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Summary

The efficient management of lithium-ion battery packs (Li-ion) is essential to ensure
the correct performance, longevity, and safety of modern electric vehicles (EVs) and
other high-power applications. This thesis focuses on the development, integration,
and optimization of model-based algorithms within an automotive Battery Man-
agement System (BMS) to accurately estimate battery parameters and manage
power limits. The research emphasizes the role of software algorithms, particularly
the Extended Kalman Filter (EKF) for state-of-charge (SOC) estimation and the
PI controller-based Power Limits algorithms for power management.

A model-based approach was employed to evaluate the dynamic parameters of
Li-ion batteries, leveraging MATLAB Simulink for modeling and simulation, as
well as the software tool Embedded Coder for code generation, optimization and
deployment on a custom automotive BMS platform. Model-Based Design (MBD) is
a widely adopted methodology for developing embedded software, especially in the
automotive industry. Embedded Coder is a key tool that facilitates the transition
from system models to production-ready C and C++ code. MBD focuses on using
models throughout the development process, from requirements to testing, enabling
simulation and analysis of system behavior without needing expensive hardware.

A rigorous testing and validation process was conducted to ensure the accuracy,
reliability, and performance of the algorithms. This included Software-in-the-Loop
(SIL) and Processor-in-the-Loop (PIL) simulations to verify the functional equiva-
lence between the auto-generated code and the original Simulink models. The tests
also provided valuable insights into execution time, memory usage, and the impact
of model and code-level optimizations. Post-integration testing was performed
to confirm the correct integration of the algorithms within the BMS’s software
architecture. This phase involved code development, integration of the CAN bus
system, as well as performance analysis via the software tool CANalyzer.

In the final development phase, the firmware was deployed to the target and tested
on a real battery pack under controlled laboratory conditions at BeonD S.r.l’s
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laboratory facility, enabling validation of the system’s behavior in scenarios closely
resembling real-world operation. The results demonstrate that automated code
generation and optimization of model-based algorithms using MATLAB Simulink
not only enhances algorithm performance but also simplifies integration into em-
bedded systems. Optimization techniques were applied to improve the execution
efficiency of the algorithms, leading to a significant reduction in the computation
time.

Overall, this study highlights the critical role of combining advanced computational
techniques with embedded systems to enable efficient and reliable battery operation.
As the adoption of electric vehicles accelerates, continued research and innovation
in intelligent battery management systems will be essential to improve performance,
extend battery life, and support the long-term sustainability of electric mobility.
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Chapter 1
Introduction

This thesis explores the effective management of lithium-ion (Li-ion) battery
packs, by implementing an automotive battery management system (BMS), which
requires the integration of both software and hardware components. The hardware
components consist of electronic circuits designed to ensure the safety of both the
battery pack and its user, while also facilitating measurements such as battery
cell voltages, electrical current, and temperature. The software components are
responsible for estimating the battery state, managing power limits, and monitoring
and coordinating the battery pack’s operations. The primary focus of this thesis is
on the software methods and algorithms involved in this management process.

To manage the operation of the battery pack, certain parameters must be known.
This includes voltage, current, temperature, state-of-charge (SOC), state-of-health
(SOH) and power limits. The SOC of the battery is an essential parameter for
battery management; however, there is no direct way of measuring the SOC in
real-time; therefore, complex algorithms such as the Extended Kalman Filter (EKF)
are implemented to accurately estimate the SOC. Advanced battery management
methods come with added costs, so not all applications use them. For inexpensive
devices such as TV remotes, the cost of battery failure is low, making advanced
management unnecessary. However, for mission-critical or large battery systems,
where premature failure can be costly and unsafe, advanced management is justified.
This thesis focuses on methods relevant to high-stakes applications where the cost
of failure outweighs the additional expense of better management.

Electric vehicles can be categorized into three main types [1]:

1. Hybrid-electric vehicles (HEVs) use a combination of a gasoline engine and an
electric motor, with a small battery pack to assist in acceleration and energy
recovery during deceleration. These vehicles do not have an all-electric range
and rely on the gasoline engine for recharging.
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2. Plug-in hybrid-electric vehicles (PHEVs) have larger battery packs, allowing
limited all-electric driving (15-30 km). They can be plugged into the grid for
recharging and switched to hybrid mode once the battery is depleted.

3. Electric vehicles (EVs) or battery-electric vehicles (BEVs) rely solely on a
battery-powered motor, without a gasoline engine. Their range is determined
by battery capacity, typically ranging from under 200 to over 500 km.

Each vehicle operates using a different type of battery pack and requires different
desired performance. The BMS is required to adapt to the different performance
requirements of the vehicle and correctly manage the assigned battery pack.

The focus of this thesis is on rechargeable lithium-ion (Li-ion) batteries. The Li-ion
battery offers several advantages over other types of batteries, including higher
voltage (3.7V vs. 1.2V for NiMH or NiCd), higher energy density, fewer cells needed
for certain applications, and lower self-discharge rates. However, they are more
expensive and sensitive to overcharging, requiring additional protective circuitry.
Although lithium ion cells are more expensive and more complex to manufacture,
their price is expected to decrease as production scales. Li-ion batteries are be-
coming more and more popular because of their long lifespan, high energy and
power density, in addition to the positive impact they have on the environment.
However, failure in management of such batteries leads to a reduction in their
lifespan, poor performance and potentially dangerous situations due to overheating
or overcharging. Therefore, the management of Li-ion batteries is critical in order
to use the battery to its full potential while ensuring safe operating conditions.
There are different methods that can be used for the SOC estimation, each with
their own advantages and disadvantages. Figure 1.1 illustrates the different methods
used for SOC estimation. Starting from the direct method and the simplest that is
the OCV (open-circuit voltage) test, moving on to the Book-keeping method known
as the Coulomb Counting (CC) and finally the online method implemented in the
BMS that is the Model-based method derived from the Equivalent circuit model
(ECM), complemented by the sophisticated adaptive filter known as the Extended
Kalman Filter (EKF). This paper employs a third-order equivalent electrical circuit
model to characterize the behavior of a lithium-ion battery. Each method will be
discussed in detail in this paper. Table 1.1 outlines the benefits and drawbacks of
such methods [2].

A BMS is an advanced solution designed to monitor and control battery packs
and provide fault diagnosis. The STM32 microcontroller-based PCB, designed for
automotive applications, serves as a central component in the BMS, integrating
both master and slave boards while communicating over the CAN bus. The micro-
controller is programmed by uploading BMS-specific firmware that governs battery
management functions, enabling precise control and monitoring of the battery.
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Direct BOO%{_ Model-based
Keeping
| [ : =
OCV CC ECM Kalman
Filter

Figure 1.1: SOC estimation methods

SOC estimation methods Pros Cons
ocVv Simple, Accurate Offline calculation only
cC Simple Cannot initialize SOC, Inaccurate
ECM Online Inaccurate
EKF Online, Accurate Complex

Table 1.1: SOC estimation methods pros and cons

Additionally, advanced algorithms are implemented within the BMS firmware to
manage critical tasks, such as ensuring safety, protecting battery cells from damage
during faults or abuse, extending battery life, as well as, maintaining optimal
battery performance and ensuring the pack delivers or receives power within design
specifications.

The process of designing, integrating, and testing a model involves several critical
phases to ensure its robustness and effectiveness. It begins with the definition of
mathematical models, in which the underlying principles and equations governing
the system are formulated to accurately represent real-world behavior. Next, model-
based design using MATLAB/Simulink enables the creation and simulation of the
system’s dynamics within a visual framework, allowing for iterative refinement and
validation. Once the design is finalized, code generation and optimization using
MATLAB/Embedded Coder converts the model into efficient, target-specific C
code, ensuring compatibility and performance. The generated algorithm is then
integrated into the Battery Management System (BMS) using development tools
such as STM32CubelDE, enabling seamless deployment on embedded hardware.
Finally, the system undergoes rigorous testing and validation, utilizing tools such
as CANalyzer for network-level analysis and the laboratory test bench for com-
prehensive hardware-in-the-loop testing, ensuring the model meets all functional
and performance criteria. Figure 1.2 summarizes the various phases of design,
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integration, and testing.

. Testing &
Mathematical Mc:el _haSEd Ca:e gﬁne_ra:'_m Validation
esign — and optimization
Rices (MATLAB/Simulink) {(Embedded Cader) (A L

test bench)

Figure 1.2: The phases of design, integration and testing

After the model-based design phase is over, we transition to the code generation and
optimization phase in which the model is converted into code written in C language
and then the process of optimization begins. Optimization is particularly useful in
embedded systems where memory and processing resources are limited. Optimizing
the code, reducing the startup time and increasing the execution speed significantly
impacts system performance. Minimizing the execution time of algorithms in a
BMS is critical for maintaining real-time performance, safety, power efficiency, and
system reliability. It helps the system make quick decisions, preserve battery life,
ensure safe operation, and reduce the cost and complexity of the hardware, all of
which are essential in deploying an effective battery management system. Reduction
in initialization time is especially important in real-time systems such as the BMS,
where data need to be updated at a high rate and consequently enable the BMS to
make decisions and take faster action resulting in improved performance, safety
and prolonging of the battery’s life.

Overall, the goal of the project is to perform the Code generation and optimization of
advanced algorithms using the MATLAB® Simulink environment. This is achieved
while defining a procedure that ensures smooth and quick integration of algorithms
into the master BMS PCB designed by BeonD s.r.1, the company in which the thesis
was carried out. The project is finalized by testing and validating the obtained
results. A portion of the testing and validation was done using desktop tools. The
remainder of the tests were done in BeonD’s laboratory BALF (BeonD advanced
laboratory facilities), a laboratory which houses several equipment for testing cells,
modules, and battery packs and is home to custom battery management system
projects.



Chapter 2

State of the Art

2.1 Role of the Battery-Management-System

The methods and algorithms discussed in this paper are implemented in a Bat-
tery Management System (BMS). The BMS is an embedded system combining
specialized electronics, including hardware and software components used to serve
specific functions. The focus will be mainly on the four core algorithms illustrated
in Figure 2.1. The algorithms include the BCM (battery cell model) algorithm
for modelling battery cells, the EKF based SOC algorithm for estimation of the
battery’s state of charge, the SOH algorithm for estimation of the battery’s health
and finally, the Power Limits algorithm for managing the power limits of the battery
pack.

The primary objectives of a BMS are:

1. Ensuring operator safety by detecting unsafe conditions such as over-heating
or over-charging and responding, by reducing or cutting off the current.

2. Protecting the battery cells from damage during failure or abuse, using either
software or hardware to isolate faulty components.

3. Extending battery life by coordinating with the load controller by managing
the battery’s temperature and preventing over-charging or over-discharging
based on the estimated SOC.

4. Maintaining the battery’s ability to meet its functional design requirements,
ensuring it can deliver or receive power within its rated capacity while main-
taining the voltage and temperature within their specified limits and balancing
the cells.
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5. Measuring voltage, current and temperature as well as controlling contactors
and the thermal management system.

6. Communicating with the user and other electronic components within the
vehicle, reporting on SOC and power, and signaling to the user the end-of-life
of the battery, based on the estimated SOH.

POWER

Figure 2.1: The algorithms implemented in the BMS

2.1.1 Types of faults in the Li-ion battery system

Lithium-ion batteries face various internal and external faults that can lead to
performance degradation and serious consequences like thermal run-away, fires,
or explosions. Key internal faults include overcharge, undercharge, internal short
circuits, overheating, and accelerated degradation, while external faults involve
issues such as sensor failures, cooling system malfunctions, and cell connection
faults.

Overcharge can cause thermal runaway, gas buildup, and cathode damage due
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to incorrect measurements or faulty charging systems, while undercharge leads
to capacity loss, electrode corrosion, and potential short circuits. Internal and
external short circuits trigger excessive heat and electrolyte decomposition, resulting
in thermal runaway. Overheating accelerates degradation, causing swelling and
potential explosions, while accelerated degradation shortens the battery’s lifespan
through material disintegration and lithium loss. Among these, thermal runaway
is the most severe, caused by cumulative heat and pressure increases [3].

The BMS receives information about each cell within the battery pack, and ensures
that voltage and temperature limits are respected, while also ensuring that the cells
neither over-charge nor under-charge. For instance, if a cell reaches its maximum
SOC the BMS commands the charging contactors to be opened to prevent the
cell from over-charging. Effective fault detection and management strategies are
vital for minimizing risks, ensuring safety, and maintaining long-term battery
performance.

2.2 Offline state estimation methods

The SOC of a cell Z,, is defined as the ratio of its residual capacity to its total capacity
as shown in Equation (2.1). The average lithium concentration stoichiometry
is defined as shown in Equation (2.2) at time index k. However, there is no
direct method for the measurement of lithium concentration within a battery cell.
Therefore, the SOC must be somehow estimated based on the available measurable
cell parameters [1].

Cs avg k
O = ok 2.1
g Cs,max ( )
7, = k= b (2.2)

0100% — o

This section presents two offline state estimation methods namely, the OCV test
and coulomb counting. The advantages and the limitations of these methods are
also discussed.

2.2.1 The battery cell

A battery cell is the smallest individual electrochemical unit, providing a voltage
that depends on the specific chemicals and compounds used in its construction. In
contrast, a battery pack is a collection of cells connected electrically.

The voltage of a cell depends on various factors, with the nominal voltage specified
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by the manufacturer serving as a convenient reference value for its voltage class.
The actual operating voltage can fluctuate above or below this nominal value, with
most lithium-based cells having nominal voltages above 3V.

The nominal charge capacity of a cell indicates the amount of charge it can hold,
measured in ampere-hours (A h) or milliampere-hours (mAh). Closely related to
this, the C-rate represents the relative current measure of the cell, defined as the
constant-current charge or discharge rate that the cell can sustain for 1 hour. This
is calculated by multiplying the cell’s nominal ampere-hour rating by 1 A=

The cell used in this project is the Molicel P45B cell. Table 2.1 summarizes the cell
characteristics such as its capacity, voltage, current and temperature. The high
discharge current of value 45A is noteworthy as it showcases how powerful the cell
is. In addition, the cell has an impressive life cycle therefore, making the Molicel
P45B suitable for creating a long-lasting, high performing battery pack [4].

Cell characteristics Value
Typical Capacity 4500 mAh
Charge voltage 4.2V
Discharge voltage 25V

Standard charge current 4.5 A
Standard discharge current | 45 A
Charge temperature 0°C to 60°C
Discharge temperature -40°C to 60°C

Table 2.1: MOLICEL P45B cell characteristics

2.2.2 The OCYV test

The OCV test is a simple and accurate method to measure the SOC of the battery
at a resting state. In a resting state, variables like temperature and hysteresis are
eliminated and the terminal voltage indicates the battery’s energy content; therefore,
simplifying the SOC-OCV relationship. This method requires calibration through
comprehensive characterization of SOC-OCV curves across different temperatures
and aging conditions to account for their effects on voltage response. Despite its
simplicity, the OCV test cannot be carried out in online applications as it requires
the battery to arrive at a resting state to perform the SOC estimation. In addition,
these methods can lead to significant estimation errors, especially in batteries with
non-linear relationships between the SOC and OCV. However, data obtained from
the OCV test can be used to create lookup tables where the SOC is a function
of voltage and temperature. This is useful in estimating the parameters of the
equivalent circuit model (ECM) and initializing the SOC which will be discussed

8
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later in this paper. Figure 2.2 below shows one of the look-up tables implemented
in model-based representation of EKF in MATLAB, used to estimate the voltage
across one of the ECM’s resistors based on the measured temperature and estimated
SOC. Multiple SOC-OCYV curves were created and the values are based on tests
carried out in BALF at different temperatures ranging between 293-344 Kelvin
(21-71 degree Celsius). Look-up tables will be discussed more in details later in
this chapter, highlighting their important role in estimating cell parameters.

42

3.8
3.6
34 .
32] £ K 2,

V0 mat

2.84

0.5

SOC_vec

Figure 2.2: Look-up SOC-OCV table used in EKF used to estimate voltage V0
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2.2.3 Coulomb Counting

While it might seem logical to obtain the state of charge (SOC) from cell voltage,
this is problematic due to several factors. Cell voltage is influenced by temper-
ature, surface concentrations, and other factors, but SOC depends on average
concentrations within the cell. Changes in voltage do not always correspond to
changes in SOC. Resting a cell, temperature fluctuations, and hysteresis can alter
voltage without affecting SOC. Although voltage can serve as an indirect indicator
of SOC, it’s not a reliable direct measurement. Instead, SOC is more directly tied
to current flow, as it changes when current passes through the cell during charging
or discharging. The relationship between SOC for cell ¢ at time index k and the cell
current 7 can be expressed via Equation (2.3). This method is known as coulomb
counting. Where cell current is positive on discharge and negative on charge, n,(f )
is cell coulombic efficiency, z((]i) is the initial SOC of cell i and Q,(Cj ) is the cell total
capacity in ampere-seconds. The total capacity () is determined via the total net
ampere-hours discharged.

i1
A =AY i (23)
=0 Oy
However, this method for estimating SOC has certain weaknesses. For example,
inaccuracies in measuring the current can limit the accuracy at which the SOC
is estimated. In addition, the value of @) is affected by the temperature as well
as aging. As the cell ages the value of () decreases and therefore it needs to be
monitored and corrected over time. On the other hand, if the SOC is initialized
incorrectly, the system will base its estimates on a flawed starting point, leading
to inaccuracies throughout the estimation process. As the battery goes through
more charge and discharge cycles, errors in SOC estimation tend to accumulate,
further decreasing the accuracy of the prediction over time. Figure 2.3 shows how
the coulomb counter was simulated in Simulink environment.

2.3 Online SOC estimation

Accurate battery modelling is a primary requirement of online SOC estimation
for the simulation of battery dynamics. Model-based state estimation relies on
mathematical techniques to predict battery cell behavior and system responses. It
uses measurements of current, voltage, and temperature based on a battery model
represented by an ECM to obtain the parameters necessary for the estimation of
the state of charge (SOC). Since the ECM cannot simulate all the electrochemical
processes in the battery needed for the estimation of the SOC, the ECM is coupled
with the Extended Kalman Filter (EKF) to accurately predict and correct the

10
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Figure 2.3: Coulomb counter simulated on Simulink

SOC value. The EKF integrates voltage and current data, accounting for noise
and refining SOC estimates through feedback that compares predicted and actual
voltages. The EKF is a sophisticated algorithm used for battery state estimation,
designed to manage errors stemming from measurement noise, state-estimation
inaccuracies, and modeling discrepancies. It adapts the classic Kalman filter to
nonlinear systems by linearizing the model at each time step. Though EKF in-
troduces approximations and has limitations, it remains effective for moderate
non-linearities in practical applications.

Unlike the coulomb counting method, the model-based state estimation approach
relies on mathematical techniques to accurately represent the battery cell’s behavior
and predict system responses. The EKF, while capable of handling non-linear
systems, may encounter difficulties when applied to highly non-linear systems
such as lithium-ion batteries. Particularly at low states of charge, the battery’s
behavior becomes increasingly non-linear, causing the EKF to produce less accurate
state-of-charge estimations.

Despite these limitations, the EKF is considered a leading method for SOC esti-
mation across various conditions. It operates as an optimal autoregressive data
processing algorithm, providing minimum variance estimation through a recursive
approach. Additionally, it can quantify the errors in its estimates [5].
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2.3.1 Model-based state estimation

SOC estimation is the task of battery state estimation using battery parameters
obtained from a real battery pack or an equivalent-circuit model of the battery
pack cells. A combination of the measured current, voltage, temperature, and
knowledge from a cell model is used to calculate estimates of SOC.

There are three approaches to estimate the SOC. The first approach is a voltage-
based method that estimates using plots of SOC vs. OCV and assuming cell’s
terminal voltage to be approximately equal to the open circuit voltage. However,
the results are too noisy. The second approach is a current-based method to
estimate using the state of charge equation. If estimates are incorrect, there is
no feedback mechanism to correct this error. Additionally, it is prone to bias,
self-discharge, and leakage errors. Finally, the third and most accurate approach
is a model-based estimation approach combining voltage-based and current-based
methods to estimate the state of charge (SOC) and other internal states of a
battery.

The model-based estimation approach includes both the true system that is the
actual cell as well as the system model coupled with a feedback mechanism Figure 2.4.
The input to the cell is the current while the output is the terminal voltage. The
SOC, diffusion current and hysteresis voltages within the cell cannot be measured
and therefore, they must be estimated. In addition, the current and voltage sensors
experience noise causing inaccuracies in the measurement of the input and output.
In the model-based estimation, the same input of the true system is used as in
input for the model, the state is estimated and then the output of the system is
predicted. The predicted output is compared to the true system’s output measured
by the voltage sensor and the difference is calculated. This difference is used in
a feedback mechanism to update the estimated state of the model. The state
estimate must be updated carefully accounting for the errors due to the sensor
noise, the state-estimation errors and the modeling errors. The process of refining
the estimate through feedback, makes the model estimation method more accurate
than the simpler coulomb counting [1].

2.3.2 Equivalent-circuit models

A simple way to model a cell’s operation is using electrical-circuit analogs to define
a behavioral or phenomenological approximation to how a cell’s voltage responds
to different input-current stimuli. The input/output (current/voltage) behaviors
of a lithium-ion cell are often well approximated by an equivalent circuit. When
the model is being created, values of the resistance and capacitance (R0, C1, and
R1) are adjusted using an optimization procedure to make model predictions agree
with the measured cell-test data. This process is known as system identification.
The optimized parameter values are typically a function of state of charge and
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Figure 2.4: General diagram of the model-based estimation approach coupled
with a feedback mechanism
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temperature. Once the parameters are optimized, the discrete-time state space
form of the battery model can be utilized in the EKF.

The approach begins by constructing a circuit model for a battery cell step by step,
starting with its basic observed behaviour and refining it to minimize modelling
errors. The process starts with the simplest model, representing the cell as an ideal
voltage source, where the terminal voltage is constant and independent of load
current or past usage. Although this initial model is unrealistic, it serves as a foun-
dation, acknowledging that cells supply a predictable voltage known as open-circuit
voltage (OCV) in an open-circuit condition. The ideal voltage source remains a key
component in the final equivalent-circuit model, even as refinements are made to
account for more complex behaviour. We proceed by implementing improvements
to the simple cell model by considering the SOC dependence, equivalent series
resistance and diffusion voltages.

One of the most common equivalent circuit models used is the 3RC ECM. It is made
up of the battery represented by an OCV, in addition to an internal resistance R0
and three parallel RC pairs as shown in Figure 2.5. The resistance RO models the
instant battery response, while the RC networks models different battery dynamics.
The OCV is a function of both the SOC and the temperature.

A precise lithium-ion battery model is essential for evaluating the suitability of the
cells across various applications and analyzing their dynamic behavior. A detailed
testing procedure was implemented to parameterize the model, involving extensive
characterization experiments conducted under a wide range of operating conditions.
The results were utilized to parameterize the proposed dynamic model of the Li-ion
battery cell. Two of the already existing look-up tables obtained from thus tests
are depicted in Figure 2.6 and Figure 2.7. The look-up tables mentioned were used
to estimate the R1 and C1 parameters of the ECM respectively.

13



State of the Art

The equations forming the equivalent circuit model comprise of the SOC and the
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Figure 2.5: Third order resistor-capacitor ECM diagram

diffusion-resistor current. Two equations are used to describe the system, the state
equation and the output equation. The state equation describes all the dynamic
effects, while the output equation computes the voltage at discrete-time index k.
To simulate battery-cell behaviour, the ECM voltage equation is evaluated, and
the model state equation is updated once per sample interval. We conclude that
the ECM looks similar to-but not identical to - a linear state-space system. Equa-
tion (2.4) below indicates the form of the linear state-space system. Where x4 is
the state vector and yy, is the system output representing the terminal voltage V; [6].

Xk+1 = Apxr + Brig

, 2.4
Y = CrXxr + Dyiy (2.4)

The non-linear nature of the SOC-OCYV relationship represented by the matrix C,
makes it difficult to obtain accurate estimation of the states by applying simple
methods such as the classic Kalman filter. Additionally, despite the simplicity
and fast computation of the offline algorithms, they do not take into account the
aging of the battery cell, nor do they simulate other electrochemical processes
in the battery that affect the SOC estimation. Therefore, the linear state-space
system based on the ECM is coupled with an adaptive filter known as the Extended
Kalman Filter (EKF) for accurate prediction and correction of the SOC value.
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T_vec 0 SOC_vec

Figure 2.6: Look-up table for estimation of the ECM parameter R1

2.3.3 The BCM

The Battery Cell Model (BCM) modelled on MATLAB is founded upon the 3RC
Equivalent Circuit Model (ECM). This ECM approach utilizes electrical circuit
analogs and associated look-up tables to effectively represent the behavior of a
single battery cell. By incorporating inputs of State of Charge (SOC), current, and
temperature, the model dynamically estimates key cell parameters. Subsequently,
the BCM calculates the expected cell voltage during both charging (CHG) and
discharging (DCHG) conditions.

This model serves as a valuable tool for simulation and testing within the MAT-
LAB/Simulink environment. It provides an estimated value for the terminal voltage
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Figure 2.7: Look-up table for estimation of the ECM parameter C1

(Vt) that would be observed in an actual battery cell under the given conditions.
Furthermore, the model facilitates the evaluation of power losses within the cell
by calculating the voltage drops across the various components represented within
the 3SRC ECM. The BCM model is depicted in Figure 2.8 showing its inputs and
outputs as implemented in Simulink.

2.3.4 Extended Kalman Filter for state estimation

When applying feedback in battery state estimation, it’s important to account
for various sources of error, including state-estimation errors, measurement noise,
and modeling inaccuracies. The Kalman filter, an algorithm designed for optimal
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Figure 2.8: The BCM model implemented in Simulink

state estimation, helps manage these uncertainties. Though Kalman filters are
typically derived under specific conditions, real-world applications often require
modifications. Understanding the mathematical basis of the Kalman filter is crucial,
particularly for BMS algorithm engineers, as they need to adapt the algorithm for
practical use in environments where the original assumptions may not hold.
While the linear Kalman filter works optimally for systems that can be modeled in
state-space form and assumes all noises are white and Gaussian, it doesn’t directly
apply to the nonlinear ECM. However, the probabilistic inference framework re-
mains valid for nonlinear systems with Gaussian noise, though exact calculations
aren’t feasible. In such cases, approximation methods like the extended Kalman
filter (EKF) are used, which performs linearization of the model at each time
step. Despite its limitations, the EKF remains popular and effective when system
nonlinearities are moderate.

Figure 2.9 shows the EKF’s general overview [7]. In the case of SOC estimation,
the C matrix is non-linear as the battery’s SOC-OCYV relationship is non-linear.
Consequently, a Jacobian matrix is produced and is used in the correction step.
This replaces the conversion matrix H typically used in the linear Kalman filter
by a Jacobian matrix Hj and then, non-linear state transition and measurement
functions are used for the prediction and correction respectively.

EKF subsystem blocks:

The EKF was designed by creating four subsystems to carry out the necessary
operations required for the estimation of the SOC as shown in Figure 2.10. The
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Figure 2.9: The EKF general overview

subsystems are organized as follows:

State-space Jacobian: Consists of multiple lookup tables used for the estimation
of the ECM (RC-circuit) parameters such as the values of resistance, capacitance
and OCV. Based on these values the matrices A, B and C that are part of the
linear state-space system are created and output by the block.

Prediction: This block performs matrix multiplication procedures based on the
obtained matrices, the estimated state vector X (SOC,V1,V2,V3) and the covari-
ance of the measurement error P to obtain prediction parameters required for the
correction step. In other words, it is a time update step that projects the state
and error covariance ahead.

Correction: Performs a measurement update. It uses the terminal voltage error
Vterror measured by subtracting the estimated voltage from the measured voltage,
in addition to the prediction parameters and the C' matrix to perform mathematical
operations and update the estimated state vector and covariance of the measure-
ment error.

Delay: Delays input signal that is the state vector by one unit.
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Figure 2.10: The EKF algorithm modelled on MATLAB Simulink

2.4 Power Limits and the State-of-Health

Two fundamental algorithms implemented in the BMS that underpin safe and
efficient operation are the Power Limits and the State-of-Health (SOH) algorithms.
The Power Limits algorithm regulates charge and discharge currents to maintain
safety, reliability and to extend battery life. It incorporates a PI controller for
managing current and meeting performance requirements. The SOH algorithm
tracks battery aging by comparing current capacity to the original specification,
which is essential for the SOC estimation and for signaling the end of the battery’s
service lifetime.These two algorithms are discussed in detail in this section.

2.4.1 Power Limits

Power is the rate at which energy is being released within the battery pack. Calcu-
lating the power of a battery cell cannot be done through a direct method; however,
the power a cell can generate or absorb can be regulated by setting a minimum
and maximum limit on the charge and discharge currents passing through the cell.
Power limits tell us how quickly we may add energy to or remove energy from the
battery pack without violating a set of design constraints. Thus, imposing hard
limits on the cell terminal voltage. Computation of the power limits is not only
essential for managing performance and maintaining safe operations, but also for
increasing the life expectancy of the battery pack. Power limits must be predictive
over a future time horizon; therefore, a predict-and-update sequence is implemented.
This includes the process of measuring a predictive estimate of power allowing
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scheduling over a near-future time horizon, followed by an update at low frequency
to avoid sudden performance losses. Once the power limits are successfully com-
puted, a control mechanism is required to control the output current to the load.
In this case, a PI controller was implemented as part of the model-based algorithm
for the computation of the power limits.

Three power limits algorithms were designed each with a different time window. The
first algorithm (PL1s) provides the instantaneous power limits while the other two
implement time-windows covering different time horizons of 10 seconds (PL10s) and
30 seconds (PL30s) within which the battery can safely operate at the calculated
power limit. Once the time-window is elapsed the power limits are updated. The
time-windows allow the measurement of a predictive non-instantaneous estimate of
the power limits.

The reason for designing the same model with three different time-windows is to
provide a flexible and adaptable solution for power management in electric vehicles.
The instantaneous power limit provides a rapid response to immediate changes in
power demand, which can be useful in testing regenerative braking. However, it
may not be the most efficient or conservative approach, as it can lead to frequent
and potentially excessive power peaks. To address this, longer time-windows of 10
and 30 seconds are introduced. These time-windows allow for a more predictive
and conservative approach to power management, enabling the system to anticipate
future power demands and adjust the power limits accordingly. By considering the
longer-term effects of power usage, the system can better manage factors such as
temperature and battery health, ultimately leading to improved overall performance
and longevity. Figure 2.11 below depicts the Power Limits algorithm modeled in
the Simulink environment, showcasing its inputs and outputs.

The power limits algorithm requires the SOC as estimated by EKF as an input.
Additionally, it receives the measured temperature and current required by the
load as inputs. Model parameters are also inputs to the power limits algorithm and
this includes the values of the resistances and voltages required for the calculation
of the power limits.
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Figure 2.11: The Power Limits algorithm modeled in Simulink

Instantaneous power limits

Joule loss (also known as I°R loss) refers to energy loss in electrical components due
to resistance. It’s critical in energy management because excessive losses reduce
efficiency and can lead to overheating. Therefore, it is necessary to determine how
much energy has been lost in the system due to resistance during a time window.
The system can then adjust its power limit or other parameters to compensate for
this loss.

The instantaneous power limits algorithm acts as the next step after the EKF
algorithm has executed. It obtains the Open Circuit Voltage (OCV) and the
equivalent resistance (Req), as estimated and corrected by the EKF at a given
moment and uses these values to calculate the power limits for that specific instant.
The value is then updated every second.

The algorithm checks various conditions, such as overvoltage (OV), undervoltage
(UV), and thermal limits, to calculate the maximum allowable current for charging
and discharging. Additionally, it takes into account the state of charge (SOC) to
ensure safe operation based on the available charge in the battery, thus preventing
over-charging and under-charging. It calculates the maximum allowable current
for charging within a 1-second window based on the OV and the equivalent cell
resistance Equation (2.5). Similarly, it calculates the maximum allowable current
for discharging within a 1-second window based on UV and the equivalent cell
resistance Equation (2.6). This ensures the battery pack does not exceed the
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defined safe operating range. To obtain a more conservative, tunable behavior, a
PI controller is implemented within the PL10s and PL30s algorithms, which is
discussed in the next paragraph.

Equation (2.5) o
Voviim — OCV

Imax,CHG - RE (25)
q
Equation (2.6) ey 1
Imam,DCHG - }QE Uvitim (26)
q

PI controller in power limits

PID is the most prevalent form of feedback control for a wide range of real physical
applications. It is typically used in control systems to maintain a certain target (like
power, voltage, or temperature). PID is widely used as it is simple, efficient and
effective in a wide array of applications. In the context of power limits, it is used
for adjusting the current output based on feedback. This is necessary to ensure the
system adjusts dynamically to maintain the power limit within acceptable levels.

A PID controller consists of three paths, a proportional, an integral and a derivative
path. In the proportional path the error is multiplied by a constant Kp and in the
integral path the error is multiplied by a constant Ki and is integrated. While, in
the differential path the error is multiplied by a constant Kd and then differentiated.
All three paths are then summed together to produce the controller output. The
three constants are called gains and can be tuned to obtain the desired behavior.
The proportional path mirrors the behaviour of the error in magnitude and direction.
The integral sums the error and therefore it is used to remove constant errors such
as the steady state error in the control system. Even if the error is small, eventually
the summation of this error will be enough to adjust the controller’s output. The
integral path acts as a memory as it keeps a running total of the input over time,
so as long as there’s an error in the system the integral output will continue to
change and together with the proportional path, they will work to drive the error
to zero. The derivative on the other hand, takes into account the rate of change of
the error. The faster the error changes the larger is the derivative’s path. In other
words, it quantifies how fast the output is closing in on the desired value.
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However, the effect of the differential path might not be significant in the control
process and therefore in some cases it is worth eliminating it. If the differential
gain is set to zero then we have a simpler version of the PID controller and we
refer to it with the letters of the remaining paths, so a PI controller. This simplifi-
cation allows the controller to be easier to implement, and test while still meeting
design requirements. Figure 2.12 shows simulink’s discrete PI controller block as
implemented in the 10s-discharge power limits algorithm.

EnergyReference
+
:_ i p  Pl(z) >
rorP1s CHG PIDv
EnergyMeasured ErrorP1s DCHG PIDv

Figure 2.12: The discrete PI controller implemented in Simulink

10s and 30s power limits

The purpose of the computation of the power limits is to ensure the system stays
within a predefined power or energy threshold. This is crucial for protecting compo-
nents and ensuring system stability. PL10s utilizes the power limits calculated by
PL1s as the reference power. It additionally takes into consideration the power loss
over time in order to enforce new, more conservative power limits. The result is to
lower the power output or take other actions to ensure the system remains safe
and efficient. The PL10s algorithm ties together different critical tasks needed for
energy and power management in a system, ensuring the power stays within safe
limits. The power limit set is valid for the duration of the 10-second time-window,
such that if the user was to continuously request for 10 seconds the maximum
power, equivalent to the power limit set, none of the safety limits would be crossed.
Similarly, the 30-second power limits algorithm implements the same concept but
instead it considers a longer, more conservative time-window of 30-seconds.

For each reference point in the 10-second window, the algorithm calculates the
square of the current and multiplies it by the cell resistance to compute the Joule
loss for that time step. The maximum allowable discharge and charge currents
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for the 1-second window are used to clamp the 10-second current limit, and the
same is done for clamping the 30-second power limit using the output of the PL10s.
The reference for the 30-second PI controller is then updated using the clamped
10-second current limit.

Overall, the algorithms manage the power limit references over 10-second and
30-second windows by calculating current limits, Joule losses, and updating indices
for the next time-step. The process ensures that the system stays within safe
operational limits, adjusting for factors like resistance and cumulative energy losses,
which are critical in managing power effectively in systems like the BMS.

2.4.2 State-of-Health

The state-of-health (SOH) is a comparison between the current condition of the
battery and its nominal condition defined in its specifications. A battery cell that
perfectly matches its specifications has a SOH of 100%. As the battery undergoes
multiple charge and discharge cycles it starts to deviate from its specification;
therefore, its SOH falls below 100%. A simple way to define the SOH of the battery
cell is the ratio between the capacity of the current cell to the capacity of a new
unused cell. As the battery ages its capacity decreases, in other words, the amount
of charge a cell can hold for a given OCV is reduced. The value of SOH for which
the battery must be discarded is arbitrary and depends on the user, but according
to IEEE standard 1188.1996, once a Li-ion battery’s SOH falls below 80% the
battery is no longer usable and must be replaced. Multiple factors influence the
SOH of a battery such as increase in cell resistance, decrease in capacity, number
of charge/discharge cycles, self-discharge rate, and simply the time elapsed since
the battery’s production date [8]. Figure 2.13 below shows the SOH modeled in
Simulink, showing the model inputs and outputs.

SOH is an important parameter to be considered within the BMS as it signals the
end of life of the battery and is strongly intertwined with the SOC; however, this
paper does not delve into the methodologies used for estimating the state of health.
Instead, it focuses on the EKF and Power Limits algorithms and their integration,
which will be discussed in detail in the next chapters.

24



State of the Art

SOH

SOH_ModelParams|

ESOH_Ten'p_K] -

| [CelCument] _>—

Figure 2.13: SOH algorithm modeled in Simulink
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Chapter 3

Code Generation and
Optimization

3.1 Code generation: Embedded coder

Embedded Coder® is one of MATLAB’s add-on products. It automatically gen-
erates C/C++ code from a model for developing platform-specific applications.
This automation eliminates the need for manual algorithm coding, reduces the
risk of coding errors, and ensures consistent code quality. It also allows for easy
reproduction of code, allowing for the optimization implemented to be tested easily.
Embedded Coder extends MATLAB Coder and Simulink Coder with advanced opti-
mizations for precise control of generated functions, files, and data. These optimiza-
tions improve code efficiency and facilitate integration. It employs processor-specific
optimizations and define code generation patterns to enhance code readability,
maintainability, and compliance with coding standards. The generated code can
be validated through rigorous testing, including Software-In-the-Loop (SIL) and
Processor-In-the-Loop (PIL) simulations. There is also the possibility to generate
comprehensive reports that include metrics on code size, stack usage and execution
time. Additionally, it utilizes code tracing capabilities, tracing the code back to
the simulated model to facilitate debugging and analysis. Additionally, it includes
complementary products to ensure compliance with industry standards such as
ISO 26262, MISRA C/C++, and AUTOSAR. Overall, it is useful in developing
production code that takes into account speed, simplicity and memory efficiency.
The embedded Real-Time target can be chosen by the user. In this thesis the
NUCLEO-f429ZI was selected and used as the development board for the applica-
tion.

Embedded Coder creates a build directory to store the generated source code, along
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with object files, a make-file, and other files produced during code generation. The
generated files are shown in Table 3.1.

Embedded Coder’s Build Directory

File Description

.C Contains the entry points for all code that implements
the model algorithm.

h Declares the model’s data structures and provides a

public interface to the model’s entry points and data
structures, including access to the real-time model
data structure via accessor macros.

private.h Holds local macros, local data required by the model
and subsystems, and any externally defined data im-
ported by the model. This file is included in the
generated source files when needed.

types.h Provides forward declarations for the real-time model
and parameter data structures, which may be neces-
sary for reusable function declarations.

rtwtypes.h Defines data types, structures, and macros required by
Embedded Coder, and is used by most other generated
code modules.

ert_ main.c A default example of a main program generated by
Embedded Coder.

Table 3.1: Embedded Coder’s Build Directory

3.1.1 Configuration parameters for code generation

To successfully generate code the model must be configured to meet code generation
requirements. First, the solver must be set to a fixed-step solver. In the configuration
parameters, embedded coder must be chosen as the target by selecting ert.tlc for
the system target file.

Additionally, based on the optimization objectives, certain optimization goals can
be prioritized by selecting them through the code generation advisor as shown in
Figure 3.1. In this example, MISRA C guidelines and execution efficiency were
chosen as the main objectives. MISRA C guidelines are guidelines set for software
development using C language. It is useful in producing a safe and reliable code,
protecting against language aspects that can affect the application of embedded
system. The code generation advisor then runs different checks and provides
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suggestions based on the selected objectives. Finally, you can choose to generate
code and build the model.

Code Generation Advisor
Analysis
Code Generation Objectives (System target file ert.tic)

Available objectives Selected objectives - prioritized

ROM efficiency MISRA C:2012 guidelines
RAM efficiency Execution efficiency

Traceability
Safety precaution I+
Debugging
Polyspace «

I»

+

Figure 3.1: Code optimization objectives

All the files generated within the build directory can be visualized in the code pane.
Code lines can be traced back to Simulink model elements. Modifications in the
model leading to modifications in the code will be highlighted, and the number of
modifications in each file will be visible between subsequent runs.

In the code mappings pane, inports, outports, signals, parameters and functions
can be visualized. Names of entry-point functions can be modified and different
signal storage classes can be selected. For instance, within the code mappings
when using ‘ImportedExtern’, the model private.h file declares the signal as an
external variable. This ensures that the extern declaration is accessible to other
files within the model. By defining model data externally, the generated code’s
memory footprint is reduced.

3.1.2 Code optimization objectives

One of the main objectives of code optimization is to reduce the execution time of
the algorithm. The execution time of a task is the time interval taken by the system
for the whole processing of this task between the start time and the completion
time. Minimizing execution time ensures that the BMS can process data and make
decisions such as detecting faults, controlling charging and discharging without
delays, which is vital for system stability. A faster algorithm allows the BMS to
respond more quickly to changes in battery conditions such as rapid changes in load.
In addition, the BMS is responsible for managing critical safety functions such as
preventing over-charging, over-discharging, and over-heating. Slower algorithms can
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introduce risks if the system fails to detect and respond to unsafe conditions quickly
enough. Reducing execution time ensures faster fault detection and mitigation,
reducing the likelihood of catastrophic battery failures. On the other hand, the
BMS is responsible for communication with other systems, performing diagnostics,
and logging data. Minimizing the execution time of algorithms allows the BMS
to handle multiple tasks without introducing delays or missing important events
while maintaining proper scheduling.

Code Generation Advisor

When preparing for code generation, it is important to consider how application
goals, like efficiency, execution time and debugging align with specific code gener-
ation settings. The Configuration Parameters settings control both the model’s
simulation behavior and the code that is generated.

The Code Generation Advisor, included in MATLAB, can be used to review the
model before code generation or as part of the process itself. When reviewing the
model in advance, you can choose which parts (model, subsystem, or referenced
model) the advisor will inspect. When reviewing during code generation, the entire
system is assessed. The advisor consults the ‘Recommended Settings Summary for
Model Configuration Parameters’ to determine parameter values that align with
the objectives.

By setting a code generation objective and running the Code Generation Advisor,
the advisor outlines guidance on meeting that objective. While the Advisor itself
doesn’t alter the code, it suggests model changes that can be implemented before
regenerating the code. After a model is modified and the code is regenerated, the
code generation advisor includes comments noting the set objectives, the checks
the advisor ran, and recommendations for optimizing parameters. Figure 3.2 shows
the Code Generation Advisor window for PL10s after it carried out the checks and
generated the recommended modifications.

Model Advisor

Another useful MATLAB tool is the Model Advisor that can be used to review
the model or subsystem for conditions and configuration settings that may lead
to inaccurate or inefficient simulations, helping to verify compliance with industry
standards and guidelines. Using the Model Advisor promotes consistency in
modeling practices across projects and teams.

After analyzing the model, the Model Advisor generates a report that highlights
suboptimal settings, modeling techniques, and provides suggested improvements
where applicable. For Embedded Coder, Model Advisor checks recommendations
for C/C++ production code, identifying blocks not ideal for deployment and
configuration parameters that may generate inefficient code.
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Figure 3.2: Code generation advisor

Overall, both the Code advisor and Model advisor were used to enhance the overall
development efficiency, meet code generation objectives, comply with industry
standards, detect potential errors and improve code quality and consistency across
projects. Each suggested change is meticulously evaluated and implemented while
preserving the algorithm’s underlying logic.

Code generation Report

When the option to generate a report is enabled, the Code generation report can be
generated along with the code generated by Embedded Coder as shown in Figure 3.3.
The Static Code Metrics report is a section included in the Code generation report.
It provides generated code statistics such as the number of files and lines of code
in each file, as well as the number of lines of code and stack usage per function.
It also includes information regarding the global constants in the generated code
and their size, in addition to the function metrics such as stack size, number of
inputs, number of outputs and number of locals. The Static Code Metrics report
is a useful tool in investigating how different methods of optimization impact the
code, in order to asses the applied optimizations and perform modifications on the
model before deploying the code implementation on the target.

Another valuable report that can is included within the code generation report is
the code interface report. This report serves as a cornerstone in streamlining the
integration process by thoroughly documenting the model’s entry-point functions
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and interface data. As depicted in Figure 3.4, the report details the function in-
terfaces, such as the model initialize, model step, and model terminate functions.

Static Code Metrics Report

The static code metrics report provides statistics of the generated code. Metrics are estimated from static analysis of the generated code using the C data types specified in the ‘Device detalls' section of the Configuration Parameter > Hardware
Implementation pane: char &, short 16, int 32, long 32, float 32, double 64, pointer 32 bits. If your model contains 2 Variant block, the Static Code Metrics Report does not cantain data for the inactive variant. Actual object code metrics might differ due
to target specific compiler and platform settings. Consult the Code Generation Advisor @ for options to improve code efficiency.
Table of Contents.

1. File Informatien

2. Global Variables

3. Function Information

1. File Information [hide]

-] Summary

Number of .c files : 1
Number of .h files: s
Unescfcode @ 515
Lines : 1,650

[-] File details

File Name Lines of Code Lines Generated On
386 883 12/17/2024 3:26 PM
£ s18 12/17/2024 3:26 PM
Y 6 150 12/17/2024 3:26 PM
rtmodelh 7 35 12/17/2024 3:26 PM
PL10s privateh 5 31 12/17/2024 3:26 PM.
BL1Os typesh 4 33 12/17/2024 3:26 PM
2. Global Variables [hide]
Global variables defined in the generated code.
Global Variable Size (bytes) Reads / Writes Reads / Writes in a Function
[+] BL10s DW 1928 156 148
[+]PL10s U b 3 13
[+1BL10s Y 2 6 6
[+]PL10s B 16 82 82

Figure 3.3: Static Code Metrics Report

2.1 Initialize Functions

Initialize entry-point functions implement startup behavior. In a model, Initialize Function blocks represent startup behavior explicitly.
PL10s_initialize
Initialization entry point of generated code

#include "PL1@s.h"
void PL1@s_initialize(void)

2.2 Terminate Functions
Terminate entry-point functions implement shutdown behavior. In a model, Terminate Function blocks represent shutdown behavior explicitly.
PL10s_terminate

Termination entry point of generated code
#include "PL1@s.h"
void PL1@s_terminste(void)

2.3 Periodic Functions

Periodic entry-point functions implement model behavior that occurs at a fixed sampling rate. For a rate-based model, the code generator produces ¢
model, Function Call Subsystem blocks that specify a sampling rate represent periodic functions.

PL10s_step

QOutput entry point of generated code. Must be called periodically, every 1 seconds.

#include "PL18s.h"
void PL1@s_step(void)

Figure 3.4: Code Interface Report
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3.2 Implementation of the code optimizations

This section delves into some of the optimization techniques applied to the generated
code, analyzing their impact on code footprint, memory usage, and execution time.
Each optimization technique is examined in detail, discussing its implementation
and the resulting trade-offs in terms of performance and resource consumption.

Memset to initialize float and doubles to 0.0

One of the code optimization methods used in Simulink involves enabling the use of
memset to initialize float and doubles to 0.0. This option in MATLAB controls how
the initialization of floating-point variables is handled when setting them to zero.
Firstly, memset is a standard library function in C/C++ used to set a block of
memory to a specific byte value, often zero. When applied to memory allocated for
float and double variables, it writes the zero-bit pattern across the entire memory
space used by those variables. For floating-point numbers, zero is represented by a
specific bit pattern (all bits set to zero). If this option is enabled, memset simply
fills the memory for float and double variables with this bit pattern (all zeroes),
initializing them as zero values directly, without additional code. When the option
is enabled, memset is used for setting memory for floating-point variables to zero,
which is faster because it does it in one step for the entire memory block. This
eliminates the need to generate extra initialization code for each floating-point
variable. In addition, this approach applies the same initialization regardless of
floating-point type, directly setting them to the zero-bit pattern without relying on
floating-point operations. Disabling this option makes the code generate explicit
initialization instructions for each floating-point variable. This means it writes 0.0
to each floating-point variable individually in code, which can add overhead and
reduce performance slightly, especially if there are many such variables. Explicit
initialization could also increase code size and might involve additional floating-
point operations, which are generally more costly than a simple memset in terms
of processing time.

Removing internal data zero initialization and root-level I/O zero ini-
tialization

Simulink’s configuration parameters also offer the option to remove internal data
zero initialization and to remove root-level I/O zero initialization. Internal data
includes variables or data within functions, subsystems, or blocks that are not
directly accessible from outside the model. Examples might include temporary
variables used for calculations, intermediate data, or internal state data within
the model. Root-Level I/O Data refers to the input and output data at the root
level of the model, which is often interfaced with external systems or components.
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Root-level 1/O data could include inputs coming into the model from external
sensors or controllers, as well as outputs that go from the model to other parts of
the system. By default, MATLAB initializes both internal data and root-level 1/O
data to zero for safety. This ensures that if any data is accidentally uninitialized,
it won’t contain unpredictable values, which could lead to unreliable or unsafe
behavior in the generated code; however, this might be a redundant process. In
many embedded systems, the entire memory (RAM) is cleared to zero during the
system’s boot process. If the hardware or environment already guarantees that all
memory starts at zero, explicitly setting values to zero in generated code becomes
redundant, as the data is already zeroed out before code execution. Removing
initialization code reduces the startup time, as the code no longer needs to iterate
over each variable to set it to zero leading to increased execution speed. This
is especially important in applications where initialization time impacts system
performance, like the BMS which operates as a real-time systems. In addition,
removing unnecessary initialization code reduces the size of the generated code
which preserves the memory resources.

The result of removing root-level 1/O zero initialization is shown in Figure 3.5.
The lines highlighted in red indicate that the lines have been eliminated due to
the optimization implemented. As a result, the lines that use the memset function
to set the entire memory block of the input and the output structures to zero is
removed.

Similarly, the result of removing internal data zero initialization is shown in
Figure 3.6. The variable xkalman_DW is used to store internal data and line 498 is
writing the value zero to each byte of the memory block using the memset function.
This line is also removed as part of the optimization.

In STM32 the BSS section of memory is initialized. The BSS section is a memory
region allocated for uninitialized global and static variables. The reset handler
iterates through this section and sets each memory location to zero. The linker
script, a configuration file used by the linker during the build process, defines the
memory layout of the program. It specifies the location of the BSS section in RAM
and ensures that it is placed in a region that is cleared during the reset process.

Data type support

A quick way to further optimize the code is to remove unnecessary data support
through the configuration parameters in Simulink as shown in Figure 3.7. There is
the option to include support for various data types. These options let you enable
or suppress the generation of floating-point, non-finite, and complex numbers. Since
the model requires the generation of floating-point numbers only, the other options
can be deselected. Support for non-finite numbers option is disabled as well as
support for complex numbers.
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void Kalman_initialize(veid)
{
* Registration code *
* external inputs
(void)memset(&xKalman_U, @, sizeof(Extu_kalman_t)
*= external outputs *
(void)memset(&xKalman_Y, @, sizeof(ExtY_kalman_t));

Figure 3.5: Removing root-level I/O initialization

vold Kalman_initialize(weoid

r
L

= T —

rtmSetErrorstatus(xKalman_M, (MULL));

(void) memset((void *)&xKalman_DW, @,

sizeof(DW_kKalman

Figure 3.6: Removing internal data zero initialization

Other options include support for absolute and continuous time. Certain blocks
require the value of either absolute time or elapsed time such as time elapsed
between two trigger events. These related options determine how the ERT target
provides absolute or elapsed time values to blocks in the model. By default, the
ERT target generates and maintains integer counters, if a block in the model
requires absolute or elapsed time values. The target does not generate the counters
if model blocks do not use time values. However, in this case none of the algorithms
require absolute time support.

If support for the continuous-time option is selected, the ERT target supports code
generation for continuous-time blocks. By default, this option is deselected, and
the build process generates an error if any continuous-time blocks are present in
the model. In this case, none of the models contain continuous-time blocks. For
example, the integrator blocks used in power limits are all discrete-time integrator
blocks; therefore, this option can be safely disabled. Removing unnecessary data
support results in a more efficient code, since the generated code will not need to
allocate memory for the counters or perform the necessary calculations to update
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them.

Software environment

Code replacement libraries: None Select
Shared code placement Shared location v
Support: |¢ floating-point numbers non-finite numbers complex numbers

absolute time continuous time variable-size signals

Figure 3.7: Configuration parameters section showing the data type supports
selected

Conditional branch execution

In MATLAB Simulink, the "Conditional input branch execution" optimization
option enhances the efficiency of models that use 'Switch blocks” by selectively
executing only the required input branch. Simulink only evaluates the blocks
required to compute the control input and the data input that will be selected by
the Switch block at each time step. Based on the control input’s value, Simulink
determines which branch to execute and skips the other branches, saving computa-
tional resources.

When ‘Conditional Input Branch Execution is enabled’, Simulink generates code
that only computes the active branches feeding into the switch block, based on
the control signal. This means that in the generated code, only the necessary
calculations are performed instead of computing both branches and then discard-
ing the unused one. For example, without this optimization, the generated code
would likely include both branches, calculating both paths every time the code
runs through that section, even though only one branch is actually needed. With
conditional execution enabled, the generated code will include logic to skip the
unselected branches, reducing the computational load and making the code more
efficient.

By only including code for the branch that is actively selected, this optimization
reduces the code execution time since fewer instructions are executed. Additionally,
if certain branches contain complex calculations or function calls, excluding them
from the generated code may lead to a reduction in code size as well. For embedded
systems or real-time applications, where both execution speed and memory usage
are critical, this can be a significant advantage.

This optimization has some potential trade-offs. While enabling this option usually
improves efficiency, there are cases where it may have limitations. For instance,
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if the model is designed to have side effects in each branch such as updates to
internal states or variables, conditional branch execution may not execute those
side effects in inactive branches. Therefore, conditional branch execution should be
carefully tested to ensure that the behavior meets application requirements.

Signal storage reuse

The ‘Signal storage reuse’ option in the optimization settings allows for more
efficient memory usage in the generated code by reusing memory buffers for signals.
This setting can have a significant impact on the memory usage of the generated
code. Signal storage reuse allows the code generator to reuse memory locations
for intermediate results and block outputs where possible. Instead of allocating
separate memory for every signal or block output, memory can be shared across
signals that are not simultaneously active, reducing overall memory consumption.
This can be especially beneficial in embedded systems where memory is limited, as
it minimizes the amount of RAM used for signal storage.

Selecting ‘Signal storage reuse’ also enables other options such as ‘local block
outputs’, ‘Reuse local block outputs’, ‘Reuse global block outputs’, and ‘Eliminate
superfluous local variables (expression folding). When the ’Local block output’
option is enabled, the code generator declares block output signals as local variables
within functions rather than global variables. Local variables are generally preferred
in embedded systems, as they reduce global memory usage and can lead to faster
access times, since local variables are typically allocated on the stack.

With "Reuse local block outputs’ option selected, the code generator reuses memory
for local signals as much as possible. In other words, a single memory location
can be shared by multiple signals, provided they are not used concurrently. This
leads to a reduction in the number of unique memory locations needed, lower-
ing RAM requirements. Similarly, with 'Reuse global block outputs’, the code
generator reuses memory for global signals whenever it is possible by sharing mem-
ory locations between signals. Figure 3.8 shows the effect that this optimization
has on the code. The PL10s source file depicts how local block outputs such as
'PL10s_ Y.DCHG10sNotHold’ is enabled and reused throughout the code.

On the other hand, ‘Expression folding’ is an optimization technique that eliminates
intermediate variables when they are unnecessary. Instead of creating separate
variables for each part of a computation, it combines multiple expressions into a
single calculation. This reduces the number of temporary variables needed, further
optimizing memory usage and simplifying the generated code.

Reusing local variables and minimizing global memory usage allows the code to
execute faster. Local variables, especially those stored in registers or on the stack,
can be accessed faster than global variables. It also reduces the number of in-
structions in the generated code, potentially making the code execution faster
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since fewer operations are needed to compute results. Furthermore, when less
memory is used, the number of times the memory needs to be accessed is reduced.
This results in improved performance, especially in RAM-constrained environments.

96= /* MinMax: '<Root>/Miné' incorporates:

97 * Discretelntegrator: ‘<S44>/Integrator’

98 * Gain: "<S49>/Proportional Gain'

99 * Sum: "<S53>/Sum’

Lee */

iK=X} PL1@s_Y.DCHG1@sNotHold = ©.02F * rtb_Integrator_b + PL1@s_DW.Integrator_DSTATE;
ez

Le3 /* DeadZone: '<S36>/DeadZone’ */

ea  if (PL1l@s_Y.DCHGl@sNotHold > 1.8F) {

fLes rtb_Integrator_b = PL1@s_Y.DCHG1@sNotHold - 1.0F;
[L1e6

Le7e /* Switch: '<S34>/Switchl' incorporates:

[Les * Constant: '<S34>/Constant’

les */

fie tmp = 1;

11 } else {

12 if (PL1@s_Y.DCHG1@sNotHold >= ©.8F) {

113 rtb_Integrator_b = @.6F;

114 } else {

115 rtb_Integrator_b = PL1@s_Y.DCHG1@sNotHold;
16 }

pi7

118 /* Switch: '<S34>/Switchl' incorporates:

11s * Constant: '<S34>/Constant2’

L2e */

21 tmp = -1;

n2z }

Figure 3.8: Enabling and reusing local block outputs in PL10s source file

Block reduction

Enabling ‘Block Reduction’ in Simulink’s configuration parameters helps stream-
line the model by optimizing specific types of blocks and removing unnecessary
operations. This reduces memory usage, enhances execution speed, and improves
the efficiency of the generated code, without altering the appearance or behav-
ior of the model itself. This includes removal of ‘Redundant Type Conversions’,
‘Dead Code Elimination’ and removal of ‘Fast-to-Slow Rate Transition Blocks’” in a
single-tasking system. Redundant type conversions occur when a value is converted
from one data type to another and then back to the original type without any real
benefit. Simulink identifies these unnecessary type conversions and removes them,
reducing the number of operations required to execute the model. This results in
fewer CPU cycles and reduced memory footprint, meaning faster and more compact
code that improves execution efficiency. With dead code elimination, the model is
analyzed to detect blocks or segments that have no effect on the output and thus,
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they are removed from both the simulation and generated code. Consequently, this
produces a leaner code.

As for the ‘Rate transition’ blocks, they are typically used in multitasking systems
to manage data integrity when signals are transferred between blocks operating at
different sample rates. However, in a single-tasking system (where all operations
run at the same rate), these blocks are redundant. Simulink identifies and removes
fast-to-slow rate transition blocks that are unnecessary in a single-tasking system
since the rate synchronization is already inherent in the single-tasking operation.
This reduces the number of function calls and eliminates unnecessary buffer alloca-
tions associated with rate transitions, resulting in faster code execution and lower
memory requirements [4].

Tunable Parameters

Tunable parameters allow modification of parameter values during execution,
without having to rebuild the code or re-flash the hardware. This is especially
useful for adjusting calibration values and other parameters in real time while the
system is running. On the flip side, the values of inlined parameters are hardcoded
into the generated code. To modify any parameter, the code must be rebuilt and
regenerated, which can be time consuming and inconvenient during testing and
application. For instance, having the parameter related to the battery pack capacity
set to “tunable”; allows the pack capacity value to be updated in real time without
having to rebuild the code. Setting the default parameter behavior to tunable,
causes the model parameters to appear in the generated code as global variables.
This allows the parameters to be accessed by all parts of the program, not only
inside a particular function. The parameters are then packed in a unique structure.
Furthermore, the parameters are assigned to their values in a separate data file.
In a nutshell, the usage of tunable parameters provides significant advantages in
terms of flexibility, real-time tuning and debugging. It is especially beneficial during
testing and calibration stages, or when the system behavior needs to be modified
without recompiling the code.

3.2.1 Data management and version control
Data Dictionary

A great tool that proved to be useful in managing data and storing configurations
for several Simulink models was the data dictionary. Data dictionaries can store
global design data such as signals, parameters, or global data objects belonging
to several Simulink models that use the base workspace. They can also store the
model configurations which can then allow multiple models to easily share the same
configurations.
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The use of a data dictionary in Simulink offers several advantages. It helps prevent
clutter and overwriting of variables in the base workspace by keeping the variables
organized and separate. Additionally, it allows for sourcing data from different
dictionaries for different models, eliminating conflicts that may arise from identical
variable names. The data dictionary also provides built-in functionality for tracking
changes and comparing different versions, making it easier to manage modifications.
Furthermore, by referencing other data dictionaries, it supports the creation of a
data hierarchy, improving both readability and memory efficiency.

Simulink also offers a robust mechanism for managing and sharing configuration
parameters by using Data Dictionaries. Freestanding configuration sets, stored in
the Data Dictionary, can be referenced by multiple models, allowing for centralized
parameter management and easy updates. This approach facilitates hierarchical
configuration management within models, enabling inheritance of configurations
down the model hierarchy. Furthermore, by storing configuration sets within
the Data Dictionary, users can change the parameter values in the configuration
modifying the data dictionary file. Models that are connected to the data dictionary
and its referenced configuration use the modified values without altering the
model files themselves. This flexibility enhances model reusability and simplifies
parameter updates across multiple projects. Figure 3.9 shows one of the referenced
configurations stored in Simulink data dictionary. It is set to “active” and is shared
by several models.

ﬁ Contents of: Kalman_cc/Configurations (only)  Filter Contents

Column View: Configurations ~ Show Details 2object(s) ¥

@ Configuration
|@] Reference (Active)

Figure 3.9: Simulink referenced configuration activated

Git and GitHub

One of the tools that were crucial in management and code development were
Git and GitHub. GIT plays a pivotal role in version control, collaborative coding,
and efficient project management. Git is an open-source version control tool that
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can be installed locally on a personal computer. Git is useful in keeping track
of the changes in code at specific points of time, thus creating a version history
that maps the software development process. The code can also be shared with
multiple users working on the same project, and all authorized users can keep track
of the code in history and modify it asynchronously. GitHub on the other hand,
is a service built to run Git in the cloud. GitHub allows users to create remote,
public-facing repositories on the cloud. A repository, or "repo" for short, is the
coding project files and the revision history for each file. GitHub allows the user
to gain user authentication tools. This prevents remote users from accessing the
local Git installation preventing them from taking control over the repository and
commit history.

As an example, a repository on GitHub can be created by the user to store all the
files, including current and past versions, then other collaborators working on the
project can gain access to this ‘repo’ as well. Each user can create a branch (a
separate development area), where the collaborators can work independently. Once
the work is done, collaborators can make a pull request asking to merge the branches
with the main branch. A very useful tool that aided the process of managing git
repositories is Git extensions, shown in Figure 3.10. It enables the user to commit
changes, manage branching and merging, track changes and compare source code [9].

I 13 masterl LW W lTadehERY GNU tools for ARM processor added

removed variables in script unmatched in dictionary

configurations optimized,added to beond_dictionary
master | Fix compatibility errors due to lack of dictionary
SIL/PIL| | origin/SIL/PIL| SIL/PIL configuration settings set
kalman_dictionary | Thursday_9_5

Code generation configurations modified

origin/kalman_dictionary | Optimizations following Code Generation Advisor

Figure 3.10: Git extensions branches
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Chapter 4

System Architecture

4.1 Laboratory test bench

By taking a step backward and viewing things from a broader perspective, we
can take a look at the system architecture. The system is made up of several
electrical components both at the hardware and software levels. Starting with the
main component, that is the battery pack managed and controlled by the BMS,
programmed with the necessary firmware. Moving on to other essential supporting
components such as the slave board and the shunt sensor. Finally, the components
related to the interface system consisting of the CAN bus as well as the SPI for
managing communication between components within the system.

Additionally, for ensuring safe conditions and correct functioning the system ar-
chitecture comprises of multiple contactors, specifically it consists of the negative
contactor, the positive contactor and the pre-charge contactor, as well as an emer-
gency button that serves as a safety-net for opening the interlock. The contactors
are connected to the inverter that delivers the requested current to the load. The
current load is controlled via PC through a software designed by BeonD, which
enables configuration of any desired current profile to be requested from or delivered
to the battery. Figure 4.1 depicts part of the setup of the test bench located in
BALF laboratory, showcasing some of the components that comprise the system
including the BMS, contactors, safety-net and shunt sensor.

4.1.1 The battery pack

Recalling that the goal of this thesis is to integrate model-based algorithms and
deploy them on a custom BMS, this brings us to the most essential and primary
component within the system architecture, that is the battery pack. The battery
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Figure 4.1: BMS test benches in BALF

used for carrying out the testing and validation in BALF laboratory was a lithium-
ion battery pack made up of 14 series and 2 parallel battery cells as shown in
Figure 4.2.

Each battery cell stores and discharges electrical energy through chemical reactions,
converting chemical energy into electrical energy and vice versa when discharging.
Cells can provide a range of voltages that vary depending on its SOC, temperature
and is limited by the cell’s nominal voltage. Every cell is designed with a specific
nominal charge capacity, that is the quantity of charge in ampere-hours that it can
hold.

To obtain a high-power battery, both the current and voltage in the battery pack
must be high, while taking into account both safety and the economic aspect. The
voltage range of a cell depends on the chemistry of the cell; therefore, it is fixed.
Consequently, a high voltage battery pack would consist of multiple cells in series.
Approximately, the battery pack voltage can be calculated as vpger = Ns X Vgenr,
where N, is the number of cells in series. Regarding the current, each cell is
designed to operate under a specific current limit. So, placing cells in parallel
makes the pack current the sum of currents passing through cells in parallel, such
as Ipgck = Np X leey, Wwhere N, is the number of cells in parallel. The choice of the
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number of cells in parallel versus in series depends on the power requirements.

Figure 4.2: BALF’s test bench lithium-ion battery packs connected to the slave
boards

4.1.2 Slave board

The slave board (Figure 4.3) plays a crucial role in monitoring the health and
performance of individual cells within the battery pack. Connected directly to
the battery, it measures up to 24 cell voltages in series, enabling precise voltage
monitoring. A passive balancing circuit is integrated into the slave to mitigate
voltage imbalances between cells, ensuring optimal performance and extending
battery life. The slave transmits this critical cell data to the Master BMS via an
isolated SPI channel, ensuring secure and reliable communication. In addition to
voltage monitoring, the slave also monitors cell temperatures and participates in
cell balancing processes as directed by the Master BMS. By continuously gathering
and transmitting this detailed cell-level information, the slave empowers the Master
BMS to make informed decisions and optimize the overall battery management
strategy [10].
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Figure 4.3: Slave board connected to the battery pack’s cells

4.1.3 Shunt sensor

A shunt sensor is a precise, low-resistance component used to measure accurately
the current. For precise measurements of current and voltage at critical points
within the battery system such as across the contactors, the Isabellenhuette shunt
sensor depicted in Figure 4.4 is used. The Isabellenhuette shunt sensor is a highly
accurate and reliable device specifically designed for precise current and voltage
measurement. The sensor utilizes a high-precision shunt resistor to measure the
voltage drop across it, which is directly proportional to the current flowing through
the circuit. This enables accurate current measurement, even at low current levels.
Current shunts have several important characteristics; for instance, they do not
introduce an offset at zero current, minimizing drift in measurements, though
offsets may arise from accompanying electronics. On the downside, temperature
variations can alter the shunt’s resistance affecting accuracy, and it also results in
minor energy losses. Therefore, the sensor incorporates temperature compensation
circuitry to ensure accurate measurements across a wide operating temperature
range. This is crucial in automotive applications where temperature fluctuations
can significantly impact sensor performance [11].

The sensor is also equipped with galvanic isolation, which prevents potential ground
loops and noise interference, ensuring accurate and reliable measurements. The
sensor can transmit the measured current and voltage values, as well as other
relevant data, to the microcontroller over the CAN bus while using a 16-bit ADC
for generating digital signals [12].
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Figure 4.4: Isabellenhuette shunt sensor

4.1.4 Master and slave controller

The Master Battery Management System (Master BMS) serves as the central hub
for the entire battery pack, overseeing its operation and ensuring safe and efficient
performance. It houses the core algorithms responsible for calculating critical
battery parameters such as State of Charge (SOC), State of Health (SOH), and
Power Limits. These algorithms enable the BMS to accurately assess the battery’s
current condition and predict its future behavior. Additionally, the Master BMS
controls vital components like battery chargers and contactors, optimizing their
operation to maintain the battery within its safe operating window. By continuously
monitoring and adjusting these parameters, the Master BMS safeguards the battery
from potential hazards such as over-charging, over-discharging, and excessive
temperature fluctuations.

The PCB (Figure 4.5) is designed by BeonD to play the role of the master BMS. It
incorporates the STM32 NUCLEO-F429Z1 board that houses the main processing
unit. It is a powerful and versatile device that offers a wide range of features and
benefits for automotive BMS applications. It boasts a powerful ARM Cortex-M4
core, enabling efficient execution of complex algorithms and real-time processing
of battery data. In addition, it provides a rich array of communication interfaces,
including CAN, SPI, I12C, USART, and USB, facilitating seamless communication
with various sensors, actuators, and other BMS components [13]. The integrated
12-bit ADCs enable accurate measurement of cell voltages, temperatures, and other
analog signals, crucial for precise battery monitoring. It is also equipped with
multiple timers and counters providing precise timing control for various tasks.
From the security and protection perspective, the STM32 incorporates secure
memory and cryptographic hardware accelerators, ensuring data integrity and
protection against unauthorized access.

In a nutshell, the STM32 features high performance, flexibility, robustness and
security. By leveraging the capabilities of this microcontroller, a robust and efficient

BMS can be developed ensuring safe and reliable operation of the battery pack
[14].
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Figure 4.5: BEOND’s PCB incorporating the master and slave controllers

4.1.5 Contactors and safety net

Systems operating at higher voltages often encounter a significant challenge during
initial power-up. This phenomenon is known as inrush current, and it is particularly
pronounced in circuits with substantial capacitive loads. Inrush current can stress
or even damage components if not properly managed. This issue is particularly
critical in modern EVs, which operate at high voltages. Frequent on/off cycles
throughout the day, characteristic of EV operation, exacerbate this problem by
repeatedly subjecting the system to inrush currents.

The standard approach to mitigating inrush current is pre-charging. This technique
aims to safeguard electrical and electronic components from damage, ensuring
the long-term reliability and trouble-free operation of the vehicle and its systems.
By preventing excessive current surges, pre-charging reduces the risk of safety
hazards such as fire or electric shock. Furthermore, pre-charging creates a more
stable environment for diagnostics allowing for early detection of potential problems
before they escalate into more serious damage. As voltage rises to reach a steady
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state, pre-charging is no longer needed. It can be taken out of the circuit, normally
through some automatic method such as through a high-current relay such as a
contactor that can disable the system when required [15].

The contactors within the battery are orchestrated by the BMS. The pre-charge
circuit consists of a separate, smaller contactor connected in series with a resistor.
These two components are then wired in parallel with the main contactor, along the
positive side as shown in Figure 4.6. The resistor’s role is to make the charging of
the capacitor more gradual; therefore, allowing the voltage to rise relatively slowly
and in a controlled manner. Once the voltage reaches steady state, the pre-charge
is disabled.

The process in detail is as follows: Initially, the battery pack is disconnected from
the load with all contactors in the open position. The negative contactor is activated
first, connecting the battery pack’s negative terminal to the load’s negative terminal.
Subsequently, the pre-charge contactor is activated. This connects a pre-charge
resistor in series, limiting the initial current flow and allowing the battery pack to
safely charge the capacitive load. Once the voltage difference between nodes V2
and V1 has sufficiently decreased within an acceptable time frame, and without ex-
ceeding voltage or temperature limits, the BMS closes the positive contactor. This
directly connects the positive terminal of the battery pack to the load’s positive ter-
minal, bypassing the pre-charge resistor. Finally, the pre-charge contactor is opened.

PreChg Contactor

R PreChg

+Contactor

BATTERY

o~ o

-Contactor

Figure 4.6: Pre-charge circuit
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Chapter 5

Integration Phase

To successfully integrate the algorithms into the BMS it is crucial to have a clear
understanding of the module structure and the interactions between the different
layers of the system. A thorough analysis of the software architecture, particularly
the application layer, is essential to identify and interpret the source code files that
form the foundation of the system. Part of the integration process involves locating
functions, structures, inputs and outputs, as well as understanding the role of the
CAN bus in facilitating communication. Additionally, it is important to study
how the operating system manages code execution and task scheduling. Careful
planning and implementation of the source (.c) and header (.h) files are required to
ensure proper initialization, execution, and abstraction of data. These files serve to
connect algorithm inputs and outputs, coordinate their operation within the BMS,
and ultimately transmit results over the CAN network for testing and validation,
confirming that the algorithms have been seamlessly and effectively integrated into
the system.

5.1 Module Structure

The module structure (Figure 5.1) serves various purposes in organizing and stream-
lining the software development process. The LLD/HAL (Low-Level Driver/Hard-
ware Abstraction Layer) provides a standardized interface to the hardware, isolating
higher-level software from hardware-specific details, enabling portability across
different platforms, and handling direct interactions with hardware peripherals. The
MCAL (Microcontroller Abstraction Layer) offers a standardized API (Application
Programming Interface) to microcontroller peripherals, ensuring consistency across
different microcontrollers and facilitating migration between families by abstracting
peripheral controls. This includes drivers for standard peripherals like GPIO, ADC,
PWM, and communication interfaces like CAN, SPI and UART.
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The Service layer handles key functionalities such as CAN (Controller Area Net-
work) for communication over the CAN bus, DIAG (Diagnostics) for implementing
diagnostic protocols like UDS (Unified Diagnostic Service), and NvM (Non-volatile
Memory) for managing long-term data storage in the non-volatile memory, ensuring
persistence across power cycles. The Devices section provides drivers for complex
devices that require specialized handling, such as sensors and actuators, and offers
APIs that abstract these complexities. The Configuration section manages system
and module configuration parameters, allowing customization and optimization for
specific use cases. It typically includes tools for generating configuration files.
Finally, the Application layer consists of Algo (Algorithms), which implement core
logic and data processing, and FSM (Finite State Machine), which models and
manages the application’s operational states, ensuring predictable system behavior.
This modular and organized structure contributes to a scalable and maintainable
software architecture.

Module Structure

Application Configuration
Algo-FSM

Devices Service

Complex drivers CAN, Diagnostics, NvM

MCAL — Micro controller abstraction layer

LLD/HAL - COMPONENTS

Figure 5.1: Module Structure

5.2 The code-base (BMS firmware)

The code-base is a collection of source code used to build the software system
written in C language. Most of the code built is for the master BMS. It is made up
of the repo/libraries that are mostly written by human programmers. It contains
the ‘¢’ and “h’ files which provide general access to the algorithm and not unrelated
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to the architecture or the battery. The ‘cfg.c’ and ‘cfg.h’ files on the other hand
are where the solution is adapted to the application.

To manage the code-base and the task scheduling the operating system FreeRTOS
was used. FreeRTOS is the real-time operating system kernel used for embedded
devices and is equipped with a scheduler. Tasks are created and are periodically
called; each assigned a different priority. Tasks are assigned for the execution of
every algorithm. Certain tasks are used to measure execution times, while other
tasks are responsible for the CAN bus.

The code-base is managed using the development platform STM32CubelDE with
the help of the graphical tool STM32CubeMX that facilitates the configuration of
STM32 microcontrollers and microprocessors. The BMS is then programmed using
the STM32Cube programmer.

The goal of the integration phase is to carefully integrate the code generated
for the model-based algorithms into the already existing code-base in a strategic
manner such that the algorithms function in accord with the already existing BMS
firmware allowing smooth flow of information in and out of the algorithms while
simultaneously handling errors.

5.3 Integration within BeonD’s BMS

As part of the integration phase, several C-language source files were developed
to embed the model-based algorithms into the existing BMS firmware. The hand-
written .c and .h files were designed to contribute to the structure and functionality
of the software system. To enable seamless integration of algorithms such as the
Extended Kalman Filter and the Power Limits algorithm, a series of files were
implemented. These files serve as interfaces between the algorithmic models and
the broader BMS infrastructure, encapsulating initialization, parameter handling,
fault detection, and CAN communication. By abstracting the logic of the algorithm
and ensuring modular and maintainable code, these files played a critical role
in bridging the gap between model-based development and embedded software
implementation.

5.3.1 The Wrapper files

The wrapper files are part of the code-base and are handwritten in C. They serve
as a crucial layer of abstraction and management within the embedded system.
It is designed to encapsulate the core functionality of specific modules, such as
the EKF for SOC estimation and the power limits algorithms. The wrapper file
acts as an interface between the algorithm and the rest of the BMS system. It
handles initialization, parameter updates, and fault detection, while also ensuring
data persistence and providing debugging capabilities. It is also useful in providing
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a structured interface for managing and controlling algorithms and integrating
them with other system components and ensuring safe battery operation. In
essence, these wrapper files are an essential part of integration as they enhance
code modularity, improve maintainability, and simplify system integration by
encapsulating complex functionalities and providing well-defined interfaces. The
specific wrapper files within the code-base that were written for the purpose of
integrating the model-based algorithms are discussed in detail in this section.

Wrapper file: BCM

The purpose of the wrapper file for the EKF, named BCM file, is to monitor and
manage battery state parameters such as State of Charge (SOC), cell voltage,
temperature, and pack capacity. Most importantly it includes the initialization
function, which initializes the EKF model, as well as the main function. The main
function operates as a state machine with phases for initialization, operational
checks, normal operation, debug, and an idle state. The function evaluates battery
parameters like voltage, current, and temperature, ensuring safe conditions. It
updates SOC, adjusts system parameters, and detects faults such as over-voltage
and under-temperature. In normal operation, it processes SOC updates and persists
them in memory. In debug mode it supports testing. In addition, the file handles
boundary checks for voltage, temperature, and SOC values. It uses real-time cell
data to compute SOC via the step function and stores results in EEPROM, a type of
non-volatile ROM, for persistent tracking. The debugging outputs are transmitted
via CAN, to be visualized and monitored using the software tool CANalyzer.

The file starts by setting the Kalman Filter’s temperature mode and calling the
functions that initialize the SOC and the overall battery pack’s capacity to prepare
for the SOC estimation process. It then updates the battery’s current measurement
and based on the current flow direction (charging or discharging), the cell voltage
and temperature are set accordingly. During discharging, the minimum cell voltage
is used, while during charging, the maximum cell voltage is used. These values are
obtained via the slave source code files. If the system is not in debug mode, normal
operations are followed. However, if debug mode is enabled, a timeout is set, and
when it expires, debug mode is deactivated. This allows for testing and diagnostics
without interference with normal operations.

Next a state machine is used for system states. A function is set to use a state
machine to manage different operational states of the system:

1. The uninitialized state: The system initializes SOC using data from
EEPROM and checks the state of the battery’s voltage, SOC, and other
parameters to transition to a proper initialization state.
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2. The operational check state: The system ensures all battery parameters
are within valid ranges (e.g., voltage, temperature, SOC) and transitions to
operational mode or debug mode if required.

3. The operational state: The Kalman filter is called by executing its step
function to update the SOC estimate using the latest battery data. The SOC
and OCV values are also stored in EEPROM.

4. The debug state: Similar checks are performed, but the system remains in
a diagnostic mode for debugging purposes.

The Kalman step function is invoked in both operational and debug modes to
perform the core Kalman filter algorithm, which refines the SOC estimate using
current measurements and other data points. The SOC is updated and saved
periodically based on the Kalman filter’s output. The system ensures the SOC
stays within defined limits, and if not, appropriate actions are taken (e.g., under
or over-voltage conditions trigger safety or corrective mechanisms). Finally, the
function responsible for CAN Communication sends debug information via the CAN
bus, including state information, voltage errors, SOC, and other critical parameters
for remote monitoring or diagnostics. The BCM file combines real-time battery
data, a state machine for operational checks, and a Kalman filter to accurately
estimate and manage the SOC of a battery pack, with the ability to communicate
this data over a CAN bus for integration into a larger system.

Wrapper file: task__eng

The ‘task eng’ wrapper file purpose is to manage periodic tasks, diagnostics,
and CAN communication for an embedded system using FreeRTOS. It defines
several periodic tasks (10ms, 100 ms etc..) for operations like SOC calculation,
diagnostics, insulation monitoring, and power limit management. The CAN-related
tasks handle message transmission, reception, and error reporting across CAN1
and CAN2. The file also includes utilities for calculating task execution times,
monitoring system performance, and dynamically enabling or disabling specific
features such as diagnostics. It also facilitates runtime debugging by sending task
metrics such as execution time and stack usage over CAN, ensuring robust real-time
performance monitoring.

Wrapper file: PL10s_ wrap

The wrapper file for the PL10s contains several functions and structures designed
to manage and control the 10-second power limits algorithms for charging and
discharging currents in a Battery Management System (BMS). It integrates various
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libraries and headers for CAN communication, calibration, mathematical opera-
tions, and power limit management. The file initializes and runs the power limit
model, processes inputs such as current, charge, discharge, and equivalent resistance.
It outputs clamped charging and discharging limits to ensure they stay within
predefined safety thresholds.

The main functions include the initialization function, input processing and execu-
tion of the step model as well as setting and clamping output limits for charging
and discharging. The model calculates charging and discharging limits, clamping
them based on predefined boundaries. Functions are used to manage publishing
these limits in the structure used to store the available current value and sending
relevant data over CAN communication.

Additionally, the file includes functions to set and retrieve values for the inputs
and outputs, as well as utility functions for managing limits over a 10-second win-
dow, incorporating calibration constants. Overall, the wrapper provides a robust
interface for managing and monitoring power limits while ensuring safe battery
operation.

5.4 CAN bus

CAN bus (Controller Area Network communication bus) is a robust and reliable
communication protocol that serves to manage the interconnection in vehicles
between electronic components. CAN is equipped with differential signaling which
provides noise immunity. Each node interconnected along the CAN bus has a
unique identifier to determine the priority and content of the message. In addition,
CAN makes use of bit-wise arbitration to determine the priority of the message. In
this section, the role of CAN bus in the integration and testing phase is discussed
in detail.

5.4.1 The development process of CAN

The development process of CAN proceeds through several key phases, each fo-
cused on distinct aspects of network design, hardware implementation, coding, and
validation to ensure efficient and reliable communication across the network.

In the network design phase, the configuration of CAN nodes is established, in-
cluding defining the total number of nodes, communication parameters, and CAN
message specifications. CAN messages and signal definitions are typically specified
using tools like Vector CANdb++, which centralizes message information in a
database to maintain consistency across nodes and simplify network setup.
During the hardware design phase, decisions are made about the data-link layer and
physical layer implementation. This includes setting the parameters for physical
wiring, termination resistance, and bit timing. Choices made in this phase directly
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affect how signals are interpreted and transmitted over the CAN bus.

The coding phase encompasses software-level implementation details for managing
CAN transmission and reception. Transmission can follow either a message-based
approach, where data is sent as entire messages, or a signal-based approach, which
focuses on specific signals within messages. Reception management can be handled
by either polling or interrupts. Polling involves the software periodically querying
the CAN controller to check for incoming messages. In contrast, interrupt-driven
reception allows the CAN controller to notify the ECU immediately when a mes-
sage arrives, suspending other tasks if necessary. Additionally, reception can be
configured as filtered or unfiltered, where filtered reception allows only specific
messages to be received based on predefined criteria, thereby reducing processing
load by discarding irrelevant messages.

Finally, the validation phase ensures the network’s functionality through extensive
testing. At the node level, each individual node’s communication capability is
verified. At the network level, tests confirm that all nodes interact seamlessly within
the network. For validation, tools like Vector CANalyzer are commonly used for
unit and system testing, allowing engineers to monitor and simulate communication
on the CAN network.

The non-destructive CSMA /CA arbitration

In a CAN bus system, the non-destructive CSMA/CA (Carrier Sense Multiple
Access with Collision Avoidance) arbitration or content-based arbitration is a
method used to ensure that multiple nodes (devices) can communicate on the same
bus without data loss or corruption due to collisions. This mechanism allows nodes
to arbitrate for access to the bus without causing interference with each other.
Before sending a message, a node will sense whether the CAN bus is free or busy.
If the bus is free, the node will attempt to transmit its message. If the bus is busy,
the node waits until the bus becomes available. Since all nodes have equal access to
the bus, they can attempt to send messages once they detect that the bus is free.
This is what allows multiple nodes to share the same communication medium. If
multiple nodes attempt to send messages at the same time, CAN uses an arbitration
process based on the message identifiers (IDs) to determine which node gets to
transmit. The arbitration process is non-destructive, meaning that even if two
or more nodes start transmitting simultaneously, only the node with the highest
priority (the lowest message ID) will continue to transmit, and the others will back
off. Each node transmits its message, and the CAN bus compares the bits of the
message IDs bit by bit. As each node transmits, if it detects that a dominant
bit (logical ‘0’) has been transmitted by another node when it was trying to send
a recessive bit (logical ‘17), it will stop transmitting, allowing the node with the
higher-priority message to continue sending.
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CAN messages have a message identifier that specifies the content of the message
and its priority. The lowest message identifier has the highest priority. The
arbitration process is non-destructive because no data is lost during collisions. The
node that loses the arbitration simply stops transmitting and waits for the bus to
be free again. This ensures that no data corruption occurs during the arbitration
process. This content-based arbitration makes CAN suitable for real-time and
safety-critical systems, such as automotive applications, where certain messages
must always take precedence over others.

CAN files development within the Code-base

Several files within the code-base are related to the development of CAN such
as the CAN drivers and the CAN dbc files. The can_com.c file is part of the
driver source file which implements functionalities for configuring, transmitting,
and receiving messages via CAN interfaces. It supports two CAN controllers (CAN1
and CAN2) and includes queue management for handling message transmission
and reception. Key functions include initializing CAN filters, triggering message
transmission, and periodic processing for both received and transmitted signals.
The file facilitates message composition, callback integration, and error handling
while adhering to specific configurations like FIFO (First In, First Out) assignment
and filter modes. It uses real-time OS queues for efficient message handling and
ensures compatibility with the DBC (Database CAN) format. The remaining part
of the file delves deeper into handling the transmission, reception, and manipulation
of CAN messages. It includes functionality for constructing and sending CAN
messages, processing transmit callbacks, and managing received messages. These
functions employ message queues to buffer data, ensuring efficient communication
despite limited immediate availability of CAN hardware resources. Additionally,
utility functions for data integrity and signal processing, such as CRC (Cyclic
Redundancy Check) computation and raw-to-physical signal conversion, enhance
the robustness and accuracy of the CAN operations. Advanced bit-wise operations
in various functions facilitate precise bit-level manipulations, catering to specific
protocol requirements. The code also includes safeguards such as periodic error
reporting and limits validation, ensuring system reliability.

The can_ dbc.c file on the other hand, is responsible for defining several external
variables and functions related to CAN message and signal handling. It plays a
critical role in managing CAN message and signal interactions. It defines and ex-
poses key data structures, including arrays for messages and signals associated with
the two distinct CAN channels CAN1 and CAN2, segregated by their transmission
(Tx) and reception (Rx) directions. The file provides utility functions to retrieve
specific message or signal properties, such as IDs; DLCs (Data Length Codes), and
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retransmission timings. Additionally, it includes mechanisms to invoke callback
functions associated with signals, ensuring customizable and context-specific han-
dling of CAN data. This modular implementation facilitates the flexible handling
and verification of both CAN messages and signals across multiple channels.

It abstracts away the underlying hardware details and provides a higher-level API
for developers to interact with the CAN bus. By using this file, developers can
easily configure and manage CAN communication without needing to delve into
the specifics of the hardware registers and protocols.

5.4.2 CANalyzer

CANalyzer is a software tool used to analyze the data traffic in serial bus systems.
CANalyzer is used for the analysis, testing, simulation and diagnostic of data
transmitted through the CAN bus. It provides features such as Trace and Graphics
to visualize signals as well as logging of bus data and replay for offline analysis.
An important feature known as the interactive generator (IG) can used to send
periodic messages such as an input current profile, simulating a load. This was
essential in the testing and validation phase of the integrated algorithms.

Important data in the code-base are sent as messages through CAN bus. Each
CAN channel can transmit a maximum of 8 bits; therefore, large messages must be
split and sent over more than one channel. Messages are sent to a queue where they
are then transmitted based on priority. With the help of the features included in
CANalyzer, the data can be visualized, and various tests can be done to validate the
models and evaluate performance. CANalyzer requires a license and the VECTOR
network interface to access CAN. The network interface hardware is shown in
Figure 5.2. As explained previously, the CAN DBC file is a data description file or
database that contains information for handling identification and translation of
CAN messages and raw CAN data to physical values. The CANdb++ program
acts as a user interface that allows the visualization of the database and facilitates
the process of adding and modifying CAN messages. Figure 5.3 shows some of the
signals added to the Vector CANdb++ editor, related to the integrated algorithms.
The file can then be used by CANalyzer to graphically visualize the signals.

5.5 Execution time measurement methods

Measuring execution time of the algorithms implemented on the BMS is essential
not only to confirm the capability of the BMS in handling such algorithms, but
also for determining the influence of the implemented code optimizations on the
execution time. In comparison to the PIL test results obtained using MATLAB, the
execution time of the algorithms after integrating them into the BMS is expected
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Figure 5.2: CAN interface hardware
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to be higher. This is because the PIL test does not take into account the wrapper
file that integrates the algorithm to the rest of the code-base. In general, there are
two methods for measuring the execution time of an algorithm after it has been
integrated into the code-base. The first method is through the microcontroller’s
GPIO pin, and the second method is using the FreeRTOS runtime counter.
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GPIO is a general-purpose input/output digital pin located on the STM32 Nucleo
board. This pin can be connected to the oscilloscope to graphically display the
varying voltage as a function of time resulting from the execution of the algorithm.
Once the BMS is flashed, the rising and dropping of the voltage creates a pulse
that can be visualized on the oscilloscope’s display. Using the cursors, the pulse
width can be measured thus indicating the execution time of the algorithm.

On the other hand, FreeRTOS can collect information on the current time. Using
the run-time counter macro, the current time can be returned before and after the
execution of the algorithm; therefore, calculating the completion time. To obtain
the execution time of the algorithm, the interrupts are disabled and the difference
in the times returned by the runtime counters is calculated. The function that was
used to obtain the value of the run-time counter is named getRunTimeCounter-
Value. Figure 5.4 shows how the function is used to measure the execution time
of the EKF algorithm. In line 151 the current time is returned, the algorithm
is executed in line 153 and the current time is returned again in line 155. The
two values obtained are then subtracted to calcualte the time elapsed during the
execution of the algorithm.

Both methods, GPIO-based and FreeRTOS-based, offer ways to measure the ex-
ecution time of an algorithm on an STM32 microcontroller. However, they have
different advantages and disadvantages. GPIO-based measurement provides a
direct, hardware-based measurement of the algorithm’s execution time and the
measurement process itself does not introduce significant software overhead. How-
ever, the accuracy of the measurement depends on the oscilloscope’s resolution
and the precision of the trigger mechanism. In addition, external factors such as
noise or electromagnetic interference can potentially affect the measurement. The
FreeRTOS-based measurement allows for more precise measurements and complex
analysis within the software environment. On the downside, the measurement
process involves function calls and timer operations, which can introduce some
overhead, especially for short execution times. Disabling interrupts during the
measurement can affect the overall system behavior, especially in real-time systems
and therefore the run-time counter cannot be used in this case.

Overall, both the GPIO-based and FreeRTOS-based methods were employed to
measure the execution time of the algorithms. While both approaches yielded
comparable results, the FreeRTOS-based method, specifically utilizing the getRun-
TimeCounterValue function, was primarily used to measure the execution time
of algorithms as it was the faster method, since no hardware setup was required
and it was sufficiently precise since the overhead was insignificant compared to the
total execution time. The GPIO-based method, involving the oscilloscope, was
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employed to verify the results, particularly when interrupts were disabled while
testing prior to the integration phase.

gmainc [ BCMIntc  [¢ task engc X [¢) Kalmanc  [¢] stm32dxx haladcc [ mainh  [d tasksc  [g] freertos.c

145 #endif

146 }

147

148= void vTask_Algo(void){

149 #if (CODE_ANALYSIS_MODE == TRUE)

150 vContactor_Enable(eContactor_HV 0BC, SET, CALIB_fGetValue(eFSM Oscillation Limit_ms)); /*Turn on Highside output®/
151 msl_Algo = getRunTimeCounterValue();

152 #endif

153 if(xTaskEnable.u8EnableKalman) BCM_vRunSocKF(&hcan2);

154 #if (CODE_ANALYSIS_MODE == TRUE)

155 ms2_Algo = getRunTimeCounterValue();

156 TASK_vCalculateDt(ms1_Algo, ms2_Algo, &msdt_Algo, &maxdt_Algo, &mindt_Algo);

157 vContactor_Enable(eContactor HV 0BC, RESET, CALIB_fGetValue(eFSM Oscillation_Limit_ms)); /*Turn off Highside output*/
158 #endif
159 }

Figure 5.4: Runtime Counter function used to measure execution time of EKF
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Testing and Validation

6.1 Testing of algorithms

Several tests were conducted to confirm the validity of the EKF and are discussed
in detail in this section. First, to test the behavior of the EKF and its ability to
correctly estimate the SOC, it was compared against the simpler CC (Coulomb
Counter) algorithm. In ideal simulation conditions where sensor noise is ignored
and under optimal battery health and cell capacity, the deviation between the EKF
and CC should be insignificant, making it a good reference for validation of the
EKF.

Another test that was carried out involves comparing the performance of the
EKF post-optimization with the original baseline algorithm. This test is useful in
confirming that the optimization process did not alter the underlying logic of the
algorithm.

Additionally, SIL and PIL test simulations were performed using the SIL/PIL
manager on MATLAB before the integration of the algorithms. These tests are
vital in validating that the code generated from the models is equivalent to the
Simulink model. Moreover, it is essential for providing insight into execution times
and stack usage and for testing how the different optimizations applied affect the
models and the generated code.

Finally, the algorithms must be tested post-integration to ensure that they are
integrated correctly into the BMS and collectively work in harmony with the rest
of the elements in the code-base. This can be tested with the help of the analysis
software tool CANalyzer while connecting the CAN bus for communication and
flashing the BMS implemented on the PCB. After performing rigorous testing and
validation we can confidently deploy the firmware connected to a real battery pack
and observe the behavior in conditions similar to real world conditions with the
help of the equipment in Beond’s laboratory BALF.
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6.1.1 EKF vs. Coulomb Counter

A quick way to confirm the ability of the EKF to estimate the SOC correctly is
to compare it to the much simpler model of the Coulomb counter. A parame-
ter named SOC__error, was determined by calculating the difference between the
EKF-estimated SOC value and the SOC obtained through Coulomb counting. A
simulation carried out in Simulink, utilizing the Data Inspector tool for data logging
and signal display, was conducted to evaluate the behavior testing under a 10A
discharging constant current, then a 10A charging constant current and finally a
random charging/discharging current.

Testing under a 10A discharge current, as shown in Figure 6.1, the difference
between the SOC estimation of the EKF and the CC remained minimal, recording
values below 0.0005, up until the SOC reached 30%. Below this SOC value, the
error increased sharply reaching a value of 0.0022 at 5% SOC. Further discharge
led to a more rapid divergence, culminating in a maximum error of 0.0073 at
SOC values below 1%. This analysis highlights the potential for small estimation
discrepancies at low SOC levels between EKF and CC.

Figure 6.1: EKF vs. CC SOC estimation in Simulink, DCHG at 10A

The second test was conducted under a 10A charging current as illustrated in
Figure 6.2. The difference between EKF and CC estimations remained below
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0.000066 up to 70% SOC, after which it began to gradually increase. Beyond the
95% SOC mark, the difference rose sharply, reaching a maximum of 0.000245 at
100% SOC. Overall, the observed discrepancies between EKF and CC estimations
were slightly lower during charging compared to discharging.

W SOC:1 m SOC_cc:1

100 200 300 400 500 800 700 800 200 1000 100

W SOC_error:1

0.00020

0.00025

0.00020

0.00005

100 200 300 400 500 800 700 200 200 1000 100

Figure 6.2: EKF vs. CC SOC estimation in Simulink, CHG at 10A

A random current profile, fluctuating between 60A (charging) and -20A (discharg-
ing), was used to test the EKF and CC Simulink models. Figure 6.3 shows how the
estimation error remained below 0.0005 for SOC values below 30%. Minor peaks
in the error were observed, coinciding with instances of charging current. A steep
increase in error was observed below 25% SOC, arriving at a value of 0.003 for

SOC levels below 1%.

In a nutshell, the two algorithms demonstrated comparable results with minimal
deviation, which confirms the validity and correctness of the EKF algorithm in
estimating the SOC. It is important to note that the deviation between the two
algorithms would be much more significant under real-world testing conditions
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Figure 6.3: EKF vs. CC SOC estimation in Simulink, CHG and DCHG random
current profile

where the tests are carried out for much longer periods and where other external
factors are more likely to interfere with the results. In which case, the EKF
proves to be much more powerful in estimating the SOC, displaying precise results
comparable to the experimental SOC-OCV curves. In this simulation, the cell
capacity remained constant and other conditions were ideal for the sole purpose of
confirming the ability of the EKF to correctly estimate the SOC under different
current profiles.

6.1.2 SIL/PIL testing

Two critical tests named SIL and PIL were carried out before the integration
phase. A software-in-the-loop (SIL) simulation compiles and runs the generated
code on the personal computer used to run the simulation. A processor-in-the-loop
(PIL) simulation cross-compiles source code on the personal computer, and then
downloads and runs the object code on the target processor. Both SIL and PIL
simulations can be useful in testing whether the model and generated code are
numerically equivalent and allow us to observe the code coverage. In addition,
using PIL combined with the target hardware, code execution profiling can be
performed. It is used to determine the size of stack memory and execution time
that is required to run generated code on the target hardware. The PIL test can
be executed to generate a stack usage profile and an execution time profile. The
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profiles generated enable us to observe the effect of code optimizations and data
input on stack usage, as well as execution time.

EKF SIL/PIL validation of generated code

MATLAB makes use of the SIL/PIL manager to carry out SIL and PIL tests using
the code generated from the embedded algorithm. The SIL test compiles and
runs the generated code on the PC and displays the results on MATLAB’s data
inspector. The data inspector is used to visualize simulation data such as signals,
inputs and outputs and compare them. SIL is a faster and simpler way to verify
the source code when compared to PIL since it does not require a target hardware
as it simply runs the algorithm on the PC. Therefore, the SIL test was done first
for verification of the generated code before connecting the target hardware and
running PIL.

The data inspector logs data both from the normal Simulink simulation and the SIL
simulation and compares them. A constant current input of 50A was fed into the
model and the SIL verification was carried out. Figure 6.4 shows the quantitative
data comparison between the simulation and SIL again showing a perfect match
with a tolerance of zero as shown in the data inspector. Furthermore, Figure 6.5
shows a perfect match graphically between the SOC estimated in the simulation
and the SOC estimated in SIL, obtained from the EKF. Therefore, confirming the
validity of the source code in matching the logic of the model-based simulation.
The test was repeated using various other current profiles, further confirming the
conclusion.
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Figure 6.4: Quantitative data comparison between the EKF simulation and SIL,
50A DCHG current
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Figure 6.5: Graphical data comparison between the EKF simulation and SIL,
50A DCHG current

EKF SIL/PIL Execution Time and Stack Profiles

The SIL/PIL manager also provides a summary of the profiling data generating
the Code Execution Profiling Report. It includes the task execution times of
the entry-point functions of the algorithm such as the ‘initialize’ function, the
‘step’ function and the ‘terminate’ function. The execution time displayed is the
time elapsed between calling the entry-point function and terminating it and so it
includes the time spent calling other functions within the entry-point function.
The useful execution times report would be the one generated by the PIL simulation
as it runs the code on the target processor ARM Cortex-M4, which is the processor
of the STM32 Nucleo-F429Z1 board. Therefore, it acts as a preliminary step
between the model-based design phase and the integration phase for comparing
the baseline code and the optimized code.

PIL Average Execution Time [ps]
Section Name | Baseline | Optimized | Difference
EKF initialize 8 3.7 54%
EKF_step [0.1 0] 103.1 53.5 48%
EKF__terminate 0.9 0.39 56%

Table 6.1: Average execution times of EKF functions obtained through PIL test
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Table 6.1 presents a comparison between average execution times of the key
entry-point functions of the optimized and baseline EKF algorithms. The results
demonstrate a significant performance improvement, with the optimized version
achieving approximately a 50% reduction in execution time compared to the
baseline.

6.1.3 Completion time results

In the previous section, the algorithms were tested independently by performing the
PIL test and measuring the execution times confirming that the optimizations imple-
mented have significantly reduced the execution times of the standalone algorithms.
However, it is essential to test the algorithms after integrating them into the BMS
while they execute along side multiple elements present in the BMS and understand
their behavior as integrated algorithms rather than standalone algorithms. To
measure the algorithms’ completion times, a GPIO pin was toggled and observed
using an oscilloscope. This method provided accurate results by measuring the
pulse width generated during execution. The same technique was used to evaluate
various algorithms, such as the EKF and the Power Limits (1 s, 10 s, and 30 s). The
test was performed with interrupts enabled and then repeated after disabling them.
Additionally, this method was used to assess the impact of EKF code optimization,
by performing the test once with the integrated baseline EKF algorithm and once
with the integrated optimized EKF algorithms and measuring the completion times.

Oscilloscope and GPIO pin for execution time measurements

As explained previously in Section 5.5, the GPIO pin was used to directly measure
the algorithm’s completion time with the help of the oscilloscope. Figure 6.6
demonstrates the results displayed on the oscilloscope screen when the firmware is
flashed on the BMS. The cursors were used to measure the pulse width indicating
the algorithm’s completion time. In this example, the algorithm’s completion time
measures around 51.76 microseconds as seen on the display screen.

The same method using the GPIO pin was repeated to measure the completion
time of different algorithms including the EKF, The 1s, 10s, and 30 s Power Limits
as shown in Table 6.2. The test was repeated once for when the interrupts were
enabled and again for when the interrupts were disabled. When interrupts are
disabled, the algorithm is executed by the processor without interruption until it
is completed. Disabling the interrupts; therefore, reduces the time measured by
eliminating the overhead caused by context switching to handle ISRs (interrupt
service routines). As a result, the algorithm runs without interference, so its execu-
tion time is deterministic. The interrupts are disabled only for testing purposes,
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such that the execution time measurements reflect the ‘pure’ execution time of the
function rather than the ‘completion time’, therefore excluding the influence of
external interruptions. These results are important because they will be compared
later with the optimized versions.
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Figure 6.6: Oscilloscope displays the pulse width indicating the algorithm’s
execution time

Oscilloscope measurements

Completion Time Post-Integration [ps]

Algorithm (Baseline) Interrupts Enabled | Interrupts Disabled
Kalman 128.32 102.3
EWI1sPwrLim 3.81 2.08
EW10sPwrLim 466 168
EW30sPwrLim 455 174

Table 6.2: Completion times of various algorithms post-integration measured
using the oscilloscope

Furthermore, the GPIO method was used to evaluate the EKF code optimization.
As seen in Table 6.3, the completion time of the algorithm is significantly reduced
post-optimization. The optimization mentioned in Section 3.2 related to the signal
storage reuse may have had the most significant influence on the reduction in execu-
tion time. Due to this optimization, the CPU may save and restore certain parts of
memory and registers during context switches. If memory usage is optimized, less
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data needs to be saved and restored. In addition, sharing memory across signals
means fewer memory accesses, which reduces contention between the EKF function
and other tasks. These combined effects lead to a significant reduction (23.7%) in
execution time when interrupts are enabled. It can also be observed that the pure
execution time of the algorithm, measured when the interrupts are disabled, has
been reduced by 49.4%. These results are consistent with the results obtained by
the PIL test and confirm the positive influence that the implemented optimizations
have on the execution efficiency of the EKF.

Oscilloscope measurements EKF Completion Time Post-Integration [ps]

EKF Baseline | EKF Optimized | Difference

Interrupts Enabled 128.32 97.96 23.7%
Interrupts Disabled 102.3 51.76 49.4%

Table 6.3: Effect of optimization on completion times of EKF post-integration
measured using the oscilloscope

6.1.4 Testing and validation of Power Limits

The power limits algorithm was rigorously tested and validated using a combina-
tion of simulation and hardware-in-the-loop techniques. Similar to the EKF', the
SIL/PIL testing in MATLAB Simulink was employed to assess the algorithm’s
functional correctness and execution time. Stack profiles were analyzed to identify
potential memory bottlenecks. Post-integration, the algorithm’s execution time
was measured using the FreeRTOS runtime counter, providing insights into its
real-world performance.

In this case, the purpose of the test is to evaluate the efficiency of the code gen-
eration process. To do so, the MATLAB-generated C code was compared with
a hand-written C implementation to measure both the execution time and the
performance of the algorithm. Both versions were subjected to identical test cases,
including random positive and negative current profiles, to assess their accuracy and
speed. Comprehensive testing was conducted to verify the algorithm’s adherence
to various constraints. Pack temperature and temperature limits were monitored
to ensure safe operation. Pack voltage and voltage limits were checked to prevent
over-voltage and under-voltage conditions.
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Data inspector testing of Power Limits Simulink model

As explained previously, the power limits algorithm obtains its inputs from the
EKF, while the EKF requires measurements from the battery as inputs. Therefore,
the BCM Simulink model was included in this segment of testing to simulate a
battery cell providing the necessary inputs for the EKF. As shown in Figure 6.7
below, a random DCHG current (pink) ranging between 0-90 Amps, was imposed
to test the Power Limits Simulink model. The output current limits for the instan-
taneous PL1s (red), PL10s (green) and PL30s (blue) algorithms were plotted over
time, measured in seconds. The PL10s algorithm was also propagated through
a sample-and-hold block (purple) and was plotted on the same graph. The PI
parameters were carefully tuned to obtain a controller that responds fast, but with
minimum oscillations. Since the DCHG current in this test is not aggressive, the
three algorithms produce almost identical results with a small deviation from each
other. In the beginning of the discharge cycle the SOC is high; therefore, the
current limits are well above the requested current. At 265 seconds, the graphs
intersect and at this point in time the full requested current cannot flow anymore
and is limited by the output set by the Power Limits algorithm. The value of the
current limit continues to decrease as the battery discharges and the SOC value
drops.
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Figure 6.7: Simulink’s Data inspector for Power Limits under a random current
profile
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Further testing was performed under more aggressive current profiles followed by
tuning of the PI controller to obtain and asses different conservativeness in the
estimation of the power limits and compare the PL10s algorithm with the PL1s
algorithm. Figure 6.8 shows the power limits over time (in seconds) obtained
by testing under a constant DCHG 90 A current. The deviation between the
PL10s algorithms (orange, green, blue) and the PL1s (pink) is more significant
under an aggressive DCHG current. The plot demonstrates how the PL10s is more
conservative than the PL1s as all the plots lie below the PL1s plot indicating lower
current limits.

It is important to note that the three outputs related to the PL10s algorithm
present different behaviors due to the different PI parameters assigned to them.
This demonstrates the effect of tuning the PI parameters on the behavior of the
algorithms and the possibility of customizing the behavior to match the desired
output.
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Figure 6.8: Simulink’s Data inspector for Power Limits under a 90 A constant
current profile

Next, further tests were performed by modifying the integral gain of the PI con-
troller. As mentioned in sub-section 2.4.1, increasing the value of the integral gain
of the PI controller, eliminates the steady-state error faster; however, it leads to
increased oscillations and larger overshoot. This is depicted in Figure 6.9 and Fig-
ure 6.10 showing the effect of imposing higher and lower integral gains. The current
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limit in Amps is plotted over time in seconds. It can be observed that by setting a
low integral gain, the PL10s and PL30s algorithms experience a lower overshoot,
with the PL30s being more conservative. The PL10s shows a less conservative
behavior almost following the PL1s algorithm during the discharge cycle. A higher
integral gain on the other hand, increases the overshoot causing an exaggerated
conservative behavior, especially in the PL30s. In conclusion, careful tuning of the
PI parameters is essential in obtaining a balanced behavior that preserves both the
health of the battery while simultaneously meeting the performance demands and
respecting the safety limits.

To delve more into the possible behaviors that can be obtained by tuning the PI
parameters, further testing was done and is discussed in detail in sub-section 6.2.2.
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Figure 6.9: Low integral gain Figure 6.10: High Integral Gain

SIL testing and validation of power limits

As performed previously on the EKF, the SIL test was also performed to validate
the generated code for the Power Limits and ensure that it behaves identically
to the Simulink model. The Power Limits algorithm was fed with various input
currents to perform tests under both DCHG and CHG conditions. The main input
and output signals were logged including six different signals and compared.

Figure 6.11 below shows an example of a DCHG test carried out on the PL10s
demonstrating a perfect match between all six signals, with a zero deviation from
the simulated model. The upper graph plots one of the signal pairs, the DCHG
power limits obtained through the PL10s Simulink model and the DCHG power
limits obtained through the generated code. The lower graph indicates that the
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difference between the results is equal to zero. It is important to note that the SIL
simulation test does not compare intermediate signals logged inside the model, it
compares only external input and output signals, which was sufficient to validate
the generated code. Once the generated code has been validated, we can proceed
with the integration process and continue with further testing and validation.
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Figure 6.11: SIL simulation test of PL10s under a DCHG current

6.2 Testing and validation post-integration

6.2.1 Power limits execution times

The power limits algorithm is integrated into the BMS. By utilizing the FreeRTOS
RunTime Counter, the completion time of the algorithm was measured while the
interrupts are enabled. A comparison was then conducted between the completion
time of the optimized and the non-optimized version of the same algorithm. In
other words, the optimized code generated by MATLAB’s Embedded Coder and
the equivalent hand-written C implementation.

Table 1.1 presents these results and clearly demonstrates a significant performance
advantage for the code generated by Embedded Coder. The Embedded Coder
version exhibited a remarkable 77.68% faster execution speed compared to the
hand-written implementation, highlighting the substantial impact of Embedded
Coder on code optimization and performance. This significant performance gain
underscores the value of leveraging the code generation capabilities of MATLAB
for the development of efficient and optimized embedded systems.
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Optimization of 10s Power Limits Algorithm
Algorithm Completion Time (ps)
MATLAB Generated Code 104
Handwritten Code 466
DIFFERENCE 77.68%

Table 6.4: PL10s execution time optimization results post-integration measured
using RunTime Counter

6.2.2 Testing and validation using CANalyzer

After the integration process was completed, multiple simulations were conducted
with the help of CANalyzer, not only to confirm that the Power Limits algorithm
is functioning correctly, but also to evaluate and tune the PI controller’s behavior.
Multiple tests were performed using different sets of PI parameters and the results
were recorded and assessed.

The performance of the 10-second power limits algorithm (PL10s), generated using
Embedded Coder, was compared against a simple 1-second power limits algorithm
(PL1s) previously validated and implemented in hand-written C code. The tuning
of the PI parameters was done directly within the code-base by modifying the
source code of the integrated algorithm. Testing post-integration was done by
flashing the firmware onto the micro-controller implemented in the BMS. The BMS
was also connected to a CAN bus to visualize the data and perform testing and
simulations using CANalyzer.

Test under random DCHG current

A random discharging current, ranging between 0 to 90 amps, was used to bring
the SOC from 100% to 10%. Figure 6.12 top plot depicts the input discharging
current (CurrentProfile), along with the output DCHG current limits PLIsDCHG
and PL10sDCHGop, obtained by the PL1s algorithm and the optimized /Embedded
Coder generated PL10s algorithm respectively. The bottom plot is the correspond-
ing SOC obtained as an output of the optimized EKF algorithm under the same
random current profile.

The DCHG PL10s algorithm using the first trial set of PI parameters, exhibited an
aggressive but conservative behavior, responding more rapidly to changes in the
input current profile compared to the DCHG PL1s, while maintaining lower magni-
tudes of current throughout the discharge cycle. It is observed that the general
trend of the current limit decreases as the SOC decreases. At high DCHG input
current, the PL10s algorithm preserves the battery by reducing the current limits
and consequently the power limits. As intended, it maintained more conservative

73



Testing and Validation

power limits in comparison to PL1s resulting in lower overall current. This confirms
that none of the battery limits are exceeded. However, the algorithm’s behavior
can be improved by reducing the overshoots. The PI controller’s behavior can be
adjusted to meet specific design requirements through appropriate tuning. This
will be demonstrated and discussed in detail in this section.

Test under random CHG current

The two algorithms were again tested under a CHG current ranging between 0 to
30 Amps, taking the SOC from 70% to 100%. This test is done at higher SOC
values since this is the critical range where the CHG current is de-ratedby the
algorithm. A first trial set of PI parameters was used for the PL10s PI controller.
Figure 6.13 depicts the magnitude of the CHG current profile (AbsCurrentProfile)
in the top plot, along with the CHG current limits for the PL1s (PL1sCHG) and
the PL10s (PL10sDCHG). The bottom plot depicts the corresponding SOC. At
lower SOC, the current limits maxed out at 27 A, which is the maximum value
allowed for the current to reach as decided by the algorithm. Again as intended, the
PL10s showed a more conservative approach than the PL1s. It produced a similar
behavior to the PL1s at a lower SOC, however; above a SOC of 70, it maintained a
lower CHG current. Both algorithms show a decreasing trend as a response to the
constantly increasing SOC. The behavior of the CHG PI controller implemented
in the PL10s can be tuned by varying the PI parameters to obtain the desired
behavior.

Tuning the PI parameters and testing the Power Limits algorithms

It is important to test the algorithms by applying different PI parameters, com-
paring the behavior of the PI controller in the PL10s algorithms to the original
PL1s, as well as comparing the behavior of the baseline algorithm to the optimized
version and asses the differences.

To obtain a less aggressive behavior for the DCHG optimized PL10s (PL10sDCHGop))
the proportional gain K, was reduced to 0.01. The top plot in Figure 6.14 shows
the results under a constant discharging current of 70 A (CurrentProfile) for both
the optimized PL10s and the two non-optimized PL10s (PL10sDCHG) and PL1s
(PL1sDCHG) algorithms handwritten in C. The bottom plot shows the correspond-
ing SOC falling from around 70% to 0%. The reduction in the value of K, leads to
a less aggressive behavior in the PL10s algorithms as it results in a slower response
time. Additionally, the two algorithms take longer to react to the initial current
change when compared to PLIsDCHG, since reducing the value of K, increases
the rise time. It is also worth noting the slight deviation in the behavior of the
PI controller in the PL10s handwritten in C PL10sDCHG in comparison to the
optimized Embedded Coder generated algorithm PL10sDCHGop, since the logic
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Figure 6.12: First trial tuning PID for power limits 1s and 10s under a DCHG
random current

of the handwritten PI controller varies slightly in comparison to MATLAB’s PI
controller. However, the deviation is minimal and both algorithms do not exceed
the power limits set by the PL1s algorithm.

This test not only validates that the optimized PL10s algorithm adopts a more

75



Testing and Validation

W AbsCurrentProfie ®m PL1SCHG m PL10sCHG

k) —
|
.-’Jf l |
Fo] [ | |
|
| L
. | I |
|
| | |
| |
|
15
| |
| | |
| || |
10 | I.
| \| |
.
| \ |
5 | L
|
|
ol |
i 20 80 20 120 150 180 210 240 270 200 330 280 w0
BCM_SOC
100
80
a0
40
20
|
1] 0 a0 20 120 150 180 210 240 270 300 330 380 300

Figure 6.13: First trial tuning PID for power limits 1s and 10s under a CHG

random current

conservative approach compared to the PL1s, but also highlights the effectiveness
of the PI controller in regulating power limits. Moreover, it demonstrates the
algorithm’s adaptability through the straightforward tuning of the PI parameters.
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In another test, the value of K, was kept at 0.01 as before, while K; was reduced to
0.0001 for the optimized PL10s. Values were kept the same for the non-optimized
PL10s (PL10sDCHG). As shown in Figure 6.15, this reduction in K; value resulted
in a more conservative algorithm (PL10sDCHGop), since reducing the value of K;
leads to a slower elimination of the steady-state error.

A middle ground where the optimized PL10s algorithm is conservative, relatively
non-aggressive and moderately fast at eliminating the steady-state error was
achieved when K, was set to 0.01 and Kj; set to 0.001. The same test was carried
out at a discharging current of 70 A and the results were plotted as shown in
Figure 6.16.

These findings demonstrate the versatility of the PI controller in shaping the Power
Limits algorithm’s behavior. Through careful tuning of the PI parameters, the
algorithm can be tailored to meet specific vehicle performance requirements while
prioritizing battery health.
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Figure 6.14: CANalyzer results, K,=0.01, K;= 0.001, 70 A DCHG current
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Figure 6.15: CANalyzer results, K,=0.01, K;=0.0001, 70 A DCHG current
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Figure 6.16: CANalyzer results, K,=0.01, K;=0.001, 70 A DCHG current
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Chapter 7

Conclusions

As the adoption of electric vehicles (EVs) continues to rise, the demand for effi-
cient and reliable battery management solutions has become more critical than
ever. Lithium-ion (Li-ion) batteries, which power modern EVs, offer high energy
density and longevity but require sophisticated monitoring and control systems
to ensure safety, performance, and durability. The challenges associated with
battery degradation, state estimation, and power management necessitate advanced
software-driven solutions to optimize their operation. Without effective manage-
ment, battery packs can suffer from reduced lifespan, performance inefficiencies,
and safety risks. This highlights the crucial role of Battery Management Systems
(BMS) in ensuring the safe, efficient, and reliable operation of Li-ion batteries,
particularly in mission-critical applications where failure is not an option.

This thesis focused on the software aspects of the BMS, particularly the optimization
and integration of key algorithms for state estimation and power management. The
Extended Kalman Filter (EKF) was employed for accurate State-of-Charge (SOC)
estimation, addressing the challenge of real-time SOC monitoring. Additionally,
power limits algorithms were developed and integrated to dynamically regulate bat-
tery power output based on real-time conditions, improving both performance and
longevity. Through extensive testing and optimization, the performance of these
algorithms was significantly enhanced. The optimized EKF algorithm achieved
a 50% reduction in execution time, improving real-time estimation capabilities.
Moreover, the use of Embedded Coder in the code generation of the Power Limits
algorithm gave rise to a remarkable 77.68% decrease in execution time compared to
the hand-written code, emphasizing the advantages of automatic code generation
for embedded systems.

Beyond the numerical improvements, the test results demonstrated the effective-
ness of the PI controller in refining the power limits algorithm, allowing for a
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customizable behavior to balance performance and battery health. These findings
reinforce the importance of software-driven optimizations in BMS, as they not only
enhance the operational efficiency of Li-ion batteries but also contribute to the
overall reliability and viability of EV technology.

Possible future developments could focus on implementing a Model Predictive Con-
trol (MPC) strategy for managing power limits. This would involve the model-based
design of the MPC algorithm, followed by code generation, system integration, and
a thorough evaluation of the overall workflow, in addition to testing and valida-
tion of the results. In parallel, documenting the existing code-base is essential to
support long-term software development. Generating structured code reports and
maintaining clear, comprehensive documentation would streamline the integration
of new models and support efficient, collaborative development across engineering
teams.

In conclusion, this thesis discussed various advancements in battery management
methodologies, including state estimation, power management, and code optimiza-
tion. The results underscore the importance of integrating advanced computational
methods with embedded systems to achieve efficient and safe battery operation.
As EV adoption continues to grow, further research and development in intelligent
battery management systems will be pivotal in enhancing performance, extending
battery life, and ensuring the sustainability of electric transportation.
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