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Abstract

Achieving precise and robust indoor trajectory prediction remains a significant challenge
due to sensor noise, complex environments, and the need for real-time processing. This
thesis addresses this challenge by systematically developing and evaluating a Neural
Networks and Domain Knowledge (NNDK) framework. The core of the framework is
a Temporal Convolutional Network (TCN) aimed at high-accuracy human trajectory
prediction. Specifically, this work focuses on the time-series forecasting problem ((x, y)-
to-(x, y)), where the model predicts a future position based on a history of known ground-
truth coordinates.

The methodology emphasizes a rigorous and reproducible pipeline. Data was col-
lected in a controlled 3m×3m indoor room using four capacitive sensors, with a high-
precision ultrasound system providing ground-truth data. A modular preprocessing
workflow was implemented to handle sensor artifacts and integrate domain knowledge
by engineering kinematic features (velocity and acceleration). A key component of this
work was a systematic hyperparameter optimization using Bayesian search to define a
computationally efficient TCN architecture. This architecture was then evaluated using
a robust, custom 6-fold permutation cross-validation to ensure stability.

The evaluation yielded a clear, dual finding. Within its source domain, the NNDK
framework proved to be highly effective, achieving an average Root Mean Squared Error
(RMSE) of approximately 4.1 cm, validated across the six cross-validation permutations.
However, when the model was tested on a new dataset from a different experimental
session, its performance degraded significantly to an RMSE of approximately 13.2 cm.

This result critically identifies domain shift as the primary limitation for this appli-
cation. While the framework is capable of high-accuracy in-domain prediction, it is not
yet robust to changes in environmental conditions or subject dynamics. The primary
contribution of this thesis is therefore twofold: it provides a validated, efficient model
for in-domain trajectory forecasting, and more importantly, it offers a clear, quantita-
tive case study of the domain generalization problem. Future work should focus on
overcoming this challenge by exploring techniques such as data augmentation, domain
adaptation, and multi-sensor fusion.

i



Acknowledgements

I would like to express my deepest gratitude to those who have supported and guided
me throughout the journey of completing this thesis.

First and foremost, I want to thank my parents for their unwavering love, encour-
agement, and support. Their belief in me has been a constant source of motivation.

I am especially grateful to my advisor, Professor Mihai Teodor Lazarescu, for his
invaluable guidance, insightful feedback, and technical expertise throughout the de-
velopment of this work. His mentorship has been instrumental in shaping both the
methodology and direction of this research.

I would also like to thank the Politecnico di Torino for providing the resources and
facilities necessary to conduct this study.

Finally, my heartfelt thanks go to my friends for their patience, encouragement, and
steadfast support during every stage of this academic journey.

ii



Contents

Abstract i

Acknowledgements ii

List of Figures v

1 Introduction 1
1.1 Background on High-Precision Trajectory Prediction . . . . . . . . . . . . 1
1.2 Importance of Accurate Indoor Positioning . . . . . . . . . . . . . . . . . 2
1.3 Overview of Capacitive Sensing . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Overview of Domain Knowledge and its Specifications . . . . . . . . . . . 3
1.5 Brief Introduction on TCNs . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Thesis Objectives and Research Questions . . . . . . . . . . . . . . . . . . 4

2 Literature Review 6
2.1 Existing Trajectory Prediction Techniques and Sensor Modalities . . . . . 6
2.2 Capacitive Sensing in Trajectory Prediction . . . . . . . . . . . . . . . . . 7
2.3 Deep Learning Architectures for Trajectory Prediction . . . . . . . . . . . 8
2.4 Temporal Convolutional Networks (TCNs) . . . . . . . . . . . . . . . . . . 8

2.4.1 Architecture and Principles . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Applications in Sequence Modeling and Trajectory Prediction . . . 9

2.5 Domain Knowledge Integration in Neural Networks . . . . . . . . . . . . . 10
2.5.1 Existing Domain Knowledge Accumulation Techniques and their

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.2 Methods for Domain Knowledge Integration . . . . . . . . . . . . . 11

2.6 Addressing the Gap: The NNDK Framework . . . . . . . . . . . . . . . . 11

3 Methodology 12
3.1 Capacitive Sensor Deployment and Data Collection . . . . . . . . . . . . . 12
3.2 NNDK Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Preprocessing of Raw Data . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 TCN Architecture and Optimization . . . . . . . . . . . . . . . . . 17

3.3 Training and Evaluation Procedures . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Model Compilation and Training . . . . . . . . . . . . . . . . . . . 18

iii



3.3.2 Evaluation Framework . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Analysis and Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Inverse Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Generalization to a New Dataset . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Performance Metrics and Evaluation Criteria . . . . . . . . . . . . . . . . 22

4 Key Findings 24
4.1 Performance on the Source Domain (CapEXP2) . . . . . . . . . . . . . . . 24
4.2 Granular Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Generalization Performance and Domain Shift . . . . . . . . . . . . . . . . 26

4.3.1 Computational Efficiency . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Summary of Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Discussion 30
5.1 Interpretation of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Benchmarking: Impact of Domain Knowledge and Optimization . . . . . 31
5.3 Analysis of Failure Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.1 Difficulty with High-Acceleration Maneuvers . . . . . . . . . . . . 32
5.3.2 Sensitivity to Domain Shift . . . . . . . . . . . . . . . . . . . . . . 32

6 Practical Implications 33
6.1 For Academic Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 For Industrial and Applied Fields . . . . . . . . . . . . . . . . . . . . . . . 33

7 Limitations and Future Directions 35
7.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8 Conclusion 38
8.1 Summary of Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.2 Contributions to the Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
.1 Python Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iv



List of Figures

2.1 Main sensor capacitances and compensation fields . . . . . . . . . . . . . . 7
2.2 Dilated causal convolutional blocks of a TCN. . . . . . . . . . . . . . . . . 10

3.1 Sensor layout and corresponding spatial trajectory distribution for model
input and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Before Removing Outliers from Dataset . . . . . . . . . . . . . . . . . . . 14
3.3 After Removing Outliers from Dataset . . . . . . . . . . . . . . . . . . . . 14
3.4 Windowing of time series dataset seq_len = 15 used in the TCN model. . 16
3.5 6-fold Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Training and validation loss curve for a representative fold (Fold 6). . . . 25
4.2 Euclidean error for the val of Fold 6. . . . . . . . . . . . . . . . . . . . . . 25
4.3 True vs. Pred with signed error for the val of Fold 6. . . . . . . . . . . . . 26
4.4 Per-sample Euclidean Distance error for the generalization set (CapEXP1). 27
4.5 True vs. Predicted position with signed error for the generalization set

(CapEXP1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



Chapter 1

Introduction

Nowadays, with rapidly evolving field of intelligent systems and automation, having the
ability to forecast entity movement within defined environments is increasingly vital.
This thesis aims to present a robust framework tailored for high-precision trajectory
prediction, while relying on inherently noisy sensor inputs. Central to the project is an
advanced neural network models and domain specific insights, strategically develop to
address the challenges posed by sensor inaccuracies and dynamic real world conditions.

1.1 Background on High-Precision Trajectory Prediction

In smart environments and advanced technological applications, the accurate and robust
prediction of trajectories from diverse sensor data has emerged as a truly critical capa-
bility. This foundational capacity is indispensable for a wide spectrum of uses, ranging
from highly automated robotic systems in manufacturing and logistics, where precise
path planning and collision avoidance are paramount, to advanced security monitoring
systems that require real-time tracking of subjects or assets. Moreover, it plays an impor-
tant role in responsive smart building management, which results in enabling adaptive
energy use or optimized resource allocation based on anticipated occupancy movement.
Such high-precision trajectory prediction moves beyond presence detection, aiming to
understand and forecast the dynamic spatial progression of objects or individuals, which
is crucial for proactive decision-making in complex systems.

Unlike outdoor environments, where GPS offers widespread and relatively accurate
localization, indoor settings present a challenging landscape for positional forecasting. In
most cases, these challenges stem from frequent signal interference caused by electronic
devices, multi-path reflections that distort sensor readings, and consistent noise intro-
duced by environmental variability or hardware constraints. Considering these facts,
such factors complicate the pursuit of high-precision indoor localization.

Traditional time series analysis methods, while foundational for modeling sequential
data, often struggle under these conditions, particularly when faced with noisy inputs
and the need for generalization to unseen scenarios. These issues are intensified in real-
time applications, where systems must balance accuracy with computational efficiency.
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Also, Effectively predicting a trajectory requires highly accurate timing and location
information. This means there is need of sophisticated analytical models that can find
useful patterns even when sensor data is flawed and inconsistent.

1.2 Importance of Accurate Indoor Positioning

According to (Alam et al., 2012), one of the most critical and valuable aspects of tra-
jectory prediction is the ability to achieve highly accurate indoor positioning which is so
demanding across a range of sectors. For example, in smart homes, it makes dynamic
energy management possible; HVAC and lighting can adapt instantly to people’s move-
ments. Likewise, in healthcare, it significantly improves patient safety by continuously
monitoring individuals, particularly those who struggle with movement or have cognitive
impairments, and facilitates rapid emergency intervention. This capability also signifi-
cantly helps industrial applications. It allows for asset tracking, workflow optimization,
and proactive safety monitoring by identifying potential hazards based on location. Be-
cause these scenarios require real-time data, we need prediction models that are both
efficient and accurate. These examples show that predicting where things will move,
instead of just knowing where they are, leads to much better system responsiveness and
operational efficiency. This aligns with prior research of (Ramezani Akhmareh et al.,
2016) which emphasizing the limitations of GPS indoors and the consequent need for
robust indoor localization solutions.

Needless to say, while various technologies have been applied to indoor localization,
each presents distinct challenges. Vision-based systems using cameras, while common,
raise significant privacy concerns in private spaces like homes. Other prevalent meth-
ods using Wi-Fi or Bluetooth signals are often susceptible to signal fluctuations and
multipath effects, which can limit their accuracy. (Kuki et al., 2013)

1.3 Overview of Capacitive Sensing
Our research uses capacitive sensing technology for trajectory prediction. This method
works by noticing tiny shifts in an electric field when a dielectric or conductive object,
like a person, comes near. As indicated in (Ramezani Akhmareh et al., 2016), unlike
many other sensors, capacitive sensors are non-invasive; they don’t require people to
wear tags or devices. This design naturally boosts user privacy and convenience. Plus,
these sensors are usually energy-efficient, which makes them great for ongoing, passive
monitoring where saving power is important.

However, capacitive sensors normally have several operational complexities. Their
response is non-linear respecting to distance, which means a small change in proximity
close to the sensor can results in a much larger capacitance change in comparison to the
same physical displacement further away. Also, according to the (Bin Tariq et al., 2021),
they are inherently sensitive to various environmental factors, including fluctuations in
temperature, humidity, and the presence of electromagnetic interference from nearby
electronic appliances. These factors can introduce significant noise and drift into the
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sensor signals, which causes substantial challenges for accurate data interpretation and
trajectory inference.(Bin Tariq et al., 2021)

Regarding the research in (Tariq et al., 2020), effectively using capacitive sensors for
high-precision applications demands sophisticated signal processing and smart modeling
techniques. Without them, its difficult to distinguish true positional shifts from the
inherent noise and contextual variations in the raw sensor data.

1.4 Overview of Domain Knowledge and its Specifications

In the context of machine learning and neural networks, domain knowledge refers to the
specialized expertise, understanding, and contextual information pertinent to a specific
field or environment from which data originates. According to (Ganin et al., 2016) this
knowledge extends beyond the raw numerical values of a dataset, encompassing explicit
constraints, underlying physical principles, characteristic behaviors, and specifications
directly related to a particular application domain. Integration of this approach into
neural network models is increasingly recognized as a powerful strategy to enhance their
predictive capabilities, improve interpretability, and ensure that generated predictions
are physically plausible and relevant in context.

As indicated in the (Ganin et al., 2016), for trajectory prediction from sensor data,
domain knowledge involves detailed insights into:

• Sensor Characteristics: Understanding the unique response curves, noise pro-
files, drift tendencies, and sensitivities of specific sensors (e.g., capacitive sensors’
non-linearity with distance, susceptibility to EMI).

• Environmental Constraints: Information about the physical environment, such
as room geometries (walls, obstacles), fixed sensor installation points, and typical
environmental conditions (temperature, humidity, ambient electrical fields). This
guides models to operate within feasible spatial bounds.

• Movement Dynamics: Knowledge about the kinematics of the moving entity,
including typical speeds, accelerations, turning, and common movement patterns
which can be the natural flow of human walking. These enables model to enforce
movement continuity and reject physically impossible trajectories.

Also regarding (Ganin et al., 2016), incorporation of such domain specific constraints
and insights into neural network models, particularly during preprocessing and archi-
tectural design, allows robust pattern recognition. It guides the learning process away
from spurious correlations present in noisy data and towards a physically grounded un-
derstanding, thereby critically improving the accuracy, reliability, and trustworthiness
of predictions. This is a central tenet of the NNDK framework.

3
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1.5 Brief Introduction on TCNs

To address the complexities of time-series data which had been mentioned earlier and in
order to achieve high-precision trajectory prediction, this thesis employs Temporal Con-
volutional Networks (TCNs). Needless to say, TCNs represent a significant advancement
in neural network architectures which has been designed specifically for sequential mod-
eling tasks. As indicated in (Subbicini et al., 2023), unlike traditional Recurrent Neural
Networks (RNNs) or Long Short-Term Memory (LSTM) networks, which process data
sequentially and often face issues such as vanishing gradients over long sequences and
limitations in parallel computation, TCNs offer a compelling alternative.

According to (Subbicini et al., 2023), core strength of TCNs lies in their use of dilated
convolutions and residual connections. Dilated convolutions allow the network receptive
field to expand exponentially with depth, enabling it to capture long range dependencies
across the entire input sequence (e.g., 15 time steps) without requiring a large number of
layers or parameters. Skipping of input elements allows TCNs to efficiently incorporate
broad temporal context. Furthermore, regarding research of (Subbicini et al., 2023),
inherent convolutional nature of TCNs facilitates parallel processing during training,
making them computationally more efficient than RNNs for large datasets. Residual
connections, which involve adding the input of a layer directly to its output, are crucial
for training very deep TCNs. They help to mitigate the vanishing gradient problem,
ensuring information flows effectively through the network which enables robust learning
of temporal patterns. This makes TCNs a powerful and stable choice for tasks demanding
accurate forecasting from complex sequential data such as sensor streams.

1.6 Thesis Objectives and Research Questions

This thesis addresses the aforementioned challenges by proposing and developing a Neu-
ral Networks and Domain Knowledge (NNDK) framework specifically implemented for
high-precision trajectory prediction. The core hypothesis guiding this research is that
by integrating specific domain knowledge into both the architectural design and the
training methodologies of advanced neural network architectures specifically Temporal
Convolutional Networks (TCNs), a significant enhancement in predictive accuracy and
generalization capabilities can be achieved. (Ganin et al., 2016) This remains valid even
when operating with noisy sensor data, which typically poses a significant obstacle to
high fidelity results.

To validate this hypothesis, this thesis addresses the following questions:

1. RQ1: How effectively can an optimized Temporal Convolutional Network (TCN)
model complex, non-linear human trajectories from noisy capacitive sensor data?

2. RQ2: To what extent does the integration of kinematic domain knowledge improve
accuracy and computational efficiency of the model compared with a baseline that
lacks this knowledge?
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3. RQ3: How does the performance of the proposed workflow compare with existing
state-of-the-art benchmarks, and what are its generalization limits when tested on
data from a different experimental session?

To answer these questions, this work pursues several primary objectives:

• Designing and implementing a multi-stage preprocessing pipeline that
integrates domain knowledge
This pipeline transform raw, noisy sensor data into a feature format suitable for
deep learning (Ramezani Akhmareh et al., 2016). The core of this objective is
moving beyond standard normalization by integrating domain knowledge about
the physics of human motion. This is achieved by implementing key kinematic
features from the historical trajectory data, which provide the model with crucial
context about its dynamics, not just its position.

• Implement and validate optimized Temporal Convolutional Network
(TCN) architecture
TCN was chosen because of its advantages in modeling long-range temporal pat-
terns, which makes it an strong option for this task according to the results of
(Subbicini et al., 2023). This objective not only was to implement a generic TCN,
but it also, ensure its final design was justified. To do so, a systematic hyperpa-
rameter optimization was performed to determine the optimal number of layers,
filter sizes, and regularization, which ensured the final architecture was validated
by its performance.

• Evaluating performance of model on both known datasets (using cross
validation) and on entirely unseen datasets.
This evaluation addresses the frameworks precision in both quantitative and quali-
tative aspects. Also, it demonstrate accuracy and generalization capabilities under
varied conditions.

By demonstrating efficacy and robustness of the NNDK framework, this thesis ulti-
mately aims to contribute a high accurate solution for complex trajectory forecasting.
This work highlights the potential of combination advanced neural network models with
explicit domain informed design principles, which demonstrate how this integration can
effectively overcome real world challenges in positional prediction. The insights can even-
tually contribute to future developments in intelligent sensing and autonomous systems
requiring reliable spatial awareness.
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Chapter 2

Literature Review

Considering the research indicated in (Kong et al., 2025), among majority of dynamic
environments, one of the most fundamental elements for a wide variety of applications is
accurate trajectory prediction. These applications include diverse fields such as robotic
navigation, augmented reality, health monitoring, and intelligent system management.
This demand for precise positional forecasting has led to significant research in both
sensor technologies and advanced modeling techniques.

2.1 Existing Trajectory Prediction Techniques and Sensor
Modalities

Traditional approaches of trajectory prediction have explored variety of sensor technolo-
gies, each of them present unique advantages and disadvantage. To be more specific, as
a result of (Panella et al., 2023), Radio Frequency Identification (RFID), which relys on
transponders and readers, often faces practical constraints in terms of scalability and
requires extra time for optimal performance, which limits their utility in dynamic en-
vironments. Also, Bluetooth Low Energy (BLE) and Wi-Fi, frequently interfere with
challenges such as signal interference, pervasive multipath reflections within cluttered
environments and inherent inconsistencies in accuracy, particularly over long distances.
All these challenges results in an less accurate model using these components. While this
thesis focuses on a single-modality capacitive sensing system, a common strategy for im-
proving localization accuracy has been done in (Li et al., 2017) paper which implemented
using sensor fusion. Many systems fuse data from Wi-Fi RSSI measurements with smart-
phone inertial sensors (PDR) using techniques like the Kalman Filter to achieve robust
performance. For instance, (Li et al., 2017) report a localization error of less than 1.17m
by fusing Wi-Fi and PDR data.

Moreover, according to (Zhu et al., 2020), Infrared sensors, while beneficial in tag-
less monitoring, are highly susceptible to environmental variations like light change or
temperature gradients, which make their positional inference unreliable for robust ap-
plications.
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2.2 Capacitive Sensing in Trajectory Prediction

Among various sensing modalities, capacitive sensors are compelling option for trajectory
prediction because of their basic energy efficiency, privacy preserving capability and
distinct behavior for passive monitoring without requiring subjects to wear active devices.
This makes them highly suitable for unobtrusive applications in different settings.

However, capacitive sensors are characterized by several operational complexities
which require advanced processing. According to (Bin Tariq et al., 2021), their response
is non linear with respect to distance, which means a small change in proximity near
the sensor can induce a much larger capacitance variation than the same displacement
farther away. Also, they are sensitive to environmental factors such as temperature,
humidity, and electromagnetic interference from nearby appliances. Consequently, high-
precision tasks like detailed trajectory prediction demand, sophisticated signal processing
and modeling techniques to extract meaningful positional changes from noisy data.

Considering the results of (Wimmer et al., 2007), Capacitive sensing operates in
active or passive mode which works based on a transmitted signal and which rely on
ambient fields respectively. In active sensing, a known signal is driven on a transmit
electrode, couples with the body and is picked up by a receive electrode, whose signal
strength reveals presence and motion. Passive sensing detects external electric fields
without generating its own signal.

In addition, recent advances in load modes enable simple, sensitive and privacy-
friendly indoor localization. In the load mode configuration, only one sensor plate is
required while the human body acts as the second electrode, reducing hardware com-
plexity and cost. Sensitivity scales with larger plates shows stronger signals. Figure 2.1
illustrates this layout. According to (Ramezani Akhmareh et al., 2016), researchers
at Politecnico di Torino enhanced load-mode sensitivity by combining a tailored trans-
ducer with advanced data acquisition, achieving low power consumption, cost efficiency,
tag-less operation and better privacy.

Figure 2.1: (a) Main sensor capacitances in load mode: plate-body (Cpb), plate-ground
(Cpg), and body-ground (Cbg); (b) Use of compensation fields for short-range load-mode
capacitive sensors to reduce Cpg.
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2.3 Deep Learning Architectures for Trajectory Prediction

According to the research of (Liu et al., 2016) the field of trajectory prediction has seen
widespread adoption of deep learning, with common approaches including Recurrent
Neural Networks (RNNs) and their variants like LSTM, Generative Adversarial Networks
(GANs), and Graph Convolutional Networks (GCNs). These methods have shown great
promise in learning complex patterns from sequential data. More recent approaches have
explored hybrid architectures, such as the TrajTransGCN model proposed by (Wang
et al., 2023), which fuses Graph Convolutional Networks with Transformers to capture
both spatial and temporal dependencies.

2.4 Temporal Convolutional Networks (TCNs)

2.4.1 Architecture and Principles

The evolution of data processing techniques for sequential time series sensor data devel-
oped over the past decade, with neural networks (NNs) playing a in depth role in trajec-
tory prediction and positional forecasting. The core of the proposed prediction model is
a Temporal Convolutional Network (TCN). As introduced by (Lea et al., 2017), TCNs
serve as a powerful alternative to Recurrent Neural Networks (RNNs) for sequence mod-
eling tasks. By using a hierarchy of causal convolutions, TCNs can capture long-range
temporal patterns, which allows them for parallel computation and mitigate common
issues like vanishing gradients that often affect RNNs. Other models such as LSTM
and GRU also can learn temporal relationships through recurrent connections, however
according to (Kong et al., 2025), they suffer several drawbacks like, high computational
cost due to sequential processing, limited parallelization, vanishing or exploding gradi-
ents on long sequences and complex internal states that are difficult to interpret. This
challenges decrease performance in situation which real time processing are required or
resource constrained edge devices needed to get deployed.

Considering the state-of-art in (Bin Tariq et al., 2022), the advent of convolutional
architectures for time series data, such as one dimensional Convolutional Neural Net-
works (1D CNNs), represented a step toward more efficient local pattern extraction
and improved parallelism compared with RNNs. Building on this foundation, Tempo-
ral Convolutional Networks (TCNs) provide a significant methodological step forward.
Highlighting this point, (Chen et al., 2020) has mentioned TCNs are designed to capture
very long range temporal dependencies through dilated convolutions.

Fundamental aspects of TCNs design include:

• 1D Convolutional Layers: TCNs apply convolutions across temporal sequences,
meaning the network processes data sequentially while maintaining the order of
the input. Unlike standard Recurrent Neural Networks (RNNs), which rely on
recurrent connections, TCNs use convolutional filters to capture temporal depen-
dencies.

8
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• Causal Convolutions: In TCNs, causal convolutions ensure that the network
processes data in a strictly time-ordered manner. This means that the output
at a given time step is generated using only the current and previous time steps,
preventing the "future" data from influencing predictions at earlier time steps.

• Residual Connections: TCNs incorporate residual or skip connections between
layers. These connections help prevent the vanishing gradient problem and ensure
that deeper layers continue to learn efficiently by allowing the network to bypass
layers, improving the flow of gradients during backpropagation.

• Dilated Convolutions: TCNs use dilated convolutions, which allow the network
to handle long-range dependencies without increasing the computational complex-
ity. Dilations expand the receptive field of the convolutional layers, enabling the
network to learn from both local and distant time steps in a sequence.

Also, as discussed in (Ramezani et al., 2020), dilations expand the receptive field
exponentially with network depth, allowing model access broad temporal context without
a proportional increase in layers or parameters. Because TCNs are convolutional, they
can be trained in parallel over all time steps,which makes them more efficient than
RNNs for large datasets. Also, according to (Chen et al., 2020), the residual connections
adding each layers input directly to its output are essential for training deep TCNs: they
alleviate vanishing gradient issues and promote stable learning of temporal patterns.
Consequently, TCNs offer a powerful and robust solution for forecasting from complex
sequential data such as sensor streams.

2.4.2 Applications in Sequence Modeling and Trajectory Prediction

Due to architectural advantages, TCNs have found increasing utility in diverse sequence
modeling tasks as indicated in (Kong et al., 2025). Beyond early success in audio syn-
thesis and natural language processing, they achieve performance competitive with or
superior to recurrent networks for many time series applications while offering better
parallelism and gradient stability respecting to (Ramezani et al., 2020). By stacking
layers of exponentially increasing dilated convolutions (i.e., gaps between adjacent filter
taps; see Figure 2.2), TCNs cover broader input windows with fewer parameters. Prior
studies on capacitive and infrared based tracking report in (Subbicini et al., 2023) shows
strong potential in trajectory prediction.
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Figure 2.2: Dilated causal convolutional blocks of a TCN.

2.5 Domain Knowledge Integration in Neural Networks

Despite architectural innovation, the machine learning community is increasingly empha-
sizes embedding domain knowledge into data pipelines and model design which specified
in (Ganin et al., 2016). Such knowledge may capture non-linear sensor specific charac-
teristics responses, typical noise profiles or encode environmental constraints like room
geometry, fixed obstacles, and common movement patterns.

2.5.1 Existing Domain Knowledge Accumulation Techniques and their
Limitations

Historically, domain knowledge had been integrated through various means, ranging from
manual feature engineering and rule based systems to selection of model architectures.
As indicated in detail in (Zhang et al., 2022), in classical machine learning, domain
experts would manually craft features such as velocity, acceleration or specific signal
ratios which encode their understanding of the underlying physical processes. While
these metohds were effective for most systems, this approaches may not scale well to
high dimensional or highly non linear data. Rule based systems, which are another form
of explicit domain knowledge, normally involve defining logical condition or physical
constraint which the model output must adhere to.

Nowadays though, according to (Li et al., 2024), the emphasis has shifted on integra-
tion through data augmentation such as synthesizing new data based on domain rules
or by designing network architectures which capture certain types of domain knowledge.
These methods however, demonstrate a gradual application rather than an coherent ap-
proach. A key limitation of existing techniques is the lack of a unified frameworks which
integrates diverse forms of domain knowledge through the entire model development.
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2.5.2 Methods for Domain Knowledge Integration

The integration of domain knowledge is a key challenge in making machine learning
models effective, especially when data is scarce. As surveyed by (Tsang et al., 2020),
integration can take several forms, including transfromation of input data, modifying
the loss function, or altering the models architecture. The approach taken in this thesis
is implementing kinematic features from the raw positional data which according to
(Garcez et al., 2019), falls into the category of transforming input data, where problem
related to information is used to create a richer feature representation for the learning
algorithm.

2.6 Addressing the Gap: The NNDK Framework
In this thesis, I am directly addressed the aforementioned gap by introducing and demon-
strating a "Neural Networks and Domain Knowledge" (NNDK) framework. This NNDK
framework is designed to leverage domain informed preprocessing strategies alongside a
designed TCN architecture, thereby results in achieving unprecedented levels of high-
precision trajectory forecasting in real world settings.

It also aim to provide a structured approach where domain insight actively guide
data cleaning, feature construction, and architectural choices, which lead to more robust,
interpretable, and generalizable predictive models.
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Chapter 3

Methodology

Objective of this design is the development and evaluation of a Neural Networks and
Domain Knowledge (NNDK) framework, implemented for high-precision trajectory pre-
diction. This pipeline integrates several stages, which has been mentioned in detail in
the following sections.

3.1 Capacitive Sensor Deployment and Data Collection

The foundational data for this investigation was collected by (Ramezani Akhmareh et al.,
2016) within a controlled indoor environment, specifically configured as an empty 3 m
x 3 m room. This controlled setting enabled precise ground-truth measurement and
isolation of sensor characteristics. The data set is divided into 60% for training, 20% for
validation, and 20% for testing, each in time order.

(a) Combination of capacitive sensors able to
estimate coordination of a person

(b) Trajectory coverage of training 60%, vali-
dation 20%, and testing 20% datasets within
a 3x3 meter room

Figure 3.1: Sensor layout and corresponding spatial trajectory distribution for model
input and evaluation
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3.2 – NNDK Implementation

According to the conditions which mentioned in (Ramezani Akhmareh et al., 2016)
experiment, primary sensing mechanism utilized for capturing positional data consisted
of 4 custom designed capacitive sensors. These sensors were positioned within the envi-
ronment to detect subtle alterations in electric fields induced by human proximity. These
sensors provided raw readings, making three samples per second. Concurrently, highly
accurate ground truth X,Y positional data was acquired through a reference system. All
raw sensor reading from the capacitive sensors and their corresponding ground truth
archived in a .csv file format, which provide a synchronized record of sensor observations
and true locations over time.

3.2 NNDK Implementation
The implementation follows a modular pipeline, encompassing distinct stages for data
preparation, model architecture, and systematic evaluation. A structured approach to
preprocessing is foundational to the framework, ensuring that raw, noisy data is me-
thodically transformed into a clean, feature-rich format suitable for the neural network
model.

3.2.1 Preprocessing of Raw Data

A foundational component of the NNDK framework is its modular preprocessing pipeline,
implemented as a ’Thin Layer ’. This architectural choice facilitate the systematic man-
agement of raw data, makes its transformation from initial acquisition into formats
consumable by the neural network model. This preprocessing module is implemented
to integrate domain knowledge at various operational stages, in order to enhancing the
quality of data and it ultimately improve the predictive performance of the model. The
detailed processing sequence is mentioned bellow:

• Outlier and Spike Handling: Raw positional data from sensor systems can be
susceptible to noise, resulting in sudden, physically implausible jumps, or "spikes."
To ensure data quality, a consistent and reproducible spike handling algorithm
was applied as the first step to all datasets used in this research (i.e., the primary
CapEXP2 data and the CapEXP1 generalization data).
The core of this method is a threshold-based detection and correction procedure.
A data point is identified as a spike if the positional change from the previous time
step exceeds a predefined threshold.
The threshold was set to 0.5 meters based on an analysis of plausible human
movement within the physical constraints of the experiment.

– The systems sampling rate is 3 Hz, meaning the time between consecutive
measurements is approximately 0.33 seconds.

– A positional jump of 0.5 meters in this timeframe would imply an instanta-
neous velocity of 1.5 m/s (5.4 km/h).
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This velocity is equivalent to fast walk or a jog. It is considered physically implau-
sible for a subject to accelerate to and from this speed between two consecutive
samples (a 0.33s interval) while performing nuanced movements within a confined
3x3 meter room.

This algorithm as follows:

– For each coordinate (X and Y), absolute difference between each point and
the one preceding it is calculated.

– If the difference exceed 0.5 m threshold, the point is flagged as a spike.
– Each flagged spike is then corrected by replacing its value with the value from

the immediately preceding, valid time step.

This algorithmic approach is deterministic and reproducible. It serves to clean the
data by removing outliers while preserving the temporal integrity of sequence, as
illustrated by comparing the trajectory before (Figure 3.2) and after (Figure 3.3)
the cleaning process.

Figure 3.2: Before Removing Outliers
from Dataset

Figure 3.3: After Removing Out-
liers from Dataset

• Feature Engineering and Domain Knowledge Integration:

To provide model with understanding the domain knowledge, the feature set
boosted with kinematic information extracted from positional data. The input
features include:

– Four raw capacitive sensor readings (cap1, cap2, cap3, cap4).
– X and Y coordinates.
– Velocity (vx, vy): First derivative of position data, calculated as the difference

between consecutive X and Y values.
– Acceleration (ax, ay): Second derivative of the position data, calculated as

the difference between consecutive velocity values.

14



3.2 – NNDK Implementation

This process make a 10-dimensional feature vector for each time step: [’cap1’,
’cap2’, ’cap3’, ’cap4’, ’X’, ’Y’, ’vx’, ’vy’, ’ax’, ’ay’]. By provid-
ing velocity and acceleration, the model is given not just positional context, but
also information about how that position is changing over time.

• Normalization and feature scaling:

Training a neural network with input features with different scales and physical
units lead to unstable training and poor convergence. To decrease this, a multi-
tiered scaling strategy is employed. Also, To prevent data leakage, all scaling
parameters fit on the training data and then applied across the validation and test
sets.
The features are grouped by their physical meaning and scaled as bellow:

– Capacitive Sensors (cap1–cap4): These features are already scaled to a
[0, 1] range.

– Kinematic Groups: To preserve the physical relationships within kinematic
pairs, a shared Min-Max scaling is applied to each group. Minimum and
maximum values are calculated for both components of the pair in the training
set.

∗ Position (X, Y): Scaled together using a single min and max value.
∗ Velocity (vx, vy): Scaled together using a single min and max value.
∗ Acceleration (ax, ay): Scaled together using a single min and max

value.

The Min-Max normalization formula:

Xnormalized = X − Xmin
Xmax − Xmin

• Windowing:

The core task of the NNDK model in this thesis is time-series forecasting. The goal
is predicting next (x, y) coordinate in a sequence, given recent history of known
past coordinates and their corresponding sensor readings. This framing defines the
problem as predicting a future position from past positions, or (x, y) to (x, y).
To create supervised learning examples, the processed time-series data is segmented
into fixed-length, overlapping windows:

– Input Window: Each input sample is a window containing the data from
15 consecutive time steps (SEQ_LEN = 15). The features in this window
include the four capacitive sensor readings and the historical ground-truth
trajectory data (X, Y , vx, vy, ax, ay).
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– Target: The corresponding target for each input window is single (x, y) co-
ordinate pair from the immediate subsequent time step (i.e., the 16th position
in the sequence).

In here, historical ground-truth trajectory provides the primary information for
the forecast, while the sensor data offer supplementary context.

Figure 3.4: Windowing of time series dataset seq_len = 15 used in the TCN model.

• Data Splitting for K-Fold Cross-Validation:

To ensure unbiased evaluation which respects temporal nature of the data, a fixed
split is used. The dataset is partitioned into three distinct sets:

– Training Set (60%): First 60% of the data used to train model and fit
feature scalers.

– Validation Set (20%): Next 20% of data used to monitor the models per-
formance during training for tasks.

– Test Set (20%): Final 20% of data is held out as a completely unseen set
which used only once providing assessment of the trained models generaliza-
tion capability.
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3.2 – NNDK Implementation

3.2.2 TCN Architecture and Optimization

Computational core of this project is a Temporal Convolutional Network (TCN). This
architecture was selected over traditional recurrent models like LSTMs because its ad-
vantages sequence modeling tasks which had been mentioned before. By employing
hierarchy of dilated and causal convolutions, TCNs can capture long-range temporal
dependencies.

TCN model consists of residual blocks, where each block contain dilated convolu-
tional layers, followed by Rectified Linear Unit (ReLU) activation, spatial dropout for
regularization and batch normalization. Residual connections are used across blocks to
ensure stable gradient flow and effective training of a deep network.

Although this structure provide a strong foundation, the specific architectural hy-
perparameters were not arbitrarily chosen. Instead, systematic hyperparameter opti-
mization process implied determining the most effective configuration for this specific
dataset and task. This process designed to move beyond default or randomly selected
values and also to justify the final model design based on performance.

Hyperparameter Tuning Methodology

KerasTuner library was employed to conduct hyperparameter search. To provide a stable
basis for evaluation during tuning, preprocessed data had been split, with the first 80%
used for training models in each trial and subsequent 20% used as a fixed validation set.

Two search strategies were implemented and compared:

• Random Search: This method randomly samples hyperparameter combinations
from predefined search space which is effective for exploring wide range of possi-
bilities without bias.

• Bayesian Optimization: A more sophisticated strategy which builds model of
the objective function (val_loss) which use the results from previous trials to
make more informed decisions about which new hyperparameter combinations to
try next, focusing on more promising regions of the search space.

For both strategies, search was run for 50 trials, with EarlyStopping callback
(patience=5) to stop unpromising trials and improve efficiency. This Search defined
as below:

• Number of TCN filters: {16, 32, 64}

• Kernel size: {3, 5, 7}

• Number of TCN stacks (hidden layers): 3–8

• Dense layer units: {64, 128, 192, 256}

• Dropout rate: {0.1, 0.2, 0.3, 0.4}

• Learning rate: {1e-2, 1e-3, 1e-4}
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Tuning Results and Final Architecture

Objective of the search was to identify hyperparameter configuration which had low-
est validation loss (val_loss). key risk with Bayesian Optimization is the potential
to converge prematurely to a local minimum. To assess this risk, a Random Search
was performed providing a broad, unbiased exploration of the hyperparameter space.
This comparison also highlights the trade-off between computational cost and search
intelligence.

While the Random Search was faster, completing its 50 trials in approximately 30
minutes, Bayesian search required roughly 66 minutes for the same number of trials.
This additional time is due to the computational overhead which is required by the
Bayesian method to update it internal model after each trial.

Despite the longer execution time, Bayesian method found a final validation loss of
0.0013, which outperform best result from the Random Search (0.0059). This outcome
provide strong confidence that the Bayesian strategy successfully navigated search space
to find a more optimal configuration, rather than getting trapped in a suboptimal region,
justifying the additional computational cost.

Results of the values of optimized hyperparameter for each method has been men-
tioned in the tables below. Considering higher parameters in random search optimized
hyperparameter and also given better performance, the set of hyperparameters discov-
ered by Bayesian Optimization was selected for the final model. The optimal hyperpa-
rameters are detailed in Table 3.1.

Num of Fil-
ters

Kernel Size Hidden Lay-
ers

Learning
Rate

Dense
Units

Dropout

16 3 3 0.01 128 0.1

Table 3.1: Optimal Hyperparameters Determined by Bayesian Optimization

Num of Fil-
ters

Kernel Size Hidden Lay-
ers

Learning
Rate

Dense
Units

Dropout

16 7 8 0.01 128 0.1

Table 3.2: Optimal Hyperparameters Determined by Random Optimization

3.3 Training and Evaluation Procedures
Training and evaluation of model are designed as a systematic process to ensure ro-
bustness, also prevent overfitting, and provide assessment of the models performance on
unseen data.

3.3.1 Model Compilation and Training

For each training run, the TCN model is compiled and trained using following configu-
ration:
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3.3 – Training and Evaluation Procedures

• Optimizer: Adam optimizer is used, with learning rate of 0.01 determined by
hyperparameter tuning process.

• Callbacks: Also, for training process optimization and preventing overfitting, two
callbacks employed:

– EarlyStopping: This callback monitor the validation loss (val_loss) and
stops training if no improvement seen for 15 consecutive epochs Which has
been configured to restore model weights from epoch with best validation loss,
ensure the final model is the most generalized version.

– ReduceLROnPlateau: This callback also monitor validation loss and re-
duces learning rate by a factor of 0.5 if no improvement is observed for 3
consecutive epochs which allows model to make finer adjustments in the later
stages of training, often leading to better convergence.

The model is trained for a maximum of 50 epochs with a batch size of 8.

3.3.2 Evaluation Framework

A custom 6-Fold Permutation Cross-Validation framework designed and had been im-
plemented to assess the model performance and stability. This approach was chosen over
standard cross-validation techniques to test the model under various temporal conditions
respecting the integrity of the data sequence within each training and validation block.

Permutation-based Cross-Validation Procedure

The methodology involve partitioning the primary dataset (CapEXP2) into three con-
ceptual segments (an early, middle, and late part) and running six distinct experiments,
or “folds.” In each fold, role of these segments for training (60% of data), validation
(20%), and get ignored (20%) are permuted. This process, illustrated in Figure 3.5, is
defined as follows:

• Fold 1: Train on the initial 60%, validate on the next 20%.

• Fold 2: Train on the initial 60%, validate on the final 20%.

• Fold 3: Train on the middle 60%, validate on the initial 20%.

• Fold 4: Train on the final 60%, validate on the initial 20%.

• Fold 5: Train on the middle 60%, validate on the final 20%.

• Fold 6: Train on the final 60%, validate on the middle 20%.

This structured permutation tests models ability to not only forecast future events
from past data such as Fold 1 but also to “backcast” past events from future data such as
Fold 4 which providing a comprehensive assessment of pattern recognition capabilities.
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For each of these 6 folds, model is trained, and its performance is recorded on the
corresponding validation set. Primary outcome of this process is mean and standard
deviation of the performance metrics (MSE, MAE, RMSE) across all 6 validation results,
which indicates the models average performance and stability. The final figure of 6-fold
Permutation Cross-Validation had been illustrated in figure below:

Figure 3.5: 6-fold Cross Validation

Generalization Testing

To assess performance on new domain, each of 6 models trained during the permutation
cross-validation are evaluated on the separate CapEXP1 generalization dataset.

The final generalization performance is reported as the mean and standard deviation
of the results from all 6 models. This approach provides a more reliable and unbiased es-
timate of how the model is expected to perform on truly new data rather than evaluating
just a single model.

3.4 Analysis and Visualization

Following model training and prediction, a post-processing stage is essential to transform
the models raw, scaled outputs into a interpretable format and to conduct perrformance
analysis. TCN model is trained on targets which had been normalized; therefore, its
predictions are also in a normalized scale. The post-processing procedure involve inverse
normalization, metric calculation and generation of detailed visualizations.
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3.5 – Generalization to a New Dataset

3.4.1 Inverse Normalization

First step is to convert the model scaled predictions back into their original physical units
(meters). This is achieved by applying the inverse transformation of the MinMaxScaler
that was previously fitted only on the raw target data (X, Y columns) from training set.
This ensures that all subsequent error calculations and visualizations are in a directly
interpretable, real-world scale.

3.4.2 Visualization

A suite of visualizations is generated to provide comprehensive and qualitative under-
standing of models behavior on the training, validation, and test sets.

• Training vs. Validation Loss: A plot of MSE loss for training and validation
sets over epochs. This is crucial for diagnosing learning progress and identifying
potential overfitting.

• Euclidean Distance Over Time: This plot shows the per-sample spatial error
across the entire dataset sequence. It is used to identify specific moments or
segments of trajectorys where the model exhibits higher errors like during sharp
turns or sudden stops.

• Combined Trajectory and Error Analysis: For each coordinate (X and Y), a
detailed time-series plot has been generated. This visualization overlays the true
and predicted positions over time. On y-axis, the signed error (Predicted - True)
is also plotted, helping to identify any systematic biases in the predictions (i.e.,
whether the model consistently overestimate or underestimate the position).

3.5 Generalization to a New Dataset
A critical test of any predictive model is it ability to generalize to data which is entirely
new and collected under different conditions. To assess this, trained models are evaluated
on a completely unseen dataset, preprocessed-CapEXP1.csv, which originate from a
different experimental session than primary dataset (preprocessed-CapEXP2.csv) used
for training and cross-validation.

This process evaluates the models capacity to transfer its learned patterns to a new
context.

The evaluation on the generalization dataset follows a strict protocol to ensure results
are unbiased and methodologically sound:

• Independent Preprocessing: New dataset undergoes exact same preprocessing
pipeline, including spike handling and kinematic feature engineering. Critically,
for feature scaling, pipeline uses the scalers and parameters which had been fitted
on the original CapEXP2 training data. This is essential for preventing any data
leakage from new dataset into the model and ensures data is transformed in a
manner consistent with training procedure.
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• Comprehensive Model Evaluation: Rather than selecting a single "best" model,
all 6 models generated during the 6-fold cross-validation are used for evalua-
tion. Each of the 6 models makes predictions on fully preprocessed generalization
dataset.

• Aggregate Performance Reporting: The performance metrics (MSE, MAE,
and RMSE) are calculated for each of the 6 models. Final reported generalization
performance is mean and standard deviation of these metrics across all 6 models.

This approach provide much more robust and honest measure of the models real-
world potential. By averaging the results, we get a reliable estimate of expected perfor-
mance, while standard deviation indicates stability and consistency of model when faced
with completely new data.

3.6 Performance Metrics and Evaluation Criteria

The models performance is assessed using a combination of quantitative metrics and
qualitative visual analysis. This dual approach provides comprehensive understanding
of models accuracy, robustness, and specific failure modes.

Quantitative Metrics

The following standard regression metrics are used to quantify the models predictive
accuracy. For aggregate metrics, values are computed across an entire dataset like vali-
dation fold or the test set.

Mean Squared Error (MSE): As primary loss function for training, MSE mea-
sures the average of the squares of errors. It is particularly sensitive to large errors.

MSE = 1
N

N∑︂
i=1

(Ypred,i − Ytrue,i)2 (3.1)

Mean Absolute Error (MAE): MAE measures the average absolute difference
between predicted and true values, provide a error measure in the same units as target
that is easy to interpret.

MAE = 1
N

N∑︂
i=1

|Ypred,i − Ytrue,i| (3.2)

Root Mean Squared Error (RMSE): As square root of MSE, RMSE is also in
the same units as the target (meters), which make it more interpretable than MSE while
still penalizing large errors more heavily than MAE.

RMSE =
√

MSE (3.3)
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Euclidean Distance: To assess error on a per-sample basis, the Euclidean distance
is calculated. This metric represent the direct spatial distance between predicted and
true coordinate for each individual time step.

ErrorEuclidean =
√︂

(Xpred − Xtrue)2 + (Ypred − Ytrue)2 (3.4)

Qualitative Visual Analysis

In addition to metrics, several visualizations has been generated to gain qualitative
insights into the models behavior:

• Training & Validation Loss Plot: Which shows MSE loss over epochs for both
training and validation sets, which is essential for diagnosing learning progress and
overfitting.

• Euclidean Distance vs. Time: Plots the per-sample spatial error over the
course of a trajectory which helps identifying specific events or types of movement
like sharp turns where the models error is highest.

• Combined Trajectory and Signed Error Plots: This detailed visualization
shows the true and predicted paths for each coordinate (X and Y) over time. A
secondary y-axis displays the signed error (Predicted - True), which reveals any
systematic biases like over or under shooting.

This combination of quantitative and qualitative evaluations provides robust frame-
work for understanding the models performance and it limitations.
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Chapter 4

Key Findings

This chapter presents key outcom from evaluation of the proposed Neural Networks and
Domain Knowledge (NNDK) framework. The findings are detailed in two parts. First,
framework high accuracy and stability on it source domain (CapEXP2) are analyzed
which has been supported by results from a 6-fold permutation cross-validation. This
section highlights the effectiveness of the TCN model when enriched with domain knowl-
edge in the form of kinematic features. Second, framework performance assessed on a
new, unseen domain (CapEXP1) to identify it generalization capabilities and limitations.

4.1 Performance on the Source Domain (CapEXP2)

The NNDK framework performance on the source dataset was assessed using custom
6-fold permutation cross-validation. Results show framework achieves high degree of
accuracy and is stable across various training and validation configurations.

Aggregate performance is summarized in Table 4.1. Model achieved an average Root
Mean Squared Error (RMSE) of 4.14 cm ± 0.75 cm across six validation permutations.
Low standard deviation confirms that this level of performance is consistent and repro-
ducible.

Table 4.1: Aggregate performance metrics on CapEXP2 using the 6-Fold Permutation
CV

Metric Validation Average (Mean ± STD)
MSE (m2) 0.0018 ± 0.0006
RMSE (m) 0.0414 ± 0.0075
MAE (m) 0.0332 ± 0.0060

To provide insight into training dynamics, visualizations were generated for each
of the six folds. Plots from Fold 6 are presented below as a representative example.
Training and validation loss curve for this fold (Figure 4.1) show validation loss generally
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4.2 – Granular Error Analysis

tracks training loss downwards, which confirm model learns effectively without severe
overfitting.

Figure 4.1: Training and validation loss curve for a representative fold (Fold 6).

4.2 Granular Error Analysis

While aggregate metrics in Table 4.1 are strong, analyzing per-sample error provide a
deeper understanding of models behavior. For each fold, Euclidean distance and time-
series trajectory errors were plotted. Following analysis of Fold 6 illustrates typical error
characteristics observed across all folds.

The Euclidean distance plot (Figure 4.2) shows while prediction error is often low
(mostly below 18 cm), there are distinct moments where error spikes, reaching high as
30 cm.

Figure 4.2: Euclidean error for the val of Fold 6.

To understand cause of these spikes, we can examine the detailed trajectory plot in
Figure 4.3. This plot shows true and predicted paths for X and Y coordinates, along
signed error. A clear pattern demonstraret:
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• The largest errors (the spikes in the red error line) consistently occur at the peaks
and troughs of the trajectory.

• These are the precise moments when the subject changes direction, corresponding
to high-acceleration maneuvers.

This visual evidence confirm a key finding: the model is highly proficient at tracking
smooth motion but is most challenged by abrupt changes in direction.

Figure 4.3: True vs. Pred with signed error for the val of Fold 6.

4.3 Generalization Performance and Domain Shift

A more challenging test was conducted to assess the models ability to generalize to new
datasets (CapEXP1) recorded in different experimental session. This test reveals models
limitations when faced with a domain shift, a critical challenge in real-world applications.

Generalization Set Performance: On the CapEXP1 dataset, the average model
performance decreased significantly to RMSE of 13.22 cm ± 3.77 cm.

This threefold increase in error (from ∼4.1 cm on the source domain) indicates that
while the model learned the specific dynamics of the CapEXP2 dataset very effectively,
those learned patterns didnt fully transfer to the new domain. The larger standard
deviation also shows that the models predictions were less consistent on this new data.
This highlight domain generalization as the primary challenge for this approach. The
result of the generalization part are been given in Table 4.2.
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Table 4.2: NNDK Generalization Performance on CapEXP1 (Average of 6 Models)

Metric Result (Mean ± STD)
MSE (m2) 0.0187 ± 0.00995
RMSE (m) 0.1322 ± 0.03771
MAE (m) 0.1035 ± 0.0292

Qualitative Analysis of Generalization Errors

The quantitative performance degradation has been clearly reflected in the qualitative
analysis. The Euclidean distance plot for the generalization set (Figure 4.4) shows much
higher baseline error compared to the source domain plots, with frequent severe error
spikes often exceeding 30 cm and even 40 cm.

Figure 4.4: Per-sample Euclidean Distance error for the generalization set (CapEXP1).

The trajectory plot in Figure 4.5 provide a clear explanation for this. The move-
ment patterns in the CapEXP1 dataset are fundamentally different from smoother, more
repetitive paths in CapEXP2. They include long periods of inactivity followed by sudden
movements and less regular oscillations.

The plot shows model struggling to track these complex dynamics. Prediction errors
are no longer confine to sharp turns; they are distributed throughout the trajectory,
indicating that the models learned patterns from the source domain are a poor fit for
this new data distribution. This visual evidence strongly supports the conclusion of
domain shift being the primary cause of the performance drop.

27



Key Findings

Figure 4.5: True vs. Predicted position with signed error for the generalization set
(CapEXP1).

4.3.1 Computational Efficiency

The NNDK framework, which utilizes a TCN as its core, is wellsuited for efficient com-
putation. This is due to several architectural advantages of Temporal Convolutional
Networks. Unlike recurrent models like LSTMs, which process data sequentially, the
convolutional nature of TCNs allows the parallel processing of entire input sequences,
leading to faster training and inference (Tariq et al., 2020).

A key finding from systematic hyperparameter optimization process was identifi-
cation of a final model architecture that is not only accurate but also remarkably li-
hghtweight and efficient. The final, optimized model contains only 7,410 total parame-
ters, of which 7,218 are trainable.

The significance of these finding is that framework achieves its high in-domain accu-
racy without relying on a large, computationally expensive model. This small memory
footprint (less than 30 KB) and lower computational requirement make approach a strong
candidate for real-time applications and for future deployment on resource-constrained
hardware, such as embedded systems.

4.4 Summary of Key Findings

The systematic evaluation of the NNDK framework produced several critical findings
that clarify both its capabilities and its limitations for trajectory prediction:
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• High In-Domain Accuracy and Stability: The framework demonstrated high-
fidelity tracking on its source domain (CapEXP2), achieving a low average RMSE
of ∼4.1 cm across the 6-fold cross-validation. Stability of this result confirmed by
low standard deviation of validation scores.

• Domain Shift is the Primary Limitation: Framework performance did not
generalize well to a new dataset (CapEXP1). The error rate increased significantly
to an RMSE of ∼13.2 cm, clearly identifying domain shift as the most significant
challenge for this approach.

• Prediction Errors are Linked to Maneuvers: The qualitative analysis of
trajectory plots revealed that largest prediction errors consistently occur during
high-acceleration maneuvers, such as when subject rapidly changes direction.

• Computationally Efficient Architecture: Systematic hyperparameter opti-
mization result in a final model that is not only accurate but also highly efficient,
containing just 7,218 trainable parameters.
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Chapter 5

Discussion

This chapter provides interpretation of the key findings presented in the previous chapter.
It analyzes the significance of the results, discusses the strengths and limitations of the
proposed NNDK framework and contextualizes work within field of trajectory prediction.

5.1 Interpretation of Results

Evaluation of NNDK framework reveals a distinct and highly informative dual outcome.
On one hand, framework demonstrates that a systematically optimized TCN, enriched
with kinematic domain knowledge, can achieve high accuracy and stability for trajectory
prediction within its source domain. On the other hand, drop in performance on a new
dataset highlights critical challenge of domain shift.

The high in-domain accuracy (∼4.1 cm RMSE) signifies that TCN architecture is
indeed capable of learning complex, non-linear relationships between capacitive sensor
data, movement dynamics, and physical location. Exceptional stability of this result,
confirmed by low standard deviation in cross-validation folds, underscores robustness
of the methodology, including hyperparameter tuning and training procedures. This
suggests that for a well-defined and consistent operational environment, framework is
reliable.

However, threefold increase in error on the generalization dataset is most critical
finding. It strongly indicates that model did not purely learn general physics of hu-
man motion. Instead, it also “overlearned” specific statistical properties of CapEXP2
dataset, including unique noise profile of sensors, specific cadence and style of subjects
movements and other environmental artifacts from that session. This is a classic example
of domain shift, an common problem where machine learning models fail to generalize
when deployed in environment that differs, even slightly, from the one they were trained
in.

The granular error analysis supports this interpretation. The models primary weakness-
predicting high-acceleration maneuvers-was present even in the source domain data. This
weakness was significantly amplified on the generalization dataset, which had been con-
tained different and more complex movement patterns. This show the model learned
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patterns were brittle and not fully transferable, which leading to a breakdown in predic-
tive accuracy.

5.2 Benchmarking: Impact of Domain Knowledge and Op-
timization

To quantify specific contributions of methodological improvements made in this work an
direct benchmark was performed against baseline version of the model. This baseline
represents initial approach, which used a TCN with un-optimized architecture and was
trained without the kinematic domain knowledge features.

The results of this comparison are summarized in Table 5.1.

Table 5.1: Performance and Efficiency Benchmark.

Metric Baseline Model Final NNDK Model
Avg. Validation RMSE 6.38 cm 4.14 cm
Avg. Validation MAE 4.65 cm 3.32 cm
Trainable Parameters ∼397,000 ∼7,218

The comparison reveals two clear and significant improvements:
Improved Predictive Accuracy: The final NNDK model achieved ∼30% reduc-

tion in RMSE compare to baseline. This gain in accuracy is primarily attributed to
integration of domain knowledge. By engineering velocity and acceleration features,
model was has been provided with explicit information about the objects movement dy-
namics. This allow it to learn more robust patterns and better predict future positions,
especially during high-acceleration maneuvers that were identified as a key source of
error.

Drastic Increase in Computational Efficiency: The most improvement is the
reduction in model size by over 98% (from ∼397,000 to ∼7,218 trainable parameters).
This is a direct result of systematic hyperparameter optimization. The Bayesian search
successfully has identified a much more compact and efficient TCN architecture which not
only outperformed larger baseline model but did so with a fraction of the computational
resources.

In conclusion, this internal benchmark provided strong evidence for the efficacy of
the NNDK methodology. The combination of domain-informed feature engineering and
rigorous model optimization was critical also in developing a final model that is simul-
taneously more accurate and more efficient.

5.3 Analysis of Failure Modes

A crucial aspect of this research is understanding not just when the model succeeds, but
more importantly, when and why it fail. The evaluation revealed two primary failure
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modes: a difficulty in modeling high-acceleration maneuvers and sensitivity to domain
shift.

5.3.1 Difficulty with High-Acceleration Maneuvers

The granular error analysis in the previous chapter consistently showed that largest pre-
diction errors occur during moments of rapid change in direction or speed. While the
model excels at tracking predictable and smooth motions it accuracy decrease signifi-
cantly during these maneuvers. This failure can be attributed to several factors:

• Limited Predictive Horizon: The model uses a fixed-size input window of 15
time steps to make a prediction. A sudden, sharp turn may not be sufficiently
foreshadowed within this size of the window, which gives the model inadequate
information to anticipate the abrupt change in trajectory.

• Data Imbalance: In most trajectories, periods of smooth motion are far more
common than sharp maneuvers. The training data is therefore inherently imbal-
anced, with fewer examples of these high-acceleration events. As a result, model is
biased towards learning the patterns of simpler movements and has not developed
a sufficiently robust understanding of more complex dynamics.

5.3.2 Sensitivity to Domain Shift

The most significant failure mode is the models inability to generalize to the CapEXP1
dataset. This sensitivity to domain shift indicates that model has learned patterns
which are too specific to the source domain (CapEXP2) and not robust enough for new
environments. This can be explained by:

• Overfitting to Source Specific Artifacts: The model likely learned not just
the general physics of motion but also correlations which are unique to the training
data. These could include the specific noise signature of the sensors during that
session, the unique gait and turning style of the subject, or other environmental
factors. When these conditions change in the new domain, the models performance
break down.

• Lack of Diverse Training Data: The model was trained on data from a single,
relatively controlled environment and experimental session. It was not exposed to
wide variety of movement styles, sensor conditions or room layouts. This lack of
diversity in training data is a primary cause of its brittleness when faced with a
new domain.

Understanding these failure modes is essential, as they reveal that models errors are
not random but are systematically linked to these specific, identifiable challenges. This
provides a clear roadmap for targeted improvements in future work.
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Chapter 6

Practical Implications

The findings of this research, which detail both the high in-domain accuracy of the
NNDK framework and its significant challenges with domain generalization, have prac-
tical implications for both academic research and potential industrial applications. The
results serve as proof of concept for the potential of this technology while also highlight-
ing the critical challenges that must be overcome for real world deployment.

6.1 For Academic Research
This thesis provides several key contributions to academic community:

• A Methodological Blueprint: It offers detailed, end-to-end case study on apply-
ing a TCN based model for trajectory prediction. This includes a robust pipeline
for data preprocessing, kinematic feature engineering, systematic hyperparameter
optimization, and a rigorous cross-validation evaluation framework.

• Validation of TCNs for Trajectory Tasks: Research validates that a well-
tuned TCN is a powerful and computationally efficient architecture for modeling
complex, non-linear trajectories from sensor data, achieving high accuracy and
stability within a specific domain.

• A Clear Case Study of Domain Shift: By quantitatively demonstrating a
threefold increase in error when the model is applied to a new dataset, this work
provide a clear and valuable case study on the problem of domain shift in sensor-
based human tracking. It offers a concrete benchmark for future research aimed
at developing more generalizable and robust models.

6.2 For Industrial and Applied Fields
While current model is not ready for direct deployment due to generalization issues, this
research highlights potential of technology and clarifies primary obstacle for its industrial
application.
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Practical Implications

High in-domain accuracy points to potential in areas such as:

• Robotics and Autonomous Systems: For functions like human robot collabo-
ration and collision avoidance in controlled environments like an specific assembly
line.

• Smart Environments: For context-aware systems like adaptive lighting or HVAC,
within a single, stable installation where system can be calibrated.

However critical implication for all industrial applications is necessity of solving do-
main generalization problem. For this technology to be commercially viable, it must
be robust to changes of environment and subject. A system trained in one room must
work reliably in another, and it must perform accurately regardless of which individual
is being tracked.

Finally, high computational efficiency of final model with only ∼7,200 trainable pa-
rameters, is significant finding. It implies such high-fidelity tracking does not necessarily
require large, power-hungry models, which opens the possibility for future deployment
on low-cost, low-power edge devices.
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Chapter 7

Limitations and Future Directions

While the NNDK framework has demonstrated high accuracy within its source domain,
research has also highlights several key limitations. Acknowledging these is crucial for
contextualizing the results and establishing a clear foundation for future research.

7.1 Limitations

The primary limitations of this study are:

• Scope of the Prediction Task: The most significant limitation is the funda-
mental scope of the problem solved. The implemented framework addresses a
time-series forecasting problem ((x, y) to (x, y)), where it predicts the next posi-
tion based on the history of known ground-truth coordinates. This is distinct from
more complex position inference problem (CAPn to (x, y)), which would involve
determining location solely from raw sensor readings. This scope limits the mod-
els direct use in real-world scenarios where a stream of ground-truth data is not
available.

• Sensitivity to Domain Shift: As a direct consequence of limited data, models
performance degraded significantly when applied to a new dataset. This shows the
model is not yet robust to changes in environment or subject movement, which is
a major barrier to practical deployment.

• Controlled and Limited Training Data: Model was trained on data from a
single, empty 3m×3m room with only one subject. This controlled environment
does not capture complexities of real-world scenarios, which include furniture,
obstacles, and multiple people.

• Single-Step Prediction Horizon: Current model is designed only to predict
immediate next step in trajectory. This limits its utility for applications which
require longer-term planning or proactive decision-making.
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• Reliance on a Single Sensor Modality: Framework relies exclusively on capac-
itive sensors, making system vulnerable to their specific failure modes and limiting
the potential for enhanced robustness through sensor fusion.

7.2 Future Directions

Future work should focus directly on addressing these limitations to move towards a
more robust and practical solution.

Transitioning to Direct Position Inference (Top Priority)

Most critical future work is to extend framework to solve full CAPn to (x, y) position
inference problem. This would involve:

• Reworking the model inputs to rely primarily on sequence of capacitive sensor
readings, removing dependency on historical ground-truth coordinates.

• Revisiting model architecture to handle much more complex task of learning the
underlying physics between capacitance and spatial location.

This represents most significant step toward creating a truly standalone indoor po-
sitioning system.

Improving Generalization of the Current Model

• Data Diversity and Augmentation: To combat domain shift in the existing
forecasting model, future work should collect data from a wide variety of environ-
ments, with different subjects and more complex movement patterns.

• Domain Adaptation Techniques: Advanced methods like domain-adversarial
training should be explored to encourage model to learn features that are invariant
across different domains.

Multi-Step Trajectory Forecasting

Model architecture should be extended to predict a sequence of future steps rather than
just one. This would likely involve:

• Exploring recursive prediction strategies.

• Developing mechanisms to mitigate compounding errors that can occur over longer
horizons.
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7.2 – Future Directions

Enhancing Real-World Robustness

• Complex Environments & Multi-Subject Tracking: The framework should
be tested in larger, cluttered environments and expanded to handle tracking mul-
tiple subjects.

• Sensor Fusion: To improve reliability, capacitive sensor data should be fused
with complementary modalities, such as Inertial Measurement Units (IMUs).

Improving Model Trustworthiness

• Uncertainty Quantification: Future models should be developed to output not
just a coordinate prediction but also a confidence score, which is critical for safety-
related applications.

• Model Explainability: Techniques like SHAP (SHapley Additive exPlanations)
should be used to better understand how model makes its decisions, increasing
trust and aiding in debugging.
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Chapter 8

Conclusion

This thesis addresse challenge of high-precision trajectory prediction from noisy capac-
itive sensor data by developing and systematically evaluating a Neural Networks and
Domain Knowledge (NNDK) framework. The work successfully demonstrate proposed
approach, which integrates kinematic features into a Temporal Convolutional Network
(TCN), can achieve high predictive accuracy and stability within its source domain.
However, it also quantifies the significant challenge of domain shift, revealing a pro-
nounced drop in performance when model is applied to data from a new, unseen exper-
imental session.

8.1 Summary of Key Findings

The core findings of this research provide a balanced view of the frameworks capabilities:

• High In-Domain Performance: The systematically optimized NNDK frame-
work is capable of high-fidelity prediction on its source dataset (CapEXP2), whih
achieves a low average RMSE of ∼4.1 cm across the 6-fold permutation cross-
validation, with low standard deviation confirming stability of this result.

• Domain Shift is the Key Limitation: The models performance did not gen-
eralize well to a new dataset (CapEXP1). The error rate increased threefold to an
RMSE of ∼13.2 cm, clearly identifying domain shift as most significant challenge
for this approach.

• Errors are Systematic: Qualitative analysis of trajectory plots revealed largest
prediction errors are not random but are systematically linked to high-acceleration
maneuvers, such as when subject rapidly changes direction.

• Computationally Efficient Architecture: The systematic hyperparameter op-
timization resulted in a final model that is not only accurate but also highly effi-
cient, containing just 7,218 trainable parameters.
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8.2 – Contributions to the Field

8.2 Contributions to the Field
This thesis makes several contributions to the field of trajectory prediction:

• A Methodological Blueprint: It provides a complete, end-to-end methodology
for applying and evaluating a TCN for this task. This includes a pipeline for
data cleaning, domain-informed feature engineering, systematic hyperparameter
optimization, and a custom permutation-based cross-validation scheme.

• An Empirical Case Study: The research serves as a detailed case study that
both validates effectiveness of TCNs for high-accuracy in-domain prediction and
provides a clear, quantitative benchmark of domain shift problem, which is a valu-
able contribution for researchers working on model generalization.

• An Efficient, High-Performing In-Domain Model: The work produced a
lightweight and accurate predictive model which is well suited for its source domain,
demonstrating the potential of the approach under controlled conditions.

In conclusion, while the NNDK framework shows significant promise, this thesis es-
tablish the path toward building truly robust and reliable real-world trajectory prediction
systems must prioritize solving the fundamental challenge of domain generalization.
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Appendix

.1 Python Codes

# run_pipeline .py

import os
import matplotlib . pyplot as plt
import numpy as np
import joblib
from sklearn . preprocessing import MinMaxScaler
from sklearn . metrics import mean_squared_error , mean_absolute_error
import pandas as pd
import sys
sys.path. append (os.path. dirname (os.path. abspath ( __file__ )))
from sklearn . model_selection import KFold
from preprocessing import TrajectoryPreprocessor
from nndk_core import train_model , load_trained_model

# --- GLOBAL CONFIGURATION ---
CSV_PATH = r" ../../ datasets / preprocessed - CapEXP2 .csv"
GENERALIZATION_CSV_PATH = r" ../../ datasets / preprocessed - CapEXP1 .csv"
SEQ_LEN = 15
TARGET_COLS = [’X’, ’Y’]
EPOCHS = 50
BATCH_SIZE = 8
# --- Hyperparameters from tuning ---
LR = 0.01
NUM_FILTERS = 16
HIDDEN_LAYERS = 3
K_SIZE = 3
DENSE_UNITS = 128
DROPOUT_RATE = 0.1
# -----------------------------------
RESULTS_DIR = ’results_final ’
os. makedirs ( RESULTS_DIR , exist_ok =True)
FEATURE_SCALER_DIR = RESULTS_DIR
TARGET_SCALER_PATH = os.path.join( RESULTS_DIR , " target_scaler .pkl")

# --- PLOTTING FUNCTION ---
def generate_and_save_plots (history , X_data , Y_true_raw , model ,

split_name , plot_output_dir , scaler_y ):
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os. makedirs ( plot_output_dir , exist_ok =True)
print(f" Generating plots for { split_name } in { plot_output_dir }...")
Y_pred_scaled = model. predict ( X_data )
Y_pred_orig = scaler_y . inverse_transform ( Y_pred_scaled )
if history :

plt. figure ( figsize =(10 , 6))

train_loss = history . history [’loss ’]
val_loss = history . history [’val_loss ’]

plot_start_epoch = 10
if len( train_loss ) >= plot_start_epoch :

epochs_range = range( plot_start_epoch , len( train_loss ) + 1)
plt.plot( epochs_range , train_loss [ plot_start_epoch -1:] , label

=’Training Loss (MSE)’)
plt.plot( epochs_range , val_loss [ plot_start_epoch -1:] , label=’

Validation Loss (MSE)’)
plt.title(f’Training vs. Validation Loss ({ split_name }) (from

Epoch { plot_start_epoch })’)
else:

epochs_range = range (1, len( train_loss ) + 1)
plt.plot( epochs_range , train_loss , label=’Training Loss (MSE)

’)
plt.plot( epochs_range , val_loss , label=’Validation Loss (MSE)

’)
plt.title(f’Training vs. Validation Loss ({ split_name })’)

plt. xlabel (’Epoch ’)
plt. ylabel (’Loss (MSE)’)
plt. legend ()
plt.grid(True)
plt. savefig (os.path.join( plot_output_dir , f’Loss_vs_Epoch_ {

split_name }. png ’))
plt.close ()

error_x = Y_pred_orig [:, 0] - Y_true_raw [:, 0]
error_y = Y_pred_orig [:, 1] - Y_true_raw [:, 1]
euclidean_dist = np.sqrt( error_x **2 + error_y **2)

plt. figure ( figsize =(12 , 6))
plt.plot( euclidean_dist , marker =’o’, linestyle =’-’, markersize =2,

alpha =0.7)
plt.title(f’Euclidean Distance Error vs. Time ({ split_name })’)
plt. xlabel (’Sample Index ’); plt. ylabel (’Euclidean Distance (m)’); plt

.grid(True)
plt. savefig (os.path.join( plot_output_dir , f’Euclidean_Distance_ {

split_name }. png ’))
plt.close ()

# Plot 2: True & Predicted Trajectory with Signed Error
error_x_signed = Y_pred_orig [:, 0] - Y_true_raw [:, 0]
error_y_signed = Y_pred_orig [:, 1] - Y_true_raw [:, 1]
plt. figure ( figsize =(16 , 9))
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# Subplot for X
ax1 = plt. subplot (2, 1, 1)
ax1.plot(np. arange (len( Y_true_raw )), Y_true_raw [:, 0], label=’True X’

, alpha =0.8 , color=’tab:blue ’)
ax1.plot(np. arange (len( Y_true_raw )), Y_pred_orig [:, 0], label=’

Predicted X’, linestyle =’--’, alpha =0.8 , color=’tab: orange ’)
ax1. set_ylabel (’X Position (m)’, color=’tab:blue ’)
ax1. legend (loc=’upper left ’)
ax1.grid(True , linestyle =’:’)
ax1_twin = ax1.twinx ()
ax1_twin .plot(np. arange (len( Y_true_raw )), error_x_signed , label=’

Error X (Pred - True)’, alpha =0.6 , color=’tab:red ’, linestyle =’-.’
)

ax1_twin . set_ylabel (’Error X (m)’, color=’tab:red ’)
ax1_twin . axhline (0, color=’gray ’, linestyle =’:’, linewidth =0.8)
ax1_twin . legend (loc=’upper right ’)
ax1. set_title (f’True vs. Predicted X Position & Error Over Time ({

split_name })’)

# Subplot for Y
ax2 = plt. subplot (2, 1, 2, sharex =ax1)
ax2.plot(np. arange (len( Y_true_raw )), Y_true_raw [:, 1], label=’True Y’

, alpha =0.8 , color=’tab:blue ’)
ax2.plot(np. arange (len( Y_true_raw )), Y_pred_orig [:, 1], label=’

Predicted Y’, linestyle =’--’, alpha =0.8 , color=’tab: orange ’)
ax2. set_xlabel (’Sample Index (Time)’)
ax2. set_ylabel (’Y Position (m)’, color=’tab:blue ’)
ax2. legend (loc=’upper left ’)
ax2.grid(True , linestyle =’:’)
ax2_twin = ax2.twinx ()
ax2_twin .plot(np. arange (len( Y_true_raw )), error_y_signed , label=’

Error Y (Pred - True)’, alpha =0.6 , color=’tab:red ’, linestyle =’-.’
)

ax2_twin . set_ylabel (’Error Y (m)’, color=’tab:red ’)
ax2_twin . axhline (0, color=’gray ’, linestyle =’:’, linewidth =0.8)
ax2_twin . legend (loc=’upper right ’)
ax2. set_title (f’True vs. Predicted Y Position & Error Over Time ({

split_name })’)

plt. tight_layout ()
plt. savefig (os.path.join( plot_output_dir , f’

Combined_XY_Error_vs_Time_ { split_name }. png ’))
plt.close ()

# --- GENERALIZATION TEST FUNCTION ---
def run_generalization_test ( new_csv_path : str , trained_model_path : str ,

target_scaler_path : str , feature_scaler_dir : str , experiment_name : str
):
print(f"\n--- Starting Generalization Test on: {os.path. basename (

new_csv_path )} ---")
preprocessor = TrajectoryPreprocessor ( seq_len =SEQ_LEN , target_cols =

TARGET_COLS )
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df_gen = pd. read_csv ( new_csv_path )
df_gen = preprocessor . _handle_spikes ( df_gen )
df_gen = preprocessor . _add_kinematic_features ( df_gen )

features_normalized_gen = preprocessor . load_scalers_and_transform (
df_gen , feature_scaler_dir )

targets_raw_gen = df_gen [ TARGET_COLS ]. to_numpy (dtype=np. float32 )
X_gen , Y_gen_raw = preprocessor . _make_windows ( features_normalized_gen

, targets_raw_gen )

model_for_test = load_trained_model ( trained_model_path )
scaler_y_loaded = joblib .load( target_scaler_path )

Y_gen_pred_scaled = model_for_test . predict (X_gen)
Y_gen_pred_orig = scaler_y_loaded . inverse_transform ( Y_gen_pred_scaled

)

gen_mse = mean_squared_error (Y_gen_raw , Y_gen_pred_orig )
gen_mae = mean_absolute_error (Y_gen_raw , Y_gen_pred_orig )
gen_rmse = np.sqrt( gen_mse )
plot_output_dir = os.path.join( RESULTS_DIR , "plots", "

generalization_tests ")
generate_and_save_plots (None , X_gen , Y_gen_raw , model_for_test , f"

GenTest_on_model_ { experiment_name }", plot_output_dir ,
scaler_y_loaded )

return {’MSE ’: gen_mse , ’RMSE ’: gen_rmse , ’MAE ’: gen_mae }

if __name__ == ’__main__ ’:
# 1. DATA LOADING AND PREPARATION
print(" --- Loading and Preparing Full Dataset ---")
preprocessor = TrajectoryPreprocessor ( seq_len =SEQ_LEN , target_cols =

TARGET_COLS )
df_full = pd. read_csv ( CSV_PATH )
df_full_processed = preprocessor . _handle_spikes ( df_full )
df_full_processed = preprocessor . _add_kinematic_features (

df_full_processed )
features_normalized_full = preprocessor .

fit_and_transform_training_data ( df_full_processed ,
FEATURE_SCALER_DIR )

scaler_y = MinMaxScaler ()
targets_raw_full = df_full_processed [ TARGET_COLS ]. to_numpy (dtype=np.

float32 )
targets_scaled_full = scaler_y . fit_transform ( targets_raw_full )
joblib .dump(scaler_y , TARGET_SCALER_PATH )

X_full , Y_full_scaled = preprocessor . _make_windows (
features_normalized_full , targets_scaled_full )

_, Y_full_raw = preprocessor . _make_windows ( features_normalized_full ,
targets_raw_full )

# 2. SETUP FOR CUSTOM 6-FOLD PERMUTATION CROSS VALIDAITOM
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n_samples = len( X_full )
cv_results = []
gen_results = []
fold_definitions = {

1: {’name ’: ’Train (0 -60) _Val (60 -80) ’, ’train ’: (0.0 , 0.6) , ’val
’: (0.6 , 0.8)},

2: {’name ’: ’Train (0 -60) _Val (80 -100) ’, ’train ’: (0.0 , 0.6) , ’val
’: (0.8 , 1.0)},

3: {’name ’: ’Val (0 -20) _Train (20 -80) ’, ’train ’: (0.2 , 0.8) , ’val
’: (0.0 , 0.2)},

4: {’name ’: ’Val (0 -20) _Train (40 -100) ’, ’train ’: (0.4 , 1.0) , ’val
’: (0.0 , 0.2)},

5: {’name ’: ’Train (20 -80) _Val (80 -100) ’, ’train ’: (0.2 , 0.8) , ’val
’: (0.8 , 1.0)},

6: {’name ’: ’Train (40 -100) _Val (20 -40) ’, ’train ’: (0.4 , 1.0) , ’val
’: (0.2 , 0.4)},

}

print(f"\n--- Starting Custom 6-Fold Permutation Cross - Validation ---
")

for fold_num , fold_info in fold_definitions .items ():
print(f"\n--- Processing Fold { fold_num }/6: { fold_info [’name ’]}

---")

tr_start_idx = int( fold_info [’train ’][0] * n_samples )
tr_end_idx = int( fold_info [’train ’][1] * n_samples )
val_start_idx = int( fold_info [’val ’][0] * n_samples )
val_end_idx = int( fold_info [’val ’][1] * n_samples )
X_train_fold , Y_train_fold = X_full [ tr_start_idx : tr_end_idx ],

Y_full_scaled [ tr_start_idx : tr_end_idx ]
X_val_fold , Y_val_fold = X_full [ val_start_idx : val_end_idx ],

Y_full_scaled [ val_start_idx : val_end_idx ]
Y_val_raw_fold = Y_full_raw [ val_start_idx : val_end_idx ]

model_path = os.path.join( RESULTS_DIR , f" model_fold_ { fold_num }.
keras")

history , val_metrics_list = train_model (
X_train_fold , Y_train_fold , [],
X_val_fold , Y_val_fold , [],
X_val_fold , Y_val_fold , [],
save_path =model_path ,
epochs =EPOCHS , batch_size =BATCH_SIZE , learning_rate =LR ,
hidden = HIDDEN_LAYERS , num_filters = NUM_FILTERS ,
k_size =K_SIZE , dense_units = DENSE_UNITS ,
dropout_rate = DROPOUT_RATE

)
cv_results . append ({

’val_MSE ’: val_metrics_list [0], ’val_MAE ’: val_metrics_list
[1], ’val_RMSE ’: val_metrics_list [2]

})

# Generate plots for this fold ’s validation set
model = load_trained_model ( model_path )
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plot_output_dir = os.path.join( RESULTS_DIR , "plots", f"fold_{
fold_num }")

generate_and_save_plots (history , X_val_fold , Y_val_raw_fold ,
model , f"Fold_{ fold_num }_{ fold_info [’name ’]}", plot_output_dir
, scaler_y )

if os.path. exists ( GENERALIZATION_CSV_PATH ):
gen_metrics = run_generalization_test (

new_csv_path = GENERALIZATION_CSV_PATH , trained_model_path =
model_path ,

target_scaler_path = TARGET_SCALER_PATH , feature_scaler_dir
= FEATURE_SCALER_DIR ,

experiment_name = fold_info [’name ’]
)
gen_results . append ( gen_metrics )

# 4. CREATE AND PRINT THE FINAL SUMMARY TABLES
print("\n\n--- Cross - Validation Performance Summary ---")
cv_df = pd. DataFrame ( cv_results )
cv_summary = pd. DataFrame ({

"Mean": cv_df.mean (),
"STD": cv_df.std ()

}).T
cv_summary .index.name = " Statistic "
print("The table below shows the average performance across the 6

validation permutations .")
print( cv_summary . to_string ())
cv_summary . to_csv (os.path.join( RESULTS_DIR , " permutation_cv_summary .

csv"))

if gen_results :
print("\n\n--- Generalization Performance Summary ---")
gen_df = pd. DataFrame ( gen_results )
gen_summary = pd. DataFrame ({

"Mean": gen_df .mean (),
"STD": gen_df .std ()

}).T
gen_summary .index.name = " Statistic "
print("The table below shows the average generalization

performance across all 6 models .")
print( gen_summary . to_string ())
gen_summary . to_csv (os.path.join( RESULTS_DIR , "

generalization_summary .csv"))

Listing 1: Run Pipeline
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# preprocessing .py

import pandas as pd
import numpy as np
from sklearn . preprocessing import MinMaxScaler
import joblib
import os

class TrajectoryPreprocessor :
def __init__ (self , seq_len : int , target_cols : list):

""" Initializes the preprocessor ."""
self. seq_len = seq_len
self. target_cols = target_cols
self. pos_cols = [’X’, ’Y’]
self. vel_cols = [’vx’, ’vy’]
self. accel_cols = [’ax’, ’ay’]
self. other_cols = [’cap1 ’, ’cap2 ’, ’cap3 ’, ’cap4 ’]
self. feature_cols = self. other_cols + self. pos_cols + self.

vel_cols + self. accel_cols
self. scaler_other = MinMaxScaler ()
self. kinematic_params = {}

def _add_kinematic_features (self , df: pd. DataFrame ) -> pd. DataFrame :
""" Calculates velocity and acceleration from X, Y columns ."""
df[’vx’] = df[’X’]. diff (). fillna (0)
df[’vy’] = df[’Y’]. diff (). fillna (0)
df[’ax’] = df[’vx’]. diff (). fillna (0)
df[’ay’] = df[’vy’]. diff (). fillna (0)
return df

def _handle_spikes (self , df: pd.DataFrame , threshold : float = 0.5) ->
pd. DataFrame :

""" Identifies and corrects sharp spikes in positional data."""
print(f" Applying threshold -based spike handling with threshold : {

threshold }m")
for col in [’X’, ’Y’]:

diffs = df[col ]. diff ().abs ()
spike_indices = diffs[diffs > threshold ]. index
for idx in spike_indices :

if idx > 0:
df.loc[idx , col] = df.loc[idx - 1, col]

return df

def fit_and_transform_training_data (self , df: pd.DataFrame ,
scaler_dir : str) -> np. ndarray :
"""
Fits all scalers on the training data , saves them , and transforms

the data.
"""
print(" Fitting shared Min -Max scalers on training data ...")
os. makedirs (scaler_dir , exist_ok =True)
self. scaler_other .fit(df[self. other_cols ])
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joblib .dump(self. scaler_other , os.path.join(scaler_dir , "
other_features_scaler .pkl"))

for key , cols in [(’pos ’, self. pos_cols ), (’vel ’, self. vel_cols ),
(’accel ’, self. accel_cols )]:

group_data = df[cols ]. values
self. kinematic_params [key] = {

’min ’: group_data .min (),
’max ’: group_data .max ()

}

joblib .dump(self. kinematic_params , os.path.join(scaler_dir , "
kinematic_params .pkl"))

print(f" Scalers fitted and saved to { scaler_dir }")

return self. transform_features (df)

def load_scalers_and_transform (self , df: pd.DataFrame , scaler_dir :
str) -> np. ndarray :
"""
Loads pre - fitted scalers from disk and uses them to transform new

data.
"""
print(f" Loading scalers from { scaler_dir } and transforming data

...")

self. scaler_other = joblib .load(os.path.join(scaler_dir , "
other_features_scaler .pkl"))

self. kinematic_params = joblib .load(os.path.join(scaler_dir , "
kinematic_params .pkl"))

return self. transform_features (df)

def transform_features (self , df: pd. DataFrame ) -> np. ndarray :
""" Helper function to apply all transformations ."""
scaled_other = self. scaler_other . transform (df[self. other_cols ])

scaled_pos = (df[self. pos_cols ] - self. kinematic_params [’pos ’][’
min ’]) / \

(self. kinematic_params [’pos ’][’max ’] - self.
kinematic_params [’pos ’][’min ’])

scaled_vel = (df[self. vel_cols ] - self. kinematic_params [’vel ’][’
min ’]) / \

(self. kinematic_params [’vel ’][’max ’] - self.
kinematic_params [’vel ’][’min ’])

scaled_accel = (df[self. accel_cols ] - self. kinematic_params [’
accel ’][’min ’]) / \

(self. kinematic_params [’accel ’][’max ’] - self.
kinematic_params [’accel ’][’min ’])

return np. concatenate ([ scaled_other , scaled_pos , scaled_vel ,
scaled_accel ], axis =1)
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def _make_windows (self , feats: np.ndarray , targs: np. ndarray ):
""" Creates overlapping windows from the time - series data."""
N = len(feats)
X, Y = [], []
for i in range(N - self. seq_len ):

X. append (feats[i:i + self. seq_len ])
Y. append (targs[i + self. seq_len ])

return np.array(X), np.array(Y)

def _make_target_windows (self , targs: np. ndarray ):
""" Creates historical target windows ."""
N = len(targs)
seqs = []
for i in range(N - self. seq_len + 1):

seqs. append (targs[i:i + self. seq_len ])
return np.array(seqs)

Listing 2: Pre Processing
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import os
import numpy as np
import matplotlib . pyplot as plt
import tensorflow as tf
from tensorflow .keras. optimizers import Adam
from tensorflow .keras. callbacks import EarlyStopping , ReduceLROnPlateau
from tensorflow .keras. models import load_model
from tcn_simple import TCN_model
from tcn_model import model_TCN_simple
from utils import compute_test

def train_model (
X_train , Y_train , Y_train_seq ,
X_val , Y_val , Y_val_seq ,
X_test , Y_test , Y_test_seq ,
save_path : str = " NNdk_TCN_model .keras",
epochs : int = 50,
batch_size : int = 32,
learning_rate : float = 1e-3,
hidden : int = 6,
num_filters : int = 64,
k_size : int = 5,
dense_units : int = 128,
dropout_rate : float = 0.2

):
"""
Train a TCN model (NNdk) to predict the next (X,Y) from a history of

past positions .

Input:
- X_train , X_val , X_test : shape (n_windows , seq_len , 2) past (X,Y)
- Y_train , Y_val , Y_test : shape (n_windows , 2) next -step targets
- Y_*_seq: shape (n_windows , seq_len , 2) full history windows

Returns :
- history : Keras History object
- test_metrics : [ test_loss (MSE), test_mae ]

"""
seq_len = X_train .shape [1]
feature_dim = X_train .shape [2]
target_dim = Y_train .shape [1]

print(f" Building TCN with input ({ seq_len },{ feature_dim }) -> output {
target_dim }")

model = model_TCN_simple (
seq_len =seq_len ,
feature_dim = feature_dim ,
hidden =hidden ,
num_filters = num_filters ,
k_size =k_size ,
dense_units = dense_units ,
output_dim =target_dim ,
dropout_rate = dropout_rate
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)
optimizer = Adam( learning_rate = learning_rate )
model. compile ( optimizer =optimizer , loss=’mse ’, metrics =[’mae ’, tf.

keras. metrics . RootMeanSquaredError (name=’rmse ’)])
model. summary ()
es = EarlyStopping ( monitor =’val_loss ’, patience =15,

restore_best_weights =True , mode=’min ’)
rlp = ReduceLROnPlateau ( monitor =’val_loss ’, factor =0.5 , patience =3,

mode=’min ’)

print(f" Starting training : epochs ={ epochs }, batch_size ={ batch_size }")
history = model.fit(

X_train , Y_train ,
validation_data =( X_val , Y_val),
epochs =epochs ,
batch_size =batch_size ,
callbacks =[es , rlp]

)
print(" Evaluating on test data ...")
test_metrics = model. evaluate (X_test , Y_test , verbose =0)

print(f"Test MSE: { test_metrics [0]:.4 f}, Test MAE: { test_metrics
[1]:.4 f}, Test RMSE: { test_metrics [2]:.4 f}")

if save_path :
save_dir = os.path. dirname ( save_path )
os. makedirs (save_dir , exist_ok =True)
print(f" Saving model to { save_path }...")
model.save( save_path )

compute_test (
model ,
" NNdk_TCN ",
X_train =X_train , Y_train =Y_train ,
X_val=X_val , Y_val=Y_val ,
X_test =X_test , Y_test =Y_test ,
path=save_dir ,
trnable_params =model. count_params (),
nb_filters = num_filters ,
kernel_size =k_size ,
nb_stacks =hidden ,
dense= dense_units ,
hidden = hidden

)
return history , test_metrics

def load_trained_model ( model_path : str = " NNdk_TCN_model .keras"):
print(f" Loading model from { model_path }...")
from tensorflow .keras. models import load_model
from tensorflow .keras.utils import custom_object_scope
from tcn_simple import TCN_model
with custom_object_scope ({

’TCN_model ’: TCN_model ,
}):

model = load_model (model_path , compile =False)
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model. compile (loss=’mse ’, metrics =[’mae ’, tf.keras. metrics .
RootMeanSquaredError (name=’rmse ’)])

print("Model loaded .")
return model

Listing 3: NNDK Core
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