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Summary

In the ever-evolving landscape of embedded systems, the SPC58NN84x microcon-
troller stands as a notable advancement. This microcontroller, a successor to the
SPC5x family, offers enhanced features and increased throughput while maintaining
a favorable cost-to-feature ratio and notable improvements in power efficiency and
performance. With three processor cores, two checkers, and an embedded e200z0
core within the Hardware Security Module, the SPC58NN84x finds application in
a wide range of contexts, including automotive powertrain controllers, integrated
chassis control, and safety-critical systems.

This thesis addresses a pivotal step in harnessing the potential of the SPC58NN84x
microcontroller by integrating it with the Micrium operating system. The process
involves fundamental module implementations within the microcontroller, culminat-
ing in the creation of an abstraction layer and APIs for the operating system. The
study’s primary focus is on the CAN (Controller Area Network) module, encom-
passing hardware and software configurations. Specific components include CAN
and UART hardware setups, software configurations for UART and CAN modules,
and the development of a bare-metal application. This application facilitates CAN
communication tests, control through UART utilizing the Direct Memory Access
(DMA) algorithm, and CAN operating mode manipulation via UART commands.
Additionally, essential Micrium OS APIs are implemented, forming the bedrock of
hardware abstraction.

The conclusion underscores the centrality of embedded systems in contem-
porary technological progress while acknowledging the escalating complexity of
programming them. Operating systems offer an effective remedy by elevating the
abstraction level, thereby simplifying embedded system programming. This thesis
serves as a pivotal phase within a larger project centered around comprehensive
testing of the SPC58NN84C microcontroller and its integration with the Micrium
operating system. The study encompasses microcontroller setup, UART-controlled
tests, CAN peripheral communication tests, bare-metal application coding, result
verification through various tools, and the implementation of fundamental operating
system functions.

Detailing the intricate connectivity arrangements, including necessary adaptors
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and motherboards, the thesis offers both graphical and textual elucidations. The
CAN test comprises a bare-metal application incorporating primary functions
such as initialization, message reading, transmission, and termination, alongside
auxiliary functions for MCU configuration, UART management, and debugging
enhancement. The Micrium OS abstraction layer parallels these functions with
distinct configurations and arguments, supplemented by an additional capability
to manage transmitted and received CAN messages.

The thesis examines CAN communication modes across various operational
scenarios, facilitated by UART input signals. Comprehensive results are derived
through hardware observation, debugging tools, and logic analyzers. This study
lays a foundation for realizing Micrium OS-controlled CAN peripherals within the
SPC58NN84C MCU, signifying a promising trajectory for future advancements.
As the groundwork is established, subsequent developments can transform the
SPC58NN84C into an accessible, efficiently-operated Micrium OS-controlled MCU,
ushering in new dimensions of programmability and efficiency for programmers
and developers.
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Chapter 1

Introduction

1.0.1 What is SPC58NN84x
The SPC58NN84x microcontroller belongs to a family of devices superseding the
SPC5x family. SPC58NN84x builds on the legacy of the SPC5x family while
introducing new features coupled with higher throughput to provide a substantial
reduction of cost per feature and significant power and performance improvement
(MIPS per mW). On the SPC58NN84x device, there are 3 processor cores, 2 checkers,
and one e200z0 core embedded in the Hardware Security Module. SPC58NN84x
applications include

• Automotive powertrain controllers for six to eight-cylinder gasoline, diesel
engines and advanced combustion systems as well as high-end hybrid and
transmission control

• integrated chassis control, high-end steering, and braking

• in general any safety-critical application requiring a very high level of safety
integrity

1.0.2 What is the development done in this study
This study could be considered one of the first steps to operate the SPC58NN84x
microcontroller with Micrium operating system. which is a complex process that
includes making the basic Implementation of many modules inside the microcon-
troller and then using these basic implementations to build the abstraction layer
and the APIs of the operating system. This study considers mainly the CAN
module, including:

• CAN hardware setup
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• UART hardware setup

• UART software configuration

• CAN modules software configuration

• Building a bare-metal application which

– testing the transfer and receiving of the CAN
– controlling the CAN through UART which operates in the runtime using

the Direct Memory Access (DMA) algorithm
– controlling the CAN different operating mode using the UART

• the basic implementation of the used APIs by Micrium OS, which composes
the hardware abstraction
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Chapter 2

Background

2.0.1 Controller Area Network (CAN)
The CAN is an ISO that defines a serial communication bus as a multi-master,
message-broadcasting system replacing the complex wiring communication with
a two-wire bus. Can communication provides high transmitting rates of up to 1
Mbps for standard CAN communication Unlike typical networks such as USB or
Ethernet, CAN does not transmit big blocks of data between two nodes under the
direction of a central bus master. In a CAN network, many short messages, such
as temperature or number of revolutions per minute, are broadcasted to the whole
network, ensuring data consistency in every node in the system The CAN bus
protocol is becoming increasingly popular among engineers who design advanced
industrial embedded systems and that’s because:

• The Decentralization: each node on the CAN bus has complete access to
the CAN bus, unlike other communications which are based on assigning
the responsibility to just one node, consequently, if this bus node fails all
the communication will fail, that’s the reason why CAN communication is a
perfect communication protocol for safety-critical applications.

• Event-driven: The transmission of CAN messages on the bus is not presched-
uled or depends on the time, otherwise, the communication channel is only
busy if new data has to be transmitted, allowing for very rapid bus access and
making it able to properly handle the asynchronous events.

• Receiver-selective addressing: A CAN network uses a method of receiver-
selective addressing to prevent dependencies between bus nodes and maximize
configuration flexibility. Every CAN message is available for receipt by every
CAN node (broadcasting). A condition is that each CAN communication
must be identifiable by message identification (ID) and node-specific filtering.
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Despite the increase in costs, this permits the integration of more CAN nodes
without modifying the CAN network.

CAN Frames

The data transmitted on the bus are encapsulated in a frame comprised of multiple
bits. One or more bits of this frame are grouped to identify one of the frame’s
characteristics (e.g., the identifier and the length of data being transmitted). The
CAN network relies on content-related addressing for communication. Identifiers
are not assigned to CAN nodes, but rather to data and remote frames. So, any CAN
node can receive all the broadcasted CAN messages. Each receiver is responsible
for choosing CAN messages individually. Such flexible receiver-selective addressing
needs each receiver to filter the received CAN messages by filtering the identifier of
each message.

The CAN frames are classified into three types:

• Data Frame: This is a data frame with a maximum payload size of eight bytes.
For this purpose, there is the so-called data field, which is surrounded by
numerous other fields necessary to execute the CAN communication protocol.

• Remote frame: a frame type that can be used to request user data, i.e. data
frames, from any other CAN node. A remote frame has the same structure as
a data frame, except for the missing data field.

• Error frame: The error frame can be used to indicate errors discovered during
communication. ongoing erroneous data transmission is stopped, and an error
frame is sent. The structure of an error frame is completely different from
that of a terminated erroneous data or remote frame. It is made up of only
two components: the error flag and the error delimiter.

Since error frames are out of the scope of this thesis, the following paragraphs
will contain a description of the data and remote CAN frame types, their bitfield
structure, significance, and meaning. CAN Data frames are classified into two
types:

• Can frame of the standard CAN

• Can frame of the extended CAN

Standard CAN Frame
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Figure 2.1: Standard CAN frame Structure [1]

Bit field Length Explanation

SOF 1 The single dominant start of frame (SOF) bit in-
dicates the beginning of a message and is used to
synchronize nodes on a bus after they have been
idle

11-Bit Identi-
fier

11 The identification (ID) comes after the SOF. This
determines the priority of the data frame (the
lower the binary value, the higher the priority),
and along with acceptance filtering, it establishes
sender-receiver relationships in the CAN network
which are stated in the communication matrix.

RTR 1 “Remote transmission request”, is used by the
sender to inform recipients of the frame’s type (a
data frame or a remote frame). A data frame is
indicated by a dominating RTR bit.

IDE 1 A dominating single identification extension (IDE)
bit indicates that the CAN identifier that has been
transmitted is a standard CAN identifier

r0 1 Reserved bit (for possible uses in the future)

DLC 4 A data length code is a 4-bit bitfield that defines the
length of the transmitted payload. The maximum
length of a payload to be transmitted by the CAN
frame is 8 bytes.

Data 64 The transmitted message. The maximum length is
64 bits (8bytes).
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CRC 16 The cyclic redundancy check is used to detect the
errors through calculate the checksum which is
the number of the transmitted bits. Based on the
CRC, the receivers get a negative or a positive
acknowledgment in the ACK slot.

ACK 2 ACK is considered as the feedback which is given
from the receiver to the sender confirming to the
sender if the message transmitted was free of errors
or not. By default the ACK bitfield in the frame
transmitted from the sender is recessive, once the
receiver receives it without any errors, it overwrites
the recessive bit in the original message with a
dominant one, otherwise, if there is an error the
receiving node leaves this bit recessive and discard
the message and After arbitration, the transmitting
node repeats the message.

EOF 7 “End of frame” is seven successive bits that termi-
nate the transmission of a data frame.

IFS 7 Inter-frame space Contains the time necessary by
the controller to relocate a successfully received
frame to the correct position in a message buffer
region.

Table 2.1: The description of the bytes comping the standard CAN frame

Extended CAN Frame

Figure 2.2: Extended CAN frame Structure [1]
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Bit field Length Explanation

SRR 1 In the extended format, substitutes the RTR bit in
the regular message location as a placeholder.

IDE 1 Always recessive in the extended frame, as the
recessive bit in the IDE means that additional
identifying bits are to come.

18-Bit Identi-
fier

18 Holds the rest of the extended CAN frame identi-
fier.

r1 1 The same as r0, Reserved bit (for possible uses in
the future)

Table 2.2: The description of the bytes comping the extended CAN frame

CAN Network

Figure 2.3: CAN network Structure [2]

Figure 2.3 shows the main components of the CAN network which are:

• CAN Nodes

• CAN Bus

The following lines explain each of these components in more detail.
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CAN Bus

A CAN network is made up of a variety of CAN nodes that are connected by
means of a physical communication medium which is called a CAN bus. In real
life, the CAN bus is represented by an unshielded twisted two-wire line with a
maximum resistance of 60 milliohms. The maximum available data rate on the
CAN bus is 1 Mbps per second. It is permissible to extend the network by a
maximum of about 40 meters. Bus termination resistors, which are located at
the CAN network’s endpoints, play an important role in avoiding transient events
(reflections). Physical signal transmission in a CAN network is based on differential
voltage transfer (differential signal transmission). This efficiently eliminates the
effect of noise signals generated by the external environment, consequently, the
CAN bus is made up of two lines: CAN high (CANH) and CAN low (CANL).

CAN Nodes

The CAN node represents the ECU on the can bus that can transmit, receive,
and interact with it. To participate in CAN communication, an electronic control
unit (ECU) requires a CAN interface composed of a CAN controller and a CAN
transceiver.

• CAN controller: performs the communication activities specified by the CAN
protocol. The quantity of CAN messages each CAN node sends or receives
varies. There are also significant variances between the transmitting and
receiving frequencies. These differences have led to the development of two
CAN controller architectures: those with and without object storage. CAN
controllers may be integrated or utilized as a stand-alone chip component. The
microcontroller considers the CAN controller as a memory chip in this instance.
The stand-alone option is more customizable, but the on-chip model requires
less space and provides faster and more reliable communication between the
microcontroller and the CAN controller.

• CAN transceiver: The CAN transceiver interfaces the CAN controller with
the communication medium. Typically, the two components are electrically
isolated by optical or magnetic decoupling, such that even if an overvoltage on
the CAN bus destroys the CAN transceiver, the CAN controller and underlying
host stay affected. There are always two bus pins on a CAN transceiver: one
for the CAN high line (CANH) and one for the CAN low line (CANL) (CANL).
To ensure electromagnetic compatibility, physical signal transmission in a CAN
network is symmetrical, and the physical transmission medium consists of two
lines. High-speed CAN transceivers are often distinguished from low-speed
CAN transceivers. CAN transceivers with a high data rate support up to
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1 Mbit/s. Low-speed CAN transceivers handle only up to 125 kbit/s data
speeds. In ISO 11898, the maximum number of CAN nodes is stated as 32.
The maximum number of CAN nodes varies significantly on the capability
of the CAN transceivers used and whether the CAN network is high or low
speed.

2.0.2 Bare-Metal application
Embedded devices are widespread. Today, there are more embedded processors in
operation than there are inhabitants on the planet, and that means the number
of devices has officially overtaken the number of people. Taking into account the
increasing number of embedded devices and the connectivity between them. The
term "bare-metal systems" refers to the fact that the software on many of these
devices runs directly on the hardware and that they are relatively inexpensive. In
these kinds of computers, the application operates in privileged low-level software
and has direct access to the computer’s processor and its peripherals; it does not
pass through any of the software layers that are part of the operating system.
These bare-metal systems are able to meet strict runtime guarantees on severely
constrained hardware platforms. The advantages of the bare-metal applications
are:

• Better performance for the same hardware

• Reliable

• For small applications, it is easier and faster

The disadvantages of the bare-metal applications are:

• The exponential growth in complexity that comes with increasing system size
and functionality

• Multi-threading is not possible in one core

• Programming and adaptation of basic and standard functions are required for
the different types of the hardware

2.0.3 OS-Based applications
Real-Time Operating Systems, also known as RTOS, are computer programs that
are intended to work within strict time limits. Users may not be aware of the
presence of real-time operating systems (RTOS) in embedded systems even if they
are used in a variety of embedded systems. It is usual for a car to contain dozens of
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microcontrollers, which is a good illustration of this condition that can be observed
in the automotive industry. It is believed that 33 percent of the semiconductors
used in a car are microcontrollers, and it is common for the automobile industry
to employ them. Because of this, the costs of producing vehicles are reaching
proportions that were previously only seen in the aerospace industry. Specifically,
one-third of the total cost of a vehicle is spent on the vehicle’s chassis, one-third is
spent on the powertrain, and one-third is spent on electronics. OS base applications
are the applications that operate on top of or are supported by the kernel, which
serves as the operating system (OS). The "kernel" is the center or nucleus of the
operating system, and it is responsible for controlling practically all the system’s
components. Therefore, the kernel is involved in every loop that occurs between
the hardware and the software. The term "User Space Applications" is used to
refer to the typical user-defined programs, and these applications have intermediate
layers before they reach the hardware. To gain access to the hardware, they will
need to navigate through the kernel space first. In User space applications, only a
portion of memory is located above the kernel. The most significant distinction
(and benefit) is that user space applications are not dependent on the underlying
hardware. The kernel is made up of a number of modules, each of which has
the ability to communicate directly with the underlying hardware. It offers the
necessary abstraction to hide low-level hardware details to system or application
programs, which ultimately led to it being independent of the underlying hardware.
Process management, memory management, timers, inter-process communications
(IPC), and device drivers for all hardware resources or power management are some
of the kernel’s primary actions or responsibilities. An application that is running in
user space has the potential to have the kernel manage its scheduling and threading
(which is an advantage of multi-threading), but on the other hand, it also has the
potential to be interrupted at any time when the operating system needs to manage
other calls and processes. Therefore, applications that require precise timing in
order to access the GPIO are either not suitable or require additional processing.
The advantages of the RTOS applications are:

• Priorities and multi-threading

• Community support

• Portable (independent from the hardware)

• Can be scaled

The disadvantages of the RTOS applications are:

• Demand a minimal amount of (powerful) hardware to perform the necessary
Kernel Security protection.
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• Complicated for use in relatively modest applications

• The learning curve is significantly steeper than for bare metal.

• It’s possible that the system needs some updates.

11



Chapter 3

Setup

3.0.1 The used electronics
To set up a complete system that can send, receive, and interact with the messages
sent on the CAN bus we used the following electronic components:

SPC58NN84C3 microcontroller

Figure 3.1: SPC58NN84C3 microcontroller [9]

SPC58NN84C3 microcontroller is a microcontroller that belongs to the SPC5x
family. The SPC5 series of 32-bit Automotive Microcontrollers are designed to
support a vast array of automotive applications, including Gateways, Electro
Mobility, and ADAS, as well as Engine and Transmission management, Body,
Chassis, and Safety. SPC5 microcontrollers have up to three cores functioning at
up to 200 MHz and a junction temperature of 165 degrees Celsius. SPC58NN84C3
microcontroller has a lot of features and specifications, however, the following lines
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will mention only some of them which are related to this thesis topic. The features
of the SPC58NN84C3 microcontroller are:

• Seven communication interfaces of the LIN and UART communication (LIN-
FlexD)

• Multi-channel direct memory access controllers an eDMA with 64 channels
and another with 32 channels

• Seven modular controller area network (MCAN) modules, in addition to one
time-triggered controller area network (M-TTCAN), all supporting flexible
data rate (CAN-FD)

• Embedded memories in the CAN and eDMA peripherals.

SPC58NN84x has two CAN subsystems implemented:

• CAN Subsystem 0

• CAN Subsystem 1

The Controller Area Network (CAN) subsystem contains modular CAN (M
CAN) modules, Time triggered CAN (M TTCAN) modules, and an intelligent CAN
RAM controller for at least one subsystem. The CAN RAM controller includes
ECC encoder/decoders for the Message RAM data and active transmit message
buffer protection, as well as M_TCAN trigger memory from CPU write access.
The subsystem corresponds to the little-endian data format. Features:

• Conforms to CAN protocol version 2.0, parts A and B, as well as ISO 11898-1:
2015

• Supports the CAN Flexible data rate (ISO CAN FD) protocol with a maximum
of 64 data bytes on M_TTCAN and 64 data bytes on M_CAN.

• In standard CAN mode, bit rates are up to 1 Mbit/s.

• In ISO CAN FD mode, bit rates are up to 8 Mbit/s.

• Improved acceptance filtering

• Direct Message RAM access for Host CPU

• Two clock domains (CAN clock and Host clock)

• Error logging in CAN
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• Two configurable Receive FIFOs

• Separate signaling takes place as High Priority Messages are received.

• Generic Slave Interface with 8/16/32 Bits for Connecting to Host CPUs
Tailored to Individual Customers

• Configurable Transmit Event FIFO

• Up to 64 Receive Buffers can be used.

• Up to 32 transmit Buffers can be used.

• Configurable Transmit Queue

• Configurable Transmit FIFO

• The M_CAN’s message memory is shared by several M CANs.

• Loop-back test mode that may be programmed

• Calibration, as well as debugging, are supported on M_CAN

• Both 11-bit and 29-bit identifiers are supported

• Tx Handler: This component controls the flow of messages between the CAN
core and the external Message RAM. It is possible to define a maximum of 32
Tx Buffers for the transmission process. Tx buffers can function in one of three
ways: as a standalone Tx Buffer, as a Tx FIFO, as part of a Tx Queue, or as
a mix of all three of these uses. A Tx Event FIFO is responsible for storing
Tx timestamps together with the Message-ID that corresponds to them. In
addition to that, transmit cancellation is supported.

• Rx Handler: This component is responsible for controlling the movement of
received messages from the CAN core to the message RAM located outside.
The Rx Handler is equipped with two Receive FIFOs, each of which has
a capacity that may be customized, as well as up to 64 Rx Buffers that
are dedicated to storing of all messages that have been deemed acceptable
after being filtered. In contrast to a Receive FIFO, a dedicated Rx Buffer
is used just for the storage of messages that have been assigned a particular
identification. A timestamp for Rx transmissions is saved. along with each
individual message. For 11-bit IDs, a maximum of 128 filters may be created,
whereas a maximum of 64 filters can be defined for 29-bit IDs.

• Two different interrupt lines are provided by the module. Separately, each of
the interrupt lines can be set to active or inactive status.
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Acceptance filters can be configured for standard identifiers or can be configured
for extended identifiers. This capability is offered by the M CAN. The acceptance
filtering procedure terminates after the first element that matches. These filter
components will not be considered for this message. When all identifiers are
received, the process of acceptance screening may then begin. After the completion
of the acceptance filtering process and the determination of whether or not a
matching Rx Buffer or Rx FIFO exists, the Message Handler will begin writing the
received message data in blocks of 32 bits to the Rx Buffer or Rx FIFO that was
determined to be a match. If the CAN protocol controller has determined that an
error condition exists, such as a CRC error, then this message is rejected, which
has the following effect on the Rx Buffer or Rx FIFO that was affected. Features
of the acceptance filtering:

• Filtering elements are configured as:

– Filter for a specific identifier
– Filter for a range of identifiers
– Classic bit mask filter

• Each filter element may be set to accept or reject incoming data according to
the user’s preferences.

• Separate activation or deactivation of each filter element is possible at any
time.

• Filters are checked-in sequence, and the execution stops once the first matching
element is found

UART in SPC58NN84C3 is part of LINFlexD which is a controller that provides
support for some basic UART transfers. In LIN/UART mode of operation, the
LINFlexD offers support for multiple channels as well as a parametric DMA Tx/Rx
interface. UART mode features:

• Full-duplex communication

• 1/2/3 stop bits

• Baud rates up to 25 Mbit/s.

• 12-bit + parity reception

• 4 bytes are reserved for the receiving buffer, while 4 bytes are reserved for the
transmission buffer.
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SPC58XXADPT292S

Figure 3.2: SPC58XXADPT292S Front [4]
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Figure 3.3: SPC58XXADPT292S Back [4]

The SPC58XXADPT292S minimodule is an evaluation board that is compatible
with the SPC58XE84C3, SPC57EM80C3, SPC58XG84C3, AND SPC58XN84C3
microprocessors from STMicroelectronics. These microprocessors come in the
LFBGA292 package. The SPC58XXADPT292S minimodule was developed to
be attached to the SPC57xxMB motherboard. This provides a method for easy
customer evaluation of the compatible microprocessors as well as facilitates the
development of both hardware and software. High-density connectors provide an
EVB-MCU daughter card interface. These connectors also support the developers
in evaluating all of the device’s peripherals.
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SPC7XXMB

Figure 3.4: SPC7XXMB [10]

The EVB was designed to be used on a workbench or in a laboratory to provide
a mechanism for easy customer evaluation of SPC57xx microprocessors and to
assist the development of both hardware and software. The EVB was designed as
a modular development platform to provide the greatest amount of flexibility as
well as ease of use. There is no microcontroller unit (MCU) on the main board
of the EVB. Instead, the MCU is connected to a daughter card which is an MCU
(occasionally referred to as an adapter board). By using this approach, it will be
possible to use the same EVB platform for several MCU variants and packages that
belong to the SPC57xx family. The EVB and MCU daughter cards are connected
to one another through a high-density connection interface.
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Figure 3.5: SPC7XXMB structure [5]

SPC57XXMB is considered as the window for the MCU to the external world,
it provides the MCU with many I/O pins, connectors, switches, power supply and
many other functional interfaces. These interfaces are grouped together into many
group called functional groups and each one of them has its own role to make the
MCU capable of communicating with the external world. The motherboard can
provide a lot of key features such as:

• Through the utilization of MCU daughter cards, it provides support for a
variety of SPC57xx MCUs.

• Physical interface of RS232/SCI as well as a female connector of DB9 type.

• LINFlexD interface.

• Two independent and configurable CAN interfaces
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• 4 switches

• 4 Connectable LEDs

Ft232R

Figure 3.6: Ft232R
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FT232R is a USB to a serial interface that includes an option of clock generator
output. FT232R provides communication between the MCU and the personal
PC through the UART. It is supported by many GUIs which can facilitate the
development and debugging of the MCU.

Logic analyzer

Figure 3.7: The Logic analyzer
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A logic analyzer is an electronic component that is used for capturing and displaying
numerous signals generated from a digital system or digital circuit. It is a very
helpful tool for debugging as well as verifying digital signals.

3.0.2 Connections

SPC58NN84C3 – SPC58XXADPT292S – SPC57XXMB connection

The result from the connection between SPC58NN84C3 MCU, SPC58XXADPT292S,
and SPC57XXMB can be considered as the one unit (Test unit), on which all the
tests and development in this project are being done.
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Figure 3.8: The test unit

23



Setup

As shown in figure 3.8, SPC58NN84C3 is placed in the middle of SPC58XXADPT292S
and fixed by jaws, while SPC58XXADPT292S and SPC57XXMB are connected to
one another through a high-density connection interface as shown in the figure 3.9

Figure 3.9: High Density connection [5]

Test Unit – Test Unit Connection

From CAN bus point of view, every test unit is considered as a CAN node which
has to be connected to the CAN bus to be able to communicate with the other
CAN nodes. A node could be connected the CAN bus by connecting the CAN
high, CAN low and CAN ground of the node to CAN high, CAN low and CAN
ground of the CAN bus respectively. Since there are only two can nodes in this
project, so that, by connecting the two nodes we are creating a new bus composed
of these two nodes.
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Figure 3.10: DB9 Three-pin connector [5]

Figure 3.10 shows that to connect the test unit to the bus we have two options:

• Connecting the two units through a DB9 connector.

• Three-pin header interface connector.

In this project the Three-pin header interface connector is used, in addition, a
LED is connected to the receiver of the CAN controller, which blinks when any
message is received by the controller.
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Figure 3.11: Test units connection
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In figure 3.11, the connection between the three-pin header interface connectors
of the two test units is highlighted.

Test Unit – UART Module Connection

The test unit is connected to the UART module by connecting the configured pin
to be the receiving pin of the UART in the ‘’port pin functional group” of the test
unit to the transmission pin of the UART module and by connecting the configured
pin to be the transmission pin of the UART in the ‘’port pin functional group”
of the test unit to the receiving pin of the UART module while having the same
ground.

Figure 3.12 shows a schematic for this connection and the transmission-receiving
connection is highlighted.

Figure 3.12: Test unit - UART connection [6]

3.0.3 Configurations
Hardware configurations

To configure the test unit many hardware configurations has to be implemented,
however, in this study, only the configurations related to the CAN module are
going to be mentioned. As shown in figure 3.5, the two CAN subsystems of the test
unit could be configured independently, and each of these CAN subsystems can be
switched on in the test unit by connecting the configuration jumpers, taking into
consideration that, the different connections of these jumpers control the operating
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mode of the CAN subsystem. Table 3.13 shows the different implementations of
these jumpers, and correspondingly the different operating modes.

Figure 3.13: Test unit pin connections [5]

Figure 3.14 shows a schematic for the detailed connections of the can Module
inside SPC57XXMB.
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Figure 3.14: The schematic of the detailed connections of the can Module inside
SPC57XXMB [5]

Software configurations

Every CAN subsystem in SPC58NN84C3 can operate in many operating modes,
which are:
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• Normal mode

• External loopback mode

• Internal loopback mode

• CAN FD operation

• Transceiver delay compensation

• Restricted operation mode

• Bus monitoring

• Disabled automatic retransmission

• Power-down (sleep mode)

Since this study concerns only the first phases of testing and developing the
can peripheral in SPC58NN84C3, only normal mode, internal loopback mode, and
external loopback mode are going to be mentioned. The main configurations of
the CAN peripheral can be configured through a special configurator implemented
inside the SPC5 studio. Table 3.1 specifies the needed configurations to operate
the CAN peripheral in different operating modes.

Configuration Value Explanation

Loopback
No loopback

External loopback
Internal loopback

Switches between the differ-
ent operating modes accord-
ing to the selection

Endianness Big_Endianness The arrangement of the
bytes that make up a word of
digital data stored in a com-
puter’s memory is referred
to as endianness.

Clock Prescaler
NSJW

NTSEG1
NTSEG2

1
3
10
3

These four configurations to-
gether define the baud rate,
these mentioned values pro-
vide a bit rate of 500000
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Interrupt
LINE0
LINE1

DISABLE
If line 0 or line 1 are selected
the interrupt line becomes
active and the CPU will stop
and receive the can frame
once it is received through
the interrupt, otherwise if
it is disabled, the CPU will
carry on until it goes to the
address of the received mes-
sage in the memory and read
it. This makes the interrupt
faster and more complex

Callback “the identifier of the inter-
rupt call back function”

Specified only in case of an
active interrupt, otherwise,
it should be left empty

Number of RX
buffers

1 Can be changed in case of
more than RX buffer used

RX buffer filters

Filter type: Standard
Filter value: 0x7f0

Rx buffer number: 0
OR

Filter type: Extended
Filter value: 0x8901234UL

Rx buffer number: 0

This configuration set up the
filter of the received frames.
Frames that don’t include
these filter IDs will be re-
jected by the CAN controller

Table 3.1: The configurations to set up in SPC5 studio in order to operate the
CAN peripheral in different operating modes.

Note: the CAN subsystem to be configured should be enabled from the configu-
rator before using the table 3.1. UART Serial communication can be configured
through the same configurator in the SPC5 studio as in table 3.2.

Controller/LED Notes
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Baud rate 38400 The pace at which in-
formation is transmitted
across a communication
channel is referred to as
the baud rate.

Mode 8BITS_PARITY_
NONE A number’s evenness or

oddness can be described
using the concept of par-
ity. The parity bit is
a way for the receiving
UART to tell if any data
has changed during trans-
mission

API behavior Asynchronous Asynchronous commu-
nication indicates that
there is no clock signal
to synchronize the bits
that are sent from the
transmitting device to
the receiving end of the
connection.

TX callback
RX callback Identifier of the UART

transmission/re-
ceiving a call back
function

Within the interrupt ser-
vice routine of the UART
transmitter is where you
will find the call to the
callback function. After
the UART module has fin-
ished transferring a char-
acter, the interrupt ser-
vice routine of the UART
transmitter is run once.
Naturally, the callback
function is also run once
at this point
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DMA Enable Enabled This configuration is a
check box that is checked
to enable the DMA fea-
ture of the serial commu-
nication

Table 3.2: The configurations to set up in SPC5 studio in order to operate the
UART.

Each of the modules, such as CAN modules and UART modules, as well as the
LEDs that are connected to the test unit, need to be connected to either one or two
pins in the pin port section of the test unit, one of them serving as the transmission
pin and the other pin serving as the receiving pin. The port pin section is shown
in Figure 3.5 For the CAN modules and the UART modules, these pins allow
them to send and receive messages to and from external devices, consequently,
allowing the developers to control the performance of these modules, while for
the LEDs, these pins connect the LEDs to the MCU which could control them
through the code implemented on the MCU, consequently, it provides instantaneous
and visual feedback to the developer which could facilitate the developing and
troubleshooting process, for example, the LED could be programmed to blink
whenever a message is received in the memory through the UART, consequently,
during the troubleshooting process, if the whole system doesn’t work, this LED
could be checked immediately, if it blinks it means that there is a transmission,
if not, it means that there is an issue in the UART which has to be solved. This
solution is a way faster solution for the developers than going inside the memory
to check the transmission. Table 3.3 shows the connection and the configurations
of the used pins in this study.

Controller/LED Notes
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The transmission pin of
CAN subsystem 1 • As shown in figure 3.14, the CAN subsys-

tem 1 transmission controller is implicitly
connected to some pins in the pin port
section, in this study we choose PA [10]
• Although the CAN controller is con-
nected implicitly to the pin, however, the
pin PA [10] should be configured as a CAN
transmission pin to be able to interpret the
CAN message correctly
• Pin PA [10] could be connected to an
external device (e.g., logic analyzer) to dis-
play and troubleshoot the transmitted mes-
sage as well as facilitate the CAN behavior
development.

The receiving pin of CAN
subsystem 1 • As shown in figure 3.14, the CAN sub-

system 1 receiving controller is implicitly
connected to some pins in the pin port
section, in this study we choose PA [11]
• Although the CAN controller is con-
nected implicitly to the pin, however, the
pin PA [11] should be configured as a CAN-
receiving pin to be able to interpret the
CAN message correctly.
• Pin PA [11] could be connected to an
external device (e.g., logic analyzer) to dis-
play and troubleshoot the received message
as well as facilitate the CAN behavior de-
velopment
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The transmission pin of
CAN subsystem 2 • As shown in figure 3.14, the CAN subsys-

tem 2 transmission controller is implicitly
connected to some pins in the pin port
section, in this study we choose PC [9]
• Although the CAN controller is con-
nected implicitly to the pin, however, the
pin PC [9] should be configured as a CAN
transmission pin to be able to interpret the
CAN message correctly.
• Pin PC [9] could be connected to an
external device (e.g., logic analyzer) to dis-
play and troubleshoot the transmitted mes-
sage as well as facilitate the CAN behavior
development.

The receiving pin of CAN
subsystem 2 • As shown in figure 3.14, the CAN sub-

system 1 receiving controller is implicitly
connected to some pins in the pin port
section, in this study we choose PC [8]
• Although the CAN controller is con-
nected implicitly to the pin, however, the
pin PC [8] should be configured as a CAN-
receiving pin to be able to interpret the
CAN message correctly.
• Pin PC [8] could be connected to an
external device (e.g., logic analyzer) to dis-
play and troubleshoot the received message
as well as facilitate the CAN behavior de-
velopment.

35



Setup

UART transmission pin
• the UART transmission controller is im-
plicitly connected to some pins in the pin
port section, in this study we choose PF
[3]
• Although the UART controller is con-
nected implicitly to the pin, however, the
pin PF [3] should be configured as a UART
transmission pin to be able to interpret the
UART message correctly.
• Pin PF [3] could be connected to an
external device (e.g., FT232R module) to
display and troubleshoot the transmitted
message as well as facilitate the UART
behavior development

UART receiving pin
• the UART receiving controller is implic-
itly connected to some pins in the pin port
section, in this study we choose PF [2]
• Although the UART controller is con-
nected implicitly to the pin, however, the
pin PF [2] should be configured as a UART
transmission pin to be able to interpret the
UART message correctly.
• Pin PF [2] could be connected to an
external device (e.g., FT232R module) to
display and troubleshoot the transmitted
message as well as facilitate the UART
behavior development.
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LED D2
• LED D2 is connected to the pin PA [1]
• Unlike the CAN controllers and UART
controllers, any pin in the port pin sec-
tion can be configured as a general-purpose
input-output pin that switched on and off
the led
• Unlike the CAN controllers and UART
controllers, any pin in the port pin sec-
tion can be configured as a general-purpose
input-output pin that switched on and off
the led

LED D3
• LED D3 is connected to the pin PA [2]
• Unlike the CAN controllers and UART
controllers, any pin in the port pin sec-
tion can be configured as a general-purpose
input-output pin that switched on and off
the led
• Pin PA [2] must be connected to the
pin of the LED D2 shown in the schematic
of the figure 3.5. Figure 3.15 shows the
physical connection between the LED D2
and the pin PA [2] on the test unit

Table 3.3: The connection and the configurations of the used pin

Each of the CAN subsystems, the UART controller, and the LEDs could be
configured only with the implicitly connected pins in the test unit. Table 3.4 specify
the list of the configurable pin for each of them

Controller/LED Notes
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The transmission pin of
CAN subsystem 1 PA [10]

PC [2]
PD [3]
PF [7]
PF [8]
PH [8]
PH [13]
PL [7]
PL [9]

The receiving pin of CAN
subsystem 1 PA [ 11]

PC [1]
PD [2]
PF [3]
PF [6]
PH [10]
PH [12]
PJ [2]
PL [6]
PL [10

The transmission pin of
CAN subsystem 2 PA [2]

PC [9]
PH [7]
PJ [6]
PM [10]
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The receiving pin of CAN
subsystem 2 PA [1]

PA [11]
PA [13]
PB [9]
PC [8]
PF [5]
PH [9]
PJ [7]
PL [3]
PL [0]

UART transmission pin
PA [10]
PB [10]
PD [14]
PD [15]
PE [10]
PF [3]
PH [2]
PJ [6]
PL [1]
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UART receiving pin
PA [11]
PB [11]
PD [14]
PD [15]
PE [10]
PF [2]
PJ [7]
PL [0]

Table 3.4: The configurable pins for the UART and each CAN subsystem
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Figure 3.15: LEDs pin connection
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Chapter 4

Proposed Method

The bare metal application introduced in this study is composed of data types,
definitions, and many functions, these functions can be classified into three types
of functions which are:

• The functions which are used to switch on the CAN and to transmit and
receive the messages through it, and these functions are:

– CAN initialization function
– CAN start function
– Enabling interrupts
– CAN Transmission function
– CAN message reading function
– CAN Stop

• The functions which are used to switch on the UART and to transmit and
receive the messages through it, and these functions are:

– UART initialization function
– UART start function
– UART transmission / receiving call back functions
– UART message reading function
– UART message writing function

• Auxiliary functions, are the functions used to improve the performance of any
of the CAN or the UART

– Operating mode control function
– The function that controls the blinking of the LEDs
– A comparing function that compares two inputs
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4.0.1 CAN initialization function
Expressed as the “can_lld_init()” function in the bare-metal application. No
arguments are passed to the “can_lld_init” function. The CAN initialization
means that:

• Initialize the clock for the CAN subsystems

• Initialize the CAN controllers with a NULL configurations

• Initialize the shared ram for the CAN subsystems.

The “can_lld_init()” function is called inside another function, which is “com-
ponentsInit()”. Initialization functions are called only once in the application and
for all the CAN controllers.

4.0.2 CAN Start function
Expressed as the “can_lld_start(CANDriver *canp, const CANConfig *config)”
function in the bare-metal application. The “can_lld_start” function receives the
following arguments

• A pointer to the targeted CAN driver object.

• The corresponding configurations.

The CAN start means that:

• Assign the selected configurations to each of the corresponding CAN controllers,
for example, the baud rate, the operating mode, and the endianness.

• Set the pointers of each CAN to their corresponding values in the memory

• Calibrate the CAN clock

• Access the registers which controls the operating mode and set it according to
the selected operating mode in the configurations

• Enable/Disable the CAN FD according to the selected configurations.

• Set the baud rate according to the selected configurations

• Configures the transceiver compensation delay if enabled in the configurations

• Set the driver’s receiving and transmitting buffer size to max 64 bytes.
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• Initialize the global filters

• Initialize the standard filters

• Configure the standard filters

• Initialize the extended filters

• Configure the extended filters

• Initialize the receiving method which could be one o the following

– first input first output (FIFO)
– receiving buffer

• Initialize the receiving method which could be one o the following

– first input first output (FIFO)
– receiving buffer
– Queue
– Mixed FIFO
– Mixed Queue

• Enables the interrupt for RX buffer or FIFO

• Enable BUS OFF interrupt

Start functions are called for each of the enabled CAN controllers only once in
the application.

4.0.3 Enabling interrupts
Expressed as the “irqIsrEnable()” function in the bare-metal application. No
arguments are passed to the “irqIsrEnable” function. This function globally enables
interrupts.

CAN transmission function

Expressed as the “can_lld_transmit (CANDriver *canp, uint32_t msgbuf, const
CANTxFrame *ctfp)” function in the bare-metal application. The “can_lld_transmit”
function receives the following arguments

• A pointer to the CAN driver object
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• The method of transmitting e.g., FIFO.

• A pointer to the CAN frame to be transmitted

The “can_lld_transmit” function performs the following operations

• Check if the frame size is correct

• Set the transmission method according to the second passed argument

• Check if the message box is free to transmit

• Write the transmission buffer

• Send the message

This function is called every time It is needed to send a message through the
CAN bus. If CAN frame is sent successfully, “can_lld_transmit” returns zero
otherwise it returns other values.

4.0.4 CAN message reading functions
The CAN controller doesn’t need a function to be called to receive a message from
the CAN bus, Automatically, all the CAN nodes which are connected to the CAN
bus receive all the CAN frames, however, these frames on the CAN bus must carry
specific identifiers configured in the CAN filter to be allowed to pass through the
filter to the CAN memory. The CAN reading functions are called to read the
already received CAN messages, not to receive them. The CAN is able to read the
received messages through two different functions which are:

• The interrupt’s call back function

• The message reading function

The Interrupt’s call-back function

The call-back function is a function that takes place whenever a defined operation
has been performed. In the case of the Interrupt, the call-back function is a function
that is called whenever an interrupt is activated due to the reception of a new
message. The Interrupt of the message reception must be enabled, and the call back
function header should be defined in the CAN configuration section. The interrupt
call-back function is expressed as the “mcanconf_rxreceive (uint32_t msgbuf,
CANRxFrame crfp)” and “mcanconf_rxreceive1 (uint32_t msgbuf, CANRxFrame
crfp)” functions in the bare-metal application. Every Interrupt, consequently, every
call-back function, corresponds to a specific configuration, so that, the number of
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the call-back functions must be equal to the number of the defined configurations,
not the enabled CANs. For instance, if only two configurations are used to configure
four can drivers, the number of the defined call-back functions is going to be two,
not four. The “mcanconf_rxreceive” and “mcanconf1_rxreceive” receives the
following arguments:

• Receiving buffer number or FIFO

• A Pointer to the CAN frame to be read

The message reading function

The message reading functions are ordinary functions that are executed when
they are called according to their order of execution in the code. The mes-
sage reading function is expressed as the “can_lld_receive(CANDriver *canp,
uint32_t msgbuf, CANRxFrame *crfp)” function in the bare-metal application.
The “can_lld_receive” receives the following arguments:

• A pointer to the CAN driver object

• Receiving buffer number or FIFO

• The address of the CAN receiving frame to which the received message will
be copied.

To enable message reading by “can_lld_receive” function, the receiving inter-
rupt must be turned off and the call-back header has to be removed from the
configurations of selected CAN. The CAN driver which is configured to use the
interrupt cannot read any CAN messages using “can_lld_receive” function. If
CAN frame is sent successfully, “can_lld_receive” returns zero otherwise it returns
other values.

4.0.5 CAN stop
Expressed as the “can_lld_stop (CANDriver *canp” function in the bare-metal
application. The “can_lld_stop” function receives only the pointer to the targeted
CAN driver as an argument The “can_lld_stop” function performs the following
operations

• Stop the CAN

• Disable the interrupts.

• Erase the shared RAM associated with the targeted CAN driver

46



Proposed Method

• Set the configurations of the CAN to NULL again

This function is not mandatory to be used in all the applications, as it is not
always required to stop the CAN.

4.0.6 UART initialization function
Expressed as the “sd_lld_init()” function in the bare-metal application. No
arguments are passed to the “sd_lld_init” function. The UART initialization
means that:

• Initialize the clock for the UART driver.

• Initialize the receiving, transmission, and the error interrupts.

• Initialize the DMA for each UART driver in which the DMA is enabled.

The “sd_lld_init()” function is called inside another function, which is “compo-
nentsInit()”. Initialization functions are called only once in the application and for
all the UART drivers.

4.0.7 UART starting function
Expressed as the “sd_lld_start (SerialDriver *sdp, const SerialConfig *config)”
function in the bare-metal application. The “sd_lld_start” function receives the
following arguments

• A pointer to the targeted UART driver object.

• The corresponding configurations.

The UART start function do as follows:

• Assign the selected configurations to each of the corresponding UART drivers,
for example, the baud rate, and if the DMA is enabled or not.

• Access the registers which control the operating mode and set it according to
the selected operating mode in the configurations

• Calibrate the UART clock

Start functions are called for each of the enabled UART driver only once in the
application.
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4.0.8 UART transmission / receiving call back functions
One of the most important advantages of the DMA is that it allows the transfer of the
data without using the CPU, consequently, this makes the data transfer simpler and
let the CPU more available for other operations, however, the DMA uses an interrupt
just for notifying the CPU that the data transmission / receiving has been done,
and since an interrupt is used a call back function must be introduced to handle it.
UART transmission call-back function is Expressed as the “sddmatxcb(SerialDriver
*sdp)” function in the bare-metal application, while, UART receiving call-back
function is Expressed as the “sddmarxcb(SerialDriver *sdp)” function in the bare-
metal application. The “sddmatxcb” and “sddmarxcb” functions receives only the
pointer to the targeted CAN driver as an argument.

4.0.9 UART reading function
UART is a serial communication protocol, which allows a microcontroller to be
connected to many other devices. In this study, this device is a laptop operated by a
“windows” operating system. To set up a UART communication with a “windows”
operated device, it is needed to use software that emulates the terminal and provides
a proper user interface that displays the received messages from the UART and
facilitates sending messages to the UART e.g., “PuTTy”. UART reading function is
Expressed as the “sd_lld_read(SerialDriver* sdp, uint8_t* buffer, uint16_t len)”
function in the bare-metal application. UART reading function reads the message
transmitted by the device, i.e., The laptop. The “sd_lld_read” function receives
the following arguments

• A pointer to the targeted UART driver object.

• The data buffer receiver

• The number of bytes received

4.0.10 UART writing function
UART writing function is Expressed as the “sd_lld_write(SerialDriver* sdp,
uint8_t* buffer, uint16_t len)” function in the bare-metal application. UART
writing function transmit a message from the MCU to the device, i.e., The laptop,
usually this message is going to be displayed on the user interface of the used
software. The “sd_lld_read” function receives the following arguments

• A pointer to the targeted UART driver object.

• The data buffer receiver
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• The number of bytes received

Figure 4.1: a message of number zero transmitted from the MCU to the “windows”
device.

4.0.11 Operating mode’s control function
This function allows controlling the operating mode of the CAN through the UART
communication, consequently, the CAN operating mode can be switch between
the three main operating modes (i.e., external loopback, internal loopback, and
no loopback) through the runtime, otherwise, to change the operating mode it is
needed to stop the program, modify the configurations and start the program again
from the scratch, which is not a reliable way to develop. The “UART_LBCK”
function receives the following arguments

• A pointer to the targeted CAN driver object.

• The address of the UART data buffer receiver

The UART controls the CAN operating mode as follows

• If the transmitted message is 0, the CAN is going to operate in the normal
operating mode.
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• If the transmitted message is 1, the CAN is going to operate in the external
loopback operating mode.

• If the transmitted message is 2, the CAN is going to operate in the internal
operating mode.

• otherwise, the UART has no effect on the CAN.

4.0.12 The comparing functions
The comparing function is a function that receives two vectors as inputs, compares
every two elements in them, and returns different values depending on the similarity
between the values of the two passed vectors. The comparing function is expressed
as “msg_cmp” function in the bare-metal application. In this study, the comparing
function is used to compare the transmitted and the received frames from the
same CAN subsystem in the external and internal loopback operating modes, while
in the normal operating mode, the received message is compared to pre-defined
values. This method allows not just checking the transmission and the receiving
of the messages through the CAN network, but also, it provides a way to check if
the content of these messages is transmitted and received correctly without any
corruption. “msg_cmp” function receives the following arguments

• The identifier of the transmitted frame in case of loopback operation or the
identifier of the reference frame in case of normal operation

• The identifier of the received frame

• The number of messages to be compared in the message array vector of the
CAN frame.

4.0.13 The function that controls the blinking of the LEDs
The function that controls the blinking of the LEDs is expressed as “pal_lld_togglepad(port,
pin)” function in the bare-metal application. “pal_lld_togglepad” function receives
the following arguments

• The port at which the pin which controls the LED is located

• The pin to which the LED is connected.

The ports and the details of the pins are illustrated in chapter 3
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4.0.14 Algorithm
The bare-metal application that checks the functionality of the whole system is
based on a loop that keeps transmitting two different messages on the bus, one
message holds a standard identifier and the other holds an extended identifier.
Each of these messages is composed of two parts:

1. 4 Bytes which contains a fixed message that doesn’t change with every cycle
in the loop

2. 4 Bytes which contains a counter that increments by 1 with every cycle in the
loop, this part is useful to make sure that the updated version of the message
is being transmitted, not only the first one.

Every CAN subsystem connected to the bus is called a “node”. In this study,
we have two nodes, node A and node B. Node A is transmitting and receiving
these two messages while node B is just a receiver. Whenever a message is received
by any of these nodes the LED is going to blink once. Suppose that the LED
connected to node A is called LED A and the LED connected to node B is called
LED B. In this study, SPC58NN84C3 works in three different operating modes
which are:

• Internal loopback

• External loopback

• No loopback

Table 4.1 describes the state of each LED in the different operating modes.

Operating mode LED A LED B

Internal loopback Not blinking Not blinking

External loopback blinking blinking

NO loopback Not blinking blinking

Table 4.1: LEDs Statues in the different operating modes

The algorithm which is implemented in the bare-metal application is as follows

• Start and initialize the CAN
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• Start and initialize the CAN

• Define the to-be-sent frame

• Assign the message to the to-be-sent frame

• Infinite for loop

– Update the to-be-sent frame with the updated value of the counter

– Check the UART messages received

∗ If a new message contains the value "Zero", the operating mode will
be "No loopback"

∗ If a new message contains the value "One", the operating mode will
be "External loopback"

∗ If a new message contains the value "Two", the operating mode will
be "Internal loopback"

∗ If there are no new messages received, The operating mode will remain
unchanged

– Transmit the messages from node A on the bus

– Check the messages received by the CAN node A and the CAN node B, if
the received message contains an ID that is allowed to be received by the
filter, the corresponding LED will blink and the message will be shown
on the debugger and the comparing variable will turn into 1, otherwise,
nothing will happen and the comparing variable will be zero

– The counter will be incremented by 1

– Repeat

Figure 4.2 is a flow chart that explains the algorithm of the bare-metal application
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Figure 4.2: The algorithm flowchart
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4.0.15 First Step into the MICRIUM OS application

Hardware abstraction is one of the essentials that should be present in the OS-
operated MCUs, it is considered the connection between the OS and the various
MCU types. The hardware abstraction can be implemented in Micrium by defining
the basic six functions which build the driver layer. For the hardware abstraction
between SPC58NN84X and Micrium OS, these functions are listed and explained
in table 4.2, while table 4.3 explains the passed arguments to these functions.
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Function Explanation

SPC58NN84X_CAN_Init This function is responsible for initial-
izing the CAN controller that has been
chosen based on the name of its bus
device. This function should also clear
all message buffers (if any are available)
and put the CAN controller in an off
state.

SPC58NN84X_CAN_Open This function identifies the specified
CAN device as used, thus locking the
device. The value that is returned is
the identification of the device, and it is
necessary to make use of this identifier
for all subsequent activities involving
this device.

SPC58NN84X_CAN_Close This function frees up the specified CAN
device so that it can be utilized again;
more specifically, it disables the device
lock

SPC58NN84X_CAN_IoCtle This function exerts control over the
CAN device that has been provided.
The control operation that the user
wants to do can be defined by the pa-
rameter function. lock

SPC58NN84X_CAN_Read The most recent CAN frame that was
received from the CAN controller is read
by this function.

SPC58NN84X_CAN_Write A CAN frame is written into the CAN
controller in preparation for transmis-
sion via this function.

Table 4.2: Micrium OS basic CAN functions explained
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Function Explanation

SPC58NN84X_CAN_Init
• Bus device name

SPC58NN84X_CAN_Open
• the name of the bus node that must be
utilized by the interrupt function in order
to gain access to the CAN bus layer (not
used by now)
• device name that identifies the device
that is contained within the controller
• the operating mode used i.e., External,
internal, and no loopback modes

SPC58NN84X_CAN_Close • device identifier, returned by
SPC58NN84XCANOpen

SPC58NN84X_CAN_IoCtle
• device identifier, returned by
SPC58NN84X_CAN_Open
• function code that defines the
operation that will take place.
The values of this parameter are
CAN_FRAME_TX, CAN_FRAME_RX,
CANFD_FRAME_TX„
CANFD_FRAME_RX
• optional functional argument so far is im-
plemented only for the transmission and re-
ceiving process and in this case, this value
is the address of the frame to be received
or the frame to-be-transmitted
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SPC58NN84X_CAN_Read
• device identifier, returned by
SPC58NN84X_CAN_Open
• Pointer to CAN frame
• Size of buffer

SPC58NN84X_CAN_Write The same arguments as
SPC58NN84X_CAN_Read

Table 4.3: Micrium OS basic CAN functions arguments

Note: These functions are not completely ready to be used with Micrium OS yet,
they still need some additional developments to completely follow the standards of
the OS, however, this development so far can be considered as the cornerstone of
the hardware abstraction layer. These functions can replace the main functions in
the bare-metal application, however, The main difference is that the arguments
passed to these functions follows the standard of Micrium OS.
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Experimental results

This section includes the experimental results of operating the test unit in a
complete CAN communication. The results of testing the can communication could
be tracked in three different ways which are:

• Tracking the LEDs blinking on the test unit

• Tracking the logic analyzer

• Tracking the debagger connected to the test unit

The results shown on each of these tracking methods will be explained in the three
operating modes which are:

• Internal loopback operating mode

• External loopback operating mode

• No loopback operating mode

5.0.1 Results on SPC58NN84x HW
This tracking method shows only if the complete communication is performed
correctly and the CAN node is receiving messages which match the filter, it is a
fast way to show if there is a problem that hinders the communication, however, it
cannot help detect this problem.

Internal loopback case

In the case of the internal loopback, the message transmitted doesn’t go from
the CAN controller to the CAN bus, it doesn’t even reach the pins or the CAN
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transceiver, the transmitted message is internally from the transmission part to
the receiving part inside the CAN controller. The internal loopback is used only to
test the connection between the interface and the internal chip is working properly,
so, in this test since we have no transmitted messages on the CAN bus, no LEDs
will blink. Figure 5.1 shows that there are no blinking LEDs in case of internal
loopback

Figure 5.1: HW results in case of internal loopback
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External loopback case

In case of the external loopback the message transmitted goes from the CAN
controller to the CAN bus, then this transmitted message is received by both nodes
A and B, and if it matches the filter of both, the corresponding LED will blink, so,
in this test since both filters contains the transmitted message ID, both LEDs will
blink. Figure 5.2 shows the blinking of both LEDs in case of external loopback.

60



Experimental results

Figure 5.2: HW results in case of external loopback
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No loopback case

No loopback is the normal operating condition in which the message transmitted
goes from the CAN controller to the CAN bus, then This transmitted message is
received by node B only, and if it matches the filter of node B, the corresponding
LED will blink, so, in this test since the filter of node B contains the transmitted
message ID, the LED corresponds to LED B will blink. Since the test unit contains
two independent CAN subsystems, one of them may operate only for receiving as
node B, while the other one may operate for the transmission as node A as shown
in figure 5.3.
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Figure 5.3: HW results in case of No loopback

Also, node B can be another test unit as shown in figure 5.4.
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Figure 5.4: HW results in case of No loopback using 2 connected test units
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5.0.2 Results of the logic analyzer
The logic analyzer is a very helpful tracking and troubleshooting method, unlike
the LEDs tracking, the logic analyzer can be used for troubleshooting, it is able
to display the details of the communication and the message content in terms of
bits or bytes. The results shown in this section are for a CAN communication at a
baud rate of 500bit/s

Figure 5.5 shows how the signals look like on the logic analyzer, the CAN
communication signals are shown as multiple lines separated from each other, and
going closer inside these lines, the structure of the signal becomes more and more
clear.

Figure 5.5: frames transmission and receiving signals on logic analyzer

the structure of the transmitted or the received CAN frames can be noticed in
figure 5.6, they are composed of a sequence of bits, and every bit has a specific
significance labeled above the bit and explained in the previous sections of this
study. The message assigned to each frame can be visualized as a sequence of bytes
labeled by the content of each byte.

Figure 5.6: The composition of the transferred and received signals on the logic
analyzer

The logic analyzer allows also tracking the time between each two sent or received
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frames which is around 280ms as shown in figure 5.7, also, if needed, the time to
receive every bit or a group of bits is shown in figure 5.7

Figure 5.7: the time between two signals on the logic analyzer

5.0.3 Results the Debugger

debugger is a special tool that is connected to the test unit to flash the program,
debug it, show the result and the registers states as well as many other uses. The
debugger allows tracking if the sent message is the same one received, also it allows
checking every single value of the registers or the bits of the frames sent or received
and this can be done step by step. Figure 5.8 shows the state of the debugger in
case of external loopback, it can be noticed that the payload of the transmitted
frame is updated and identical to the payloads received by both CAN nodes A and
B, which means that the CAN communication is working properly.
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Figure 5.8: The results on the debugger

as a summary:

Evaluation
Method

Internal Loop-
back

External Loop-
back

No Loopback

LEDs Functioning cor-
rectly

Functioning cor-
rectly

Not functioning

Logic Analyzer Correct signal
patterns

Correct signal
patterns

No signal

Debugger No errors No errors Errors detected

Table 5.1: Summary of Experimental Results
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Conclusion

Embedded systems is the corner stone of the technological renaissance we are
witnessing today, however, the complexity of programming the embedded systems
is growing dramatically along with the number of program lines of the source code
programmed in these embedded systems, so that, the operating systems has made
a perfect solution through raising an abstraction level to facilitate the embedded
systems programming.

This thesis is a part of a multi-year project aiming to completely test STM micro-
controller "SPC58NN84C" and to raise Micrium operating system on it, while this
thesis concerns about setting up the micro-controller for a UART-controlled test,
testing the communication of the CAN peripheral, coding a bare metal application
which runs this test, verify the results using observation, debugger and a logic
analyzer and implementing the main functions on which the abstraction layer of
the operating system is built.

The "SPC58NN84C" is a just micro-controller which must be connected to an
adaptor like " SPC58XXADPT292S" and a mother board like " SPC57XXMB"
which altogether are providing utilizable access to "SPC58NN84C" peripherals and
building the a suitable environment for the test. The details of these connections is
completely covered in this thesis work both by graphical and written explanations,
as well as, the graphical and written explanation of all auxiliary tools connectivity
e.g. The UART module and the logic analyzer

The CAN test is based on bare-metal application which is based on five main
functions which are CAN initialize, open, received message reading, message
transmission and the CAN stop, in addition to the auxiliary functions which
configure the MCU, start and control UART ,and enhance the debugging process.

The abstraction layer of Micrium operating system is based mainly on five basic
functions as in bare-metal application, however, they have different configurations
and arguments. In addition, the abstraction layer has an extra function which
is able to control and manipulate the transmitted and received messages by the
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CAN. The arguments and the way of using the bare-metal application and the
abstraction layer functions are illustrated in details in this thesis which could be
considered as a reliable documentation for any further testing or developing study
on the CAN peripherals in the future.

The CAN communication in the bare-metal application is programmed to switch
between three different operating modes according to the input signal of the UART
which are the normal operating mode, external loop back mode ,and internal loop
back mode. The results of the testing process in these operating modes could be
covered in details using the combination of three different methods, which are
observing the hardware, using the debugger, and using the logic analyzer.

This thesis study paves the way for building a Micrium OS operated control
over the CAN peripheral in "SPC58NN84C" MCU, so that, further developments
will be required to achieve this goal, consequently, through more developments the
"SPC58NN84C will eventually be a Micrium OS controlled MCU that could be
developed and used by programmers easily and more efficient.
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