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Abstract

Optical fiber networks have become the backbone of modern telecommunications due
to their high capacity, low latency, and cost-efficiency. Ensuring reliable Quality of Trans-
mission (QoT) in these networks requires accurate estimation of performance metrics prior
to lightpath deployment. Traditional approaches often rely on worst-case assumptions
to account for uncertainties that might arise, for instance, from amplified spontaneous
emission (ASE) noise introduced during optical amplification, leading to conservative de-
sign margins that reduce spectral efficiency and increase operational costs. This thesis
investigates the use of gray-box modeling techniques, which integrate analytical models
with Machine Learning (ML), to enhance the prediction accuracy of gain and loss profiles
across an Optical Line System (OLS). The work evaluates multiple model architectures
to estimate amplifier gain profiles and fiber span losses, using a finite set of measured
data to train and validate the models. Comparative analysis against benchmark models
demonstrates that gray-box approaches can significantly reduce prediction error, enabling
more accurate QoT estimation and more efficient resource allocation.
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Chapter 1

Introduction

Communication is one of the main aspects in the day-to-day functioning of society, and
humanity has understood this since the appearance of early civilizations. Starting with
smoke signals, drums, flags and even homing pigeons, communities started to transmit
their messages [1] [2] [3]. As obstacles appeared, solutions were created; communication
networks took shape when point-to-point communication became unfeasible and different
transmission media started to be used with the advent of new technologies in order to
make telecommunication faster, reliable and global. Optical fiber has been since a couple
of years ago the most common transmission medium due to the huge amount of data it
can carry in small time, in addition to its reach, ease of installation and costs. In an
optical fiber, information is transmitted in a lightwave; each lightwave is associated with
a wavelength or frequency. The route through which each lightwave roams in an optical
network is called a lightpath.

Today, not only do large industries or organizations that are in charge of relevant
sectors, such as transportation and banking, have a strong dependency on telecommu-
nications, but also the average human being in his daily life is starting to create this
dependency [4] [5] [6]. Thus, interruptions in communication systems can cause difficul-
ties in different industries around the world that can even lead to economic losses for
companies; therefore, Quality of Transmission (QoT) and lightpath routing design in an
optical communication network are an important aspect. Estimating the QoT of the dif-
ferent possible lightpaths before their deployment can make a great difference in favor of
an effective and flexible network design [7]. Unfortunately, estimating QoT metrics is not
straightforward, as there are many sources of uncertainty. Considering assumptions or
simplifications for these uncertainties will result in inaccurate metrics. As a consequence,
assigning more resources to lightpaths in order to compensate for the deteriorations that
the uncertainties might cause is a common practice. These extra resources are called
design margins. The use of margins is detrimental to the efficiency and cost of optical
networks [8]. Thus, one of the main objectives in the state-of-the-art optical fiber trans-
mission is reducing these margins by accurately predicting the uncertainties that might
appear.

An example of the uncertainties mentioned above is Amplified Spontaneous Emission
(ASE) noise, a type of noise generated during the amplification process in optical networks
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due to the phenomenon of spontaneous emission present in fibers. ASE noise contributions
depend on the spectral load that interacts with the amplifier. Given the potentially large
number of possible spectral load configurations, developing a comprehensive empirical
model is impractical, as it would require an overwhelming number of measurements for
estimation [9]. As a consequence, Machine Learning (ML) techniques emerge as solutions
that fit properly in this context. By taking a finite set of measurements, ML models
can be trained to predict the actual gain profile and, in that way, reduce the design
margins [7].

A considerable number of ML models have been already created to reach this goal.
Some focus just on the prediction of the components that form the gain profile (signal
power and ASE noise power) using Deep Neural Networks (DNN) [10] [11]. Other investi-
gation paths try to realize a more general analysis by complementing the DNN prediction
with tools that can simulate other phenomena [7]. Moreover, other articles use algorithms
and different neural network structures that can enhance the estimation [12].

The goal of this thesis work is to test the performance of gray-box models in this
context, in order to accurately characterize an entire Optical Line System (OLS) of an
optical network in terms of QoT. Gray-box models combine analytical models with ML
and have been applied in past investigations [13] [14]. However, in this thesis, the models
are not only applied to predict the gain profile, but also the loss profile.

This thesis work is structured as follows:

• Chapter 2 : Theoretical Background presents the concepts that are relevant to
the context of the problem and to the approach used to address it.

• Chapter 3 : Project Overview contains a contextualization on the problem stud-
ied, the state of the art of the problem, a description of the setup and dataset used
for this work, and the performance of an already existing analytical model with the
described setup and dataset.

• Chapter 4 : EDFA Analysis: Gain Profile Prediction describes the method-
ology used to predict the gain profile. Different models were proposed and tested;
these models are based on a benchmark model taken from the state of the art.
Comparisons are made between the benchmark models and the best one among the
proposed models.

• Chapter 5: Fiber Span Analysis: Loss Profile Prediction describes the
methodology used to predict the loss profile. This chapter emphasizes on how this
prediction should be done considering the existing tools and describes the models
used to perform this prediction. Overall results are presented for the modeling of
the whole OLS system.

• Chapter 6: Conclusion summarizes the work done in the thesis highlighting the
main results obtained.
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Chapter 2

Theoretical Background

For the purpose of a better understanding of the content of this master’s thesis, a contex-
tualization on elements and concepts in optical networks as Software Defined Networking
(SDN), optical networks, fibers and signals, amplifiers, design margins, Quality of Trans-
mission (QoT) metrics, and machine learning are presented.

2.1 Software Defined Networking
Traditionally, network elements have been closed platforms that integrated all of their
features in a single device, regardless of the type of functionality. Consequently, the
devices were able to perform tasks from the data, control, and management plane. For
example, devices could forward packages and, at the same time, compute routes, discover
topologies, and perform measurements and monitoring. This led to the design of complex
devices that were proprietary depending on the vendor and could only work well with
other devices because of several protocols.

Software Defined Networking (SDN) appears in the search for a more flexible and open
network and in a way to simplify devices and enhance innovations in networking. The
main principle of SDN is to separate the data plane from the control plane. Thus, SDN
suggests having a centralized architecture in which there is a controller with knowledge
of the entire network that sends commands to simple general-purpose forwarding devices.
The interaction between the controller and the network elements is carried out with a
common Application Programming Interface (API).

SDN can lead to open disaggregated optical networks. In these networks, an SDN
controller can access each network element with common protocols and APIs. Open
disaggregated networks can allow multivendor networks, a more effective network man-
agement, and the inclusion of Artificial Intelligence (AI) tools. An image illustrating an
open disaggregated optical network is found in 2.1 [15].

2.2 Optical Networks
Communication networks are the infrastructure needed to perform long distance trans-
missions between devices. They are made up of a collection of switching nodes and
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Figure 2.1. Open disaggregated optical network

connections. The optical network nodes are usually arranged in a meshed, ring, or tree
topology and their connections are called Optical Line System (OLS) or Optical Multiplex
Sections (OMS).

Optical networks can be divided into translucent and transparent networks. Translu-
cent optical networks have electrical switches; therefore, all networking operations are
performed electrically. Hence, in each node an electrical-optical conversion should be
performed. In transparent optical networks, switches are optical and signals can be selec-
tively directed to any output. Furthermore, networking operations are performed opti-
cally. Transparent optical networks require a coordinated operation between the physical
network layer and the higher network layers. Transparent network layers have the great
advantage of low power consumption and high integration, translucent networks require
more hardware and might have power consumption issues [16].

The typical elements of an optical network are described in Sections 2.2.1 and 2.2.2.

2.2.1 Optical Network Nodes

In optical network nodes, we can find devices with different functions. The basic func-
tionalities found in optical network nodes are: serving as interface between the physical
layer and upper layers and as a switching functionality. Some devices perform just one
of these functions, others do both, some of them perform additional functions.

The core elements of optical network nodes are the following:

• Optical transceivers

• Transponders

• Reconfigurable Optical Add-Drop Multiplexer (ROADM)

Optical transceivers are devices whose main function is to transmit and receive signals
within the same module. Optical transceivers should be placed for every signal in each
node in a translucent optical network.
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Transponders can perform optical to electrical and electrical to optical conversions;
they present wavelength converters and multiplexers. Additionally, they can receive, re-
generate, and reshape signals. Transceivers can be plugged into transponders if necessary.

ROADMs are formed by an optical switch section and a local add-drop section. The
optical switch section is made up of an array of Wavelength Selective Switches (WSS),
another device capable of distributing signals in each wavelength through its ports. Thus,
the signals are routed in different directions. One of these directions can enter or can
come from the local add-drop section in the ROADM. In this section a local transceiver
can either receive a signal "dropped" from the traffic in the WSSs or can transmit a signal
"added" to the traffic in the WSSs. A Figure illustrating the ROADM structure is found
in 2.2 [17].

Figure 2.2. ROADM structure

2.2.2 Optical Line Systems

An Optical Line System (OLS) is a point-to-point bidirectional link that connects two
nodes. The main elements of the OLS and the impairments that they introduce are better
analyzed in the following sections. It is formed by:

• Spans of fiber pairs, one for each direction

• Booster Amplifier (BST), an Erbium Doped Fiber Amplifiers (EDFA) amplifier
linked to the the output of the transmitting node, usually installed inside this
node. It is the first amplifier through which the signal goes in the OLS.

• Pre Amplifier (PRE), an EDFA amplifier connected to the input of the receiving
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node, usually installed inside this node. It is the last amplifier through which the
signal goes in the OLS.

• In-Line Amplifier (ILA), set of EDFA amplifiers that are between the BST and
PRE amplifiers. They come in pairs, one for each direction.

The impact of the OLS on the signal will be only in terms of adding latency and noise
impairments. In other words, QoT degradation will take place mainly in this section of
the network.

2.3 Optical Fibers
An optical fiber is a cylinder strand as thin as a human hair, which is generally made of
very pure glass and can serve as a transmission medium for lightwaves. Its structure is
composed of an inner layer called core and an outer layer called cladding. The core has a
slightly higher refractive index compared to that of the cladding; thus, light is completely
reflected inside the fiber and can be guided through the material [1].

The choice of glass as the fiber material is due to the low attenuation values it has
at certain frequencies. Today, commercial fibers have attenuation values ranging from
0.15 dB/km to 0.22 dB/km at 1550 nm [18], far from the attenuation in copper coaxial
cables (10 dB/km - 100 dB/km). A graph showing the attenuation of the fiber according
to the wavelength is shown in Figure 2.3 [19]. The graph also shows the operating bands
in optical fiber communication and highlights peaks in the attenuation as a result of
impurities in the glass such as the water peaks.

Figure 2.3. Fiber attenuation in the wavelength domain

Signal propagation loss is not the only advantage of optical fiber communication. The
available bandwidth is perhaps the most interesting advantage of fibers as it is in the order
of THz, different from other mediums that are in the GHz or MHz range. This large range
of available bandwidth allows for a higher throughput, ergo better performances. Other
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advantages are related to the fiber’s weight, size, and resistance to external interferences,
chemicals, and atmospheric conditions.

Apart from attenuation, fibers have more linear propagation effects such as birefrin-
gence or polarization variations due to imperfections in the fiber’s shape or mechanical
stresses. Chromatic dispersion is another linear propagation effect originating from the
material itself and the phase evolution across the fiber. Chromatic dispersion causes
the group delay to vary with frequency and can possibly lead to Inter-Symbol Interfer-
ence (ISI) [20]. These linear effects can be effectively compensated with Digital Signal
Processing (DSP) in the receiver [21].

Non-linear propagation effects also occur in fibers. For example, Stimulated Raman
Scattering (SRS) is an effect caused by the interaction of photons with the molecular
structure of fibers [22]. SRS takes place whenever energy from pump photons or a flow
of propagating photons is transferred to other frequencies in the optical field, thence
generating a sort of gain curve that will amplify the signals present in those frequencies.
A plot displaying the generated Raman gain CR by a pump in frequency fp is shown in
Figure 2.4 [23].

Figure 2.4. SRS effect in the spectrum

SRS can also occur among channels, as each channel can act as a pump and the
generated Raman gain profiles will be summed among each other. As a result, low
frequency channels experience a power gain at the expense of high frequency channels
generating a tilt in the curve of the power in the frequency domain. This tilt increases
with the number of spans, as seen in Figure 2.5 [23].

When considering single-channel systems, the base for modeling fiber propagation and
its effects is the non-linear Schrödinger equation. It can be noticed from the equation,
in Figure 2.6 [24], that apart from attenuation and dispersion effects, a non-linear effect
called the Kerr effect [25] will also be present. In the absence of dispersion, the Kerr
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Figure 2.5. SRS effect over C band for different number of spans

effect acts by introducing a power-dependent phase modulation of the field. It can also
be seen as the causative of variation in the glass refractive index due to power.

Figure 2.6. Non Linear Schrödinger Equation

If we consider a system with multiple channels, it is perceived that it is impossible
to separate independent equations for each channel from the Schrödinger equation; as all
equations will contain terms that connect to other channels. Therefore, non-linear contri-
butions can come from Self-Phase Modulation (SPM), whenever phase is modulated by
the power variation of the channel itself, and Cross-Phase Modulation (XPM), whenever
phase is modulated by the power variation of all the other channels. This phase modu-
lation behavior is present whenever dispersion is not considered. If we take into account
dispersion, the disturbance will emulate additive Gaussian noise.

The standard model for estimating the power spectral density of Non-Linear Impair-
ments (NLI) is the GN model [26]. GN stands for Gaussian noise. An approximated
general version of the model for the ns-th span and nch-th channel is described in 2.1.
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In which:

• γ is the non-linearity coefficient

• P is the average transmitted power

• β2 is the dispersion coefficient

• α is the fiber loss coefficient

• Rs is the symbol rate

• fch is the central frequency of channel ch

• Apre are the lumped losses before the fiber

• AF are the losses from the fiber itself

• Apost are the lumped losses after the fiber

• G is the gain of the amplifier

Looking at the model, it can be concluded that:

1. NLI scales with the cube of the power

2. NLI is inversely proportional to dispersion (the factor present in the asinh argument
has little impact)

3. NLI is proportional to the square of the fiber’s non-linear coefficient
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Another effect that is also part of NLI and is present only when the dispersion is low
is called four-wave mixing [27]. In four-wave mixing, a narrow-band signal is generated
at a frequency fi due to the presence of stronger narrow-band signals at frequencies fm,
fn and fk. Where fi = fm − fn + fk. Cross-Polarization Modulation (XPolM) is another
NLI effect that happens if we consider a dual-polarization; SPM and XPM occur on one
polarization because of the power in the other polarization. Although the approximate
GN model shown in equation 2.1 only takes into account SPM and XPM for NLI, the
complete actual version of the GN model also considers four-wave mixing and XPolM.

2.4 Amplifiers
Optical amplifiers are devices capable of intensifying an optical signal without performing
a conversion to electronics. They are required to account for the losses generated by fiber
propagation. The most common types of optical amplifiers are Erbium Doped Fiber
Amplifiers (EDFA), Semiconductor Optical Amplifiers (SOA), and Raman amplifiers. In
this thesis work, EDFAs are the type of amplifiers studied; then, this section will refer
entirely to these amplifiers.

Amplification is possible as a consequence of an effect called stimulated emission. In
stimulated emission, a new photon with an energy equal to that of another incoming
photon originates from an atomic system. Not only will the new photon have the same
energy as the incoming one but they will also share frequency and phase. This will only
happen if some atoms are already present in an upper energy level; for that reason, the
absorption process must take place. In absorption, photons are pumped in order to excite
the atoms into higher energy levels. Stimulated emission is not the only way a photon
can be generated inside the fiber, as there is another phenomenon called spontaneous
emission. In spontaneous emission, there is no necessity to have an incoming photon,
energy comes from an atom spontaneously descending to a lower energy level. Photons
from spontaneous emission follow random directions, so they act as noise; furthermore,
they can be amplified by stimulated emission, forming in this way what is known as
Amplified Spontaneous Emission (ASE) noise. An image illustrating the phenomena of
absorption, spontaneous and stimulated emission is present in Figure 2.7 [28].

Figure 2.7. Phenomena of absorption, spontaneous emission and stimulated emission

The most important components of an EDFA are a fiber span that contains erbium
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ions in its core and a pump laser. Thanks to erbium ion doping, the fiber will present
energy levels suitable for amplification, while the pump laser is used to excite the atoms
into higher energy levels. EDFAs can also contain Variable Optical Attenuator (VOA).
As their name indicates, VOAs attenuate the signals; therefore, it is important to ac-
knowledge this setting when configuring the EDFAs.

A simple model for amplification is present in equation 2.4

Pout(t) = G · Pin(t) + PASE(t) (2.4)
In which:

• Pout is the power coming out from the amplifier

• Pin is the power coming in to the amplifier

• PASE is the power coming from ASE noise

• G is the gain of the amplifier

ASE noise is white and Gaussian and can be described for a bandwidth B as in
equation 2.5

PASE = h · f · B · (G − 1) · F (2.5)
Where:

• h is Planck’s constant

• f is the optical frequency (usually the central frequency of the band)

• G is the amplifier power gain

• F is the noise figure

The noise figure of an amplifier specifies how much the device degrades the Signal-to-
Noise Ratio (SNR) [29]. Its value can also be described as twice the spontaneous emission
factor nsp, a noise factor that is always greater than 1. Other parameters for the EDFAs
are gain and tilt, that differently from the noise figure, they are part of the input settings.
The target gain specifies how much will be applied to the incoming power in the amplifier,
while the tilt specifies the inclination of the gain profile in a specific band, generally in
dB/THz. An example of the usage of tilt is to compensate for the SRS effect already
shown in Figure 2.5. Despite being indicated as constant numbers in the datasheets or
setting configurations, neither gain nor noise figure are constant in frequency, even if the
tilt is 0 dB/Hz. This is shown in Figures 2.8, 2.9, 2.10, 2.11 [30].

In order to characterize the gain profile, a model is suggested in [31]. The model is
present in equation 2.6.

G(f) = G + T

B
· (f − f0) + g(f) (2.6)

In which:

• G is the gain target or set gain
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Figure 2.8. Gain profile of different gain settings and tilt set to 0 dB/Hz

Figure 2.9. Gain profile of gain set to 17 dB and varying tilt

Figure 2.10. Noise figure spectrum with varying gain and tilt set to 0 dB/Hz
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Figure 2.11. Noise figure spectrum with varying tilt and gain set to 17 dB/Hz

• T is the tilt target or set tilt

• B is the bandwidth

• f0 is the band center

• g is the gain ripple

An illustration showing the model parameters is shown in Figure 2.12 [31].

2.4.1 Spectral load’s effect on EDFAs

The distribution of a spectral load can determine how different devices will work. For
example, the gain profile of an EDFA will have a different behavior when there are
only four channels on and the rest off, compared to a full spectral load (all channels
on, zero channels off), even if the setting of the EDFA is the same for both cases [10].
Unfortunately, in the already mentioned EDFA case, designing an analytical model for
the amplifier that takes into account these variations is very difficult to handle, as the
idea is to define these models at a system level; hence, there is access to parameters such
as gain, tilt, total power in/out. It is not only difficult to have an accurate model due
to the huge number of spectral load possibilities that can exist, but also because the
spectral load is not the only factor that can affect the gain profile at the output of an
EDFA. Other factors that might affect slightly can be the temperature or even the vendor
and model of the device.

2.5 Optical Signals

As in every communication system, information is transmitted through electromagnetic
waves associated with a carrier frequency. In optical fibers, as these waves come in the
form of light, they are called lightwaves. It is also important to recall that in the optical
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Figure 2.12. Gain profile modeling representation

domain the usage of wavelengths λ instead of frequencies f is more common. In which
the relationship between both is:

f = c

λ
(2.7)

Where c is the constant for the speed of light.
A lightpath is defined as the route that a lightwave takes from source to destination in

a transparent optical network. Lightpaths should respect a pair of conditions in order to
be properly deployed. These conditions are known as wavelength continuity. Wavelength
continuity states that the same wavelength should be available for the lightwave in every
OLS crossed from source to destination. At the same time, wavelength continuity implies
that the lightwave can be properly directed through all the crossed switches.

Wavelength continuity is important as it plays a main role in the routing and wave-
length assignment. The routing and wavelength assignment must not only take into
account the topology of the network and its current status regarding availability of paths
and wavelengths but also needs knowledge on the QoT for each feasible path, so in that
way paths are selected with a criteria associated with effectiveness and not in an arbitrary
way.

Reserving an entire fiber for a single lightwave is very inefficient, and this is why
the most common multiplexing technique in optical transmission is Wavelength Division
Multiplexing (WDM). In WDM, a lightwave has a dedicated channel for itself. A channel
in a WDM comb is associated with a wavelength or frequency. The set of channels in
WDM is called WDM comb or it can also be called the spectral load. The standard for
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channel spacing in a WDM comb established by the ITU-T is of multiples of 12.5 GHz.

2.5.1 Digital Twin

A digital twin is a precise high-fidelity model of a system and the impact of its external
environment. Its main purpose is to emulate a real system or its "twin". In the SDN
context, digital twins can serve as a great complement to SDN controllers. For example,
it can help in the planning process where choices regarding the equipment used and the
traffic management are relevant, or it can help in the control of the network by setting
the devices in their optimal status. Route and wavelength assignment with a digital twin
can be done more efficiently. Digital twins can also be exploited along with AI. AI can
be tested on digital twins in order to set optimal points in the devices; in turn, digital
twins can provide useful information in order to improve AI training.

A tool that can be used as a digital twin for the physical layer of the network is the
Gaussian Noise in Python (GNPy) project. GNPy is originally meant to be a vendor-
neutral design and planning tool.

Physical models of the network elements are needed to use a digital twin of an optical
network. This is the reason why different models are proposed and studied for these
elements.

2.6 Design Margins and Quality of Transmission Metrics

2.6.1 Design Margins

Planning and designing a network is a complicated task. Just for one of the considerations
that must be taken for this task as deploying lightpaths with an acceptable QoT, it is
necessary to consider all the impairments that the signals will suffer through the network,
mainly the ones present in the OLS like ASE noise and NLI. In addition, network designers
should consider how these impairments evolve when new signals are added or dropped in
the OLS, making the analysis of the spectral load’s effect on devices more relevant. Other
important factors that should be considered while planning and designing are aging of
equipment and maintenance operations such as fiber repairs.

In order to account for all of these impairments, worst-case scenarios are taken into
account to guarantee lightpaths with admissible QoT. Design margins are established to
overprovision lightpaths with the help of simplified models or estimations. Unfortunately,
as models and estimations might deal with uncertainties, the computation of these mar-
gins is not accurate enough, and usually networks operate far from these conservative
design margins. As a result, networks are designed with extra equipment or expensive
equipment with unnecessary complexity, which means additional costs. The goal of mod-
ern networks is then seeking to reduce these design margins to "actual (just enough)"
margins [8].
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2.6.2 Quality of Transmission Metrics

Optical Signal-to-Noise Ratio

Optical Signal-to-Noise Ratio (OSNR) is a QoT metric defined as:

OSNR = PS

PASE
(2.8)

In which:

• PS is the average power of the signal

• PASE is the power of the ASE noise in an equivalent reference bandwidth

Usually, the reference bandwidth used in OSNR is 12.5 GHz due to legacy reasons.
OSNR is generally used when the QoT analysis does not involve non-linear effects or

if non-linear effects are analyzed separately.

Generalized Signal-to-Noise Ratio

A most complete QoT metric for lightpaths in optical networks is Generalized Signal-to-
Noise Ratio (GSNR). GSNR takes into account non-linear impairments.

As mentioned in Chapter 2.3, dispersion is a propagation effect that accumulates
through the fiber spans. Dispersion does not affect the spectrum, but it strongly affects
the time-domain signal. When a transmission is performed without compensating the dis-
persion, it can be noticed that the signal will resemble Gaussian noise. This means that
non-linear interferences generated by the crosstalk among channels and by the channel
itself will also act as zero-mean additive Gaussian noise. As NLI is statistically indepen-
dent from ASE and on top of that it acts as Gaussian noise, similarly to ASE, it can be
summed in the denominator of the OSNR. Therefore, the definition of GSNR is:

GSNR = PS

PASE + PNLI
(2.9)

Where PNLI corresponds to the power of NLI "noise" in the overall signal.
Other metric called Bit Error Rate (BER) can use either OSNR or GSNR to be

computed apart from other data concerning the modulation of the signal.

2.7 Machine Learning

Machine Learning (ML) is a branch of AI in which algorithms can effectively recognize
patterns or "learn" from a collection of data with the help of statistics. In that way, these
algorithms can be generalized and applied to data that have not been studied previously
by themselves. ML algorithms must have a performance metric that should improve with
their experience performing a task. Training a ML model involves using a set of data and
iteratively finding the proper parameters for the model to predict correctly. A ML model
represents a mathematical relationship between the data and the expected results. The
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model captures important and quantifiable features from the input and processes them
to make predictions.

Data is crucial for deep learning; therefore, it should be handled thoroughly. An
strict separation between the data that will be used for training, validation (used to
check performance and to take design choices in the model), and testing (used for the
final test of the model) should be done. In addition, normalization and adjustments in
the distribution of the data must be made if necessary.

ML models can be tuned with design choices called hyperparameters. Hyperparame-
ters are usually tuned in the validation set and have a large impact on network perfor-
mance. The most traditional way to tune hyperparameters is with a method called grid
search. In a grid search, different combinations for hyperparameters are tested in the
validation set to check which set of hyperparameters work better. This technique usually
takes a long time, as it has to train the model for each possible combination. Clearly, the
time for the grid search will increase with the number of hyperparameters that will be
tested.

When referring to models for a system, ML models are referred as black-box models
because the machine takes a decision based on the data and the hyperparameters set
as input, but the developer knows little about the actual operations done inside the
network or the actual behavior of the model. Opposite to an analytical model, in which
the construction of the model allows the person using the model to understand in detail
how a system behaves and how it can be handled. Analytical models are referred as
white-box models. Gray-box models combine both the analytical and the ML approach,
taking advantage of the accuracy that can be reached with black-box models and the
transparency and explainability of white-box models.

The ML strategy used in this thesis is the artificial neural network. A neural network
is a collection of neurons arranged in parallel and in layers. A neuron is a representation of
a function that depends on a weighted sum of several inputs summed by a bias. Generally,
the function represented by the neuron, called activation function, is a non-linear function.
The mathematical representation of the neuron is present in equation 2.10 [32].

y = f(
Nin∑︂
i=1

wixi + b) (2.10)

Where:

• y is the output of the neuron

• f is the activation function

• Nin is the number of inputs

• wi is the weight that corresponds to input xi

• b is the bias

In a neural network, each neuron computes a different weighted sum and each layer
receives as input the output of the previous layer. The first layer of neurons is called
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input layer and the last output layer. All the layers between the input layer and the
output layer are called hidden layers. The deeper the network, the more complex the
function it represents. This is depicted in Figure 2.13 [33].

Figure 2.13. Typical neural network structure

As mentioned in the beginning of this chapter, performance should improve iteratively
when training a ML model. Usually, this is controlled with a cost function, also called
loss function. This function outputs a scalar value that measures the difference between
the neural network’s output and the target output. Thus, the main goal while training
the neural network is finding the weights and biases that minimize the cost function.

Different algorithms can be used to minimize the functions. The gradient descent
algorithm is an example of algorithm used to minimize these multivariable functions,
it basically updates the parameters (weights and biases) by subtracting the current pa-
rameters with the gradient of the cost function with respect to the current parameters
and multiplied by a factor called the learning rate. The learning rate defines how fast
the parameters are updated; if it is too fast, possibly the algorithm will not converge,
whereas if it is too slow, the computational complexity will be high. Gradients in neural
networks are computed with another algorithm called backpropagation [34]. Backpropa-
gation takes advantage of the chain rule of derivatives and computes the derivative of the
cost with respect to a weight, from the derivative of the cost with respect to the output
of the neural network. Backpropagation is already implemented in specialized Python
libraries such as TensorFlow or PyTorch (the one used in this thesis).

In order to reduce computational complexity while performing the gradient descent
algorithm, batches of data are used. The use of batches allows to avoid processing all
the entire training set to compute the gradient, a sample of the set can be used, and the
gradient will behave as a "noisy" version of the true complete set gradient despite being
faster in the training. The number of iterations required to process the entire training
set at once is called an epoch. Training is usually done in tens or a few hundreds of
epochs. An option to enhance training is the use of a hyperparameter called patience.
Patience defines the number of epochs to wait before stopping and restarting the training
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from that point if there is no progress. Other hyperparameters in neural networks are
the learning rate, the batch size, the choice for the activation function, the number of
neurons and layers in the network, among others.

Problems can arise in the training of ML models, one of the most common ones is
called overfitting. Overfitting occurs when a model is trained and it matches very closely
with the training set, causing the model to fail with other data different from the training
set. Underfitting is the opposite problem to overfitting; the model is trained but matches
poorly with the training set; as a result, it does not learn a dominant trend from the
data and it fails with every other dataset. The best way to control whether overfitting
or underfitting is happening is by controlling how the cost or loss function behaves as
epochs are trained. A descriptive image explaining this is found in 2.14 [35].

Figure 2.14. Overfitting and underfitting recognized from the learning curve

A way to overcome overfitting can be through the use of regularization techniques.
One of the most common ones is called dropout. In this technique, the random nodes in
the layer are set to zero in the training process, reducing the size and complexity of the
neural network and preventing unnecessary learning of irrelevant information.
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Chapter 3

Project Overview

Currently, optical networks must be able to carry massive amounts of data traffic taking
into account new technologies and applications that require higher bandwidths. Hence,
capacity and optimal exploitation of the network infrastructure appear to be relevant
goals for optical fiber communications. These goals can be dealt with a disaggregated
optical network. This type of networks are characterized by their flexibility, multi-vendor
or open approach, and customizable nature. SDN controllers play an important role in
disaggregated networks, as they are the ones in charge of setting an optimal working
point for the different elements of the network. In this context, lightpath deployment
can be carried out effectively, but the controller in charge should have knowledge of the
potential QoT of the lightpaths before deployment. This is only possible with a QoT
estimator. A more accurate estimator allows for a smaller difference between design
margins and actual margins. GSNR is the common metric used for QoT. In addition to
the signal power in the channel, the GSNR has ASE noise and NLI as elements. The
degradation of GSNR is mainly caused by ASE noise, as its effect is twice compared to
that of NLI [7] [10]. Furthermore, ASE noise is more difficult to predict compared to NLI.
In fact, NLI can be approximated with the help of tools using the GN model approach,
which is implemented in tools such as GNPy. ASE noise strongly depends on the working
point of the EDFAs within the OLSs [7]. In turn, the working point of EDFAs depends
on the spectral load. To illustrate this, the data used in this thesis work will be taken as
an example; considering two different spectral loads and the whole OLS, it can be seen
that in the input of the OLS (Figure 3.1), when channels are turned on, both spectrums
align. Therefore, if the same configuration was applied to both spectral loads throughout
the OLS, in the output there should be the same alignment between the two spectrums
in this spectral portion. But in Figure 3.2, it is evident that the spectral load #18 was
amplified a bit more and even a tilt modification can be seen, as the first portion of the
channels that are turned on seem to have a smaller gap between the spectrums compared
to the last portion.

Investigating how each unique amplifier behaves with the different possible spectral
loads before performing a lightpath deployment is evidently not practical at all. Fortu-
nately, this is an ideal scenario for ML and can be considered to characterize the EDFA
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and predict its output accurately. In that way, GSNR can also be estimated more ac-
curately, lightpaths can be effectively deployed, and design margins can be set closer to
actual margins.

Figure 3.1. Comparison between two different spectral loads at the input of the OLS

Figure 3.2. Comparison between two different spectral loads at the output of the OLS

3.1 Related Work

Various strategies have been considered to achieve the goals mentioned above. In [10],
DNNs are used to predict the OSNR. In this study, the authors decided to focus just
on ASE’s impact and neglected NLI by using VOAs instead of fiber spans. The features
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used for their DNN included the variances of the received signal power and ASE noise.
Meanwhile, in [7], NLI was analyzed with the help of GNPy and data from the OLSs,
and this analysis was combined with the DNN prediction of the output power coming
from EDFAs, in order to perform a more general analysis on GSNR. The channel status
was used as a DNN feature. In [11], the output power, including ASE noise and crosstalk
from other channels, is also predicted; thus, an analysis of OSNR can be done. Channel
status was used as DNN feature as well, but power incoming to the EDFA and EDFA
configuration for gain and tilt were also considered as features. In [36], different con-
structions for DNN models are made, specifically an end-to-end model (complete OLS
seen as black-box), a model in which there is a neural network for the BST and the PRE
amplifiers and one neural network for all the spans in-between these amplifiers (in a cas-
caded form), a model that uses a neural network for each amplifier and measurements to
account for the loss profile in fiber spans, and a model that uses neural networks for each
amplifier and each fiber span also in a cascaded way, in that way having the possibility to
model both gain and loss profile for each span. In all the cases mentioned above, EDFAs
or OLSs were considered as black-boxes.

In [12], authors emphasize in the losses introduced by the connectors and in the
gain profile as the main inaccuracies that lead to large design margins. Taking this into
account, they propose an algorithm that estimates these quantities, and they also combine
it with a neural network approach. Apart from this, the paper also introduces a novel
idea in which the neural network is not just the conventional fully connected sequential
neural network, but they also test a structure similar to ResNets called RatioNets. In
ResNets, the input of a layer is added to the output of a posterior layer, forcing the
neural network to learn the difference between that input and output. RatioNets follow
the same idea, but the neural network learns the ratio between input and output instead
of the difference.

In [13], [14] and [37], a gray-box approach is tested. Specifically in [13], the idea is to
predict with neural networks the difference between the output power when using a gain
profile analytical formula and the real measured output power. Then, this value can be
summed with the analytical result to obtain the prediction of the actual output power.
Two approaches were carried out; the first one is a global approach (end-to- end) in which
only one neural network is used to predict all the OLS behavior, while the other is a local
approach (span-by-span) that predicts the error per amplifier and, after computing the
actual output power and accounting for fiber losses, will be used as input for the next
neural network model for the next amplifier. Additionally, in this study, it is shown that
as the spectral load gets full, the accuracy of the estimation increases. In [14], the authors
are more focused on achieving good results with small datasets, but the idea is similar
to that presented in [13]. In [37], the analytical formula used for gain is a very simple
one based on the center of mass of a single channel and a fully channel loaded ripple
function. This article also presents an innovative way for the neural network architecture
as it considers a neural network per channel, instead of a unique neural network for all
channels.

As indicated in Section 2.4, the noise figure of an EDFA is not a constant parameter
over the wavelenghts. Consequently, to reduce more uncertainties for the design margins,
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models on the noise figure have been studied in the master’s thesis [38] and in the publi-
cation [39]. During the development of this thesis, a constant value of 4 will be considered
for the noise figure.

3.2 Experimental Setup and Dataset

The experimental setup used for the data extraction of this project is illustrated in Figure
3.3, it is the same setup used in [13]. It comprises a Booster Amplifier (BST) at the input
and a Pre Amplifier (PRE) at the output of the OLS used as setup. In between, there
are five In-Line Amplifier (ILA). All amplifiers are connected by spans of standard single-
mode fiber, the lengths of the fiber spans are specified in Table 3.1. A C-band WDM
comb generated with the help of an ASE noise source and a WSS are present at the input
of the BST. This comb has 64 channels and has a 75 GHz channel spacing. Four channels
inside this comb, specifically channels #2, #22, #42, #62, are actually being generated
by a transponder.

A Python-based OLS controller manages the EDFAs and collects telemetry data,
including gain and tilt settings via vendor-specific interfaces [40].

Channel power levels are measured at the OLS terminations and at each EDFA’s input
and output for all the spectral loads, using an optical switch and an Optical Spectrum
Analyzer (OSA).

Figure 3.3. Experimental Setup

Regarding the dataset used for this project, 500 spectral loads were taken as samples.
For each amplifier in the OLS, each spectral load has:

• ID - created as a way to uniquely identify each spectral load. The ID is actually
formed by all the values present in the "Channel Status" column concatenated.

• Channel Status - the state of each channel in terms of presence of signal, ASE noise
and crosstalk. In 3.2, a table indicates the meaning of each value in this column.
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Span Length (km)
BST → ILA1 72.22
ILA1 → ILA2 68.97
ILA2 → ILA3 79.02
ILA3 → ILA4 75.70
ILA4 → ILA5 67.44
ILA5 → PRE 71.05

Table 3.1. Fiber span lengths

Value Meaning
0 Only ASE noise present

0.33̄ ASE noise and crosstalk from one neighbor channel present
0.66̄ ASE noise and crosstalk from two neighbor channels present

1 ASE noise and signal present
1.33̄ ASE noise, signal and crosstalk from one neighbor channel present
1.66̄ ASE noise, signal and crosstalk from two neighbor channels present

Table 3.2. Meaning of values in "Channel Status"

• Ch# Input Signal - the total input power (ASE noise + signal) value for each
channel

• Ch# Output Signal - the total output power (ASE noise + signal) value for each
channel

• Ch# ON or OFF - indicates if whether each channel contains a signal (value equal
to 1) or not (value equal to 0)

• Gain - gain set in the amplifier

• Tilt - tilt set in the amplifier

From the previously mentioned features and other parameters, such as frequency and
tilt ripple, more useful data were included in the dataset as:

• Ch# Expected Output - the expected output power per channel estimated using
the analytical formula present in equation 2.6.

• Ch# Difference - the difference per channel between the measurement of the actual
output power and the one calculated with the analytical formula in 2.6 .

Other data found in the set were:

• Frequency of each of the 4 channels under test (mean, standard deviation, maximum
and minimum of different measurements in a lapse of time)
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• Chromatic dispersion of each of the 4 channels under test (mean, standard deviation,
maximum and minimum of different measurements in a lapse of time)

• Transmitting power of each of the 4 channels under test (mean, standard deviation,
maximum and minimum of different measurements in a lapse of time)

• Total power input (mean, standard deviation, maximum and minimum of different
measurements in a lapse of time)

• Per channel ASE noise power input and signal power input

• BER of each of the 4 channels under test (mean, standard deviation, maximum and
minimum of different measurements in a lapse of time)

• GSNR of each of the 4 channels under test (mean, standard deviation, maximum
and minimum of different measurements in a lapse of time)

• Receiving power of each of the 4 channels under test (mean, standard deviation,
maximum and minimum of different measurements in a lapse of time)

• Total power output (mean, standard deviation, maximum and minimum of different
measurements in a lapse of time)

• Per channel ASE noise power output and signal power output

The data extraction or telemetry process was already done prior to the development
of the thesis, so this work will not focus on this procedure.

3.3 White-box Analysis
As mentioned in Section 2.4, an analytical model for the behavior of the amplifier can be
used in order to compute the output power profile. The equation of the model is present
in 2.6. This model will be referred to as White-box model (WB) throughout this thesis.
This model is characterized by being flexible, in the sense that all the parameters can
be specific to the EDFA that will be modeled, except for the tilt ripple, which is usually
related to a family of EDFAs. In addition to flexibility, the model is also descriptive, as
it is easy to understand the behavior just by looking at the equation, and it is low cost
as only two measurements per EDFA are required to compute the model. By using the
dataset given, an analysis on the errors of this WB approach is done in this section. This
analysis will be useful for later comparison with the gray-box approach.

Table 3.3 contains the Mean Absolute Error (MAE) and Maximum Absolute Error
(MaxAE) of this white-box approach. Combining the values per amplifier present in this
table will result in a considerable error for the whole OLS, either if we consider MAE
or MaxAE. This makes the introduction of ML in models more attractive, as it can also
improve performance.

In order to have a more visual way to analyze the WB approach, a plot showing the
predicted and the real spectral load with the maximum error, corresponding to one of
the spectral loads in the BST, is present in Figure 3.4.
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Amplifier MAE MaxAE
BST 0.80 dB 3.29 dB
ILA1 0.48 dB 4.67 dB
ILA2 0.33 dB 2.47 dB
ILA3 0.39 dB 2.79 dB
ILA4 0.26 dB 1.49 dB
ILA5 0.25 dB 2.07 dB
PRE 0.32 dB 3.06 dB

Table 3.3. Mean Absolute Error and Maximum Absolute Error per amplifier with
the white-box approach

Figure 3.4. Worst configuration for white-box approach

It can be noticed in Figure 3.5 that if the MAE is analyzed taking into account how
many channels are on, that as the spectral occupation gets full (all channels are turned
on), the better the performance of the model. Actually, it can be seen that the model
performs really poorly whenever the number of channels turned on is very small. This
can be further evident when comparing Figures 3.6 and 3.4. In Figure 3.6 the predicted
and the real full spectral load of the same BST analyzed in Figure 3.4 are shown.
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Figure 3.5. MAE according to spectral occupation with the white-box approach

Figure 3.6. Full spectral load configuration for the white-box approach
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Chapter 4

EDFA Analysis: Gain Profile
Prediction

In this thesis work, a local perspective is taken into account, so fiber spans and EDFAs
will be handled separately, meaning that each amplifier and fiber span will have its own
separate neural network and model. In this chapter, the methodology for building the
neural network and overall the model for EDFAs is described.

In order to start with the analysis, the work done in the paper "Enhancing Optical
Multiplex Section QoT Estimation Using Scalable Gray-box DNN" ( [13]) was used as
a reference. The gray-box model proposed in this paper was taken as an initial guide;
therefore, in this thesis work it will be called Default Gray-box model (D-GB).

The procedure carried out can be summarized as follows:

1. Default model structure and results - Test the default model and then store
its results. Write down how this model is structured and its parameters.

2. Feature and label possibilities - Annotate all the possible features and labels
that can be taken into account

3. Hyperparameters - Write down all the possible hyperparameters to take into
account.

4. Gray-box models - Think in variations or new ideas for the structure of the DNN
model inside the gray-box model.

5. Hyperparameter testing - Taking into account the different models, test them
with a brief analysis of their optimal hyperparameters. Test a specialized Python
library to find optimal hyperparameters like Optuna and compare it to the results
of a traditional grid search in terms of accuracy and training time.

6. Best model results - With the best hyperparameters, verify if there is no over-
fitting and considering the test set, take the final results for the best proposal in
terms of performance.
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4.1 Default model structure and results

4.1.1 Model structure

As already mentioned in the introduction of this chapter, this model follows a gray-box
approach in which the analytical model of the gain profile, described in section 2.4 and
specifically in equation 2.6, and a neural network are employed to obtain an estimate for
the output power per channel. The main strategy is making the neural network predict
the difference between the output of the analytical formula and the actual measured
output power, so then this result can be summed to the output power that the analytical
formula suggests, and thus the measured output power can be obtained. In fact, this
idea will be the basis for the models presented throughout this thesis. The diagram in
Figure 4.1 describes the default model structure for just one of the amplifiers. In the next
chapter, the complete model considering fiber spans will be shown.

Figure 4.1. D-GB model structure

The main characteristics of the neural network present in the D-GB are :

• Inputs (Features): 128 features divided into 64 channel status and 64 channel
input powers.

• Output (Labels): 64 labels that correspond to the error per channel between the
prediction of the output power of the analytical formula and the measured output
power.

• Training, testing and validation set: The whole dataset is divided following a
proportion of 70/15/15. 70% of the dataset is for the training set, and the validation
and test set get 15% of the dataset each.

• # of epochs: 100 epochs

• Batch size: 16

• # of hidden layers: 2 layers

• # of neurons per hidden layer: 1024 neurons

• Learning rate: 0.0001
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• Patience: 10 epochs

• Activation Function: ReLu function defined as: f(x) = max(0, x)

4.1.2 Results

The performance of this gray-box model in terms of MAE and MaxAE for each amplifier
is displayed in Table 4.1.

Amplifier MAE MaxAE
BST 0.11 dB 0.74 dB
ILA1 0.07 dB 0.69 dB
ILA2 0.05 dB 0.36 dB
ILA3 0.06 dB 0.47 dB
ILA4 0.05 dB 0.45 dB
ILA5 0.05 dB 0.39 dB
PRE 0.07 dB 0.52 dB

Table 4.1. Mean Absolute Error and Maximum Absolute Error per amplifier with
the default gray-box approach

As a way to analyze in a more visual form the performance of the model, the predicted
and measured power output of the configuration containing the worst MaxAE in the
BST, the amplifier with the worst performance, was plotted in Figure 4.2. For the
predictions, we include both the WB and D-GB model. A comparison between the MAE
and MaxAE in the configuration of Figure 4.2 is presented in table 4.2. In addition, the
MAE according to the spectral occupation in the BST was plotted in Figure 4.3. The
predicted and measured power outputs for the full spectral load case in the BST were
also plotted in Figure 4.4. Again, both WB and D-GB predictions were considered and
the table indicating the metrics for this configuration is present in 4.3. The total time to
train all the neural networks was 57.17 seconds.

Model MAE MaxAE
WB 0.77 dB 1.44 dB

D-GB 0.18 dB 0.86 dB

Table 4.2. Mean Absolute Error and Maximum Absolute Error of the configuration shown
in Fig. 4.2 for the D-GB and WB model

A big difference regarding accuracy can be seen in this gray-box approach when
comparing it with respect to the WB approach, specially in configurations with low
spectral occupation. In the WB approach, the MaxAE of all amplifiers exceeded 1 dB,
while in the gray-box approach none of them surpasses this value. Therefore, it can be
stated that most of the error of the WB model comes from noise prediction. Taking into
account the MAE values for each amplifier, in the gray-box approach, the combination
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Figure 4.2. Worst configuration for default gray-box model

Figure 4.3. MAE according to spectral occupation with the default gray-box model

of errors would not result in a large total value as the one that can result from the WB
approach. Visually, the difference in accuracy between both strategies is also observed in
Figure 4.2. This is further confirmed with the information presented in Table 4.2.

In both approaches, the best performances are obtained when dealing with a full
spectral load. In fact, it seems that as the analytical formula works so well by itself
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Figure 4.4. Full spectral load configuration for the default gray-box model

Model MAE MaxAE
WB 0.01 dB 0.01 dB

D-GB 0.05 dB 0.25 dB

Table 4.3. Mean Absolute Error and Maximum Absolute Error of the configuration shown
in Fig. 4.4 for the D-GB and WB model

in this case, it causes an impact in the gray-box approach too. Actually, by comparing
Figures 3.6 and 4.4, it is noticed that performance is better in the WB approach for this
case. This is numerically corroborated as the MAE in the full spectral load configuration
for the WB approach is 0.01 dB, while for the gray-box case the value is 0.05 dB, as
stated in Table 4.3. Despite this, it can be confirmed with the tables and plots presented
for both strategies that overall the best performances are obtained with the gray-box
approach.

Regardless of having good results with the D-GB, performance can possibly be further
enhanced, and this is why different gray-box model variations are tested in the next
sections.

4.2 Feature and label possibilities
In order to better organize the ideas for creating new models, the data extracted described
in Section 3.2 were divided into possible features or labels for the neural networks. The
division resulted in the following:

4.2.1 Features

• Signal, noise and crosstalk state
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• Channel under test frequency

• Channel under test chromatic dispersion

• Channel under test transmitting power

• Amplifier’s tilt

• Amplifier’s total power input

• Amplifier’s per channel power input (signal, ASE noise, signal + ASE noise)

• Analytical model power output

• Channel on/off state (without considering crosstalk)

4.2.2 Labels

• Channel under test BER

• Channel under test GSNR

• Channel under test receiving power

• Amplifier’s gain

• Amplifier’s total power output

• Amplifier’s per channel power output (signal, ASE noise, signal + ASE noise)

• Difference between analytical and measured power output

4.3 Hyperparameters
Regarding the possible hyperparameters that can be tuned to get better performances,
there are:

• Activation function

• Batch size

• Number of hidden layers

• Number of neurons per hidden layer (constant number of neurons through the layers
will be considered for this work)

• Learning rate

• Number of epochs

• Patience
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• Choice for the optimizer algorithm, this is the algorithm used to update weights
inside the neural network

• Coefficients of regularization techniques, if they are present, as dropouts to avoid
overfitting

4.4 Gray-box models
Apart from the already analyzed D-GB, other DNN structures based on the ideas pro-
posed in the related work for this topic were tested. In the next subsections, a short
description and a diagram for each of the DNNs considered will be presented.

4.4.1 Variation of the DNN output or label

The idea of this neural network is to follow the same logic as the D-GB one but instead
of selecting as DNN label the difference between the analytical output power and the
measurement of the ouput power, the goal for the DNN will be to predict the difference
between the analytically estimated gain and the actual measured gain. Then this dif-
ference will be summed to the analytical gain to obtain a final estimated gain for this
model.

Taking into account this, a new model can be derived that will be referred throughout
this thesis as:

• Default Gray-box Gain model (D-GB-G) - The variation of the D-GB model with
the difference of gain as label. Shown in Figure 4.5.

Figure 4.5. D-GB-G model structure

4.4.2 Analytical information included in the DNN features

The idea for the neural networks of the models of this variation is to incorporate analytical
estimates as features for the DNN. This can be done either for the label of the difference
of measured and analytical output power or gain. Other features that can be included,
apart from the analytical information, are both the input power and the channel status,
or just one of these.
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Considering this, new models can be derived that will be referred throughout this
thesis as:

• Both features Gray-box model (B-GB) - Includes as features the analytical infor-
mation and both the input power and the channel status and as label the difference
of powers. Shown in Figure 4.6.

Figure 4.6. B-GB model structure

• Both features Gray-box Gain model (B-GB-G) - Includes as features the analytical
information and both the input power and the channel status and as label the
difference of gains.Shown in Figure 4.7.

Figure 4.7. B-GB-G model structure

• Power as feature Gray-box model (P-GB) - Includes as features the analytical infor-
mation and the input power and as label the difference of powers. Shown in Figure
4.8.

• Power as feature Gray-box Gain model (P-GB-G) - Includes as features the analyt-
ical information and the input power and as label the difference of gains. Shown in
Figure 4.9.

• State as feature Gray-box model (S-GB) - Includes as features the analytical in-
formation and the channel status and as label the difference of powers. Shown in
Figure 4.10.
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Figure 4.8. P-GB model structure

Figure 4.9. P-GB-G model structure

Figure 4.10. S-GB model structure

• State as feature Gray-box Gain model (S-GB-G) - Includes as features the analytical
information and the channel status and as label the difference of gains. Shown in
Figure 4.11.

4.4.3 Multiple DNN

The idea of this model is to create a neural network predicting the difference between
analytical and measured output power or gain for each channel. This means that since
there are 64 channels studied in this thesis work, there will be 64 neural networks. These
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Figure 4.11. S-GB-G model structure

neural networks can have the structure of the neural networks described in the previ-
ous subsections. The multiple DNN model will be referred to as Multiple Deep Neural
Network model (M-DNN). A figure describing the structure is given in 4.12. This figure
follows the S-GB structure for each neural network.

Figure 4.12. M-DNN model structure

4.5 Hyperparameter testing
Two methodologies are going to be tested to see which is the best set of hyperparameters
for each of the proposed models. One is the traditional grid search, in which each possible
combination of hyperparameter values is tested one by one. This strategy is clearly
neither fast nor efficient, as the number of combinations can be large and the values
for each numerical hyperparameter come from a discrete set that the developer of the
code defines. The other strategy is by using the Python library Optuna, a specialized
library for hyperparameter search. In Optuna, the range or number of options for the
hyperparameter values used for the test could be larger because the number of trials
within the test is fixed and set by the code developer. The library ignores combinations
that will result in poor performances and includes in its analysis the combinations that
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can potentially result in better performances. The biggest advantage of the grid search
compared with Optuna is its exhaustiveness as it tests every possible combination defined
by the code developer, leaving no doubt on what would be the best option among those
possible combinations; in Optuna results may vary slightly if two different tests are done
with the same ranges and options for the values of the hyperparameters (except if all the
hyperparameters are of categorical nature and not numerical), therefore, generally there
is not a unique best result.

In Section 4.3, a list of possible hyperparameters was registered. Considering all these
hyperparameters in the grid search will cause the process to extend considerably in time.
While, if we consider each one of them in Optuna, it might cause the process to become
more complex; therefore, a greater number of trials should be configured; otherwise, the
best set of hyperparameters indicated might not be the most optimal.

Both the number of epochs and the patience are hyperparameters that can be con-
trolled depending on the evolution of the learning process of the model. For example, if
we notice that the performance is not improving after a long number of epochs or overfit-
ting is starting to be evident, then it should be considered lowering the patience value or
the number of epochs or both; otherwise if the learning process seems to be interrupted
at an early stage, then increasing the number of epochs or the patience or both is a good
option. Overfitting can also be controlled with dropouts or other regularizers, but this
strategy might worsen performance. Taking into account this, these hyperparameters will
only be tuned if considered necessary, but they will not be included in the studies done
with the grid search nor with Optuna.

One of the most widely used algorithms for the optimizer in deep learning is called
Adaptive Moment Estimation (Adam). Adam modifies the learning rate of each param-
eter in each time step. As Adam adapts well for this context, it will be used and will not
take part of the hyperparameter tuning.

Then, the hyperparameters that will be tuned with the grid search and Optuna are:

• Activation function

• Batch size

• Number of hidden layers

• Number of neurons per hidden layer (constant number of neurons through the layers
will be considered for this work)

• Learning rate

The range and type of values considered for the optimization process in Optuna are
indicated in Table 4.4.

In the learning rate, the value is sampled following a uniform probability in that
range in the logarithmic domain, so there is no step as shown in Table 4.4. Regarding
the activation functions considered in Optuna, in Table 4.5, the name and formula with
the values set for other variables for the contemplated options are shown.

In Table 4.5, in RReLU, the parameter a is randomly sampled from υ(a, b), which
means a uniform distribution from a to b.
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Hyperparameter Type Minimum Maximum Step
Learning rate float (real number) 10−6 10−1 None

Number of layers integer 1 5 1
Number of neurons integer 64 2048 32

Batch size integer 16 128 16

Table 4.4. Ranges and types for hyperparameter tuning in Optuna

Activation function Formula Other variables
ReLU ReLU(x) = max(0, x)

Leaky ReLU LeakyReLU(x) = max(0.1x, x)

ELU ELU(x) =
{︄

x x ≥ 0
α(ex − 1) x < 0

α = 1

ReLU6 ReLU6(x) =

⎧⎪⎪⎨⎪⎪⎩
x 0 ≤ x ≤ 6
6 x > 6
0 x < 0

Hard Swish Hardswish(x) = xReLU6(x+3)
6

PReLU PReLU(x) = max(0, x) + a ∗ min(0, x) a = 0.25
RReLU RReLU(x) = max(0, x) + a ∗ min(0, x) a sampled from υ(1

8 , 1
3)

SELU SELU(x) = scale ∗ (max(0, x) + min(0, α ∗ (ex − 1))) α ≈ 1.67, scale ≈ 1.05
GELU GELU(x) = x ∗ 1

2 [1 + erf(x/
√

2)]

Table 4.5. Activation functions considered in the Optuna hyperparameter search

It can be noticed that the number of possible combinations of the set of hyperparam-
eters in Optuna is huge. This can not be replicated in grid search as it will take several
days to run completely the algorithm. Consequently, in the grid search, three values for
the number of layers (1,2,3), three for the number of neurons (128,1024,2048), three for
learning rate (10−6,10−4,10−2), two for batch size (16,32) and three activation functions
(ReLU, Leaky ReLU, and ELU) were tested. This means 162 combinations, for all of the
possible DNNs that can be derived from the descriptions in Section 4.4, except M-DNN.
There still seem to be a lot of combinations, and indeed the time taken to run the grid
search algorithm for a single model is less than a couple of hours. Anyway, compared to
the more than 117,000 possible combinations in Optuna, the number of combinations for
the grid search is small.

As mentioned above, the idea is to perform the hyperparameter search with these two
methods for each possible model that can be derived from the ideas proposed in Section
4.4. The exception will be the models derived from M-DNN, as a single hyperparameter
search for a M-DNN takes a considerable time to run. Therefore, only one neural network
from the M-DNN will be tested in the hyperparameter search with the methodology that
gave the best results. In addition, to save time, only one of the possible M-DNNs that
can be constructed will be tested. The structure of this neural network will be the one

40



4.5 – Hyperparameter testing

that gave the best results in the other DNN models.
The results of the best hyperparameters obtained for each model and methodology

are summarized in Tables 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13.

Grid Search Optuna
Average MAE among amplifiers [dB] 0.065 0.060

Time [s] 27.23 21.02
Learning Rate 0.0001 0.0002

Activation Function LeakyReLU RReLU
Batch Size 32 80

Number of hidden layers 3 4
Number of neurons per hidden layer 2048 1696

Table 4.6. D-GB results

Grid Search Optuna
Average MAE among amplifiers [dB] 0.196 0.191

Time [s] 59.16 30.34
Learning Rate 0.0001 0.0003

Activation Function ELU SELU
Batch Size 16 48

Number of hidden layers 3 4
Number of neurons per hidden layer 2048 1568

Table 4.7. D-GB-G results

Grid Search Optuna
Average MAE among amplifiers [dB] 0.068 0.061

Time [s] 53.36 21.89
Learning Rate 0.0001 0.0006

Activation Function Leaky ReLU ELU
Batch Size 16 80

Number of hidden layers 3 5
Number of neurons per hidden layer 2048 1632

Table 4.8. B-GB results

It is important to recall that the row called "Time" in these tables corresponds to the
time taken to train the neural network just for the best set of hyperparameters, not the
total time of the hyperparameter search.

Until now, it has been evident that the performances are better when the label is the
difference between the analytical and measured output power compared to the one of the
gain. Also, it is important to indicate that in most of the tests Optuna did a better job
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Grid Search Optuna
Average MAE among amplifiers [dB] 0.199 0.181

Time [s] 48.88 30.94
Learning Rate 0.0001 0.0003

Activation Function ELU SELU
Batch Size 16 48

Number of hidden layers 3 3
Number of neurons per hidden layer 2048 1600

Table 4.9. B-GB-G results

Grid Search Optuna
Average MAE among amplifiers [dB] 0.087 0.079

Time [s] 52.97 25.08
Learning Rate 0.0001 0.0013

Activation Function ReLU GELU
Batch Size 16 64

Number of hidden layers 3 3
Number of neurons per hidden layer 2048 1696

Table 4.10. P-GB results

Grid Search Optuna
Average MAE among amplifiers [dB] 0.207 0.210

Time [s] 58.52 30.01
Learning Rate 0.0001 0.0004

Activation Function ELU PReLU
Batch Size 16 48

Number of hidden layers 3 2
Number of neurons per hidden layer 2048 2016

Table 4.11. P-GB-G results

looking for the best hyperparameter set compared to the grid search. For this reason,
the grid search analysis will be avoided for the M-DNN test.

From these tables, it can be seen that the best performance is obtained for the S-
GB model. Therefore, this structure will be the one used for neural networks in the
M-DNN test. The neural network selected for the hyperparameter search will be the one
corresponding to channel # 62, as this is one of the actual channels under test, that
is not being emulated only by the WSS and the ASE noise source. The results of the
hyperparameter search in the M-DNN are present in Table 4.14.
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Grid Search Optuna
Average MAE among amplifiers [dB] 0.066 0.059

Time [s] 23.17 17.89
Learning Rate 0.0001 0.0003

Activation Function ReLU PReLU
Batch Size 32 128

Number of hidden layer 3 4
Number of neurons per hidden layer 2048 1824

Table 4.12. S-GB results

Grid Search Optuna
Average MAE among amplifiers [dB] 0.274 0.241

Time [s] 14.97 20.34
Learning Rate 0.01 0.0045

Activation Function ELU SELU
Batch Size 32 48

Number of hidden layers 1 1
Number of neurons per hidden layer 2048 1408

Table 4.13. S-GB-G results

Optuna
Average MAE among amplifiers [dB] 0.091

Learning Rate 0.0052
Activation Function Hardswish

Batch Size 128
Number of hidden layers 3

Number of neurons per hidden layer 416

Table 4.14. Best hyperparameters for a single neural network in the M-DNN

4.6 Best model results

Finally, it can be verified that the best performance was achieved in the Optuna test for
the S-GB model. All previous tests to find the best hyperparameter set were performed
with the validation set. Now, the performance of the best model obtained will be retrieved
with the test set, but a check should be done on whether the model is overfitting or not.

First, it is important to mention that since the values for the performance of the
M-DNN just corresponded to the performance of one portion of the structure, this type
of model was also checked with the test set with the hyperparameters from Table 4.14.
In the end, the S-GB model remained the best.

In order to verify the presence of overfitting, the value for the loss across the epochs
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for the training and validation set will be plotted. The curves formed are called learning
curves. As there are seven amplifiers, there are seven neural networks to train and seven
plots for the learning curves. In Figure 4.13, the neural network learning curve can be
seen for ILA5. This was the neural network that reached the smallest value of the loss
among the other neural networks. Anyway, all the other learning curves had a similar
behavior as the one shown in 4.13. The loss function selected was Mean Squared Error
(MSE). The MSE is defined as in equation 4.1.

MSE = 1
n

n∑︂
i=1

(Yi − Ŷ i)2 (4.1)

Where:

• n is the number of elements

• Yi is the observed value

• Ŷ i is the predicted value

Figure 4.13. Learning curves for the training and validation set in the neural network of ILA5

By comparing the results obtained in Figure 4.13 and the reference image in Figure
2.14, it can be stated that the model is neither overfitting nor underfitting. Both curves
follow a similar behavior across the epochs, and at the final epochs there are no signs that
the validation MSE increases its value. In addition, the difference between both MSE is
small.

Proceeding with the test of the model and hyperparameter set found as the most
optimal, the results for the MAE and MaxAE for each amplifier are presented in Table
4.15. Following what has been done throughout this thesis, the plots for the predicted and
measured output powers corresponding to the configuration containing the worst MaxAE
and the full spectral load case are presented, in Figures 4.14 and 4.15 respectively; as
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well as the performance according to the spectral occupation shown in Figure 4.16. All
of these graphs are from the amplifier with the maximum MaxAE, in this case the ILA1.

Amplifier MAE MaxAE
BST 0.07 dB 0.55 dB
ILA1 0.06 dB 0.65 dB
ILA2 0.04 dB 0.24 dB
ILA3 0.04 dB 0.37 dB
ILA4 0.04 dB 0.31 dB
ILA5 0.04 dB 0.34 dB
PRE 0.06 dB 0.52 dB

Table 4.15. Mean Absolute Error and Maximum Absolute Error per amplifier with the
most optimal gray-box model (S-GB model)

Figure 4.14. Worst configuration for the optimal gray-box amplifier model (S-GB)

Model MAE MaxAE
WB 0.27 dB 1.08 dB

S-GB 0.15 dB 0.67 dB

Table 4.16. Mean Absolute Error and Maximum Absolute Error of the configuration
shown in Fig. 4.14 for the S-GB and WB model

The time taken to train all the neural networks of each amplifier is 61.30 seconds.
It can be noticed that this time is way longer than the ones seen in the tables of the
hyperparameter search. The reason behind this is that the neural network models in the
final test are being saved in a local server. In the hyperparameter search process, model
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Figure 4.15. Full spectral load configuration for the optimal gray-box amplifier model(S-GB)

Model MAE MaxAE
WB 0.01 dB 0.01 dB

S-GB 0.02 dB 0.10 dB

Table 4.17. Mean Absolute Error and Maximum Absolute Error of the configuration
shown in Fig. 4.15 for the S-GB and WB model

saving was avoided as eventually it would fill the memory of the server. The time of this
optimal configuration (S-GB) is just 4.14 seconds more than the D-GB.

If a comparison is made among the values for the MAE and MaxAE in the D-GB
and optimal gray-box (S-GB) model (Tables 4.1 and 4.15 respectively), it is evident that
better results are obtained with the new structure and the optimized hyperparameters.
In Figure 4.14, plots for the prediction of the gain profile by the WB and optimal (S-
GB) model and the real spectral load are depicted. This time, the plot for D-GB was
avoided as visually the difference is minimum with respect to the one of S-GB. Anyways as
mentioned before, in general S-GB performs better. It can be seen that the configuration
with the worst MaxAE is the one with just one channel turned on. This value for the
MaxAE is still smaller than the one from the D-GB. The table containing the metrics for
this configuration is present in Table 4.16. Regarding the full spectral load configuration,
visually it seems that a better fit between both predicted and real output powers is found
in the optimal gray-box amplifier model (S-GB). This is also confirmed numerically as
the MAE for this configuration in this model is around 0.03 dB less than the D-GB
and 0.01 dB more than the WB model. The MAE and MaxAE values for these specific
configuration are present in Table 4.17. In Figure 4.16, it can still be seen that the best
results are obtained when more than 70% of the channels are on. As well as in the D-GB,
this might be the effect of the analytical part in the gray-box model, as we saw before in
Figure 3.5 that the analytical formula works really well as more channels are turned on
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Figure 4.16. MAE according to spectral occupation with the optimal gray-
box amplifier model (S-GB)

in the WB model.
It is important to recall that these results correspond only to the analysis for the

amplifiers; therefore, in order to perform the complete analysis of the OLS, the fiber
spans must also be analyzed. This will be done in the next chapter.
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Chapter 5

Fiber Span Analysis : Loss Profile
Prediction

Now that there is a gray-box model that predicts accurately the gain profile, a loss profile
model should be considered to model the whole OLS. In this chapter, the methodology
for building the loss profile model is described.

The procedure carried out can be summarized as follows:

1. Benchmark: Performance using measurements - Model the loss profile from
the data present in the dataset. These results will later be used as a reference.

2. GNPy - Use the GNPy tool to model the loss profile.

3. Loss profile gray-box models - Incorporate the ideas for DNN presented in the
previous chapter to improve performance.

4. Hyperparameter testing - Taking into account the different models, test them
with a brief analysis of their optimal hyperparameters. Test a specialized Python
library to find optimal hyperparameters like Optuna and compare it to the results
of a traditional grid search in terms of accuracy and training time.

5. Best model results - With the best hyperparameters, verify if there is no over-
fitting and considering the test set, take the final results for the best proposal in
terms of performance.

5.1 Benchmark: Performance using measurements
In order to have a reference on what the performance of the whole OLS model will be
just by using the models of the EDFAs, a simple strategy is applied to model the loss
profile. The strategy consists in considering the loss profile as the subtraction of the
measurement of the amplifier’s output power at the input of the fiber span and the next
amplifier’s input power at the output of the fiber span. This idea considering the S-GB
structure for the amplifiers’ model is illustrated in Figure 5.1. The S-GB model will be
the one used for the amplifiers in this entire section.
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Figure 5.1. OLS model structure that will serve as benchmark

The results for this Benchmark OLS model are summarized in Table 5.1. A plot
for the worst predicted configuration, in terms of MaxAE, and for the full spectral load
case are included as well in Figures 5.2 and 5.3, respectively. A figure showing the error
according to the spectral occupation is also shown in 5.4.

Model MAE MaxAE
OLS Benchmark 0.18 dB 2.77 dB

Table 5.1. Mean Absolute Error and Maximum Absolute Error of the OLS Benchmark model

Figure 5.2. Worst predicted configuration in terms of MaxAE for the Benchmark model

Again, it can be seen from the three figures (5.2, 5.3, 5.4) that the best performances
come from the spectral loads with more channels on. In fact, the one with the worst
MaxAE is one of the configurations with only one channel turned on. The results obtained
in Table 5.1 will be treated as the ideal scenario for the rest of the chapter.
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Figure 5.3. Prediction of the full spectral load configuration for the Benchmark model

Figure 5.4. MAE according to the spectral occupation for the Benchmark model

5.2 GNPy

As mentioned in Section 2.5.1, GNPy is a tool that can serve as the digital twin for the
physical layer of an optical network. Taking this into account, GNPy can be used to
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emulate all the phenomena present in the fiber span, and therefore a prediction of the
loss profile can be taken from this tool.

The GNPy library includes algorithms and models that simulate a great part of the
effects mentioned in Sections 2.3 and 2.4. Fiber attenuation, chromatic dispersion, SRS,
and other NLI effects are examples of events modeled by GNPy. This is achieved thanks
to the parameters and information of the real devices present in the physical setup.
Therefore, it can be ensured that the accuracy of the models in GNPy strongly depends
on the accuracy of the information provided. This is also emphasized in [12], where they
claim that large errors in models might come from poor characterizations of aspects like
the losses from connectors; as in general, these kinds of parameters are not periodically
measured due to costs. In addition to this, models inside GNPy can also have limitations
in some scenarios. For example, the model used in GNPy for the EDFA is the WB model
presented in this thesis. As seen in the previous chapter, this model is accurate only
in the full spectral load case; otherwise it is extremely inaccurate, and other strategies
such as the gray-box models proposed in this thesis should be implemented. This is the
reason why a combination between the EDFA gray-box model and GNPy will be tested
in this section. The general image illustrating how the entire OLS model is structured
considering the S-GB model for the amplifiers and with the GNPy inclusion is present in
Figure 5.5.

Figure 5.5. OLS model structure using GNPy for loss profile

The results for the MAE and MaxAE of the OLS model with the GNPy tool for the
prediction of the loss profile are shown in Table 5.2. As usual, a plot with the configuration
containing the worst MaxAE as well as the full spectral load configuration are included
in Figures 5.6 and 5.7, respectively. These plots show the GNPy and the benchmark
prediction along with the real measurement . Tables specifying the MAE and MaxAE of
these configurations are present in 5.3 and 5.4. Finally, the MAE analysis according to
the spectral occupation is also performed and shown in Figure 5.8.

Model MAE MaxAE
OLS GNPy 0.43 dB 4.00 dB

Table 5.2. Mean Absolute Error and Maximum Absolute Error of the OLS GNPy model

It is clear from the results obtained that the performance using just GNPy to model
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Figure 5.6. Worst predicted configuration in terms of MaxAE for the GNPy model

Model MAE MaxAE
Benchmark 0.24 dB 2.77 dB

GNPy 0.80 dB 4.00 dB

Table 5.3. Mean Absolute Error and Maximum Absolute Error of the configuration shown
in Fig. 5.6 for the Benchmark and GNPy model

Figure 5.7. Prediction of the full spectral load configuration for the GNPy model

the loss profile is not as good as expected, being far from the benchmark results. Specif-
ically comparing Tables 5.1 and 5.2, it can be observed that the error increased in the
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Model MAE MaxAE
Benchmark 0.09 dB 0.31 dB

GNPy 0.45 dB 1.01 dB

Table 5.4. Mean Absolute Error and Maximum Absolute Error of the configuration shown
in Fig. 5.7 for the Benchmark and GNPy model

Figure 5.8. MAE according to the spectral occupation for the GNPy model

GNPy model for the MAE in 0.25 dB and for the MaxAE in 1.23 dB. This is further
confirmed by looking at Figure 5.6 together with Table 5.3. At first glance in the plot,
it might seem that the GNPy prediction was not that bad except for the last channel,
the one of the MaxAE, that might have worsen the overall average. Anyway, this also
happens in the Benchmark model, and in fact, when looking at Table 5.3, there is still a
big difference between the Benchmark and GNPy models.

Other results that may also seem unexpected are present in Figures 5.7 and 5.8. Until
now for all the analyses performed, the full spectral load configuration was among the best
in terms of performance; but with the inclusion of GNPy, this changed as the prediction
is far from the Benchmark prediction and farthest from the real measurements. This
is observed visually in Figure 5.7 and numerically in Table 5.4. Also different from the
previous analyses, in Figure 5.8, it can be noticed that configurations with low spectral
occupation are the ones with the best performances.

In order to understand this performance, a more detailed analysis of the prediction
of GNPy fiber loss is given in the next subsection.
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5.2.1 Loss profile prediction

To understand whether the error generated by GNPy is more related to an offset or to
an inaccurate loss profile construction, the MAE and MaxAE per channel were plotted
and are shown in Figures 5.9 and 5.10, respectively. It is important to emphasize that
the results of this subsection correspond uniquely to the errors coming from the fiber loss
prediction; here, we are not taking into account the errors coming from the gain profile
prediction.

Figure 5.9. MAE per channel in the GNPy model

Figure 5.10. MaxAE per channel in the GNPy model

Looking at the plots in 5.9 and 5.10, it can be seen that both have a kind of concave-up
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parabola shape. In addition to this, there is a considerable amount of dBs between the
highest and lowest MAE and MaxAE. This indicates that the error is not a constant offset
over the wavelengths but rather comes from a poor characterization of the loss profile.
What these plots are suggesting is that most of the loss profiles are being predicted with
a different slope with respect to the real loss profile, forming a figure resembling a cross
or even an "X", making the first and last channels more prone to big errors compared to
the middle channels. This is confirmed by taking a quick look at the graphs that contain
the real loss profiles and the GNPy predicted loss profiles for each configuration. The
plots of some of the configurations are found in Figure 5.11.

Figure 5.11. GNPy predicted and real loss profiles for some of the configurations
in different spans

Apart from this analysis, an examination of the MAE according to the spectral oc-
cupation per span was also performed. This was done because it was important to
understand if the unexpected results obtained in Figure 5.8 were also coming from the
GNPy modeling inclusion. Then, in Figure 5.12, the plots can be found per span.

From the plots in Figure 5.12, it can be seen that despite the fact that in the first and
last span the behavior of the MAE follows the expected results (better performance as the
full spectral load is reached), the other spans appear to have almost a uniform error for
all percentages of spectral occupation, or it appears that the behavior is slightly contrary
to the expected one. Therefore, it is difficult to conclude why the results obtained in
Figure 5.8 have this unexpected behavior, as there is no clear relationship. However, it
can be stated that not all the spans followed the expected MAE behavior and clearly this
will not derive in a general expected result in Figure 5.8.

In conclusion, it can be deduced that GNPy by itself is not enough to model the loss
profile of the OLS. The analysis indicates that in general the GNPy-generated loss profiles
do not follow the same slope, sometimes even generating contrary slopes, with respect to
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Figure 5.12. MAE according to the spectral occupation for the GNPy model per span

the real measurements. Apart from this, the GNPy inclusion worsen the results for the
full spectral load configurations, something that was a strength obtained from the WB
model.

As a consequence, another strategy will be tested. This strategy will combine ML and
GNPy, so basically it will be a gray-box model for the loss profile. This idea is extended
in the next section.

5.3 Loss profile gray-box models

In the previous chapter, it was seen how the different gray-box models tested were derived
from the D-GB. In this model, an analytical WB model was considered to generate
a reference output power; apart from the WB model, a DNN predicted the difference
between this reference output power and the actual measurement of the output power.
In the end, this prediction of the difference was summed to the reference output power
and thus the output of the whole D-GB model was obtained.

Now the idea for the prediction of the loss profile is similar, but in this case, GNPy
will take the place of the WB model and the DNN will predict the difference between the
GNPy-generated loss profile and the actual measured loss profile. Then, this predicted
difference will be summed to the GNPy-generated loss profile and thus the output of the
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gray-box model of the loss profile will be obtained. A diagram representing the whole
OLS system with this new idea is shown in Figure 5.13. It is important to mention
that the S-GB model was kept for the amplifier because it was the one with the best
performance.

Figure 5.13. OLS model structure considering the loss profile gray-box model

Similarly to what was done in the previous chapter, different variations for the D-GB
will be tested, its optimal hyperparameters will be collected and finally the best results
will be presented.

The description and explanatory diagrams for each loss profile gray-box model pro-
posed are found in the following subsections. The diagrams shown will represent only the
block from loss span gray-box model inside the whole OLS system model.

5.3.1 Loss Profile: Default Gray-box model

As explained in the second paragraph of this section, the idea here is replicating the
D-GB, but replacing the WB model with the GNPy tool. The features for the DNN will
be the channel status and the power per channel incoming to the fiber and the label will
be the difference between GNPy’s prediction and the actual loss profile. At the end, this
DNN output will be summed to GNPy’s prediction in order to get the final output of
this gray-box model. This model will be referred as "Loss Profile D-GB". The diagram
is found in Figure 5.14.

Figure 5.14. Loss profile D-GB model structure
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5.3.2 Loss Profile: GNPy information included in the DNN features

The idea for the neural networks present in this type of model variation is incorporating
the GNPy output as feature for the DNN. Other features that can be included, apart
from the analytical information, are both the input power and the channel status or just
one of these.

Considering this, new models can be derived that will be referred throughout this
thesis as:

• Loss Profile B-GB - Includes as features the GNPy information and both the input
power and the channel status and as label the difference of output powers. Shown
in Figure 5.15.

Figure 5.15. Loss Profile B-GB model structure

• Loss Profile P-GB - Includes as features the GNPy information and the input power
and as label the difference of output powers. Shown in Figure 5.16.

Figure 5.16. Loss Profile P-GB model structure

• Loss Profile S-GB - Includes as features the GNPy information and the channel
status and as label the difference of output powers. Shown in Figure 5.17.

5.3.3 Loss Profile: Multiple DNNs

The idea for this model is to create a neural network predicting the difference between
GNPy-generated and measured fiber output power for each channel. This means that
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Figure 5.17. Loss Profile S-GB model structure

for this thesis work, as there are 64 channels, there will be 64 neural networks. These
neural networks can have the structure of the neural networks described in the previous
subsections. This multiple DNN model will be referred as "Loss Profile M-DNN". A
figure describing the structure is present in 5.18. This figure follows the Loss Profile
S-GB structure for each neural network.

Figure 5.18. Loss Profile M-DNN model structure

5.4 Hyperparameter testing

As well as in Chapter 4, a grid search analysis and Optuna were used to look for the best
hyperparameter set in each of the model structures proposed in the previous section. The
hyperparameters tuned and the optimizer chosen are also the same as the ones described
in Section 4.5.

The values of the hyperparameters analyzed in the grid search are also the same as
the ones described in Section 4.5, and the hyperparameter values analyzed in Optuna are
the same ones described in Table 4.4 and Table 4.5 (regarding activation functions).

Another thing replicated from Section 4.5 is how the M-DNN variation will be handled.
The hyperparameter analysis for the Loss Profile M-DNN will be done just for one of the
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neural networks in the structure and only one of the possible variations among Loss
Profile M-DNN will be tested, and it will be the model that obtained the best results.

The results for the best hyperparameters obtained for each model and methodology
are summarized in Tables 5.5, 5.6, 5.7, 5.8.

Grid Search Optuna
Average MAE among amplifiers [dB] 0.178 0.033

Time [s] 60.32 10.35
Learning Rate 0.0001 1.83 × 10−5

Activation Function LeakyReLU LeakyReLU
Batch Size 16 128

Number of hidden layers 3 5
Number of neurons per hidden layer 2048 1696

Table 5.5. Loss Profile D-GB results

Grid Search Optuna
Average MAE among amplifiers [dB] 0.174 0.032

Time [s] 59.71 73.50
Learning Rate 0.0001 1.89 × 10−6

Activation Function LeakyReLU ReLU
Batch Size 16 16

Number of hidden layers 3 5
Number of neurons per hidden layer 2048 1664

Table 5.6. Loss Profile B-GB results

Grid Search Optuna
Average MAE among amplifiers [dB] 0.174 0.032

Time [s] 42.81 14.45
Learning Rate 0.0001 1.55 × 10−5

Activation Function ReLU ReLU
Batch Size 16 112

Number of hidden layers 3 5
Number of neurons per hidden layer 2048 1248

Table 5.7. Loss Profile P-GB results

Again, it is important to recall that the row called "Time" in these tables corresponds
to the time taken to train the neural network just for the best set of hyperparameters,
not the total time of the hyperparameter search.

Similar to the hyperparameter analysis performed for the EDFA modeling, Optuna
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Grid Search Optuna
Average MAE among amplifiers [dB] 0.172 0.031

Time [s] 17.69 14.44
Learning Rate 0.0001 1.67 × 10−5

Activation Function ReLU ReLU6
Batch Size 32 80

Number of hidden layers 3 5
Number of neurons per hidden layer 128 1088

Table 5.8. Loss Profile S-GB results

presented significantly better results while looking for the best hyperparameter set com-
pared to the grid search. For this reason, the grid search analysis will be avoided for the
Loss Profile M-DNN test.

From these tables, it can be noticed that the best performance is obtained for the
Loss Profile S-GB model. Despite not presenting a significant improvement, the S-GB
structure was the best in both gain and loss profile prediction. This structure will be the
one used for the neural networks in the Loss Profile M-DNN test. The neural network
selected for the hyperparameter search will be the one corresponding to channel # 62, as
this is one of the actual channels under test, that is not being emulated only by the WSS
and the ASE noise source. The results for the hyperparameter search in the Loss Profile
M-DNN are present in Table 5.9.

Optuna
Average MAE among amplifiers [dB] 0.036

Learning Rate 1.71 × 10−5

Activation Function PReLU
Batch Size 96

Number of hidden layers 5
Number of neurons per hidden layer 1248

Table 5.9. Best hyperparameters for a single neural network in the Loss Profile M-DNN

5.5 Best model results

Replicating what was done in the previous chapter, both the best structure with its
optimal hyperparameters and the Loss Profile M-DNN with its best hyperparameters,
found in Table 5.9, were analyzed in the test set. It is important to recall that all the
results from the hyperparameter analysis were done in the validation set. The reason
why the Loss Profile M-DNN is also tested in the test set is because the results from
the hyperparameter analysis corresponded to just one portion of the whole structure;
therefore, just to verify the whole model’s structure it will also be analyzed in the test set.
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Anyway, when checking both results, Loss Profile S-GB remained as the best performing
model, so only the final test set results for this model will be shown.

First, the learning curves will be analyzed, verifying if there is overfitting happening.
These curves are found in Figure 5.19. The curves shown correspond to the neural
network part of the model of the fiber span connecting ILA1 and ILA2, as this was the
neural network that reached the lowest training loss value. However, the behavior seen
in Figure 5.19 is similar for all the other neural networks that are part of the models of
the other fiber spans. As mentioned in the previous chapter the loss function used is the
MSE defined in Equation 4.1.

Figure 5.19. Learning curves for the training and validation set in the neural network of
the span connecting ILA1 and ILA2

By comparing the results obtained in Figure 5.19 and the reference image in Figure
2.14, it can be stated that the model is neither overfitting nor underfitting. Both curves
follow a similar behavior across the epochs and at the final epochs there are no signs for
the validation MSE to rise its value. Also, it is noticed that the difference between both
MSE is small.

Now that a normal behavior from the learning curves is verified, the results of the best
model can be shown. These results will be divided in two parts, the first one showing just
the loss profile prediciton results and the second one focusing on the whole OLS model
performance.

5.5.1 Loss profile prediction performance

In Section 5.2.1, it was evident that GNPy by itself was not a reliable option to model
the loss profile. Hence, ML was considered to adjust GNPy prediction. The best model
tested was the Loss Profile S-GB, therefore in this subsection we will compare the results
obtained with this model and those of Section 5.2.1.

The first thing noticed in Section 5.2.1 was not only that the values for the MAE
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and MaxAE per channel were high, but also that the largest errors were present in the
first and last channels forming a concave up parabola shape. Now, for the new Loss
Profile S-GB model, it is evident in the MAE per channel figure (Figure 5.20), that the
error decreased significantly and that the parabola shape is no longer a parabola as it is
flatter. Furthermore, in the MaxAE figure (Figure 5.21), both GNPy and Loss Profile
S-GB follow a same behavior; in any case the MaxAE plot did not have a prominent
parabola as the MAE plot. Still, it can be seen for the MaxAE that Loss Profile S-GB
model present smaller values per channel.

Figure 5.20. MAE per channel for the loss profile prediction of GNPy and the
Loss Profile S-GB model

Figure 5.21. MaxAE per channel for the loss profile prediction of GNPy and the
Loss Profile S-GB model
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The better performance of the Loss Profile S-GB model is also evident if we plot the
prediction for some of the configurations. These plots are found in Figure 5.22. It can be
noticed that the Loss Profile S-GB is a better fit of the real loss profile, even following
the shape and slope of the real loss curve, something that did not happen with just the
GNPy tool. This explains why in Figure 5.20, the Loss Profile S-GB model does not
present a parabola shape as the GNPy MAE behavior.

Figure 5.22. Loss Profile S-GB model, GNPy predicted and real loss profiles for some of
the configurations in different spans

Following what was done in Section 5.2.1, an analysis per span of the MAE according
to the spectral occupation was also performed considering the Loss Profile S-GB model.
When this analysis was done for the GNPy prediction per span, it was found that some
of the spans followed an expected behavior, in which the lowest error values were found
as the full spectral load case was reached, but other spans don’t and in general the MAE
values tended to have a uniform behavior despite the percentage of occupancy. Therefore,
it was complicated to find a relation between plots in Figure 5.12 and Figure 5.8. Now,
for the Loss Profile S-GB model case in Figure 5.23. It can be seen that for most spans
the lowest error values are found when most channels are set on, approaching the full
spectral load case, but at the same time it is seen that in general all the MAE values
per spectral occupation are low and their difference is not that much. This means that
there is still a kind of uniform behavior across spectral occupation percentages and this
can actually be considered a good thing as the error values are low and it means that the
model works well for every spectral load configuration. In the next subsection, it will be
verified if the same thing happens for the whole OLS model.
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Figure 5.23. MAE according to the spectral occupation for the Loss Profile
S-GB model per span

5.5.2 OLS model performance

With the observed improvement of the Loss Profile S-GB model in loss profile prediction
over the use of the GNPy tool alone, the analysis of the complete OLS system model
can now proceed. It is important to look back on the structure being tested; a picture
depicting it is found in Figure 5.13. In this figure, the S-GB model, whose structure is
found in Figure 4.10 but can still be seen in Figure 5.13, is used to model the EDFAs;
while the fiber spans, modeled inside the "Loss Span Gray-box Model" box in the diagram,
are modeled with the Loss Profile S-GB model, whose structure can be found in Figure
5.17.

Taking into account the best hyperparameter sets found in the previous sections and
chapters, the results for the MAE and MaxAE are shown in Table 5.10. In order to have
a visual reference, the plots for the OLS GNPy and OLS S-GB model predictions as well
as the measured output powers corresponding to the configuration containing the worst
MaxAE and the full spectral load case are presented, in Figures 5.24 and 5.25 respectively.
Tables specifying the MAE and MaxAE of the models shown in these plots are found in
5.11 for the worst configuration case and 5.12 for the full spectral load case. The OLS
Benchmark model was not included in the plots, as it mostly overlaps with the curves of
other models, however its MAE an MaxAE values are being included in the tables, so a
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comparison can be done. The performance according to the spectral occupation is shown
in Figure 5.26.

Model MAE MaxAE
S-GB OLS 0.19 dB 2.56 dB

Table 5.10. Mean Absolute Error and Maximum Absolute Error of the S-GB OLS model

Figure 5.24. Worst predicted configuration in terms of MaxAE for the OLS S-GB model

Model MAE MaxAE
OLS Benchmark 0.24 dB 2.53 dB

OLS GNPy 0.79 dB 3.76 dB
OLS S-GB 0.43 dB 2.56 dB

Table 5.11. Mean Absolute Error and Maximum Absolute Error of the configuration
shown in Fig. 5.24 for the OLS Benchmark, OLS GNPy model and OLS S-GB model

Model MAE MaxAE
OLS Benchmark 0.08 dB 0.29 dB

OLS GNPy 0.45 dB 1.03 dB
OLS S-GB 0.08 dB 0.19 dB

Table 5.12. Mean Absolute Error and Maximum Absolute Error of the configuration
shown in Fig. 5.25 for the OLS Benchmark, OLS GNPy, and OLS S-GB model
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Figure 5.25. Prediction of the full spectral load configuration for the OLS S-GB model

Figure 5.26. MAE according to the spectral occupation for the OLS S-GB model

From the overall results found in Table 5.10, it can be noticed that the improvement
with respect to the OLS GNPy model (Table 5.2) is significant. In fact, it can be stated
that the results are very close to the optimal ones as the difference with the results of the
OLS Benchmark model, used as "ideal" reference and found in Table 5.1, is minimum.

This is also evident when looking at Figure 5.24 and Table 5.11. Even though visually
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it seems there is not so much difference between the models’ prediction; it is evident in the
table that the OLS S-GB model performs better than the OLS GNPy one, as the first one
has a difference with respect to the OLS Benchmark model of just 0.19 dB, while the latter
has a difference of 0.36 dB in the MAE. It can still be seen that the worst configuration
in terms of MaxAE is the one with just one channel turned on, making it clear again that
low spectral occupation represents the biggest challenge for these models. The reason
behind this is that it is difficult to model the noise profile of EDFAs. As mentioned in
the introduction, uncertainties come from the ASE noise contributions. A good starting
point to model this effect is needed to overcome this challenge. In Figure 5.25 and Table
5.12, the excellent performance of the OLS S-GB model is also noticeable. The model
even reaches the MAE metric for the OLS Benchmark model and improves the MaxAE
metric of the OLS Benchmark model. Stating this, it is also clear that the improvement
with respect to the OLS GNPy model is noteworthy.

Finally, in Figure 5.26, the behavior that was normally observed throughout the thesis,
except for the OLS GNPy analysis, that is low MAE value for the highly occupated
spectral loads was found again. This can be explained by looking at Figure 5.23, in
which for every span this behavior happened as well, despite having small MAE value
differences among the spectral occupations. When doing this same analysis for the OLS
GNPy model, the low MAE value for the highly occupated spectral loads was not so
evident for some of the spans and this might have caused the unexpected behavior. Yet,
due to the variety of behaviors found in the MAE analysis according to the spectral
occupation per span in the OLS GNPy model (Figure 5.12), it was difficult to found a
relation between these plots and the entire OLS MAE analysis according to the spectral
occupation of the GNPy model (Figure 5.8).
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Chapter 6

Conclusion

This thesis work demonstrates how local span-by-span gray-box models represent a good
prospect to characterize OLS in optical networks. The results obtained are comparable
with the results obtained for black-box approaches as in [11] and they show better per-
formance compared to other gray-box approaches as in [13]. The final model that was
presented seized good results by modeling each of the elements inside the OLS; thus,
the characterization of the entire OLS does not lose flexibility or generalization. The
accurate characterization achieved contributes in the reduction of uncertainties when
estimating QoT metrics and moreover in the reduction of design margins. In this way,
optical network design, planning and management will reduce its costs and use effectively
its resources.

During this thesis work it was evident that despite the transparency and explainability
of analytical models or other white-box approaches, they are not enough for a good
characterization of the elements in the OLS. This happens due to the constraints the
model might have. For example, in the particular case of the gain profile white-box
model, accurate results were only obtained in configurations close to the full spectral
load, as the formula was derived for this case; in any other case, this model presented a
large error.

Despite the previous statement, it was proven that gray-box models, the joint use of
ML along with white-box models or other tools that can provide more information on
the elements that are being characterized like GNPy, are strongly beneficial in terms of
model performance. Therefore, analytical models play a vital role not only because of
their explainability but also because they can enhance ML black-box models.

In the context of this thesis, gray-box models performed better in configurations where
there was a high spectral occupation. This might be a consequence of the gain profile
white-box model derived from the full spectral load case. The only case where this did
not happen was when GNPy was used to model the fiber loss profile. It was observed
that the MAE values with respect to the spectral occupation per span coming from the
GNPy prediction did not have a clear behavior and this could have caused the overall
unexpected behavior. This shows that white-box models have a certain impact on the
gray-box models in which they are being included.

Different structures were tested for the gray box model. From this it was observed
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that for EDFAs, models that predict the difference between the measured power and
the analytically predicted power perform better compared to those that do the same
exercise with gain. Besides that, for both gain profile and loss profile prediction, the other
variations tested did not present a significant difference on performance with the model
that was taken as a reference. Anyway, the models that presented the best performances
were part of the variations proposed. In particular, these models included as features
the analytical prediction and the channel status. The inclusion of the analytical results
as a feature of the ML black box validates also the second conclusion in which it was
emphasized that the improvement of models come from the information provided by this
white-box approaches.

This thesis highlights that local span-by-span gray-box models are a promising and
effective approach for accurately characterizing OLS in optical networks, enabling re-
duced uncertainties, design margins, and overall network costs. Regarding further future
improvements, it was mentioned during the thesis that the noise figure is not a constant
parameter over the spectrum, furthermore it is also affected by gain and tilt. In this work
a constant value for the noise figure was considered; therefore, integrating into the anal-
ysis a noise figure prediction can possibly enhance the results obtained. Apart from this,
in this thesis work there was a focus on total power and therefore the GNPy tool was just
considered to analyze the loss profiles. GNPy can be also useful to do a separate analysis
on signal power, ASE noise power and NLI power and eventually analyzing directly the
GSNR metric.
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