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CONTRIBUTIONS OF AUTHORS

This thesis is structured into several chapters, each focusing on different aspects of

my research: from the theoretical foundations of neural networks, through learned image

compression (specifically the mean-scale hyperprior model), and toward image denois-

ing approaches that integrate both baseline architectures and customized enhancements.

Throughout these chapters, I draw upon a variety of references to provide background,

support my arguments, and acknowledge the works that inspired or informed my meth-

ods.

Neural Network Fundamentals

A brief historical and theoretical overview of neural networks sets the stage for the

thesis. In particular, I rely heavily on the textbook Deep Learning by Goodfellow, Bengio,

and Courville (1) to discuss the core principles, common architectures, and training

techniques. Some classic works on perceptrons, multilayer networks, and early training

algorithms are also cited whenever relevant to illustrate key transitions in the evolution

of deep learning methods (for example, Minsky and Papert’s Perceptrons (2), the concept

of backpropagation from Rumelhart et al. (3), and the principle of Hebbian learning from

Hebb (4)).

Learned Image Compression and the Mean-Scale Hyperprior

When discussing learned image compression, I introduce key concepts such as quan-

tization, entropy coding, and variational autoencoders. These concepts are drawn in

part from general overviews of data compression (5; 6) and from works specifically ad-

dressing end-to-end compression approaches using deep neural networks. The mean-

scale hyperprior model, which is central to my thesis, is mainly based on Ballé et
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al. (7), along with supporting ideas from related works on hyperpriors and transform

coding (8; 9; 10; 11; 12). In the corresponding chapter, I cite these references to acknowl-

edge their contributions to the design of my own compression framework.

Denoising and Baseline Architectures

Later in the thesis, I shift focus to denoising. I outline the general state of image

denoising research and the transition from classical methods to deep-learning-based ap-

proaches, referencing survey papers like Ren et al. (13). I also mention self-supervised or

weakly supervised denoising strategies proposed by Noise2Noise (14), Noise2Void (15),

and Noise2Self (16) to highlight the landscape of techniques that do not require clean

ground truth.

As a simple baseline architecture for denoising, I introduce NAFNet (17). I reference

it when discussing straightforward yet powerful design principles for image restoration. In

my experiments, I integrate certain features from NAFNet (and other relevant network

designs) into my new model, combining them with the hyperprior-based compression

framework to tackle the denoising task more effectively.

Dataset: SEN12MS

All experiments presented in the thesis utilize the SEN12MS dataset (18), which

provides multi-spectral and SAR (Sentinel-1/2) imagery for deep-learning applications.

Its companion papers (18; 19; 20; 21; 22; 23) provide additional details on Sentinel mis-

sions, geolocation accuracy, and satellite data processing (e.g., via Google Earth Engine).

I draw on these works to justify my data preparation steps and experiment protocols,

citing them in the text where appropriate.
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Remarks on Citations and Contributions

Overall, the thesis references these works whenever I introduce a concept or method

closely tied to the original research. For example, when discussing neural network back-

grounds, I cite classical and modern foundational papers. When detailing my experiments

with learned compression and the mean-scale hyperprior, I cite Ballé’s series of works

and others in this area. When focusing on denoising, I refer to the recent survey and the

specific self-supervised approaches that informed my understanding of modern denoising

pipelines. The SEN12MS dataset references are cited when I describe the data and ex-

periment setup. This approach ensures proper acknowledgment of each author’s role and

contribution and shows how these published ideas collectively form the theoretical and

practical basis of my thesis.

Acknowledgments for Advisors and Professors

Final Remarks

In summary:

• Neural networks: Primarily based on deep-learning textbook materials (1), with

classic references for historical depth.

• Compression and hyperprior: Built on top of the mean-scale hyperprior ap-

proach in (7) and related works (8; 9; 10; 12; 5; 6; 11).

• Denoising: Surveilled through (13), and the basic denoising architecture used:

NAFNet (17).

• SEN12MS dataset: Data-related sections draw upon (18; 19; 20; 21; 22; 23) for

multi-spectral and SAR imagery details.
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These references have either been cited directly in the text where each concept or

technique is explained or will appear in close proximity to the sections to which they

apply. This ensures transparency regarding how these works underpin my own methods

and extensions. To my knowledge, no references are missing. If any additional references

are needed, they can be added easily.
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SUMMARY

Modern imaging systems across various domains—from embedded electronics to satel-

lite platforms—must handle growing amounts of data while facing strict constraints on

energy, memory, and bandwidth. In many cases, such as real-time Earth observation or

surveillance, images are also compromised by sensor noise and environmental interfer-

ence. Conventional approaches usually adopt a two-step pipeline: first denoising each

image to remove artifacts, then compressing it for storage or transmission. This separa-

tion can lead to higher computational cost, more complex hardware requirements, and

ine”cient use of bits.

To address these issues, this thesis proposes a joint denoising-compression frame-

work that simultaneously learns to eliminate noise and reduce image size in a more

effective and less complex way than using the two techniques sequentially, i.e. first de-

noising and then compressing the image. The foundation of this work is the Mean

Scale Hyperprior architecture, a learned-compression model that adaptively allocates

bits based on the complexity of image features. By introducing denoising operations

directly into the compression pipeline, the network can filter out noise before encoding,

thereby allocating fewer bits to irrelevant artifacts.

The thesis compares two distinct training approaches. In both approaches the

models are trained with a noisy data input, however in the first approach the model

is trained to reconstruct the exact same noisy input, meaning that the output of the

models are compared with the same noisy data given as input. Therefore the models learn

to reproduce exactly the image, preserving noise as part of the learned representation.

Instead in the second approach, the network receives as input always noisy data but

xvii



SUMMARY (Continued)

it is explicitly trained to produce in output clean version of the input data, effectively

removing noise. This distinction has significant implications for resource-constrained

systems: when the model focuses on clean outputs, it learns to drop unnecessary noise

information, which can save bits and lead to higher-quality reconstructions at the same

bitrate.

To validate these methods under realistic conditions, experiments are conducted

using the SEN12MS dataset, a well-annotated set of multispectral satellite images. A

custom noise model simulates the kinds of interference commonly found in satellite sen-

sors, reflecting the practical challenges of this environment. Performance is measured via

common compression metrics (bitrate) and reconstruction quality metrics such as Peak

Signal-to-Noise Ratio (PSNR). Results consistently show that networks trained to

produce clean outputs achieve better rate-distortion trade-offs and maintain higher PSNR

for a given bitrate compared to those trained on noisy targets.

Overall, the thesis concludes that integrating denoising and compression yields

significant advantages for satellite operations and other bandwidth-limited scenarios.

Fewer bits are wasted on encoding noise, total processing steps are reduced, and final

reconstructions maintain strong visual quality. These findings demonstrate that a joint

denoising-compression approach and the associated training method can enable more

resource-e”cient models, reduce overall system complexity, and outperform conventional

two-step solutions that treat denoising and compression separately. By directly integrat-

ing noise removal into a single compression architecture, this approach lowers computa-

tional overhead and leads to stronger rate-distortion performance in a unified framework.

xviii



CHAPTER 1

INTRODUCTION

In modern life, technology pervades a wide range of contexts - from embedded systems

and portable devices to advanced control networks - where e”ciency in both storage

and data transmission is paramount. In particular, embedded systems and low-power

devices face stringent energy and memory constraints, making every bit of data a precious

resource. At the same time, these devices still need to capture, process, and transmit

high-quality images for tasks like surveillance, medical diagnostics, or visual analytics.

Such situations pose a fundamental question: how can I guarantee high-quality

images while minimizing both the resources required and distortion in real-

world application? Often, images are degraded by various forms of noise - due to

sensor limitations, environmental factors, or other artifacts. To overcome this, it is

common to either apply a separate denoising algorithm before compressing the image or

use different post-processing techniques to improve the final quality once the image has

been reconstructed. This approaches increase the output quality but greatly increases

the processing cost and complexity.

In this thesis I show the results achieved with a different approach. Instead of the

two-step approach I evaluate the performance of a joint denoising-compression framework

that combine both operations into a single, integrated model.

Our methodology aims to modify an already existing deep-compression architec-

ture, the Mean Scale Hyperprior, to incorporate denoising in the compression pipeline.

This direct integration aims to suppress noise at the source, eliminating redundant in-

1
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formation enhancing the compressed representation, the transmission rate and the re-

construction quality. The idea is that fewer bits are allocated to encoding irrelevant

artifacts such as noise, resulting in a more e”cient and robust system and potentially

also resulting in an increased reconstruction quality.

In practical terms, I train end-to-end this joint denoising-compression architecture

using noisy images as inputs and clean, noise-free images as targets. By means of this

supervised strategy, the network learns to map noisy data to its reconstructed clean

form, concurrently reducing the bit needed to encode the feature of the image. Early

stage noise removal helps the system to lower the complexity of the representation and

to reduce the storage and bandwidth requirements.

By simultaneously removing noise and encoding the data, this approach lowers the

bit rate while preserving or even enhancing the quality of the reconstructed data. For

resource-constrained systems, this translates into reduced memory usage, faster inference

times, and lower power consumption - very important advantages in today’s embedded

and mobile applications.

Two Distinct Training Approaches. While many existing techniques learn to

encode images as they are - whether clean or noisy - this thesis examines both the tra-

ditional approach and an alternative: training the model to reconstruct clean, noise-free

outputs from noisy inputs. In the first case, noise is treated as part of the signal to be

faithfully reproduced; in the second, noise is explicitly discarded by the model, leading to

more e”cient compression and often improved visual quality. By systematically compar-

ing these two training strategies, I clarify how different objectives affect resource usage,

bitrate allocation, and the final reconstructed image - especially under conditions typ-

ical of satellite operations. Demonstrating the strengths, weaknesses, and performance



3

trade-offs of these approaches is a central focus of this work and form the basis on how

best to integrate denoising into compression pipelines.

Why focus on satellite image acquisition? Satellites operate under resource and

power constraints similar to embedded systems: they rely on finite on-board energy, must

handle large amounts of data, and have limited downlink bandwidth to transmit imagery

to ground stations. In these circumstances, any method that reduces data size while

preserving quality can significantly cut operational costs and enable high-fidelity remote

sensing. Furthermore, satellites operate in harsh space where sensors are subjected to

strong interferences that induces several kinds of deterioration among that noise. Conse-

quently, a robust denoising and compression pipeline can be essential for ensuring clear

and reliable data products used in applications such as disaster management, agricultural

monitoring, and environmental studies.

Furthermore, the similarity in constraints - energy e”ciency, limited computational

budgets, and tight storage requirements - makes satellite image acquisition an excel-

lent case study for validating joint denoising-compression methods initially designed for

embedded platforms. To work with a real-world scenario I use an already-available well-

annotated and curated dataset called SEN12MS, which comprises multispectral satellite

images. SEN12MS offers a complete dataset for training and evaluating deep models.

To replicate reasonable satellite settings, w e implement a noise model reflecting the real

interference and environmental noise that affects the sensor. By blending noisy models

into SEN12MS data, I replicate the conditions under which satellites typically capture

and transmit imagery. This allows us to both train and evaluate the architecture under

realistic conditions.



CHAPTER 2

NEURAL NETWORKS

2.1 Foundations of Neural Networks

2.1.1 Historical Context and Basic Concepts

Historically, neural networks refers to the biological structure of neurons and synapses.

The neuron is the core computational unit of the system. After receiving and processing

the input stimuli, the neurons generate sequences of electrical impulses that they transmit

to other neurons via different synaptic connections. During the learning process, these

links either strengthen or inhibit, thereby determining the general dynamics of the system.

This dynamics inspire neural network algorithms. The primary concept is to let a

computer, like humans, learn from data observations. Inspired by the biophysical dynam-

ics of neurons, artificial neurons applied in machine learning models alter their output

depending on weighted inputs. The network learns by repeatedly changing link weights,

which helps it to precisely identify input data. Once trained, the network can accurately

identify fresh data using acquired features. While neural networks easily accomplish tasks

like image recognition, audio processing, and natural language understanding, classical

computers find these di”cult.

McCulloch and Pitts (24) proposed a simplified model of neuronal function in 1943

and explained how networks of such units could perform logical operations. These so-

called McCulloch-Pitts neurons are the conceptual basis of most modern neural network

algorithms. Later, in 1949, Hebb proposed an innovative principle of learning in his work

The Organization of Behavior: A Neuropsychological Theory (4). He suggested that the

4
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connection between neurons strengthens when they are active simultaneously, increasing

the circuit’s sensitivity to the same stimulus in the future.

Researchers revived interest in artificial neural networks in the late 1950s and 1960s

with Rosenblatt’s perceptron model (25). He suggested that multi-layer architectures

(perceptrons) can, in principle, solve more complicated classification tasks than a single

McCulloch-Pitts neuron; however, there was no general training algorithm for such multi-

layer networks at the time. Later, Minsky and Papert (2) highlighted the geometric

nature of these learning problems and provided a rigorous function detailing which tasks

single-layer perceptrons can and cannot perform.

The problem was how to train this network. The work of Rumelhart and his colleagues

proposed an interesting answer (3). They showed that gradient descent can effectively

train multi-layer neural networks through backpropagation.

Limitations in computer capacity and the absence of e”cient training methods caused

a fall in popularity of neural networks in the last part of the twentieth century. Thanks

to many big, high-quality datasets and improved computer technology today, neural

networks are once more becoming trendy. These days, problems including autonomous

driving, medical diagnostics, and financial forecasting rely on them.

Let’s now delve into a presentation of the most significant steps and discoveries

throughout the Neural Network and Deep Learning journey. All the material and work

presented here is my own, though it draws on and is inspired by the reference book

Machine Learning with Neural Networks by Bernhard Mehlig (26).



6

2.1.2 McCulloch-Pitts Neurons

McCulloch and Pitts (?) presented one of the first simplified neuron models. Usually

referred to as a threshold unit, the neuron generates a binary output from a limited

number of weighted inputs:

si(t+ 1) = sgn

(
N→

j=1

wij sj(t) − θi

)

, (2.1)

(FIG?)the index of the working neuron is i; it receives in input the outputs of the

previous neurons to which it is connected (from j = 1 to N) multiplied by the value wij

that represents the strengths of the connection from the neuron j to neuron i. sgn(b) is

the signum function,

sgn(b) =






−1, b < 0,

+1, b ≥ 0,

(2.2)

and θi is the threshold for neuron i. In this model, si(t) ∈ {−1,+1} represents whether

neuron i is inactive (−1) or active (+1) at discrete time t. The summation

bi(t) =

N→

j=1

wij sj(t) − θi (2.3)

is known as the local field of neuron i. Every neuron updates its state by comparing the

local field bi(t) to zero.

Referred to as weight, the term wij captures the strength of the synaptic connection

between two neurons, therefore reflecting their relationship. The weight has either posi-

tive, negative, or even zero value - meaning no connection. These perfect models capture

the fundamental concept of neurons as computing units aggregating weighted inputs and



7

generating (probably non-linear) outputs. Although the McCulloch-Pitts formalism is

simple, many recent neural network research methods are based on it.

These perfect models capture the fundamental concept of neurons as computing units

aggregating weighted inputs and generating (probably non-linear) outputs. Although the

McCulloch-Pitts formalism is simple, many recent neural network research methods are

based on it.
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2.2 Perceptrons and Supervised Learning

A significant milestone in neural network research came with Rosenblatt’s percep-

trons (25). Rosenblatt’s perceptrons (25) marked a turning point in neural network

study. The perceptrons are a feedforward architecture - the connections proceed from

the input to the output without deviation - and do not include lateral connections or

feedback loops. They involve multiple instantiations of layers of McCulloch-Pitts neu-

ron. The standard structure comprises one or more hidden layers and an output layer.

The training phase consists of iterative adjustments, that is, small parameter updates,

repeated until the network classifies the input data correctly.

Recent discoveries reveal that perceptrons with several hidden layers - so-called deep

networks - can remarkably successfully identify complicated data, including images, with

consistency.

2.2.1 Perceptrons in Classification

Rosenblatt (25) first proposed the concept of linking several layers of McCulloch-Pitts

neurons in a feedforward fashion. He named such networks perceptron. Figure 1 shows a

schematic arrangement with an input layer on the left (shown by N input terminals), a

hidden layer of J neurons, and an output layer of M neurons.

The input patterns and the corresponding target (or label) vectors are denoted by

x(µ) =

[
x
(µ)
1 x

(µ)
2

...x(µ)N

]
, t(µ) =

[
t
(µ)
1 t

(µ)
2

...t(µ)M

]
. (2.4)

where µ = 1, . . . , p is the index representing the different pattern in the dataset.

The input pattern progresses through sequential computations from the input layer

to the output layer, where the output vector is provided.
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Figure 1: Single-layer Perceptron Schematic.

In the hidden neurons, the output or local field is calculated using the weights wjk,

which connect the previous neuron k with the current neuron j, along with the thresholds

θj according to the formula:

bj =
→

k

wjk xk − θj, (2.5)

and pass the result through an activation function g(·). For instance,

Vj = g(bj). (2.6)
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The outputs from the hidden layers are then fed into the output neurons. Each output

neuron combines its inputs using weights Wij, which represent the connection between

hidden neuron j and output neuron i, along with a threshold Θi.

Oi = g
(→

j

Wij Vj − Θi

)
. (2.7)

the index i = 1, . . . ,M labels the output neurons.

For a classification task, all the different output vectors O
(µ)
i should match the cor-

responding target vector t
(µ)
i for each pattern µ and each output i. Perceptrons are

iteratively trained until the condition O
(µ)
i = t

(µ)
i is satisfied for each pattern. At a high

level, this is done by repeatedly applying a small adjustment to the weights if the current

network output differs from the targetc (Section 2.3 for more detail).

2.2.2 Single-Layer Perceptron: Linear Separability

In a single-layer perceptron, there is only one neuron receiving an N-dimensional

inputs x and producing a binary output O ∈ {−1, +1}. The neuron’s output can be

written as

O = sgn
(
w · x − θ

)
, (2.8)

where θ is a threshold and sgn(·) is the signum function. Geometrically, this neuron can

separate inputs with t = +1 from those with t = −1 by a hyperplane in RN specified by

w · x = θ (see Figure 2).

If the classification problem is such that a single hyperplane can separate all t(µ) = ±1,

the problem is linearly separable. In two dimensions R2, a line that separates the points

labeled +1 from those labeled −1 can be found.
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Figure 2: Liner Separability in 2D.

2.2.2.1 Examples: Boolean Functions

A classic illustration is the AND boolean function of two binary inputs. One can plot

the four possible input values (x1, x2) along with their desired outputs t, and then find

a line that separates t = −1 from t = +1. In contrast, the XOR function is not linearly

separable in two dimensions; no single line can correctly separate all data points. Still,
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it is possible to embed XOR into higher dimensions or use more complex neural network

architectures (Section 2.4) to achieve correct classification.

2.3 Gradient Descent

2.3.1 Iterative Learning Rules

Consider a single-layer perceptron aiming to satisfy O(µ) = t(µ) for a set of p patterns

{x(µ), t(µ)}. A straightforward approach to adjusting the weights is as follows. After

presenting a training pattern that the network misclassifies, the weights w are updated

by a small step along (or against) x(µ) to tilt the decision boundary appropriately:

w ← w + η t(µ) x(µ). (2.9)

This is known as Rosenblatt’s perceptron learning rule (25). A slightly refined version is

w ← w + η
(
t(µ) −O(µ)

)
x(µ), (2.10)

which makes no change if the network already classifies x(µ) correctly (i.e., O(µ) = t(µ)).

2.3.2 Gradient Descent for Linear Units

Inspired by the iterative learning rule, the gradient descent further improves the

training process. It computes, for every parameter, the error function’s gradient. It then

modifies these values such that the total error is less. Most contemporary neural networks

are built on this approach, which guarantees consistent performance improvement over

several repetitions.

Consider a linear unit, that is a neuron with a linear activation function and with the

thresholds θ = 0.
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O
(µ)
i =

→

k

wik x
(µ)
k (2.11)

In this case the classification problem O
(µ)
i = t

(µ)
i is satisfied for each pattern when

the weights take the form:

O
(µ)
i =

→

k

wik x
(µ)
k = t

(µ)
i (2.12)

The solution makes use of the overlap matrix Q, whose members reflect the pairwise

inner products of the input patterns:

Qµν =
1

N
x(µ) · x(ν). (2.13)

Here x(µ) and x(ν) denotes the µ-th and ν-th input pattern; N is the dimensionality of

each input vector. The solution is obtained by inverting Q.

wik =
1

N

→

µ,ν

tiµ)
(
Q−1

)
µν

xkν. (2.14)

µ,ν index the training patterns while t(µ)i are the goal labels for the i-th output unit.

This expression reveals how the weight update depends on the correlations between input

patterns recorded by Q.
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Assume that the input patterns are linearly independent, allowing Q to be invertible

and so the solution of equation (Equation 2.14) exists. The solution can be found by

defining an energy function1, usually called loss or cost function, and solve it iteratively:

H = 1
2

→

µ,i

[
t
(µ)
i − O

(µ)
i

]2
, (2.16)

this equation is minimal when O
(µ)
i = t

(µ)
i for all patterns µ and outputs i.

Since the output is given by

O
(µ)
i =

→

k

wik x
(µ)
k , (2.17)

the energy H depends on the weights w. The derivative are computed with regard to an

arbitrary weight wmn to minimise H by means of gradient descent:

∂H

∂wmn
=

∂

∂wmn

[
1

2

→

µ,i

(
t
(µ)
i −O

(µ)
i

)2
]

=
→

µ,i

(
t
(µ)
i −O

(µ)
i

)(

−
∂O

(µ)
i

∂wmn

)

,

∂O
(µ)
i

∂wmn
= δim x(µ)n .

(2.18)

Combining this leads to:

1An alternative notation for the quadratic cost function has the form:

H(w, b) =
1

2n

→

x

‖di − f(xi,w, b)‖2, (2.15)

where f(xi,w, b) represents the network’s output for input x, and di is the true label.
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∂H

∂wmn
= −
→

µ,i

(
t
(µ)
i −O

(µ)
i

)
δim x(µ)n = −

→

µ

(
t(µ)m −O(µ)

m

)
x(µ)n . (2.19)

To sum up applying gradient descent in the weight space on H(w) with learning rate

η, the weight update rule becomes

∆wmn = −η
∂H

∂wmn
= η
→

µ

(
t(µ)m −O(µ)

m

)
x(µ)n . (2.20)

This resembles the perceptron rule (Equation 2.10). Observe that linear perceptrons

can only solve classification problems with p ≤ N (or linearly independent input pat-

terns). More complicated problems often require either more dimensions or nonlinear

activation functions in hidden layers.

2.4 Multi-Layer Perceptrons for Nonlinear Boundaries

Some classification tasks are not linearly separable in the original space. However,

by adding hidden layers with nonlinear activation functions, the network can implement

piecewise linear or more sophisticated decision boundaries. Figure 3 illustrates a two-

dimensional example: a single straight boundary cannot separate the two labeled classes,

but multiple hidden neurons can partition the plane into different regions, each associated

with t = +1 or t = −1.

2.4.0.1 Boolean XOR:

A classic example is the XOR problem in two dimensions, which is not solvable by

any single threshold neuron. Nevertheless, a small network with two hidden neurons can

split the input plane suitably so that the final output neuron combines hidden states to

yield the correct classification.
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Figure 3: Non-Linear Classification Boundaries.

2.5 Chain Rule and Error Backpropagation

This section expands the discussion about gradient descent, examining the training

process more deeply.
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Consider a feed-forward network composed of a hidden layer and on output layer. The

input vector x(µ) has N components and the network outputs form an M-dimensional

vector

O(µ) =

[
O

(µ)
1 O

(µ)
2

...O(µ)
M

]
, (2.21)

which should ideally match the M-component target t(µ) for each input x(µ).

The following equation represents how the output of the intermediate layer and the

last layer are computed:

V
(µ)
j = g

(
b
(µ)
j

)
with b

(µ)
j =

N→

k=1

wjk x
(µ)
k − θj, (2.22a)

O
(µ)
i = g

(
B
(µ)
i

)
with B

(µ)
i =

→

j

Wij V
(µ)
j −Θi. (2.22b)

Here g(·) is a differentiable (or piecewise differentiable) activation function, and V
(µ)
j are

the hidden-layer outputs.

The gradient-descent updates on the energy function are used to systematically adjust

the weights {Wij,wjk} and thresholds {Θi, θj} so that O(µ) closely matches t(µ). The energy

function used has the form:

H =
1

2

→

µ,i

[
t
(µ)
i −O

(µ)
i

]2
. (2.23)

This function vanishes if and only if O(µ)
i = t

(µ)
i for all patterns µ and all output compo-

nents i. The gradient-descent weight updates take the form

δWmn = −η
∂H

∂Wmn
, δwmn = −η

∂H

∂wmn
, (2.24)
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where η > 0 is the learning rate. Substituting Eq. (Equation 2.23) into Eq. (Equation 2.24)

and applying the chain rule reveals how to calculate these partial derivatives from local

quantities in the network.

2.5.0.1 Weights Feeding into the Output Layer

First, for the weights Wmn connecting the hidden layer to the output layer:

∂H

∂Wmn
= −
→

µ,i

[
t
(µ)
i −O

(µ)
i

] ∂O(µ)
i

∂Wmn
. (2.25)

Since O
(µ)
i = g(B

(µ)
i ) and B

(µ)
i itself is a linear combination of V (µ)

j ,

∂O
(µ)
i

∂Wmn
= g ′(B

(µ)
i )δimV

(µ)
n , (2.26)

where g ′(·) is the derivative of g, and δim is the Kronecker delta ensuring that Wmn only

affects O(µ)
m . As a result:

δWmn = −η
∂H

∂Wmn
= η
→

µ

[
t(µ)m −O(µ)

m

]
g ′(B(µ)

m ) V (µ)
n

≡ η
→

µ

∆(µ)
m V (µ)

n , (2.27a)

∆(µ)
m =

[
t(µ)m −O(µ)

m

]
g ′(B(µ)

m ). (2.27b)

Hence the weighted output error for pattern µ at output neuron m is ∆(µ)
m , which is

minimal whenever O(µ)
m = t

(µ)
m .
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2.5.0.2 Weights Feeding into the Hidden Layer.

For the weights wmn that connect the input layer to the hidden layer:

∂H

∂wmn
= −
→

µ,i

[
t
(µ)
i −O

(µ)
i

]∂O(µ)
i

∂wmn
. (2.28)

Similar as before, the output of the network O
(µ)
i depends on the output of the interme-

diate hidden layer V (µ)
n through the following relation:

O
(µ)
i = g(B

(µ)
i ), (2.29)

where B
(µ)
i is a linear combination of V (µ)

j :

B
(µ)
i =

→

j

Wij V
(µ)
j −Θi. (2.30)

Again V
(µ)
j is a linear combination of the input multiplied by the corresponding weight:

V
(µ)
j = g

( N→

k=1

wjk x
(µ)
k − θj

)
(2.31)

There fore the term
∂O

(µ)
i

∂w
(µ)
mn

=
∑

µ,i
∂O

(µ)
i

∂V
(µ)
!

∂V
(µ)
!

∂wmn
. Giving the following equation:

∂H

∂wmn
= −
→

µ,i

[
t
(µ)
i −O

(µ)
i

]∂O(µ)
i

∂V
(µ)
(

∂V
(µ)
(

∂wmn
. (2.32)
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Observe that

∂O
(µ)
i

∂V
(µ)
(

= g ′(B
(µ)
i )Wi(,

∂V
(µ)
(

∂wmn
= g ′(b

(µ)
( )δ(mx

(µ)
n . (2.33)

Putting these together leads to

δwmn = η
→

µ

→

i

∆
(µ)
i Wimg

′(b(µ)
m )x(µ)n ,

∆
(µ)
i =

[
t
(µ)
i −O

(µ)
i

]
g ′(B

(µ)
i ).

(2.34)

which can be rewritten as

δwmn = η
→

µ

δ(µ)m x(µ)n , (2.35a)

δ(µ)m =
→

i

∆
(µ)
i Wimg

′(b(µ)
m ). (2.35b)

2.5.0.3 Threshold Updates

Thresholds Θm at the output layer and θm at the hidden layer are updated analo-

gously:

δΘm = −η
∂H

∂Θm
= η

p→

µ

[
t(µ)m −O(µ)

m

][
−g ′(B(µ)

m )
]
= −η

→

µ

∆(µ)
m ,

δθm = −η
∂H

∂θm
= η

p→

µ

→

i

∆
(µ)
i Wim

[
−g ′(b(µ)

m )
]
= −η

→

µ

δ(µ)m .

(2.36)
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2.6 Stochastic Gradient Descent Algorithm

In stochastic gradient descent, (SGD), the weights and thresholds are updated after

each pattern (or a small mini-batch of patterns). The index ( is used to keep track of the

different layer. The input layer is labeled as ( = 0, while the output layer is represented

by ( = L. The state of the neurons in layer ( are given by V
(()
j , while w

(()
jk represents the

connection between the neuron j and k in the ( layer. The errors at stage ( is δ(()k as per

Equation 2.35b. Using this notation, the output of an intermediate layer V (()
j is given by:

V
(()
j = g

(
→

k

w
(()
jk V

((−1)
k − θ

(()
j

)

. (2.37)

Consequently, the different updates take the form:

δWmn = η∆(µ)
m V (µ)

n , δwmn = η δ(µ)m x(µ)n , δΘm = −η∆(µ)
m , δθm = −η δ(µ)m . (2.38)

Here, the network sees a single sample (x(µ), t(µ)), computes the corresponding errors,

and then immediately updates w and W. The term stochastic arises because the gradient

direction for individual samples can fluctuate away from the true gradient (averaged over

the entire dataset).

Algorithm 1 sketches the sequential version of this procedure for a network with L

layers of neurons (labeling the input layer as ( = 0). One often groups patterns into

mini-batches containing a few samples, which strikes a balance between purely stochastic

weight changes and full batch updates. In that case, sums over the mini-batch replace
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the single-pattern updates, and the learning rate η may absorb an extra factor of 1/mB

depending on the implementation convention.

Algorithm 1 Stochastic Gradient Descent with Backpropagation

1: Initialize weights w(()
jk (random) and thresholds θ(()j = 0.

2: for ν = 1, . . . ,νmax do
3: Choose an index µ (possibly at random).
4: Forward Pass:
5: for ( = 1, . . . , L do
6: V

(()
j ← g

(∑
k w

(()
jk V

((−1)
k − θ

(()
j

)
! V

(0)
k ≡ x

(µ)
k (the input).

7: end for
8: Output Error: δ(L)i ← g ′

(
b
(L)
i

)[
t
(µ)
i − V

(L)
i

]
.

9: Backward Pass:
10: for ( = L, . . . , 2 do
11: for each neuron j in layer ((− 1) do

12: δ
((−1)
j ←

(∑
i δ

(()
i w

(()
ij

)
g ′
(
b
((−1)
j

)

13: end for
14: end for
15: Parameter Updates:
16: for ( = 1, . . . , L do
17: for each neuron m in layer ( do
18: for each index n in layer ((− 1) do

19: w
(()
mn ← w

(()
mn + η δ

(()
m V

((−1)
n

20: end for
21: θ

(()
m ← θ

(()
m − η δ

(()
m

22: end for
23: end for
24: end for
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2.7 Data Preprocessing

Prior to training, it is usually advantageous to center and scale the inputs so that

each component of x has approximately zero mean and unit variance across the training

set:
1

p

p→

µ=1

x
(µ)
k = 0,

1

p

p→

µ=1

[
x
(µ)
k

]2
= 1. (2.39)

This common preprocessing step ensures that excessively large local fields are less likely

to appear at the start of training. It also helps avoid saturating non-linear activations

such as σ(b) or tanh(b), whose derivatives become tiny for large |b|. Further, it reduces

correlations across components that might impede convergence if the input coordinates

vary on disparate scales.

2.8 Challenges in the training process

2.8.1 Overfitting

A critical aspect of supervised learning is generalization. When a neural network

learns the training data too well, including noise and irrelevant details a phenomenon

named overfitting can raise. As a result, the model performs exceptionally well on the

training set but poorly on unseen data. A flag that indicates the model is starting to

overfit can be the training loss continuing to decrease, but the validation loss starting

increasing. That can happen because:

• A model with too many parameters (e.g., large neural networks) can quickly mem-

orize the training data instead of learning general patterns.

• The training dataset is too small; the network may overfit the limited examples it

has seen.
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• The network might learn these as patterns if the dataset contains noise or mislabeled

examples, reducing its generalization ability.

Cross validation mitigates overfitting by splitting the data into a training set and

a validation set. While training proceeds on the training set, the performance (e.g.,

the energy H or the fraction of misclassified patterns) should be monitored also on the

validation set. As soon as the validation metric ceases to improve - and potentially starts

to worsen - the training process should be stopped. This early stopping strategy helps

prevent learning spurious structure.

Other solutions include:

• Regularization (e.g., L2 penalty).

• Dropout: Randomly deactivating neurons during training.

2.8.2 Adaptive Learning Rate

Choosing a fixed learning rate η can be tricky: large η fosters fast changes but risks

instability, while small η yields slow but stable improvements. One often augments the

basic gradient update by adding a momentum term:

δw(t)
mn = −η

∂H

∂wmn

∣∣∣∣
w(t)

+ αδw(t−1)
mn , (2.40)

where α ∈ [0, 1) is the momentum constant. This update rule encodes a form of inertia:

if the gradient ∂H/∂wmn stays relatively constant through several iterations, then δwmn

accumulates, yielding a faster escape from shallow minima. If the gradient oscillates in

sign, the updates partially cancel each other, promoting smoother training dynamics.
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2.8.3 Summary of Key Points

• Backpropagation: The chain rule applied in layered networks allows e”cient

computation of the gradient of the energy function (Equation 2.23).

• Stochastic Gradient Descent (SGD): Rather than summing over all training

patterns, weights can be updated after processing a single pattern or a mini-batch.

This yields a noisy but often more effective descent in weight space.

• Preprocessing: Centering and scaling inputs (and possibly applying PCA) can

significantly aid training convergence.

• Overfitting: Larger networks can memorize training sets too well, impairing gen-

eralization. Cross validation and early stopping mitigate this.

• Adaptive Learning Rates: Momentum methods, such as Eq. (Equation 2.40)

and Nesterov’s approach, can achieve faster and more robust convergence than a

fixed learning rate alone.

Putting these elements together, is obtained a powerful strategy for fitting large

feed-forward neural networks to labeled data while maintaining reasonable generaliza-

tion properties.



CHAPTER 3

DEEP LEARNING

3.1 How Many Hidden Layers?

Chapter 2 presented how a single hidden layer can solve classification problems that

are not linearly separable. Here, the aim is to investigate when one hidden layer might

su”ce to solve the task and under what circumstances multiple hidden layers, i.e. deeper

networks, become useful or even necessary.

A natural way to address these questions is to consider the network’s task as function

approximation. In the training process, the network use p labeled examples
[
x(µ), t(µ)

]
,

where each input x(µ) ∈ RN must be mapped to a target t(µ), to learn how to approximate

the true map

t(x) : RN −→ R (or possibly to a discrete set). (3.1)

In effect, t(x) is replaced by O(x), the output of the network, and the goal is to make

O(x) ≈ t(x). How many hidden layers are required to reach the intended accuracy?

3.1.1 Universal Approximation Results

3.1.1.1 Real-Valued Targets.

Consider first real-valued inputs x ∈ RN and a continuous target t(x) ∈ R and a

network with one or two hidden layers using sigmoid or hyperbolic tangent as activation

function.

26
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Figure 4: Single-layer Perceptron Schematic.

In Figure 4, for example, a two-layer network might approximate t(x) by

O(x) =
→

m

Wm g

(
→

j

w
(2)
mj g

(→

k

w
(1)
jk xk − θ

(1)
j

)
− θ(2)m

)
− Θ. (3.2)

For one-dimensional inputs (N = 1), it is known that a single hidden layer of sigmoid

neurons can approximate any continuous function arbitrarily well, provided there are

su”ciently many hidden units. Under reasonable assumptions, this result - known as the

universal approximation theorem (27) - extends to higher dimensions. Thus, on compact

domains, one hidden layer is su”cient to approximate continuous functions.
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3.1.1.2 Discrete Targets.

In the previous chapter, it was shown how Boolean functions of N binary inputs can

be represented by a single hidden layer of 2N McCulloch-Pitts neurons. For small N, this

is possible; but, for high N, 2N hidden units is excessive and becomes intractable. Still,

one can build more effective solutions by using several hidden layers.

3.1.2 Depth Versus Width

While a single hidden layer can, in principle, approximate a wide variety of functions,

additional hidden layers sometimes do so more efficiently or more compactly.For example,

some problems can be solved using a smaller number of total neurons arranged in multiple

layers:

• A naive single hidden layer approach might require 2N neurons (Section 2.4).

• Carefully chaining smaller building blocks (e.g., XOR networks) yields a layered

architecture of only O(N) neurons.

Deeper networks could therefore cut the required quantity of units or parameters.

3.2 Vanishing and Exploding Gradients

Vanishing and Exploding Gradients can occur during the backpropagation process

when the gradients (partial derivatives of the loss function concerning the parameters)

become very small (vanishing) or very large (exploding). Consider a network with L

layers of hidden units (and possibly very large L). During training when the earliest

layers parameters are adjusted via gradient descent, the error signals (i.e., the gradient

information) may shrink exponentially as they propagate backward through multiple

layers. Equivalently, if weights are large, small local errors can explode exponentially

when viewed in earlier layers.
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3.2.0.1 A Simple Example.

A conceptual toy model is a chain of scalar neurons,

V (() = g
(
w(() V ((−1) − θ(()

)
, ( = 1, . . . , L, (3.3)

with V (0) = x as input and V (L) as the final output. Taking the derivative ∂V (L)/∂V (()

involves a product of L−( factors of w(k) g ′
(
b(k)
)
. If these factors are each < 1 in absolute

value, the gradient becomes tiny by the time it reaches layer (, causing extremely slow

weight updates (vanishing gradients). Similarly, if |w(k) g ′(b(k))| > 1 on average, this

product can explode. Either way, training becomes irregular and unreliable.

3.2.0.2 Partial Solutions.

Actually, numerous design or initialization techniques help to reduce gradient insta-

bility:

• ReLU activation (Section 3.2.1) can help avoid saturating gradients typical of

sigmoid or tanh units.

• Residual connections (Section 3.2.2) skip layers entirely, offering shortcuts for

error signals and thus reducing the number of multiplicative factors in the chain

rule.

• Batch normalization (Section 3.2.3) maintains normalized activations at each

layer, preventing large drift in internal states that exacerbates exploding or vanish-

ing gradients.

Still, the vanishing/exploding gradient issue remains a fundamental obstacle in very deep

networks and must be handled carefully.
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3.2.1 Rectified Linear Units (ReLU)

Instead of sigmoid or tanh activations, many modern networks use Rectified Linear

Units :

ReLU(b) = max{0, b}. (3.4)

Such units have piecewise constant derivatives, which can reduce saturation effects.

Specifically,

g ′(b) =






1, b > 0,

0, b < 0,

(3.5)

so the gradient of a ReLU neuron is either 1 or 0 rather than an exponentially small

value. This can lessen the vanishing-gradient problem, although exploding gradients can

still arise if weight magnitudes become very large.

3.2.1.1 Sparsity.

Another benefit is that many ReLU outputs are exactly 0, producing sparse activation

patterns across hidden layers. Sometimes sparsity increases linear separability in hidden-

layer representations, hence accelerating learning.

3.2.1.2 Regularization.

Because ReLUs are unbounded for large positive inputs, weights may grow over time.

A small weight decay (Section 3.2.4.1) or other regularization helps to constrain them.

Empirical evidence has shown that ReLUs often train faster than their smooth, saturating

counterparts.
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3.2.2 Shortcuts: Residual and Skip Connections

Skip connections improve deep network architecture by directly connecting the output

of some layer to the input of next ones, so bypassing intermediary connections between

layers.

Figure 5: Residual and Skip Connection Schematic.



32

Figure 5 shows a simplified schematic: besidesw((+1,() from layer ( to (+1, there is also

the connectionw((+1,(−2) from layer (−2 and the connectionw((+1,(−1) from layer (−1. This

connections adds more terms to the chain rule, therefore changing the backpropagation

error computation. Effectively, there are now multiple paths through which gradients

can flow backward, for example:

δ((−2) = δ((−1) w((−1,(−2) g ′
(
b((−2)

)
+ δ((+1) w((+1,(−2) g ′

(
b((−2)

)
. (3.6)

δ((−1) = δ(() w((,(−1) g ′
(
b((−1)

)
+ δ((+1) w((+1,(−1) g ′

(
b((−1)

)
. (3.7)

Because there is a shorter path to earlier layers, vanishing gradients become less severe.

In residual networks (28), the sum

b
((+1)
j =

→

k

w
((+1,()
jk V

(()
k − θ

((+1)
j + V

((−2)
j + V

((−1)
j , (3.8)

means layer ( + 1 receives both the standard feed-forward contribution and the outputs

from layers (− 1 and (− 2. Many deep models in computer vision applications includes

these residual approaches.

3.2.3 Batch Normalization

Batch normalization (29) extends the idea of input centering to hidden layers. Each

mini-batch of layer inputs {V (µ)
j } is centered and normalized:

V̄
(µ)
j =

V
(µ)
j − µj√
σ2
j + ε

, (3.9)
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where µj and σ2
j are the mean and variance computed over the mini-batch, ε > 0 is a

small constant, and j indexes neuron coordinates. Then, during the training process, the

parameter γj,βj are learned to allow the network to correctly restore scale and shift via

the a”ne transformation γj V̄
(µ)
j +βj. Batch normalization stabilizes layer distributions,

often speeding training by mitigating internal covariate shift (a change in the input

distribution that negatively affects the performance). Empirically, batch normalization

reduces sensitivity to initial weights, addresses vanishing gradients, and can act like a

regularizer.

3.2.4 Regularization

Deep networks are extremely overparameterized. Without constraints, they can overfit

training data (Section 2.8), therefore compromising generalization. Additional techniques

are employed to inhibit overfitting:

3.2.4.1 Weight Decay (L2 or L1 Regularization)

Weight decay modifies the energy function by adding a penalty proportional to the

norm of the weights:

H ′ = H +
γ

2

→

i,j

w2
ij, (3.10)

leading to an update rule

δwmn = −η
∂H

∂wmn
− ηγwmn. (3.11)

This is also called L2-regularization. In L1-regularization, one penalizes
∑

i,j |wij| instead,

shrinking smaller weights toward zero and often inducing sparser connections. Both
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methods (and variants like max-norm constraints) can curb weight growth and limit

overfitting.

3.2.4.2 Pruning

Pruning permanently removes weights or entire neurons deemed unnecessary after or

during training. One approach is to set any small weight wij to zero, effectively deleting

that connection, then skip updates to it (making the change irreversible). Pruning tends

to reduce network size substantially, sometimes improving generalization by eliminating

redundant parameters.

3.2.4.3 Dropout

During training, dropout randomly disables (sets outputs to zero) a fraction q of

hidden neurons for each mini-batch iteration. Because the network is effectively forced

to learn a robust representation in multiple smaller configurations, overfitting is reduced.

During inference every neuron is active hence the output is scaled by 1−q to match the

expected activation levels. Dropout is used often with other regularizing techniques.

3.2.4.4 Data Augmentation

Usually, bigger training sets help to reduce overfitting. Although gathering additional

data can be unfeasible, one can create artificial augmentation of a dataset by using minor

changes (e.g., rotations, shifts, or noise addition). In image classification tasks, where

small image differences are still valid samples that preserve labels but increase the dataset,

this is very common.
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3.3 Outputs and Energy Functions

Often, different activation functions are used in the output layer. For instance, soft-

max outputs are common when mapping inputs to one of M exclusive classes:

Oi =
eb

(L)
i

∑M
k=1 e

b
(L)
k

, b
(L)
i =

→

j

w
(L)
ij V

(L−1)
j − θ

(L)
i . (3.12)

By construction, Oi ≥ 0 and
∑M

i=1 Oi = 1, making Oi interpretable as a probability that

input x belongs to class i. A suitable objective function is then the negative log-likelihood,

H = −
→

µ

→

i

t
(µ)
i ln O

(µ)
i , (3.13)

which vanishes if O(µ)
i = t

(µ)
i for all µ and i. Gradient-based learning yields the update

rule

δwmn = η
→

µ

(
t(µ)m −O(µ)

m

)
V (µ)
n , δθm = −η

→

µ

(
t(µ)m −O(µ)

m

)
, (3.14)

notably lacking an extra derivative g ′
(
b
(L)
m

)
factor, thereby avoiding some saturation-

induced slowdowns.

This means that different networks with different purposes require a careful choice of

network composition in terms of neurons, parameters, layers, dimensions, and activation

functions. Once this is set, an appropriate Energy function to optimize must be carefully

picked and minimized (or maximized) according to the training goal.
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3.4 Summary

Multiple hidden layers define a deep network and allows significantly more precise

function approximations than a shallow architecture of comparable scale. The primary

challenges of the backpropagation-based training of such networks consist in:

1. Vanishing or Exploding Gradients: the repeated products of derivatives across

layers the gradient may become quite small or quite large resulting in vanishing or

exploding gradient. Unstable or slow convergence may follow from this.

2. Overfitting:Deep networks can easily fit the training set but fail to generalize, so

regularizing methods are needed considering the number of employed parameters

(weight decay, dropout, pruning, etc.).

3. Architecture and Initialization:Together with a proper weights initialization,

well selecting the architecture structure, the activation function, and other net-

work’s parameters can help to reduce the gradient issue. Another commonly useful

tool is batch normalizing.

4. Dataset: a big and high-quality dataset for a good training quality.

5. Loss Function: find a suitable and effective loss function determines the quality

of the training process.

On some tasks - including vision, speech, and natural language processing - deep

learning has outperformed conventional machine-learning techniques despite these chal-

lenges.



CHAPTER 4

CONVOLUTIONAL NETWORKS

Originally proposed in the 1980s, convolutional neural networks have become well-

known for their performance on large-scale image classification problems. One turning

point was made by Krizhevsky’s work (30) in the ImageNet competition. Their method

showed that while having much less trainable parameters than equivalent fully connected

networks, convolutional architectures excel in object recognition. This involves two main

benefits:

1. Lower computational cost: reduced learnable parameters via a sparse connec-

tion design and shared weights lowers computing cost, hence accelerating training.

2. Regularization effect: fewer connections limit the capacity of the network in a

more e”cient fashion, therefore reducing the inclination for overfitting.

Convolutional networks conceptually reflect several features of early visual processing

in the brain. The network treat an input image as a 2D (or 3D, if color channels are

included) spatial array, and detects local features (edges, corners, etc.). Convolutional

layers apply the same local filters over all picture areas generating different feature maps.

4.1 Convolution Layers

Figure 6 depicts the core of a convolutional feature map. Assuming an input image

of 10 × 10 pixels, a 3 × 3 receptive field (filter kernel) is slid over the image with unit

stride in both horizontal and vertical directions. Every kernel position multiply a 3× 3

square of local pixels by the kernel weights, then sum the result up (plus a threshold)

37
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and pass it via an activation function g(·). Since the kernel slides one pixel at time, the

produced feature map is 8× 8 (in this example):

Vij = g
( 3→

p=1

3→

q=1

wpq xp+i−1, q+j−1 − θ
)
. (4.1)

It is important to observe that, for every i, j, the identical kernel weights wpq and

threshold θ are reused. For this feature map, only 3×3+1 = 10 parameters are learned.

Figure 6: Convolutional Layer and Feature Maps Extraction Schematic.
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4.1.1 General Form

Normally, convolution layers employ varying kernel sizes (3 × 3, 5 × 5, etc.) with

a selected stride (s1, s2) and zero padding around the image. Padding the input, for

example, helps to maintain its original spatial dimension, therefore a 10 × 10 input

produces a 10 × 10 feature map instead of an 8 × 8 one. If the input image have R

channels, each filter wr
pq consists in R layers to address the depth dimension. This

results in the general formula:

Vi,j,k = g
( P→

p=1

Q→

q=1

R→

r=1

wpq r k xp+s(i−1), q+s(j−1), r − θk
)
, (4.2)

where k indexes several feature maps that try to learn the various aspects of the image

(edges, corners, textures, etc.). Modern deep architectures stack many convolution layers

and additional operation (Section 4.2) in sequence.

4.1.1.1 Backpropagation with Shared Weights.

Training convolutional layers via gradient descent 1) involves computing ∂H/∂wmn

and ∂H/∂θ as usual. Since the weight wmn is shared across all kernel positions, the

partial derivative accumulates contributions from every point (i, j) using wmn. One

kernel weight is applied to several receptive fields, so this weight sharing considerably

lowers parameter counts and increases the effective amount of samples each weight sees,

reducing overfitting.

4.2 Pooling Layers

Pooling layers ( Figure 7) further reduce spatial dimensionality by aggregating value

that are spatially close in a feature map. Max-pooling, for example, consider only the

maximal value of the analyzed locations in the feature maps. RMS pooling averages local
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Figure 7: Convolutional and Pooling Operation Scheme.

squares instead; various variations are feasible. The pooling procedure just subsampling

the convolutional outputs to produce a smaller, more compact representation; it has no

trainable parameters.

4.2.0.1 Combination with Convolutional Layers.

Usually, a convolution-pooling cycle goes as:

1. With a given kernel dimension, stride and padding, the convolutional layer extracts

feature maps.

2. A chosen pooling layer downsamples these feature maps.
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3. This convolution-pooling cycles are repeated to generate higher-level features while

lowering spatial resolution.

4. At the end, output neurons and completely connected layers can be added for

classification.

Figure 8 shows an example: several convolutional layers with pooling layers and a fully

connected layer using a softmax function outputs the probability of the input to belong

to one of the different target categories.

Figure 8: General Convolution Neural Network with a final fully connected layer.

4.3 ImageNet and Performance

Following Krizhevsky et al. (30) who achieved great results on the ImageNet Large-

Scale Visual Recognition Challenge (ILSVRC), convolutional networks became common.

ImageNet (31) is a dataset of ∼ 107 images labeled across thousands of categories. Top-5
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accuracy measures performance by showing the frequency with which the correct label

show in the top five projections of the model.

4.4 Practical Considerations and Limitations

Although in many large-scale picture applications convolutional networks show great

accuracy, they present several drawbacks:

• Lack of global understanding: Local patches are identified separately by con-

struction. While deep stacking of layers create somewhat global features, convolu-

tional networks can still misclassify an entire object by confusing local textures or

patterns.

• Sensitivity to distribution shifts: The learned filters may become useless if

new images deviate significantly from the training distribution. Misclassifications

can result from simple changes, including localized noise in various patterns.

• Adversarial examples: Little, undetectable changes to an image can push the

model’s representation past a decision boundary and generate high-confidence mis-

takes. These images show how convolutional networks could split feature space in

unexpected ways.

Convolutional networks can outperform human-level performance on certain bench-

mark tests, however they lack the depth of knowledge and generalizing capacity shown

by human vision. This differences become evident when images or noise deviate from

training circumstances or when global context is essential.

4.5 Convolutional Neural Networks Summary

Image recognition has benne revolutionized by the advent of conventions neural net-

works. The main adcantages they bring are:
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1. Sparse Connectivity and Weight Sharing: each kernel - that is, feature map

- applies the same small set of weights over the whole input image, hence greatly

lowering parameter counts and regularizing the model.

2. Local Feature Extraction: convolutional layers captures important visual struc-

ture by concentrating on local patterns like edges or corners.

3. Pooling and Downsampling: this techniques compress spatial data, speeding

up training, and preserving significant characteristics.

Though the success in computer vision, medical imaging, and other disciplines is

enormous, convolutional methods struggle with global context, out-of-distribution inputs,

and adversarial perturbations. Even if the foundations set by convolutional architectures

will probably continue to support next-generation vision models, many major challenges

still surround how to better include more resilient invariances and more general context.



CHAPTER 5

COMPRESSION

5.1 Data Compression Overview

Data compression aims to more compactly represent information in a latent space.

In computation, communication, and storage, it is a fundamental domain. Many survey

publications have detailed compression techniques and applied them to different data

types including text, image, audio, and video. Early work concentrated on broad math-

ematical foundations, though specific reviews were dedicated exclusively to lossless com-

pression methods. Others provided performance evaluations of diverse DC algorithms,

including Huffman coding, Lempel–Ziv (LZ) methods, and transform-based standards

such as JPEG or MPEG. A general overview can be found in (5) While data storage and

transmission technologies have advanced thanks to technical developments, the rising

need for data transfer and storage keeps outpacing these developments.

For example, when streaming a video, data compression is extremely important. The

bandwidth requirements vary significantly based on resolution, but even standard defi-

nition (SD) requires a minimum of 3Mbps, and for high definition (HD), it goes up to

5-8Mbps. 4K UHD streaming requires at least 25Mbps.

The same applies to smart home devices, IoT sensors, and portable medical equip-

ment. These systems run with resources, memory, and power constraints. Effective data

compression methods let these devices consistently transmit data without running out of

their resources.

44
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5.2 Information Theory

Information theory is the branch of study behind the mathematics of data compres-

sion. The information source is represented as a discrete memoryless source, which

generates symbols from an alphabet X = {xi}
M
i=1 with respective probabilities pi. The

objective is to facilitate the e”cient encoding and transfer of information.

The information content associated with a symbol is inversely correlated with its

probability, which means rarer symbols convey greater information density.

I(xi) = log2
1

pi
= − log2 pi (5.1)

The average information per symbol is defined by the source’s entropy, that represents

a fundamental limit for lossless compression.

H(X) =
M→

i=1

piI(xi) =
M→

i=1

pi log2
1

pi
(5.2)

5.2.1 Entropy Limits

Entropy provides a theoretical upper bound on the e”ciency of lossless compression:

coding schemes cannot reduce the average bit length below the source entropy, H(X).

H(X) ≤ R (5.3)

5.2.2 Rate-Distortion Theory

Unlike lossless techniques, which have as top priority the integrity of the original

signal, lossy algorithms have to consider the information loss. The quality of the recon-
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structed signal, thereby the amount of information loss, is evaluated through distortion.

Minimizing it while achieving a low bit rate is the goal.

A central theme in rate-distortion theory is to find an optimal tradeoff between rate

and distortion that meets the requirements. To quantitatively examine this tradeoff, the

bit rate can be expressed as a function of distortion levels for a given reconstruction

quality. This can be di”cult and often non-linear, therefore it is easier to work with

analytical frameworks.

Inside the framework of discrete, independent, and identically distributed (i.i.d.) ran-

dom processes, a distortion metric equation for the sequence X̂ reconstructed from the

original sequence X can be described as follows:

d(X, X̂) =
1

m

m→

j=1

d(xj, x̂j) (5.4)

m is the sequence’s length; d(xj, x̂j) is the per-component distortion, therefore indicating

the degree of difference between the reconstructed signal x̂j and the original one xj. For

example, the squared error (xj − x̂j)
2 is commonly used as distortion.

An explicit formula for the rate-distortion curve can be obtained if the information

sources follow a Gaussian distribution with zero mean and variance σ2:

R(D) =
1

2
log2

(
σ2

D

)
(5.5)

where R(D) indicates the minimum rate needed to guarantee the existence of an infor-

mation source able to describe X with a distortion level D.
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5.3 Compression Pipeline Breakdown

The data compression pipeline consists of numerous sequential stages working together

to lower data size while trying to preserve important information. Though particular

implementations differ, the following describes the overall process:

1. Input Signal (Continuous or Discrete): if the source is continuous - for ex-

ample for analog signals like audio or video - it must first be sampled to provide a

discrete-time representation.

2. Quantization (for Continuous-Valued Data): after sampling, each discrete-

time sample is associated to one of a finite set of amplitude levels. This quantizing

step causes truncation or rounding, approximating the original sample.

3. Modeling or Transform (Lossless/Lossy): depending on the data type and

application requirements, the compression system detects and exploits data redun-

dancy:

• Sample Encoding: variable-length coding use a smaller number of bits for

data that appear more often.

• Spatial Correlation: predictive models or transforms leverage correlations

between neighboring pixels to avoid transmitting repetitive information.

• Temporal Correlation: consecutive frames in a video or repeated sensor

readings often share a great deal of overlap. By comparing these frames or

readings, compression can discard duplicated data and improve e”ciency.

4. Residual Coding or Direct Coding: once the model (or transform) has ex-

tracted the relevant features or predicted values, the algorithm encodes the residuals
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(or transformed coe”cients). In lossless scenarios, the exact data or residual must

be preserved. In lossy methods, quantization may be more aggressive in discarding

finer details that are less perceptually important.

5. Entropy Coding: finally, the data (or residuals) is passed to an entropy coder

(e.g., Huffman or Arithmetic coding) to assign shorter codewords to the most fre-

quent symbols. This step compacts the bitstream further based on the probabilities

of the symbols.

6. Compressed Output: the result of entropy coding forms the compressed bit-

stream. This output can be stored or transmitted e”ciently, requiring fewer bits

than the original data.

7. Decoding (Reconstruction): The receiving side applies the inverse procedures:

entropy decoding, inverse modeling/transform or prediction, and potential dequan-

tization (for lossy methods). The final output is an approximation of the original

data (X̂).

5.3.1 Data Compression categorizations

In addition to the amount of permissible data loss, compression techniques can also

be grouped based on the particular type of data they’re designed to manage.

5.3.1.1 Lossless or Lossy compression:

The accuracy of the reconstructed data classifies the compression techniques:

• Lossless Compression: guarantees that X can be completely reconstructed from

the compressed data Y. In applications like text processing, financial transactions,

and medical imaging, this is important.
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• Lossy Compression: allows an approximation of the original data (X̂ ≈ X) by

allowing some error levels as long as it stays imperceptible by consumers. Since

they often result in greater compression ratios, lossy approaches are chosen in

applications where losing a minor amount of the information is acceptable.

5.3.1.2 Text Compression:

Text compression is usually lossless since even a single-character difference may af-

fect the semantic meaning. Among popular methods are Lempel-Ziv (LZ) variations,

Arithmetic coding, and Huffman.

5.3.1.3 Audio and Video Compression:

Audio compression often exploits psychoacoustic models to remove inaudible or less-

perceptible frequencies. Common examples are AAC or MP3, where enhanced compres-

sion ratios are allowed by partial data removal. Video compression seeks the redundancy

existing temporally across frames and spatially within a single frame.

5.3.1.4 Image Compression:

Given the enormous amounts of visual data produced by current technology, image

compression is very important. In this context, the techniques used are often clustered

under transform- or predictive-based approaches:

• In transform-based, after applying quantization and entropy coding, pictures from

the spatial domain are converted to another domain - such as frequency. While more

recently, wavelet-based techniques (e.g., JPEG 2000) provide progressive transmis-

sion and higher rate-distortion performance for some image classes, standards like

JPEG utilize a blockwise Discrete Cosine Transform (DCT) approach.



50

• Predictive or residual-based uses the relationship among adjacent pixels to predict

information from already processed data. The difference-that is, the prediction

error, is encoded.

5.3.2 Sampling and Quantization:

Data compression requires two preliminary stages:

I the sampling frequency is lower, the resulting discrete-time representation may suf-

fer aliasing from insu”cient sampling rate, resulting in distortion when reconstructed.

The problem is that any frequency content above fs/2 reflects back into the base-band

generating overlapping spectral components and notable distortion during reconstruction.

• Sampling: creates several discrete-time sample sequences from a continuous-time

source. Let a continuous-time signal be x(t), than the sampling procedure generates

x[n] = x(nT), where T is the sample interval and n is an integer index.

• Quantization: convert the continuous amplitude of the sampled signal into a

limited range of discrete values. This phase lowers amplitude-related redundancy

and turns continuously valued signals into codewords.

The Nyquist-Shannon sampling theorem is extremely important to reconstruct x(t)

without aliasing after being sampled. The theorem states that the sampling frequency

fs =
1
T
must be at least twice the highest frequency component present in the signal.

5.3.2.1 Quantization: Characteristics of Errors

Once a signal is sampled, each sample x[n] is encoded with a finite set of discrete

amplitude values, a process called quantization.
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The output of a mid-riser quantizer using ∆ as the step size for a sample x[n] can be

written as

Q(x[n]) = ∆

⌊
x[n]

∆
+ 1

2

⌋
. (5.6)

The real axis is discretized into uniform width intervals ∆. The quantity

e[n] = x[n]−Q(x[n]) (5.7)

is the quantization error. e[n] can be approximated as a white noise-like process with

dynamics ±∆
2
for su”ciently precise quantization steps and certain assumptions about

the signal distribution.

5.3.2.2 Uncertainty in the Quantization Process

Since implies rounding or truncation by nature, the quantization process generates un-

certainty about the original value. A uniform quantizer has a mean-squared quantization

error of about:

σ2
e ≈

∆2

12
, (5.8)

This model assumes high number of quantization levels and an evenly distributed input

signal throughout one quantization interval.

Normally signals depart from these basic assumptions, however this models can be

used when the quantization steps are small compared to the signal dynamics.

5.3.2.3 Practical Implications

Sampling and quantization are also closely related to hardware and software limita-

tions:
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• Hardware Constraints: the precision of the quantizer step ∆ is affected by

resolution of the used analog-to-digital converter (ADC). Furthermore, system cost,

analog bandwidth, and power consumption affect the maximum possible sampling

frequency.

• Data Rates and Storage: higher sampling frequency and more precise quantiza-

tion produce more accurate results but require more bits per sample, therefore leads

to higher data storage or transmission requirements. Although compression meth-

ods lower the effective bit rate, it must be carefully balanced with the distortion

and uncertainty this techniques introduce.

• Applications: in applications where low distortion is paramount, lossless compres-

sion is chosen. On the other hand, in settings where modest distortion is tolerated

in order to use less bandwidth and reduce costs, lossy techniques are used.

5.3.3 Entropy Coding

Entropy coding is the final stage of the compression pipeline, where the processed

signal is translated into a sequence of bits.The main idea is to assign each symbol ai in

the alphabet X = {ai}
N−1
i=0 - which is simply the complete set of distinct symbols forming

the data stream- a concise binary codeword c(ai), according to the symbol probability

p(ai) = pi. The idea is to assign shorter codewords to symbols that appear commonly,

decreasing the average code length. Two techniques are:

• Huffman Coding: it assigns shorter codewords to encode symbols that appears

with higher probabilities, producing a prefix-free binary tree1.

1A prefix-free binary tree is a structure guaranteeing that no code is the prefix of
another, so symbols can be unambiguously decoded without lookahead.
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• Arithmetic Coding: it encodes symbol sequences with intervals within [0, 1].

The algorithm continually refines the interval based on symbol probabilities.

5.4 Quality Metrics

Compression algorithm are evaluated in terms of speed and quality of reconstructed

data through the following metrics:

• Compression Level: this is quantified by the compression ratio, which indicates

the average number of bits needed to encode a sample (bit rate).

• Distortion: distortion quantifies the deviation between the original data and its

reconstructed form.

5.4.1 Metrics for Compression Quality and Performance

The compression ratio indicates the average number of bits needed to encode each

sample.

CR =
Sorig

Scomp

(5.9)

Sorig is the original data size (in bits) and Scomp the compressed size.

Bits-per-pixel (bpp) and bits-per-character (bpc) are respectively the standards used

to show how many bits are needed to encode every pixel or character.

Space Savings show the reduction brought by the compression in terms of file size:

Space Savings = 1 −

(
Scomp

Sorig

)
. (5.10)

For example, if the original file is large 10MB and it is compressed to 2MB, it means 0.80

(or 80%) of storage space is preserved.
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Compression speed can be measured by cycles per byte (CPB), which shows how

many CPU cycles are needed for each byte of data processed.

Mean Squared Error (MSE) or Root Mean Squared Error (RMSE) measures the dis-

torion of the reconstructed signal.

MSE =
1

n

n→

i=1

(
yi − ŷi

)2
(5.11)

RMSE =
√
MSE =

√√√√ 1

n

n→

i=1

(
yi − ŷi

)2
(5.12)

Peak Signal-to-Noise Ratio (PSNR) is another criteria to evaluate the distortion of the

reconstructed signal. It calculates the ratio of a signal’s maximum power to its power

noise:

PSNR = 20 log10

(
MAX{X}

RMSE

)

, (5.13)

where MAXX is the maximum intensity value in the original data.

Structural Similarity Index (SSIM) evaluate perceptual factors such as luminance,

contrast, and structural details, providing a more human-centric perspective on image

fidelity.



CHAPTER 6

TRANSFORM CODING FOR IMAGE COMPRESSION WITH SCALE HYPERPRIOR

6.1 Introduction to Transform Coding

An effective data compression system compresses data while preserving essential in-

formation, enabling accurate reconstruction. Transform coding it is a common used

technique, it use a parametric transformations to transform high-dimensional data into

a latent representation, facilitating e”cient storage and transmission.

Firstly, the image vector x is encoded into a latent representation y. This represen-

tation is then quantized to produce ŷ. Before transmission, entropy coding methods are

employed.

During the decoding process, these steps are reversed: first, ŷ is recovered from the

compressed bitstream, and then it is transformed back into an approximate reconstruc-

tion of the original image, denoted as x̂, using a synthesis transform. The transforms

function used ( (ga and gs) are parameterized as generic nonlinear functions. The pa-

rameters φg and θg represent the weights and biases of these networks.

Since this procedure introduces inaccuracies, a balancing solution to the rising rate-

distortion problem needs to be found:

• Distortion (D): characterizes the difference between the original image x and its

reconstruction x̂.

• Rate (R): accounts for the bit rate of the compressed representation, the higher

the value the higher are the number of bit required and therefore the lower is the

55
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distortion. On the other hand, a lower value implies a lower number of bit and an

higher distortion. The rate can be expressed as:

R = Ex∼px [− log2 pŷ(Q(ga(x;φg)))] , (6.1)

, Q is the quantization function and pŷ predicts how likely each quantized latent

value is. It helps estimate the number of bits needed to encode those values - more

accurate pŷ means better compression.

The transforms ga and gs influence both Rate and distortion by modulating the

quantization granularity, how finely the latent representation is (quantized - finer steps

require more bits but incur lower distortion), and the representation warping, describes

how ga reshapes or “warps” the input into a latent space before quantization, and how gs

reconstructs the signal afterward. An increase in the Rate generally reduces distortion,

while the reverse also holds. This trade-off can be parameterized by a coe”cient λ,

resulting in:

min
φg,θg

Ex∼px [λD(x, x̂) + R(ŷ)] . (6.2)

6.1.1 Optimization Challenges

Optimizing the transform parameters (φg and θg) presents di”culties mainly related

to the non-differentiability brought by quantization. The gradient of the quantization

function is zero almost everywhere, making optimization via gradient descent useless.

The following approximations are used:

• Gradient Substitution: a suitable approximation of the gradient of the quantizer

is implemented (11).



57

• Uniform Noise Approximation: Additive uniform noise replaces the quantiza-

tion step during the training phase (10). While preserving quantization integrity

during inference, this method helps gradient approximation. The noisy and quan-

tized representation are respectively ỹ and ŷ.

The optimization problem can be reinterpreted inside a variational autoencoder (VAE)

framework:

• The analysis transform functions estimates the latent representation ỹ from the

input x.

• The synthesis transform tries to reconstruct x̂ from ỹ, operating similarly to a

generative model.

In probabilistic modeling for compression, the goal is to minimize the Kullback-Leibler

(KL) divergence between the approximate posterior q(ỹ|x) and the true posterior p(ỹ|x).

Bayes’ theorem’s true posterior p(ỹ|x) = p(x|ỹ)p(ỹ)
p(x)

, represents the exact probability dis-

tribution of ỹ given x. The true posterior is usually di”cult to use given the marginal

likelihood p(x). instead, a computationally effective alternative is a parameterized ap-

proximation posterior q(ỹ|x). The KL divergence:

KL(q(ỹ|x)‖p(ỹ|x)) =
∫

q(ỹ|x) log
q(ỹ|x)

p(ỹ|x)
dỹ, (6.3)

is minimized in order to find an approximate posterior q(ỹ|x) that is optimized to be

as similar as possible to p(ỹ|x). This ensures e”cient encoding while preserving fidelity,

aligning the learned model with the compression objective.
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To measure how well the approximate posterior q(ỹ|x) aligns with the true posterior

p(ỹ|x) on average, the expectation of the KL divergenze is minimized, ensuring that the

overall “distance” (in KL sense) across the entire data distribution is reduced, rather

than just for a single data value:

Ex∼pxKL [q(ỹ|x)‖p(ỹ|x)] (6.4)

Observe the definition of the KL divergence involves an expectation with respect to ỹ

drawn from the approximate posterior q(ỹ|x). Thus, for each data point x, the mismatch

between q(ỹ|x)and p(ỹ|x) must be integrated over all latent-variable values ỹ. As so, the

goal to be minimized turns into:

Ex∼pxKL [q(ỹ|x)‖p(ỹ|x)] = Ex∼pxEỹ∼q

[
− logq(ỹ|x) + log px|ỹ(x|ỹ) + log pỹ(ỹ)

]
+C. (6.5)

• The term − logq(ỹ|x) is zero since the latent variable ỹ is modeled by taking the

true latent y and adding constant-width uniform noise1 and therefore the resulting

density q(ỹ|x) is uniform over a fixed interval.

• The term − log px|ỹ is the weighted distortion, representing the reconstruction

error.

• The term − log pỹ is the rate, representing the bit cost of encoding ỹ.

1This uniform-noise approximation is introduced because true quantization step is not
differentiable, making it incompatible with gradient-based optimization. By replacing it
with uniform noise during training, the model’s parameters can be updated via gradients.
At test time, one can still perform actual quantization.
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To optimize compression, an accurate model for the entropy distribution pỹ is essen-

tial. One common approach is to use a factorized prior model:

pỹ(ỹ) =
∏

i

[
pyi

(0i) ∗U
(
−
1

2
,
1

2

)]
(ỹi), (6.6)

where 0i are parameters learned to represent each univariate distribution pyi
. This

approach simplifies the model but may fail to capture dependencies between latent vari-

ables.

6.2 Learned Analysis and Synthesis Transforms

This section details the transforms used for compressing and then reconstruction

the image. Emphasizing the flow of data through convolution, down/upsampling, and

nonlinear normalizing, the diagrams in Figure 10 depict the forward and inverse processes.

The block ga and gs represent the autoencoder architecture, instead the autoencoder

related to the hyperprior correspond to ha and hs. The block Q represents quantization,

while AE, AD and CB represent respectively arithmetic encoder, arithmetic decoder and

the compressed bit-stream.

There has traditionally been a preference for orthogonal linear transforms (e.g., block

transforms or wavelets) to reduce correlations in image signals before entropy coding.

Linear transforms alone cannot completely handle higher-order relationships; hence, using

nonlinear operations helps to improve decorrelation even further (8). Inspired by local

normalization mechanisms in biological vision, the approach in (9) proposes a generalized

divisive normalization (GDN) to reduce statistical dependencies in natural images. The

synthesis stage then uses an invertible form of that normalization (IGDN), combined

with the complementary operations in reverse order.
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6.2.1 Forward Analysis Transform

The forward (analysis) transform, denoted by ga, aims to map an input image x to a

latent representation y. As shown on the left side of Figure 10, the process is divided into

three stages of convolution, subsampling, and divisive normalization. In the kth stage,

the input is a set of feature maps {u
(k)
j }, and the output is {u

(k+1)
i }. Each stage begins

with an affine convolution:

v
(k)
i (m,n) =

→

j

(
hk,i,j ∗ u(k)

j

)
(m,n) + ck,i, (6.7)

where hk,i,j denotes the convolution filters for the kth stage, ck,i is a learned bias, and

(m,n) indexes spatial positions. Next, downsampling is performed:

w
(k)
i (m,n) = v

(k)
i

(
skm, skn

)
, (6.8)

where sk is the integer downsampling factor for stage k. Finally, the generalized divisive

normalization (GDN) acts elementwise on these downsampled outputs:

u
(k+1)
i (m,n) =

w
(k)
i (m,n)

(
βk,i +

∑
j γk,i,j

(
w

(k)
j (m,n)

)2)
1
2

, (6.9)

where βk,i > 0 and γk,i,j ≥ 0 are trainable parameters. Repeated over three successive

stages, the transform progressively reduces spatial resolution and normalizes feature maps

to remove correlations.

The complete set of parameters{h, c, β, γ} across all stages is typically denoted as

the analysis parameter vector φ. These parameters are jointly learned during training.
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6.2.2 Inverse Synthesis Transform

The inverse (synthesis) transform, denoted by gs, execute the same operation of the

analysis pipeline in the reverse order. It receives a latent code ŷ and attempts to recon-

struct an approximation x̂ of the input image. As shown on the right side of Figure 10, the

operations within each stage are reversed in order: an invertible normalization (IGDN)

is followed by upsampling and then an a”ne convolution. For the kth stage, the inter-

mediate variables are indexed similarly by (m,n).

The invertible GDN (IGDN) operation is specified by

ŵ
(k)
i (m,n) =

û
(k)
i (m,n)

(
β̂k,i +

∑
j γ̂k,i,j

(
û
(k)
j (m,n)

)2) 1
2

, (6.10)

where û
(k)
i denotes the input tensor to this IGDN stage, and {β̂, γ̂} are the learned

normalization parameters. Next, upsampling is performed:

v̂
(k)
i (m,n) =






ŵ
(k)
i

(
m
ŝk
, n
ŝk

)
, if m

ŝk
and n

ŝk
are integers,

0, otherwise,

(6.11)

where ŝk is the corresponding upsampling factor (matching sk from the forward pass).

Finally, the affine convolution for reconstruction is

û
(k+1)
i (m,n) =

→

j

(
ĥk,i,j ∗ v̂(k)j

)
(m,n) + ĉk,i. (6.12)
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These steps repeat for three stages until a final reconstructed image x̂ is obtained. The

inverse parameters {ĥ, ĉ, β̂, γ̂} are collected into the synthesis vector θ, optimized jointly

with the forward parameters.

6.3 Overview of the Scale Hyperprior

In conventional transform coding frameworks, significant spatial dependencies are

present among the components of the latent representation ŷ. The integration of an hy-

perprior (as shown in Figure 9), as proposed in (7) that is an extension of the architecture

presented in (9), helps the architecture to better model the dependencies through the

implementation of extra layers to enhance the parameter 0i estimation. This addition

carries an extra set of random variables, z̃, used to accurately model these dependencies.

Once z̃ is known, it essentially controls the distribution of ỹ, hence making the ele-

ments of ỹ conditional independent. Each element of ỹ thus has a simpler, independent

distribution depending on a given z̃. z̃ helps the model to precisely account for spatially

changing scales in ỹ, hence improving expressiveness of the representation.

The latent representation ỹ is made of different ỹi, each of them is modeled as a Gaus-

sian distribution with zero-mean and standard deviation σi. These standard deviations

are predicted using the transform hs applied to z̃:

pỹ|z̃(ỹ|z̃, θh) =
∏

i

[
N
(
0, σ̃2

i

)
∗U

(
−
1

2
,
1

2

)]
(ỹi), (6.13)

where σ̃ = hs(z̃; θh) represents the spatially varying standard deviations, and U denotes

a standard uniform distribution.
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Figure 9: Transform coding model with the integration of the hyperprior and the opera-
tional workflow of the model.

An additional parametric transform ha is applied atop y, resulting in a single joint

variational posterior:

q(ỹ, z̃|x,φg,φh) =
∏

i

U

(
ỹi|yi −

1

2
, yi +

1

2

)
·
∏

j

U

(
z̃j|zj −

1

2
, zj +

1

2

)
, (6.14)

where y = ga(x;φg) and z = ha(y;φh).

The latent representation y e”ciently captures the spatial distribution of standard

deviations, and enables a stronger modeling of the dependencies.
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Similarly to ỹ, the hyperprior z̃ is modeled as:

pz̃|0(z̃|0) =
∏

i

[
pzi|0(i) (0(i)) ∗U

(
−
1

2
,
1

2

)]
(z̃i), (6.15)

where 0(i) are parameters containing each univariate distribution pzi|0(i).

The modified expectation of KL divergence to be minimized is:

Ex∼pxEỹ,z̃∼q

[
logq(ỹ, z̃|x)− log px|ỹ(x|ỹ)− log pỹ|z̃(ỹ|z̃)− log pz̃(z̃)

]
+ C (6.16)

• The first term (logq) is approximated to zero due to the uniform densities of unit

width of q as explained in the previous section 6.1.1.

• The second term (− log px|ỹ) represents distortion.

• The third and fourth terms (− log pỹ|z̃ and − log pz̃) encode the cross-entropy costs

for ỹ and z̃, respectively. The fourth term can be interpreted as side information.

6.3.1 Compression Process with a Scale Hyperprior

The compression process is as follows:

1. The encoder generates spatially variable standard deviation y applying the analysis

transform ga to the input x.

2. The information about these standard deviations is elaborated by the transform

ha, resulting in z.

3. z is quantized to produce ẑ, which is compressed and transmitted as side informa-

tion.
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Figure 10: Architecture of the Scale Hyperprior model.

4. The decoder reconstructs ẑ from the transmitted signal and applies hs to estimate

σ̂, the spatial distribution of standard deviations.

5. Using σ̂, the decoder recovers ŷ, which is then fed into the synthesis transform gs

to reconstruct the image x̂.

6.4 Conclusion

Integrating variational autoencoding with transform coding achieves state-of-the-art

performance in lossy compression applications.

The scale hyperprior enhances traditional transform coding: it models spatial depen-

dencies through latent variables, which allows the model to capture these dependencies

more effectively in the latent representation. The architecture, leveraging on side infor-
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mation ẑ modeling, enhances not only rate-distortion performance but also provides a

robust mechanism for adaptive image compression.



CHAPTER 7

IMAGE DENOISING

Image denosing has progressed a lot in the years, starting from the classical approach

where the theoretical, mathematical and analytical frameworks were the basis for every

technique to the new upcoming methods guided by the breakthrough of deep learning. In

the following a quick overview of the most importat step in the history of image denoisy

is presented, drawing inspiration from (13).

7.1 Problem Definition

The image denoising task tries to recover a clean imagex ∈ RN from a noisy observa-

tion y ∈ RN, by designing a denoiser x̂ = D(y,σ) that approximates the true image x

given y and the noise level σ. The noisy data is:

y = x+ v, (7.1)

where the noise v ∈ RN is modeled as a zero-mean independent and identically distributed

(i.i.d.) Gaussian noise with variance σ2, denoted as v ∼ N (0,σ2I).

The Mean Squared Error (MSE), compute the average square difference between the

clean image and the reconstructed one, evaluating the quality of the denoising method

used:

MSE = E
[
‖x− x̂‖22

]
= E

[
‖x−D(y,σ)‖22

]
, (7.2)
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If the average square difference between the clean image and the reconstructed one is

minimal, meaning if the MSE is minimized, the denoisiner that can recover x is optimal:

x̂MMSE = E[x|y], (7.3)

where MMSE stands for Minimum Mean Squared Error. It is di”cult to implement a

denoiser that e”ciently achieves minimum mean square error in practice.

7.1.1 Challenges in Image Denoising

The simplicity of the problem definition is deceptive. Different filtering methods are

able to lower noise. However, they degrade image content such as edges, textures, and

fine details. Effective denoising requires a careful design and algorithms to balance noise

reduction with preservation of important visual structures.

7.1.2 The Gaussianity Assumption

The above formulation assumes that the noise follows a zero-mean i.i.d. Gaussian

distribution. This assumption, that simplifies the analysis, is supported by:

• Central Limit Theorem: the theorem states that given X1, X2, . . . , Xn i.i.d. ran-

dom variables with finite mean µ and finite, nonzero variance σ2. Consider the

standardized sum:

Sn =
1√
n

n→

i=1

(Xi − µ

σ

)
. (7.4)

Then, as n → ∞, Sn
d
−→ N(0, 1). In other words, for large n, Sn converges in

distribution to the standard normal. Due to this theorem, many physical processes

contributing to noise accumulation result in Gaussian distributions.
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• Poisson Noise and Transformation: although photon noise in imaging systems

is inherently Poissonian, at high photon counts, the Poisson distribution approx-

imates a Gaussian distribution. Variance-stabilizing transforms can convert the

noise to Gaussian-like behavior for low photon counts.

• Mathematical Simplicity: Gaussian noise leads to elegant mathematical formu-

lations, making derivations such as the log-likelihood p(y|x) and related models

tractable.

• MMSE Denoisers and Theoretical Importance: MMSE denoisers designed

for Gaussian noise possess critical theoretical properties that enable their use in

inverse problems.
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7.2 Image Denoising – The Classical Era

Driven by developments in signal and image processing, the evolution of e”cient image

denoising methods has been quite important. Two key periods define this evolution: the

classical era, which runs from the 1970s to the early 2010s, and the AI revolution, which

started in 2012 and is still under progress.

7.2.1 The Bayesian Perspective in Denoiser Design

Two common approaches to recover x given noisy image model y = x + v (v ∼

N (0,σ2I) is zero-mean Gaussian noise) are the Maximum Likelihood Estimation (MLE)

and Maximum A Posteriori (MAP) Estimation.

7.2.1.1 Maximum Likelihood Estimation (MLE)

MLE estimates the value of x that maximizes the likelihood of the observed noisy

image y:

x̂MLE = argmax
x

p(y|x). (7.5)

For Gaussian noise, the likelihood is:

p(y|x) = const · exp
(
−
‖y − x‖22

2σ2

)
. (7.6)

Maximizing this likelihood leads to:

x̂MLE = y. (7.7)
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This result shows the ill-posed problem since the MLE solution fails to incorporate any

additional knowledge or constraints that would provide a better reconstruction, it simply

produces the noisy image without e”ciently denoising it.

7.2.1.2 Bayesian Posterior and MAP Estimation

The MAP estimate tries to overcome the limitations of MLE, balancing the fidelity

to the noisy observation y and regularization:

p(x|y) =
p(y|x) · p(x)

p(y)
. (7.8)

By incorporating the prior distribution p(x), the MAP estimate is defined as:

x̂MAP = argmax
x

p(x|y) = argmin
x

{
‖y − x‖22

2σ2
− log(p(x))

}

. (7.9)

The regularizer used in the MAP estimation is − log(p(x)), where the term p(x) is

the prior distribution. This factor drives the solution toward more realistic outcomes,

thereby providing high-quality reconstructions, penalizing estimate of x that have low

prior probability, suggesting that they are unlikely candidates for the original x.

7.2.1.3 Minimum Mean Squared Error (MMSE) Estimation

The MMSE estimator minimizes the expected squared error:

x̂MMSE = E[x|y] =

∫

x · p(x|y)dx. (7.10)
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Computing the MMSE estimate is di”cult due to the complexity of the posterior dis-

tribution. This has led to the adoption of MAP-based approaches in classical image

denoising.

7.2.1.4 Key Developments in Priors

Several major trends have characterized the evolution of priors:

• From Gaussian to Heavy-tailed Distributions: instead of easy to use Gaus-

sian priors, heavy-tailed distributions ( distribution where a relatively higher prob-

ability is placed on extreme (very large or very small) values than light-tailed dis-

tributions) are used to better capture natural image statistics.

• From Linear to Non-linear Representations: linear techniques like Principal

Component Analysis (PCA) gave way to non-linear methods, including wavelets

and sparse modeling, enabling richer representations.

• From Classical to the Deep Learning Priors: instead of depending just on

theoretical assumptions, the priors can learn from large datasets and can change

their internal representations.

7.3 The Deep Learning Revolution in Image Denoising

Deep learning has revolutionized image processing including denoising. Designing

powerful denoisers now has new directions thanks to the ability to train overparameter-

ized networks with non-convex goals.

Deep learning techniques achieve better results on Peak Signal-to-Noise Ratio (PSNR)

and visual quality than conventional approaches most of the times.

7.3.1 Supervised Denoising

Usually, supervised deep learning-based denoising consists in the following steps:
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1. Dataset Preparation: collect a large dataset of clean images X = {xk}
M
k=1. Gen-

erate noisy counterparts Y = {yk}
M
k=1, where yk = xk + vk and vk ∼ N (0,σ2I).

2. Model Architecture: define a parametric denoising function x̂ = DΘ(y,σ), pa-

rameterized by Θ, using architectures such as CNNs, UNet, or Transformers.

3. Loss Function: define a loss function to compare the denoised output x̂ with the

ground truth x, e.g.,

L(Θ) =
M→

k=1

‖xk −DΘ(yk,σ)‖22. (7.11)

4. Optimization: minimize the loss L(Θ) using stochastic gradient descent (SGD)

with backpropagation.

7.3.2 Unsupervised and Self-supervised Techniques

When clean images are not available, unsupervised and self-supervised techniques are

used such Noise2Noise (14), Noise2Void (15), and Noise2Self (16). These methods train

denoisers by directly exploiting noisy image features including statistical consistency and

self-similarity.

7.3.3 Denoising Architectures and Advancements

The evolution of denoising architectures highlights the field’s rapid progress:

• Classical to Modern Networks: Initial methods using feed-forward CNNs evolved

into UNet-based architectures and, more recently, Transformer-based models.

• Training Objectives: While traditional methods prioritize MSE and PSNR,

newer approaches explore perceptual losses like Structural Similarity Index Mea-

sure (SSIM) and Learned Perceptual Image Patch Similarity (LPIPS) for visually

pleasing results.
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• Generative Models: GAN-based denoising challenges the denoiser to produce

outputs indistinguishable from authentic images, emphasizing perceptual quality.

7.3.4 Color Image Denoising

Most denoisers are adapted to work with color images through techniques like:

• Joint Channel Processing: Flatten RGB channels into longer vectors for joint

processing.

• Channel Separation: Operate on channels separately.

• Deep Learning Approaches: Process RGB images as 3D tensors with 3D con-

volutions or other specialized methods that account for color layer interactions.

7.4 Conclusion

The classical era of image denoising set fundamental groundwork for current methods.

The context of imagine denoising has changed with the move from conventional tech-

niques to deep learning. Although clean data availability makes supervised approaches

most effective, unsupervised and self-supervised procedures present strong alternatives.



CHAPTER 8

IMAGE RESTORATION AND DENOISING TECHNIQUES

As explained in the previous chapter, image acquisition, transmission, or processing

can introduce degradation, including noise, blur, or other distortion. Image restoration

tries to recover a clean image from its degraded version.

Advancements in deep learning have led to state-of-the-art (SOTA) results in im-

age restoration tasks. Many of these methods are based on the UNet architecture, a

classical design that employs a U-shaped structure with skip connections. Variants of

UNet have demonstrated significant performance gains with increased system complexity.

This complexity can be categorized broadly into inter-block complexity and intra-block

complexity.

8.1 Architectural Complexities in Image Restoration

8.1.1 Inter-block Complexity

Every stage in multi-stage networks improves the output of the one before it. The

idea is to break di”cult tasks into more manageable smaller tasks. Inter-block complex-

ity arises from multi-stage architectures where performances are improved along with

the computational overhead. On the other hand, single-stage approaches with a reduced

complexity can provide good performance. Combining these methods allows hybrid ap-

proaches to get SOTA performances.

8.1.2 Intra-block Complexity

Intra-block complexity focuses on the architecture of individual network blocks where

different techniques are applied to improve block-level performances. For instance:

75
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• Channelwise Attention reduces the computational and memory overhead of self-

attention by replacing spatial attention maps with channelwise attention maps.

• Gated Linear Units are used to enhance non-linear modeling capabilities.

• Window-based Attention is introduced to allow the architecture to focus on

localized regions of an image.

• Depthwise Convolutions are added in feed-forward layers to improve the network

capability of capturing local features.

Figure 11: U-Net architecture used.
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8.2 Building a Simple Baseline

The objective presented in (17) is to find e”cient and effective architectures for image

restoration tasks: components are added if their necessity is verified. For this purpose, the

performance of each component is evaluated on the SIDD and GoPro datasets. SIDD

contains real smartphone images shot under different lighting conditions, paired with

corresponding clean reference images. Deep learning models are trained on it to reduce

noise patterns in the images. Video sequences from a GoPro camera constitute the

GoPro dataset; motion-blurred frames and their corresponding sharp ground truth. Deep

learning techniques for deblurring and other restoration tasks are trained and evaluated

using this dataset.

The presented baseline achieves state-of-the-art results with minimal computational

costs, showing how increasing complexity is not the only path to better performance.

The architecture is called Nonlinear Activation Free Network (NAFNet)

8.2.1 Architecture

The architecture features a single-stage U-shaped ( Figure 11) with skip connections to

reduce inter-block complexity. Inspired by UNet(32), this architecture is achieve compet-

itive results, as per empirical data presented in the original paper (17) (see Tables Table I

and Table II).

8.2.2 Designing the Internal Block

The internal structure of each block needs to be carefully designed.

8.2.2.1 Plain Block

The idea is to start with a simple architecture of basic components - convolution,

Rectified Linear Unit (ReLU), and shortcut connections - and gradually add more com-



78

plex block or feature that are needed. These base elements are arranged as Figure 12 a

shows.

Figure 12: Block Scheme.

8.2.2.2 Normalization

Training deep neural networks depends critically on normalization process that im-

prove the statistics of the data processed, facilitating the training phase.
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Adding Layer Normalization to the plain block stabilizes training and improve per-

formance as empirically shown in (17):

• +0.44 dB on the SIDD dataset (from 39.29 dB to 39.73 dB).

• +3.39 dB on the GoPro dataset (from 28.51 dB to 31.90 dB).

8.2.2.3 Activation Functions

ReLU is a widely used activation function in computer vision tasks. However, recent

SOTA methods increasingly favor the Gaussian Error Linear Unit (GELU) (33) that is a

smoother version of ReLU. In the presented architecture, ReLU is replaced with GELU

in the plain block, resulting in the following:

• Comparable performance on the SIDD dataset (39.73 dB with ReLU versus 39.71 dB

with GELU).

• A non-trivial improvement on the GoPro dataset (31.90 dB with ReLU versus

32.11 dB with GELU).

8.2.2.4 Attention Mechanisms

Attention mechanisms are integral to modern computer vision models. While vanilla

self-attention (34) captures global information, its quadratic computational complexity

makes it impractical for high-resolution image restoration. Alternative approaches in-

clude:

• Window-based Attention: applied in fixed-size local windows, it reduces com-

putation but sacrifices global information.

• Channel-wise Attention: Modifies spatial attention to channel attention, guar-

anteeing computing e”ciency while preserving global information.
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Adding channel attention to the plain block achieve bettere results as shown by (17):

• +0.14 dB on the SIDD dataset (39.71 dB to 39.85 dB).

• +0.24 dB on the GoPro dataset (32.11 dB to 32.35 dB).

Figure 13: Baseline Architecture.

8.2.3 Summary of the Baseline

The resulting block structures are reported in Figure 12. The Figure 12.b show

a simpler structure, but ensure that each component is effective, producing a robust

model. The Figure 12.c present additional simplified block that further enhances the

performance without increasing the complexity too much. This additional blocks will
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be shown in the section 8.3. The baseline architecture (Figure 13) present a encoder-

decoder structure with a U-Shaped scheme. Each layer of the encoder or decoder is

made by different NAF block (Figure 12.b) that sequentially lower or increase the data

dimensionality and simultenously lowering the noise in the recovered data. This is the

architecture presented by (17) which surpasses previous State-Of-The-Art results on the

SIDD and GoPro datasets with significantly lower computational costs (as illustrated in

Tables Table I and Table II).

8.3 Gated Linear Units and Simplified Channel Attention for Image Restoration

Gated Linear Units (GLUs) (35) work by multiplying element-wise the outputs of

two linear transformation layers - one of which passes through a nonlinear activation

function. This approach indirectly increases nonlinearity and can enable the network to

learn more complex representations.

8.3.1 Simplification of GLUs

The presented architecture (17) simplifies GLUs by removing the explicit nonlinear

activation function without degrading performance. High performance of the GLU mech-

anism is maintained by its built-in nonlinearity resulting from the product of two linear

transformations.

Gated Linear Units (GLUs) are a powerful mechanism that introduces nonlinearity

into neural networks. GLUs can be formulated as:

Gate(X, f, g,σ) = f(X)* σ(g(X)), (8.1)
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X is the feature map, f and g are linear transformations, σ is a nonlinear activation

function, and * represents element-wise multiplication.

Nonlinearity is incorporated in the GLU structure by means of the product of two

transformations, hence improving model performance. Including Gated Linear Units

complicates the block, going against the simplicity goal. One alternative is to use the

GELU (Gaussian Error Linear Unit) function(33) that can be approximated as:

GELU(x) = x1(x) ≈ 0.5x

(

1+ tanh

[√
2

2

(
x+ 0.044715x3

)
])

. (8.2)

Observe that GELU is identical to GLU when f and g are identity functions and σ

acts as 1(x). This insight suggests that GLU inherently contains nonlinearity and can

function without a dedicated nonlinear activation function. The simplified GLU used

in the presented architecture splits the feature map into two parts and multiplies them

element-wise as shown in Figure 14.c. In this way it implicitly introduces the nonlinearity:

SimpleGate(X,Y) = X*Y, (8.3)

X and Y are equal-sized halves of the same split feature map.

By substituting the GLU with the proposed SimpleGate, the performance on image

restoration tasks improves as shown in (17):

• +0.08 dB on the SIDD dataset (39.85 dB→ 39.93 dB).

• +0.41 dB on the GoPro dataset (32.35 dB→ 32.76 dB).
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Figure 14: Simplified Channel Attention and Simple Gate.

8.4 Simplified Channel Attention

Channel attention is a technique to capture global information e”ciently. Shown in

Figure 14, it is defined as:

CA(X) = X ∗ σ (W2 ·max{0,W1 · pool(X)}) (8.4)

• pool(X) is a global average pooling operation that aggregates spatial information

into channels.

• W1 and W2 are fully-connected layers.

• σ is a nonlinear activation function (e.g., Sigmoid).

• ∗ represents channel-wise multiplication.

This operation generates weights for each channel based on global information, which

are used to adjust the feature map. In the NAFNet (17) a variant called Simplified

Channel Attention (SCA) is implied:
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SCA(X) = X ∗ (W · pool(X)), (8.5)

where W is a single transformation matrix.

Simplified Channel Attention maintains the two most critical aspects of channel at-

tention while reducing its complexity:

• Aggregation of global information.

• Channel-wise interaction.

Despite its simplicity, SCA achieves similar performance to the original channel at-

tention mechanism as shown in (17):

• +0.03 dB on the SIDD dataset (39.93 dB→ 39.96 dB).

• +0.09 dB on the GoPro dataset (32.76 dB→ 32.85 dB).

8.5 Summary

Image restoration and denoising advances are driven by architectural breakthroughs

and clever computational resource use. Multi-stage and single-stage designs handle inter-

block complexity, while methods including channel-wise attention, GLUs, and locally

improved networks address intra-block di”culty.

The presented simplifications and modifications are implemented in Nonlinear Ac-

tivation Free Network (NAFNet) which achieves state-of-the-art results while reducing

computational complexity. NAFNet provides an e”cient framework for image restoration

tasks and competitive performance, the work’s results (17) are reported in the Tables Ta-

ble I and Table II.
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TABLE I: PERFORMANCE OF BASELINE AND NAFNET ON THE SIDD
DATASET.

Method PSNR (dB) Complexity (GMACs)
Baseline 40.30 84
NAFNet 40.30 65

TABLE II: PERFORMANCE OF BASELINE AND NAFNET ON THE GOPRO
DATASET.

Method PSNR (dB) Complexity (GMACs)
Baseline 33.40 84
NAFNet 33.69 65



CHAPTER 9

EXPERIMENTS

9.1 Introduction

In this chapter, the experimental setup and methodology used to validate the proposed

approach to jointly denoise and compress satellite imagery are exposed. The discussing

starts the motivation for integrated denoising and compression (9.2). Next, the dataset

used is presented(9.3), followed by the noise model that simulates real-world satellite

conditions (9.4). The baseline MeanScaleHyperprior architecture is showed in (9.5).

Finally, the several modifications that embed denoising capabilities directly within the

compression framework are presented (9.6). The quantitative and qualitative results of

these experiments will be presented in the next chapter 10.

9.2 Integrated Denoising and Compression for Satellite Imagery

This chapter presents my central contribution: a framework for jointly performing

image denoising and compression within a single architecture. The motivating scenario

involves satellite images acquired in the R, G, B, and NIR bands, which are often cor-

rupted by noise due to sensor limitations and challenging environmental conditions. Tra-

ditional solutions typically chain two separate models - one for denoising, another for

compression - but such an approach can be complex and suboptimal in terms of rate-

distortion performance. Instead, I try to modify an existing compression network, the

MeanScaleHyperprior, to remove noise while encoding images simultaneously.

I hypothesize that incorporating a denoising component directly into the compression

pipeline reduces both the distortion of the transmitted images and the bit rate required.

86
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In other words, if satellite images are denoised early, less extraneous information needs

to be encoded and transmitted. This approach thereby reduce bandwidth constraints

and improves reconstruction quality.

In the experiments, I use the Sentinel 12MS dataset (Section 9.3), on which I simulate

a noise model for training. The theoretical background of the noise model applied to

simulate satellite noise can be found in Section 9.4. 1

9.3 Dataset Description

The availability of curated annotated datasets is important for developing machine

learning models since modern deep learning techniques typically require large-scale data

to achieve high generalization.

Unlike conventional computer vision, which deals with everyday objects in standard

photographs, remote sensing data covers various imaging conditions and modalities. This

intrinsic complexity makes interpretation more challenging.

9.3.1 The SEN1-2 and SEN12MS Datasets

To advance deep learning research in remote sensing, the SEN1-2 dataset (19) was

published in 2018. It contains approximately 280,000 pairs of corresponding Sentinel-

1 Synthetic Aperture Radar (SAR) and Sentinel-2 optical images. SEN1-2 aimed to

simplify the connection between classical computer vision problem and remote sensing

tasks. The data were enormously simplified, as only vertically polarized (VV) Sentinel-1

imagery in dB scale was provided, and Sentinel-2 images were reduced to RGB images

with adjusted histograms without any geolocation information.

1The implemented code is reported 9.4.1.
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Based on feedback from the community, a successive version suitable for the broader

remote sensing community has been published. This is the dataset used in the exper-

iments and it is called SEN12MS (18). This dataset contains complete multi-spectral

information in geocoded imagery and is detailed in the sections below.

9.3.2 SEN12MS Dataset Composition

The SEN12MS dataset reuse images and informations acquired from different spatial

mission as follow:

9.3.2.1 Sentinel-1 Data

The Sentinel-1 expedition used two satellites equipped with C-band SAR sensors, that

are Synthetic Aperture Radar (SAR) instruments that operate at microwave frequencies

in the C-band portion of the electromagnetic spectrum - commonly defined as roughly 4

to 8 GHz, and that are capable of acquiring imagery regardless of weather conditions. By

using a predefined schedule for data collection, the system avoids overlapping requests,

resulting suitable for applications that aim to track changes over extended periods(22).

In SEN12MS (18), the Sentinel-1 data come from ground-range-detected (GRD) im-

ages taken using the commonly used Interferometric Wide Swath (IW) mode. These im-

ages show how much radar energy bounces back from the Earth’s surface (the “backscat-

ter coe”cient”), stored in decibels (dB). The data are recorded at about 5 m resolution

along the satellite’s flight path (azimuth) and 20 m resolution in the perpendicular di-

rection (range).
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The acquired images were ortho-rectification1 using precise orbit information and

elevation data. Aside from this correction, no additional preprocessing was applied,

preserving the data in a near-original state.

9.3.2.2 Sentinel-2 Data

Two identical satellites placed 180◦ apart in the same orbit constitute the Sentinel-

2 mission (21). This program offers multi-spectral images with information on land

surfaces of Earth. Sentinel-2 is especially suitable for vegetation monitoring throughout

the growing season with a swath width2 of up to 290km and a revisit time of over five

days.

In SEN12MS (18), multi-spectral Sentinel-2 data cubes, that are a stack of images

captured at multiple wavelengths (spectral bands) arranged in three dimensions - two

for location on Earth (latitude and longitude) and one for the different spectral bands.

These cubes come from the original georeferenced granules, meaning each pixel in the

images has precise latitude-longitude information so it can be accurately mapped to the

Earth’s surface.

Beyond the standard ortho-rectification step - which corrects for distortions caused

by the satellite’s viewing angle, the curvature of the Earth, and variations in terrain - a

sophisticated mosaicking process of the different images was applied.

1ortho-rectification is the process of geometrically correcting an image to reduce dis-
tortions, sensor artifacts, earth curvature and so on, and align the image with coordinates
on the ground, restoring geometric integrity

2A swath is the width of ground (or ocean) a satellite can image in a single pass,
typically measured in kilometers, which determines how wide an area is captured in each
observation.
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9.3.2.3 MODIS Data and Land Cover Information

The Moderate Resolution Imaging Spectroradiometer (MODIS) captures images of

the entire Earth almost every day, with spatial resolutions ranging from 250 m to 1,000

m across various spectral bands. From these calibrated reflectance data, a hierarchical

classification based on the Land Cover Classification System (LCCS) - supported by

additional post-processing steps - generates annually updated global land-cover maps

(18). The typical resolution of these maps is approximately 500m.

In SEN12MS (18), land-cover information sourced from the MCD12Q1 V6 product 1

was resampled to a 10m pixel size to match the resolution of the Sentinel-1 and Sentinel-2

image patches. Expressly, four distinct layers of classification were provided:

• IGBP Classification Layer : this layer categorizes the Earth’s land surface based

on the International Geosphere–Biosphere Programme (IGBP) scheme. Typical

classes include evergreen needleleaf forests, savannas, croplands, and urban areas.

• LCCS-Derived Land-Cover Layer : this layer refines broad land-cover categories by

incorporating attributes such as vegetation type or density.

• LCCS-Derived Land-Use Layer : Also based on LCCS definitions, the land-use layer

focuses on how land is utilized (e.g., agricultural production, forestry, or urban

development), rather than its biophysical characteristics.

• LCCS Surface Hydrology Layer : This component highlights the presence and extent

of water such as rivers, lakes, and so on.

1The MCD12Q1 series is a standard MODIS land-cover product distributed by the
National Aeronautics and Space Administration (NASA). Version 6 (V6) provides an-
nually updated global land-cover classifications derived from calibrated reflectance data
collected by the Terra and Aqua satellites.
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9.3.3 Data Preparation Using Google Earth Engine

Google Earth Engine (GEE) (23) was used to generate large-scale, multi-sensor remote

sensing image patches for SEN12MS (18). A random sampling of regions of interest

(ROIs) across the globe and within different meteorological seasons was performed.

9.3.3.1 Export and Post-Processing

All Sentinel-1, Sentinel-2, and MODIS data were exported as GeoTiffs at a nominal

10m scale.

9.3.4 Dataset Curation

Upon local retrieval, an inspection protocol was applied:

• Each full-scene triplet (Sentinel-1, Sentinel-2, and MODIS Land Cover) was vi-

sualized. Scenes with large no-data areas, undetected clouds, or artifacts were

discarded.

• The retained 252 scenes were split into 256 × 256 pixel patches, each overlapping

by 50%. This overlap was chosen to maximize sample count without excessively

compromising patch independence.

• A second visual inspection identified and removed patches with localized issues

(e.g., residual clouds, jet streams, or distortions). Ultimately, 180,662 valid patch

triplets remained, forming the SEN12MS dataset, requiring 421.3 GiB of storage.

9.3.5 Dataset Structure

The final collection includes 180,662 triplets of Sentinel-1, Sentinel-2, and MODIS

data. The dataset is structured into four main branches:

• ROIs1158 spring
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• ROIs1868 summer

• ROIs1970 fall

• ROIs2017 winter

These seed values (1158, 1868, 1970, 2017) correspond to random samplings during dif-

ferent northern hemisphere seasons. Each branch contains multiple ROIs or ”scenes”

subdivided into patches. Filenames follow the pattern:

ROIsSSSS SEASON DD pXXX.tif

where SSSS is the seed, SEASON is the meteorological season, DD is a data identifier (s1,

s2, or lc), and pXXX is a unique patch ID.

The absence of a fixed training/testing split allows end-users to partition data best

suited to their particular tasks (e.g., grouping by seasons or by specific ROIs).

For the thesis purpose the branch ROIs1868 summer of SEN12MS is used. It is more

than enough for the experiments requirements.

9.4 Noise Model for Satellite Imagery

Satellite-based optical sensors typically generate images affected by multiple noise

sources. These images exhibit pixel-dependent variance because noise may include an

additive component (often modeled as Gaussian or ”dark/electronic” noise) and a

multiplicative component (often modeled as Poisson or ”photon/shot” noise).

σn(x, y) =
√

a2 + b Inf(x, y) , (9.1)

where Inf(x, y) denotes the noise-free signal at pixel coordinates (x, y), a represents

the dark (Gaussian) noise level, and b corresponds to the scale of the photon (Poisson)
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noise. These parameters closely relate to how the sensor electronics and photon detection

processes operate.

9.4.0.1 Additive (Dark) Noise

The term a2 in Equation (Equation 9.1) model the noise component known as dark

noise, that is generated from the thermal activity and readout electronics of the sensors.

Dark noise is essentially constant over the image and affects lower-intensity areas more

noticeably where the noise to signal ratio can be higher.

9.4.0.2 Multiplicative (Photon) Noise

The second term, b Inf(x, y) in Equation (Equation 9.1), model the photon (or shot)

noise that describes the intrinsic randomness in the arrival of photons at the detector, re-

flecting the quantum nature of light. As pixel intensity increases, the random fluctuations

also grow proportionally, reflecting the physical behavior of photonic detection.

9.4.1 Code

In the following is reported the implemented noise model in python:

[language=python]

def add_noise(image , a_range =(10.0 , 40.0) , b=3.0):

"""

Simulation of ’shot noise ’ (Poisson) and ’read/dark

noise ’ (Gaussian)

on a 16-bit image (range [0, 65535]) , mimicking a

satellite sensor.
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Parameters:

- image : np.ndarray , clean image (range [0, 65535])

on which to simulate the noise

- a_range : tuple (min_std , max_std) specifying the

uniform random interval for the standard deviation of

the Gaussian noise (in DN).

- b : scaling factor to translate DN into average

photon/electron counts.

Returns:

- noisy_image: np.ndarray (float or same dtype as ‘image

‘) in [0, 65535] , containing the noisy image.

"""

# Randomly sample the std of the read noise (Gaussian)

a = np.random.uniform(a_range [0], a_range [1])

# Gaussian noise (read/dark noise), mean 0 and std = a

read_noise = np.random.normal(loc=0.0, scale=a, size=

image.shape)

# Compute mean counts (lambda) for the Poisson

# b * image => average number of photons/electrons
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lambdas = np.maximum(b * image , 0)

# Poisson sampling (shot_counts)

shot_counts = np.random.poisson(lam=lambdas)

# Zero -mean shot noise = (Poisson count) - (mean value)

shot_noise = shot_counts - lambdas

# Sum original image , read noise , and shot noise

noisy_image = image + read_noise + shot_noise

# Final clip to stay within 16-bit limits [0, 65535]

noisy_image = np.clip(noisy_image , 0, 65535)

return noisy_image / 65535.0

9.4.2 Relevance for Image Compression and Denoising

In typical satellite acquisition settings, raw images have non-negligible noise levels;

sending or storing such noisy data in compressed form without denoising can degrade

performance. An example of the noise simulated on the training images is reported in

Figure 15 (other results are reported at the end).

Our work aims to develop a compression model that simultaneously removes noise

and compresses the input image. Denoising the image before or during compression can

preserve details, reduce bitrates more effectively, and improve the decompressed result.
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Figure 15: the RGB clean and noisy version of the training image.

9.5 Baseline: MeanScaleHyperprior Overview

MeanScaleHyperprior is a widely used architecture for learned image compression, a

schematic diagrab is proposed in Figure 16. It consists of:

• Analysis and synthesis transform (ga and gs), which map images to a latent

representation and reconstruct them back, respectively.

• Hyperprior analysis and synthesis (ha and hs), which encode and decode side

information (e.g. scale or variance parameters) to further refine latent entropy

coding.

• The block Q represents quantization, while AE, AD and CB represent respectively

arithmetic encoder, arithmetic decoder and the compressed bit-stream.
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• The difference between the Scale hyperprior is that together with the scale also the

mean is estimated in the hyperprior branch.

Figure 16: Architecture of the Mean Scale Hyperprior model.

In the MeanScaleHyperprior, no explicit denoising modules are included. The net-

work is trained to minimize a rate-distortion objective, balancing the bit rate R with

a distortion metric D (e.g., MSE) on reconstructed images. However, when the input

data are corrupted by noise - as commonly encountered in satellite systems - the latent

representation may become less e”cient to encode, resulting in higher bit rates or lower

fidelity.
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9.6 Proposed Architectures for Joint Compression and Denoising

I explored four architectures that integrate denoising components within the Mean-

ScaleHyperprior framework. Each variant attempts to remove noise while simultaneously

learning an e”cient latent representation.

Figure 17: Architecture of the Denoisy Mean Scale Hyperprior model.
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9.6.1 DenoisyMeanScaleHyperprior

9.6.1.1 Motivation

In DenoisyMeanScaleHyperprior, I incorporate a simplified channel attention (SCA)

module into the primary compression pipeline as shown in Figure 17. The idea is to

attenuate noise early on so that subsequent transforms encode mostly clean features.

9.6.1.2 Architecture

1. SCA Block: A lightweight attention mechanism that assigns channel-wise weights

to feature maps. It emphasizes cleaner features and suppresses noise-corrupted

channels.

2. Integration: The SCA block is added within ga, right after the convolution and

nonlinearity layers, allowing the network to learn how to attenuate noise before the

main compression process.

3. Hyperprior Processing: After passing through SCA, the latent is processed by

ha and hs as usual to generate side information for entropy coding.

9.6.2 LatentDenoiser

9.6.2.1 Motivation

Instead of focusing on noise suppression in the pixel domain, LatentDenoiser defers

denoising to the latent space. In many cases, the latent representation can isolate noise

patterns more effectively, making denoising tasks simpler than in the raw image domain.

A scheme of the architecture is shown in Figure 18

9.6.2.2 Architecture

1. Primary Analysis: The noisy image is transformed by ga into a latent.
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Figure 18: Architecture of the Latent Denoiser model.

2. NAFNet in Latent Space: A dedicated NAFNet-based denoiser is inserted be-

tween ga and gs to remove noise in the latent domain.

3. Hyperprior Processing: The denoised latent is passed through ha and hs to

obtain side information and finalize the compression.

4. Final Reconstruction: gs reconstructs the compressed image.

9.6.3 NAFCompression

9.6.3.1 Motivation

While LatentDenoiser insert a single denoising stage in the latent, NAFCompression

repeatedly interleaves NAFBlocks throughout the entire pipeline. I incorporate single

NAFBlocks at different points, ensuring noise is suppressed progressively. The aim is to
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remove noise sooner, resulting in a more compact and less entropic latent representation.

The model workflow is depicted in Figure 19.

Figure 19: Architecture of the NAFCompression model.

By repeating NAFBlocks throughout the analysis and synthesis transforms (both

main and hyperprior), the model refines and denoises features at multiple scales. This

comprehensive integration can lead to more robust noise suppression and better rate-

distortion performance, albeit with an increase in computational complexity.

9.7 Conclusion and Next Steps

In this chapter, I introduced four approaches for merging denoising and compression

into a single learned framework:
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• DenoisyMeanScaleHyperprior, which uses a simplified channel attention block to

filter out noise early on.

• LatentDenoiser, which places a NAFNet-based denoiser in the latent space.

• NAFCompression, which repeatedly inserts NAFBlocks throughout both the main

and hyperprior transforms.

All these variants aim to reduce redundancy in the latent representation by remov-

ing noise, thereby improving rate-distortion performance. In the subsequent chapter,

I will present quantitative and qualitative results demonstrating how each architecture

performs in terms of bit rate, distortion, and computational overhead.



CHAPTER 10

RESULTS

10.1 Overview

The performance of the five distinct compression and denoising architecture are com-

pared:

1. DenoisyMeanScaleHyperprior (blue)

2. NAFCompression (green)

3. LatentDenoiser (red)

4. MeanScaleHyperprior (orange)

Figure 20 displays the corresponding rate-distortion curves, where PSNR is plotted

against the average bitrate. As expected, all methods improve in PSNR with increas-

ing bitrate, but each method follows a distinct trajectory depending on how it balances

compression fidelity and the treatment of noise.

From a high-level perspective, the starting model MeanScaleHyperprior (orange

curve) and NAFCompression (magenta curve) show the best results across a broad

range of bitrates.

In contrast, methods such as DenoisyMeanScaleHyperprior (red) and Latent-

Denoiser (green) demand higher bitrates or result in slightly lower PSNR when the

noise is extreme.

103
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Figure 20: Rate-Distortion Curves (PSNR) for five tested approaches.

10.2 Strengths and Weaknesses of Training Objectives

In deep learning-based image compression, a model is trained by taking an input image

- potentially noisy - compressing and subsequently decompressing it, and then comparing

the reconstructed output to a target image. The goal is to minimize the difference

between the target and the reconstructed images - thus maximizing visual fidelity - while

also achieving the lowest possible bitrate, measured in bits per pixel. When dealing with

noisy inputs, two main training strategies can be considered: in one, the model receives

a noisy image but is trained to reconstruct the clean version by comparing its output

with a noise-free target; in the other, the model instead aims to reconstruct the same
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noisy image, preserving the noise rather than removing it. These different objectives lead

to distinct approaches in how the model learns to balance compression performance and

image quality.

Noisy-Target Training: Strengths:

• Captures actual pixel variations present in noisy conditions.

• Can be beneficial for scenarios where preserving certain noise characteristics

is necessary.

Weaknesses:

• The model invests bits in encoding noise fluctuations, leading to higher bi-

trates.

• Reconstruction quality will be penalized by the presence of noise.

Clean-Target Training (Proposed Method): Strengths:

• Filters out noise, thereby saving bits and improving compression e”ciency.

• Yields sharper and denoised outputs.

Weaknesses:

• May not faithfully reproduce noise if the application requires its reconstruc-

tion.

In this thesis, I wan to show that the clean-target strategy can achieves superior

rate-distortion performance when the final goal is a noise-free reconstruction. The model

used to simulate the noise on the training set of image is reported in 9.4. The approaches
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are tested on the MeanScaleHyperprior and NAFCompression models to achieve both

effective denoising and robust compression.

10.3 Analysis of Rate-Distortion Performance in the Presence of Noise

This chapter examines the rate-distortion behavior of different compression models

when trained and tested on noisy images. Figure 21 presents a set of Peak Signal-to-

Noise Ratio (PSNR) curves plotted against the average bitrate (in bits per pixel). Four

variations are compared:

1. NAFCompression NoisyTraining (red curve): NAFCompression trained with

the noisy-target approach.

2. MeanScaleHyperprior NoisyTraining (green curve): MeanScaleHyperprior trained

with the noisy-target approach.

3. NAFCompression (blue curve): NAFCompression trained with the clean-target

approach.

4. MeanScaleHyperprior (magenta curve): MeanScaleHyperprior trained with the

clean-target approach.

Each curve reflects how effectively a given model reconstructs the target image for

different value of the parameter λ, that balances rate and distortion during the loss

function evaluation. I will delve into why these curves assume their specific shapes,

how noise affects the training process, and what these results suggest about encoding

e”ciency for clean versus noisy images.

10.4 Background on Rate-Distortion and PSNR

Rate-distortion theory explores the fundamental trade-off between the bitrate of a

compressed signal and the distortion (or error) resulting from decompression. In image
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compression, the bitrate measures the average number of bits required to encode one

pixel, while distortion is often quantified via PSNR. Higher PSNR indicates less distortion

and, therefore, a more faithful reconstruction. However, achieving higher PSNR typically

requires more bits.

When noise is introduced into the training set - especially if the model is trained to

reconstruct noisy images - its presence influences the content being compressed. Models

attempting to encode noisy images inherently dedicate bits to represent noise fluctuations.

Conversely, models that are trained to reconstruct clean images learn to encode the

underlying structure of the image and discard the noise component.

10.5 Interpretation of the PSNR Curves

Figure 21 plots PSNR (vertical axis) versus the bitrate (horizontal axis). On the left

of the plot all models show an higher distortion (lower PSNR) but use a lower number

of bit to encode the images(lower bitrate). As the bitrate increases (moving right), the

PSNR improves. The main observations are:

i) Models Trained on Noisy Targets Show Higher Bitrate for Compara-

ble Distortion. The NAFCompression NoisyTraining andMeanScaleHyperprior -

NoisyTraining curves (red and green) represent the model trained with the noisy-

target approach. They generally show at higher bitrates for the same PSNR level

as their clean-target counterparts. This is because, during training, these models

learn to encode not only the core image content but also the noise fluctuations.

The extra bits required to capture these random variations cause a systematic shift

in the curve to the right.



108

Figure 21: Rate-Distortion Curves (PSNR) for various training strategies.

ii) PSNR are comparable. When one model is trained to predict a clean target,

it focuses on discarding the noise. During training, its PSNR is measured against

the clean target, which guides the model to ignore irrelevant noisy details from

the input. In contrast, a model trained on a noisy target has its training metrics

measured against the noisy image, so it aims to replicate noise details as well. To

compare the two approaches, once the training phase is complete, all the models

must be evaluated on their ability to reconstruct the same clean images starting

from their noisy versions.
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iii) Testing on Clean Images. When I evaluate both the training approaches on the

same clean reference images, the comparison becomes fairer. For the noisy-target

training approach might appear paradoxical that the trained model can produce

good results even though they are not trained to reconstruct clean images. The

explanation might be that the discrepancies introduced during the compression and

reconstruction phase by the model (often manifested as slight blur or local artifacts)

might make undetectable the local error caused by the attempt to reconstruct the

noisy image, resulting in PSNRs not far from the ones obtained with the clean-

target training approach. However, while still achieving good PSNR value, the

models trained with a noisy-target approach present higher bitrates, reflecting the

fact that the network’s latent codes has learned to capture noise features.

10.6 Effects of Noise on Bitrate Allocation

A critical insight is that noise itself demands extra encoding resources. When the

training objective explicitly includes noisy pixels as the reconstruction target, additional

requirements are needed:

• Extra Bits for Noise: The model has no incentive to discard noise, so it dedicates

encoding capacity to replicate noise patterns, increasing the total bit cost.

• Higher λ Values and Balancing Fidelity: At certain higher λ settings, the

compression system prioritizes fidelity over bit savings. In noisy-training scenar-

ios, “fidelity” includes matching the noise pattern. Therefore, the model’s latent

representation grows in size to capture the random fluctuations.

• Clean-Target Models Save Bits: In contrast, a model trained with a clean tar-

get learns that noise is irrelevant. Hence, it focuses on reconstructing the essential
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structures and textures of the image, yielding a lower overall bitrate for a similar

level of perceived quality.

As shown in Figure 21, the green curve (NAFCompression) often lies above or to

the right of the blue curve (NAFCompression NoisyTraining) at comparable PSNR val-

ues, indicating that more bits are spent when noise must be encoded. Likewise, the

blue curve (MeanScaleHyperprior NoisyTraining) tends to demand more bits than the

magenta curve (MeanScaleHyperprior). Though these differences can narrow at lower bi-

trates and low PSNR, the trend remains consistent as the PSNR and the bitrate increas:

encoding noise adds overhead.



CHAPTER 11

CONCLUSION

In this work, I explored the benefits of merging denoising and compression into a

single, end-to-end learned system. The objective was to evaluate whether this joint

approach could deliver robust image quality while using limited resources and lower

processing overhead. Rather than first removing noise and then applying a separate

compression method, I show that simultaneously carrying out both steps can have ad-

vantages: fewer bits are wasted encoding noise, less hardware is needed for two separate

processing pipelines, and inference becomes more e”cient.

Building on the MeanScaleHyperprior architecture, the proposed modifications incor-

porate denoising mechanisms directly into the compression pipeline. The model is trained

with noisy inputs but clean targets, so the network learns to reconstruct the clean data

and is able to discard noisy data before encoding them. Experimental evaluations, con-

ducted with realistic satellite images and noise simulation, confirm that this approach

can achieve better rate-distortion performances.

The rate-distortion curves in Figure 21 show how training the network to directly re-

construct clean data from their noisy counterparts allows the model to ignore superfluous

noisy information and focus on the salient features. This results in lower bitrates and

higher PSNR compared to training with noisy targets.

The trade-off is straightforward: including noise in the training objective demands

a higher bitrate allocation, because the model preserves that noise detail in its latent

representation.
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The results demonstrate that aiming for clean reconstructions using a joint denoising-

compression framework can ensure high performance in resource-constrained settings.

This creates opportunities for future work to implement this model in scenarios with

limited resources, such as remote sensing, embedded devices, or real-time systems, where

finding a good balance between performance and available resources is crucial. It also

opens up possibilities to extend this approach to other domains, such as video and/or

audio analysis and compression.
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APPENDIX

ADDITIONAL RESULTS

Below, additional simulations as the ssim-bpp and mse-bpp curves are presented to

better illustrate the results and provide a perceptual indication of the quality. Further-

more, examples of the trained models ability to reconstruct the image is shown using this

sets of images: the clean version, the noisy version, and the version reconstructed by the

model.

Figure 22: MSE vs bitrates.
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APPENDIX (Continued)

Figure 23: Curve SSIM vs bitrates for the MeanScaleHyperprior and NAFCompression
trained with the 2 modalities (noisy or clean target).

The plot Figure 22 and represent the curve of respectively MSE and SSIM against

BBP for the MeanScaleHyperprior and NAFCompression model, both trained with the

different approach (noisy or clean target). You can observe how the model trained with

the clean-target approach show a smaller dispersion cloud around the ground-truth line,

meaning that the model is effectively removing noise.

Figure 28, Figure 29, Figure 30, Figure 31 show the dispersion plot for the a sam-

ple image after processing it with the MeanScaleHyperprior or NAFCompression model

trained with the two different approaches and an hyperparameter of λ = 0.01. T
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APPENDIX (Continued)

Figure 24: The rgb clean and noisy version of a training image.

Figure 25: The nir clean and noisy version of a training image.
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APPENDIX (Continued)

Figure 26: The rgb clean and noisy version of a training image.

Figure 27: The nir clean and noisy version of a training image.
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APPENDIX (Continued)

Figure 28: Dispersion plot MeanScaleHyperprior trained with clean target.

Figure 29: Dispersion plot NAFCompression.
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APPENDIX (Continued)

Figure 30: Dispersion plot MeanScaleHyperprior trained with noisy target.

Figure 31: Dispersion plot NAFCompression trained with noisy target.



123

APPENDIX (Continued)

Figure 32: Near-infrared (NIR) clean, noisy, and decoded image with NAFCompression
(clean target and lambda=0.01).

Figure 33: RGB clean, noisy, and decoded image with NAFCompression (clean target
and lambda=0.01).
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APPENDIX (Continued)

Figure 34: Near-infrared (NIR) clean, noisy, and decoded image with NAFCompression
(clean target and lambda=0.0001).

Figure 35: RGB clean, noisy, and decoded image with NAFCompression (clean target
and lambda=0.0001).
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APPENDIX (Continued)

Figure 36: Near-infrared (NIR) clean, noisy, and decoded image with MeanScaleHyper-
prior (clean target and lambda=0.01).

Figure 37: RGB clean, noisy, and decoded image with MeanScaleHyperprior (clean target
and lambda=0.01).
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APPENDIX (Continued)

Figure 38: Near-infrared (NIR) clean, noisy, and decoded image with MeanScaleHyper-
prior (clean target and lambda=0.0001).

Figure 39: RGB clean, noisy, and decoded image with MeanScaleHyperprior (clean target
and lambda=0.0001).
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APPENDIX (Continued)

Figure 40: Near-infrared (NIR) clean, noisy, and decoded image with NAFCompression
(noisy target and lambda=0.01).

Figure 41: RGB clean, noisy, and decoded image with NAFCompression (noisy target
and lambda=0.01).
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APPENDIX (Continued)

Figure 42: Near-infrared (NIR) clean, noisy, and decoded image with NAFCompression
(noisy target and lambda=0.0001).

Figure 43: Near-infrared (NIR) clean, noisy, and decoded image with NAFCompression
(noisy target and lambda=0.0001).
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APPENDIX (Continued)

Figure 44: Near-infrared (NIR) clean, noisy, and decoded image with MeanScaleHyper-
prior (noisy target and lambda=0.01).

Figure 45: RGB clean, noisy, and decoded image with MeanScaleHyperprior (noisy target
and lambda=0.01).
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Figure 46: Near-infrared (NIR) clean, noisy, and decoded image with MeanScaleHyper-
prior (noisy target and lambda=0.0001).

Figure 47: RGB clean, noisy, and decoded image with MeanScaleHyperprior (noisy target
and lambda=0.0001).
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Figure 48: Second dispersion plot MeanScaleHyperprior trained with clean target.

Figure 49: Second dispersion plot NAFCompression trained with clean target.
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Figure 50: Second dispersion plot MeanScaleHyperprior trained with noisy target.

Figure 51: Second dispersion plot NAFCompression trained with noisy target.
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Figure 52: RGB clean, noisy, and decoded versions of the second image, obtained with
the NAFCompression (clean target and lambda=0.01).

Figure 53: RGB clean, noisy, and decoded versions of the second image, obtained with
the NAFCompression (clean target and lambda=0.0001).
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Figure 54: RGB clean, noisy, and decoded versions of the second image, obtained with
the MeanScaleHyperprior (clean target and lambda=0.01).

Figure 55: RGB clean, noisy, and decoded versions of the second image, obtained with
the MeanScaleHyperprior (target at lambda=0.0001).
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