s2. Jerk values remained within the comfort
range, with maximum jerk ranging between 1.343 and 1.149 m/s3, and minimum
jerk from −1.291 to −1.056 m/s3. Overall, the CTG policy achieved a good balance
between energy efficiency and comfort, making it suitable for urban environments
with moderate traffic fluctuations.

Performance of the HDB policy

Under the Artemis Urban cycle, the HDB policy continued to exhibit close
responsiveness to the lead vehicle, with maximum relative distance increasing from
25 m (Tgap = 2 s) to 53 m (Tgap = 5 s), generally lower than that of CTG for the
same settings.

Energy-wise, HDB showed slightly higher values. At Tgap = 2 s, energy con-
sumption was 0.396 kWh, and it dropped to 0.347 kWh at Tgap = 5 s, representing
savings of 9.6% and 20.8% compared to the baseline, respectively. Though less
efficient than CTG, the HDB policy still significantly outperformed the uncontrolled
scenario.

For comfort, maximum acceleration reduced from 1.754 m/s2 to 1.405 m/s2,
and minimum acceleration improved from −2.443 m/s2 to −1.790 m/s2. While
substantially better than the baseline, these figures remained slightly higher than
CTG’s. The maximum jerk ranged from 1.346 to 1.150 m/s3, and the minimum
from −1.371 to −1.199 m/s3, with all values staying within acceptable thresholds.

Performance of the CSF policy

The CSF policy was tested with four safety adjustment factors: K = 1.25,
1.5, 1.75, and 2.0. In terms of distance metrics, the maximum relative distance
increased from 60 m to 78 m, demonstrating strong buffer capacity.

Energy performance was particularly outstanding. Consumption dropped from
0.337 kWh (K = 1.25) to 0.319 kWh (K = 2.0), the lowest among all policies
and 27.2% lower than the baseline. This confirms CSF’s ability to reduce energy
fluctuations by moderating brake response.

In terms of comfort, acceleration outputs remained stable. Maximum accelera-
tion declined from 1.585 m/s2 to 1.395 m/s2, and minimum acceleration ranged from
−1.643 m/s2 to −1.344 m/s2. Jerk values fluctuated minimally, with all maximum
jerk values below 1.71 m/s3 and minimum jerk ranging from −1.153 to −1.146 m/s3.
The system responded smoothly, without harsh transitions, offering the best ride
comfort among all policies.
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Summary

The Artemis Urban Driving Cycle is characterized by frequent short-distance
acceleration, deceleration, and idling phases, placing high demands on both re-
sponsiveness and smoothness of the control system. Under such conditions, the
CSF policy delivered the greatest performance improvements across all indicators,
demonstrating superior energy savings and minimal dynamic fluctuations. CTG
followed closely with a simple structure and flexible gap configuration, performing
consistently well under moderate-to-high time gaps. The HDB policy, while effective
in replicating human-like behavior, requires further tuning to improve its energy
efficiency and stability, particularly in high-frequency braking scenarios.

4.2.3 Policy Performance under the China Light-Duty Ve-
hicle Test Cycle for Passenger Car

Under the China Light-Duty Vehicle Test Cycle for Passenger Car (referred to as
the China City driving cycle), a series of simulations were conducted using the
established platform to evaluate the performance of each time gap policy across
multiple parameter settings. The summarized simulation results are presented as
follows:

Table 4.3: China Light-Duty Vehicle Test Cycle for Passenger Car

Baseline vehicle on CLTC 0.615 2.091 -2.196 7.767 -6.450
CTG Tgap [s] ddes,max [m] drel,max [m] E [kWh] amax [m/s2] amin [m/s2] jmax [m/s3] jmin [m/s3]

1.5 32 32 0.588 1.791 -1.311 2.207 -0.965
2.0 42 41 0.579 1.022 -1.247 1.277 -0.946
2.5 52 51 0.571 0.962 -1.186 1.256 -0.926
3.0 62 60 0.565 0.926 -1.129 1.233 -0.906
4.0 82 79 0.553 0.856 -1.024 1.172 -0.865
5.0 102 98 0.542 0.790 -0.940 1.106 -0.824

HDB Tgap [s] ddes,max [m] drel,max [m] E [kWh] amax [m/s2] amin [m/s2] jmax [m/s3] jmin [m/s3]
1.5 22 22 0.599 1.870 -1.383 2.383 -1.045
2.0 27 27 0.593 1.046 -1.341 1.423 -1.038
2.5 32 32 0.588 1.022 -1.302 1.408 -1.030
3.0 37 37 0.584 0.993 -1.267 1.393 -1.023
4.0 47 47 0.576 0.958 -1.203 1.362 -1.009
5.0 57 57 0.569 0.917 -1.147 1.339 -0.995

CSF Ksafe [s] ddes,max [m] drel,max [m] E [kWh] amax [m/s2] amin [m/s2] jmax [m/s3] jmin [m/s3]
1.25 95 86 0.548 1.496 -1.156 1.827 -0.853
1.50 107 96 0.543 1.423 -1.148 1.676 -0.833
1.75 120 105 0.538 1.350 -1.129 1.501 -0.795
2.00 132 115 0.533 1.298 -1.102 1.592 -0.759

Baseline performance analysis

In terms of energy consumption, the battery usage reached 0.615 kWh, signifi-
cantly higher than any configuration with policy control. This indicates that the
China City cycle, characterized by frequent acceleration and deceleration, imposes
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intense power fluctuation on the electric drivetrain due to repeated start-stop
actions, resulting in considerable energy loss.

Regarding comfort, the vehicle exhibited aggressive longitudinal dynamics.
The maximum acceleration reached 2.091 m/s2, and the minimum dropped to
−2.196 m/s2. More critically, the jerk indicators showed extreme values, with
the maximum jerk reaching 7.767 m/s3 and the minimum −6.450 m/s3. These
figures far exceed the ±2.0 m/s3 comfort threshold, implying that passengers are
likely to experience strong push-pull sensations and potential system oscillations.
Such extreme dynamics not only compromise ride comfort but may also accelerate
mechanical wear and thermal stress on components such as motors and braking
systems.

Performance of the CTG policy

In this scenario, the CTG policy was tested with Tgap values of 2 s, 2.5 s, 3 s, 4 s,
and 5 s (1.5 s was excluded due to excessive jerk). As the time gap increased, the
maximum relative distance rose from 41 m to 98 m, showing a clear linear growth
trend and effective distance control capability.

In terms of energy efficiency, the CTG policy demonstrated the typical char-
acteristic of larger gaps leading to lower consumption. At Tgap = 2 s, the energy
consumption was 0.579 kWh, and it dropped to 0.542 kWh at Tgap = 5 s—an 11.8%
reduction compared to the baseline. This result validates that appropriate following
buffers can effectively mitigate energy loss caused by abrupt vehicle dynamics.

As for comfort, acceleration outputs became progressively smoother. The max-
imum acceleration declined from 1.022 m/s2 to 0.790 m/s2, while the minimum
reached −0.940 m/s2. The jerk remained well-controlled, with values decreasing
from 1.277 to 1.106 m/s3. All jerk measurements remained well below the ±2.0 m/s3

comfort threshold. Compared to the baseline, longitudinal jolts were significantly
reduced, improving passenger experience and confirming the CTG policy’s effective
modulation capability.

Performance of the HDB policy

Under the China City driving cycle, the HDB policy maintained similar behav-
ioral characteristics as observed in the WLTP scenario. It exhibited a tendency
toward closer vehicle following, with the maximum relative distance increasing
from 27 m to 57 m, generally lower than the CTG results under the same time gap.
This tighter following pattern may offer some advantages in terms of road space
utilization, especially in low-speed, high-density urban traffic.

In terms of energy consumption, the HDB policy also showed a decreasing
trend as Tgap increased: from 0.593 kWh (Tgap = 2 s) to 0.569 kWh (Tgap = 5 s).
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Although these values outperform the baseline, they remain higher than those of
CTG (0.542 kWh), indicating that the human-like responsiveness in HDB may cause
additional energy usage under high-frequency acceleration-deceleration conditions.

In comfort analysis, the maximum acceleration ranged from 1.046 m/s2 to
0.917 m/s2, and jerk values remained within acceptable thresholds. The maximum
jerk dropped from 1.423 to 1.339 m/s3, though still slightly higher than CTG,
reflecting the more responsive yet slightly less stable behavior of the HDB policy
in terms of passenger comfort.

Performance of the CSF policy

The CSF policy again demonstrated excellent performance under the China
City driving cycle, with simulations conducted across four safety factors (K = 1.25
to 2.0). The maximum relative distance increased from 86 m to 115 m, highlighting
the strategy’s robust safety margin in complex urban environments.

From an energy standpoint, CSF continued to yield the lowest consumption
across all policies. At K = 1.25, the consumption was 0.548 kWh, which further
decreased to 0.533 kWh at K = 2.0—approximately 13.3% lower than the baseline.
This validates CSF’s advantage in dampening energy fluctuations through steady
and controlled vehicle dynamics.

In terms of comfort, acceleration remained within a stable range of 1.496 to
1.298 m/s2. The maximum jerk ranged from 1.827 to 1.592 m/s3, and the minimum
jerk stayed within −0.853 to −0.759 m/s3. All values were well within the comfort
threshold, and the minimal variability indicates a highly stable system. Such
smooth dynamics enhance passenger comfort and contribute to reduced mechanical
fatigue across vehicle subsystems.

Summary

The China City driving cycle represents the high-frequency, low-speed rhythm
of typical Chinese urban traffic. Among the evaluated policies, CSF once again
emerged as the best overall performer due to its superior energy-saving potential
and high stability. The CTG policy also showed reliable and stable behavior when
the time gap exceeded 3 s, making it suitable for low-speed urban commuting. The
HDB policy demonstrated enhanced behavioral realism but revealed shortcomings
in energy efficiency and output smoothness under intensive traffic conditions.
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4.3 Energy Consumption Comparison Analysis
In the performance evaluation of Adaptive Cruise Control (ACC) systems, energy
consumption serves as a key metric for assessing energy-saving potential and vehicle
efficiency. To systematically analyze the energy performance differences of various
time gap policies (CTG, HDB, CSF) across typical urban traffic environments, this
study introduces the Energy Consumption Reduction Ratio (ECRR) as a unified
evaluation indicator, defined as:

ECRR = Eref − EACC

Eref

× 100% (4.1)

where Eref denotes the baseline energy consumption under the “no ACC, no
time gap policy” condition, and EACC refers to the energy consumption when
a specific time gap control policy is applied. A higher ECRR indicates greater
energy-saving effectiveness; conversely, a negative ECRR implies that the policy
results in additional energy losses.

4.3.1 ECRR Evaluation Results
To present the energy-saving capabilities of each policy under different traffic condi-
tions, this study computes the ECRR values for each policy combination across the
three representative driving cycles: WLTP Class 3 Driving Cycle, Artemis Urban
Driving Cycle, and China Light-Duty Vehicle Test Cycle for Passenger Car. The
energy-saving trends vary significantly across these driving cycles:

WLTP Class 3 Driving Cycle

Table 4.4: ECRR of WLTP Class 3 Driving cycle

Baseline vehicle on WLTP Class 3 0.648
CTG Tgap [s] drel,max [m] E [kWh] Ereduction [%]

2.0 44 0.617 4.8
2.5 54 0.605 6.6
3.0 65 0.594 8.2
4.0 85 0.576 11.0
5.0 104 0.561 13.3

HDB Tgap [s] drel,max [m] E [kWh] Ereduction [%]
2.0 28 0.641 1.1
2.5 33 0.633 2.3
3.0 38 0.625 3.5
4.0 48 0.612 5.5
5.0 58 0.601 7.2

CSF Tgap [s] drel,max [m] E [kWh] Ereduction [%]
1.25 95 0.569 12.1
1.50 106 0.561 13.4
1.75 117 0.554 14.5
2.00 127 0.547 15.5
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The energy-saving potential is relatively limited. CTG achieves a maximum
ECRR of 13.3%, while CSF slightly outperforms it with 15.5%. HDB performs
weakly or even negatively, suggesting inefficiency in medium-to-high-speed scenarios.

Artemis Urban Driving Cycle

Table 4.5: ECRR of Artemis Urban Driving cycle

Baseline vehicle on Artemis Urban 0.438
CTG Tgap [s] drel,max [m] E [kWh] Ereduction [%]

2.0 34 0.376 14.2
2.5 41 0.363 17.2
3.0 49 0.352 19.8
4.0 64 0.333 24.0
5.0 78 0.318 27.4

HDB Tgap [s] drel,max [m] E [kWh] Ereduction [%]
2.0 25 0.396 9.6
2.5 29 0.386 12.0
3.0 34 0.377 14.1
4.0 44 0.361 17.7
5.0 53 0.347 20.7

CSF Tgap [s] drel,max [m] E [kWh] Ereduction [%]
1.25 60 0.337 23.1
1.50 67 0.330 24.7
1.75 73 0.324 26.0
2.00 78 0.319 27.3

All policies show significant improvement. CTG and CSF peak at 27.4% and
27.3% ECRR, respectively, with HDB achieving 20.7%. Frequent stop-and-go
conditions enhance the benefits of smoother time gap strategies.

China Light-Duty Vehicle Test Cycle for Passenger Car

Table 4.6: ECRR of China Light-Duty Vehicle Test Cycle for Passenger Car

Baseline vehicle on CLTC 0.615
CTG Tgap [s] drel,max [m] E [kWh] Ereduction [%]

2.0 41 0.579 5.9
2.5 51 0.571 7.1
3.0 60 0.565 8.2
4.0 79 0.553 10.2
5.0 98 0.542 11.9

HDB Tgap [s] drel,max [m] E [kWh] Ereduction [%]
2.0 27 0.593 3.6
2.5 32 0.588 4.3
3.0 37 0.584 5.0
4.0 47 0.576 6.3
5.0 57 0.569 7.5

CSF Tgap [s] drel,max [m] E [kWh] Ereduction [%]
1.25 86 0.548 10.8
1.50 96 0.543 11.7
1.75 105 0.538 12.6
2.00 115 0.533 13.3
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Though not as prominent as in Artemis, CSF maintains the lead with a 13.3%
maximum ECRR. CTG performs moderately, while HDB consistently lags.

These ECRR values provide a quantitative reference for evaluating energy-saving
effectiveness and support further strategy screening and optimization.

4.3.2 Joint Analysis of Energy Saving and Traffic Efficiency
Although certain time gap policies achieve notable energy savings as indicated by
the Energy Consumption Reduction Ratio (ECRR), a practical trade-off often exists
between energy efficiency and traffic throughput in real-world traffic operations.
Specifically, increasing the time gap results in greater spacing between vehicles,
which reduces lane capacity and negatively impacts the throughput of urban road
networks. Therefore, using ECRR as the sole evaluation metric is insufficient for
guiding real-world policy deployment.

To better account for the influence of time gap policies on urban traffic efficiency,
this study introduces the maximum relative distance (drel,max) as a proxy for spatial
occupancy. The distribution of all tested policies is visualized in a two-dimensional
space defined by ’maximum relative distance – ECRR’.As shown in the figure below:

Figure 4.5: Energy Consumption and Maximum Relative Distance Across Time Gap Policies

According to engineering practice, car-following distances exceeding 70 meters
significantly reduce road utilization efficiency. In contrast, minimal distances (e.g.,
below 40 meters) may trigger abrupt braking events, compromising both ride
comfort and energy stability [4] [17]. Consequently, this study defines a desirable
policy range in which the maximum relative distance falls between 40 and 70
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meters. Policies within this range are considered to strike a balance between spatial
efficiency and energy savings, supporting optimal traffic system performance.

Based on this evaluation framework, representative policy configurations that
meet the dual criteria of high energy savings and acceptable spacing (40–70 meters)
are identified. As shown in the figure below, these configurations fall within the
red-bordered region, demonstrating notable energy advantages without sacrificing
urban traffic throughput.

Figure 4.6: Energy Consumption and Maximum Relative Distance Across Time Gap Policies

• CTG Policy: Tgap = 2.5 s and 3.0 s

• HDB Policy: Tgap = 4.0 s and 5.0 s

These two groups of policy configurations not only demonstrate a consistent
trend of energy savings across multiple driving scenarios (with ECRR values ex-
ceeding 8%), but also maintain maximum relative distances below the 70-meter
threshold. This indicates that they offer substantial energy-saving potential with-
out significantly compromising roadway capacity. Therefore, in the subsequent
comfort evaluation—focused on maximum and minimum jerk metrics—these four
configurations will be subjected to in-depth analysis. The goal is to identify optimal
time gap policies that achieve a balanced trade-off among energy efficiency, ride
comfort, and traffic throughput.

4.4 Comfort Evaluation
In the comprehensive assessment of time gap policy performance, ride comfort
constitutes a critical evaluation metric. It is directly related to the smoothness
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of longitudinal vehicle motion and the perceived comfort of passengers. This is
particularly important in urban driving scenarios, where frequent acceleration and
deceleration fluctuations can lead to passenger discomfort and fatigue.

To quantitatively evaluate the ability of different time gap policies to mitigate
longitudinal acceleration disturbances, this study introduces the Acceleration
Reduction Ratio (ARR) as the core evaluation index. It is defined as follows:

ARR = arms,ref − arms,ACC

arms,ref
× 100% (4.2)

where arms,ref represents the root mean square (RMS) value of longitudinal accel-
eration under the baseline scenario without ACC control, and arms,ACC corresponds
to the RMS acceleration value under a given time gap policy. A higher ARR
value indicates better performance in reducing acceleration fluctuations, which
corresponds to improved ride comfort.

Building upon the previous energy consumption analysis, this section focuses on
the four representative policy configurations previously identified as optimal: CTG
with Tgap = 2.5 s, CTG with Tgap = 3.0 s, HDB with Tgap = 4.0 s, and HDB with
Tgap = 5.0 s. The ARR metric is evaluated under three representative urban driving
scenarios: WLTP Class 3, China City, and Artemis Urban. The comparative results
are presented in Figure:

Table 4.7: Comfort Performance Comparison under Urban Driving Cycles

Driving Cycle WLTP CLTC Artemis urban
arms,ref [m/s2] 0.56 0.49 0.80

policy with Tgap [s] arms [m/s2] arms,reduction [%] arms [m/s2] arms,reduction [%] arms [m/s2] arms,reduction [%]
CTG Tgap = 2.5 0.45 21.0 0.33 32.8 0.53 33.2
CTG Tgap = 3 0.42 25.4 0.31 35.5 0.50 37.5
HDB Tgap = 4 0.44 21.1 0.32 33.7 0.51 36.0
HDB Tgap = 5 0.42 25.9 24.0 0.31 36.6 41.0

To provide a more intuitive understanding of the comfort performance across
different policies and urban driving scenarios, the Acceleration Reduction Ratio
(ARR) results are further visualized in Figure 4.7:
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Figure 4.7: RMS Acceleration Reduction Comparison across Driving Cycles

This bar chart illustrates the comparative effectiveness of each policy in reducing
RMS acceleration. The visualization highlights not only the overall superiority of
the HDB(Tgap=5.0 s) configuration but also the consistent improvements observed
with increasing time gaps. By translating numerical data into visual trends, this
figure reinforces the insights derived from Table 4.7 and offers clearer support for
cross-scenario evaluation.

4.4.1 Comparative Analysis of ARR across Policies
As illustrated in Figure 4.7, all four selected policies significantly reduce the fluc-
tuation of longitudinal acceleration across the three representative urban driving
cycles. Each achieves an Acceleration Reduction Ratio (ARR) exceeding 20%,
demonstrating a positive contribution to ride comfort improvement. To further
quantify the performance differences among these strategies, a comparative evalua-
tion of ARR values under the three driving cycles is presented below.

Overall Performance

In terms of average ARR, the HDB(Tgap=5.0 s) policy exhibits the highest
attenuation rate of acceleration fluctuations across all conditions, with ARR values
of 25.9%, 36.6%, and 41.0%. The second-best performer is CTG(Tgap=3.0 s), with
ARR values of 25.4%, 35.5%, and 37.5%, slightly lower than HDB(Tgap=5.0 s) but
still indicating high levels of effectiveness.

By contrast, the CTG(Tgap=2.5 s) and HDB(Tgap=4.0 s) policies show moderate
performance, with average ARR values fluctuating between 21.0% and 36.0%.
These configurations provide a reasonable level of comfort but demonstrate slightly
lower stability and therefore may have more limited applicability in scenarios
requiring high comfort standards.
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Cross-Cycle Consistency Analysis

To systematically evaluate the stability and adaptability of each time gap policy
across different urban traffic environments, this section performs a cross-scenario
consistency analysis of four candidate policies using the Acceleration Reduction
Rate (ARR) metric under three representative urban driving cycles: WLTP Class
3, China City, and Artemis Urban.

Firstly, the CTG(Tgap = 3.0 s) policy achieved ARR values of 25.4%, 35.5%,
and 37.5% across the three cycles respectively. These values are well-balanced,
with a fluctuation range within 12.1% and consistently maintaining a medium-
to-high level. This indicates that the CTG(Tgap = 3.0 s) policy provides stable
control performance and good adaptability under varying urban traffic rhythms,
demonstrating high consistency.

In contrast, although the HDB(Tgap = 5.0 s) policy achieved the highest ARR of
41.0% in the Artemis Urban cycle, it only reached 25.9% under the WLTP cycle,
resulting in a maximum-minimum gap of 15.1%, slightly higher than that of the
CTG(Tgap = 3.0 s) policy. This suggests that the HDB policy is more affected by
scenario disturbances and therefore ranks second in stability.

On the other hand, the CTG(Tgap = 2.5 s) and HDB(Tgap = 4.0 s) policies showed
ARR values of only 21.0% and 21.1% under the WLTP cycle, significantly lower
than their performance in the other two cycles (both exceeding 25%). Although
they performed well in intense car-following or low-speed fluctuating conditions
(such as China City and Artemis Urban), their higher sensitivity to traffic rhythm
variations limits their applicability across diverse scenarios.

In summary, from the ARR perspective, the CTG(Tgap = 3.0 s) policy stands
out as the most consistent strategy across different driving cycles due to its low
fluctuation and high absolute performance. The HDB(Tgap = 5.0 s) policy follows
closely behind, offering exceptional comfort in some scenarios but with slightly
reduced stability. The remaining two policies should be deployed cautiously, depend-
ing on specific scenario characteristics, to avoid potential degradation in control
performance due to limited adaptability.

Summary

Based on the above comparative analysis, the following conclusions can be
drawn:

• In terms of comfort, the HDB(Tgap = 5.0 s) policy performs best across all
three cycles, showing high adaptability and reliability.

• The CTG(Tgap = 3.0 s) policy, though slightly less effective in comfort, remains
a strong recommendation due to its simple model structure, stable control
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logic, and balanced performance in both comfort and energy efficiency.

• The CTG(Tgap = 2.5 s) and HDB(Tgap = 4.0 s) policies demonstrate certain
control capabilities but are highly influenced by traffic scenarios, and are
therefore not recommended for independent deployment in complex urban
environments.

4.5 Results Discussion
Building upon the quantitative analysis of energy efficiency (ECRR) and ride
comfort (ARR) in previous sections, this chapter further explores the trade-offs and
applicability of different time gap policies under typical urban driving conditions.
The discussion not only guides the practical deployment of Adaptive Cruise Control
(ACC) systems in urban environments but also offers a theoretical foundation for
future multi-objective control design and model optimization across diverse driving
contexts.

4.5.1 Multi-Objective Trade-off Analysis
Based on the simulation results, the three representative time gap policies—Constant
Time Gap (CTG), Human Driving Behavior (HDB), and Constant Safety Factor
(CSF)—demonstrated varying levels of performance in terms of energy consumption
and longitudinal comfort across the WLTP Class 3 driving cycles, China Light-Duty
Vehicle Test Cycle for Passenger Car, and Artemis Urban driving cycles:

• Energy Efficiency Dimension: The CSF policy consistently delivered the
lowest energy consumption in all three driving cycles. Particularly under high
K configurations, it achieved the highest Energy Consumption Reduction
Ratio (ECRR), with average energy savings exceeding 15%. The CTG policy
also showed favorable energy-saving potential at medium-to-large Tgap values.
In contrast, the HDB policy, while behaviorally realistic, showed slightly
inferior efficiency due to frequent dynamic responses.

• Ride Comfort Dimension: The HDB policy with Tgap = 5.0 s achieved the
highest ARR values in all urban scenarios, indicating the strongest capabil-
ity for suppressing longitudinal acceleration fluctuations. The CTG policy
with Tgap = 3.0 s ranked second, also maintaining relatively low acceleration
variability and stable performance.

• Effectiveness under Traffic Efficiency Constraints: When traffic effi-
ciency is considered—specifically limiting the maximum relative distance to the
40–70 meter range—most CSF policy configurations are excluded due to their
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extended spacing. As a result, only CTG policies with Tgap = 2.5 s and 3.0 s,
and HDB policies with Tgap = 4.0 s and 5.0 s, remain within acceptable bounds.
This highlights a key insight: although different policies have strengths in
either comfort or efficiency, the ones suitable for real-world deployment must
achieve balanced performance across spatial efficiency, energy saving, and
dynamic control responsiveness.

Therefore, from the perspective of comprehensive performance, and based on
a balanced evaluation of energy efficiency (ECRR) and ride comfort (ARR), the
following conclusions can be drawn:

First, the CTG(Tgap = 3.0 s) policy demonstrates balanced performance across
all three representative urban driving cycles. In terms of energy savings, this
configuration achieves noticeable ECRR values in WLTP, China City, and Artemis
Urban scenarios, consistently ranking in the upper-middle among all tested policies.
Regarding comfort, the main advantages of this policy include its simple control
logic, stable model structure, and high adaptability. It is also less sensitive to
controller parameter tuning, making it particularly suitable for autonomous driving
platforms operating under hardware constraints or variable urban conditions, with
the potential for cross-scenario and cross-vehicle deployment.

Second, the HDB(Tgap = 5.0 s) policy is slightly less competitive in terms of
ECRR (showing marginally higher energy consumption than CTG), but it remains
highly valuable for comfort-dominant applications, such as high-end shared mobility
services or urban autonomous taxis. The stability of its response, particularly at
longer time gaps, further supports its suitability for deployment in low-speed urban
environments where passenger comfort is prioritized.

Third, a clear “threshold effect” can be observed across multiple simulation
results. Specifically, when the time gap exceeds 3.0 seconds for CTG and HDB
policies, or when the safety factor K ≥ 1.75 in CSF policies, performance metrics
begin to converge and no longer exhibit significant improvements. This suggests
that once certain control parameters surpass an effective threshold, further increases
yield diminishing returns and may even lead to delayed responses or reduced traffic
throughput. Therefore, control policy design should avoid overemphasizing large
gaps or excessive safety margins and instead focus on identifying and fine-tuning
optimal control intervals through systematic validation.

Finally, the simulation results reveal a general phenomenon: a policy that
performs best in one dimension often fails to achieve optimal results in others. For
example, although HDB(Tgap = 5.0 s) ranks highest in ARR, it lags behind CTG
in energy efficiency. Similarly, while CSF excels in minimizing energy consumption,
it is excluded from practical deployment due to exceeding the acceptable range
for maximum relative distance. These findings underscore the importance of
moving beyond single-metric optimization in ACC system design. A multi-objective
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optimization framework that incorporates energy consumption, comfort, and traffic
efficiency should be established. Advanced techniques such as weight balancing or
reinforcement learning can be employed to achieve dynamic trade-offs. Only when
a control policy satisfies all key performance constraints can it be considered viable
for engineering implementation and real-world deployment.

4.5.2 Scenario-Based Analysis of Policy Applicability

Based on the performance evaluation of different time gap control policies under
three representative urban driving cycles—WLTP Class 3 Driving Cycle, China
Light-Duty Vehicle Test Cycle for Passenger Car, and Artemis Urban Driving
Cycle—this section further explores the applicability and deployment suitability of
each policy in real-world traffic scenarios.

WLTP Class 3 Driving Cycle: A Balanced Scenario with Medium
Traffic Density

The WLTP Class 3 driving cycle is characterized by moderate speed ranges
(average speed approximately 30-35 km/h) and regular acceleration/deceleration
patterns. It represents typical conditions found on urban arterial roads and
suburban commuting routes with medium traffic density. In such scenarios, vehicle
operation is relatively stable, but still involves moderate braking responses and
starting fluctuations, necessitating an ACC controller capable of responsive energy
control and moderate dynamic damping.

Simulation results indicate that the CTG(Tgap = 3.0 s) policy demonstrates
strong energy-saving performance in this scenario (ECRR ≈ 8.2%) while maintaining
high comfort levels (ARR ≈ 37.5%). The relatively large time gap setting effectively
prevents frequent braking-induced energy oscillations and provides sufficient buffer
distance to mitigate longitudinal shocks. This makes it a highly balanced option
suitable for routine deployment in most autonomous driving platforms.

Additionally, the HDB(Tgap = 5.0 s) policy achieves the highest ARR value
(25.9%) in this driving cycle, offering superior ride comfort. This makes it par-
ticularly appropriate for vehicles equipped with advanced autonomous functions,
ride-hailing platforms, or customized commuting services that prioritize comfort.
In such use cases, it can serve as a “high-comfort mode” option, adding value across
diverse deployment scenarios.

China Light-Duty Vehicle Test Cycle for Passenger Car: A Congested
Urban Scenario with High Density and Frequent Stop-and-Go Behavior

67



Performance Analysis of Time Gap Policies in Urban Driving Scenarios

The China Light-Duty Vehicle Test Cycle for Passenger Car reflects traffic condi-
tions commonly observed in central areas of major metropolitan cities, characterized
by high vehicle density, low speeds, and frequent braking. This scenario presents
a typical pattern of frequent stop-and-go behavior, significant speed fluctuations,
and dense traffic interference. Consequently, it imposes stringent requirements on
the control policy in terms of smoothness, response delay, and system robustness.

Under this driving cycle, the HDB(Tgap = 5.0 s) policy demonstrates outstanding
performance. Its human-like response pattern is more capable of handling complex
urban stimuli such as sudden braking of the lead vehicle or intersection conflicts.
In terms of acceleration and jerk regulation, this policy achieves a significantly
higher ARR compared to other policies, effectively mitigating discomfort caused
by urban congestion. Although its ECRR is slightly lower than that of CTG, the
comfort priority generally outweighs energy efficiency in urban driving scenarios.
Therefore, this policy is considered better aligned with actual commuting demands
and is recommended for deployment in advanced cruise control systems operating
in low-to-medium speed urban environments.

The CTG(Tgap = 3.0 s) policy also exhibits a certain degree of applicability.
While maintaining basic energy-saving capabilities, it delivers comfort levels close
to those of the HDB policy. This makes it suitable for vehicle platforms with
limited computational or hardware resources, offering a more generalized solution
for wide-scale deployment.

Artemis Urban Driving Cycle: A Compound Scenario with Varying
Speeds and Frequent Idling

The Artemis Urban Driving Cycle captures the composite nature of typical
European urban traffic environments. It comprises segments of abrupt acceleration,
traffic light response zones, and extended periods of idling or low-speed cruising.
This scenario imposes considerable challenges on Adaptive Cruise Control (ACC)
policies in terms of responsiveness, predictive capability, and flexible regulation.

Simulation results indicate that both the CTG(Tgap = 3.0 s) and HDB(Tgap =
5.0 s) policies perform at a high level under this cycle. The CTG policy benefits
from a moderate time gap that helps mitigate system load fluctuations. Mean-
while, the HDB policy demonstrates superior adaptability amid complex traffic
rhythm variations, achieving the highest ARR value (41.0%), indicating stronger
environmental adaptability.

In contrast, although the CSF policy continues to exhibit strength in energy
consumption reduction (ECRR), it often results in a maximum relative distance
that exceeds the defined upper limit for traffic efficiency (greater than 70 meters).
This could lead to unnecessary spacing and reduced lane utilization in urban
settings. Therefore, the CSF policy should be applied with caution in integrated

68



Performance Analysis of Time Gap Policies in Urban Driving Scenarios

urban traffic control systems or be optimized through V2X-based coordination
mechanisms.

Integrated Recommendation and Strategy Deployment Insights

The preceding analysis highlights the strong coupling between policy config-
urations and driving scenario characteristics. No single control scheme can be
universally applied. Instead, strategy selection must be context-aware and scenario-
specific:

• The CTG(Tgap = 3.0 s) policy is well-suited for most urban environments with
moderate traffic density. It offers the lowest implementation cost and the
highest adaptability, making it a reliable baseline configuration.

• The HDB(Tgap = 5.0 s) policy demonstrates significant advantages in comfort
and is particularly suitable for service-oriented transportation systems or
high-level autonomous driving scenarios.

Therefore, time gap configurations must be precisely adjusted according to spe-
cific driving conditions. A refined matching mechanism between Tgap, vehicle type,
traffic density, and road classification should be established to achieve optimized
energy efficiency management and enhanced ride comfort in urban autonomous
driving systems.
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Chapter 5

Performance Analysis of
Time Gap Policies in
Highway Driving Scenarios

5.1 Overview of Highway Driving Scenarios

Highway environments are characterized by medium to high average speeds, typ-
ically ranging from 60 km/h to 120 km/h. In contrast to urban roads, highways
often exhibit more stable traffic flows, lower frequency of lane changes, and fewer
disruptions from traffic signals or pedestrian interactions. These characteristics
pose distinct operational demands on Adaptive Cruise Control (ACC) systems,
particularly in terms of responsiveness, energy optimization, stability, and comfort
at higher vehicle speeds.

First, the system must ensure smooth and predictive control behaviors to avoid
unnecessary interventions that could disrupt the driving experience. Second, energy
efficiency becomes more critical in highway conditions, where long segments of steady
cruising and deceleration offer the potential for coasting and regenerative braking
optimization. Third, maintaining stability and a safe margin becomes vital due
to the increased kinetic energy at higher speeds, which amplifies the consequences
of inadequate braking or insufficient headway. Lastly, driving comfort should be
preserved even in the presence of high-speed acceleration, deceleration, or gradient
changes, requiring effective control of longitudinal dynamics and acceleration rates.

Given these factors, highway scenarios offer a representative context for eval-
uating the performance of time gap policies under demanding yet structured
conditions. To ensure that different traffic rhythms and control challenges are com-
prehensively addressed, this study adopts three internationally recognized driving
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cycles: HWFET, US06, and Artemis Motorway. These test profiles collectively span
a wide spectrum of average speeds, acceleration profiles, and energy-use behaviors,
enabling a thorough assessment of the robustness and adaptability of each time
gap policy.

5.1.1 Description of the HWFET Driving Cycle
The Highway Fuel Economy Test (HWFET) is a standardized high-speed driving
cycle established by the U.S. Environmental Protection Agency (EPA), aimed at
evaluating a vehicle’s fuel or energy efficiency under mid- to high-speed steady-state
highway conditions [29]. The cycle covers a distance of 16.5 km over a duration of
765 s, with an average velocity of approximately 77.7 km/h and a peak speed of
97.4 km/h. It primarily features extended segments of constant-speed cruising with
minimal dynamic disturbance.

Figure 5.1: Speed–Time Curve of HWFET Driving Cycle

As illustrated in Figure 5.1, the HWFET velocity curve demonstrates an overall
smooth profile, with several plateaus where the vehicle maintains speed near
90 km/h for prolonged periods. These flat segments represent ideal conditions for
testing the energy-saving potential of ACC policies that emphasize coasting and
regenerative braking. Minor fluctuations in the mid-phase (around 200–400 s) are
present, but the overall acceleration remains moderate. A brief deceleration to
under 50 km/h around 300 s introduces limited transient response requirements.
Near the end of the cycle, a steep deceleration brings the vehicle speed to zero,
simulating an off-ramp or highway exit scenario.
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This relatively uniform structure allows for a clear assessment of how well time
gap policies manage longitudinal control under stable highway cruising. In particu-
lar, it highlights the trade-off between energy consumption during light deceleration
and maintaining headway consistency without unnecessary braking. As such,
HWFET serves as a foundational benchmark for evaluating energy optimization
strategies and basic control smoothness in highway scenarios.

5.1.2 Description of the US06 Driving Cycle
The US06 driving cycle is part of the U.S. FTP-75 framework and was developed
to capture aggressive and non-ideal driving behaviors, including rapid accelerations,
hard braking, and frequent transitions [30]. It covers 12.8 km over 596 s, with a
maximum speed of 129.2 km/h and an average speed of 78.5 km/h. Unlike the
smoother HWFET, US06 introduces intense transient events that challenge ACC
system responsiveness and energy management.

Figure 5.2: Speed–Time Curve of US06 Driving Cycle

As shown in Figure 5.2, the velocity profile of US06 is highly dynamic, marked
by frequent and sharp velocity changes. In the initial 100 seconds, the vehicle
undergoes several cycles of hard acceleration and complete stops, requiring the
ACC controller to adapt to abrupt lead vehicle behavior. Between 200 and 400
seconds, a relatively stable cruising speed above 100 km/h is briefly maintained,
though still punctuated by minor oscillations. Notably, the final 100 seconds of
the cycle present a series of repeated accelerations and decelerations, resembling
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real-world scenarios such as congestion waves or lane change-induced turbulence.
These features place demanding requirements on time gap policies. The ACC

system must exhibit high-frequency adaptation to ensure collision avoidance without
excessive braking, while also managing driver comfort during intense speed shifts.
The cycle’s inherently high energy usage also underscores the challenge of balancing
safety with efficiency. Thus, the US06 cycle is essential for stress-testing the
dynamic robustness and real-time adaptability of each time gap strategy.

5.1.3 Description of the Artemis Motorway Driving Cycle
The Artemis Motorway cycle originates from the EU-funded ARTEMIS project
and is designed based on empirical high-speed driving data collected across various
European motorway segments [26]. It spans 43.1 km over 1068 s, with an average
speed of 94.0 km/h and a top speed of 130.0 km/h. Unlike purely synthetic cycles,
Artemis includes a mix of real-world driving behaviors such as merging, lane
changes, and varying speed limits, which create a semi-structured yet realistic
profile.

Figure 5.3: Speed–Time Curve of Artemis Motorway Driving Cycle

Figure 5.3 depicts the Artemis Motorway velocity trajectory, which features
several stages of linear acceleration reaching 120–130 km/h, followed by abrupt
deceleration events, some of which reduce speed below 60 km/h in under 20 seconds.
The distribution of speed changes is notably asymmetric: some phases reflect mild
acceleration, while others simulate emergency-like braking. Around 600–800 seconds,
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the velocity exhibits a wave-like pattern with moderate fluctuations, simulating
terrain undulations or variable speed regulations. In the final segment of the cycle,
a gradual speed reduction occurs, accompanied by irregular deceleration bursts,
likely representing the exit from a highway or adaptation to traffic constraints.

Such complexity renders Artemis Motorway an ideal scenario to evaluate the
holistic performance of ACC time gap policies. It tests the ability to handle pro-
longed high-speed cruising, sudden braking events, and transitional segments—all
within a single cycle. Policies must balance comfort and safety while preserving en-
ergy efficiency across different sub-scenarios embedded in the cycle. Consequently,
this cycle serves as a decisive test for validating both the control quality and
adaptability of the proposed time gap control mechanisms.

5.2 Performance of Different Policies under High-
way Driving Cycles

5.2.1 Performance under the HWFET Driving Cycle

This section presents a systematic evaluation of three representative time gap poli-
cies—Constant Time Gap (CTG), Human Driving Behavior (HDB), and Constant
Safety Factor (CSF)—under the HWFET Driving Cycle across various param-
eter configurations. The assessment criteria include maximum target distance,
maximum relative distance, battery energy consumption, longitudinal maximum
and minimum acceleration, and jerk. The goal is to achieve a balanced trade-off
between energy efficiency, control smoothness, and safety.

Table 5.1: HWFET Driving Cycle

Baseline vehicle on HWFET 1.707 1.454 -1.612 2.412 -1.937
CTG Tgap [s] ddes,max [m] drel,max [m] E [kWh] amax [m/s2] amin [m/s2] jmax [m/s3] jmin [m/s3]

1.5 43 42 1.702 1.374 -1.434 0.481 -0.473
2.0 56 55 1.699 1.272 -1.358 0.459 -0.448
2.5 70 69 1.697 1.185 -1.292 0.448 -0.428
3.0 83 82 1.696 1.118 -1.234 0.438 -0.412
4.0 110 108 1.692 1.007 -1.147 0.418 -0.390
5.0 137 134 1.689 0.915 -1.108 0.397 -0.370

HDB Tgap [s] ddes,max [m] drel,max [m] E [kWh] amax [m/s2] amin [m/s2] jmax [m/s3] jmin [m/s3]
1.5 71 72 1.710 1.431 -1.538 0.483 -0.547
2.0 76 77 1.710 1.346 -1.496 0.459 -0.547
2.5 81 82 1.710 1.279 -1.458 0.457 -0.548
3.0 85 87 1.710 1.216 -1.424 0.469 -0.548
4.0 94 97 1.708 1.116 -1.363 0.494 -0.549
5.0 103 107 1.705 1.065 -1.311 0.519 -0.550

CSF Ksafe [s] ddes,max [m] drel,max [m] E [kWh] amax [m/s2] amin [m/s2] jmax [m/s3] jmin [m/s3]
1.25 156 150 1.678 1.128 -1.344 0.472 -0.313
1.5 179 171 1.674 1.093 -1.300 0.472 -0.294
1.75 202 192 1.671 1.062 -1.244 0.472 -0.292
2.0 225 213 1.670 1.035 -1.192 0.472 -0.289
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The simulation results are summarized in Table 5.1, which details the per-
formance metrics of the three policies under the HWFET cycle. To ensure fair
horizontal comparisons, all indicators are collected based on unified initial speeds,
simulation durations, and vehicle model parameters.

Baseline Scenario Analysis

According to the simulation results, the baseline energy consumption under
the HWFET cycle is 1.707 kWh, representing the minimum energy required for a
vehicle to complete the driving cycle through basic cruising and limited control
intervention. In the absence of an ACC system for anticipatory deceleration or
optimized coasting, this energy level remains relatively modest, although further
improvements are possible, especially in terms of leveraging regenerative braking
and minimizing dynamic interventions.

In terms of acceleration metrics, the maximum acceleration reaches 1.454 m/s2,
and the maximum deceleration is –1.612 m/s2. This indicates that even within a
relatively stable high-speed driving scenario, the vehicle still undergoes significant
acceleration and deceleration events. These are often triggered by traffic flow varia-
tions, simulation-induced disturbances, or lead vehicle behaviors. Such dynamic
responses tend to increase energy consumption and reduce ride comfort.

Additionally, the jerk values range from –1.937 m/s3 to 2.412 m/s3, suggesting
clear discontinuities or shocks at the level of control signal derivatives. Without
the involvement of advanced control strategies, these fluctuations may negatively
impact passenger comfort and pose challenges to the stability of electric propulsion
systems. Therefore, this baseline scenario not only serves as a reference lower bound
for energy and stability assessments but also highlights the intensity of control
efforts required in the absence of optimized policies, providing a clear direction for
subsequent policy enhancements.

Performance Analysis of the CTG Policy

The Constant Time Gap (CTG) policy regulates the following distance between
the ego vehicle and the preceding vehicle by setting a fixed time gap parameter
Tgap. With a simple logic and stable performance, this policy has been widely
applied in engineering practice. In this section, the CTG policy is tested under six
configurations ranging from Tgap = 1.5 s to 5.0 s to evaluate its impact on various
performance metrics.

According to traffic safety research, maintaining a time headway of no less than
3 seconds is considered a fundamental safety threshold for highway scenarios. The
relationship between time headway Tgap and relative distance drel satisfies:
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drel = vego · Tgap

where vego is the ego vehicle speed. Given the average speed of the HWFET
cycle is approximately vavg = 77.7 km/h = 21.6 m/s, the minimum safe distance
under a 3-second headway is:

dsafe = 21.6 m/s × 3 s = 64.8 m

According to the tabulated data, the maximum relative distances for CTG(Tgap =
1.5 s) and CTG(Tgap = 2.0 s) are 42 m and 55 m, respectively, both significantly
lower than the recommended 64.8 m. Due to this safety concern, these two
configurations are excluded from the subsequent analysis.

Among the retained configurations (Tgap = 2.5 ∼ 5.0 s), increasing the time gap
leads to a rise in maximum desired distance from 70 m to 137 m, all satisfying high-
speed following safety requirements. Meanwhile, battery consumption decreases
from 1.697 kWh to 1.689 kWh, indicating improved energy efficiency. The maximum
acceleration drops from 1.185 m/s2 to 0.915 m/s2, and the maximum deceleration
decreases from -1.292 m/s2 to -1.108 m/s2, showing smoother control intervention.
Additionally, the maximum jerk value declines from 0.448 m/s3 to 0.397 m/s3,
reflecting more gradual changes in control signals and improved comfort.

In summary, the CTG policy under the HWFET cycle exhibits a clear trend
of “greater time gap leads to greater stability.” Particularly when Tgap ≥ 3.0 s,
the configuration outperforms the baseline in terms of energy efficiency, control
smoothness, and safety redundancy, making it a promising and practical baseline
control strategy for highway environments.

Performance Analysis of the HDB Policy

Under the HWFET driving cycle, which features high-speed steady-state con-
ditions dominated by constant-speed cruising, the performance of the Human
Driving Behavior (HDB) policy appears suboptimal. Simulation results indicate
that for all tested time gap configurations (Tgap = 1.5 s ∼ 5.0 s), the battery energy
consumption consistently exceeds the baseline value (1.707 kWh). None of the
configurations demonstrates an energy-saving advantage; the lowest energy con-
sumption is 1.705 kWh, while the highest reaches 1.710 kWh. This indicates that
the HDB policy fails to effectively utilize energy management mechanisms in this
scenario, such as coasting control, anticipatory deceleration, and low-intervention
car-following. Instead, the frequent adjustments in the following distance contribute
to increased energy expenditure.

In terms of dynamic performance, although the acceleration magnitudes are
generally comparable to those under the CTG policy, the jerk response exhibits
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significant issues. Simulation data show that the maximum jerk value increases
progressively from 0.483 m/s3 to 0.519 m/s3, while the minimum jerk decreases
to –0.550 m/s3. This reflects intensified responsiveness in acceleration and de-
celeration control. Similar to human drivers, the HDB policy tends to exhibit
"micro-compensation behavior" even in speed-stable segments—frequent small throt-
tle or brake inputs, which induce high-frequency control perturbations and lead to
reduced ride comfort.

Additionally, with respect to maximum relative distance, the HDB policy fails
to significantly improve safety margins even under Tgap ≥ 3.0 s. The maximum
observed value is only 107 m, slightly below the performance of the CTG and
CSF policies under comparable configurations. This suggests that the vehicle
controlled by the HDB model does not adequately exploit the predictability of
highway scenarios for proactive safety extension, further weakening its adaptability
in this context.

In summary, although the HDB policy more closely reflects real human driving
behavior in urban traffic or complex car-following scenarios, its "human-likeness"
becomes a performance bottleneck in highly stable, high-speed, and predictable
driving environments such as HWFET. Significant shortcomings are observed in
terms of energy efficiency, comfort, and safety. Therefore, this study excludes the
HDB policy entirely under this cycle, deeming it an unacceptable design option.

Performance Analysis of the CSF Policy

In the HWFET test scenario, the Constant Safety Factor (CSF) policy is
evaluated under four configurations with safety factors K = 1.25, 1.5, 1.75, 2.0,
corresponding to maximum desired distances of 156 m, 179 m, 202 m, and 225 m,
respectively. Compared to the CTG policy, which yields a maximum desired
distance of 137 m, the CSF policy provides a significantly larger following space.
This enhances the system’s buffering capacity in unexpected situations, thereby
substantially improving safety redundancy.

In terms of energy efficiency, the CSF policy demonstrates outstanding per-
formance. Battery energy consumption decreases from 1.678 kWh to 1.670 kWh,
representing a reduction of approximately 2.2% relative to the baseline. Com-
pared with the CTG policy (minimum energy consumption of 1.689 kWh), the
CSF strategy proves more effective in energy-saving control. This advantage is
attributed to its ability to maintain a low-intervention, coasting-dominated control
mode during prolonged steady-speed segments. Especially in the low-acceleration
HWFET scenario, this strategy can significantly reduce unnecessary activations of
the powertrain.

Regarding comfort metrics, the CSF policy performs exceptionally well in terms
of jerk. For all tested K values, the maximum jerk remains consistently below
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0.472 m/s3, and the jerk profile is relatively smooth with minimal fluctuation, as the
minimum jerk remains above –0.313 m/s3. This indicates that the control process is
gentle and less abrupt, effectively mitigating discomfort during acceleration phases.
Furthermore, the maximum acceleration is maintained below 1.128 m/s2, which
further confirms the moderate and uniform intervention of the powertrain system,
contributing to a superior ride experience.

From the perspective of system stability, the CSF policy offers a structured
approach to dynamic car-following, balancing safety margin maintenance with
responsive adaptability, making it highly compatible with the characteristics of the
HWFET cycle. Its linear proportional model provides predictable control logic and
strong parameter tunability, facilitating real-world deployment. Compared to the
HDB policy, the CSF approach features a simpler structure and does not rely on
complex behavioral modeling, thereby offering greater control and explainability.
Compared to the CTG policy, it further improves both energy efficiency and
comfort, making it the most recommended solution in this study.

5.2.2 Policy Performance under the US06 Driving Cycle
Under the US06 Driving Cycle, a systematic simulation analysis was conducted
for each policy across different parameter configurations using the established
simulation platform. The summarized results are presented as follows:

Table 5.2: US06 Driving cycle

Baseline vehicle on US06 1.906 4.358 -3.367 9.016 -7.092
CTG Tgap [s] ddes,max [m] drel,max [m] E [kWh] amax [m/s2] amin [m/s2] jmax [m/s3] jmin [m/s3]

1.5 56 56 1.865 2.867 -2.679 2.688 -1.432
2.0 74 73 1.848 2.606 -2.573 1.859 -1.332
2.5 92 91 1.834 2.413 -2.458 1.822 -1.272
3.0 110 109 1.820 2.238 -2.340 1.782 -1.220
4.0 146 144 1.798 1.999 -2.109 1.699 -1.132
5.0 182 178 1.777 1.797 -1.895 1.613 -1.058

HDB Tgap [s] ddes,max [m] drel,max [m] E [kWh] amax [m/s2] amin [m/s2] jmax [m/s3] jmin [m/s3]
1.5 70 76 1.908 3.323 -2.520 4.143 -1.601
2.0 72 81 1.910 2.895 -2.405 2.101 -1.493
2.5 74 86 1.921 2.773 -2.307 1.841 -1.400
3.0 76 91 1.932 2.677 -2.222 1.767 -1.361
4.0 80 180 2.423 3.892 -4.520 6.721 -5.450
5.0 85 233 2.542 3.980 -4.521 11.297 -8.331

CSF Ksafe [s] ddes,max [m] drel,max [m] E [kWh] amax [m/s2] amin [m/s2] jmax [m/s3] jmin [m/s3]
1.25 259 239 1.766 2.044 -1.904 1.976 -1.385
1.5 299 273 1.753 1.970 -1.773 1.970 -1.361
1.75 340 307 1.740 1.904 -1.662 1.950 -1.336
2.0 380 339 1.729 1.866 -1.553 1.918 -1.311

Baseline performance analysis

The simulation results show that the energy consumption reaches 1.906 kWh,
significantly higher than the 1.707 kWh observed in the HWFET cycle. This
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indicates that the frequent and abrupt speed adjustments in US06 lead to severe
energy losses.

In terms of longitudinal dynamics, the system reaches a peak acceleration of
4.358 m/s2 and a peak deceleration of –3.367 m/s2, both exceeding the commonly
recommended comfort threshold of ±2.5 m/s2. This suggests that the system, in the
absence of active control, exhibits a pronounced tendency for high-rate, high-impact
responses to disturbances.

Notably, the jerk (rate of change of acceleration) peaks at 9.016 m/s3, far beyond
the typical comfort range of ±2.0 m/s3. This indicates substantial discontinuities
in the control output under frequent disturbances, which can cause not only
discomfort for passengers but also lead to increased fatigue in mechanical systems
and long-term reliability issues for vehicle components.

In conclusion, the baseline performance under the US06 cycle provides a critical
reference benchmark for evaluating energy efficiency and ride comfort. It also
highlights the pressing need for robust ACC control in high-speed urban traffic
environments.

Performance Analysis of the CTG Policy

Under the US06 Driving Cycle, this study evaluates the adaptability of CTG to
highly dynamic urban traffic conditions by testing six configurations ranging from
1.5 s to 5.0 s. However, in high-speed following scenarios, a 3-second headway is
widely regarded as a minimum safety threshold. Considering that the average speed
of the US06 cycle is 78.5 km/h (i.e., 21.8 m/s), the recommended safe distance
is 65.4 m. According to the tabulated data, the maximum relative distances for
CTG(Tgap=1.5 s) and CTG(Tgap=2.0 s) are only 39 m and 54 m, significantly below
the safety requirement. These two configurations are thus excluded from subsequent
analysis.

For the retained configurations (Tgap = 2.5 ∼ 5.0 s), the overall energy efficiency
of the CTG policy improves progressively with increasing time gap. Battery energy
consumption drops from 1.834 kWh to 1.777 kWh, suggesting reduced energy loss.
Larger gaps allow earlier deceleration and longer coasting, enabling the system
to respond more gently and reduce acceleration demand. In terms of dynamic
performance, maximum acceleration decreases from 2.413 m/s2 to 1.797 m/s2, and
maximum deceleration decreases from –2.841 m/s2 to –2.063 m/s2. Additionally,
maximum jerk reduces from 1.822 m/s3 to 1.613 m/s3, which, although higher than
that in HWFET, still outperforms the US06 baseline value of 9.016 m/s3.

These findings indicate that with appropriate gap configuration, the vehicle can
better cooperate with the control system to reduce torque demand and smooth
longitudinal dynamics. However, due to the limited adaptability of its fixed logic,
the CTG policy may struggle to cope with intense dynamic phases in the US06

79



Performance Analysis of Time Gap Policies in Highway Driving Scenarios

cycle (e.g., 0–100 km/h acceleration within 6 seconds). Hence, while CTG offers
notable improvements in energy efficiency and comfort, it still falls short of the
CSF policy in highly dynamic environments.

Performance Analysis of the HDB Policy

Simulation results show that under all tested time gaps Tgap = 1.5 ∼ 5.0 s, the
HDB policy exhibits consistently high energy consumption. Notably, the most
unfavorable configuration reaches 2.542 kWh, exceeding the baseline by more than
33%, indicating a complete failure in energy efficiency. The root cause lies in the
HDB controller’s inability to anticipate and smooth sudden changes in acceleration
or braking, instead mimicking irregular and non-optimal human responses such as
sudden braking followed by abrupt acceleration. This leads to increased control
system load, frequent high-torque states, and excessive energy waste.

From a dynamic response perspective, the HDB policy demonstrates highly
aggressive behavior. The maximum acceleration frequency reaches 3.9 m/s2, and
maximum deceleration hits –4.521 m/s2, both exceeding common tolerance thresh-
olds. In terms of jerk, the peak value soars to 11.297 m/s3 while the minimum
falls to –8.331 m/s3, indicating intense fluctuations far beyond the baseline value of
9.016 m/s3. These extremes reflect poor control and may result in discomfort due
to excessive postural compensation and longitudinal oscillations for passengers.

From a control design perspective, the HDB policy proves structurally in-
compatible with the US06 driving environment, which is characterized by rapid
acceleration-deceleration cycles. Although the policy emphasizes “human resem-
blance,” its poor predictability and lack of control efficiency render it unsuitable for
engineering applications. Therefore, this study regards the HDB policy as an “un-
acceptable” control configuration under the US06 cycle, and its deficiencies reflect
the limitations of behavior-cloning-based policies in high-dynamic traffic conditions.

Performance Analysis of the CSF Policy

Under the US06 cycle, the CSF policy demonstrates remarkable energy-saving
potential and control smoothness. As the safety factor K gradually increases from
1.25 to 2.0, the battery energy consumption decreases from 1.766 kWh to 1.729 kWh.
This value is even lower than the minimum 1.777 kWh observed in the CTG group,
indicating the CSF policy’s structural efficiency in energy control. This advantage
stems from its ability to extend throttle-off periods and delay power activation
during speed reductions, enabling more efficient speed modulation and reduced
energy waste.

From the perspective of longitudinal dynamic response, all CSF configurations
maintain maximum acceleration below 2.044 m/s2 and maximum deceleration within
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–1.904 m/s2, both more moderate than CTG and baseline results. Furthermore,
the peak jerk value is consistently below 1.918 m/s3, and the entire jerk profile
remains within the ±2.0 m/s3 comfort threshold. This validates the CSF policy’s
superior smoothness and moderate responsiveness. Notably, CSF does not trade off
comfort for excessive softness; instead, its control curve maintains proper curvature,
enabling smooth dynamic adjustment even under rapid transitions typical of the
US06 cycle.

In terms of distance control, the CSF policy outperforms CTG by actively
adjusting the expected maximum relative distance. Especially under K = 1.75 ∼
2.0, the maximum relative distance reaches up to 142 m, ensuring sufficient headway
buffer and enhancing safety redundancy. This "faster speed, greater distance"
proportional control logic shows better adaptability in high-speed, complex driving
conditions than the fixed-gap CTG policy.

Overall, the CSF policy not only performs reliably under steady-state conditions
(e.g., HWFET), but also exhibits excellent energy control and adaptive safety across
high-frequency, high-dynamic scenarios like US06. Its high interpretability and
engineering feasibility enable efficient and smooth behavior under diverse traffic
inputs, making it one of the most practical and adaptable time gap control policies
in complex traffic environments.

5.2.3 Policy Performance under the Artemis Motorway
Driving cycle

Under the Artemis Motorway Driving cycle, a series of simulations were conducted
using the established platform to evaluate the performance of each time gap
policy across multiple parameter settings. The summarized simulation results are
presented as follows:
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Table 5.3: Artemis Motorway Driving Cycle

Baseline vehicle on Artemis Motorway 4.646 2.313 -3.440 6.273 -4.533
CTG Tgap [s] ddes,max [m] drel,max [m] E [kWh] amax [m/s2] amin [m/s2] jmax [m/s3] jmin [m/s3]

1.5 56 57 4.582 1.544 -2.450 1.563 -1.072
2.0 74 75 4.564 1.405 -2.277 1.294 -1.042
2.5 92 93 4.548 1.347 -2.129 1.234 -1.011
3.0 110 111 4.535 1.286 -2.001 1.179 -0.980
4.0 146 147 4.514 1.164 -1.791 1.081 -0.922
5.0 182 184 4.500 1.052 -1.625 1.001 -0.869

HDB Tgap [s] ddes,max [m] drel,max [m] E [kWh] amax [m/s2] amin [m/s2] jmax [m/s3] jmin [m/s3]
1.5 70 74 4.656 1.800 -3.121 1.979 -1.198
2.0 72 79 4.667 1.553 -3.090 1.500 -1.212
2.5 74 84 4.687 1.522 -3.085 1.486 -1.232
3.0 76 89 4.735 1.479 -3.097 1.476 -1.315
4.0 80 261 6.677 3.846 -4.521 7.647 -5.775
5.0 85 299 6.818 3.914 -4.521 11.509 -4.292

CSF Ksafe [s] ddes,max [m] drel,max [m] E [kWh] amax [m/s2] amin [m/s2] jmax [m/s3] jmin [m/s3]
1.25 259 260 4.470 1.226 -1.342 1.103 -0.862
1.5 299 300 4.457 1.180 -1.267 1.042 -0.826
1.75 340 340 4.444 1.133 -1.222 0.983 -0.791
2.00 380 379 4.432 1.085 -1.174 0.926 -0.757

Baseline performance analysis

Simulation results show that the total battery energy consumption reaches
4.646 kWh, significantly higher than that in HWFET (1.707 kWh) and US06
(1.906 kWh), primarily due to the higher cruise speed, route length, and repeated
acceleration-deceleration sequences. The maximum longitudinal acceleration is
2.313 m/s2, and the maximum deceleration is –2.791 m/s2. Moreover, jerk values
fluctuate between -4.533 m/s3 and 6.273 m/s3, indicating substantial shock and
discontinuity during dynamic transitions, particularly in deceleration phases.

Performance Analysis of the CTG Policy

The Constant Time Gap (CTG) policy was tested under the Artemis cycle using
six time gap configurations ranging from 1.5 s to 5.0 s. As in previous scenarios,
configurations with Tgap = 1.5 s and 2.0 s were excluded from detailed analysis
due to insufficient relative distance that compromises safety, especially during
high-speed braking or when merging from lower-speed segments.

Among the remaining configurations, the CTG policy shows a gradual improve-
ment in energy efficiency and dynamic performance as the time gap increases.
Battery energy consumption decreased from 4.548 kWh at Tgap = 2.5 s to 4.500 kWh
at Tgap = 5.0 s, indicating a mild energy-saving trend. Maximum acceleration
reduced from 2.002 m/s2 to 1.598 m/s2, and jerk decreased from 1.204 m/s3 to
1.001 m/s3. Although the energy-saving gains were less pronounced than those
observed in HWFET and US06, the reduction in jerk signifies improved ride comfort
in this scenario.

Notably, the CTG policy showed limitations in handling the hybrid speed
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transitions inherent in Artemis. While the policy performed reasonably well in high-
speed sections, it exhibited delayed responses during transitions from low to high
speeds, particularly in segments between 400-600 seconds. This structural rigidity
prevented the full exploitation of regenerative braking or coasting opportunities.
Consequently, although the CTG strategy under Artemis maintained acceptable
performance in terms of stability and smoothness, its lack of adaptability limits its
potential in complex real-world scenarios.

Performance Analysis of the HDB Policy

The Human Driving Behavior (HDB) policy continued to exhibit structural
disadvantages under the Artemis Motorway conditions. Designed to simulate real
human driving behavior, the HDB policy adjusts following distances dynamically
based on perceived traffic density and driving aggressiveness. However, in complex
environments with frequent speed transitions, this behavioral mimicry does not
yield better comfort or safety. Instead, it introduces significant instability and
excessive energy demand.

Simulation results revealed that for all tested configurations (Tgap = 1.5 s ∼
5.0 s), battery consumption was consistently above the baseline. The highest
recorded value reached 6.818 kWh, and the lowest remained at 4.656 kWh, entirely
failing the energy efficiency objective of ACC systems. Moreover, the HDB policy
triggered frequent oscillatory responses during periods of speed fluctuation, causing
unnecessary activation of the propulsion and braking systems.

The jerk indicators confirmed poor performance in terms of ride comfort. In the
Tgap = 4.0 s and 5.0 s configurations, jerk peaked at 7.647 m/s3 and 11.509 m/s3,
respectively, significantly exceeding safety and comfort thresholds. Such values
not only impair ride quality but also reflect control logic incapable of managing
moderate-speed transitions effectively. Peak acceleration remained above 2.9 m/s2

and deceleration approached -3.0 m/s2, indicating a lack of proper damping and
smoothing capacity.

Therefore, the HDB policy was excluded entirely from the Artemis-based anal-
ysis due to its structural incompatibility with complex motorway dynamics. Its
behavior-mimicking control structure lacked both the flexibility and predictive
capability required to handle hybrid transitions smoothly, rendering it unsuitable
for energy-efficient or comfortable ACC deployment in realistic highway conditions.

Performance Analysis of the CSF Policy

The Constant Safety Factor (CSF) policy once again demonstrated strong
adaptability and stability under the Artemis Motorway driving cycle. By applying
different safety coefficients K = 1.25 ∼ 2.0, the vehicle dynamically adjusted its
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desired following distance according to its current speed, enabling smooth transitions
between high-speed cruising and low-speed phases. This ensured that both energy
efficiency and longitudinal comfort were effectively maintained throughout the
cycle.

Simulation results showed that the CSF strategy consistently limited the maxi-
mum longitudinal acceleration to below 1.226 m/s2 and the maximum deceleration
to -1.823 m/s2, demonstrating improved control smoothness compared to both
the baseline and other policies. The jerk value remained well-controlled, with the
maximum not exceeding 1.103 m/s3, indicating excellent ride comfort. In particular,
the CSF strategy performed well during the middle segments of the cycle (e.g.,
600–800 seconds), where alternating coasting and acceleration phases occurred.
Despite the presence of complex velocity transitions, the controller managed to
suppress sudden acceleration surges or harsh braking, highlighting its robustness
in variable-speed scenarios.

In terms of energy consumption, the CSF strategy outperformed both CTG and
HDB policies. The battery energy usage decreased from 4.470 kWh at K = 1.25
to 4.432 kWh at K = 2.0, showing a steady improvement. This reduction is
attributed to the policy’s proactive approach in maximizing coasting opportunities
and reducing unnecessary propulsion torque in long, gentle deceleration phases.
Moreover, its velocity-proportional spacing logic inherently accommodates the high-
speed nature of the Artemis cycle, extending inter-vehicle distances appropriately
to minimize control oscillations without sacrificing responsiveness.

Overall, the CSF policy under the Artemis Motorway cycle proves to be a
robust and efficient time gap control solution. Its smooth torque modulation,
adaptive distance regulation, and energy-saving benefits make it highly suitable for
real-world deployment in mixed-speed highway environments. With both structural
simplicity and operational versatility, it is the most capable policy across all tested
configurations.

5.3 Energy Consumption Comparison Analysis
To identify control strategies that balance energy efficiency and general applicability
across various driving cycles, this study evaluates simulation results using the Energy
Consumption Reduction Rate (ECRR) as a key performance metric. ECRR is
defined as the percentage reduction in battery energy consumption compared to the
corresponding baseline scenario, reflecting the strategy’s potential to improve energy
efficiency. Tables 5.4, 5.5, and 5.6 present the simulation results under HWFET,
US06, and Artemis Motorway cycles, respectively. For each strategy configuration,
they report the maximum relative distance (drel,max), battery energy consumption
(Ebattery), and its reduction rate (Ebattery, reduction) relative to the baseline.
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Table 5.4: ECRR of HWFET Driving cycle

Baseline vehicle on HWFET 1.707
CTG Tgap [s] drel,max [m] E [kWh] Ereduction [%]

2.5 69 1.697 0.6
3.0 82 1.696 0.6
4.0 108 1.692 0.9
5.0 134 1.689 1.1

CSF Tgap [s] drel,max [m] E [kWh] Ereduction [%]
1.25 150 1.678 1.7
1.50 171 1.674 2.0
1.75 192 1.671 2.1
2.00 213 1.670 2.2

Table 5.5: ECRR of US06 Driving cycle

Baseline vehicle on US06 1.906
CTG Tgap [s] drel,max [m] E [kWh] Ereduction [%]

2.5 91 1.834 3.8
3.0 109 1.820 4.5
4.0 144 1.798 5.7
5.0 178 1.777 6.7

CSF Tgap [s] drel,max [m] E [kWh] Ereduction [%]
1.25 239 1.766 7.3
1.50 273 1.753 8.0
1.75 307 1.740 8.7
2.00 339 1.729 9.3

Table 5.6: ECRR of Artemis Motorway Driving cycle

Baseline vehicle on Artemis Motorway 4.646
CTG Tgap [s] drel,max [m] E [kWh] Ereduction [%]

2.5 93 4.548 2.1
3.0 111 4.535 2.4
4.0 147 4.514 2.8
5.0 184 4.500 3.1

CSF Tgap [s] drel,max [m] E [kWh] Ereduction [%]
1.25 260 4.470 3.8
1.50 300 4.457 4.1
1.75 340 4.444 4.3
2.00 379 4.432 4.6

From the tabulated data, the CSF strategy demonstrates superior energy-saving
capabilities across all three driving scenarios. For example, in the US06 cycle, as the
safety factor K increases, the maximum relative distance expands up to 339 m, with
battery consumption decreasing from 1.766 kWh to 1.729 kWh, corresponding to
an ECRR improvement from 7.3% to 9.3%. The CTG strategy, although effective,
exhibits slightly lower ECRR values, with a maximum of 6.7% under the same
cycle.

Figure 5.4 further illustrates these trends by plotting each strategy’s drel,max
against its ECRR value.
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Figure 5.4: Energy Consumption and Maximum Relative Distance Across Time Gap Policies

A layered pattern is evident: while ECRR generally increases with following
distance, the trend is weaker in the HWFET scenario. Notably, about the CTG
strategy in HWFET, despite a large time gap setting (Tgap = 5.0 s) yielding
drel,max = 134 m, achieves only a 1.1% ECRR, indicating that energy gains from
enlarged spacing are marginal in steady-state cruise conditions.

In contrast, CSF strategies exhibit both higher drel,max and superior energy
reduction across dynamic cycles such as US06 and Artemis. For example, in US06,
CSFU (K = 1.5) attains an ECRR of 8.0% at a spacing of 273 m, whereas CTGU

(Tgap = 5.0 s) at a similar range yields only 6.7%. This highlights CSF’s stronger
adaptive capacity under high variability traffic conditions.

Based on these findings, strategy selection should not focus solely on the optimal
ECRR within a single driving cycle but should consider consistency and engineering
feasibility across multiple conditions. Following the comprehensive discussion and
simulation validation, four candidate strategies were selected for further multi-
objective evaluation:

• CTG(Tgap = 2.5 s)

• CTG(Tgap = 5.0 s)

• CSF(K = 1.25)

• CSF(K = 1.75)

These configurations share several desirable characteristics:

86



Performance Analysis of Time Gap Policies in Highway Driving Scenarios

• No configuration violates safety thresholds or leads to excessive energy con-
sumption, ensuring baseline feasibility.

• All present stable downward trends in energy use compared to baseline, with
ECRR values ranging from 0.6% to 9.3%.

• Maximum relative distances are contained within a practical range of 70 m to
300 m, avoiding excessive traffic space occupancy.

In summary, the four selected strategies demonstrate consistent energy-saving
performance and inter-scenario adaptability, laying the foundation for further
evaluation in comfort, dynamics, and normalized multi-index comparisons.

5.4 Comfort Evaluation

In the comprehensive evaluation of time gap policies, ride comfort plays a critical
role alongside energy efficiency. To quantitatively evaluate the longitudinal comfort
performance of each policy configuration, this study introduces the Acceleration
Reduction Ratio (ARR) as the core metric, which has been defined earlier. ARR
reflects the extent to which a given strategy suppresses longitudinal acceleration
disturbances, where higher ARR values indicate better suppression effects and
enhanced comfort.

Based on previous selections of representative policies, four configurations were
chosen for cross-scenario comfort evaluation: CTG with Tgap = 2.5 s, CTG with
Tgap = 5.0 s, CSF with K = 1.25, and CSF with K = 1.75. The comparative results
under three driving cycles—HWFET, US06, and Artemis Motorway—are shown in
Table 5.7 and visualized in Figure 5.5.

Table 5.7: Comfort Performance Comparison under Highway Driving Cycles

Driving Cycle HWFET US06 Artemis Motorway
arms,ref [m/s2] 0.30 1.00 0.56

policy with Tgap [s] arms [m/s2] arms,reduction [%] arms [m/s2] arms,reduction [%] arms [m/s2] arms,reduction [%]
CTG Tgap = 2.5 0.263 12.4 0.775 22.2 0.406 27.2
CTG Tgap = 5 0.230 23.3 0.615 38.2 0.320 42.7
CSF K = 1.25 0.233 22.2 0.661 33.6 0.295 47.1
CSF K = 1.75 0.218 27.4 0.596 40.1 0.263 52.9

87



Performance Analysis of Time Gap Policies in Highway Driving Scenarios

Figure 5.5: RMS Acceleration Reduction Comparison across Driving Cycles

The results reveal that all four selected time gap configurations significantly
reduce RMS acceleration, indicating a notable improvement in ride comfort. Among
them, the CSF strategy with K = 1.75 demonstrates the highest ARR values across
all scenarios, peaking at 52.9% under the Artemis Motorway cycle. This suggests
that increasing the safety factor K in CSF can more effectively suppress acceleration
fluctuations, especially in high-speed or aggressive deceleration environments.

On the other hand, the CTG with Tgap = 5.0 s also shows a considerable
improvement in comfort, achieving more than 40% ARR under the US06 and
Artemis cycles. This reflects the advantages of longer headway in mitigating impact
and improving comfort. However, under HWFET with a more stable speed profile,
the performance advantage of a larger Tgap is less obvious than that of CSF.

Furthermore, while CTG with Tgap = 2.5 s yields acceptable comfort benefits
under Artemis (27.2%) and US06 (22.2%), its effectiveness under HWFET drops to
just 12.4%. This highlights a key limitation: shorter headways may not consistently
perform well across all traffic dynamics.

In terms of cross-cycle stability, both CSF policies maintain high and stable ARR
values, with CSF (K = 1.75) delivering the highest uniformity and improvement.
In summary, comfort evaluation based on ARR values confirms the superiority of
CSF strategies—particularly with larger safety factors—in improving ride quality.
CTG policies with large headways also exhibit strong comfort potential, though
with slightly lower consistency.
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5.5 Results Discussion

5.5.1 Multi-Objective Trade-off Analysis
To conduct a balanced evaluation of different time gap policies, this study adopts a
two-dimensional analysis framework integrating energy efficiency and ride comfort.
The Energy Consumption Reduction Ratio (ECRR) and Acceleration Reduction
Ratio (ARR) are selected as core evaluation metrics, which respectively reflect the
energy-saving capability and the effectiveness in mitigating longitudinal distur-
bances. A higher ECRR indicates better battery energy savings, while a higher
ARR corresponds to improved driving smoothness and ride quality.

The results show that, in terms of energy savings, the CSF policy with K = 2.0
achieves the highest ECRR across multiple driving cycles, reaching up to 9.3% in the
US06 cycle. It is followed by CTG with Tgap = 5.0 s and CSF with K = 1.75, which
also perform well. CTG with Tgap = 2.5 s performs relatively poorly, especially
under low-speed scenarios such as HWFET, where the energy-saving effect is only
0.6%.

In terms of ARR, which evaluates driving smoothness and passenger comfort,
CSF policies again show a clear advantage. In particular, CSF(K = 1.75) achieves
ARR values exceeding 40% across all three driving cycles, indicating superior jerk
suppression capabilities. CTG with Tgap = 5.0 s also performs relatively well, while
CTG with Tgap = 2.5 s shows poor jerk control due to its short headway and rigid
response.

Overall, from the cross-cycle perspective, CSF(K = 1.75) demonstrates optimal
performance across both metrics. Although CSF(K = 2.0) achieves the best
ECRR, it imposes excessive following distances, resulting in poor spatial efficiency
and limited comfort benefits. CTG with Tgap = 5.0 s shows acceptable comfort
improvements and moderate energy savings, making it suitable as an alternative
when stability and simplicity are preferred.

5.5.2 Scenario-Based Analysis of Policy Applicability
Following the comprehensive metric evaluation, it is essential to analyze the real-
world applicability of each time gap policy under different driving scenarios. As
different traffic conditions vary significantly in speed profiles, acceleration patterns,
and dynamic fluctuations, practical deployment decisions should be based not only
on numerical superiority but also on contextual adaptability.

In highway cruising scenarios such as HWFET, vehicles typically operate at
high speeds with low acceleration variance, and system performance relies heavily
on maintaining longitudinal stability. In such cases, CTG policies with large time
gaps (e.g., Tgap = 5.0 s) perform effectively, providing noticeable energy savings
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(up to 1.1%) and maintaining relative distances within acceptable limits (134 m).
Therefore, CTG is applicable in steady cruising with low traffic density.

In contrast, highly dynamic cycles like US06 and Artemis Motorway demand
rapid responses and disturbance tolerance. CSF policies, with their adaptive
structure, show distinct advantages. For instance, CSF(K = 1.75) achieves ECRR
values of 9.3%, and ARR values exceeding 40% under both cycles, demonstrating
stable comfort and energy-saving capabilities. HDB policies, although inspired
by human behavior, suffer from overreaction patterns, resulting in excessive jerk
and poor energy performance. These characteristics render them unsuitable for
high-speed, dynamic environments.

In summary, CSF policies offer the best adaptability across various scenarios
due to their flexible structure and balanced performance. CTG policies are suitable
in simple and stable environments, while HDB policies are not recommended due to
poor control stability. Policy selection should be aligned with traffic characteristics
and sensor accuracy to ensure optimal integration of ACC systems into real-world
operations.
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Chapter 6

Conclusion and Future Work

6.1 Conclusions

This thesis centers on the impact of time gap policies in Adaptive Cruise Control
(ACC) systems, focusing on three representative approaches—Constant Time Gap
(CTG), Constant Safety Factor (CSF), and Human Driving Behavior (HDB)—and
conducts comprehensive modeling, parameterization, and multi-dimensional per-
formance evaluation within a high-fidelity Simulink simulation environment under
typical urban and highway driving conditions. The research considers the diversity
of traffic scenarios and engineering application needs, constructing an evaluation
index system that integrates energy consumption, comfort, and safety, and intro-
duces a baseline without ACC or time gap policy to ensure the scientific validity
and consistency of cross-policy comparisons.

In urban driving scenarios, through systematic simulation of WLTP Class
3, Artemis Urban, and the China city driving cycles, it is demonstrated that
all time gap policies significantly improve energy efficiency and ride comfort,
effectively suppressing frequent stop-and-go and acceleration events. The CSF
policy consistently achieves the lowest energy consumption, minimum acceleration,
and jerk values in all groups, thus theoretically offering dual advantages in fuel
economy and ride quality. However, due to its considerable maximum inter-vehicular
distance—often exceeding 70 meters—CSF greatly reduces space utilization and
thus lacks engineering feasibility for urban deployment. To balance spatial efficiency
and energy saving, this thesis proposes a selection mechanism with a maximum inter-
vehicular distance constraint of 40–70 meters, identifying CTG (Tgap = 2.5 s, 3.0 s)
and HDB (Tgap = 4.0 s, 5.0 s) as the optimal candidates that meet requirements
for energy, comfort, and road capacity. Further comfort evaluation reveals that
HDB (Tgap = 5.0 s) consistently achieves the highest acceleration root mean square
reduction rate (ARR), providing the best ride experience in all urban cycles. CTG
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(Tgap = 3.0 s), with its simplicity and strong cross-cycle consistency, is recommended
as the most universal strategy for urban conditions. In summary, CTG (Tgap = 3.0 s)
should be prioritized as the standard configuration for city driving, while HDB
(Tgap = 5.0 s) suits high-end comfort-oriented scenarios.

In highway scenarios, the thesis evaluates HWFET, US06, and Artemis Motorway
cycles through systematic simulation. Policies not meeting the minimum safety
headway of 3 seconds are excluded. Results indicate that the CSF policy, with its
dynamic safety factor, maintains the greatest improvement in energy consumption
and optimal comfort across all high-speed conditions, particularly excelling in highly
dynamic scenarios (US06, Artemis Motorway) with strong disturbance suppression.
The CTG policy, in high-speed, low-disturbance scenarios such as HWFET, is
advantageous for its stable structure and ease of parameter tuning, making it
suitable as a conservative engineering baseline. HDB, due to frequent responses and
“human-like” micro-adjustments, suffers from increased energy use and excessive
jerk in dynamic highway environments, limiting its engineering applicability.

Further multi-objective analysis shows that CSF (K = 1.75) delivers the optimal
balance of energy consumption and comfort in highway conditions; however, its
maximum following distance far exceeds that of CTG (Tgap = 5.0 s), resulting in
lower space utilization. Therefore, while CSF is highly recommended for scenarios
with stringent energy and comfort requirements but relaxed road capacity con-
straints, it is not suitable where space efficiency is critical. In comparison, CTG
(Tgap = 5.0 s) achieves nearly equivalent comfort and energy savings with a more
reasonable maximum gap, thus slightly superior in spatial efficiency. Nevertheless,
both large-gap strategies can significantly limit road throughput, which must be
considered for high-volume highways.

Overall, this research establishes a generalizable and reusable modeling and
evaluation framework for ACC time gap policies, systematically clarifies their
performance boundaries and application domains under various scenarios, and
provides robust theoretical and engineering references for adaptive, multi-objective,
and intelligent ACC policy design in future applications.

6.2 Summary of Limitations and Prospects
This thesis presents a systematic exploration of time gap policies for Adaptive Cruise
Control, aiming to offer both a clear comparison and practical insights for real-world
applications. By designing a unified simulation platform and evaluating multiple
policies under representative urban and highway driving cycles, the study highlights
how energy consumption, comfort, and safety can be balanced through appropriate
policy selection. The work also demonstrates the importance of carefully setting
evaluation metrics and using a consistent baseline, so that results are meaningful
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for both theory and practice.
At the same time, it should be acknowledged that this research has certain

limitations. The scenarios are based on standard driving cycles and idealized
simulation conditions, which, while useful for controlled comparison, cannot capture
all the variability and unexpected events of real-world traffic. The policies discussed
are static and do not adapt to changing traffic, driver intentions, or sudden
hazards. Likewise, some factors—such as extreme emergencies, real-world actuator
constraints, and the behavior of advanced electrified powertrains—were beyond the
scope of this work.

Looking ahead, several directions could be taken to build on these results.
Future studies may explore adaptive policies that respond dynamically to traffic
and environment, perhaps with support from V2X or infrastructure data. Extending
the approach to include lane changing, merging, or collaborative platooning could
offer new insights for more advanced automated driving systems. Finally, validating
the findings in hardware-in-the-loop setups or real vehicle tests, and considering
more complex or unexpected traffic scenarios, will help bridge the gap between
simulation and deployment, making ACC systems safer and more robust in everyday
use.
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