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Summary

This thesis presents the development of an automated test framework for embedded
systems, combining Continuous Integration (CI) principles with real-time validation
using laboratory instruments. The goal was to reduce manual effort and make
firmware testing more repeatable and reliable, especially for Arduino-based projects.

To build the system, a custom firmware was created for the Arduino GIGA
R1 WiFi board. The firmware could receive ATU-style commands over serial and
perform actions such as generating PWM signals, writing analog voltages, and
switching pins. On the host PC, a Go-based orchestration tool was developed. It
compiled and uploaded the firmware using Arduino CLI, communicated with the
board via serial, and also controlled external instruments over LAN using SCPI.

Dedicated Go libraries were written to support three SCPI-based instruments
used in the lab: the Rigol DP832 power supply, the Rigol DS1054Z oscilloscope,
and the Keithley DMM6500 multimeter. Each library mapped the instrument’s
command set into modular Go functions, allowing automated control of voltage
levels, waveform capture, and current/voltage measurements.

Before putting everything together, standalone test programs were written for
each instrument to verify SCPI communication and basic control. These included
a voltage ramp and current logging test for the power supply, waveform trigger
configuration for the oscilloscope, and precision current measurement with the
DMM.

In the final integrated test workflow, the system was able to:
• Power the DUT using the Rigol DP832 and measure current draw.

• Send commands to the Arduino to generate specific signals.

• Use the Rigol DS1054Z to capture and save screenshots of PWM waveforms.

• Measure analog output voltage using the Keithley DMM6500.

• Save all results to timestamped JSON files and organize screenshots and logs
automatically.
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This setup allowed full automation of the test flow. Measurements could be
repeated reliably and saved for traceability. Screenshots and structured logs helped
validate that the firmware was working as expected.

Although some parts—such as the integration with GitHub Actions—were not
completed during this thesis, they were planned as natural extensions. In particular,
GitHub Actions was chosen because most of the Arduino ecosystem already relies
on GitHub for development and collaboration. The system developed here serves
as a foundational step toward building a complete Continuous Integration (CI)
workflow for Arduino projects, specifically addressing the hardware validation phase.
By automating lab-based measurements and interfacing with test instruments, this
work establishes the basis for future CI pipelines with Hardware-in-the-Loop (HIL),
and can be adapted for other boards and use cases as the CI infrastructure expands.
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Chapter 1

Introduction

1.1 Motivations
Embedded systems are used today in many different areas like automotive, industrial
automation, medical devices, and even consumer electronics. These systems are
usually designed for a specific task, and because of that, they often need to meet
strict constraints like power consumption, timing, reliability, and cost [1]. Since
each application has different priorities, the design of the system has to be carefully
adapted to the context where it will operate.

In some fields, like automotive and aerospace, these constraints are even more
critical. Systems must guarantee real-time execution, safety, and long-term stability,
even under changing conditions and increased complexity [2]. But in practice, the
development and testing process is still very manual. Developers usually have to
flash the firmware to the board and measure outputs using external instruments,
which can be slow and difficult to repeat.

This becomes a big problem when the firmware needs to be tested often or
across different versions. Manual methods introduce delays and errors, especially
when testing involves physical signals and hardware behavior. At the same time,
the growing demand for reliability, low energy usage, and faster cycles pushes the
need for more automated and structured processes [3].

The idea behind this thesis is to apply modern Continuous Integration techniques
to embedded firmware validation, with the help of real hardware and laboratory
instruments. By automating the compile, upload, and test phases, the goal is to
reduce manual steps, improve repeatability, and make testing more efficient and
robust for real-world embedded applications.

This thesis is the first structured attempt to introduce Continuous Integration
(CI) into the Arduino firmware development cycle, with a focus on real hardware
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Introduction

testing. Prior to this work, no CI framework existed in the Arduino ecosystem
for validating embedded firmware against real physical signals using laboratory
instruments. By automating test scenarios through hardware-in-the-loop (HIL)
techniques and integrating SCPI-controllable instruments, this work lays the foun-
dational infrastructure for future CI/CD workflows at Arduino. It represents
a practical shift from isolated manual testing toward systematic, reproducible
validation that fits into modern DevOps practices for embedded systems.

1.2 Problem Statement

In embedded systems development, validating firmware is still often done manually.
This usually involves compiling the code, uploading it to the board using a USB
cable or other programmer, and then checking its behavior by monitoring signals
with lab instruments like oscilloscopes or multimeters. While this works for small
tests, it becomes a problem when the system gets more complex or when the
firmware needs to be tested repeatedly in different configurations.

Manual testing is time-consuming and not always consistent. Each time a
developer wants to verify something, they need to flash the firmware, connect the
instruments, set up the conditions, and read values manually. This makes the whole
process harder to repeat and also increases the risk of human error. When the
firmware needs to be tested after every small update, this manual process becomes
a bottleneck.

Unlike general software projects that rely on Continuous Integration to automat-
ically build and test code, embedded development doesn’t usually benefit from the
same kind of automation, especially when hardware is involved. Even when some
CI is used, the actual behavior of the firmware on the real board is rarely tested.
Most automated tests only check that the code compiles or runs in simulation, but
they don’t validate real electrical signals or physical interactions.

The problem this thesis addresses is how to close that gap. The goal is to build a
system where each firmware change can be tested automatically, not just in code but
also on the actual hardware, using real instruments. This would allow developers to
verify functionality, timing, and signal correctness without needing to be physically
present for every test. Without this kind of automation, it’s very difficult to scale up
testing, catch bugs early, or maintain high reliability in complex embedded projects.
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Introduction

1.3 Objectives
The main objective of this thesis is to bring automation into the firmware devel-
opment and validation process by combining Continuous Integration techniques
with real hardware-in-the-loop testing. The idea is to reduce the amount of manual
work that goes into compiling, uploading, and verifying firmware on embedded
boards, especially when updates are frequent or testing conditions are complex.

The system developed in this work should allow firmware to be compiled auto-
matically, flashed to a target board, and tested using real lab instruments without
human interaction. Instead of relying on manual measurements or visual checks,
the tests should provide measurable outputs that can be logged, compared, and
verified.

To support this goal, the thesis is based on the following specific objectives:

• Develop a robust communication interface between the host PC and the
Arduino board using serial protocols for command execution.

• Create modular ATU-based firmware that allows the Arduino to interpret and
respond to remote test commands.

• Use Arduino CLI to compile and upload firmware automatically as part of
the CI workflow.

• Build SCPI-based libraries in Go to remotely control laboratory instruments
including oscilloscopes, power supplies, and digital multimeters.

• Design a centralized orchestration system in Go that coordinates firmware
upload, DUT configuration, instrument control, and measurement capture.

• Ensure the system is capable of storing structured test results (e.g., current,
voltage, frequency, duty cycle) in machine-readable formats such as JSON.

• Design the architecture to allow future integration with GitHub Actions and
other CI tools used within Arduino’s open-source ecosystem.

• Validate the entire flow by executing end-to-end tests on real hardware and
confirming correctness via instrument feedback.

The overall aim is to make embedded firmware testing more efficient, repeatable,
and scalable by bringing together tools that already exist, but are rarely used in
combination for this purpose.
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1.4 Thesis Structure
This thesis is organized into five chapters, each addressing a specific phase of the
project. The structure is designed to lead the reader from the initial motivations
and background context to the technical implementation, experimental validation,
and forward-looking conclusions.

Chapter 1 introduces the motivation, problem statement, and objectives of the
work. It explains the need for automation in embedded-firmware validation and
outlines how Continuous Integration (CI) techniques can address longstanding
inefficiencies in manual testing processes.

Chapter 2 reviews the state of the art in CI for embedded systems. It begins
with an overview of traditional CI practices and modern toolchains, then analyzes
the specific technical and organizational challenges of applying CI to hardware-
dependent systems. It also explores hardware-in-the-loop testing, virtual platforms,
and automated instrumentation using SCPI.

Chapter 3 presents the methods developed in this thesis. It describes the full
system architecture, including the ATU firmware on the Arduino GIGA, the ATU-
based command interface, and host-side orchestration written in Go. The chapter
details how custom SCPI libraries were developed for controlling oscilloscopes,
power supplies, and multimeters, and how serial communication was used to auto-
mate firmware interaction—laying the foundation for a hardware-in-the-loop CI
pipeline.

Chapter 4 discusses implementation challenges and validation results. It chron-
icles the development and debugging process, highlights hardware and software
integration issues, and reports on system stability and accuracy. The chapter also
presents real-world test outputs—oscilloscope screenshots and structured JSON
measurements—to demonstrate automated firmware testing across multiple scenar-
ios.

Chapter 5 concludes the thesis and outlines future work. It summarizes the
key contributions, reflects on lessons learned (timing, reliability, modularity), and
proposes enhancements such as full CI/CD integration, dynamic test configuration,
parallel execution, and expanded multi-instrument support.

4



Chapter 2

Continuous Integration in
Embedded Systems:
Concepts, Tools, and
Challenges

This chapter gives a technological background for the system implemented later
in this very dissertation. It begins with a brief history of CI in general-purpose
software, then presents today’s popular CI/CD workflows and tools used widely
by professionals. After that, it discusses the special limitations and challenges
of applying CI to embedded systems — such as dependence on hardware, real-
time constraints, and the difficulty of debugging. And finally it evaluates existing
solutions for HIL testing or SCPI-based instrumentation now in use. This discussion
will help the reader to evaluate technical trade-offs and better understand the
design choices made in Chapter 3.

2.1 Evolution of CI: From Manual Merges to
Automated Pipelines

Continuous integration did not start out as a streamlined, automated process. In
the old days of software development, teams often waited until the end of a release
cycle to merge their code. Developers worked separately on their code for weeks
and then tried to combine everything at once. This typically led to numerous
problems such as merge errors, broken builds, and bugs that were hard to track
down but difficult to locate.

5
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As software systems became increasingly complex and teams grew in size, this
method proved unwieldy and ineffective. One of the first steps toward improvement
was the use of a centralized version control system. This allowed developers to
make changes more frequently, and also made it possible for what had been altered
to be traced back. It was easier to revert unfixable changes in this way when
something went wrong [4].

2.1.1 Early CI Practices: Nightly Builds and Static Analy-
sis

Another good method was introducing nightly builds. Although no immediate
feedback, they still enabled teams to identify their own integration problems in
a matter of days. During the nightly builds, some teams also added static code
analysis and code formatting tools. All of this contributed to both individual
mistake-catching consistency increases [4].

Figure 2.1: Early CI overview such as nightly builds, static analysis, and unit
testing, adjusted from [4].

Another of the first integrated CI practices was unit testing. It ensured that
the code still worked, who after each small thing got changed in each place, sort of
an important fail [5]. Even though early CI was not fully automatable, it played

6
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a when destiny called role for modern business processes, reducing defects and
increasing collaboration.

But all these things could not be done without proper infrastructure. However, if
the build script was not dependable or the test environment inconsistent, sometimes
it was CI that delays rather than solves problems. Sometimes, comprehensive
technical debt had to be handled by teams because the scripts were outdated or
systems were ill-maintained [6].

From these early experiences, more trustworthy and automatic CI tools began
to take shape. The next section examines the workflow of CI in the present day
and its common limitations for real projects.

2.1.2 Modern CI/CD Workflows and Tools
In modern software engineering, Continuous Integration and Continuous Delivery
have become standard practice. In addition to this, they also control processes like
build, test deployment so that common frontal developer errors will be reduced.
Without the capability of CI/CD, rapid release cycles will be unattainable. CI/CD
can associate with events in version control such as commit to ensure that code
changes are continually validated and ready for production uses in the case of
production use [7].

Popular CI/CD platforms include Jenkins, GitLab CI/CD, and GitHub Actions.
These tools allow teams to define pipelines using YAML or declarative syntax and
connect various stages such as compilation, testing, and packaging. Depending on
the project scale and infrastructure preferences, teams may choose cloud-hosted,
self-hosted, or hybrid deployment models for these tools.

In addition to orchestrating a pipeline, containerization is very important for
ensuring consistent environments. Docker is widely used to package applications
and their dependencies into portable containers. Kubernetes extends this idea to
manage container scheduling, scaling, and updates in distributed systems.

Many teams also integrate their pipelines with cloud platforms such as AWS
(Amazon Web Services), Google Cloud, or Microsoft Azure. These services provide
scalable runners, secure artifact storage, and predefined templates that facilitate
deployment of the pipeline [8]. They also greatly ease infrastructure management
tasks, thus sparing developers from such boring work to devote all their attention
to coding.

CI/CD adoption provides benefits such as killing two birds with one stone–
shorter feedback loops and greater quality–and better collaboration between devel-
opment and operations teams. It also allows the merging of static code analysis
tools, linters, code coverage reports, and vulnerability scanners into automated
workflows. These additions help to catch problems early and hold to a greater
standard [9].
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However, in certain domains, implementing CI/CD is not so straightforward.
Legacy applications, monolithic codebases, and embedded systems all bring addi-
tional constraints to bear–perhaps needing specific compilers or requiring hardware
access during testing [7]. Or they may not be compatible with other tools. These
constraints need tailored solutions and may involve hybrid architectures.

A practical example of such a setup is the combination of Gitea and Jenkins.
Gitea provides a lightweight self-hosted Git platform, while Jenkins handles the
CI/CD orchestration. The interaction follows these steps:

1. Developers push code to private repositories hosted on Gitea.

2. Gitea sends a webhook to Jenkins upon detecting a new commit.

3. Jenkins executes a pipeline with the following stages:

• Source code compilation and build.
• Unit and integration tests.
• Generation of test reports and artifacts.

4. If the pipeline succeeds, Jenkins deploys the output to a target system or
embedded device.

Figure 2.2: Architectural overview of a CI/CD pipeline integrating Gitea and
Jenkins [7].
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In summary, modern CI/CD workflows integrate source control, automation
servers, containers, and cloud platforms to provide a robust foundation for software
delivery. The choice of tools depends on the project context, and embedded
development introduces specific constraints that will be addressed in the following
sections.

2.1.3 CI/CD Toolchains: Jenkins, GitLab CI, GitHub Ac-
tions

Continuous Integration and Continuous Deployment (CI/CD) practices have become
the cornerstone of most modern development, allowing teams to make software
faster,better quality and more reliably.Whether Jenkins, GitHub Actions are among
the most frequently used tools for actually working these processes. These have
varying emphasis on flexibility and integration but all provide ease of use.

Jenkins is a self-hosted automation server with wide capabilities and is well-
suited to complex enterprise environments. It includes both scripted and declarative
pipelines as well as an extensive library of plugins. However, Jenkins requires
many manual configuration steps, particularly when used in embedded systems or
hardware-in-the-loop (HIL) scenarios, where custom agents must be deployed and
maintained [10].

GitLab CI is built directly into GitLab. Instead of managing plugins made
by third-parties, you can keep everything in one place, more easily ensuring it all
works and is usable. It uses a single YAML file (.gitlab-ci.yml) to define jobs,
requires less setup than Jenkins and comes equipped with features like security
scans, test reports and artifact handling.

For one thing, GitLab CI is not as tightly integrated with the Arduino CLI or
hardware automation tools as its rival. Therefore despite the higher rated usability,
it recieves a mixed ranking in comparison to Jenkins [11]. However, GitLab CI is
suitable for the general software engineering project workflow.

GitHub Actions has emerged as a preferred option for lightweight and educa-
tional workflows, especially for Arduino-based projects. It uses simple YAML files
placed under .github/workflows and allows automatic triggering of jobs upon
events such as push, pull request, or tag creation. Its deep integration with GitHub
and native support for community-contributed Actions make it particularly suitable
for firmware compilation, testing, and deployment in embedded contexts [12].
A. CI/CD Pipelines with GitHub Actions: GitHub Actions offers an end-to-
end CI/CD solution integrated directly into the GitHub ecosystem. It can be used
to:

• Build and Test: Automate sketch compilation using the Arduino CLI and
validate functionality across platforms and versions.
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• Deploy: Automatically upload compiled firmware to a target device, or
package it for further testing.

Benefits:

• Efficiency: Automates time-consuming build and test routines.

• Consistency: Ensures repeatable workflows across commits and contributors.

• Collaboration: Provides instant feedback via GitHub checks and badges.

B. GitHub Actions for Testing and Quality Assurance: GitHub Actions
simplifies quality assurance by automating tests and enforcing standards.

Testing strategies include:

• Matrix testing for evaluating code across multiple hardware targets or configu-
rations.

• Unit test runners and static analysis tools.

Benefits:

• Early Detection: Catch regressions before merge.

• Maintainability: Automated checks improve long-term code quality.

C. GitHub Actions for Security Automation: Security checks are often
integrated into CI pipelines using GitHub Actions.

Features:

• Detect vulnerabilities in third-party libraries via dependabot.

• Enforce secure coding policies with pre-defined security actions.

Benefits:

• Proactive Defense: Prevents insecure dependencies from reaching production.

• Speed: Reduces the response time to known exploits.

D. GitHub Workflow for Embedded Projects (Adapted from [12]):
GitHub Actions supports a common Git-based development flow. The following
commands and steps are typically automated through YAML workflows:

1. Clone the repository: git clone https://github.com/user/repo.git
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2. Create a new branch: git checkout -b feature-branch

3. Make changes to the firmware or test scripts.

4. Stage changes: git add .

5. Commit with a message: git commit -m "Fix: update timing test"

6. Push to GitHub: git push origin feature-branch

7. Create Pull Request and trigger automated workflows (compilation, test,
upload).

Why GitHub Actions for Arduino-Based Work: The Github repositories
and opened-sourced contributions are an inherent aspect of the Arduino ecosystem.
Seamless integration with the Arduino CLI through GitHub Actions, which makes
it easy to automate processes such as building, uploading firmware and reporting
test results - which can be very important in hardware-in-the-loop orientation test
environments.

Tool Setup and Host-
ing

Integration and
Plugins

Use in Embed-
ded/Arduino

Pros / Cons

Jenkins Self-hosted; requires
manual setup and
maintenance

Highly customizable
via plugins; supports
tools like Docker and
SonarQube

Suitable for complex
hardware workflows;
high setup overhead

Powerful but re-
quires significant
effort; ideal for large
teams

GitLab CI Integrated into Git-
Lab; supports both
cloud and self-hosted
options

Built-in CI/CD, se-
curity scanning, ver-
sion control integra-
tion

Common in full-
stack DevOps;
limited use in Ar-
duino

Complete DevOps
suite; steeper
learning curve for
embedded

GitHub Actions Native to GitHub;
supports cloud and
self-hosted runners

YAML-based; inte-
grates with GitHub
CLI and Arduino
CLI

Best fit for Arduino
CI/CD; popular in
open-source

Lightweight,
developer-friendly;
natural workflow for
Arduino

Table 2.1: Comparison of Jenkins, GitLab CI, and GitHub Actions for CI/CD in
embedded development workflows.

To sum up, GitHub Actions is a light and flexible developer-friendly CI/CD
environment. In comparison with Jenkins or GitLab CI, it provides the most user-
friendly workflow for Arduino development, as it is natively integrated with the
GitHub, is free of charge up to a certain tier, and supported by the ecosystem [12].
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2.1.4 Benefits and Best Practices of Continuous Integration
Continuous Integration (CI) has a great potential for the software process, which
can be beneficial for software projects when used in a consistent manner and
adapted to project restrictions. In contemporary development, CI now enables
developers to detect integration problems earlier, and in the name of productivity,
quality and team congeniality. CI leads to faster developer feedback and faster
software delivery by automatically validating changes on the baseline [13, 9].

Better quality of the software is the most popularly quoted benefit of CI. Regular
integration means that changes are tested as soon as possible, and also in small
enough bits that it’s much easier for a team to catch regressions before they
reach lower-level functions. Automated pipelines that comprise with linters and
static analysis tools enforce code of conduct to avoid poor code to be pushed to
production [9, 13]. Moreover, CI encourages developers to commit more frequently,
making the debugging process faster and more traceable.

And the other big advantage that has is it makes the developer faster. CI
reduces the amount of manual testing and deployment work, allowing development
teams to focus on feature development and fixing issues [14]. In the long term,
teams who val CI have smopoth deploys, and are less distracted on the transitions
and join up of engineering and operations.

But industrywide studies suggest that these gains are very context-dependent.
In the context of embedded and telecom, the problematic deployment setup of
CI is due to legacy systems and the per-customer configuration (done via third
party software) [15]. For example, organizations would have to establish a parallel
pipeline to cater to traditional release mechanism and new-age CI system leading
to increased operational overhead. In such scenarios, the balance between the
cost-benefit of CI needs to be weighed very carefully before full implementation.

To maximize the return on CI, several best practices are commonly recommended:

• Automate tests: Unit, integration, and static tests should be run with every
change to ensure correctness and prevent regressions [9].

• Integrate frequently: Teams are encouraged to commit small changes
multiple times per day to avoid merge conflicts and increase traceability [13].

• Monitor build health: A healthy CI system includes alerts for build failures,
detailed logs, and clear feedback to the developers [14].

• Reduce unnecessary steps: Redundant scripts or documentation in the
delivery process should be eliminated when CI automates those functions [15].

Despite these practices, some barriers remain. Developers, for example, find it
challenging to make sense of complex build logs - particularly in large CI pipelines.
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BART and build failure classification systems have been presented in order to
smooth the bug triage [14]. Other works concentrate on cataloguing and identifying
anti-patterns that are associated with the degradation of CI processes, such as
not executing tests, infrequent commits, that affect the long-term reliability of the
pipeline.

In domains with strong requirements in agreements or governance CI needs
to be adaptable rather than rigidly applied. Organizations that operate under
strict SLAs or within regulated industry sectors may still have to retain hybrid
delivery models, support legacy integration mechanisms, and implement CI only
gradually [15].

Overall, the full benefits of CI are to be reaped from the technology or organiza-
tion only when it can be put into practice. It is only when both the company culture
and product infrastructure are ready that CI may grow to fulfil its full potential.
Through combining solid engineering practices with the real world constraints that
the project faces, teams can develop their CI strategies in a mature manner and so
avoid common folly like learning when it’s too late.

Figure 2.3: Conceptual model of a state-of-the-art CI/CD pipeline showing the
key components and stakeholder levels in software delivery [15].
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2.2 Challenges of Applying CI to Embedded Sys-
tems

While Continuous Integration is extensively used in the context of general purpose
software development, its context to the embedded systems world faces several
non-trivial issues. In contrast to desktop or cloud software, embedded develop-
ment is closely related to real hardware, real time constraints and environmental
dependencies which make automate testing and repeatable testing difficult[16]. In
embedded scenarios, the typical CI workflows are designed for high levels of com-
putational and software abstraction, which are explicitly not guaranteed. Instead,
developers need to interact with limited access to target hardware, manually set
up test environments for validation purposes, and long feedback loops including
Devices under Test (DUTs), signal generators, or measurement tools[17].

Further issues are long cross-compilation times, toolchain incompatibilities,
hardware specific build failures which hinder the developers productivity and
increase the latencies in terms of defect detection[18]. In life-critical domains, that
is, where a software failure can lead to death or injury, e.g., automotive or aerospace,
adherence to functional safety standards increases the level of constraints in tool
certification, regression coverage, and change control processes[16]. Even today’s
model-based-design flows struggle with fragmented toolchains and challenges on
maintaining their simulation models up to date with deployed firmware [19].

This section presents the technical and process impediments for integrating CI
in embedded software development. We’ll address them one at a time, with the
goal of providing the reader with enough information to evaluate design trade-offs,
bootstrap CI approaches, and tune the tools to their specific development scenario.

2.2.1 Real-Time Execution and Hardware Dependencies
There are known and well-documented benefits of CI practices in recent software
engineering deployment models, yet applying those systems to real world, hardware
focused embedded systems is not without issues. For an embedded software
application, the software must be validated and tested within a hardware partition.
This dependency creates bottlenecks on shared resources including DUTs, probes
or hardware interfaces that are, for the most part, idle and are not easy to make it
available for each CI cycle[17]. Furthermore, real-time requirements add another
level of complexity. A great deal of embedded software, for instance, involves
software interacting with hardware within relatively tight time limits. It can
be challenging to model or reproduce these deterministic operations in a typical
CI environment, which ultimately can lead to defects not being detected, or left
completely[18, 20].

Long build times and brittle integration processes as well as unavailable hardware
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lead to frequent CI pipeline breaks, effectively hampering the fast iteration. Late
defect discovery and interrupted flow of development are typical problems that
team working in real-time embedded contexts experience [21].

In order to overcome these challenges, some solutions have been suggested by
researchers. virtual platformsor simulators to decouple the test environment from
the hardware where developers can do their early verification without getting
blocked on hardware availability [22]. Another approach involves adopting Hybrid
Hardware-in-the-Loop (HIL) setups, which blend simulation with real hardware
validation [23]. Finally, automated test selection frameworks help reduce execution
load on embedded targets by selecting only the most relevant tests for a given code
change [24].

Figure2.4 shows a common CI/CD process which includes the software ecosystem.
Upon successful local development and manual testing, code changes are being
committed and are going through a series of automated build stages and testing
levels (Unit, Subsystem and full system testing) to verify the correctness and
integration[22].

Figure 2.4: CI/CD flow for a software environment showing automated testing
across multiple levels, from unit to system-level validation [22].

Likewise, Figure2.5 illustrates the CI/CD flow in the context of hardware.
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And here, after I’ve written and pushed that code, I run the test suite directly
on the actual target hardware. Unlike a software pipeline, this flow includes
flashing firmware, running tests on real boards, and capturing hardware responses.
Development boards which are very close to the production target in terms of
functionality are frequently exploited to simulate realistic testing contexts[22].

Figure 2.5: CI/CD flow for hardware environments, involving deployment and
testing directly on target hardware platforms [22].

CI pipelines aware of real-time have to be explicitly engineered to adhere to
time, power, and system stability constraints. This is particularly important for
safety-critical domains like automotive and health care that cannot afford the cost
of failure of functional correctness [20]. Such distinctions between software-led
and hardware-centred CI/CD are essential to inform the design of automation
framework that take into consideration the limitations of embedded development
environments. In the next subsection we present how cross-compilation and flashing
approaches are modified in order to facilitate these workflows.

2.2.2 Cross-compilation and Flashing Firmware
One of the first steps in bringing Continuous Integration (CI) to embedded systems
is setting up continuous cross-compilation and firmware deployment. As embedded
systems will have a hardware architecture different from the development host (e.g.,

16



Continuous Integration in Embedded Systems: Concepts, Tools, and Challenges

ARM as opposed to x86), we can’t use a normal compiler. Divergently, we require
development to be based on cross-compilation toolchains, that are set with target-
specific headers, libraries, and compilers [25].

Modern CI pipelines enhance this step by introducing modularity and automation
across multiple stages. A recent implementation [26] demonstrates a CI/CD
flow based on GitLab Runners that separates FPGA hardware design, embedded
Linux configuration with PetaLinux, Software Development Kit (SDK) setup, and
application cross-compilation. Each stage produces versioned artifacts consumed
downstream, offering both traceability and reproducibility.

Figure 2.6: CI/CD build flow integrating hardware design, OS setup, SDK
configuration, and application cross-compilation for embedded targets [26].

After having compiled the binary, you have to flash it to your target board.
Methods for getting the new firmware onto the device span the range from low-level
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approaches such as JTAG and SWD debugging connections to higher-level options
including bootloaders, over-the-air (OTA) updates, and even remote flashing over
SSH/serial links. GitLab CI jobs can take care of these steps and allow for scripted
deployment to testbeds after a successful build [26].

In early-stage testing, to alleviate technical problem dependence on physical
hardware, people widely use virtual interfaces and simulator technology [22]. This
permits developers to run embedded behavior on their workstations, thus greatly
boosting productivity and coverage. When linked to container technology, such
approaches can maintain the same environment through every stage of CI. This
solidly shuts off anything from outside which might affect build performance or
behavior.

Tool Setup and Host-
ing

Integration and
Plugins

Use in Embed-
ded/Arduino

Pros / Cons

GitLab CI Self-hosted or cloud-
hosted runners; flexi-
ble YAML configura-
tion

Native integration
with Docker, SSH,
Git submodules; rich
GitOps features

Used in modular
flows for FPGA,
SDK, and firmware
compilation

Pros: Full control
over runners, arti-
facts, secure stages.
Cons: Hardware
runners require extra
configuration

GitHub Actions Fully hosted on
GitHub; minimal
setup for public
repositories

Vast plugin ecosys-
tem via marketplace;
supports matrix
builds

Preferred for
Arduino-based
projects due to
GitHub ecosystem
integration

Pros: Easy to use,
integrates with Ar-
duino CLI, commu-
nity support.
Cons: Less control
over runner environ-
ment, no direct USB
access

Jenkins Requires manual
setup and server
maintenance

Highly extensible
with plugins (e.g.,
hardware flashing,
Docker)

Historically used in
large-scale embed-
ded test automation
systems

Pros: Powerful
and flexible, custom
pipelines possible.
Cons: Steep learn-
ing curve, plugin
maintenance over-
head

CircleCI Cloud-native with
optional self-hosted
runners

Pre-built Docker im-
ages, caching sup-
port, limited hard-
ware access

Not commonly used
in embedded due to
hardware constraints

Pros: Fast setup, ef-
ficient for software-
only projects.
Cons: Limited suit-
ability for hardware-
in-the-loop testing

Travis CI Cloud-based CI for
open-source projects

Integrates easily
with GitHub; sup-
ports Linux, macOS,
and Windows

Previously used for
open-source Arduino
library testing

Pros: Simplicity
and historical popu-
larity.
Cons: Performance
limitations, declin-
ing popularity

Table 2.2: Comparison of CI/CD tools used in embedded system workflows

18



Continuous Integration in Embedded Systems: Concepts, Tools, and Challenges

Planned and Recommended Practices The particular implementation pre-
sented here focuses on GitLab CI, but it is worth noting that the original plan was
to move over to GitHub Actions. This preference results from Arduino’s strong
reliance on GitHub-based workflows and the strong support offered by GitHub CI
tools. Integrating hardware-in-the-loop test into GitHub Actions can complete the
cycle and unify code, unit test and deploy in one toolkit.

In addition to tooling, some practices of architecture also improve CI reliability
for embedded systems [27]. They involve setting up a centralized location for
analytics repository so you can keep track version by version, managing configuration
parity across environments, and having rollback procedures in place to handle
botched deployments. Bringing these principles to bear helps preserve the stability
of all kinds of targets in hardware and software.

Conclusion and Trade-off Evaluation Creating a cross-compilation and flash-
ing pipeline for a CI/CD service enables embedded teams to shorten integration
cycles, minimize risks of human errors, and improve the reliability of their deliv-
eries. But the installation is non-trivial in that you have to have a good working
knowledge of tool chains, firmware protocols, and hardware idiosyncrasies. As
shown in Table 2.2, each method has trade-offs between complexity, velocity, and
hardware sensitivity. At the end of the day, the choice of tools and workflow should
ultimately depend on the scale of the project, the hardware you have access to,
and long term maintainability.

2.2.3 Limited Debugging and Output Capabilities
Debugging an embedded system has very different challenges compared to debugging
traditional software. As opposed to desktop systems, in embedded platforms there
may be very limited I/O, memory, and access to interior system states. This lack
of clear visibility clouds fault isolation and extends development cycles. Developers
are often left to use indirect methods such as LED status or serial output logs
which can provide only so much information about the program flow or system
state [28].

One fundamental challenge is that embedded systems are real-time systems.
Debugging frequently must be done without the ability to stop code execution, and
certain operations are time-critical and can’t be slowed down or aborted without
causing the whole system to fail. Also, due to real-time constraints, the use of
the default breakpoints or trace tools is restricted and developers need to move to
more specialized modalities and methods [29].

As a means of tackling these limitations, embedded platforms take advantage of
on-chip debug support (OCDS) mechanisms. One architecture divides the system
into three main components for instance: resources for processor-specific debugging,
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a serial communication interface with host interaction, and I/O clients which are
linked to processors and buses in some way [30]. This architecture fits single-core
as well as multi-core SOCs with minimal silicon overhead.

The JTAG module functions as a connection between the SoC and host debugger.
In an IEEE 1149.1 standard signal format this interface uses JTAG+ signals that
allow multiple IO clients to be communicated To. These clients make it possible
for processor debug registers, memory, and system buses to be accessed without
the need for external instrumentation [30].

Figure 2.7: Modular JTAG Debug Architecture with multiple IO Clients [30].

More advanced systems, connecting through shared system buses like the FPI
bus, model this architecture to support clients which write data to multiple masters
simultaneously. These clients can read or write to any memory location accessible
over the bus, as well as any debug register. Most importantly, they can be configured
with low-priority access without interfering with real-time tasks of the target system
under test, so that the performance remains stable even while active debugging is
going on [30].
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Figure 2.8: Multi-master IO Client accessing FPI Bus for debug communica-
tion [30].

As embedded systems increase in complexity, especially with the unfolding of
multi-core SoCs, the traditional debugging methods such as JTAG and UART no
longer suffice to provide sufficient runtime visibility. In modern platforms, embedded
trace units (ETUs) are integrated at last. These units stream compressed trace
data depicting the control flow, memory access, and system events. Making possible
low-intrusion observation, they greatly exceed the sweep and buffer capacity of
their predecessors [31].

In order to address these rigidities, an FPGA-based approach has been suggested
which processes trace data as it is created in real time. Rather than collect
trace logs to be analyzed offline, this technique provides live reconstruction of
execution flow and monitoring of runtime properties utilizing monitors defined in a
specification language called TeSSLa. This infrastructure is capable of providing
ongoing observability of the system under test (SUT) and supports real world use
cases, including timing analysis, code coverage, functional validation and fault
detection [31].

When trace-based observability is paired with hardware-based real-time verifica-
tion, it provides a scalable, effective alternative for traditional debugging methods.
It provides better visibility into the internal behavior of embedded software without
perturbing execution timing or needing source-level instrumentation.

2.2.4 Timing, Power, and Environmental Constraints
Timing validation is critical in embedded systems, especially in safety-critical
applications where missing deadlines may result in system failure. Traditional
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Worst-Case Execution Time (WCET) analysis methods evaluate the full codebase,
which is often impractical for CI/CD workflows involving frequent updates and
rapid iterations.

To address this, differential timing techniques such as Relative Timing Analysis
(ReTA) have been proposed. ReTA targets and examines only the snippets of code
affected by recent changes. It performs forward and backward slicing of the device
graph in order to determine timing-relevant paths and allow for a fast estimation
of the timing delta between firmware versions [32].

The ReTA process is depicted in Figure2.9, whereby changed instructions are
traced and classified to calculate timing deviations without reexecuting the whole
binary. The technique has been implemented in the Delta tool for Cortex-M
processors, and it can provide near-hardware-accurate WCET estimation with up
to 45% improvement in analysis time[32].

Figure 2.9: Workflow of Relative Timing Analysis (ReTA) [32].

Beyond timing, embedded CI pipelines must balance power and thermal con-
straints. Repetition of highly prioritized jobs may result in high power consumption
or trigger overheating on mobile devices. To mitigate the tradeoff between per-
formance and energy budget during automated test cycles, low-power scheduling,
dynamic frequency scaling, and runtime monitoring are frequently used.

Lightweight timing tools such as ReTA enable efficient validation of real-time
behavior while capturing its safety and liveness, thereby enabling agile CI/CD
operations while maintaining the safety and responsiveness of the system.

2.2.5 CI Bottlenecks in Production-Grade Embedded Work-
flows

In production-grade embedded systems it is usually not as easy to use Continuous
Integration systems as with standard software. A cross industrial study (telecom-
munication and avionic) of two real-world cases, detected several reoccurring
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bottlenecks that slow down or complicate CI adoption [16].
Build time is one of the biggest challenges. In embedded systems, where

dependencies tend to be tightly coupled, even a small change can cause a full
system rebuild to take place, often actually requiring hours. This slows down
the integration cycle and lessens the number of commits, while CI demands that
developers push and integrate code multiple times a day. A long build flies in
the face of “fast feedback,” and eliminates the ability to rapidly iterate, which CI
should facilitate.

A big problem is also hardware access. Embedded software is usually tested
on one-off custom boards or rigs that are expensive and scarce. Testing on real
hardware for each and every commit starts to become unwieldy. Some projects
attempt to use simulators, but these fall short when it comes to accuracy or
coverage to fully model the behavior of actual devices. This makes it difficult
to determine precisely what is meant by “all tests must pass,” particularly when
hardware variants are applied.

Plus in regulated industries like aerospace, developers must also cope with strict
compliance requirements. This means writing documentation, passing audits, and
demonstrating a critical event tracking system. Though important for safety, these
commitments can at the same time detract from the software itself. A failed build
can become less important than documents for a certification review.

Finally, teams working on embedded systems often span several technology
areas–mechanical, electrical and software. This means that workflows are not only
isolated from one another but many times engineers don’t have access to the whole
system view too, particularly if security policies restrict information sharing. It’s
then harder to audit builds globally, see failures in context, or apply CI feedback
across whole systems.

Together, most embedded development teams find it hard to fully put CI into
practice in its original form. Although the basic concepts of CI still hold true, real
hardware constraints, safety standards and complex organization structures often
demand that workflows be adjusted accordingly.

2.3 Practical Techniques and Architectures for
Embedded CI

This section presents the main issues that differentiate embedded systems from
traditional software projects, followed by practical solutions and architectures,
which have been developed to provide a way through which Continuous Integration
(CI) can be extended towards hardware-aware development environments. Pseudo-
soft CI pipeline. Unlike typical software-only CI pipelines, for Embedded Systems,
you need to work with something real, getting responses from actual devices, timing
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accurate verifications or measurements at the signal level.
In order to meet these requirements, embedded CI solutions use a variety of

hybrid strategies, where both software simulation and hardware validation occur.
Such strategies embrace Hardware-in-the-Loop (HIL) testing, virtual platforms,
SCPI-based automatic instrumentation, and custom CI/CD workflows with tools
like GitLab or GitHub Actions. Together, these make reproducible firmware
deployment, real-time verification, and effective test automation across a wide
range of different embedded targets.

This section provides detailed explanations of each method, with references to
documented research and actual implementation. It is designed to give the reader
a clear and comparative overview of existing solutions, so that he can understand
how in practice such architectures can join together what has previously been only
theoretical CI theory.

2.3.1 Hardware-in-the-Loop (HIL) Testing
Hardware-in-the-Loop (HIL) testing is the cornerstone of validating embedded soft-
ware - putting real hardware into a controlled test environment. Unlike simulations,
based on software models, HIL setups are in direct contact with the physical target.
As a result they are particularly effective in fields where safety demands cannot be
satisfied by software alone: for instance, automotive and aerospace.

This approach is designed to embed the software onto the target platform, but
this platform then communicates external components such as oscilloscopes and
signal generators with which to carry out two-way testing of system behavior. These
peripheral devices provide input stimuli and measure outputs to assess real-time
performance. Figure 2.10 shows a typical manually operated HIL setup where an
oscilloscope or signal generator is used to generate signals and measure response.

Manual HIL testing is prone to errors, time-intensive and hard to scale in a
CI/CD environment. Experiments usually have to be performed in sequence, and
a mismatch in timing or signal synchronization may lead to erroneous results. To
overcome this, the authors in[33] propose a fully automated alternative presented
in Figure2.11.

This architecture pushes a large amount of control logic directly onto the host
PC, eliminating the need for instrumentation on the microcontroller. The debugger
links up via JTAG and a host platform runs test script and vehicular simulators, in
addition to communicating with an HIL test system. This architecture facilitates
better synchronization, lowers the variance of the running time, and overcomes
on-chip resource limitations experienced by other approaches.

To illustrate the difference between manual and automated testing, a performance
comparison of DIO driver was carried out. As shown in Table 2.3, the automated
method drastically reduced test execution time, improving speed and consistency.
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Figure 2.10: Test setup for manual tests [33]

Figure 2.11: Hardware/software integration test concept based on host-executed
test scripts [33]

25



Continuous Integration in Embedded Systems: Concepts, Tools, and Challenges

# Test Description Manual [s] Automated [s]
1 Read low level at DIO0 80 3.042
2 Read high level at DIO0 76 3.169
3 Read low level at DIO1 56 3.178
4 Read high level at DIO1 53 3.193
5 Write low to DIO0 51 3.444
6 Write high to DIO0 45 3.377
7 Write low to DIO1 50 3.256
8 Write high to DIO1 40 3.174

Table 2.3: Execution Times of DIO Software Component Tests [33]

26



Continuous Integration in Embedded Systems: Concepts, Tools, and Challenges

Statistical analysis was also performed to understand the variability of execution
times. The standard deviation for manual tests (sm) and automated tests (sa) were
calculated as:

sm =
óq(truntime − t̄manual)2

n
= 13.331 s

sa =
óq(truntime − t̄automated)2

n
= 0.119 s

where t̄ is the average runtime and n is the number of test cases. The large
spread for deviation proves that manual tests are not only slower, but also more
inhomogeneous and therefore more prone to errors.

The Go based HIL testing with SCPI connected instruments and Arduino CLI
was adopted for work of this thesis. The automated process was similar to the
host-controlled one, ensuring appropriate control over the signal generation and
even real-time monitoring through oscilloscopes and DMM.

Overall, integrating HIL into CI workflows boosts efficiency and improves
confidence in embedded firmware, especially when changes need to be validated
continuously. The approach presented in [33] aligns closely with modern embedded
development goals, supporting scalable and reproducible validation of hardware-
software integration.

2.3.2 Virtual Platforms and Emulation

In the world of embedded systems, Continuous Integration (CI) struggles due to
hardware that is hard to access, time-consuming test setup, and the complexity
that comes in automating an environment that makes mobile development seem
like child’s play. In such challenges, virtual platforms are considered as a viable
alternative to hardware-based testing. A virtual platform (VP) simulates a target
hardware at the transaction level, allowing unmodified embedded software to run
in a controlled and deterministic environment [34].

Virtual learning tools offer a number of important benefits relative to traditional
lab-based experiments. They enable testing in parallel across virtual machines,
reduce the latency of tests and streamline test automation. Additionally, developers
can simulate the processor and peripherals as well as the interaction of the system
with its environment, including sensors or communication buses.
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Figure 2.12: Integration of virtual platforms with environment models for em-
bedded CI [34]

Figure 2.12 illustrates how a VP can be integrated with simulations of the
physical environment. This configuration enables developers to test system behavior
under realistic circumstances without needing physical hardware.

Another important feature is checkpoints where the simulation state can be saved
and used to make test campaigns faster and reproducible for debugging purposes.
This is especially useful for catching the kinds of intermittent or timing-related
bugs that would be difficult to diagnose using real hardware.

While physical boards are still needed for final validation, the virtual platforms
really lower the reliance on hardware in the earlier stages of CI significantly. This
serves the aim of moving testing to occur earlier in the development process, of
increasing the frequency of feedback afforded by testing, and accommodates Agile
working practices in the domain of embedded software engineering [34].

2.3.3 Automated Instrumentation (Oscilloscopes, DMMs)
Automated control of those instruments like oscilloscopes and digital multimeters,
is an essential component for embedded CI workflows, especially when testing
power levels, pwm signals, and analog outputs in unattended test loops. The
contemporary systems use SCPI format (Standard Commands for Programmable
Instruments) for consistent communication throughout devices across different
vendors, allowing these instruments to be contacted from CI scripts, remote agents,
or embedded test managers.

One typical solution is to link measurement devices to an embedded controller
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or a host PC using USB, Ethernet, or serial interfaces. By use of some software
libraries (e.g., PyVISA – Python, or VISA Interfaces – LabVIEW), SCPI commands
can be sent to set trigger levels and capture screenshots; plot voltage or frequency
values and compare with some predefined thresholds. Such a technique enables
automatic signal validation on firmware flashing or on hardware replacement.

The advantage of SCPI lies in its standardization. SCPI, in contrast to vendor-
specific application programming interfaces (APIs), articulates a uniform ASCII
hierarchy of commands that is supported by most modern instruments. This
regularisation makes scripts that run hardware from any vendor possible. For
instance, a typical command to measure signal frequency is:

MEASure:FREQuency?

This query functions similarly across many oscilloscope brands, greatly simplify-
ing CI test code reuse.

The use of SCPI in embedded test environments not only reduces manual
effort and operator variability but also improves reproducibility across test cycles.
Furthermore, since the same command sequences can be exported and run in
simulation or hardware, it supports both virtual platform-based and real-hardware-
based testing uniformly [35].

2.3.4 GitHub Actions: Resource Usage and CI/CD Tool
Utilization

GitHub Actions is now one of the more ubiquitous CI/CD platforms, with native
support for GitHub-based repositories and up to 2,000 free VM minutes likely
used each month on public projects. Nevertheless, recent works demonstrate that
workflow executions may lead to a high consumption VM and inefficiencies at users
of paid-tiers [36].

Empirical analysis on 1.3 million runs from GitHub Actions workflows over 30
months shows that 91.2% of the VM compute time is consumed by builds and tests.
These are generally run on pull requests, direct pushes, or scheduled workflow runs.
Paid repositories used about 5,914 VM minutes a month, or $504 per year, with
free repositories typically doing briefer builds and tests (1.5 minutes vs 9.6 minutes
in the case of builds) [36].

The same study reported 17.4% of workflows subjected to the different running
time constraints of their paid-tier plans fail, which not only bloats cost with re-runs,
but also in lengthy execution, unfolding up to time-outs. These deficiencies point
out the importance of proper optimization techniques, some of which are not
popular.

Despite the multiple built-in means that GitHub Actions offers for minimizing
the resource waste, such as cache, fail-fast, cancel-in-progress and custom timeouts,
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they are not popular. For instance, caching was included in only 32.9% of paid
repositories, despite saving 3.5% VM time and $21 per year on average. Only
10.1% took advantage of cancel-in-progress that could save 4.1% VM time [36].

Strategy Adoption (%) VM Time Saved Yearly Savings ($)

Caching 32.9 3.5% 21.5
Fail-fast 75.9 1.5% 2.1
Cancel in Progress 10.1 4.1% 62.6
Custom Timeouts 14.0 8.1% 58.3

Table 2.4: GitHub Actions optimization strategies and their impact [36].

A large-scale study on 1.5 millions of GitHub Actions workflows from almost
33,000 projects, divided the tools used based on their CI/CD domains into five
categories, namely Build Automation, Test Automation, Static Code Analysis,
Version Control, and CI/CD Servers [37]. The Build Automation category was
the most comprehensive (and by far the most popular) with 45% of unique tools.
However, Test Automation tools, which are particularly important for CI, had only
6% variety and almost 0% usage share.

These results imply that while the infrastructure level support for CI/CD is
quite mature for GitHub Actions, there is the possibility to optimize and take
advantage of various testing abilities. Especially in paid-tier scenarios, cost and
performance inefficiencies persist due to insufficient use of caching, failure handling,
or timeout strategies. Also the low use of automated testing tools suggests that
the practice of CI/CD is not fully applied in real-world repos as it could.

Future work could focus on automated, ML-driven recommender systems may
be developed that can modify GitHub Actions workflows to make them more
cost-effective, robust and follow more closely to CI/CD best practices.

Since most Arduino libraries and examples are created on GitHub, something like
GitHub Action is a straightforward way to stay true to the ecosystem philosophy for
embedded developers. In this thesis, GitHub Actions was considered for integration
due to its relevance in Arduino workflows, but optimization approaches have
remained an subject of ongoing experimentation.

2.4 Summary and Outlook
This chapter gave a comprehensive understanding of the role that CI plays in
embedded system development over time: the origins with software engineering,
to challenges of leveraging it on resource-powered environments, as is the case
with hardware-limited systems. First, they started by revisiting the history of CI
practices, when manual merges were replaced by automated pipelines, and tools
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like Jenkins, GitHub Actions, or GitLab CI became critical parts of developer
workflows.

The latter half of the chapter discussed challenges that need to be addressed
to extend CI to embedded systems. This includes cross-compilation, flashing the
firmware, debugging over restricted interfaces, and validating real-time behavior.
In addition to these issues, issues such as test resource constraints, long build times,
and conformance-related restrictions were mentioned as well.

In order to address these challenges, various alternatives were considered.
Hardware-in-the-loop (HIL) testing and virtual platforms were proposed as meth-
ods to reduce the hardware dependency and to allow for more scalability in CI.
SCPI-controlled instrumentation with Go-based orchestration was developed to
programmatically confirm signals and measurements. Recent studies on GitHub
Actions were also addressed, notably related to workflow improvement and tooling
consumption patterns.

On the whole, the chapter emphasized the fact that embedded CI is much more
hands-on than a common software pipeline. It’s not simply a matter of doing
the build and test automatically — one has to integrate physical measurement,
hardware control, and domain specific constraints into a single, coherent process
that can be repeated. The next chapter puts all this in perspective, it demonstrates
how we applied such strategies in practice to a real working system for embedded
test automation.

2.4.1 Key Takeaways from Existing CI Tools and Tech-
niques

From the tools and cases that we have reviewed, some general remarks can be
made:

• CI in embedded systems is not plug-and-play. It requires hardware orchestra-
tion, cross-compilation, and measurement coordination.

• Tools like Jenkins and GitLab CI are flexible but need a lot of setup and
sometimes need to be interfaced with hardware.

• GitHub Actions is widely adopted in open-source firmware projects but is
often underutilized in terms of caching, test automation, and optimization.

• HIL setups and virtual platforms help close the gap between purely software-
based and physical tested approaches.

• SCPI-based instrumentation brings repeatability and automation to some
signal validation that would otherwise have been manual work.
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These results guided the design and architecture decisions of the actual imple-
mentation of this thesis.

2.4.2 Justification for the Thesis Implementation Strategy
The decisions which is in this thesis were highly affected by the lack and weakness
in standard embedded CI pipelines. A host-side orchestration system using Go
was chosen for its performance, cross-platform nature, and ability to handle serial
communication, SCPI over TCP/IP, and file generation.

The use of Arduino CLI allowed flexible firmware compilation and uploading
without the need for a heavy IDE. Vendor-neutral SCPI commands were a way of
controlling oscilloscopes, power supplies and digital multimeters in automated tests.
This allowed for a modular and repeatable configuration where we could throw
lines of compilation, flashes, and measurements and we could call, verify and log.

It’s in line with the current direction of embedded testing, to reduce the amount
of human interaction and yet have all the traceability and measurement capability
saved.

2.4.3 Planned Use of GitHub Actions in the Arduino Ecosys-
tem

Although the prototype described in this thesis runs locally using Go scripts and
shell orchestration, the long-term goal was to bring the entire flow into GitHub
Actions. This choice is based on the fact that Arduino development already heavily
relies on GitHub for code hosting, library distribution, and issue tracking.

GitHub Actions would allow the CI system to be triggered by pushes or pull
requests, compile the firmware using Arduino CLI, run logic in Docker containers,
and—if connected to hardware test servers—perform remote HIL validation too.
While this step was not implemented in full, the system was intentionally designed
to be compatible with such a future extension.

This keeps the workflow aligned with Arduino’s own development culture and
allows future contributors to continue building on top of the existing automation
in a way that’s scalable and GitHub-native.
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Chapter 3

Methods Developed in the
Thesis

This chapter describes the system that was developed to automate testing and vali-
dation for embedded firmware using a Continuous Integration (CI) workflow. The
goal was to build a setup where hardware tests could run automatically whenever
new code was pushed, without the need for manual interaction with devices or
instruments.

I designed the system as a composition of various parts: a Go program running
at the host PC, an Arduino GIGA board, acting as the Device Under Test (DUT),
a power supply, a DMM, and an oscilloscope as some lab instruments. These
instruments are linked via standard interfaces like USB, LAN, and serial ports.
The host PC control it all, through SCPI commands and a serial link. In this way,
I can flash firmware to the Arduino, generate a control signal, take measurements,
and save results in JSON format for later analysis.

Before diving into the details of each component, the next section provides an
overview of the full system and its architecture.

3.1 System Architecture Overview
The entire system is designed around the idea of automating real hardware validation
within a CI pipeline. As shown in Figure 3.1, the host PC sits at the center of
the workflow. It is responsible for compiling the Arduino sketch using Arduino
CLI, uploading the firmware to the DUT, sending test commands over serial, and
collecting measurements from the lab instruments.

The Arduino GIGA is programmed to understand a custom set of commands,
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referred to as ATU (Arduino Test Utilities) commands. These allow the host to
request specific behaviors such as generating a PWM signal with a certain duty
cycle, setting a voltage on an analog pin, or performing digital reads and writes.
The firmware on the Arduino parses these commands and responds accordingly,
acting like a small interpreter running on the board.

On the measurement side, the power supply, oscilloscope, and DMM are all
controlled using SCPI (Standard Commands for Programmable Instruments). This
standard makes it possible to talk to different brands of instruments using the
same kind of ASCII-based commands. For example, to read the voltage on a DMM,
the host sends a SCPI command like MEAS:VOLT?, and the DMM replies with the
measured value. This makes it easy to automate checks for things like whether
the output voltage is correct or if a PWM signal has the right frequency and duty
cycle.

Figure 3.1: High-level architecture of the automated embedded testing setup.

The workflow is designed to be modular and easy to extend. If new types of
tests are needed, it is usually enough to update the Arduino sketch with new ATU
commands and add corresponding logic on the host side. The instruments are
already integrated, so any test that can be measured using voltage, current, or
signal timing can be added without major changes to the setup.
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This architecture has the advantage of combining real hardware validation with
a flexible, scriptable test environment. It enables fully automated test runs inside
GitHub Actions or other CI platforms, bridging the gap between software-level CI
and real embedded hardware testing.

3.2 Arduino Firmware and ATU Command De-
sign

In order to be able to control the DUT in a flexible way, I wrote my own firmware
for the Arduino GIGA based on the ATU (Arduino Test Utilities) framework. I ex-
panded the firmware on it to add a variety of serial commands which would initiate
various test routines. And that’s with things like creating PWM signals, controlling
analog output levels with DAC, or reading digital and/or analog inputs of the
board. I was also responsible for the command parsing and response formatting
logic, so the host application can communicate with the DUT in a consistent manner.

ATU framework was selected for its simplicity, extendability, and compatibility
with the Continuous Integration (CI) systems. It abstracts direct register manipu-
lation and offers a command-based API where an external program (such as the
Go orchestrator) can request an operation by sending a human-readable string.
This makes the communication protocol simple, debuggable, and cross-platform
compatible.

The firmware is a simple loop that continuously runs on the Arduino. It sits
receiving commands from the serial port, and then parsing them and performing
the appropriate operation depending on what was requested. After processing each
command, it sends a message back if the operation was successful or not. It makes
your communications two-way, no matter what, and easy to debug when you’re
testing.

3.2.1 GIGA Board Hardware Features and Role

The Arduino GIGA R1 WiFi is the core hardware platform for the Device Under
Test (DUT) in this project. It was selected for its extensive I/O, dual-core design,
and built-in communications. Its flexibility also makes it versatile for embedded
systems, in the context of advanced automation testing and CI workflows.
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Figure 3.2: Arduino GIGA R1 WiFi – Physical appearance

Key Features:

• Microcontroller: STM32H747XI with dual-core architecture:

– Arm® Cortex®-M7 @ 480 MHz
– Arm® Cortex®-M4 @ 240 MHz

• Memory: 2 MB Flash, 1 MB SRAM, 16 MB external NOR Flash (QSPI),
and 8 MB external SDRAM.

• Connectivity: Integrated Wi-Fi 802.11 b/g/n and Bluetooth Low Energy
(BLE) via Murata 1DX module.

• I/O Capabilities: 76 digital pins, 14 analog inputs, 13 PWM-capable pins,
2 DAC outputs (up to 12-bit).

• Interfaces: USB 2.0 Host (Type-A), USB-C Programming/Peripheral, 4
UART, 3 I2C, 2 SPI, 1 CAN (via transceiver).

• Operating Voltage: 3.3V logic level, input voltage range from 6–24V via
VIN or USB.

In this thesis, the GIGA board serves as a programmable DUT to process test
commands sent through a serial interface from the host PC. These strings, separated
by semicolons, are parsed and processed by a custom ATU (Arduino Test Utilities)
firmware. Depending on the command, the GIGA can produce a PWM signal, place
a DAC voltage on an analog output, or use digital I/O. The resulting outputs are
then observed using lab equipment, aiming to verify the behaviour of the firmware
under the tests.
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A key reason for selecting the GIGA was its broad pin availability, which enabled
simultaneous use of digital I/O, analog output (DAC), and serial communication
for orchestration. For instance, PWM waveforms were generated on D9 or D6,
DAC voltages on A12 (pin 84), and analog voltage was read back using the
Keithley DMM6500 to ensure voltage accuracy. This made the board well-suited
to multi-instrument measurement setups in a hardware-in-the-loop (HIL) testing
framework.

Figure 3.3: Arduino GIGA R1 WiFi – Top view with labeled components and
pin layout.

Notable Pin Assignments in This Project:

• PWM Output: D9 — used to generate 30% duty cycle PWM.

• DAC Output: A12 — used to generate 1.5V for DMM validation.

• Analog Measurement: Pin A0 — monitored by oscilloscope and DMM.

• Serial Interface: USB-C port — used for ATU command communication at
115200 baud.

The dual-core design of the board and the high-speed peripherals additionally
allow for upgrading with real-time signal processing, concurrent monitoring on
both cores, or edge AI expansions, and many other features. Although in this work
only a single core was actually used, the STM32H7 opens significant headroom to
scale up CI test cases or enable autonomous decision-making onboard.
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3.2.2 Command Structure and Syntax
Each command sent to the Arduino follows a basic pattern of:

<COMMAND>;<PIN>;<VALUE>

This format allows the system to remain lightweight and avoid parsing complexity
on the microcontroller. The semicolon-separated format is easy to split and validate.
Commands are case-sensitive and end with a newline character (\n) to trigger
parsing.

For example, to generate a PWM signal with 30% duty cycle on pin D9, the
following command is sent:

AW;9;77

Here, AW stands for Analog Write, pin 9 is the target output, and 77 is the duty
cycle value on a scale from 0 to 255 (where 76.5 maps approximately to 30%).

The firmware includes a predefined list of supported pins, which ensures that only
usable I/O lines are initialized and keeps I/O lines that are not used, deactivated.
This avoids erroneous definition of reserved or incompatible pins on the GIGA
board.

1 uint8_t usedPins [ ] = {
2 // D i g i t a l p ins D0−D13
3 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ,
4 8 , 9 , 10 , 11 , 12 , 13 ,
5

6 // Analog p ins A0−A5
7 76 , // A0
8 77 , // A1
9 78 , // A2

10 79 , // A3
11 80 , // A4
12 81 , // A5
13

14 // Extended d i g i t a l p ins D22−D53
15 22 , 23 , 24 , 25 , 26 , 27 ,
16 28 , 29 , 30 , 31 , 32 , 33 ,
17 34 , 35 , 36 , 37 , 38 , 39 ,
18 40 , 41 , 42 , 43 , 44 , 45 ,
19 46 , 47 , 48 , 49 , 50 , 51 ,
20 52 , 53 ,
21

22 // DAC output (A12)
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23 84 // DAC_0 / A12
24 } ;

The ‘setup()‘ function initializes serial communication at 115200 baud and
enables the ATU interpreter. After initialization, the ‘loop()‘ function continuously
checks for new commands using ‘ATU.parseCommand()‘. Once a command is
received, it is processed by ‘ATU.executeCommand()‘ and the result is sent back
to the host.

1 void setup ( ) {
2 ATU. begin ( ) ;
3 S e r i a l . begin (115200) ;
4 ATU. se tP in s ( usedPins , s i z e o f ( usedPins ) / s i z e o f ( usedPins [ 0 ] ) ) ;
5 }
6

7 void loop ( ) {
8 St r ing command = ATU. parseCommand ( ) ;
9 i f (command != " " ) {

10 St r ing r e s u l t = ATU. executeCommand (command) ;
11 i f ( r e s u l t != " " ) {
12 ATU. r e s u l t (command , r e s u l t ) ;
13 }
14 }
15 }

While maintaining the logic readable and maintainable, this minimal firmware
allows remote-controlled actions with just a few lines of code. It also separates the
firmware logic from the test orchestration system so that new capabilities may be
included without influencing host-side automation.

3.2.3 Firmware Logic and Command Parser
The firmware flashed in the Arduino GIGA is designed using a loop-oriented model,
which is commonly used in microcontrollers. It has the duty of being a command
interpreter that reacts to serial input, performs a corresponding low-level operation
(on a pin), and replies with a result over the same serial interface. It allows remote
automation and scripting from the host side, so no onboard UI or manual activation
is required.

Once the board is powered and the ‘setup()‘ function is executed, the ATU
system is initialized by calling ‘ATU.begin()‘, and all available pins are registered
using ‘ATU.setPins(...)‘. This step defines which pins can be addressed later by
incoming commands and prevents the firmware from attempting to operate on
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undefined or unsafe pins. Serial communication is initialized at a baud rate of
115200, which provides a good balance between speed and reliability for UART
communication.

During the ‘loop()‘, the firmware keeps calling ‘ATU.parseCommand()‘, which
does not return until one line of a complete command is received (including the
newline). When a recognized command is received, it is tokenized and dispatched
to the corresponding internal ATU (e.g., digital write, analog read, PWM output).
The ‘ATU.executeCommand(...)‘ function is an example of this encapsulation, and
guards against inappropriate values from getting into the world of specific pin
numbers or values that can be written. The firmware then uses ‘ATU.result(...)‘ to
return the response to the host.

This modularity keeps the parsing, execution, and response generation, making
it easier to add new ATU commands in the future or modify existing behavior. For
instance, implementing a new command for reading an analog input only would
involve extending the parsing logic with a new case like "AR" (short for Analog
Read) and routing it to the corresponding analogRead(...) function.

The command parser relies on simple string manipulation functions provided
by the Arduino ‘String‘ class. While this may not be optimal for performance
in very constrained environments, it offers fast development and debugging for
moderately sized embedded projects like the one in this thesis. Since only short
strings are parsed and no dynamic memory is retained after execution, the risk of
fragmentation or overflow remains minimal.

The command is tokenized internally based on semicolon delimiters (;) using
simple string parsing inspired by the String class of Arduino. The parser then
examines if the first token is a recognized keyword, "AW" (Analog Write), "AR"
(Analog Read), "DW" (Digital Write), or "DR" (Digital Read). The command is
executed if the keyword is correct and the number of arguments follows the antici-
pated pattern. If not, then the firmware replies with the smallest error or doesn’t
take action on the input.

An example of a valid parsing process for the command ‘AW;9;127‘ would be:

• ‘AW‘ → Analog Write

• ‘9‘ → Pin D9

• ‘127‘ → Duty cycle (≈ 50%)
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This command would internally trigger ‘analogWrite(9, 127)‘ on the GIGA
board, and the response string ‘"AW;9;127"‘ would be echoed back to the host to
confirm execution.

The firmware is intentionally kept minimal, with all execution logic routed
through the ATU library. This makes it easier to test the host-side Go program
independently, since any Arduino running the ATU firmware can behave identically.

If corrupt input, unknown commands, or bad pins are entered, the firmware does
not give very good feedback to the user at the moment. Perhaps something like
number code returns or verbose error output is a possible addition for the future.
In reality, however, testing has proven the current structure to be sufficiently strong
(at least from a testing standpoint) that automated tests in the CI pipeline are
already enabled and can run uninterrupted.

3.3 Host-Side Automation Logic in Go
The host-side logic is where everything comes together. This part of the system
runs on the PC and controls the full test process from start to finish. It was
written entirely in Go because the language is lightweight, easy to organize into
modules, and fast to compile. In addition, it works well with networking and serial
communication, which made it a good fit for this project.

The Go program acts like a conductor. It compiles and uploads the firmware to
the Arduino using Arduino CLI, then communicates with it using a serial port to
perform various ATU commands. It connects to the lab instruments via LAN and
sends SCPI commands at the same time. Those devices are a power supply, an
oscilloscope, and a DMM. It can tell the instruments to apply voltage, read current,
check instrument signal properties, and even take a screenshot of the oscilloscope
display.

All measurements are gathered and saved automatically in a structured JSON
file. The filename includes a timestamp, so each test run produces a unique output.
This is also useful to structure the results in an easily reviewable and compa-
rable format. The tool can be launched manually in a terminal, run as part of
GitHub Actions to run the full test pipeline when a new piece of firmware is pushed.

In the next parts, each component of the Go program will be explained. This in-
cludes how the firmware is compiled, how the system interacts with the instruments,
and how the final test results are stored.
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Each part of the workflow is encapsulated by its own function in the Go program,
so if one part fails, it won’t take everything else down with it. So, if the Arduino
fails to start in the right way, the system can progress and take what it can from
the lab instruments. This allows the tool to be more fault-tolerant, particularly for
automated runs.

The orchestration logic also includes utility functions for formatting values, man-
aging serial buffers, trimming strings, and generating readable filenames. This helps
ensure consistency across test runs and simplifies future debugging or validation.

3.3.1 Overview of the Go Orchestration Program
The Go orchestration program is the central automation layer that controls the
test workflow from start to finish. It starts by parsing runtime configuration
parameters passed as flags, such as the path to the sketch, IP addresses and ports
of instruments, and USB Vendor ID and Product ID to locate the Arduino GIGA.
This allows the same program to work across different setups with minimal changes.

1 dataPath := f l a g . S t r ing ( " dataPath " , defaultDataPath , " Path to the
sketch data " )

2 fqbn := f l a g . S t r ing ( " fqbn " , " arduino : mbed_giga : g iga " , " Board name" )
3 port := f l a g . S t r ing ( " port " , " /dev/ttyACM0" , " Arduino port " )
4 vid := f l a g . S t r ing ( " vid " , " 2341 " , " Arduino Vendor ID" )
5 pid := f l a g . S t r ing ( " pid " , " 0266 " , " Arduino Product ID" )
6 psIP := f l a g . S t r ing ( " psIP " , " 10 . 1 30 . 2 2 . 1 11 " , " Power Supply IP " )
7 osIP := f l a g . S t r ing ( " osIP " , " 10 . 13 0 . 22 . 2 29 " , " O s c i l l o s c o p e IP " )

Once configured, the program proceeds through the test sequence:

• It connects to the Rigol DP832 power supply over TCP/IP and enables the
output.

• It compiles and uploads the Arduino sketch using the arduino-cli tool.

• It communicates with the Arduino using serial commands defined by the ATU
protocol.

• It configures the Rigol DS1054Z oscilloscope to capture waveform measure-
ments.

• It queries the DMM (Keithley DMM6500) to read the voltage produced by
the DUT.
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• It saves all results (voltage, current, frequency, duty) in a structured JSON
file.

The orchestration logic follows a clear linear structure, with labeled sections in
the code to make it easy to debug or extend later. All serial and SCPI operations are
abstracted into modular packages like RigolDS1054Z, RigolDP832, and DMM6500,
which makes the codebase clean and testable.

A screenshot of a typical execution is shown in Figure 3.4.

Figure 3.4: Terminal output of a full test execution by the Go orchestration
program.

Each step includes sanity checks, error messages, and retry logic where needed.
For example, if the board is not detected by VID/PID, the test is aborted with a
clear error message:

1 portName , e r r := findDUTPort (∗ vid , ∗ pid )
2 i f e r r != n i l {
3 l og . Fa ta l f ( " Error f i n d i n g DUT port : %v " , e r r )
4 }
5 s e r i a l P o r t , e r r := s e r i a l . Open( portName , &s e r i a l . Mode{BaudRate :

115200})

This high-level structure ensures that the system can be run interactively or
be embedded inside a CI pipeline like GitHub Actions, enabling true automated
validation for embedded firmware projects.
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3.3.2 Sketch Compilation and Upload (Arduino CLI)
The first step in the test automation workflow is to compile and upload the
firmware to the Arduino GIGA board. This is handled by the Go program using
the arduino-cli tool. The reason for choosing Arduino CLI is that it works well
in scripts, supports all board platforms, and avoids the need to open the Arduino
IDE. It also integrates nicely into CI pipelines and can be used headlessly on Linux.

The program sets the fully qualified board name (FQBN), the path to the sketch
folder, and the serial port. These are passed as runtime flags, so the tool can be
reused across different boards without changing the code. The following snippet
shows how these values are declared:

1 fqbn := f l a g . S t r ing ( " fqbn " , " arduino : mbed_giga : g iga " , " Ful ly
Q u a l i f i e d Board Name" )

2 dataPath := f l a g . S t r ing ( " dataPath " , " . /GigaR1ATU" , " Path to sketch
d i r e c t o r y " )

3 port := f l a g . S t r ing ( " port " , " /dev/ttyACM0" , " Port o f the Arduino
board " )

Once the parameters are set, the Go program runs the compile and upload
commands using the standard exec.Command interface. It captures the output for
debugging and prints it to the terminal. If compilation or upload fails, the program
stops and shows an error.

1 compileCmd := fmt . S p r i n t f ( " arduino−c l i compi le −−fqbn %s %s " , ∗ fqbn ,
∗dataPath )

2 compileOutput , e r r := exec .Command( " bash " , "−c " , compileCmd ) .
CombinedOutput ( )

3 i f e r r != n i l {
4 l og . Fa ta l f ( " Error compi l ing the sketch : %s " , s t r i n g ( compileOutput

) )
5 }
6

7 uploadCmd := fmt . S p r i n t f ( " arduino−c l i upload −−fqbn %s −−port %s %s " ,
∗ fqbn , ∗ port , ∗dataPath )

8 uploadOutput , e r r := exec .Command( " bash " , "−c " , uploadCmd) .
CombinedOutput ( )

9 i f e r r != n i l {
10 l og . Fa ta l f ( " Error uploading the sketch : %s " , s t r i n g ( uploadOutput )

)
11 }

An example of the terminal output from a successful run is already shown in
Figure 3.4. It includes messages from both compilation and uploading, such as
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memory usage and USB transfer progress. These logs help verify that the correct
board is targeted and that the firmware was uploaded successfully before continuing
to the next step.

3.3.3 Serial Connection Management and ATU Communi-
cation

After the firmware is uploaded, the program will attempt to open a serial connection
with the Arduino GIGA. I set both sides to work at a baud rate of 115200 to
have some reliable communication. Rather than setting the port name (which is
system-dependent) manually, I wrote software to find the USB Vendor ID (VID)
and Product ID (PID) for the GIGA board. That means even if other Serial devices
plugged in, the program will track the right one down.

Before this happens, the Go program defines the runtime parameters for the
test setup using command-line flags. This method maintains the tool generic so it
can be reused over any board, pin, and test environment. For instance, the target
PWM pin, duty cycle, and USB VID/PID are defined with the flag package:

1 pin := f l a g . Int ( " pin " , 9 , "PWM Pin on the Arduino " )
2 duty := f l a g . Int ( " duty " , 77 , "PWM Duty Cycle (0 −255) " )
3 vid := f l a g . S t r ing ( " vid " , " 2341 " , " Arduino Vendor ID" )
4 pid := f l a g . S t r ing ( " pid " , " 0266 " , " Arduino Product ID" )
5 f l a g . Parse ( )

These flags allow the user to launch the test with different parameters, for
instance:

go run main.go –pin=9 –duty=77 –vid=2341 –pid=0266

The calculated the duty cycle value 77 converts approximately to 30% on a scale
from 0 to 255. The VID and PID are aligned to the USB identifiers assigned to the
Arduino GIGA board to automatically attach to the correct port in environments
with multiple USB devices.

The function findDUTPort(...) iterates over the list of connected USB devices,
compares their VID and PID values, and returns the matching serial port name.
Once found, the port is opened using the serial.Open(...) method, as shown in
the following snippet:

1 portName , e r r := findDUTPort (∗ vid , ∗ pid )
2 i f e r r != n i l {
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3 l og . Fa ta l f ( " Error f i n d i n g DUT port : %v " , e r r )
4 }
5 s e r i a l P o r t , e r r := s e r i a l . Open( portName , &s e r i a l . Mode{BaudRate :

115200})
6 i f e r r != n i l {
7 l og . Fa ta l f ( " Fa i l ed to open s e r i a l port : %v " , e r r )
8 }
9 d e f e r s e r i a l P o r t . Close ( )

With the serial port ready, the host sends ATU commands using plain-text
strings. For example, to generate a PWM signal on pin D9 with a 30% duty cycle,
the following ATU command is sent over serial:

1 command := fmt . S p r i n t f ( "AW;%d;%d\n" , ∗pin , ∗duty )
2 s e r i a l P o r t . Write ( [ ] byte (command) )

The Arduino replies with a confirmation string like AW;9;77, which is read
into a buffer. The response is trimmed and checked to ensure that the command
was properly received and executed. If the response is empty or malformed, the
program prints a warning but continues executing, allowing partial results to still
be logged.

1 b u f f e r := make ( [ ] byte , 100)
2 time . S leep (500 ∗ time . Mi l l i s e c ond ) // Allow Arduino time to respond
3 nb , e r r := s e r i a l P o r t . Read ( b u f f e r )
4 i f e r r != n i l {
5 l og . Fa ta l f ( " Error read ing from s e r i a l port : %v " , e r r )
6 }
7 DUTresponse := s t r i n g s . TrimSpace ( s t r i n g ( b u f f e r [ : nb ] ) )
8 fmt . Pr in t ln ( "DUT Response : " , DUTresponse )

This lightweight communication enables the host to invoke digital or analog
operations on the DUT, read out results, with behavior certification, and without
any human intervention. It is also resilient enough to survive automated test
pipelines, where it flags empty (or missing) responses for further analysis without
causing the entire process to fail.

3.3.4 SCPI-Based Instrument Control Libraries in Go
To enable complete host-side automation, a set of custom libraries was developed in
Go to control external laboratory instruments via the SCPI (Standard Commands
for Programmable Instruments) protocol. SCPI is a vendor-independent command
set that provides a standardized way to communicate with instruments such as
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oscilloscopes, power supplies, and digital multimeters over interfaces like LAN,
USB, or GPIB.

The instruments used in this project—Rigol DP832, Rigol DS1054Z, and Keithley
DMM6500—all support SCPI over TCP/IP. By writing dedicated Go libraries that
wrap these SCPI commands into idiomatic functions, the orchestration layer of the
host system can interact with each instrument in a modular and reusable way.

Motivation and Architecture

There were several motivations for choosing to write our SCPI interface libraries in
Go:

• Portability: Go binaries are statically compiled and can be quickly copied
between machines. This made it more convenient to package the test runner
with already included instrument control.

• Simplicity: The syntax of Go allowed for clear abstractions around TCP/IP
sockets and command formatting, without needing heavy dependencies.

• Concurrency: Go routines and channels made it possible to extend the
libraries for concurrent instrument polling if needed in the future.

Each library follows a common structure:

• A ConnectToDevice(ip, port) function to establish a TCP connection.

• A CloseConnection(conn) function to gracefully release the socket.

• Individual functions for SCPI commands grouped by subsystem, such as
:MEASure, :TRIGger, or :OUTPut.

• Basic response parsing and error handling for data-returning commands.

These libraries were all developed from the official programming guides provided
by the instrument manufacturers. Syntax, parameters, and response format of each
command were scrupulously followed.

In the following subsections, the implementation of each library is discussed in
detail.

Rigol DP832 Power Supply Library

The Rigol DP832 is a programmable triple-output linear DC power supply widely
used in lab automation. According to the official programming guide, it supports
full SCPI command coverage over LAN. To integrate the DP832 into the automated
CI workflow, a dedicated Go package named RigolDP832 was developed.
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Library Structure. The library begins by exposing a simple connection API:

1 func ConnectToDevice ( ip s t r i ng , port s t r i n g ) ( net . Conn , e r r o r ) {
2 address := ip + " : " + port
3 conn , e r r := net . Dia l ( " tcp " , address )
4 i f e r r != n i l {
5 re turn n i l , fmt . Er ro r f ( " Error connect ing to %s " , address )
6 }
7 re turn conn , n i l
8 }

This function is used to establish a TCP socket to the instrument’s SCPI port
(usually port 5025). A companion function CloseConnection(...) safely closes
the connection.

SCPI Command Wrappers. Each SCPI command needed in the workflow was
implemented as a Go function. For example, the command to configure the input
trigger source:

1 func SetTr igger InputSource ( conn net . Conn , dataLine s t r i ng , channe l s
s t r i n g ) e r r o r {

2 cmd := fmt . S p r i n t f ( " :TRIG: IN :SOUR %s ,%s " , dataLine , channe l s )
3 _, e r r := conn . Write ( [ ] byte (cmd + " \ r \n " ) )
4 re turn e r r
5 }

Similarly, the power output can be activated using:

1 func EnableOutput ( conn net . Conn , channel s t r i n g ) e r r o r {
2 cmd := fmt . S p r i n t f ( " :OUTPut%s :STATe ON" , channel )
3 _, e r r := conn . Write ( [ ] byte (cmd + " \ r \n " ) )
4 re turn e r r
5 }

Analyzer and Measurement Commands. Advanced commands from the
:ANALyzer subsystem were also implemented to trigger and fetch measurements.
These include setting the current time reference, starting analysis, and querying
results:

1 func Analyze ( conn net . Conn) e r r o r {
2 cmd := " : ANALyzer : ANALyzer "
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3 _, e r r := conn . Write ( [ ] byte (cmd + " \ r \n " ) )
4 re turn e r r
5 }

The analysis results are read back using:

1 func QueryAnalys i sResults ( conn net . Conn) ( s t r i ng , e r r o r ) {
2 cmd := " : ANALyzer : RESult? "
3 _, e r r := conn . Write ( [ ] byte (cmd + " \ r \n " ) )
4 i f e r r != n i l {
5 re turn " " , e r r
6 }
7 b u f f e r := make ( [ ] byte , 1024)
8 n , e r r := conn . Read ( b u f f e r )
9 re turn s t r i n g ( b u f f e r [ : n ] ) , e r r

10 }

Robustness and Sleep Timing. Each function introduces a small delay (typ-
ically 100ms) after sending a command to allow the instrument time to respond
or complete the requested action. This is especially important for stateful or
time-dependent commands like :MEASure or :TRIGger.

Voltage–Current Logging Program. To validate SCPI communication and
practice device control, a dedicated standalone Go program was developed to
measure the current drawn by a Device Under Test (DUT) at various voltage
levels. The program connected to the Rigol DP832 power supply over TCP/IP, set
voltages from 7.0V to 20.0V in 0.5V increments, and queried the resulting current
10 times per step to compute an average.

1 f o r vo l tage := i n i t i a l V o l t a g e ; vo l tage <= f i n a l V o l t a g e ; vo l tage +=
s t e p S i z e {

2 e r r = RigolDP832 . SetChannelVoltage ( conn , channel , vo l tage , true ,
true , t rue )

3 var currentSum f l o a t 6 4
4 f o r i := 0 ; i < 10 ; i++ {
5 currentStr , _ := RigolDP832 . MEASCurrentDC( conn , " " , f a l s e )
6 currentFloat , _ := strconv . ParseFloat ( s t r i n g s . TrimSpace (

cu r r en tS t r ) , 64)
7 currentSum += currentF loa t
8 time . S leep (1 ∗ time . Second )
9 }

10 average := currentSum / 10
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11 fmt . P r i n t f ( " Voltage : %.2fV , Avg Current : %.4fA\n" , vo l tage ,
average )

12 }

The resulting data were saved to a CSV file and visually validated by observing
both terminal output and panel readings. This served as a confidence-building step
before integrating the instrument into the complete CI test pipeline.

Figure 3.5: Terminal output showing voltage–current logging with the Rigol
DP800 power supply
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Figure 3.6: DP800 panel at 10.00V and
0.0574A

Figure 3.7: DP800 panel at 15.00V and
0.0431A

Conclusion. This library fully abstracts the DP832 command set into easy-to-call
Go functions, allowing the host orchestration system to:

• Apply a fixed voltage and current limit.

• Enable/disable output channels.

• Trigger measurements and retrieve values.

• Log errors and exceptions cleanly.
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The examples shown above represent only a subset of the full implementation. In
practice, every SCPI command listed in the official Rigol DP800 Series Programming
Guide was implemented and exposed as a function within the RigolDP832 package.
This ensures comprehensive control and automation capabilities for all supported
features of the instrument.

Rigol DS1054Z Oscilloscope Library

The Rigol DS1054Z is a 4-channel digital oscilloscope that supports SCPI commu-
nication via LAN. To enable automated waveform capture, trigger configuration,
and measurement tasks, a dedicated Go library named RigolDS1054Z was devel-
oped. The implementation is based on the official MSO1000Z/DS1000Z Series
Programming Guide.

Library Structure. The library begins with connection and disconnection utili-
ties, enabling communication over TCP/IP:

1 func ConnectToDevice ( ip s t r i ng , port s t r i n g ) ( net . Conn , e r r o r ) {
2 address := ip + " : " + port
3 conn , e r r := net . Dia l ( " tcp " , address )
4 i f e r r != n i l {
5 re turn n i l , fmt . Er ro r f ( " Error connect ing to %s " , address )
6 }
7 re turn conn , n i l
8 }
9

10 func CloseConnect ion ( conn net . Conn) {
11 e r r := conn . Close ( )
12 i f e r r != n i l {
13 l og . Fata l ( " Error c l o s i n g connect ion : " , e r r )
14 }
15 }

Core SCPI Wrappers. The library provides high-level wrappers for common
oscilloscope tasks. For instance, autoscale and trigger setup are implemented as:

1 func AutoScale ( conn net . Conn) e r r o r {
2 cmd := " : AUToscale "
3 _, e r r := conn . Write ( [ ] byte (cmd + " \ r \n " ) )
4 re turn e r r
5 }
6
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7 func SetSingleTriggerMode ( conn net . Conn) e r r o r {
8 cmd := " : SINGle "
9 _, e r r := conn . Write ( [ ] byte (cmd + " \ r \n " ) )

10 re turn e r r
11 }

Waveform Control. To extract waveform data, the start and stop points must
be configured. These are implemented using:

1 func SetWaveformStartPoint ( conn net . Conn , s t a r t i n t ) e r r o r {
2 i f s t a r t < 1 {
3 re turn fmt . Er ro r f ( " i n v a l i d s t a r t po int : %d" , s t a r t )
4 }
5 cmd := fmt . S p r i n t f ( " :WAVeform :STARt %d" , s t a r t )
6 _, e r r := conn . Write ( [ ] byte (cmd + " \ r \n " ) )
7 re turn e r r
8 }

Capture and Display Commands. The oscilloscope screen can be cleared,
run/stopped, and updated using commands like:

1 func ClearScreen ( conn net . Conn) e r r o r {
2 cmd := " : CLEar"
3 _, e r r := conn . Write ( [ ] byte (cmd + " \ r \n " ) )
4 re turn e r r
5 }
6

7 func RunOsc i l loscope ( conn net . Conn) e r r o r {
8 cmd := " :RUN"
9 _, e r r := conn . Write ( [ ] byte (cmd + " \ r \n " ) )

10 re turn e r r
11 }
12

13 func S topOsc i l l o s cope ( conn net . Conn) e r r o r {
14 cmd := " :STOP"
15 _, e r r := conn . Write ( [ ] byte (cmd + " \ r \n " ) )
16 re turn e r r
17 }

Robustness and Timing. All functions include a short time.Sleep(...) after
command transmission to ensure the instrument has time to react and settle. This
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improves compatibility and reliability during CI runs.

Standalone Trigger Configuration Test. Prior to full integration within the CI
framework, an independent Go program was created to check SCPI communication
as well as trigger control on the Rigol DS1054Z oscilloscope. This initial test
focused on automating a minimal and common setup: configuring trigger behavior
via SCPI over a TCP/IP connection.

The program performs the following sequence:

• Connects to the oscilloscope over the network using a socket-based SCPI
interface.

• Sets the trigger mode to EDGE, enabling the device to detect signal transitions.

• Configures the sweep mode to SINGLE, so the oscilloscope captures a one-shot
waveform when the trigger event occurs.

• Sets the trigger level to at 2.0V, and tells oscilloscope to trigger as soon as
the input signal crosses this voltage level.

I developed this test to ensure the Go SCPI library commands the instrument
and its configuration properly. The streamlined test sequence really proved stability,
correct syntax, and proper communications with the DS1054Z.

The core implementation is shown below:

1 ip := f l a g . S t r ing ( " ip " , " 1 0 . 13 0 . 22 . 2 08 " , " IP address o f O s c i l l o s c o p e "
)

2 port := f l a g . S t r ing ( " port " , " 5555 " , " Port number f o r SCPI
communication " )

3 f l a g . Parse ( )
4

5 conn , e r r := RigolDS1054Z . ConnectToDevice (∗ ip , ∗ port )
6 i f e r r != n i l { l og . Fata l ( " Connection e r r o r : " , e r r ) }
7 d e f e r RigolDS1054Z . CloseConnect ion ( conn )
8

9 e r r = RigolDS1054Z . SetTriggerMode ( conn , "EDGE" )
10 e r r = RigolDS1054Z . SetTriggerSweep ( conn , " SINGle " )
11 e r r = RigolDS1054Z . SetTriggerEdgeLeve l ( conn , 2 . 0 )

The screenshot below shows the captured waveform after executing the program,
confirming successful remote trigger configuration:
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Figure 3.8: Captured waveform on the Rigol DS1054Z after setting EDGE trigger
and 2.0V threshold

This test verified the correct behavior of core SCPI commands and laid the
groundwork for integrating oscilloscope automation into the overall test orchestra-
tion.

Conclusion. The Go library abstracts all major oscilloscope operations into
reusable commands, allowing the host system to:

• Set trigger modes and waveform parameters.

• Start, stop, and autoscale the scope.

• Configure waveform data access and capture screenshots.

• Clear the display and manage channel visibility.

As with the power supply library, the examples here represent only part of the
full implementation. All commands documented in the official Rigol DS1054Z
Programming Guide were implemented in the RigolDS1054Z package to ensure
complete control during automated testing.
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Keithley DMM6500 Multimeter Library

The Keithley DMM6500 is a precision 6½-digit digital multimeter that supports
full SCPI control over LAN. It is capable of voltage, current, resistance, and
frequency measurements, as well as advanced triggering, digitization, and data
logging features. To integrate the DMM6500 into the CI orchestration framework,
a dedicated Go package named KeithleyDMM6500 was implemented.

Library Structure. As with the other instrument libraries, the DMM package
begins with functions to establish and close a TCP/IP connection to the instrument:

1 func ConnectToDevice ( ip s t r i ng , port s t r i n g ) ( net . Conn , e r r o r ) {
2 address := ip + " : " + port
3 conn , e r r := net . Dia l ( " tcp " , address )
4 i f e r r != n i l {
5 re turn n i l , fmt . Er ro r f ( " Error connect ing to %s " , address )
6 }
7 re turn conn , n i l
8 }
9

10 func CloseConnect ion ( conn net . Conn) {
11 e r r := conn . Close ( )
12 i f e r r != n i l {
13 l og . Fata l ( " Error c l o s i n g connect ion : " , e r r )
14 }
15 }

Setup Control. The DMM6500 supports user-defined configurations which can
be saved and restored using SCPI. These are wrapped in the following functions:

1 func SaveSetup ( conn net . Conn , setupNumber i n t ) e r r o r {
2 i f setupNumber < 0 | | setupNumber > 4 {
3 re turn fmt . Er ro r f ( " i n v a l i d setup number : %d" , setupNumber )
4 }
5 cmd := fmt . S p r i n t f ( " ∗SAV %d" , setupNumber )
6 _, e r r := conn . Write ( [ ] byte (cmd + " \ r \n " ) )
7 re turn e r r
8 }
9

10 func RestoreSetup ( conn net . Conn , setupNumber i n t ) e r r o r {
11 i f setupNumber < 0 | | setupNumber > 4 {
12 re turn fmt . Er ro r f ( " i n v a l i d setup number : %d" , setupNumber )
13 }
14 cmd := fmt . S p r i n t f ( " ∗RCL %d\n" , setupNumber )
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15 _, e r r := conn . Write ( [ ] byte (cmd) )
16 re turn e r r
17 }

Trigger Configuration. Advanced trigger control is supported through functions
such as:

1 func SetTr iggerExternalEdge ( conn net . Conn , edge s t r i n g ) e r r o r {
2 cmd := fmt . S p r i n t f ( " : TRIGger : EXTernal : IN :EDGE %s " , edge )
3 _, e r r := conn . Write ( [ ] byte (cmd + " \n" ) )
4 re turn e r r
5 }

Data Fetching. Measured data can be fetched from internal buffers using flexible
argument structures:

1 func FetchData ( conn net . Conn , bufferName s t r i ng , buf f e rElements . . .
s t r i n g ) ( s t r i ng , e r r o r ) {

2 cmd := fmt . S p r i n t f ( " :FETCh? \"%s \" " , bufferName )
3 i f l en ( buf f e rElements ) > 0 {
4 cmd += " , " + s t r i n g s . Join ( buf ferElements , " , " )
5 }
6 _, e r r := conn . Write ( [ ] byte (cmd + " \ r \n " ) )
7 i f e r r != n i l {
8 re turn " " , e r r
9 }

10

11 re sponse := make ( [ ] byte , 1024)
12 n , e r r := conn . Read ( re sponse )
13 re turn s t r i n g ( re sponse [ : n ] ) , e r r
14 }

Standalone Current Measurement Test. Before incorporating the DMM6500
into the final CI orchestration, a standalone Go program was developed to test
SCPI communication and validate current measurement capabilities. The goal
was to perform accurate current readings while disabling the auto-range feature to
ensure controlled measurement behavior.

The test program connects to the DMM6500 via TCP/IP, disables current auto-
ranging using :SENSe:CURRent:RANGe:AUTO OFF, and performs a direct current
measurement using the digitize command.
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1 ip := f l a g . S t r ing ( " ip " , " 1 0 . 13 0 . 22 . 1 10 " , " IP address o f the DMM6500" )
2 port := f l a g . S t r ing ( " port " , " 5025 " , " Port number f o r SCPI

communication " )
3 f l a g . Parse ( )
4

5 conn , e r r := KeithleyDMM6500 . ConnectToDevice (∗ ip , ∗ port )
6 i f e r r != n i l {
7 l og . Fata l ( " Connection e r r o r : " , e r r )
8 }
9 d e f e r KeithleyDMM6500 . CloseConnect ion ( conn )

10

11 e r r = KeithleyDMM6500 . SetAutoRange ( conn , "CURR" , "OFF" )
12 fmt . Pr in t ln ( " Auto−Range d i s ab l ed f o r Current . " )
13

14 current , e r r := KeithleyDMM6500 . MeasureDig i t i ze ( conn , "CURR" , " " , " " )
15 fmt . P r i n t f ( " Measured Current : %s A\n" , cur rent )

The test was run under various supply conditions using the Rigol DP832 to
source fixed voltages. The DMM6500 successfully captured and returned the
measured current value over the SCPI interface.

Figure 3.9: Terminal output showing current measurement of 0.1709 A using the
Keithley DMM6500
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(a) DMM6500 panel showing
0.1280 A

(b) DMM6500 panel showing
0.1709 A

(c) DMM6500 panel showing
0.2136 A

Figure 3.10: Current readings on the DMM6500 front panel under different
voltage configurations (10V, 8V, and 6V)
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This validation confirmed the instrument’s ability to perform precise current
readings and handle SCPI instructions as expected. It also served as a reliable
diagnostic step before deploying the DMM6500 in the full CI pipeline.

Conclusion. The DMM6500 Go library provides all the tools necessary to:

• Save and recall instrument setup profiles.

• Configure external triggers.

• Fetch readings and buffer content.

• Automate measurement logging and test verification.

Only selected functions are shown above, a complete Go package provides all
SCPI-commands as described in the official Keithley DMM6500 Programming
Reference Manual. This allows fine-grained automated control of the instrument
during CI test cycles.

Comparison and Integration of SCPI Libraries

The three SCPI-based libraries—RigolDP832, RigolDS1054Z, and KeithleyDMM6500—were
all developed with the same architectural goals: modularity, full SCPI coverage,
and seamless integration with the Go-based orchestration logic.

Common Structure. All three libraries feature a consistent design pattern:

• Connection Layer: Every device has functions like ConnectToDevice(...)
and CloseConnection(...) to establish TCP/IP socket setup.

• SCPI Wrappers: Every SCPI command used in the workflow is abstracted
as a dedicated Go function.

• Error Handling: Each wrapper takes care of formatting the internal SCPI
commands, reading the device’s responses and propagating errors.

• Timing Delays: Short sleep intervals (e.g., 100ms) are applied after write
accesses in order to reflect a correct device synchronization.

Functionality Coverage. Each package fully implements the respective SCPI
command set as defined in the official programming reference manuals:

• DP832 Power Supply: Voltage and current control, output state toggling,
trigger source configuration, and analyzer features.
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• DS1054Z Oscilloscope: Display control, waveform acquisition, autoscale
and run/stop toggles, trigger setup, and screenshot saving.

• DMM6500 Multimeter: Measurement triggering, configuration saving/restor-
ing, buffer-based fetching, and advanced edge triggering.

Unified Use in Automation. These libraries are tightly integrated into the Go
orchestration program described earlier. They enable the host application to:

• Power the DUT with specific voltage/current settings using the DP832.

• Trigger a PWM signal on the DUT and capture its waveform with the DS1054Z.

• Read the analog voltage output with the DMM6500 for signal verification.

• Store all results in a structured JSON format for CI analysis and traceability.

Scalability and Modifiability. Because each library is modular, it is straight-
forward to:

• Extend support to additional SCPI-compatible instruments.

• Adapt to different lab setups by switching IP addresses or channel indices.

• Add more SCPI functions as future firmware or test workflows evolve.

Together, these libraries form a robust foundation for repeatable and scalable em-
bedded system validation. Their abstraction simplifies automated testing and they
create a clear distinction between orchestration logic and device level commands,
which makes the code base maintainable in the long run.

3.3.5 Screenshot Capture and JSON Result Saving
A key part of the automation pipeline is not only measuring signals but also
capturing and documenting the results in a reproducible and verifiable format.
This subsection describes how the system stores visual evidence of test conditions
and numerical results in structured JSON files, allowing both human inspection
and machine parsing.
Oscilloscope Screenshot Capture:

The Go orchestration program uses SCPI commands to remotely configure the
Rigol DS1054Z oscilloscope and trigger it to acquire waveforms. Once a valid PWM
signal is detected, a screenshot is captured and saved locally. The SCPI command
used for screenshot acquisition is:
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:DISPlay:DATA? PNG, COLOR

This command instructs the oscilloscope to return a PNG-formatted image of its
current screen. The image data is read over TCP/IP, parsed, and written to a .png
file on the host PC. The filename includes the test timestamp and measurement
parameters, such as:

scope_501Hz_30pct.png

Figure 3.11: Captured oscilloscope screenshot showing PWM waveform with 501
Hz frequency and 30% duty cycle.

Measurement Logging to JSON:
Alongside visual documentation, the system saves key numerical measurements

to a timestamped JSON file. These include:

• Output current (from Rigol DP832)

• Measured DC voltage (from DMM6500)

• PWM frequency and duty cycle (from oscilloscope)

• Power supply voltage setpoint

Each measurement is cleaned, trimmed, and formatted before writing. For
example, frequency and duty are formatted as:

"frequency": "501.25 Hz", "duty": "30.08%"
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The filename follows the pattern:

measures-YYMMDDHHMMSS.json

1 measurements := map [ s t r i n g ] s t r i n g {
2 " cur rent " : cu r r en tS t r + " A" ,
3 " vo l tage " : formattedVoltage ,
4 " f requency " : formattedFrequency ,
5 " duty " : formattedDuty ,
6 " powersupply " : formattedPowerSupply ,
7 }
8 timestamp := time .Now( ) . Format ( " 060102150405 " )
9 jsonFileName := fmt . S p r i n t f ( " measures−%s . j son " , timestamp )

Figure 3.12: Screenshot of a generated JSON result file as displayed in Visual
Studio Code.

Sample Output:

1 {
2 " current ": " 0.0725 A",
3 "duty": " 30.08% ",
4 " frequency ": " 501.25 Hz",
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5 " powersupply ": "9.00 V",
6 " voltage ": " 1.5962 V"
7 }

This format allows easy integration with dashboards, spreadsheets, or CI test
reports.

For each test run, the system combines visual and numerical logging, publishing
results graphically and structurally. As a result, it facilitates the tracing and
examining of logical proof that verifies firmware validation patterns.

3.4 Example Execution Flow and File Structure
This section demonstrates a full walkthrough of the execution order of the tests,
from launching the host-program to displaying the final measurement and log
output. It presents a basic description of the order of operations, the structure of
output directories, and the naming conventions used for traceability.

3.4.1 Execution Flow Overview

The execution of the automated test is begun by a GO based orchestration program.
An illustrative procedure is as follows:

1. Read the runtime parameters (sketch path, instrument IPs, test config).

2. Compile the Arduino sketch using arduino-cli.

3. Upload the firmware to the Arduino GIGA board via USB.

4. Open a serial connection with the DUT and send ATU test commands.

5. Connect to each instrument (Power Supply, Oscilloscope, DMM) over TCP/IP.

6. Configure instruments via SCPI commands (e.g., voltage, trigger, waveform).

7. Capture a screenshot from the oscilloscope.

8. Fetch all measurement data and save them to a timestamped JSON file.
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Start (Go Program)

Parse Config Flags

Compile Sketch
(arduino-cli)

Upload Firmware
to GIGA

Send ATU Com-
mands over Serial

SCPI Instru-
ment Control

DP832, DS1054Z,
DMM6500

Capture Screenshot

Save JSON Results

Done

Figure 3.13: Block diagram of the automated test flow from firmware upload to
result capture.

3.4.2 Folder and File Organization
Each test run creates a new set of output files. The program automatically
generates a folder structure that groups measurements, screenshots, and logs for
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better organization.

• Root directory: Contains the orchestration program (setup.go), the Ar-
duino firmware folder (GigaR1ATU/), and all outputs from the latest test
run.

• Firmware folder: The folder GigaR1ATU/ holds the Arduino sketch GigaR1ATU.ino,
which is uploaded to the GIGA board.

• JSON file: Test measurement results are saved in timestamped JSON files
(e.g., measures-250318133829.json).

• Screenshot: An oscilloscope image is saved with a label that describes the cor-
responding frequency and duty cycle (e.g., Freq501.25_Hz_Duty30.08%.png).

• Workspace config: The file Final.code-workspace is a VS Code project
file for loading the workspace environment.

Figure 3.14: Example of the generated file and folder structure after a test run.

This structure makes it easy for users to find the results of a particular test run,
compare results over time, or store old test data for compliance and validation.

3.4.3 File Naming Conventions
File names are generated using timestamps and test parameters to ensure that
each output is both unique and informative.

• JSON result file: measures-250318133829.json, where the number en-
codes the timestamp (YYMMDDHHMMSS).
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• Oscilloscope screenshot: Freq501.25_Hz_Duty30.08%.png, encoding the
measured frequency and duty cycle of the PWM signal.

These descriptors make it easy to understand the test conditions and are
convenient for automatically tracking results from different CI runs.

3.5 Test Case Examples and Use Scenarios
In order to proof the practicability of the developed CI framework, concrete
examples of test cases which were performed in the lab are provided here. These
cases demonstrate how various capabilities of the DUT(Device Under Test) are
tested with automation scripts from firmware loading to measurement and result
saving.

3.5.1 PWM Signal Validation
One of the key test scenarios involved generating a PWM signal on a designated
digital output pin (e.g., D9) of the Arduino GIGA and verifying its characteristics
using an oscilloscope. The host program issued an ATU command of the form:

AW;9;77

This command configures the DUT to output a PWM waveform with approxi-
mately 30% duty cycle. The Go orchestrator then configured the Rigol DS1054Z
oscilloscope using SCPI to detect the signal on the corresponding channel. Fre-
quency and duty measurements were retrieved automatically, and a screenshot was
saved (e.g., scope_501Hz_30pct.png) for documentation. The test passed if both
frequency and duty cycle were within specified tolerances (e.g., ±5%).

3.5.2 Analog Output Verification
Another test was the setting of a specific analog voltage output on the DAC pin
(e.g., A12). The command sent was:

AW;84;191

This value corresponds to approximately 1.5V on a 0–3.3V scale. The host
program used the Keithley DMM6500 to measure the voltage output on pin A0
(connected internally to A12) and validated it against the expected reference. Mea-
surement data were saved in a JSON file together with the oscilloscope screenshot,
so the numerical and visual validation were also saved.
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Chapter 4

Implementation Challenges
and Results

This chapter discusses the challenges encountered during the development of the
automated CI framework and presents the results obtained from the implemented
testing system. Unlike the structured description of methods in Chapter 3, this
section highlights practical issues faced during the real-world integration of tools,
hardware, and automation flows, along with how they were resolved or mitigated.

The chapter is divided into two parts: the first focuses on technical and organi-
zational challenges such as hardware-software compatibility, firmware instability,
communication delays, and lab constraints. The second part presents selected test
results obtained using the developed system, including measurements, success rates,
and validation consistency across runs.

The goal is to reflect on the practical experience of applying Continuous Inte-
gration principles in a real embedded hardware context and provide a foundation
for future improvements or extensions.

4.1 Overview of the Development and Debugging
Process

Writing the CI framework for automation was hands-on and took a step-by-step
approach, working it out from the ground up to cope with the issues encoun-
tered when you want to combine software automation with physical hardware
components. While the general orchestration of the CI process was relatively
straightforward, for hardware-in-the-loop testing, the physical presence of devices
and lab instrumentation introduced more complexity.

Multiple iterations to debug for SCPI-based communication, serial command
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processing, and instrument automation were needed for an integrated and working
system. Initial steps were verifying by hand that the power supply, oscilloscope,
and DMM could successfully respond to SCPI commands over TCP/IP. Network
diagnostic tools such as nmap were used to find open ports, and simple TCP clients
were built to test the low-level response first and then layer it into the Go-based
orchestration layer.

The Arduino GIGA also required careful attention. Sometimes sketch compila-
tion and USB upload were prevented by the need for manual reset or incorrect fqbn
configuration, or unavailable serial ports. This was further confounded by Linux
permissions issues by Linux permission errors on /dev/ttyACM0, which required
the user to be added to the dialout group, a common but non-obvious requirement
for serial communication in Linux environments.

ATU command communication required clarification rather than deep debugging.
The firmware, for example, required a short delay after it had been flashed before
it could be depended on to receive serial commands. Also, commands like AW;9;77
for PWM generation must be preceded by a synchronization prefix like S\n, as
clearly shown in the ATU documentation—this was simply missed at first. Instead
of treating these as debugging steps, they were more about following the correct
usage examples.

For the measurement part, the DMM6500 simply reported overflow (e.g.,
9.900000E+37) if a voltage larger than the auto-range default was provided. This
was resolved by manually configuring the voltage range using SCPI commands,
such as :SENSe:VOLT:RANG 100.

Initial readings from the DMM6500 were in engineering notation (e.g., 9.900000E+37
for overflow conditions, 1.234000E+01 for normal values), which made quick visual
inspection difficult during test runs. The unit parsing was subsequently adjusted to
return fixed decimal notation with two decimal places (e.g., 12.34 V), contributing
to a better log validity checking both automated runs and manual verification.

Each debugging step made the tests pipeline more reliable. Response timing
was adjusted by inserting short sleep delays (e.g., time.Sleep(100 ms)) between
SCPI commands. Trailing characters and null bytes were stripped from the string
to remove parsing errors by string-cleaning functions in Go. Finally, consistent
outputs were achieved for reporting as screenshots and as JSON files to be reliably
saved for every test run.

This process validated that even with straightforward automated validation
arrangements in embedded systems, you still need careful orchestration across
firmware, host software, and lab instrumentation. The issues discovered during
the deployment were an important learning in dealing with the practicalities of
real-world limitations (error cases, integration edge cases).
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4.2 Hardware Challenges
Integrating physical hardware components into an automated CI workflow intro-
duced several challenges that required careful debugging and workaround strategies.
These issues often arose from limitations in device behavior, wiring requirements,
and timing mismatches between firmware and test orchestration.

4.2.1 USB and Manual Reset Issues
During firmware upload via arduino-cli, the Arduino GIGA board occasionally
failed to respond, especially when previously used by other programs or after a
power cycle. In many cases, the board required a manual reset (pressing the RESET
button) before upload could proceed. This problem was more common when the
sketch had just been recompiled, or when the board was reconnected via USB.

Additionally, incorrect fqbn (Fully Qualified Board Name) or missing platform
packages caused the upload process to silently fail. These issues were resolved by en-
suring that the GIGA platform core was installed via arduino-cli core install
and confirming the correct board name with –fqbn arduino:mbed_giga:giga.

4.2.2 Serial Communication Timing
Another hardware-level issue involved serial port readiness immediately after
uploading the sketch. Without a delay, the host Go program often sent ATU
commands before the Arduino was fully initialized, resulting in lost or ignored
commands.

This was mitigated by inserting a short delay of 2 seconds (time.Sleep(2 *
time.Second)) before sending any data to the serial port. Once this delay was
added, the board reliably responded to ATU commands such as AW;9;77.

4.2.3 Oscilloscope Trigger Instability
From time to time, the acquired waveform on the Rigol DS1054Z oscilloscope
would not represent the expected waveform, especially when set up for single-shot
triggering. The cause was a wrong or incomplete edge trigger setting with SCPI
commands.

The first test has failed because the trigger level was set too low, it was on the
wrong channel. This was fixed by setting the trigger mode to EDGE, the sweep
mode to SINGLE, and the trigger level to a known expected voltage (e.g., 2.0V):

:TRIGger:MODE EDGE
:TRIGger:SWEEP SINGLE
:TRIGger:EDGE:LEVel 2.0
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After setting up properly, the oscilloscope always recognized the PWM wave it
received from the Arduino, and the host program could take correct screenshots.

4.3 Software and Integration Issues
In addition to hardware-level problems, a number of software-related problems
occurred during the development and integration of the CI orchestration logic.
These issues ranged from command-line tool failures, SCPI communication bugs,
data parsing inconsistencies, and firmware misbehavior due to serial timing or
unsupported parameters.

4.3.1 Arduino CLI and Upload Failures
One of the first recurring issues involved uploading sketches to the Arduino GIGA
board using the arduino-cli tool. In some cases, the upload process failed silently
due to missing flags or misconfigured board definitions. Common causes included
omitting the –fqbn argument or using an incorrect board core version.

To resolve this, the full board identifier (arduino:mbed_giga:giga) was spec-
ified explicitly. Additionally, the proper board platform was installed in ad-
vance using the CLI to prevent version mismatches. A delay of 2–3 seconds
(time.Sleep(...)) was added after upload to ensure the board completed its
reboot sequence before serial communication was initiated.

4.3.2 SCPI Communication Bugs
While integrating SCPI commands for remote control of the power supply, oscillo-
scope, and multimeter, several problems were encountered:

• Overflow Errors: The DMM6500 spontaneously sent back numbers like
9.900000E+37, meaning the measurement had overflow. This was usually
what occurred when the voltage went higher than the Auto-ranging point. This
was resolved by disabling auto-range (:SENSe:VOLTage:RANGe:AUTO OFF) and
setting a fixed voltage range such as :SENSe:VOLTage:RANGe 100.

• Invalid Format or Null Bytes: In some of the SCPI responses trailing
null bytes (\x00) or unexpected characters was included. This caused parsing
errors in Go when interpreting numerical results. The solution here was to
clean the response up using strings.ReplaceAll(..., "\x00", "") and
strings.TrimSpace(...).

• Incorrect Command Syntax: The first few attempts trying to use com-
mands such as :MEASure:DIGitize on the DMM6500 led to syntax errors
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(e.g., error code 1133). This was addressed by using simple and more robust
commands such as :MEASure:VOLTage?.

These fixes made communication with any SCPI-compatible instrument consis-
tent and reliable.

4.3.3 JSON and Data Handling Errors

Another source of bugs stemmed from how measurement results were parsed and
saved to JSON files. Specifically:

• Parsing Failures: Some string values (e.g., "501.25 Hz", "30.08%") failed to
convert into floats due to suffixes like Hz or %. This was fixed by stripping
known suffixes using Go’s TrimSuffix and validating the remaining numeric
part before saving.

• File Write Errors: Screenshots or JSONs not saved often weren’t due
to permission issues or special characters in filenames. To solve this issue,
output names were cleaned up and saved with correct permissions (0644)
using os.WriteFile().

These adjustments made the final measurement parseable by machine, and
further let engineers unit test results log in there for each and every CI run.

4.4 System Limitations
Although the implemented CI system efficiently automated certain parts of the
embedded firmware verification, multiple issues were uncovered during integration
and testing. These limitations are important to acknowledge, as they define the
current boundaries of the system and indicate potential to be addressed in the
future.

4.4.1 Manual Intervention for Device Reset

In some scenarios—especially after firmware upload or serial disconnection—the
Arduino GIGA board required a manual reset to reinitialize properly. This breaks
the full automation assumption and requires physical presence, which limits the
ability to run tests remotely or overnight.
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4.4.2 Lack of GitHub Actions Integration
Although the system architecture was designed with CI/CD in mind, including
support for command-line interfaces and serial automation, full GitHub Actions
integration was not completed during this thesis. This was a deliberate decision,
with CI server deployment left for future work due to time and infrastructure
constraints.

4.4.3 Single-Threaded Execution
Tasks are run by the Go-based orchestration program, which includes SCPI measure-
ments, sketch upload, and serial communication sequentially. This makes debugging
easier and determinism better but limits test throughput. This might enhance
future versions when enriching with concurrency, e.g., when parallel instrument
polling or when pre-fetching measurement data.

4.4.4 Static Test Scripts and Configurations
Test cases are currently hard-coded into the Go program with fixed parameter
values for voltage, duty cycle, and measurement range. Adding new test scenarios
requires editing and recompiling the source. Introducing dynamic configuration
files or YAML-based test descriptions would allow for more flexible reuse of the
system.

4.4.5 Limited Feedback on Failures
In several error-handling routines, the program logs messages but continues execu-
tion. While this prevents full crashes, it can sometimes mask failures in intermediate
steps, such as incorrect serial responses or invalid SCPI replies. More robust er-
ror classification and explicit test result summaries would improve reliability in
production scenarios.

4.4.6 Instrument Dependency and Lab Setup Constraints
The system is highly integrated with specific instruments (e.g., Rigol DP832,
DS1054Z, Keithley DMM6500). While the SCPI abstraction layers make the
substitution possible, current implementations depend on specific SCPI behavior
and command formats for these models. Operating an alternative framework in
a new lab would necessitate re-validation of the instrument and potential code
modification.
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4.4.7 Firmware-Level Safety Checks Not Enforced
ATU commands assume valid pins, values, and modes. If incorrect commands
are issued (e.g., unsupported PWM pin), the DUT might respond unexpectedly.
Input validation exists, but there is not much of an error message. Adding Strong
command sanitization and runtime assertions could make the system afer during
automatic runs.

4.5 Summary of Results and Observations
The implemented Continuous Integration (CI) system for embedded firmware
validation achieved its core goal: automated, repeatable tests with real hardware
and lab equipment. Although the technical challenges illustrated in the previous
points, the entire architecture was usable and effective.

4.5.1 Functional Achievements
• Successfully uploaded firmware to the Arduino GIGA board via command-line

using arduino-cli.

• Executed ATU commands over serial to control digital and analog output.

• Captured PWM waveform (frequency and duty cycle) using the Rigol DS1054Z
oscilloscope.

• Verified analog voltage output using the Keithley DMM6500 with SCPI
automation.

• Measured current consumption across voltage levels using the Rigol DP832
power supply.

• Saved all measurement results in structured JSON files, enabling traceability
and documentation.

• Captured oscilloscope screenshots automatically and saved them with mean-
ingful filenames.

4.5.2 Observed Stability and Accuracy
Results were very stable across different runs. Key observations include:

• PWM frequency and duty cycle measured by the oscilloscope remained within
a 5% error compared to expected values.
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• DAC outputs were within ±0.05V of the target voltage when measured by the
DMM6500.

• Current readings from the power supply matched those reported by the DMM
within measurement tolerance.

• Serial communication and SCPI socket interaction have been solid after initial
delay fixes and permission adjustments.

4.5.3 Areas for Improvement
• Full automation was sometimes interrupted by hardware resets or permission

issues.

• Strings for file naming and parsing of measurements needed to be manually
cleaned to ensure JSON formatting and filename validity.

• The oscilloscope’s screenshot response time introduced occasional delays that
might affect CI throughput under load.

4.5.4 Final Remarks
Overall, the project validated that integrating SCPI-based lab instrumentation into
a firmware testing pipeline is both feasible and highly effective. The experience
highlighted the importance of debugging tools, timing coordination, and system-
level design when bridging software automation with physical hardware. The
system can now serve as a foundation for future work involving expanded test
coverage, GitHub Actions integration, or distributed test runners.
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Chapter 5

Conclusion and Future Work

5.1 Summary of Contributions
This thesis presented the design, development, and implementation of an automated
Continuous Integration (CI) framework for testing embedded firmware using real
hardware and laboratory instruments. The system integrates firmware compilation,
automated upload, test execution, and result logging into a cohesive workflow that
enables validation without manual intervention.

The most important contributions are summarized below.

• Firmware-Oriented CI Automation: A full host-side orchestration tool
was developed in Go to automate sketch compilation, uploading, serial com-
munication, and test management for an Arduino GIGA board acting as the
Device Under Test (DUT).

• SCPI-Based Instrument Control Libraries: Modular Go libraries were
developed to control the Rigol DP832 power supply, Rigol DS1054Z oscil-
loscope, and Keithley DMM6500 multimeter using the SCPI protocol over
TCP/IP. These libraries contain functions to make measurements, trigger,
acquire data, and capture screenshots that can be called and reused easily.

• ATU Firmware Command Framework: A lightweight firmware interface
(ATU) was designed for the DUT, enabling structured communication and
execution of test commands such as PWM generation, DAC output, and
digital I/O handling.

• Hardware-in-the-Loop Test Orchestration: The system supports fully
automated test flows involving real-time signal generation and measurement.
Every test case also records numerical data (in JSON format) and oscilloscope
screenshots, enabling traceability and reproducibility.
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• Execution Flow and File Organization: A structured file and folder
system was implemented to manage outputs for each test run, including time-
stamped JSON results and waveform images with embedded metadata in
filenames.

• Validation Through Real Test Cases: The CI system was demonstrated
using examples that involved concrete PWM verification and analog output
measurement. Every step was thoroughly tested in isolation and sequentially
to ensure the robustness of functionality.

Collectively, these contributions demonstrate the feasibility of building a low-
cost, flexible CI workflow for embedded firmware validation that bridges the gap
between software pipelines and hardware-dependent testing environments.

5.2 Evaluation of the CI Framework
The Continuous Integration (CI) framework presented in this thesis was bench-
marked on the basis of his ability to automate tester’s tasks including testing
controllers and real board without human assitance The reliability, repeatability,
flexibility, and integration readiness of the system was evaluated.

5.2.1 Reliability and Stability
Once the orchestration logic was perfected, it worked consistently across a range
of test runs. The firmware compiled and uploaded fine, and all the instruments
responded to the SCPI commands throughout. Small timing-related failures (e.g.,
delayed serial readiness, SCPI timeouts) were fixed with the right amount of sleeps
and checks.

The DUT responded properly (PWM generation, DAC output) in response
to ATU commands, and measurements were made within a reasonable tolerance.
However, the need for periodic manual resets of the Arduino reduced the full
automation potential.

5.2.2 Repeatability and Output Consistency
The framework gave consistent results across testing cycles, with all measurements
logged in structured JSON files and oscilloscope screenshots automatically captured.
All runs were executed in the same order to ensure deterministic behavior.

Oscilloscope screenshots (e.g., Freq501.25_Hz_Duty30.08%.png) and JSON
files (e.g., measures-YYMMDDHHMMSS.json) provided both visual and numeric evi-
dence of system behavior. This allowed easy comparison and tracking of firmware
changes over time.
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5.2.3 Modularity and Extensibility
The architecture proved modularity. New SCPI commands were added as an
extension to Go libraries without affecting orchestration logic. Similarly, ATU
firmware could be developed with additional commands (e.g., digital read, ADC
read) without changing the Go code structure.

This separation of responsibilities allows future upgrades such as support for
a new set of instruments is possible without a major rewrite of the underlying
hardware and software architecture.

5.2.4 Integration Readiness
Although GitHub Actions integration was postponed to future work, the system
was designed to support headless execution. The use of Arduino CLI, SCPI
over TCP/IP, and serial communication libraries made the solution suitable for
integration into CI servers.

Some minor changes, such as serial port discovery and permissions configuration,
would be needed for running the system over cloud runners or on dedicated CI
hardware.

5.2.5 Limitations
The evaluation also revealed several limitations:

• Manual resets occasionally disrupted automation flow.

• Serial communication required tuning of delays to ensure reliable execution.

• Test logic was static—new test cases needed recompilation.

• There was no retry for I/O error saving file logic.

Nevertheless, the main functionality stayed intact and the goal was successful:
validating embedded firmware functionality through automated, repeatable, and
measurable tests.

5.3 Lessons Learned and Research Reflections
Developing an automated CI system for embedded firmware testing provided both
technical insights and broader research reflections. The project involved interfacing
software with physical hardware, managing lab instrumentation, and coordinating
various communication protocols—all within the constraints of CI automation
principles.
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5.3.1 Practical Debugging is Inevitable
Despite careful planning, a significant portion of the work involved debugging low-
level issues: USB port conflicts, SCPI syntax errors, inconsistent serial responses,
and instrument-specific quirks. These problems emphasized the gap between ideal
automation and real-world hardware behavior. In practice, even small configuration
mistakes (wrong baud rate, unhandled null byte, or missing SCPI terminator) could
break the system.

5.3.2 Hardware Adds Complexity to CI
Unlike pure software testing, embedded validation cannot run in isolation. The need
for real-time responses, synchronized signal triggering, and physical measurements
makes embedded CI inherently more fragile. This project demonstrated that full
automation requires accounting for physical constraints—like manual resets or
electrical noise—just as much as code correctness.

5.3.3 Abstraction Improves Maintainability
Modular repetition over SCPI-controlled instruments (e.g., RigolDP832, KeithleyDMM6500)
using Go packages was key to coping with the complexity. Encapsulating the com-
munication logic inside the reusable functions kept the orchestration code clean
and testable. Similarly, the ATU command system created a lightweight, extensible
protocol for firmware interaction, avoiding hard-coded pin logic.

5.3.4 Documentation is Part of the System
One underemphasized but vitally important point was the manageability of naming
conventions and the ordering of output files. When saving measurements and
screenshots, timestamp them and have a good description in the filename; this
may have helped track down bugs or regressions across firmware versions. This
reinforced the idea that documentation and result logging are integral components
of CI—not just an afterthought.

5.3.5 CI/CD Adoption in Embedded Systems is Growing
This thesis is in line with an emerging tendency of introducing CI/CD methodologies
to hardware itself. The movement towards testing automation, remote validation,
and reproducible experiments is extending so past the usual fields of software
domains. The work presented here is part of that transition by showing a working
and scalable implementation of embedded systems in an automated workflow.
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5.3.6 Human Feedback is Still Valuable
Finally, while automation reduces human intervention, developer insight remains
crucial. Whether it was interpreting an oscilloscope trace, adjusting DAC values,
or interpreting measurement anomalies, manual review and critical thinking were
often needed. The balance between automation and hands-on evaluation remains
an open question in embedded CI research.

5.4 Suggestions for Future Development
While the developed system successfully implemented a working prototype of
CI-driven embedded firmware validation, several enhancements can be made to
improve its flexibility, reliability, and scalability. This section outlines suggestions
for future development across technical, architectural, and integration levels.

5.4.1 Full CI/CD Pipeline Integration
The system was designed to be compatible with GitHub Actions or other CI/CD
tools but did not implement full pipeline integration during this thesis. Future
work should include:

• Running the Go orchestration script automatically after each push or pull
request.

• Uploading results (JSON, screenshots) as CI artifacts.

• Sending alerts or reports when tests fail or regress.

This would complete the loop between code commits and hardware validation,
enabling truly continuous delivery of embedded software.

5.4.2 Dynamic Test Configuration
Currently, the GO application has the test parameters, such as voltage levels, duty
cycles, and target pins, hard coded. Another more scalable possibility would be to
define in configuration files (e.g., YAML or JSON)

• Test cases and execution sequences

• Expected pass/fail thresholds

• Instrument setup and teardown procedures

This function would then allow us to change or add test cases without changing
the code and recompiling it.
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5.4.3 Concurrency and Performance Optimization
The orchestration logic executes tasks sequentially. Introducing concurrency could
reduce total test time:

• Parallel communication with SCPI instruments

• Background monitoring of serial outputs

• Buffered command pipelines to reduce idle time
Go’s concurrency model makes it a strong candidate for implementing these im-
provements.

5.4.4 Error Classification and Logging Enhancements
Although error messages are printed to the terminal, a structured logging system
would help:

• Log error types (connection error, measurement mismatch, SCPI timeout)

• Assign severity levels

• Save all logs with the test output folder
This would aid debugging and make the system suitable for use in formal validation
environments.

5.4.5 Multi-Board and Multi-Instrument Support
The current setup focuses on a single DUT (Arduino GIGA) and a fixed set of
instruments. Future extensions could include:

• Support for multiple devices under test in parallel

• Compatibility with different Arduino boards

• Plug-and-play configuration for SCPI instruments based on vendor/model

5.4.6 Integration with Visualization and Dashboard Tools
Test results (JSON, screenshots) could be integrated with visualization dashboards
such as:

• Grafana for plotting historical trends

• Custom HTML dashboards for per-test summaries

• Integration with lab notebooks or electronic logging systems
This would provide real-time feedback to developers and improve usability.
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5.4.7 Hardware Abstraction and Safety Checks
On the firmware side, introducing better input validation in the ATU command
parser would reduce the risk of accidental misuse:

• Reject invalid pin numbers or out-of-range values

• Return standardized error codes

• Log all received commands and responses

Such features would improve robustness and allow safer unattended operation.

5.5 Final Remarks
This thesis presented the design, implementation, and validation of an automated
Continuous Integration (CI) system for embedded firmware testing using real labo-
ratory instruments. The developed solution integrates a Go-based orchestration
program, SCPI-compatible equipment (power supply, oscilloscope, and multime-
ter), and a programmable Arduino GIGA board running custom ATU firmware.
Together, these components enable automated signal generation, measurement,
and validation of embedded firmware under test.

Various issues are encountered over the development process, from hardware
communication errors and timing mismatches to SCPI parsing issues and firmware
stability problems. Each obstacle served as a valuable learning experience, con-
tributing to a more robust and adaptable test framework. While support for full
CI/CD integration (e.g., GitHub Actions) was postponed for future work, we expect
the present work to open a way for scalable and scriptable hardware validation
workflows.

The outcomes also validate that embedded firmware can be automatically tested
with off-the-shelf instruments and lightweight software tooling. The system was
used to successfully upload firmware, run test commands, acquire voltage and
current measurements, verify signal waveforms, and save results in human- and
machine-readable forms. This supports modern software engineering principles like
automation, repeatability, and traceability in the hardware domain.

In summary, this paper has shown that CI practices, previously only applicable to
software projects, can be transferred to embedded systems with the implementation
of the required hardware abstraction, communication protocol, and orchestration
logic. The method proposed in this thesis may form the basis for more advanced
validation pipelines in future research and industry, leading to higher quality
software in a shorter time in embedded systems.
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