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Summary
This thesis presents a full and technologically elaborate pipeline for mapping the

architecture of a Temporal Convolutional Network (TCN) into FPGA hardware for low-
energy and low-latency inference for applications in edge computing. The pipeline begins
from the problem definition, wherein multivariate time-series input is split into sliding
windows of size 15 time steps and 4 input features. The supervised learning label is taken
as the mid-value of each window, which is equivalent to the model’s receptive field.

We have implemented two TCN architectures in PyTorch: a basic dilated one and
a more sophisticated one with skip connections, trainable normalization, dropout, and
residual blocks. The one based on residuals was selected after comparing trials based on its
temporal information modeling capacity, resistance to noise, and architectural flexibility.

One of the prime concerns of this project was hardware deployment efficiency through
quantization. Post-Training Quantization (PTQ) via ONNX Runtime and Quantization-
Aware Training (QAT) via Brevitas were both considered. QAT had the benefit of main-
taining the performance of the model but lost out ultimately in terms of compatibility
with NN2FPGA and support for symbolic operators. PTQ was instead utilized for con-
verting the trained 32-bit model into its 8-bit integer ONNX equivalent. Weights and
activation values were exported via Python scripts into fixed-point C++ header files for
hardware synthesis, as Q4.4 format.

The PyTorch model was hand-translated into synthesizable C++ based on needs
for full architectural control, Xilinx HLS support, and visibility of all arithmetic-related
operations. Fixed-point precision had been achieved with ap_fixed<8,4> types and in-
termediate summations using ap_int<32>. Dropout and normalization had been removed
from hardware implementation for synthesis needs. The C++ model had contained one
input layer of projection with size 1×1, three dilation residual blocks, and the last fully
connected output layer for prediction of 2D coordinates.

Vivado HLS High-Level Synthesis was used for converting the C++ model into hard-
ware IP. Loop unrolling, pipelining, array partitioning pragmas, and AXI4-Lite interface
directives were used for optimization. The hardware has been synthesized in two levels:
one non-pipelined for minimizing resources and one partly pipelined for optimized per-
formance. Functional correctness was verified through comparison of generated traces of
the C++ model with the target PyTorch implementation.

The final IP core was integrated into Vivado using IP Integrator, alongside essential
components like the ZYNQ7 Processing System, Clocking Wizard, Processor System Re-
set, AXI BRAM Controller, and AXI GPIO. Connection Automation and manual wiring
were used to establish AXI and clock/reset routing, followed by memory-mapped address
assignment via the Address Editor. Once the system was implemented, Vivado’s Report
Power tool was used to conduct post-implementation power analysis with vectorless activ-
ity (12.5% toggle rate). The total power consumption was estimated at 1.871 W, broken
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down into 0.365 W of static power, 0.892 W of dynamic logic power, 0.422 W of dynamic
clock power, and 0.192 W for BRAM and DSP.

The pipelined design achieved a latency of approximately 9.65 µs per inference, trans-
lating to an energy cost of around 18.05 µJ. The non-pipelined design consumed less dy-
namic power but incurred significantly higher latency, illustrating a key trade-off between
performance and efficiency. Accuracy evaluation across the deployment pipeline revealed
an MSE of 0.065 m2 for the original TensorFlow model, 0.1199 m2 for the PyTorch imple-
mentation, and 0.2365 m2 for the final C++ fixed-point inference system—highlighting
quantization-induced precision loss while still ensuring practical performance for real-time
applications.

In essence, this work proposes a reproducible, hardware-conscious, and scalable de-
ployment strategy for deep temporal models using fixed-point arithmetic on FPGA plat-
forms, with strong implications for future edge AI use cases such as indoor localization
and sensor fusion.
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Chapter 1

Introduction

1.1 Introduction

Indoor location positioning — the determination of the exact location of users or de-
vices indoors — has become increasingly important in many industries. Applications
encompass healthcare monitoring and industrial automation, emergency response, smart
building systems, surveillance, as well as supporting emerging paradigms such as the
Internet of Things (IoT), smart city infrastructures, smart buildings, smart grids, and
Machine-Type Communication (MTC) networks. High-accuracy indoor positioning al-
lows real-time context-aware services, operational efficiencies, as well as improved safety
in dynamic settings. Although conventional close-range communication technologies such
as Wi-Fi, Bluetooth, and Ultra-Wideband (UWB) have encouraging localization capa-
bilities, delivering these services with low latency as well as energy efficiency at the edge
remains an engineering challenge [20].

To overcome such constraints, FPGAs have also been suggested as a reconfigurable
hardware platform to accommodate machine learning models at the edge in indoor local-
ization applications. As compared to general-purpose sequential execution-based CPUs,
FPGAs provide high parallelism with the capability to process continuous streams of
sensors in real time — an important enabler of fast and accurate location inference.
Reprogrammability makes them very adaptable to iterative development as well as after-
deployment adjustment, and the presence of embedded processing blocks allows small,
energy-efficient system-on-chip designs. Such an amalgamation of flexibility, efficiency,
and energy awareness makes the FPGAs an efficient way to implement the deep learning-
based localization at the edge [21].

Particularly, deep models such as Temporal Convolutional Networks (TCNs) are well-
suited to time series analysis in particular — thereby an appealing option to indoor local-
ization systems. TCNs employ dilated causal convolutions to capture long-range effective
memory with sequential dependencies, without the need to resort to recurrent structures.
The deployment of TCNs to resource-constrained edge devices is, however, plagued with
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Introduction

technical challenges related to inference speed, memory usage, as well as hardware avail-
ability.

This thesis presents the entire TCN-based model development and hardware imple-
mentation flow in the application of indoor localization with the aim of real-time inference
on FPGA platforms. The flow starts with the creation and training of the TCN model in
the software with TensorFlow, then converting it to PyTorch in order to gain more control
over the quantization process. Quantization of the model is performed with fixed-point
representation in order to achieve reduced computational overhead along with memory
footprint. The obtained quantized network is re-implemented manually in C++ with
fixed-point arithmetic to make it compatible with the HLS tool.

High-Level Synthesis, using tools like the Xilinx Vitis HLS, allows generation from
high-level C++ descriptions to hardware. With the application of the HLS optimizations
like loop unrolling, pipelining, and parallelization, the C++ design is converted to highly
optimized hardware. The deployment is then completed with the integration into an
FPGA platform using Vivado’s IP integrator, thereby readying the path from high-level
model to deployable hardware.

The two primary ambitions of the thesis are, one, to demonstrate an end-to-end de-
ployment process of a deep learning model using quantization and HLS; two, to examine
the inference accuracy, execution time, as well as hardware resource consumption trade-
offs. Throughout the course of the thesis, it contributes to the existing body of work
related to the deployment of neural networks in edge configurations, with the special
emphasis being placed on their deployment in energy-constrained real-time indoor local-
ization systems.
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Chapter 2

Background and Related Work

The rapid development of artificial intelligence (AI) and deep learning has created the
need for seeking advancements in the hardware realizations of neural networks (NNs).
Due to their high power efficiency, flexibility, and ability to perform tasks in parallel,
Field Programmable Gate Arrays (FPGAs) have emerged as an active area of interest
along with other hardware platforms like CPUs and GPUs. The use of NN through
FPGAs has been eased by High-Level Synthesis (HLS) whereby engineers are able to
implement utilizing higher-level languages like C, C++, or OpenCL. The subsequent
literature review considers existing research on NN implementations over FPGAs, the role
of HLS in hardware acceleration, and comparative reviews with other hardware platforms.

2.1 Literature Review

2.1.1 Neural Networks on FPGA

Neural networks (NNs) may be deployed on field-programmable gate arrays (FPGAs),
which provide a good trade-off in terms of energy efficiency and computation speed. There
have been some studies that have investigated FPGA-based implementations to go around
the limitations of CPUs and GPUs, especially where low-latency inference or energy-
efficient applications are required. Improving computational efficiency through paralleliza-
tion and tailored hardware implementations, minimizing resource usage through model
compression and quantization, and maximizing throughput via pipelining and memory
hierarchy optimizations are the three general objectives of optimization research for this
domain.

The other notable contribution in this direction is that of Guo et al. (2015) [1], which
systematically explored FPGA-based deep neural network (DNN) inference with particu-
lar focus on hardware design methods such as quantization, pruning, and pipelining. Their
findings established that FPGAs could achieve dramatic speedups relative to their CPU
equivalents while maintaining reconfigurability. Subsequent to this, Suda et al. (2016) [2]
proposed an optimized method to accelerating convolutional neural networks (CNNs) on
FPGAs using fine-grained parallelism and optimization of memory bandwidth, with near
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real-time performance on vision processing applications. Contrarily, Li et al. (2017) [3]
investigated the acceleration of recurrent neural networks (RNNs) on FPGAs, both for
their latency as well as power efficiency in comparison with GPU-based implementations.
Their research showed the advantages of FPGAs in sequential data processing, particu-
larly in edge-computing when energy efficiency is crucial.

Combined, the above research identifies that FPGAs present a balanced middle level
between application-specific integrated circuits (ASICs) high power efficiency and GPUs’
programmability. While GPUs are particularly well-suited for raw throughput when there
is large batch processing, FPGAs have higher energy efficiency and lower latency when
there is streaming or single-sample inference, thus being best suited for embedded and
real-time applications.

2.1.2 High-Level Synthesis (HLS) for FPGA Implementation

Industry-standard software such as Xilinx Vivado HLS (now Vitis HLS) and the Intel
HLS Compiler are now a requirement in transforming high-level neural network mod-
els into optimized FPGA implementations. These tools abstract the low-level hardware
design difficulties, enabling software engineers and AI practitioners to leverage FPGA
acceleration without having to be hardware description language experts. This abstrac-
tion not only enables quicker prototyping and design iteration but also opens up FPGA
development to a broader audience of engineers.

For instance, Qiu et al. (2016) [4] demonstrated how HLS can simplify the deployment
of deep learning models onto FPGAs through automatic handling of resource allocation,
scheduling, and dataflow architecture synthesis. Their research underscored the power of
HLS to extract parallelism and improve memory access, both critical for sustaining high
throughput in inference pipelines. Similarly, Wei et al. (2019) [5] introduced an HLS-
acceleration framework tailored to image processing-based applications, demonstrating
that HLS has the ability to cut down development time and effort by substantially while
providing similar performance levels as hand-optimized RTL designs.

Along with these, community-developed open-source tool and framework advance-
ments such as hls4ml and Torch2Vitis have also enriched the HLS ecosystem in a similar
way. These tools target the auto-conversion of widely used neural network models—more
specifically, those trained in PyTorch or Keras—into synthesizable C++ or SystemC
forms. Supporting quantized and binarized operators, they enhance the machine learning
model’s compatibility with resource constraints of FPGA and bring configurable design
knobs for area and latency tuning.

Despite these positive trends, HLS adoption remains encumbered by several trade-offs.
The abstraction layer typically leads to inefficient use of hardware, particularly with logic
packing and critical path timing, than well-designed HDL. Moreover, HLS tools are also
prone to struggle with deeply pipelined or highly parallel designs with intricate control
flows or irregular memory access patterns. These constraints can turn into performance
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bottlenecks in large-scale deployment scenarios.

However, the advantage of HLS in enhancing development productivity, coupled with
the continuous enhancement of its compiler technology and template libraries, makes it a
compelling and future-proof choice for FPGA-based acceleration of neural networks. As
domain-specific languages and hardware-aware training models gain widespread popular-
ity, HLS can potentially find itself at the forefront of making adaptive, high-performance
AI systems edge- and embedded-friendly.

2.1.3 Comparison of FPGA with Other Hardware Architectures

While FPGAs offer strong advantages of reconfigurability and power efficiency, the case of
accelerating neural networks is varied across hardware platforms of differing strengths and
weaknesses. Modern deep learning software leverages graphics processing units (GPUs),
tensor processing units (TPUs), and application-specific integrated circuits (ASICs) along-
side FPGAs, with the optimal solution depending on application-specific criteria like
computation throughput, power consumption, and flexibility requirements. Comparative
studies in this area reveal substantial architectural compromises between programmabil-
ity, performance, and power consumption.

One of the first pioneering works by Jouppi et al. (2017) [6] provided a detailed ex-
amination of Google’s TPU architecture, displaying its higher performance-per-watt for
large-scale cloud-based inference workloads. The authors noted the way the systolic array
architecture of the TPU and its 8-bit quantization enable extreme throughput over ma-
trix operations but at the cost of inflexibility in fixed-function capabilities. On the other
hand, Han et al. (2016) [7] conducted an exhaustive comparison of FPGA and GPU map-
pings of deep learning accelerators and arrived at the conclusion that while GPUs excel
in processing large-scale data sets, FPGAs are far more energy efficient - so much so that
they are extremely suitable for edge devices and power-constrained environments. It is
noteworthy in their work that FPGAs can be 5-10 times more energy efficient than GPUs
for particular convolutional neural network workloads.

Scalability was the query addressed by Cong et al. (2018) [8], who extensively reviewed
FPGA-based accelerators for more extensive and complex neural structures. They deter-
mined that while FPGAs offer unmatched versatility for model adjustment and model
refreshes, they inherently suffer from memory bandwidth and logic resource constraints
when executing extremely large models (like transformers with billions of parameters).
This paper proposed hybrid methods, under which FPGAs perform preprocessing and
compact models with offloading big computations to GPU/TPU clusters.

These comparison studies overall depict that hardware choice for accelerating neu-
ral networks is multidimensional trade-offs: Upcoming heterogeneous computing trends
suggest that upcoming systems will combine these methodologies more and more, using
FPGAs for low latency inference and input preprocessing and GPUs/TPUs for training
as well as batch processing. This design co-design technique has especial potential for
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edge-cloud systems and real-time AI usage.

Figure 2.1. Comparison Between Hardware Architectures [27]

2.1.4 Optimization Techniques for FPGA-based NN Implementation

In order to meet the performance, resource, and power demands of a real-time applica-
tion, various optimization techniques have been proposed to enhance the implementation
of neural networks (NNs) on field-programmable gate arrays (FPGAs). The following
sub-sections introduce some significant techniques that are thoroughly researched in the
literature.

1. Quantization and Pruning
Quantization reduces the bit-width of neural network weights and activations, usu-
ally from high-precision data types such as 32-bit floating point to lower-precision
data types such as 16-bit fixed-point, 8-bit integers, or even binary (1-bit) type.
Reducing them lowers the arithmetic intensity of operations such as matrix mul-
tiplications and convolutions, which are the workhorse of neural network compu-
tations. With smaller numerical values, quantization decelerates both computation
time and memory consumption, hence facilitating faster inference and lower energy
cost—properties particularly valuable in FPGA implementations where resources
are limited and power budgets are constrained.

Besides reducing hardware overhead, quantization further increases data through-
put and facilitates more efficient patterns of memory accesses since more data can
be encoded and transferred within the same memory space. These benefits render
quantization a crucial way of deploying deep models for real-time and embedded
applications. However, reduction of precision should be carefully managed to avoid
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compromising the model severely in terms of accuracy loss. This is typically accom-
plished through quantization-aware training (QAT) where the model is trained so
as to counteract the effect of low-precision computations.

Pruning is a helping technique that minimizes the complexity of the neural network
by removing weights, neurons, or full filters with the least impact on the network
predictions. Pruning techniques can either be unstructured, removing individual
weights, or structured, removing larger units such as channels or layers. The result
is a slimmed-down network consuming less computational resources and memory
bandwidth and hence more deployable on FPGAs.

Both quantization and pruning are used together extensively to compress models
for low-hardware implementation. As demonstrated by Han et al. (2015) [9], joining
these approaches can decrease model size by an order of magnitude and enhance per-
formance at no great loss in precision. Umuroglu et al. (2017) [10] also demonstrated
that binarized neural networks (BNNs) are high throughput and energy-efficient
if executed on FPGA platforms using certain hardware architectures. These ap-
proaches are gaining momentum in applications such as edge computing, mobile
devices, and real-time inference scenarios.

2. Pipelining and Parallelism
FPGAs incorporate inherent flexibility for engineers to leverage spatial as well as
temporal parallelism, the key enablers for accelerating neural network inference.
Spatial parallelism is the concurrent execution of independent operations such as
calculating multiple neuron or layer calculations in parallel. Temporal parallelism is
distributing computation into sequential phases with pipeline registers in between.
Each pipeline stage can handle an alternate data item in each clock cycle, allowing
for a steady flow of data in the pipeline.

Pipelining is especially helpful in reducing latency and increasing the throughput,
since it allows the system to proceed with new inputs before completing the compu-
tations of the previous ones. In neural networks, where convolution, matrix multi-
plication, and activation functions are being repeatedly computed, pipelining keeps
different parts of the computation running all the time and avoids idle hardware
cycles.

Parallelism does better than this by permitting a number of operations to be per-
formed simultaneously. In convolution neural networks (CNNs), for example, all
convolution filters along with the respective region of the input feature map can be
computed in parallel, which greatly speeds up inference. Parallelism levels could be
adjusted based on the amount of resources available in FPGAs, offering a scalable
design paradigm well-suited to the application.
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Zhang et al. (2015) [11] demonstrated that through accurate mapping of convolu-
tional layers to pipelined and parallel FPGA hardware, highly significant inference
speed and efficiency gains are possible over traditional sequential counterparts. Such
techniques form the foundation for optimizing the computing capacity of FPGAs
for real-time and high-performance deep learning systems.

3. Memory Optimization
Effective memory management is a cornerstone of high-performance NN architec-
tures on FPGAs, due mainly to the scarcity of on-chip memory and higher latency
of memory access from off-chip memory. The bandwidth between FPGA and ex-
ternal memory can become a bottleneck unless efficiently managed, especially in
memory-intensive operations like matrix multiplications and convolutions involving
large volumes of data.

To overcome these limitations, a variety of memory optimization techniques are
commonly employed. Tiling is one technique that partitions input data and model
parameters into tractable blocks or tiles that can be stored in the on-chip mem-
ory. The architecture processes a single tile at a time, minimizing expensive off-
chip memory accesses, enabling more efficient reuse of data. It also facilitates the
achievement of high data throughput while working under resource-constrained en-
vironments.

Double buffering is another technique used to overlap memory transfer with com-
putation. One buffer is being used in computation, while the other one is being
filled with the forthcoming block of data. This method of usage aids in concealing
memory latency and maintaining the computational pipeline full, thereby improv-
ing overall efficiency.

On-chip caching also lowers the delays due to memory access. Frequently accessed
data, such as intermediate feature maps or filter weights, can be store temporarily
in high-speed on-chip memory blocks in order to prevent unnecessary data move-
ment. The caching technique is able to function efficiently in convolutional layers
where the same filter is convolved with different spatial locations of input.

Ma et al. (2017) [12] showed that the combination of these approaches in a care-
fully designed memory access pattern facilitates beneficial enhancements in energy
efficiency and performance. It highlights the importance of the optimized memory
hierarchy design as per the computational characteristics of the NN model to ensure
maximum utilization of the FPGA.

4. Reconfigurable Architectures
The reprogrammability of FPGAs is hugely advantageous in the deployment of
neural networks, especially where flexibility and agility are crucial. One of the most
robust features in this area is dynamic or partial reconfiguration, where specific
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segments of the FPGA fabric are reprogrammed and continue in operation while
the remainder of the system keeps running uninterrupted. This enables updates to
the components on a per-component basis, e.g., neural network layers or processing
pipelines, without requiring a complete system halt or re-synthesis.

Such dynamic reconfiguration is particularly valuable in applications with chang-
ing workloads or being able to implement multiple models of neural networks on
a common hardware platform. For instance, in edge devices or embedded systems
for application in automotive or surveillance scenarios, the ability to rapidly switch
between models for object detection, facial recognition, or gesture interpretation
can substantially enhance system value and responsiveness.

Moreover, this flexibility leads to improved hardware utilization. Instead of stati-
cally allocating resources for the worst-case, designers can allocate a smaller, low-
power core and dynamically reconfigure it on-the-fly as a function of the arrived
task. This dynamic approach leads to a better organization of the limited logic,
DSP block, and memory resources of the FPGA.

Liu et al. (2018) [13] demonstrated how convolutional neural networks can be con-
figured with dynamically reconfigurable architectures for the sharing and adapting
hardware across layers with different computational needs. It was determined from
the results that it reduces both logic overhead and energy consumption, which makes
it suitable for energy-constrained applications where flexibility cannot be afforded
by compromising efficiency.

5. Efficient Dataflow Architectures
Custom dataflow structures are the most important enablers of high-speed neural
network inference on FPGAs. They are designed with precision to optimize the
movement of data among processing elements, memory, and interconnects for re-
moving idle cycles and reducing the off-chip memory accesses that are costly. A
classic example is the use of systolic arrays, an extensively adopted architecture
style in hardware acceleration.

Systolic arrays are a one-dimensional array of processing elements (PEs) that shuffle
data rhythmically across the array, simulating the contraction and relaxation of a
heart. This paradigm is best suited for the computation of dense linear algebra op-
erations such as matrix multiplications that are the backbone of the computation
of fully connected and convolutional layers of neural networks. By keeping data
flowing in a pipelined manner, systolic arrays minimize memory bottlenecks and
maximize throughput.

On FPGAs, systolic arrays may be configured to the target neural network model’s
bit-width and precision, allowing for highly optimized usage of resources. Their
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regular structure also makes efficient deployment on reconfigurable logic possible,
allowing high parallelism and deterministic execution.

Jouppi et al. (2017) [14] illustrated the capability of systolic array-based architec-
tures in their research on Google’s TPU, where they are used to accelerate deep
learning operations. The concepts used in the TPU can, of course, be extended to
FPGAs as well. The research demonstrated how the approach significantly enhances
performance and efficiency over general-purpose designs and is therefore a valuable
approach to FPGA-based acceleration of neural networks.

6. Hybrid Computing Strategies
Besides offering improved performance and flexibility, modern computing systems
are increasingly resorting to heterogeneous designs, which integrate FPGAs along
with CPUs and GPUs. By so doing, system architects can leverage the unique
capabilities of each processing engine to address the disparate computational re-
quirements of neural network tasks. In such applications, FPGAs tend to be tasked
with executing deterministic, latency-bound tasks due to the fact that they can ex-
hibit fine-grained control and pipeline well. Their reconfigurable nature also enables
customized hardware design to be optimized for a specific task, which has strong
application in time-critical or resource-constrained applications.

GPUs, on the other hand, are inherently capable of doing highly parallelizable,
floating-point heavy computation. They are most effective in the training of neural
networks and large-batch inference owing to their enormous amount of parallel pro-
cessing cores and general-purpose programming model support such as CUDA and
OpenCL. CPUs serve to supplement the system, handling control logic, irregular
computation, and orchestration tasks that include deep decision-making or branch-
ing logic.

Nurvitadhi et al. (2017) [15] presented a comprehensive report on this heterogeneous
approach, demonstrating how hybrid systems of FPGAs together with GPUs and
CPUs can deliver significant performance per watt and end-to-end throughput im-
provements. Outcomes demonstrated how through proper workloads partitioning,
best energy efficiency, computational performance, and system flexibility trade-offs
can be achieved. These architectures are increasingly being employed in both edge
computing systems and data centers, where power efficiency and flexibility are cen-
tral. As complexity and depth in neural networks grow, heterogeneous architectures
become an even more central phenomenon, motivating the development of efficient
hardware-software co-design methodologies.

2.1.5 Power Efficiency and Resource Utilization

Power efficiency is a critical design constraint for NN accelerators on FPGAs, particularly
for edge computing, Internet of Things (IoT) devices, and battery-powered systems. These
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have limited energy resources and, as such, need hardware-level as well as architectural
optimizations in order not to compromise on computational performance while saving
power. Necessary strategies are:

1. Dynamic Power Management
Dynamic power reduction techniques are widely present in FPGA implementations
with a focus on saving power, especially in those systems with a need for con-
tinuous, extended computation under limited energy conditions, i.e., in IoT edge
devices powered by batteries and edge AI systems. One such extremely efficient, yet
extremely well-liked method is clock gating [16], where the clock signal is turned
off for parts of the computation not involved at a given moment. This prevents the
unnecessary registers as well as combinational logic from switching, hence conserv-
ing dynamic power waste, including an enormous amount of total energy power in
high-frequency digital systems. Fine-grained clock gating has very accurate control
over an extremely huge number of functional units in an FPGA, with very specific,
focused control over idle resources being possible without any impact on the re-
mainder of the system.

In conjunction with clock gating, dynamic voltage and frequency scaling (DVFS)[17]
is yet another extremely useful power optimization method. DVFS dynamically, in
real time, varies the supply voltage as well as operating frequency in accordance with
workload patterns. As a specific example, voltage as well as clock frequency can be
reduced in low computational intensity in an effort to conserve power but boosted
in high performance requirements. DVFS is well suited for fluctuating performance
demands, such as sensor-driven AI or bursty inferencing workloads, thanks to its
adaptability.

Clock gating and dynamic voltage scaling become a foundation for a combined,
high-granularity approach to power saving. Merged, next-generation FPGA devices
should, in an architectural way, provide these techniques, allowing real-time logic
dynamically implement power-saving capabilities while it observes usage patterns.
In a number of realizations, even feedback-based power governors or policy managers
using machine learning are included. Together, these techniques provide enormous
potential for power saving without affecting functional correctness or workload re-
quirements for real-time systems.

2. Energy-Efficient Dataflow Architectures

Dataflow optimization for FPGA accelerators is one of the most important aspects
in power as well as system efficiency minimization. Since memory access as well as
data movement are some of the most energy-intensive operations in deep learning,
data-handling mechanisms need to be efficient in order to allow sustainable FPGA
implementation. Low-energy dataflow implementations should take utmost precau-
tion not to cause unnecessary data movement and ensure utmost on-chip data reuse
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such that off-chip memory accesses for power-hungry memory resources are elimi-
nated.

One of the most efficient methods, tiling, partitions huge computations into little
tiles with boundaries inside an FPGA’s limited on-chip memory. Thus, the method
keeps hot-accessed data on-chip across several computations, significantly lowering
memory transaction time and energy cost. Likewise, data reuse methods, such as
caching weights or feature maps into on-chip local memories, take advantage of
neural network computation temporal locality in order to lower memory bandwidth
demands. Scheduling methods also enhance energy efficiency by controlling task
execution order not to incur data stalls and balance hardware utilization. As an ex-
ample, computation might be scheduled ahead of data transmission, hiding memory
latency and eliminating idle processing units.

Second, specific processing elements (PEs) for specific neural network operations
such as matrix-vector multiplication or convolution would be implemented in a
pipelined fashion to ensure constant data flow. Pipelined interconnects not only
eliminate idle cycles but also address overheads of a general-purpose architecture
for low dynamic power usage and performance optimization.

These architectural as well as algorithmic innovations together yield a highly opti-
mized hardware architecture with vast parallelism as well as controllability under
limited power budgets—the key facilitator for deep learning model executions in
edge devices as well as real-time embedded systems [18].

3. Trade-offs Between Performance and Power Consumption
A balance between performance and power is a top-level concern for power-aware
FPGA-based neural network accelerators. While increasing the number of process-
ing elements or data word widths—raising parallelism—and frequencies would sig-
nificantly boost performance throughputs and reduce latency, these approaches typ-
ically have a cost in higher dynamic power dissipation as a result of higher switching
activity as well as higher heat dissipation. Contrasting with these are extremely
power-saving methods, i.e., scaling down voltage levels, frequency, or using conser-
vative scheduling, lowering power dissipation at the cost of lower processing rate,
reduced resource utilization, as well as compromised real-time capability.

To meet these competing demands in design, researchers and hardware designers
typically rely on Design Space Exploration (DSE). DSE involves intensively bench-
marking various architecture configurations as well as implementation parameters
in order to decide on the best available trade-offs for specified application require-
ments. These configurations can include levels of parallelism, formats for precision
(e.g., INT8 and FLOAT32), pipeline depth, and memory hierarchy.
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Of specific interest in this conversation is whether parallelism is coarse-grained
or fine-grained. Fine-grained parallelism gives detailed control but with potential
overheads in control, whereas coarse-grained parallelism improves throughput with
possibly reduced flexibility and power requirement. Numerical precisions similarly
have direct influences on power, as well as on accuracies. Lower-precision numerics,
i.e., fixed-point or binarized data, reduce computational cost as well as memory
access cost but at the cost of needing calibration so accuracy is ensured.
Finally, memory hierarchies should be structured with great diligence in order to
balance power with performance. More on-chip utilization of small buffers can sig-
nificantly reduce energy spent on accesses to external memory, while locality and
reuse are supported by tiling, as well as data caching.

In general, efficient use of power in FPGA NN implementation is a matter of seeking
out and leveraging the sweet spot between computational performance, power, and
model accuracy—a necessarily application-dependent compromise only resolvable
through attentive empirical observation with iterative tuning [19].

2.1.6 Toolchain Interoperability and Framework Support

The other significant but often overlooked factor for deploying neural networks on FPGAs
is interoperability between FPGA toolchain and deep learning frameworks. Inasmuch as
FPGAs offer huge energy efficiencies as well as performance, they are often hindered from
entering mainstream machine learning practice due to insufficient deep integration with
mainstream AI frameworks such as TensorFlow, PyTorch, and ONNX.

More recent research has built on this with a push towards achieving interoperabil-
ity through intermediate representations as well as standardized compilation pipelines.
Umuroglu et al. (2017) [22], for instance, introduced FINN, where it is made possible
to run binarized and quantized neural networks (BNNs) on FPGAs through compilation
from high-level network descriptions into extremely optimized hardware descriptions.
FINN demonstrates how it is possible to automatically model-to-hardware translation
using ONNX as an intermediary format with application of domain-specific hardware
templates for synthesis. Along with this, frameworks like hls4ml as well as Xilinx Vitis
AI are also being created, which are streamlining the deployment of deep learning models
on hardware. These frameworks permit users to convert pre-trained models into HLS-
compatible code or directly execute them on programmable logic using pre-optimized IP
cores. These frameworks lower the entry cost for new users since they abstract out general
neural network layers as well as patterns in quantization.

However, there remain a number of concerns. One major bottleneck is incomplete
operator coverage as well as non-standard or customer-defined layer support within
toolchains. In addition, symbolic methods of quantization—while beneficial for hardware
efficiency—create numerical discrepancies between hardware execution and software sim-
ulation. These mismatches can decrease model accuracy or make validation as well as
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debugging procedures more difficult.

To address these limitations, future research has to concentrate on developing end-
to-end automated, verified model-to-hardware pipelines with strong fallbacks for unsup-
ported layers. Open benchmark development and verification suites for guaranteeing con-
sistent behavior across training, inference simulation, as well as synthesized hardware
are also necessary. Further integration of machine learning environments with FPGA
toolflows is achievable, promoting broader adoption as well as innovation in low-power,
real-time AI.

2.1.7 Binarized and Low-Bitwidth Neural Networks on FPGAs

Another approach in FPGA-based neural network acceleration is using binarized and
low-bitwidth neural networks. These networks limit weights and/or activations to a small
set of discrete values, e.g., {−1, +1} for Binary Neural Networks (BNNs), which signifi-
cantly reduce memory footprint as well as computational complexity. Reconfigurability as
well as bit-level processing, inherent in FPGAs, make them an apt candidate for hosting
these networks since they provide custom tailored circuits for ultra-low precision compu-
tation.

One of the leading frameworks in this field is FINN, presented by Umuroglu et al.
(2017), [22], which allows quick and scalable inference of binarized neural networks on
FPGAs. FINN employs a dataflow model in which layers are represented as stream-
ing operators, and memory accesses are optimized using on-chip buffers. The framework
demonstrated how, with binarized weights, as well as activations, the resource usage is
drastically reduced, yet high-throughput, low-latency inference is still achieved using mid-
range FPGAs.

Subsequent development has made FINN applicable for QNNs with greater than 1-bit
precision (e.g., 2–8 bit) for more detailed dictionaries, as well as accuracy at no com-
promise on hardware optimization. These developments are also characteristic of hybrid
precision methods, where significant layers are marginally more accurate than binary, but
sensitive ones remain binary, making a sensible model accuracy versus hardware efficiency
compromise.

2.1.8 Security and Reliability Considerations

Security and trustworthiness take top priority in FPGA-based neural network implemen-
tations, especially in safety-critical areas such as those for autonomous systems, industrial
automation, and medical devices. The reprogrammability and hardware-transparency
provided by FPGAs introduce new attack surfaces with rather distinct characteristics
compared with traditional CPU- and GPU-based architectures.

Shayan Moini et al. (2020) [23] demonstrated that accelerators for CNNs on FPGAs
are susceptible to remote power side-channel attacks. They presented how attackers would
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be able to deduce input information as well as reconstruct some weights from CNNs us-
ing power consumption fluctuations. That calls for establishing secure design practice as
well as on-chip countermeasures such as power balancing, or power isolation, or random
masking for information leakage mitigation.

Furthermore, Likun Kang et al. (2019) [24] explored how neural network hardware
Trojans can be mounted on FPGA platforms. These Trojans have the potential to be
stealthily embedded within bitstreams or IP blocks, leading to malicious actions such as
misclassification or inference manipulation. Formal verification, bitstream authentication,
and logic locking were presented as countermeasures against these threats.

In respects to reliability, Pierluigi Civera et al. (2002) [25] presented an FPGA-based
framework for speeding up fault injection campaigns on safety-critical circuits. They pro-
pose a method for fast simulation of soft errors and SEUs, permitting researchers to
quantify different network architectures’ resilience under faults. This is valuable research
that presents a benchmarking tool for resilience on FPGA-based deep learning.

Ultimately, Jiale Zhang et al. (2019) [26] resolved FPGA-based inference privacy us-
ing a privacy-preserving framework with cryptographic protocols and specialized FPGA
accelerators. Its method is supportive of inference on encryption data with decent per-
formance, demonstrating FPGAs practical in confidential environments.

These two bodies of work, side by side, highlight how, while FPGAs provide end-
to-end performance and flexibility for AI acceleration, they also demand a security- and
reliability-aware co-design methodology. Security verification-enabling standardization of
design flows, tamper-proof bitstream loading, and runtime monitoring for trusted neural
network execution on FPGAs are some areas that need to be researched going forward.

2.1.9 Challenges and Future Directions

Nevertheless beneficial FPGA implementations of neural networks certainly are, there
are a number of issues they present that must be given serious consideration. Among
those problems is the complicated nature of programming FPGAs even with High-Level
Synthesis tools. One would require enormous amounts of hardware structure knowledge
in order to efficiently implement neural network computation on FPGA hardware as well
as attain optimum performance. One constraint is memory on-chip limitations on most
FPGAs. Deep networks, in particular, require a lot of storage for weights and activa-
tions. Low latency and fast memory handling is a current research area. Various memory
optimization techniques, including compression, memory reuse techniques, as well as in-
terfacing memory with external memory, have been proposed as solutions for bypassing
these limitations. Power consumption is also a concern, especially for edge computing and
real-time systems. While FPGAs possess a more energy-efficient nature than GPUs in
some uses, very deep neural networks are still power-hungry. Power scaling, clock gating,
as well as architecture modifications, are being researched as a way towards increasing
energy efficiency.
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Scalability is a serious concern for FPGA-based neural network architectures as well.
While small- to medium-sized neural nets can be implemented on one FPGA, larger ones
typically require multi-FPGA architectures or hybrid architectures with other accelera-
tors such as GPUs and CPUs. Integration of these seamlessly without loss of performance
remains a research concern.

Hardware-software codesign is also extremely crucial for usability, next only to per-
formance, for FPGA-based NN programs. Popular deep learning frameworks such as
TensorFlow and PyTorch don’t provide significant native FPGA acceleration. Limited
standardization, coupled with a need for custom solutions, is a hindrance for wide-scale
acceptance. Further openness of integration with these frameworks in FPGA toolcrafts
would be extremely beneficial not just for developers but even for researchers.

More recent FPGA innovations, such as adaptive and reconfigurable architectures
dynamically, offer promise as a resolution for these problems. These would permit FPGA
hardware to reconfigure dynamically with a change in computational workload, leading
to enhanced overall performance as well as efficiency. Work in this area is still in its
nascent stages, and more research effort has to be focused on bridging ease of software
development with hardware-level optimality.

2.2 Technical background

2.2.1 Architecture of the Float-Based TCN Model (FloatTCN)

Overview

The adopted model in the current thesis is FloatTCNModel, which is a Temporal Con-
volutional Network. It is a sequence model used in the library PyTorch. It uses the use
of 1D convolutional layers with the technique of dilation to model long-term temporal
dependencies with efficient computations.

Architecture Description

FloatTCN Model is comprised of a sequence of consecutive blocks of convolutions in
which consecutive blocks modify the temporal shape of the input sequence to capture
progressively wider context information. Each such block is composed of carefully de-
signed layers in order to promote representational capability as well as regularization.
Each of the convolutional blocks contains the following key elements:

• A one-dimensional convolutional layer (nn.Conv1d): It is used to apply temporal
filtering to the input. By using the exponentially large receptive field with the
growing rates in the superposed blocks, the model is capable of learning long-range
dependencies without going deep in the layers or using large filter sizes. Dilation
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merely "spaces the elements" in the kernel apart, such that every filter gets to look
further in the sequence.

• A layer normalization unit (nn.LayerNorm): We employ this technique of normal-
ization after convolution, across the feature dimension in every step to enhance
training stability as well as faster convergence. It is particularly apt in sequence
models where the batches can differ in size, in contrast to batch normalization.

• Rectified linear unit activation function (ReLU): After normalization, the non-
linearity enables the model to capture complex temporal patterns as well as the
inter-action among the sequence features.

• A dropout layer (nn.Dropout): Included conditionally with the given dropout prob-
ability, the regularization strategy sets some fraction of the activations to zero at
random during training to impose generalization in the model as well as to avoid
overfitting..

Prior to passing the input to the convolutional stack, the model reshapes the input ten-
sor from shape [B, T, C] to [B, C, T ], where the batch size is denoted as B, the sequence
length as T , and the input channels as C. This reshapes the data to adhere to the input
convention in PyTorch for use with Conv1d, which expects the channel dimension to be
in the second position.

It then passes through the stack of dilated blocks with enlarged convolutions and em-
ploys a pointwise convolutional layer with the kernel size being 1 to perform the channel-
wise transformation. It mixes features in the feature dimension without modifying the
dimension in time as the final step in the projection. The additional layer with normal-
ization followed by ReLU activation is included to further enhance the representation.

Then the model uses the middle step in the sequence output representation, which is
calculated using the sequence length floor division

middle_index =
⌊︃

T

2

⌋︃
This uses the middle section of the sequence to have the richest temporal context from

the past and future due to the symmetric padding in the previous layers. The output is
given as a tensor with shape [B, C], one latent feature vector per sequence input.

Dilation and Receptive Field

One of the important advantages of the FloatTCNModel is the use in its convolutional
blocks of adaptive dilations. Dilation is one technique used to put gaps in-between kernel
elements, allowing the network to expand the size of the receptive field in an exponential
manner with the depth, without additional parameters or increasing filter size. The effec-
tive receptive field in the case where the kernel is of size k and the dilation is d is given
mathematically as k + (k − 1)(d − 1). The model can capture long-term dependencies in
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the sequence input using few layers with the dilation rates increasing in subsequent layers
(for instance, 1, 2, 4, 8, . . .).

Figure 2.2. Dilated Causal Convolutional Blocks in a Temporal Convolutional Network
(TCN) with Exponentially Increasing Dilation [28]

In order to preserve the input and output sequence length consistency, the model
employs a symmetric padding strategy. That is, the input is padded on either side in
every convolutional layer such that the output tensor has the same temporal dimension
as the input tensor. It is convenient to use with applications where temporal resolution
must be preserved (e.g., sequence-to-sequence modelling or classification per step). It is
also easier to interpret the output because no part is cropped or lost in the forward pass.

By combining dilation with symmetric padding, the model is entirely convolutional.
That is, it does not depend on the input sequence length in an absolute way and can
therefore accommodate sequences of any length without modifying the architecture in
any way. The architecture is also parallelizable over time steps, which can accelerate
both training as well as inference in comparison with recurrent models, yet still capture
global as well as local temporal dependencies.

Output Representation

We use the final output from the FloatTCNModel as the activation vector at the middle
time index in the sequence after processing. Its mathematical form is

middle_index =
⌊︃

T

2

⌋︃
where the input sequence length is given as T . The model takes the given index from the
feature representation in the last activation tensor, which has passed through the series
of dilated convolutions, normalization, and activation.
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This is motivated from the fact that the model can use symmetric padding and bidirec-
tional receptive fields, thanks to the non-causal, dilated convolutional model. Each output
timestep has influence from the future as well as the past, with the central timestep par-
ticularly able to leverage the most symmetric context. It is specifically equidistant from
the sequence boundaries, and can hence draw from the most symmetric temporal aggre-
gate.

This is especially suitable for applications where one is interested in producing one
output per input sequence, such as sequence-level classification or regression. With the
middle-level representation, the model is immune to the issue with boundaries, and the
output is derived from the temporally rich and contextually full latent representation.

In addition, the output mode supplies the same interface to be used with any down-
stream decision or dense layers, facilitating simpler downstream processing. It also ob-
viates the need for global pooling or recurrent summarization layers, preserving the full
convolutional nature of the model while conserving computational efficiency.

2.2.2 Architecture of the ResidualBlock-Based TCN Model and Com-
parison

Overview

One other model is a more powerful version of the Temporal Convolutional Network
(TCN) based on the residual learning principles. The normal TCN employs Residual-
Blocks in it to enable the training of deeper networks with the aid of identity skip con-
nections, normalization layers that are optional, and causal padding that is adjustable
during training. The more powerful and flexible model, especially with very long sequen-
tial inputs, is the stronger variant TCN.

Architecture Description

In the second TCN model employed in the thesis, architecturally the model is struc-
tured as a stack of modular ResidualBlock layers to achieve improved expressiveness
in learning along with learning stability. Every ResidualBlock is a composite building
block carrying out the task of feature transformation with residual connections for retain-
ing information. The blocks form the TCN backbone and are stacked with progressively
growing dilation rates to allow the model to capture long-term temporal dependencies in
lengthy sequences Each ResidualBlock includes the following components:

• Two dilated 1D convolutional layers (nn.Conv1d):They are mostly applied for
temporal feature extraction. Dilation makes the kernel skip input positions, which
has the effect of increasing the receptive field of the layer without kernel size or
depth increase. This is important in order to model long-range relations in time-
series data.

• Zero-padding using F.pad: Instead of employing the built-in padding argument
in PyTorch convolutional layers, padding is performed manually with F.pad. This
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yields explicit control over causal or symmetric ("same") padding, based on the
programmed setting. Causal padding ensures that each output timestep will be
caused by only present and past inputs, a requirement for real-time prediction
problems.

• Normalization: There are different normalization schemes in the model. Batch
normalization (BatchNorm1d)normalizes along the batch dimension and is appro-
priate for most common use cases. Layer normalization (LayerNorm) normalizes
along the feature dimension of each time step and is thus more appropriate for vari-
able length sequences. If none of these is given, normalization is entirely omitted.

• Dropout: Used after every convolution, dropout adds regularization by randomly
dropping out a portion of the units during training. It prevents overfitting and
makes the model learn more generalizable temporal patterns.

• Activation function: The nonlinearity applied after each normalization and dropout
stage is configurable, with ReLU being the default. This flexibility allows experimen-
tation with other activations such as tanh, leaky_relu, or gelu depending on the
nature of the task and dataset.

• Residual (skip) connection: To make gradient propagation easier and to allow
for deeper networks, each block adds its output to a shortcut connection from the
input. A 1x1 convolution is used in order to have matching input and output channel
dimensions if they differ. The residual mechanism makes it easier to learn identity
mappings and speeds up convergence.

Beyond the internal structure of one block, the macro-architecture of the model con-
sists of multiple ResidualBlocks stacked with exponentially growing dilation rates (e.g.,
1, 2, 4, 8, .). This approach causes the network to have an exponentially growing recep-
tive field in terms of depth, enabling it to effectively model both short- and long-range
dependencies at no corresponding cost in parameters or computation.

Besides, the model includes skip connections among blocks that are optional, where
the intermediate results from each residual layer are concatenated and passed into the
last output layer. This facilitates deep supervision as well as enhances signal passage
throughout the network, particularly for extremely deep TCNs.

Padding Strategy and Temporal Alignment

One of the most important design choices in temporal convolutional models is the padding
scheme, which has direct consequences on the temporal alignment of features and the di-
rectionality of the receptive field.The TCN architecture presented in this chapter imple-
ments two kinds of padding schemes, each one tuned for various application requirements:
causal padding and same (symmetric) padding.Padding impacts not only the information
flow through the network but also the applicability of the model to certain applications
like forecasting or sequence classification.
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• Causal Padding:
This guarantees the convolutional output at time step t is computed based only on
the current and past time steps, i.e., [0, t], and not on any future information. This is
important when doing real-time or forecasting applications—e.g., time-series predic-
tion, streaming signal processing, and anomaly detection—where the model should
not "peek" into the future inputs. By maintaining this strict temporal causality, the
model is safe to apply in situations where future data does not exist at inference
time.

• Same Padding:
This padding method pads equally on either side of the input sequence, with the
effect of centering the convolutional kernel around each timestep. Thus, the output
at time t is determined by a bidirectional context, i.e., future, present, and past
inputs. This is viable for sequence classification or modeling where the whole input
sequence is known beforehand, for instance, offline signal processing, action recog-
nition, or sentiment analysis. Surprisingly, same padding also allows the original
sequence length to be retained and makes input and output sequence alignment
easier.

In order to have exact control over the effective receptive field and output align-
ment, padding is not performed with the native padding argument of nn.Conv1d. In
implementation, padding is performed manually using PyTorch’s F.pad() method. This
allows for conditioning on using left-only (causal) or symmetric padding preceding every
convolution operation. This also prevents version-number ambiguity within PyTorch for
automatic padding behavior and enables deterministic, reproducible input shifting con-
trol when dilating.

By accommodating both padding schemes, the model is made extremely flexible as
it can be applied to a wide range of temporal tasks with high accuracy in feature align-
ment and causal structure. The dual-mode flexibility is particularly useful in experimen-
tal settings, where the same base model can be re-used for either causal prediction or
sequence-level classification without modifying the architecture.

Skip Connections and Deep Supervision

The Temporal Convolutional Network (TCN) model utilized in this project has optional
support for skip connections between residual blocks, a design decision that greatly ben-
efits the representational power of the network and the training process. Skip connec-
tions, when activated, operate by gathering the intermediate residual outputs of each
ResidualBlock in the network and adding them before the last output projection layer.
Specifically, following the computation of each residual block’s transformed output and
the addition of the residual (shortcut) connection, the resulting tensor—is often referred
to as the residual output—is inserted into a list of intermediate representations. Follow-
ing the forward pass through all the residual blocks, they are added element-wise, giving
a compound feature map that aggregates information from all hierarchical levels of the
network.
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This skip connection strategy offers several important benefits:

• Improved Gradient Flow: Skip connections circumvent the vanishing gradient
issue ubiquitous in deep networks by providing shortcut paths from early layers to
the output. Gradients now find it easier to flow through these additive shortcuts
during backpropagation and thereby speeding up convergence as well as learning
meaningful weights in early layers

• Multi-Scale Feature Learning: Every residual block corresponds to a different
receptive field size because of the incremental dilation strategy. By adding up the
output of every block, the network is in effect doing multi-scale temporal aggrega-
tion, which enables the network to capture local short-term features (from shallow
layers with small receptive fields) and global long-range dependencies (from deep
layers with large receptive fields). This hierarchical structure is particularly advan-
tageous in problem-solving where substantial patterns occur at a range of temporal
scales.

• Robustness and Redundancy: The combination of intermediate outputs pro-
vides a type of redundancy that introduces a level of robustness into the network
to noisy or unusual input sequences. A salient feature that is not captured by a
block can potentially still be retained by other blocks working at different temporal
resolutions.

• Feature Reuse: By blending outputs of every residual step, the model does not
throw away possibly useful intermediate features. This promotes feature reuse, a
concept widely used in modern deep architectures such as ResNets and DenseNets,
where mid-level activations are good signals for later steps.

The last merged tensor, which is created by adding up all residual outputs, is fed
through a fully connected output layer(nn.Linear) that transforms the merged temporal
features into the desired output space. Regardless of whether the task demands an individ-
ual output vector or an entire output sequence, this skip connection strategy guarantees
that the model generates predictions from a rich and varied set of temporal abstractions.

Output Layer

After the convolutional backbone, Temporal Convolutional Network (TCN) gives flexible
output settings to allow experimentation with a broad variety of downstream tasks, which
is supported by conditional control of the behavior of the model’s final layer using two
parameters:return_sequences and regression.

I. Output Modes

• Full Sequence Output (return_sequences=True):
In this mode, the model produces a prediction for every timestep in the input
sequence. The output tensor has the shape [B, T, C], where B is the batch size, T
is the sequence length, and C is the number of output features. This configuration
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is ideal for tasks such as sequence labeling, multi-step forecasting, or temporal
segmentation, where the model is expected to make localized predictions at each
time point. For example, in sensor signal analysis, each timestep might be labeled
as belonging to a specific activity or event class.

• Last Timestep Output (return_sequences=False):
In this mode, the model takes the feature vector of the last timestep of the se-
quence and gives it as an individual output for each input sample. The output
shape is [B, C]. This is particularly helpful for sequence-level classification or re-
gression problems, in which one needs a general sense of the full sequence in order to
make one prediction (e.g., classifying overall activity type, forecasting total energy
usage, or summarizing sentiment).

II. Output Projection Layer

Irrespective of the chosen output mode, temporal features are fed into a fully connected
(linear) layer (nn.Linear). The layer transforms hidden feature representations into tar-
get output size and is the last transformation step prior to prediction. Its input size equals
that of the number of filters in the last convolutional layer, and its output size equals
that of the number of target classes (in classification) or scalar quantities (in regression).

III. Task-Specific Activation

To support both classification and regression tasks within a unified framework, the model
optionally applies a log-softmax activation to the final output. This behavior is governed
by the regression flag:

• When regression=False:
The model assumes a classification setting and applies F.log_softmax over the
output features, transforming the raw logits into log-probabilities. This is appro-
priate for use with loss functions such as negative log-likelihood loss (nn.NLLLoss),
commonly used in multi-class classification problems.

• When regression=True:
The model skips the log-softmax activation, and the output is raw linear. This is ap-
propriate for regression problems, when we are interested in predicting continuous-
valued targets, and loss functions like mean squared error (MSE) or mean absolute
error (MAE) are employed.

IV. Design Implications

This adaptive output learning interface allows the same model architecture to be applied
across a range of temporal learning tasks, merely by adjusting a few configuration param-
eters. It also allows for multi-task experimentation, whereby multiple output heads can
be used for various targets, depending on whether full sequence predictions or otherwise
aggregated outputs are desired.
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Model Selection

Following thorough analysis of both architectures, the second model—the Temporal Con-
volutional Network (TCN) based on ResidualBlocks—was chosen to be utilized in the final
system.

This was selected due to the heightened architectural flexibility, improved stability via
residual learning, and support for essential features like causal padding, skip connections,
and programmable normalization schemes.
These properties render it superior for modeling multi-scale temporal structures and
achieving robustness for a wide range of sequence modeling tasks.

In addition, its support for variable output form and both classification and regression
targets gives the flexibility needed for the experimental work of this thesis.

Hence, all the following experiments, tests, and deployment activities rely on this
residual TCN framework.
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Chapter 3

Methodology

This chapter describes the end-to-end process to transform a high-level Temporal Con-
volutional Network (TCN) model to one where it is hardware-friendly to implement in
FPGAs. We aimed to co-optimize the model to perform real-time inference with the least
computational latency and resource consumption.

The process began with the quantization of the TCN to reduced-precision integer to
minimize memory and computational complexity (Section 3.1). The baseline TensorFlow
build then had to be translated to PyTorch to have better control over the quantization
flows in order to simplify further translation to C++ (Section 3.2).

The quantized PyTorch model had to then be implemented in fixed-point C++ with
custom logic hand-optimized to the constraints in the High-Level Synthesis (HLS) to en-
sure the model structure as well as numerical correctness (Section 3.3). The C++ codebase
then underwent co-optimization with high-level synthesis (HLS) using pragma directives
as well as structural modifications to optimize the C++ code to achieve minimum latency,
improved parallelism as well as balanced HW resource consumption (Section 3.4).

The optimized full design then had to be implemented in the entire end-to-end FPGA
system in Vivado block-level designing tools with AXI interfaces as well as system-level
IPs to allow real-time inference in embedded devices (Section 3.5). All these steps com-
bined constitute an end-to-end software-to-hardware workflow optimized to implement
deep learning models in real-time resource-constrained embedded applications.

35



Methodology

Figure 3.1. Flow Diagram of The Work

3.1 Conversion from TensorFlow to PyTorch with C++
Deployment

This section outlines the procedure undertaken to quantize and optimize the deployment-
ready version of the Temporal Convolutional Network (TCN) onto hardware-restricted
devices. The goal with the procedure is to reduce the model’s computational and memory
footprint without impacting the predictability of the model. Two methods were explored
to perform the quantization: Quantization-Aware Training (QAT) with the library Bre-
vitas, and Post-Training Quantization (PTQ) with ONNX Runtime. Although the two
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methods were explored, only PTQ underwent to the final deployment stage due to re-
strictions in the target FPGA toolchain. The motivation with the choice is explained in
the subsections.

Beyond the C++ deployment for fixed-point inference and hardware, the framework
had to be ported to PyTorch initially. This is the reason it had to be done in the first place,
as two models—one baseline float32-based TCN, and one further flexible ResidualBlock-
based TCN—had to be ported and experimented with in a platform with higher trans-
parency, control over quantization, as well as C++ exportability.

The subsequent subsections first describe the motivation as well as the translation
procedure from the TensorFlow to the PyTorch models, followed by the procedure followed
to perform the quantization, and then the procedure to transform the resulting models
to the deployable C++ form appropriate to accept HLS-based synthesis to the targeted
FPGA hardware.

3.1.1 Motivation for Converting the TCN Model from TensorFlow to
PyTorch

The primary motivation to migrate to PyTorch was the need to perform manual fixed-
point quantization (for example, Q4.8) as well as structured weight export to hand-coded
C++ inference. TensorFlow is capable of deployment formats such as TensorFlow Lite
(TFLite) as well as ONNX, but the formats essentially target usage with opaque run-
time interpreters or edge deployment to ARM hardware. The formats, while optimized
for mobile inference efficiency, encapsulate much of the inner mechanisms, and it is not
easy to achieve fine-grained control over numerical computations as well as weight repre-
sentations required in fixed-point implementations.

Particularly when compiling to embedded targets such as STM32 microcontrollers
or high-level synthesis (HLS) flows to run in FPGAs, programmers usually require full
visibility and determinism in the execution of arithmetic operations, particularly scaling,
clipping, and saturation. These go beyond the abstraction levels provided by TensorFlow
automatic quantization and export tools. Also, TensorFlow’s quantized model represen-
tations (e.g., .tflite files) package weights as binary blobs, which can’t be directly read
or exported to standard C++ data structures, and hence can’t readily be included into
custom testbenches or hardware accelerators.

In contrast, PyTorch exposes underlying model parameters in a straightforward man-
ner and allows fine-grained scripting both during export and quantization. This is espe-
cially important when deploying models to environments in which memory, bitwidth, and
latency constraints demand some level of optimization and visibility that is not achievable
within TensorFlow’s deployment pipeline.
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3.1.2 Advantages of Using PyTorch as an Intermediate Step Before
C++

PyTorch offers a variety of useful features to support this mid-level functionality. With the
"state_dict" giving straightforward access to the model parameters, PyTorch facilitates
transferring the weights directly into NumPy arrays and to writing them to human-
readable C++ header files. Such structured access is necessary while implementing fixed-
point representations as well as corresponding data formats across platforms.

Second, PyTorch has native support for post-training quantization (PTQ) as well as
quantization-aware training (QAT), alongside external tools like Brevitas. These offer
high-fine-grained control over the process of quantization, i.e., bit width, scaling factors,
as well as options for per-channel or per-layer quantization. This is required to optimize
the model to the particular constraints of specific hardware targets, e.g., aligning accu-
mulator ranges as well as saturation characteristics in the C++ fixed-point engine.

Third, native interoperability with NumPy, as well as eager execution mode, simplify
debugging. Developers can now easily examine intermediate tensors, observe the acti-
vation levels for every layer, and directly look at outputs in comparison to equivalent
C++ calculations. This greatly increases traceability and verifiability, especially in case
of overflow, round-off, or data format mismatch.

Lastly, the entire weight exportation and conversion process can be automated us-
ing short Python scripts. The scripts accept weights from PyTorch models, perform the
quantization, reshape the array, and produce C-style header files which can be included
in embedded or in in HLS C++ projects. The automatic process eliminates the possi-
bility of human error, allows reproducibility, and allows iterative design cycles as well as
debugging cycles

3.1.3 Challenges in Direct TensorFlow-to-C++ Translation

Converting directly to C++ from TensorFlow proved even tougher. The standard Ten-
sorFlow export formats, such as .pb, .tflite, or .onnx, are primarily designed for runtime
inference engines and do not lend themselves to straightforward manual inspection or
special customization at the lower levels.

Such formats tend to encapsulate weights and metadata in binary forms difficult to
read or specialize to specific embedded requirements. Developers hence enjoy limited flex-
ibility in automated deployment tools with little room to optimize numeric precision or
add custom fixed-point semantics. TensorFlow likewise lacks robust intrinsic fixed-point
arithmetic simulation capabilities at the operator-level.

It is not possible to directly support simulating clipping, saturation, or fixed-point
arithmetic rounding in the context of TensorFlow graphs. That is serious in the case
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where exact, reproducible arithmetic pipelined models must be used as is normally re-
quired in the case of hardware synthesis or microcontroller applications. Moreover, the
quantization operations offered in TensorFlow Lite et al. are intended to be used in de-
ployment to embedded or mobile runtimes, as opposed to manual control or debugging.
They obfuscate the middle representations, making it difficult to see where the Python
and C++ implementations diverge.

In practice, developers have to either accept the opaque model representations or
spend large amounts of effort reverse-engineering the exported models, which neither al-
lows for agile, transparent development. Generally, the lack of flexibility, interoperability,
and visibility in the hand-coded fixed-point flows renders the TensorFlow-to-C++ route
unsuitable to the needs of the work.

3.2 Quantization Techniques for Efficient TCN Deployment

This chapter describes the approach taken to quantize a Temporal Convolutional Network
(TCN) to deploy on low-power hardware in embedded and FPGA-based environments.
Quantization of the model was aimed at reducing the computational complexity and mem-
ory requirement of the model at the cost of not compromising on prediction accuracy to
a great extent. Quantization-Aware Training (QAT) using the Brevitas library and Post-
Training Quantization (PTQ) using ONNX Runtime were the two primary approaches
that were considered initially. The workflow also provides validation and evaluation steps
of every quantized model regarding accuracy, numerical behavior, and deployability. But
because of the toolchain restriction, only the PTQ approach was actually realized for
deployment, as elaborated below.

3.2.1 Applying Quantization-Aware Training (QAT) Using Brevitas

In order to mimic low-bit inference behavior at training time, Quantization-Aware Train-
ing (QAT) was carried out through the Brevitas library, a PyTorch development frame-
work for quantized neural networks. The rationale for doing so was to get the model ready
for eventual deployment on hardware accelerators—i.e., FPGAs—by subjecting it to the
same numerical constraints at training time that would be imposed at inference time. In
this approach, all the default layers within the Temporal Convolutional Network (TCN)
were substituted one by one with their quantized versions offered by Brevitas:

• QuantConv1d was used in place of traditional Conv1d layers to apply 8-bit weight
and activation quantization with configurable scale and zero-point encoding.

• QuantReLU replaced standard ReLU activations, simulating non-linear activation
behavior under low-bit constraints.

• QuantLinear substituted the final dense layer, enforcing quantized weight matrices
and activations at the output stage.
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These quantized layers introduced simulated quantization impacts in both training
passes forward and backward so that the model learned quantization-resilient parameters.
Quantization noise and reduced precision were emulated using fake quantization nodes,
allowing the optimizer to update the network’s parameters appropriately. In this way,
training-time and inference-time numerical behavior are consistent, and this generally
produces more accurate quantized models than post-training quantization.

Upon completion of training, the Brevitas model was exported to the QONNX
(Quantized Open Neural Network Exchange) format using the export_qonnx() func-
tion. Unlike traditional ONNX models that rely purely on float32 computations, the
QONNX format embeds symbolic quantization semantics through specialized operator
nodes such as:

• Quant (for quantization of tensors),

• Mul (for scale factor application), and

• Trunc (for integer rounding or clipping).

This quantization symbolic encoding enables downstream hardware synthesis tools—
i.e., Xilinx FINN—to identify and implement the low-precision mathematics as actual
hardware operations. Nevertheless, while exported FINN-compatible, the QONNX model
continues to have weights in float32 format; low-bit operation is realized through sym-
bolic graph structure, rather than through explicit bit-width truncation. Unfortunately,
this QAT-based quantization process pipeline was not deployable for this project.

The main limitation was that the NN2FPGA toolchain, which was chosen to syn-
thesise neural networks to RTL, does not yet support Temporal Convolutional Network
(TCN) architectures.

TCN-specific layers, including dilated 1D convolutions and residual structures, were
not addressed by NN2FPGA’s layer conversion or mapping.

As a result, the QONNX export—although structurally accurate and functionally
accurate—was not deployable to the target FPGA workflow.

Therefore, while the QAT path successfully demonstrated the feasibility of training
low-precision models with negligible loss in accuracy (average RMSE degradation < 0.3%
relative to the float32 baseline), it was excluded from the final deployment strategy. Nev-
ertheless, the experiments validated that QAT using Brevitas is a hardware-aware and
technologically solid solution, and it can remain a viable candidate for possible future
deployment use cases with complete toolchain support. On the other hand, the deploy-
ment of the current project was solely based on Post-Training Quantization (PTQ) using
manual C++ fixed-point conversion, as explained in the following sections.
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3.2.2 Post-Training Quantization (PTQ) for Export to C++

PTQ offers an architecture-agnostic, non-intrusive alternative to Quantization-Aware
Training (QAT), enabling the quantization of an already trained model without expos-
ing it to architectural changes or retraining. The process of quantization started with
the initial float32 PyTorch model, which was trained and tested on the indoor lo-
calization dataset. The model was first exported to the ONNX (Open Neural Network
Exchange) representation, as a common intermediate representation. Once in ONNX for-
mat, ONNX Runtime’s dynamic quantization API—specifically, quantize_dynamic()
from the onnxruntime.quantization module—was applied. This tool automatically con-
verted eligible weight tensors of type float32 to real int8 initializers, as well as re-writing
parts of the computation graph to quantized operations wherever possible. The conversion
mainly involved linear layers and matrix multiplications, which are the most computa-
tionally demanding operations in ordinary neural networks.

The quantized model generated was inspected using Netron, which is a graphical
neural network model visualizer. The inspection confirmed that the quantized ONNX
model contained literal int8 tensors and replaced float-based operations with quantized
hardware-efficient counterparts. Unlike QONNX export used in QAT—which introduces
symbolic quantization operators while keeping float32 weights—the PTQ model con-
tained true integer weights and was structurally adapted for low-bit inference. One of
the most significant benefits of PTQ is that it is non-intrusive. It neither modifies the
model’s architecture nor adds more training cycles, which makes it very useful for de-
ployment environments where retraining is unfeasible or expensive. Empirical evaluations
showed that the prediction accuracy of the PTQ model remained very close to the original
float32 baseline. In fact, in some validation folds, the quantized model achieved slightly
better performance, a phenomenon often attributed to the implicit regularization effect
introduced by quantization noise during inference.

Crucially, this quantized ONNX model also served as the reference blueprint for
the downstream C++ fixed-point implementation. After confirming the structure and
weights, the int8 quantized weights were converted into Q4.4 fixed-point format (ap_fixe-
d<8,4>) and manually embedded into C++ header files. In the C++ implementation,
all tensor operations were re-written using fixed-point types such as ap_fixed<8,4> for
multipliers and ap_int<32> for accumulators. Care was taken to faithfully replicate the
behavior of quantized inference, including int8-style multiplication, rounding, trunca-
tion, and saturation. This ensured consistency between the PTQ ONNX model and the
synthesized C++ version intended for FPGA deployment.

41



Methodology

Figure 3.2. Floating Point Representation IEEE 754 [29]

Figure 3.3. Q4.4 Fixed Point Representation [30]

Thus, PTQ not only facilitated a smooth and accurate quantization process but also
enabled a seamless transition to hardware-level fixed-point computation, making it a cen-
tral component of the deployment pipeline.

Due to deployment limitations and incompatibilities between toolchains—i.e., NN2FPGA’s
inability to take QONNX models obtained from Temporal Convolutional Networks (TCNs)—
Post-Training Quantization (PTQ) was done manually. Further technical details regarding
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the fixed-point transformation, C++ kernel implementation, and synthesis for FPGA are
provided in the subsequent sections of this thesis.

3.2.3 Structure and Design of the PyTorch Quantized TCN Model

The original neural network model was implemented in PyTorch and based on the Tem-
poral Convolutional Network (TCN) architecture, which is well-suited for processing se-
quential time-series data such as indoor localization signals. TCNs are designed to handle
temporal dependencies through the use of causal and dilated convolutions, making them
effective for tasks that require learning from patterns over time. The model in this work
was specifically tailored to handle input windows of length 15, each consisting of 4 parallel
sensor features, resulting in an input tensor of shape [batch size, 15, 4].

Model Input and Data Structure

The input to the TCN was a time-series sequence with a fixed window of 15-time steps
and 4 channels per step. Each sample represented a temporal snapshot of sensor readings,
where channels could represent RSSI values, UWB data, or other time-synchronized signal
features. This input was transposed in PyTorch to match the expected shape for 1D
convolutions—[batch, channels, sequence], i.e., [B, 4, 15].

1×1 Downsampling Convolution

The first layer in the TCN architecture was a 1×1 convolution, also known as a pointwise
convolution. Its role was to map the input feature space from 4 channels to the internal
hidden representation dimension of 8 channels (matching the depth used throughout
the residual blocks). This operation also served as a downsampling or projection layer,
ensuring that the dimensionality matched across the network’s depth, especially for the
residual connections that require consistent shapes between input and output. The use
of a 1×1 kernel ensures that no temporal context is blended in this step—only feature
transformation is performed.

Residual Blocks with Dilated Convolutions

Following the downsampling layer, the model consisted of three stacked residual blocks.
Each residual block contained two dilated 1D convolutional layers, enabling the network
to model long-range dependencies without increasing the number of layers or parameters
significantly. The dilation rates were set to [1, 2, 4], meaning that the receptive field
of the model grew exponentially with each block. The kernel size used was 5, and the
padding was set in a causal manner (i.e., future time steps were not used to predict the
current one), ensuring temporal consistency.

Each convolution in the residual block was followed by:

• Normalization Layer: Either BatchNorm1d, LayerNorm, or an identity operation
depending on configuration. In this project, normalization was kept minimal to
facilitate quantization and FPGA deployment.
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• ReLU Activation: Non-linearity was introduced using the ReLU function (max(0,
x)), enabling the model to capture complex patterns.

• Dropout Layer: Applied only during training to prevent overfitting by randomly
masking neurons. Dropout was disabled during inference and not implemented in
the final hardware model.

To preserve gradient flow and enable deeper models, skip connections were added be-
tween the block’s input and output. When input and output channel dimensions matched,
a direct identity connection was used. Otherwise, the skip path also passed through a 1×1
convolution.

Final Output Layer

After the final residual block, the output tensor was of shape [batch, 8, 15]. As the
model was configured for non-sequential output mode, only the last time step from the
sequence (i.e., index 14) was extracted. This tensor slice of shape [batch, 8] was passed
through a fully connected Linear layer mapping the 8 hidden units to 2 output units,
representing the 2D spatial coordinates (x, y) of the predicted position.

In PyTorch, the final output was passed through a log_softmax() function if clas-
sification was required. However, in this work—where the task is regression (coordinate
prediction)—the final activation was omitted, and the raw outputs were treated as con-
tinuous values.

Training and Quantization

The model was trained using 32-bit floating-point precision and optimized using standard
loss functions like RMSE or MSE. Following training, the model was quantized using
Post-Training Quantization (PTQ) to convert weights and activations to 8-bit integers.
This step was critical to preparing the model for deployment on FPGA hardware, where
memory and compute resources are limited and low-precision inference is essential for
real-time operation. Quantized weights and biases were exported and embedded into the
final C++ implementation as int8_t arrays, enabling efficient fixed-point computation.

3.2.4 Exporting Quantized Weights from PyTorch to C++ Headers

To enable efficient fixed-point inference of the Temporal Convolutional Network (TCN)
on FPGA hardware, the model weights and biases trained in floating-point precision
were quantized and exported to a C++-compatible format. This process was essential for
bridging the software-defined PyTorch implementation and the hardware-synthesizable
C++ code used with Vitis HLS.

Motivation for Quantization

Quantization is the process of mapping high-precision numerical values (typically float32)
to lower-precision representations (e.g., int8) in a way that reduces memory footprint,
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bandwidth requirements, and arithmetic complexity while retaining acceptable accuracy.
On FPGA, quantization is critical because:

• Fixed-point arithmetic is significantly cheaper than floating-point in terms of logic
and power.

• DSP blocks and BRAMs are limited resources, and using 8-bit data maximizes
parallelization.

• Latency and power consumption can be drastically reduced by avoiding float oper-
ations.

In this project, quantization enabled deployment of a deep TCN model in an embedded
environment without violating the real-time constraints of indoor localization.

Quantization Strategy

The chosen quantization strategy was symmetric linear quantization using a fixed scale
factor of 16. This means all float32 weights and biases were mapped to 8-bit integers
via the following formula:

quantized_val = round(float_val × scale)

where scale = 16.
This effectively shifts the floating-point range [−8.0, +7.9375] into the int8 range

[−128, +127], assuming no clipping beyond bounds. The choice of a power-of-two scale
factor (24 = 16) simplifies the hardware implementation, as division and multiplication
by 16 can be replaced with bit shifting (» 4 and « 4), which are much faster and more
efficient in hardware logic.

Dequantization in C++

To convert intermediate outputs from fixed-point accumulations back to approximate
float values in the final layer, dequantization was performed by applying the inverse of
the scale:

float_val = quantized_val
scale

In the C++ implementation, this was done by dividing the final accumulator by
scale^2 = 256, since both the input and weight were scaled by 16. This scaling was
integrated directly into the logic of the output layer:

output[o] = static_cast<float>(acc) / (SCALE * SCALE);

Header File Generation: tcn_weights_int8.h

Once quantized, the weights and biases were exported from Python into a C-compatible
header file named tcn_weights_int8.h. This file contained:

• int8_t arrays for each convolutional layer’s weights and biases.
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• int8_t arrays for the downsampling layer and final linear layer.

• All arrays were flattened into 1D buffers to simplify indexing in C++ and minimize
synthesis complexity.

Each array followed the naming convention: tcn_network_<layer>_<conv1/conv2/downsample>_<weight/bias>
These weights were indexed manually in the convolution loops using:

int w_idx = oc * in_ch * KERNEL_SIZE + ic * KERNEL_SIZE + k;

This ensured that the structure and layout of weights in C++ exactly mirrored those
used in the PyTorch model, preserving correctness in forward propagation.

Advantages of Manual Export

While many toolchains (e.g., Brevitas → QONNX → FINN) support automatic export
pipelines, manual export was chosen for the following reasons:

• Complete control over precision and scaling behavior

• Compatibility with custom C++ inference engine

• Simplicity in debugging and verification, especially when validating numerical equiv-
alence between PyTorch and C++ inference outputs

Export scripts were implemented using NumPy, and quantized arrays were saved using
np.round(), followed by casting to int8. A custom code generation step then wrote these
arrays as C-style initializers into the .h file.

Limitations and Considerations

• A single global scale factor was used for all layers, simplifying implementation but
limiting the ability to fine-tune quantization per layer.

• Asymmetric quantization or per-channel scales were not used to avoid complex
dequantization logic in C++ and to minimize logic overhead.

• Rounding errors and clipping were carefully controlled to avoid inference instability
in edge cases.

3.2.5 Implementation of Fixed-Point Arithmetic in C++

To enable hardware-efficient inference on FPGA, the model was entirely implemented
using fixed-point arithmetic, eliminating the need for floating-point operations that are
typically resource-intensive and power-hungry on programmable logic devices. The numer-
ical format used was based on Xilinx’s ap_fixed and ap_int types, which are optimized
for synthesis using Vitis HLS.
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Data Representation

All intermediate and input/output values in the model were represented using:

• ap_fixed<8, 4> for 8-bit signed fixed-point numbers, where:

– 8 is the total number of bits
– 4 are integer bits (including the sign bit)
– The remaining 4 bits represent the fractional part (resolution = 0.0625)

This format allows encoding values in the range of approximately [−8.0, +7.9375] with
a granularity of 1

24 = 0.0625, which aligns precisely with the symmetric quantization
scheme using a scale factor of 16.

Accumulations during convolution and fully connected layers were performed using:

• ap_int<32>, a 32-bit signed integer type, to prevent overflow and preserve inter-
mediate precision before final output scaling.

ReLU Activation with Saturation

The ReLU (Rectified Linear Unit) activation function, defined as ReLU(x) = max(0, x),
was implemented in fixed-point logic with additional saturation logic. This ensured that:

• Negative values were clipped to zero.

• Positive values exceeding the maximum representable int8 value (+127) were sat-
urated.

C++ implementation:

int8_t relu(acc_t x) {
return (x > 127) ? 127 : (x < 0 ? 0 : static_cast<int8_t>(x));

}

This behavior mimics standard ReLU while preventing overflows during inference,
preserving numerical stability across layers.

Fixed-Point Accumulation and Scaling

All core mathematical operations — such as convolutions and linear transformations —
were performed using integer multiply-accumulate (MAC) operations. Each operation
multiplied an 8-bit quantized input with an 8-bit quantized weight and accumulated the
result into a 32-bit accumulator:

acc+ = w × x

where both w and x are int8_t, and the result is held in an ap_int<32> accumulator
acc.
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After summing all contributions, the accumulator was scaled back down by dividing
by the square of the scale factor (i.e., scale2 = 256) to simulate dequantization. Since
divisions are expensive in hardware, this was implemented using a bitwise right shift:

dequantized_val = acc
16 ≈ acc >> 4

This efficient approximation retained performance while adhering to the quantization
scheme’s numeric logic.

Final Output Scaling and Conversion

In the final linear layer, which outputs float32 coordinates, the accumulated int32
values were converted back to approximate floating-point by applying:

output[o] = acc
scale2

C++ implementation:
output[o] = static_cast<float>(acc) / (SCALE * SCALE);

This converts the integer sum back into a meaningful real-world prediction by re-
versing the quantization effect. It also ensures compatibility with systems expecting float
output (e.g., visualization or post-processing modules).

Advantages of Fixed-Point Arithmetic

• Hardware Efficiency: Avoids the need for floating-point IP cores, saving FPGA
area and power.

• Predictable Latency: Integer operations have deterministic execution cycles.

• Scalability: Enables processing multiple channels in parallel using array partition-
ing and pipelining.

Challenges Addressed

• Overflow Management: 32-bit accumulators were chosen to ensure sufficient
headroom during MAC operations.

• Quantization Noise: The choice of scale (16) and symmetric quantization pro-
vided a good trade-off between range and resolution, minimizing accuracy loss.

• Bit-Accurate Consistency: Ensured that inference outputs matched PyTorch
(float32) outputs within a small RMSE margin after quantization.

3.2.6 Layer-by-Layer Translation of the Model to C++

This section describes how each layer of the original PyTorch TCN model was manually
implemented in C++ using fixed-point arithmetic and synthesized for FPGA using Vitis
HLS. Each layer is functionally equivalent to its software counterpart but rewritten to
use int8_t operations, static array indexing, and pragmas for hardware optimization.
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1. Downsampling Layer

The first stage in the hardware TCN model is a 1×1 convolution, implemented in the
function downsample_fixed(). In the PyTorch model, this layer projects the input from
4 channels to the hidden representation of 8 channels, ensuring compatibility with the
subsequent residual blocks.

In the C++ implementation:

• The convolution uses a kernel size of 1, so each output channel at each time step is
computed as a weighted sum across the 4 input channels at the same time step.

• The corresponding C++ loop performs this sum using quantized weights and biases:

acc_t acc = static_cast<acc_t>(bias[oc]) * SCALE;
for (int ic = 0; ic < IN_CH; ++ic) {

acc += static_cast<acc_t>(weights[w_idx]) * input[ic][t];
}

The result is passed through a ReLU activation with saturation and stored in the x0
buffer for input to the first residual block. This implementation maps directly to the
PyTorch operation while optimizing for low-latency execution via loop pipelining and
array partitioning.

2. Residual Blocks with Dilated Convolutions

Each residual block is implemented in the function residual_block_fixed() and con-
sists of:

• Two dilated 1D convolutional layers

• A residual skip connection that adds the input back to the output

Dilated Convolution Logic To replicate PyTorch’s nn.Conv1d dilation behavior with
dilation factor d, the convolution logic accesses past inputs spaced by the dilation step:

int idx = t - dilation * k;

This ensures that for kernel position k, the convolution accesses time step t − d · k.
If the index is negative (i.e., before the start of the sequence), a zero is used to simulate
causal padding.

This method guarantees:

• Exponential receptive field growth across layers

• Preservation of temporal causality (no future information leaks into predictions)
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Layer Execution Each residual block follows this sequence:

1. Apply first dilated convolution with bias and ReLU

2. Store output in a temporary buffer

3. Apply second dilated convolution with bias and ReLU

4. Add original input via residual skip connection:

acc = static_cast<acc_t>(output[oc][t]) + static_cast<acc_t>(input[oc][t]);
output[oc][t] = relu(acc);

The result is written into a new activation buffer (e.g., x1, x2, x3). Residual blocks
are called with increasing dilation rates of 1, 2, and 4, consistent with the PyTorch model.

3. Final Linear Layer

After the last residual block (x3), the output tensor is of shape [8][15], correspond-
ing to 8 channels across 15 time steps. Since the model is configured for non-sequential
regression, only the last time step (index 14) is used:

last_step[i] = x3[i][SEQ_LEN - 1];

This 8-element vector is passed to linear_output_fixed(), which implements a fully
connected layer using quantized weights and biases:

acc += static_cast<acc_t>(weights[idx]) * input[i];

The output consists of 2 values (predicted x and y coordinates in float). Since both
inputs and weights are scaled by 16, the accumulator is divided by scale2 = 256 to
dequantize:

output[o] = acc
SCALE2 (3.1)

C++ equivalent:

output[o] = static_cast<float>(acc) / (SCALE * SCALE);

This ensures compatibility with downstream modules expecting floating-point predic-
tions, such as tracking systems or evaluation metrics.

3.2.7 Benefits of Manual Quantized Model Translation to C++

Opting for a manual translation of the quantized PyTorch model into synthesizable C++
code — rather than relying on automated tools like NN2FPGA or FINN — provided sev-
eral significant advantages. These benefits span numerical control, optimization flexibility,
validation clarity, and long-term adaptability of the hardware design.
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1. Full Control Over Numerical Behavior

Manual C++ implementation allowed precise control over how arithmetic was performed,
especially in terms of fixed-point quantization behavior. With this approach:

• The quantization scale factor, saturation limits, and rounding strategy were explic-
itly defined in code rather than abstracted away in opaque conversion tools.

• Custom logic was introduced for ReLU activations with saturation, clipping logic
for overflow, and dequantization by shift-scaling — all critical for maintaining con-
sistent behavior across layers.

• Accumulators were carefully managed using 32-bit signed integers (ap_int<32>)
to avoid overflow, a level of control that most high-level translation tools do not
expose or optimize for.

This explicit handling of numerical behavior ensured that the fixed-point version
closely mirrored the float32 behavior of the original PyTorch model with minimal loss in
accuracy.

2. Platform-Specific Optimizations (to be discussed later)

The translation process was tailored to the requirements and capabilities of Xilinx Vitis
HLS and the specific FPGA platform used for deployment. This level of tuning enabled:

• Optimized memory layouts via ARRAY_PARTITION and ARRAY_RESHAPE, which re-
duced access latency and enabled parallel memory reads from BRAM.

• Fine-tuned compute loops using #pragma HLS PIPELINE, UNROLL, and DATAFLOW,
which maximized throughput and reduced latency.

• Interface pragmas (AXI4-FULL and AXI-Lite) were customized for efficient integra-
tion with the target platform’s memory and control interfaces.

Such hardware-specific adaptations are often impossible or suboptimal when using
general-purpose auto-conversion tools, which tend to generate generic but inefficient HDL.

3. Enhanced Debug Visibility and Validation

Manual translation provided transparent visibility into every layer and operation of the
inference pipeline:

• Each function (e.g., convolution, ReLU, residual connection) could be individually
tested using C++ testbenches or co-simulation.

• Intermediate activation maps and accumulator states could be logged and compared
directly against PyTorch outputs.
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• The debug process was significantly more manageable because code logic and data
flow were explicit, unlike in automated hardware exports where the mapping from
high-level model layers to hardware logic is often non-trivial.

This improved debug visibility was crucial during iterative design, validation, and
performance profiling phases.

4. Modularity and Future Extensibility

The handcrafted C++ implementation is modular by design, enabling flexible experimen-
tation and extension. Some advantages include:

• Easy replacement of activation functions (e.g., swapping ReLU with LeakyReLU)

• Support for mixed-precision formats (e.g., int4, ap_fixed<6,2>) simply by adjust-
ing data types and quantization logic

• Integration of hardware-specific acceleration units, such as DSP blocks or custom
systolic arrays, without being constrained by the abstraction layers of automated
toolchains

• Simplified adaptation for future models with different numbers of layers, channels,
or kernel sizes

This extensibility makes the C++ implementation not just a single-use converter, but
a reusable foundation for future FPGA-based deep learning applications.

3.2.8 Limitations and Design Trade-offs in the Quantization Pipeline

While manual translation of the quantized PyTorch model into synthesizable C++ code
provided a high level of control and optimization potential, it also introduced several
non-trivial challenges. These limitations highlight the engineering trade-offs involved in
bypassing automated toolchains and should be taken into account for similar future im-
plementations.

1. Time-Consuming and Error-Prone Development

Manually implementing each layer, operation, and buffer in C++—especially in a way
that conforms to the requirements of Vitis HLS—demanded a significant amount of de-
velopment time. Unlike automated toolchains, which abstract much of the hardware gen-
eration and validation process, manual development required:

• Writing explicit loops for all convolutional, activation, and linear layers

• Managing array dimensions, data types, and interface specifications

• Inserting and tuning HLS pragmas (e.g., #pragma HLS PIPELINE, ARRAY_PARTITION)
for performance and synthesis correctness
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This low-level design process increased the risk of indexing errors, data misalignment,
or overflow issues, all of which could silently degrade model accuracy or cause synthesis
failures. Debugging such issues often required close inspection of both functional behavior
and hardware synthesis logs, which added to the complexity.

2. Explicit Simulation of Quantization Behavior

Unlike toolchains such as Brevitas or QONNX, which embed quantization logic through
symbolic operators and layer wrappers, the manual C++ approach required all aspects
of quantization to be explicitly simulated in code:

• Multiplication by a fixed scale factor during quantization

• Manual implementation of ReLU with saturation for int8_t values

• Use of integer shift operations for dequantization

This increased the number of operations that had to be verified, and added an addi-
tional burden in ensuring bit-accurate consistency with the original floating-point model.
Any deviation from the intended quantization flow (e.g., forgetting to apply a shift after
accumulation) could lead to unpredictable inference behavior.

Moreover, since no standardized quantization library was available in this environ-
ment, the behavior of rounding, clipping, and overflow had to be replicated manually and
consistently across the entire pipeline.

3. Manual Weight Mapping and Indexing

All weights and biases extracted from the trained PyTorch model were exported as int8_t
arrays and manually written into a C++ header file (tcn_weights_int8.h). While this
provided direct access to quantized parameters, it also required:

• Flattening multi-dimensional tensors into 1D arrays

• Reconstructing the original dimensionality in code via manual indexing

• Strict layout consistency between PyTorch and C++

For example, indexing into convolutional weight arrays required detailed knowledge
of the weight layout:

index = output_channel×input_channel×kernel_size+input_channel×kernel_size+k

Errors in this mapping could lead to subtle yet catastrophic misalignments, especially
in deep or multi-branch networks. No automated consistency checking existed, so the
burden of validation was fully on the developer.
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4. Limited Flexibility in Model Portability

Because the implementation was hardcoded to a specific model architecture (e.g., 3 resid-
ual blocks, dilation rates of [1, 2, 4], 8 channels), any changes in the model design would
require:

• Rewriting parts of the C++ inference code

• Re-exporting and relabeling weight arrays

• Re-validating all buffer sizes and pipeline behavior

This makes it difficult to generalize or reconfigure the hardware implementation for
dynamic models or varying input/output sizes, in contrast to more abstracted deployment
tools which can often handle structural variations with minor modifications.

3.2.9 Summary of Quantization Workflow and Insights

The manual translation of the quantized PyTorch Temporal Convolutional Network
(TCN) into a synthesizable C++ implementation proved to be a highly effective ap-
proach for deploying deep learning models on FPGA using High-Level Synthesis (HLS).
Unlike automated toolchains that abstract away much of the conversion process, the
handcrafted implementation enabled precise control over numerical behavior, layer func-
tionality, memory layout, and hardware resource usage — all of which are critical in
constrained edge computing environments.

Every component of the model — from the downsampling projection layer to the series
of residual blocks with dilated convolutions, and finally the fully connected linear output
layer — was faithfully reimplemented using int8 fixed-point arithmetic. This ensured
that quantization effects were fully preserved and that the model’s behavior remained
functionally consistent with the original float32 PyTorch implementation. The use of
ap_fixed<8,4> and ap_int<32> types allowed efficient multiply-accumulate operations
while avoiding the overhead of floating-point units.

Further, the C++ implementation was carefully structured to match the TCN’s orig-
inal architecture, including:

• Causal, dilated convolutions that preserved temporal context

• Residual connections to maintain gradient flow and representational depth

• Last-step slicing to produce non-sequential, real-valued regression outputs

This structural fidelity was essential for maintaining prediction accuracy while reduc-
ing the computational burden through quantization.

The manual process also enabled deep integration with Vitis HLS, where architectural
optimizations such as loop pipelining, array partitioning, and memory banking were ap-
plied to meet real-time performance constraints. These optimizations were tailored specif-
ically to the FPGA’s logic and memory architecture, resulting in an implementation that
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was not only correct and lightweight but also synthesizable and deployable on a real
hardware target.

While the development effort was significantly more involved compared to automated
deployment flows, the benefits of full transparency, debug visibility, and platform-aware
tuning made the manual approach ideal for research and prototyping scenarios requiring
maximum control and reproducibility.

Ultimately, the final design demonstrated that a manually quantized and optimized
neural network could achieve high inference performance on FPGA while maintaining
fidelity to its software origin. This methodology serves as a reference blueprint for future
implementations of fixed-point deep learning models targeted at embedded hardware
platforms.

3.3 High-Level Synthesis Co-Optimization

In order to achieve real-time inference performance on FPGA for the Temporal Convo-
lutional Network (TCN) model, several high-level synthesis (HLS) co-optimization tech-
niques were employed. These techniques targeted the efficient transformation of C/C++
descriptions into synthesizable RTL while preserving the model’s functionality and ac-
curacy. This section discusses in detail the optimizations performed via HLS directives
(pragmas), the manual and controlled implementation of dilated convolutions, and mem-
ory architecture tuning via partitioning and reshaping for parallel data access.

3.3.1 Leveraging HLS Pragmas for Structural and Performance Opti-
mization

High-Level Synthesis (HLS) pragmas serve as essential directives to guide the compiler
in translating C/C++ behavioral descriptions into optimized hardware structures with-
out modifying the algorithmic logic. In this project, these pragmas were strategically
applied to maximize the parallelism, minimize latency, and enhance throughput of the
Temporal Convolutional Network (TCN) implementation on FPGA. The primary prag-
mas utilized included #pragma HLS pipeline, #pragma HLS unroll, and #pragma HLS
dataflow, each targeting specific aspects of performance optimization. Rather than ap-
plying them indiscriminately, each directive was iteratively introduced based on synthesis
feedback and performance profiling to achieve an optimal balance between speed and re-
source usage.

Loop Pipelining

Loop pipelining was a key optimization, particularly within the outer temporal loop of
the convolution operations, which process data across sequence time steps. Applying
#pragma HLS pipeline II=1 allowed the compiler to initiate a new loop iteration every
clock cycle, thus overlapping operations and reducing idle cycles. A typical pattern used
in the convolution loops was:
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for (int i = 0; i < SEQ_LEN; i++) {
#pragma HLS pipeline II=1
// computation logic

}

This dramatically improved throughput, especially for long sequences.

Loop Unrolling

For inner loops—such as those iterating over input channels or kernel taps—#pragma
HLS unroll was applied to increase computation parallelism. Loop unrolling allowed
simultaneous operations across different channels, enhancing DSP and logic utilization:

for (int ch = 0; ch < IN_CH; ch++) {
#pragma HLS unroll
// channel-wise operations

}

The unroll factor was implicitly derived from loop bounds and resource availability
reported in the synthesis tool.

Dataflow Scheduling

To achieve high-level task parallelism, the #pragma HLS dataflow directive was employed
across function boundaries to decouple major stages such as input preprocessing, convo-
lutional computation, and output postprocessing. This enabled concurrent execution of
these stages, each operating as an independent thread using internal FIFOs for data
transfer:

#pragma HLS dataflow
read_input();
compute_tcn();
write_output();

Function-level pipelining provided by dataflow significantly reduced total inference
latency. To ensure correctness and avoid pipeline hazards, the codebase was carefully
structured to remove interdependencies and ensure that all inputs and outputs were fully
buffered.

Function Inlining Control

#pragma HLS INLINE OFF was selectively applied to modular functions like conv1d_fixed,
residual_block_fixed, and downsample_fixed. This directive prevents the compiler
from flattening these functions into their callers, preserving modular scheduling. In com-
bination with dataflow, it allowed each function to be synthesized and executed in par-
allel, ensuring efficient pipeline separation and resource management without sacrificing
functional clarity.
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Summary

These pragmas formed the backbone of the HLS co-optimization strategy, allowing the
transformation of the high-level TCN model into a hardware-efficient, high-performance
design suitable for FPGA deployment.

3.3.2 Custom Implementation of Dilated Convolutions in HLS

To increase the receptive field of the Temporal Convolutional Network (TCN) without
inflating the kernel size or model complexity, dilated convolutions were employed. Dilation
introduces controlled gaps between filter elements, allowing the network to capture longer
temporal dependencies while keeping the number of parameters constant. However, in the
context of High-Level Synthesis (HLS), implementing dilation is not straightforward and
requires explicit loop manipulation to guide hardware generation.

Manual Loop Indexing for Dilation

To implement dilation in a hardware-friendly manner, the inner convolution loop was
manually modified to introduce the dilation spacing through adjusted indexing. This
approach avoids abstract or dynamic access patterns that could hinder the synthesis tool’s
ability to optimize memory scheduling and pipeline the loops effectively. The modified
loop structure is shown below:

for (int k = 0; k < KERNEL_SIZE; ++k) {
int input_index = t - k * dilation;
if (input_index >= 0) {

acc += weight[k] * input[input_index];
}

}

Here, the dilation parameter is statically applied to the index calculation, resulting
in a sparse access pattern. This code structure provides the HLS compiler with clear,
analyzable dependencies and memory access patterns, making it easier to pipeline and
optimize the loop.

Static Scheduling and Optimization

The dilation factor itself was defined as a compile-time constant (either passed as a tem-
plate parameter or hardcoded) rather than being dynamically configurable at runtime.
This allowed the HLS tool to perform static scheduling, leading to more aggressive opti-
mizations such as loop pipelining and partial unrolling. Furthermore, this static approach
avoids runtime control logic overhead and ensures deterministic hardware behavior.

Avoiding Loop-Carried Dependencies

By explicitly encoding the dilation logic, the implementation retains full visibility over
the memory read addresses and avoids potential loop-carried dependencies, which could
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prevent pipelining. This method proved essential to maintaining predictable hardware
structure, meeting timing closure, and optimizing latency in the final FPGA implemen-
tation.

3.3.3 Memory Banking and Efficient Data Access in FPGA Logic

The Temporal Convolutional Network (TCN) architecture involves processing multiple
channels and temporal steps in parallel, leading to high simultaneous memory access
demands. To mitigate potential memory access bottlenecks, especially in bandwidth-
constrained FPGA environments, memory banking techniques were applied through array
partitioning and optimized AXI interfaces.

Array Partitioning for Parallel Channel Access

To allow concurrent access to activation arrays and intermediate buffers, array partition-
ing was applied using the following directive:

#pragma HLS ARRAY_PARTITION variable=input complete dim=1

This partitions the array along the channel dimension, effectively creating independent
memory banks for each channel. As a result, multiple channels can be read or written in
parallel, which is particularly beneficial for loop unrolling and pipelining across channels.
This technique was applied to the input feature maps as well as intermediate tensors like
x0, x1, and others.

Partitioning Intermediate Buffers

Similar partitioning was performed on internal buffers that played a crucial role in residual
computations and output generation:

#pragma HLS ARRAY_PARTITION variable=temp complete dim=1
#pragma HLS ARRAY_PARTITION variable=last_step complete dim=1

By fully partitioning the temp and last_step arrays along the channel dimension,
the design enabled all channel elements to be accessed concurrently in a single cycle. This
significantly enhanced throughput in both the intermediate residual blocks and the final
linear classification layer.

AXI Interface Optimization

In addition to internal memory optimizations, external communication was handled through
carefully assigned AXI interfaces on the top-level function:

#pragma HLS INTERFACE m_axi depth=60 port=input_f offset=slave bundle=INPUT
#pragma HLS INTERFACE m_axi depth=2 port=output_f offset=slave bundle=OUTPUT
#pragma HLS INTERFACE s_axilite port=return bundle=CTRL
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These pragmas map the input and output data arrays to AXI4-FULL interfaces for
high-speed burst transfers, while the control logic is exposed through a lightweight AXI4-
Lite interface. Grouping these ports into logical bundles (INPUT, OUTPUT, CTRL) facilitates
clear separation and seamless integration within a block design in Vivado.

Performance Gains and Real-Time Operation

Together, these optimizations ensured low-latency, high-throughput memory access while
staying within BRAM and DSP resource limits. The use of ARRAY_PARTITION and AXI
configuration was crucial for enabling real-time inference in the deployed FPGA acceler-
ator.

3.3.4 Additional Pragmas and Constructs to Optimize HLS Inference
Logic

Beyond the core optimization directives such as pipeline, unroll, and dataflow, several
supporting pragmas and constructs were applied to improve modularity, concurrency, and
hardware synthesis efficiency throughout the Temporal Convolutional Network (TCN)
implementation.

Function Modularization via INLINE OFF

The following pragma was used on major compute blocks:

#pragma HLS INLINE OFF

This directive was applied to functions such as conv1d_fixed, residual_block_fixed,
downsample_fixed, and linear_output_fixed. It prevents the compiler from flatten-
ing function calls, ensuring each is synthesized as an independent hardware block. This
enabled effective dataflow between stages and allowed parallel scheduling across model
layers.

Enhanced Array Partitioning

To support concurrent channel access, ARRAY_PARTITION pragmas were applied to internal
arrays:

#pragma HLS ARRAY_PARTITION variable=temp complete dim=1
#pragma HLS ARRAY_PARTITION variable=last_step complete dim=1

This facilitated simultaneous reads/writes across all channels, boosting throughput in
both intermediate computations and the final linear layer.
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Multi-Dimensional Partitioning for Deep Concurrency

In performance-critical loops, full partitioning was extended along multiple dimensions:

#pragma HLS ARRAY_PARTITION variable=input complete dim=0
#pragma HLS ARRAY_PARTITION variable=input complete dim=1

This enabled concurrent access across both time steps and channels, essential in deeply
nested loops such as convolutions or residual computations.

Static Indexing for Dilation Support

Dilation logic was implemented via static indexing to avoid dynamic memory access
hazards:

int index = t - k * dilation;

Static, compile-time constant indexing ensured that all access patterns were analyz-
able by the HLS compiler, enabling pipelining, unrolling, and timing closure.

Intermediate Buffer Reuse in Dataflow Pipeline

Buffers such as x0, x1, x2, x3 were reused across residual blocks. These were declared
as local memory and partitioned:

#pragma HLS ARRAY_PARTITION variable=x0 complete dim=1

This buffer reuse enabled tightly coupled dataflow while avoiding redundant storage,
reducing BRAM usage and increasing throughput.

Tool-Driven Resource Binding

Although Vivado HLS supports explicit binding via:

#pragma HLS RESOURCE

no manual resource binding was enforced. Multiply-accumulate operations were in-
ferred to DSP slices, and memory buffers were inferred to BRAMs or LUTRAMs by the
synthesis tool. This approach improved portability and allowed Vivado’s heuristics to
optimize binding for the specific FPGA device in use.

3.3.5 Summary of HLS Optimization Strategies for the TCN

Loop Pipelining and Unrolling

The successful hardware realization of the Temporal Convolutional Network (TCN) model
was made possible through a carefully crafted set of High-Level Synthesis (HLS) co-
optimization techniques. At the core of this effort were loop pipelining and loop unrolling,
which enabled the concurrent execution of operations across time steps and channels.
These directives allowed the design to reach high throughput, particularly critical for
handling sequential data in real-time scenarios.
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Dilated Convolution

Dilated convolutions were manually implemented by modifying loop index calculations,
enabling the expansion of the receptive field without increasing the kernel size or compu-
tational cost. This manual control over dilation logic ensured predictable memory access
and preserved compatibility with synthesis optimizations such as pipelining.

Memory Partitioning

Memory bandwidth and access contention — common performance bottlenecks in parallel
architectures — were alleviated using array partitioning techniques. Internal buffers, in-
cluding inputs and intermediate tensors, were fully partitioned across the channel dimen-
sion using #pragma HLS ARRAY_PARTITION, allowing simultaneous multi-channel access
and seamless integration with unrolled loops.

Function Inlining Control

Function inlining was selectively disabled via #pragma HLS INLINE OFF to preserve mod-
ular hierarchy and facilitate efficient task scheduling within dataflow regions.

AXI Interface Mapping

To integrate the model into a full system on FPGA, top-level I/O ports were mapped
using AXI4-FULL and AXI4-Lite interface pragmas. This ensured high-speed burst com-
munication with external memory and provided lightweight control mechanisms for de-
ployment within a processing system. Interfaces were grouped into logical bundles for
clean integration in Vivado block design.

Conclusion

Altogether, the combination of structural pragmas (pipeline, unroll, dataflow, inline),
custom dilation handling, and memory banking strategies enabled the synthesis of a
resource-efficient, low-latency TCN accelerator. These optimizations formed the backbone
of a hardware-aware design process, crucial for deploying deep learning models on FPGAs
with tight performance and area constraints.

3.4 FPGA Block Design and System Integration

Vivado Project Initialization and Block Design Creation

The process began by launching Vivado and creating a new RTL project targeting the
appropriate FPGA development board, such as the ZedBoard or Zybo. No design sources
were added during the initial setup. After configuring the project settings, we transitioned
to the IP Integrator environment, where a new block design—named tcn_fpga_wrapper—was
created. This block design served as the structural foundation for integrating the exported
HLS IP core with key system components, including memory controllers, the processing
system, clock/reset modules, and AXI-based communication interfaces. The objective of
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this stage was to provide a functional and modular platform that supports the fixed-point
inference model in hardware by enabling communication, synchronization, and memory
interaction across all components. Notably, the HLS core was synthesized using partial
pipelining, meaning that while some loops were pipelined to enhance throughput, full
loop unrolling or extreme pipelining was intentionally avoided to maintain a balanced
trade-off between area, power, and latency. This moderate pipelining strategy ensured ef-
ficient resource utilization while still enabling low-latency inference suitable for real-time
embedded applications.

3.4.1 Configuring and Integrating Custom IP Blocks in Vivado

The following IP blocks were instantiated and configured in the Vivado block design
environment:

1. ZYNQ7 Processing System

The ZYNQ7 Processing System was the first block added to the design. This IP block
provides the interface to the on-chip ARM Cortex-A9 processor, memory controllers (e.g.,
DDR), and communication buses. After inserting the IP, Block Automation was executed.
This Vivado feature automatically configures the Zynq PS with appropriate clock, reset,
and AXI General Purpose Master (M_AXI_GP0) ports. The M_AXI_GP0 port was
enabled to allow the processor to communicate with AXI slave peripherals, including
the custom HLS IP and memory-mapped controllers. The DDR and fixed IO pins were
automatically mapped based on the selected board.

2. Clocking Wizard

To supply a stable clock signal to the HLS IP core and other synchronous components,
a Clocking Wizard IP was instantiated. It was configured to generate a 100 MHz output
clock from the default onboard oscillator (typically 125 MHz). The clock output of this
IP was connected to the ap_clk input of the custom HLS core and also distributed to
other modules that required synchronous operation.

3. Processor System Reset

The Processor System Reset IP was inserted to manage reset signals throughout the
design. It takes the output clock from the Clocking Wizard and the external reset input
from the ZYNQ Processing System and generates appropriately synchronized reset signals
for other IP blocks. Its outputs were connected to the ap_rst_n input of the HLS IP and
other peripherals such as the BRAM controller and AXI GPIO.

4. AXI Interconnect

To route AXI transactions between the Zynq PS (acting as master) and multiple AXI
slave devices, an AXI Interconnect IP was instantiated. This block supports multiple
master/slave ports and handles address decoding, data multiplexing, and handshaking.
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It was connected to the M_AXI_GP0 port of the ZYNQ PS and routed to the slave
interfaces of the HLS IP, AXI BRAM Controller, and AXI GPIO.

5. AXI BRAM Controller + Block Memory Generator

For temporary on-chip data storage, the AXI BRAM Controller and Block Memory Gen-
erator (BRAM) IP blocks were used. The AXI BRAM Controller was connected to the
AXI Interconnect and configured to serve as a memory-mapped AXI slave. The BRAM
Generator was attached to the controller’s output ports and configured with suitable
depth and data width (e.g., 32-bit).

6. AXI GPIO

An AXI GPIO module was inserted to provide simple general-purpose I/O control. It was
configured as an output-only interface, connected to the AXI Interconnect, and mapped
to physical pins such as onboard LEDs. This enabled debugging and status signaling.

7. Custom HLS IP Core

The fixed-point TCN model synthesized in Vitis HLS was imported into the IP Catalog
in Vivado and instantiated. The s_axi_control port was connected to the AXI Inter-
connect, ap_clk was connected to the Clocking Wizard, and ap_rst_n to the Processor
System Reset output.

3.4.2 Automated and Manual Signal Routing for Design Integration

Once the IP blocks were added and configured, Vivado’s Connection Automation tool
was used to automatically wire compatible AXI interfaces and clock/reset lines. This
included routing the ZYNQ PS’s M_AXI_GP0 port to the AXI Interconnect and dis-
tributing the clock and reset signals from the Clocking Wizard and Processor System
Reset, respectively.

For non-standard IPs, such as the custom HLS module, manual connections were
made:

• clk_out1 from the Clocking Wizard to ap_clk inputs of the HLS IP, AXI BRAM
Controller, and other synchronous IPs.

• peripheral_aresetn from the Processor System Reset to ap_rst_n and other reset
inputs.

• AXI Interconnect master interface to ZYNQ PS M_AXI_GP0; slave interfaces to
HLS IP, GPIO, and BRAM Controller.

The Address Editor was used to assign unique address ranges to each AXI slave:
• HLS IP: 0x43C00000 – 0x43C0FFFF

• AXI GPIO: 0x41200000

• AXI BRAM Controller: a separate non-overlapping range
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Figure 3.4. Vivado Block Design

3.4.3 Synthesis, Implementation, and Setup for Power Analysis

After verifying all connections and assigning addresses, the block design was synthesized
and implemented using Vivado tools. Synthesis converted the design into a netlist, while
implementation performed placement and routing. Once implementation completed suc-
cessfully, Vivado’s power analysis tool was used to estimate dynamic and static power
consumption. These results—along with performance, latency, and resource metrics—are
presented and discussed in the Results section.
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Chapter 4

Experimental Validation

In this part, fixed-point TCN implementation analysis with respect to accuracy, latency,
as well as resource utilization is presented. Its objective is to measure how much a human-
defined, optimized, as well as quantized model retains a float32 PyTorch reference model’s
prediction accuracy with FPGA-deployment constraints. Functional correctness as well
as hardware efficiency are prioritized equally, with a focus towards ensuring effectiveness
for proposed quantization as well as synthesis pipeline.

4.1 Experimental Benchmark and Evaluation Framework

4.1.1 Description of the Dataset Used for Model Training and Testing

The data collected in this research was collected from a controlled 3x3 meters indoor
environment with four single-plate load-mode capacitive sensors mounted at the middle
point of every virtual wall. Movement as well as presence in the environment was sensed
by the sensors with ground truth two-dimensional (x, y) location coordinate labeling for
every sample. Sampling was at a frequency of 3 Hz, resulting in sequential time-series
data with temporal movement information. One input sample is a 15 consecutive time
step sliding window with four parallel channels on every sensor for a given input shape
[15, 4].

To enhance signal quality as well as eliminate noise, raw sensor data were processed
using a two-stage filtering pipeline. First, a 50-second window median filter was applied
to eliminate spikes as well as outliers. Secondly, a low-pass filter within a transition band
of 0.3 to 0.4 Hz was applied to eliminate high-frequency components not required to
detect human movement. Following preprocessing, data was segmented into a training, a
validation set, as well as a test set in temporal order not to destroy temporal consistency
as well as cause information leakage. Specifically, 60% of data (910 samples) was held
out for training as well as 20% for validation (310 samples) as well as tests. Temporal
splitting of this type ensures model tests are run on unseen portions of data, promoting
generalizability as well as serious performance testing.
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4.1.2 Overview and Role of the Baseline Model in Comparison

The Temporal Convolutional Network (TCN) model implemented in this project was
created in TensorFlow by Dr. Giorgia Subbicini. We optimized it with Neural Architecture
Search (NAS) in order to minimize parameters but maintain high inference speed. It
consists of three 1D convolutional layers with a 5xkernel, a total of eight filters, dilated
convolutions for capturing temporal context, and an output dense with eight units. We
trained it with an Adamax optimizer with a learning rate of 0.0001.

To achieve quantization-aware training as well as fixed-point inferencing for FPGA
implementation, re-implementation of the model using PyTorch was done. Architecture
as well as hyperparameters remained identical as those in the base model. Adam as an
optimizer, as well as Mean Squared Error (MSE) loss, was utilized in order to train the
model. Dataset (explained in Section 5.1.1) was divided temporally into training, test,
and validation datasets. PyTorch model acted as reference software float32 for subsequent
quantized as well as hardware-accelerated variants.

4.1.3 Metrics for Evaluation and Hardware Deployment Setup

To compare TCN model performance at different steps of training, as well as how well
they perform, a standard procedure for regular evaluation was maintained.

Evaluation Metric:

The key performance metric utilized to approximate model accuracy was Mean Squared
Error (MSE), a common performance metric in regression problems. MSE is an estimation
of average squared differences between predicted pairs and actual (x, y) coordinate pairs.
We used it uniformly with respect to PyTorch (float32), quantized (int8), and FPGA-
deployed (fixed-point C++) models for making a direct comparison.

FPGA Deployment Setup:

The quantized model was then implemented in an HLS-compliant version using Vitis HLS.
The version utilized fixed-point arithmetic (ap_fixed<8,4> for values, ap_int<32> for
accumulations) and was implemented on an FPGA manufactured by Xilinx. Toolchains
from Vivado were utilized for synthesis, IP generation, as well as hardware verification,
along with Vitis.

Measurement Procedure:

• For PyTorch as well as quantized int8 models, test set MSE was calculated using
standard Python scripting.

• Inference predictions were read from FPGA via AXI interfaces and offline compared
against test set ground truths. Fixed-point dequantization and error computation
were introduced as post-processing.
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• Synthesis reports were also used in resource utilization, latency, as well as through-
put while determining whether or not the design satisfied real-time needs.

This common evaluation framework consequently offered a solid foundation for gaug-
ing the performance along with precision of all model versions in the workflow.

4.2 Analysis of Results Across Software and Hardware Im-
plementations

4.2.1 Quantitative Comparison of Models: PyTorch, Quantized, and
C++

In order to compare performance and stability of TCN at different development, as well
as deployment, stages, three implementations were in consideration: native TensorFlow,
PyTorch reimplementation, and a fixed-point implementation using C++ for synthesis on
FPGA. All three implementations used exactly the same architecture as well as hyperpa-
rameters given in Section 5.1.2, such that performance differs mainly due to framework
as well as numerical precision.

Original TensorFlow Model

The reference model was ported into TensorFlow by Dr. Giorgia Subbicini [28] and opti-
mized via Neural Architecture Search (NAS). It was a high-accuracy reference port with
an MSE=0.065 m2 in 32-bit floating-point precision. The model also acted as a reference
for subsequent reimplementations’ cross-checking as well as for hardware porting.

Figure 4.1 and Figure 4.2 illustrate the X and Y coordinate predictions, respec-
tively, of the TensorFlow model on the test set.
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Figure 4.1. Test X coordinates – TensorFlow model

Figure 4.2. Test Y coordinates – TensorFlow model
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PyTorch Reimplementation

The PyTorch version was developed to enable greater control over quantization and to
facilitate export to C++ for FPGA deployment. It strictly followed the TensorFlow con-
figuration and was trained using the same dataset and hyperparameters. The resulting
model achieved an MSE of 0.1199 m2 on the test set, maintaining comparable accuracy
to the original while enabling downstream quantization and optimization.

The PyTorch model’s test performance is shown in Figure 4.3 for the X coordinates
and Figure 4.4 for the Y coordinates.

Figure 4.3. Test X coordinates – PyTorch model
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Figure 4.4. Test Y coordinates – PyTorch model

Fixed-Point C++ Model for FPGA

The final C++ implementation was a manual fixed-point reimplementation of the Py-
Torch model using ap_fixed<8,4> for 8-bit arithmetic and ap_int<32> accumulators.
This model was designed specifically for High-Level Synthesis (HLS) using Vitis HLS
and targeted at FPGA deployment. After quantization and translation, the C++ model
achieved an MSE of 0.2365 m2, reflecting the accuracy trade-offs inherent in using low-
precision fixed-point arithmetic on embedded hardware.

The test predictions of the fixed-point C++ model are shown in Figure 4.5 (X
coordinates) and Figure 4.6 (Y coordinates).
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Figure 4.5. Test X coordinates – Fixed-point C++ model

Figure 4.6. Test Y coordinates – Fixed-point C++ model
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4.2.2 HLS Synthesis Results and the Effect of Code Optimizations

Initial HLS Implementation Without Pipelining

The TCN’s initial model in C++ was synthesized into FPGA without any explicit pipelin-
ing directives such as #pragma HLS dataflow or intra-loop pipelining. Instead, the model
was synthesized as a reference hardware implementation with functional correctness as
well as fixed-point compatibility given higher preference than architectural optimization.

At its optimum, function TCN_forward_fixed with all pipeline stages repeated through
in 1651 clocks, or 16.51 micro-seconds on a 100MHz clock. The function itself was not
pipelined, with an initiation interval (II) identical to its latency value of 1651, such that
only one sample at a time could be processed. Its sequential processing procedure limited
overall throughput as well as prohibited computation overlap per input sample.

Individual residual blocks—residual_block_fixed, residual_block_fixed_1, and
residual_block_fixed_2—were implemented as separate modules, each performing the
function of two dilated convolutional layers with a single residual. Each required 401,
572, and 556 cycles, respectively. As these modules were not pipelined, i.e., they executed
sequentially and waited until all computation was complete before consuming more data,
there was a lot of latency introduced because they contained deeply nested convolution
loops with no concurrency.

In terms of resource utilization, most of the design was in the residual blocks. The
initial block (residual_block_fixed) utilized 112 DSPs, 6190 FFs, and 13,145 LUTs.
The second one and third residual block exhibited similar trends with 122 and 92 DSPs,
and 4172-5419 FFs and 8030-9564 LUTs in logic usage. These outcomes were reflective of
arithmetic-heavy procedures of convolution operations as well as structural complexity
from residual learning.

The other elements within the design were quite light. The downsample_fixed, which
implemented the initial 1×1 projection convolution, was only 126 cycle-latency deep with
an aperture requirement of only 3 DSPs, 1006 FFs, but 1361 LUTs. To minimize it even
further, it was synthesized under automatic loop pipelining (loop auto-rew) with an II
equal to 120. Similarly, the linear_output_fixed, calculating output regression, was 22
cycle-latency deep with an II of 2, with a very modest hardware demand of 2 DSPs, 307
FFs, but 600 LUTs.

The synthesis report also uncovered auxiliary pipeline loops within the top function,
i.e., TCN_forward_fixed_Pipeline_LOOP_92, LOOP_61, and LOOP_113, with 69, 15, and
10-cycle latencies, respectively. These small loops handled input quantization and tensor
extraction and were optimized automatically using loop rewinding, adding negligibly to
total latency.
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Finally, its non-pipelined HLS version acted as a functionally accurate hardware ref-
erence. Its performance, however, was constrained due to its sequential structure and
lack of intra-module or between-module pipelining, especially with the high-throughput
implementations. Its resource utilization was maintained modest, a result of its serialized
computation as well as lack of model layer parallelism.

Partially Pipelined HLS Implementation

Selective pipelining techniques were integrated into this fixed-point C++ model in this im-
plementation flow using Vivado-compliant directives. Incremental performance enhance-
ment as well as latency reduction were handled through the addition of loop-level pipelin-
ing in low-complexity units without compromising on the structure integrity of the initial
model. Implementation synthesis was done on Xilinx Vitis HLS, with results demonstrat-
ing improvement predominantly for low-complexity functions.

At its top, the TCN_forward_fixed function, responsible for controlling the entire
inference process, incurred a latency of 1458 clock cycles (14.58 µs) with an initiation
interval (II) of 1459 cycles. This verified that the function was not pipelined, i.e., it was
processing only one input at a time. Nonetheless, it was still the largest hardware resource
consumer, using 4 BRAM blocks, 157 DSP slices, 16,652 flip-flops (FFs), and 45,498 look-
up tables (LUTs).

Residual blocks (residual_block_fixed, _1, and _3) with two dilated convolutions
and residual addition were not pipelined in this stage. They all took a latency of 380-446
cycles, with the highest computational requirements to utilize 50 DSPs, 4912 FFs, and
15,851 LUTs. These blocks, despite being involved with temporal dependency mapping,
could be optimized since they were still running sequentially.

Contrarily, the downsample_fixed module, being the initial 1×1 convolution layer to
decrease input dimensionality, was pipeline-ed automatically by using automatic rewrites
for loops in this module. The computation was completed within 126 cycles, using just 3
DSPs, 385 FFs, and 570 LUTs, demonstrating a power-efficient, light-weight architecture.

Similarly, the last linear_output_fixed transformation of fully connected output
consumed only 23 cycles with low resource utilization: 2 DSPs, 346 FFs, and 800 LUTs.
Both modules exhibited loop pipelining characteristics with initiation intervals of 121 and
23, respectively, characteristic of their streaming nature.

There were two other automatically pipelined loops
(TCN_forward_fixed_Pipeline_VITIS_LOOP_112_1_113_2 and _136_3) with latencies
of 69 and 10 cycles, respectively. These are supporting operations like input quantization
and data slicing, where optimizations at the loop.

The partially pipelined approach, on average, is a compromise between design sim-
plicity and optimality. It achieves reasonable gains in terms of module efficiency as well as
latency, particularly in respect of elementary stages, without leaving basic computation
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blocks behind. It serves as a stepping-stone for fully pipelined implementations as well
as an introduction into performance as well as resource implications of more aggressive
optimization methods to be executed in the subsequent steps.

Comparison Between Non-Pipelined and Partially Pipelined Implementations

A non-pipelined partially pipelined Temporal Convolutional Network (TCN) implemen-
tation demonstrated concrete improvement on latency as well as modularity efficiency,
particularly for outer model modules. Contrast performs real gain through selective usage
of loop-level pipelining, along with other potential optimizations and bottlenecks.

At a high level, total latency fell from 1651 clock cycles in a non-pipelined system
down to 1458 clock cycles in a partially pipelined system—approximately an 11.7% de-
crease. The initiation interval (II) was still equivalent to the latency (1459), however,
suggesting that optimum throughput had not yet been obtained due to the serial nature
of critical-modules such as residual blocks, as shown in Figure 4.7.

Significant efficiency gains were realized in the downsample_fixed and
linear_output_fixed modules.These were helped with auto-loop pipelining, under which
they were capable of initiating new operations at every 121 and 23 cycles, as compared
to sequential ones in the non-pipelined implementation. Though these optimizations were
worthwhile in isolation, they were not significant in terms of making a contribution to-
wards overall latency because, in comparison, they made a negligible contribution towards
overall exection time.
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Figure 4.7. Latency Comparison: No Pipelining vs Partial Pipelining

Figure 4.8. Resource Comparison: No Pipelining vs Partial Pipelining
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Resource utilization also had minimal trade-offs, as is evident from Figure 4.8. Slice
usage for DSPs reduced marginally from 376 (not pipelined) to 157 (partially pipelined)
due to better utilization of computation logic within loops. FF and LUT usage were com-
paratively constant for the two variants—approximately 16,652 FFs vs. 19,039 FFs, and
45,498 LUTs vs. 35,859 LUTs—demonstrating no significant cost overhead for elementary
pipelining.

Instead, residual blocks were not pipelined as part of these architectures. Latencies
between 380-446 cycles with greater than 50 slice utilization rates in some blocks made
these modules remain predominant along the end-to-end inference pipeline. Being sequen-
tial, they imposed a constraint on model initiation interval as well as curtailed further
latency optimization as well as an uptick in throughput.

At a high level, partial pipelining implementation yielded modest but considerable
performance improvement compared to the baseline, with significant benefits in low-
complexity blocks. Limitation in pipelining between residual blocks, as well as functions,
limited overall performance improvement. Results provided foundation as well as moti-
vation for further optimization via full pipelining at intra-block as well as inter-block
concurrency.

Fully Pipelined HLS Implementation

In this hardware design flow phase, fixed-point C++ TCN implementation was fully
optimized with respect to pipelining using Xilinx Vitis HLS. Latency was reduced and
performance was optimized using intra-module pipelining within loops as well as between-
module streaming with #pragma HLS DATAFLOW. Results from synthesis show that the ar-
chitecture presented here is well-suited for real-time high-performance inference on FPGA
hardware.

In top-level function TCN_forward_fixed, governing the entire inference pipeline, the
implementation had a 965-clock-cycle (or 9.65 µ) latency but an initiation interval (II) of
242. Whereas it could have only started inner modules sequentially, with each new input
beginning its traversal through the pipeline every 242 clocks—even as previous compu-
tation continued downstream—the use of compiler directive dataflow freed it from this
constraint. Overlapped execution has a very big impact in terms of increasing through-
put, particularly in streaming or real-time scenarios.

Each of the three residual blocks—residual_block_fixed, residual_block_fixed_4,
and residual_block_fixed_7 were internally pipelined as well as externally connected
with a dataflow interface. They had a latency of 393, 284, and 286 cycles, with respective
IIs of 242, 133, and 153. These figures reflect successful intra-block pipelining, with two
convolution stages as well as residual summation being executed in an overlapped manner.

Further, these residual blocks were likewise most intensive in terms of resources. They

76



4.2 – Analysis of Results Across Software and Hardware Implementations

required 49 DSPs for block one, 45 for block two, and 104 DSPs for block three, mirror-
ing dilated convolution density in multiply-accumulate operations. Flip-flop utilization
ranged between 30,770 and 53,757, and LUT utilization ranged from 32,300 to 46,712,
mirroring combinational as well as sequential logic needs for parallel data processing as
well as for buffering.

The downsample_fixed block, being the initial 1×1 convolutional projection from
input data, preserved its hardware efficiency with 126 cycles of latency and II of 120.
It still was frugal on hardware resources with just 3 DSPs, 2,284 FFs, and 2,743 LUTs.
Further, the linear_output_fixed function, being the last dense mapping into (x, y)
coordinates, was extremely hardware efficient with only 22 cycles of latency, II of 2, and
negligible resource usage.

As a whole, this pipeline-based version exploits all concurrency offered by current
FPGA architectures. Each module is in a separate temporal phase, with data flowing
readily across the design via block RAM and pipelined buffers. What is achieved is a
low-latency, high-performing inference pipeline structurally accurate with respect to its
PyTorch model equivalent but performing real-time inference in hardware.

This final optimized implementation serves as the foundation for deployment in latency-
critical edge computing environments and showcases the effectiveness of combining fixed-
point quantization with HLS-based pipelining and streaming techniques.

Comparison Between Partially and Fully Pipelined Implementations

The transition from partially pipelined architecture to fully pipelined architecture pro-
vided huge performance as well as hardware utilization enhancements. Though both vari-
ants made use of loop pipelining in selected modules, the fully pipelined variant employed
module-level streaming using #pragma HLS DATAFLOW, permitting deeper concurrency as
well as better Temporal Convolutional Network (TCN) performance on FPGA.

In the partially pipelined version, some, but not all, internal loops—such as those
within downsample_fixed and linear_output_fixed—were pipelined, but not residual
blocks or top-level dataflow. From Figure 4.9, it is evident that this partial pipelining ob-
tained a total latency of 1458 cycles (14.58 µs) for top-level function TCN_forward_fixed
with an initiation interval (II) of zero—i.e., only a single input could be processed at a
time. Computationally costly residual blocks were not pipelined and contained latencies
of 380–446 cycles. They were sequential with no streaming interfaces, adding significant
latency to overall delay.

Contrastingly, fully pipelined version had an end-to-end processing architecture: all
residual blocks internally pipelined, coupled with top-level function re-organized using
DATAFLOW directives for streaming one module into another. Re-organization is visible
with ease in considerably better performance results in Figure 4.9, with latency falling
down to 965 cycles (9.65 µs), a reduction of 34%. In addition, initiation interval was
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reduced down to 242 cycles, making it a system capable of a new input acceptance every
242 cycles—improving throughput in batched as well as real-time configurations. How-
ever, this improvement in performance was at a cost, i.e., higher utilization of hardware
resources. As illustrated in Figure 4.10, this fully pipelined architecture required signif-
icantly more resources. Flip-flop utilization went from 16,652 in the partial architecture
to 178,049, LUT utilization from 45,498 to 156,405, and DSP block utilization from 157
to 203. These are because they required replication of buffers, registers, as well as control
logic for parallel execution of modules.

Figure 4.9. Latency Comparison: Partial vs Full Pipelining
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Figure 4.10. Resource Comparison: Partial vs Full Pipelining

Despite the increased resource footprint, the fully pipelined architecture offers a
clear advantage in applications requiring low latency and high throughput. Its modular,
streamable design is particularly well-suited for real-time environments where minimiz-
ing processing delay and maximizing parallelism are paramount. In contrast, the partially
pipelined version, though more resource-efficient, lacks the parallel execution capabilities
necessary for such demanding applications.

In summary, this comparison underscores a fundamental trade-off in FPGA design:
performance versus area. The fully pipelined implementation excels in latency and
throughput but requires significantly more hardware. Choosing between the two archi-
tectures ultimately depends on system constraints—specifically, the latency requirements
and the available FPGA resources.

4.3 Power Efficiency

To evaluate the energy efficiency of the fixed-point TCN hardware accelerator deployed on
the FPGA, a post-implementation power analysis was conducted using Vivado’s Report
Power tool. This tool performs a detailed estimation of power consumption based on the
placed and routed netlist, FPGA resource utilization, and switching activity. Since no
simulation-based SAIF (Switching Activity Interchange Format) file was imported, the
analysis adopted a vectorless estimation approach, which assumes a default average toggle
rate of 12.5% for all registers and nets. While this methodology is not cycle-accurate, it
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offers a standardized and practical baseline for comparing the relative energy demands
of architectural configurations.

The analysis yielded a total on-chip power consumption of 1.871 W, broken down
into:

• Static Power: 0.365 W

• Dynamic Logic Power: 0.892 W

• Dynamic Clock Power: 0.422 W

• BRAM and DSP Dynamic Power: 0.192 W (combined)

This distribution highlights the dynamic components as the primary contributors to
overall power, particularly in the logic and clock domains. This behavior is expected,
given the architectural choices made during High-Level Synthesis (HLS), where partial
loop pipelining was applied. Specifically, the inner loops of convolutional and residual
operations were pipelined, enabling intermediate streaming between layers and overlap-
ping execution across stages. However, full loop unrolling or aggressive pipelining across
all layers was avoided to preserve logic and routing resources, resulting in a design that
balances throughput and area without incurring extreme power overhead.

The implemented design achieved a post-routing latency of approximately 9.65 µs per
inference, which was inferred from HLS performance estimates and confirmed via Vivado
timing reports. Using this latency figure, the energy per inference can be approximated
as:

Einference = P × t = 1.871 W × 9.65 µs ≈ 18.05 µJ (4.1)

This low energy footprint is a direct consequence of the fixed-point quantization,
which significantly reduces computational complexity and switching activity compared
to floating-point alternatives. Moreover, the design fully leverages on-chip BRAM for
both input and output buffering, eliminating the need for external DRAM access during
inference. This not only reduces dynamic power due to off-chip memory traffic but also
contributes to tighter real-time performance guarantees by avoiding memory access la-
tency.

In the context of edge computing, where power budgets are often limited to sub-
2W operation, this implementation proves to be highly suitable. It demonstrates that
FPGAs—when combined with quantization, efficient HLS strategies, and localized mem-
ory—can offer an optimal trade-off between latency, throughput, and energy consumption.

In summary, the reported power efficiency validates the practicality of deploying fixed-
point TCN inference pipelines on embedded FPGAs. The results support the use of
moderately pipelined, BRAM-centric architectures for real-time applications that demand
both responsiveness and low energy usage in constrained environments.
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Table 4.1. Post-Implementation Power and Energy Metrics

Metric Value
Static Power 0.365 W
Dynamic Logic Power 0.892 W
Dynamic Clock Power 0.422 W
BRAM and DSP Dynamic Power 0.192 W
Total On-Chip Power 1.871 W
Energy per Inference 18.05 µJ
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Chapter 5

Conclusion and Future Work

Conclusion
This thesis demonstrated an end-to-end flow to realizing an end-to-end Temporal Con-
volutional Network (TCN) model in FPGA hardware using High-Level Synthesis (HLS)
for real-time indoor localization. The solution proposed in this thesis combined multiple
steps such as model creation, quantization, translation to C++, hardware generation,
and power estimation. Beginning with the TCN models in PyTorch, the work explored
Quantization-Aware Training (QAT) as well as Post-Training Quantization (PTQ) to re-
duce the model complexity without a loss in performance. The entire C++ equivalent
of the quantized model was realized and verified to be identical to its PyTorch equiv-
alent with numerical co-equivalency guaranteed. Two implementations in the FPGA—a
pipelined and non-pipelined one—were synthesized in Vivado HLS, their execution, la-
tency, as well as efficiency in terms of power exhaustively compared.

Results showed the resulting FPGA-based inference engine to achieve an effective
tradeoff in the form of efficiency in hardware as compared to accuracy. The TensorFlow
baseline model attained an MSE value of 0.065 m2, while the PyTorch model as well as the
quantized C++ variant had MSEs of 0.1199 m2and 0.2365 m2, respectively. Though the
accuracy decreased by an intermediate degree, the C++ variant effectively attained low
energy usage with high velocity, which is quite conducive to edge computing applications.

Future Work
While this work lays a robust foundation, several avenues remain for future exploration:

• QAT Deployment: Future versions of the NN2FPGA toolchain may support TCN
layers and symbolic quantization. Once available, QAT-based models could be di-
rectly deployed, potentially enhancing accuracy and reducing quantization error.

• Multi-FPGA and SoC Integration: Extending the current design to support
multi-FPGA systems or integration with heterogeneous System-on-Chip (SoC) plat-
forms (e.g., Zynq Ultrascale+) could improve scalability and support larger models.
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• Adaptive Reconfiguration: Implementing dynamic partial reconfiguration could
allow switching between different model configurations or resolutions on-the-fly,
optimizing for accuracy or power based on real-time requirements.

• FPGA-AI Framework Integration: Closer integration with mainstream deep
learning frameworks (e.g., PyTorch or TensorFlow) using intermediate representa-
tions like QONNX or TVM would simplify model conversion and deployment.

• Broader Applications: The pipeline can be generalized to support other time-
series applications, such as gesture recognition, health monitoring, or anomaly de-
tection, where temporal modeling and edge deployment are essential.

By addressing these challenges and exploring these extensions, the proposed frame-
work can evolve into a more versatile and scalable solution for efficient neural network
inference in embedded and real-time environments.
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Appendix

C++ Model Code

1 // Vivado HLS-compatible TCN model using ap_fixed Q4.4
2 #include <ap_fixed.h>
3 #include "tcn_weights_int8.h"
4

5 #define IN_CH 4
6 #define OUT_CH 8
7 #define KERNEL_SIZE 5
8 #define SEQ_LEN 15
9 #define OUTPUT_SIZE 2

10 #define SCALE 16
11

12 typedef ap_fixed<8, 4> fixed8_t;
13 typedef ap_int<32> acc_t;
14

15 int8_t relu(acc_t x) {
16 return (x > 127) ? 127 : (x < 0 ? 0 : static_cast<int8_t>(x));
17 }
18

19 int8_t saturate(acc_t x) {
20 return (x > 127) ? 127 : (x < -128 ? -128 : static_cast<int8_t>(x));
21 }
22

23 void conv1d_fixed(const int8_t input[][SEQ_LEN], const int8_t* weights, const int8_t* bias,
24 int8_t output[][SEQ_LEN], int in_ch, int out_ch, int dilation) {
25 #pragma HLS INLINE off
26 #pragma HLS ARRAY_PARTITION variable=input complete dim=0
27 #pragma HLS ARRAY_PARTITION variable=input complete dim=1
28 for (int oc = 0; oc < out_ch; ++oc) {
29 for (int t = 0; t < SEQ_LEN; ++t) {
30 #pragma HLS PIPELINE II=1
31 acc_t acc = static_cast<acc_t>(bias[oc]) * SCALE;
32 for (int ic = 0; ic < in_ch; ++ic) {
33 for (int k = 0; k < KERNEL_SIZE; ++k) {
34 int idx = t - dilation * k;
35 int8_t val = 0;
36 if (idx >= 0)
37 val = input[ic][idx];
38 int w_idx = oc * in_ch * KERNEL_SIZE + ic * KERNEL_SIZE + k;
39 acc += static_cast<acc_t>(weights[w_idx]) * val;
40 }
41 }
42 output[oc][t] = relu(acc >> 4);
43 }
44 }
45 }
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46

47 void residual_block_fixed(int8_t input[][SEQ_LEN],
48 const int8_t* w1, const int8_t* b1,
49 const int8_t* w2, const int8_t* b2,
50 int8_t output[][SEQ_LEN], int dilation) {
51 #pragma HLS INLINE off
52 int8_t temp[OUT_CH][SEQ_LEN];
53 #pragma HLS ARRAY_PARTITION variable=temp complete dim=1
54 conv1d_fixed(input, w1, b1, temp, OUT_CH, OUT_CH, dilation);
55 conv1d_fixed(temp, w2, b2, output, OUT_CH, OUT_CH, dilation);
56

57 for (int oc = 0; oc < OUT_CH; ++oc) {
58 for (int t = 0; t < SEQ_LEN; ++t) {
59 #pragma HLS PIPELINE II=1
60 acc_t acc = static_cast<acc_t>(output[oc][t]) + static_cast<acc_t>(input[oc][t]);
61 output[oc][t] = relu(acc);
62 }
63 }
64 }
65

66 void downsample_fixed(const int8_t input[][SEQ_LEN], const int8_t* weights, const int8_t* bias,
67 int8_t output[][SEQ_LEN]) {
68 #pragma HLS INLINE off
69 for (int oc = 0; oc < OUT_CH; ++oc) {
70 for (int t = 0; t < SEQ_LEN; ++t) {
71 #pragma HLS PIPELINE II=1
72 acc_t acc = static_cast<acc_t>(bias[oc]) * SCALE;
73 for (int ic = 0; ic < IN_CH; ++ic) {
74 int w_idx = oc * IN_CH + ic;
75 acc += static_cast<acc_t>(weights[w_idx]) * input[ic][t];
76 }
77 output[oc][t] = relu(acc >> 4);
78 }
79 }
80 }
81

82 void linear_output_fixed(const int8_t input[OUT_CH], const int8_t* weights, const int8_t* bias, float output[OUTPUT_SIZE]) {
83 #pragma HLS INLINE off
84 for (int o = 0; o < OUTPUT_SIZE; ++o) {
85 acc_t acc = static_cast<acc_t>(bias[o]) * SCALE;
86 for (int i = 0; i < OUT_CH; ++i) {
87 int idx = o * OUT_CH + i;
88 acc += static_cast<acc_t>(weights[idx]) * input[i];
89 }
90 output[o] = static_cast<float>(acc) / (SCALE * SCALE);
91 }
92 }
93

94 void TCN_forward_fixed(float input_f[IN_CH][SEQ_LEN], float output_f[OUTPUT_SIZE]) {
95 #pragma HLS INTERFACE s_axilite port=return bundle=CTRL
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96 #pragma HLS INTERFACE m_axi depth=60 port=input_f offset=slave bundle=INPUT
97 #pragma HLS INTERFACE m_axi depth=2 port=output_f offset=slave bundle=OUTPUT
98

99 int8_t input[IN_CH][SEQ_LEN];
100 int8_t x0[OUT_CH][SEQ_LEN];
101 int8_t x1[OUT_CH][SEQ_LEN];
102 int8_t x2[OUT_CH][SEQ_LEN];
103 int8_t x3[OUT_CH][SEQ_LEN];
104

105 #pragma HLS ARRAY_PARTITION variable=input complete dim=1
106 #pragma HLS ARRAY_PARTITION variable=x0 complete dim=1
107 #pragma HLS ARRAY_PARTITION variable=x1 complete dim=1
108 #pragma HLS ARRAY_PARTITION variable=x2 complete dim=1
109 #pragma HLS ARRAY_PARTITION variable=x3 complete dim=1
110

111 for (int c = 0; c < IN_CH; ++c)
112 for (int t = 0; t < SEQ_LEN; ++t)
113 #pragma HLS PIPELINE II=1
114 input[c][t] = saturate(static_cast<acc_t>(input_f[c][t] * SCALE));
115

116 downsample_fixed(input, tcn_network_0_downsample_weight, tcn_network_0_downsample_bias, x0);
117

118 residual_block_fixed(x0,
119 tcn_network_0_conv1_weight, tcn_network_0_conv1_bias,
120 tcn_network_0_conv2_weight, tcn_network_0_conv2_bias,
121 x1, 1);
122

123 residual_block_fixed(x1,
124 tcn_network_1_conv1_weight, tcn_network_1_conv1_bias,
125 tcn_network_1_conv2_weight, tcn_network_1_conv2_bias,
126 x2, 2);
127

128 residual_block_fixed(x2,
129 tcn_network_2_conv1_weight, tcn_network_2_conv1_bias,
130 tcn_network_2_conv2_weight, tcn_network_2_conv2_bias,
131 x3, 4);
132

133 int8_t last_step[OUT_CH];
134 #pragma HLS ARRAY_PARTITION variable=last_step complete dim=1
135 for (int i = 0; i < OUT_CH; ++i)
136 last_step[i] = x3[i][SEQ_LEN - 1];
137

138 linear_output_fixed(last_step, output_layer_weight, output_layer_bias, output_f);
139 }
140

TCN Residual based Tensorflow Code
1 import inspect
2 from typing import List
3
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4 import tensorflow as tf
5 from keras import backend as K, Model, Input, optimizers, regularizers
6 from keras import layers
7 from keras.layers import (
8 Activation, SpatialDropout1D, Lambda, Layer, Conv1D,
9 Dense, BatchNormalization, LayerNormalization

10 )
11

12

13 def is_power_of_two(num: int) -> bool:
14 return num != 0 and ((num & (num - 1)) == 0)
15

16

17 def adjust_dilations(dilations: List[int]) -> List[int]:
18 return dilations if all(is_power_of_two(d) for d in dilations) else [2 ** i for i in dilations]
19

20

21 class ResidualBlock(Layer):
22 def __init__(self, dilation_rate, nb_filters, kernel_size, padding,
23 activation='relu', dropout_rate=0.0, kernel_initializer='he_normal',
24 use_batch_norm=False, use_layer_norm=False, use_weight_norm=False, **kwargs):
25 super().__init__(**kwargs)
26 self.dilation_rate = dilation_rate
27 self.nb_filters = nb_filters
28 self.kernel_size = kernel_size
29 self.padding = padding
30 self.activation = activation
31 self.dropout_rate = dropout_rate
32 self.kernel_initializer = kernel_initializer
33 self.use_batch_norm = use_batch_norm
34 self.use_layer_norm = use_layer_norm
35 self.use_weight_norm = use_weight_norm
36 self.layers = []
37 self.shape_match_conv = None
38 self.res_output_shape = None
39 self.final_activation = None
40

41 def _build_layer(self, layer):
42 self.layers.append(layer)
43 layer.build(self.res_output_shape)
44 self.res_output_shape = layer.compute_output_shape(self.res_output_shape)
45

46 def build(self, input_shape):
47 self.res_output_shape = input_shape
48 for k in range(2):
49 conv = Conv1D(filters=self.nb_filters, kernel_size=self.kernel_size,
50 dilation_rate=self.dilation_rate, padding=self.padding,
51 name=f'conv1D_{k}', kernel_initializer=self.kernel_initializer,
52 kernel_regularizer=regularizers.l2(0.0001))
53 if self.use_weight_norm:
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54 from keras.layers import WeightNormalization
55 conv = WeightNormalization(conv)
56 self._build_layer(conv)
57

58 if self.use_batch_norm:
59 self._build_layer(BatchNormalization())
60 elif self.use_layer_norm:
61 self._build_layer(LayerNormalization())
62

63 self._build_layer(Activation(self.activation, name=f'Act_Conv1D_{k}'))
64 self._build_layer(SpatialDropout1D(rate=self.dropout_rate, name=f'SDropout_{k}'))
65

66 if self.nb_filters != input_shape[-1]:
67 self.shape_match_conv = Conv1D(filters=self.nb_filters, kernel_size=1, padding='same',
68 name='matching_conv1D', kernel_initializer=self.kernel_initializer,
69 kernel_regularizer=regularizers.l2(0.0001))
70 else:
71 self.shape_match_conv = Lambda(lambda x: x, name='matching_identity')
72

73 self.shape_match_conv.build(input_shape)
74 self.res_output_shape = self.shape_match_conv.compute_output_shape(input_shape)
75

76 self._build_layer(Activation(self.activation, name='Act_Conv_Blocks'))
77 self.final_activation = Activation(self.activation, name='Act_Res_Block')
78 self.final_activation.build(self.res_output_shape)
79

80 for layer in self.layers:
81 setattr(self, layer.name, layer)
82 setattr(self, self.shape_match_conv.name, self.shape_match_conv)
83 setattr(self, self.final_activation.name, self.final_activation)
84

85 super().build(input_shape)
86

87 def call(self, inputs, training=None, **kwargs):
88 x = inputs
89 for layer in self.layers:
90 x = layer(x, training=training) if 'training' in inspect.signature(layer.call).parameters else layer(x)
91 res = self.shape_match_conv(inputs)
92 return [self.final_activation(layers.add([res, x], name='Add_Res')), x]
93

94 def compute_output_shape(self, input_shape):
95 return [self.res_output_shape, self.res_output_shape]
96

97

98 class TCN(Layer):
99 def __init__(self, nb_filters=64, kernel_size=3, nb_stacks=1, dilations=(1, 2, 4, 8, 16, 32),

100 padding='causal', use_skip_connections=True, dropout_rate=0.0, return_sequences=False,
101 activation='relu', kernel_initializer='he_normal', use_batch_norm=False,
102 use_layer_norm=False, use_weight_norm=False, go_backwards=False, return_state=False, **kwargs):
103 super().__init__(**kwargs)
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104

105 self.nb_filters = nb_filters
106 self.kernel_size = kernel_size
107 self.nb_stacks = nb_stacks
108 self.dilations = dilations
109 self.padding = padding
110 self.use_skip_connections = use_skip_connections
111 self.dropout_rate = dropout_rate
112 self.return_sequences = return_sequences
113 self.activation_name = activation
114 self.kernel_initializer = kernel_initializer
115 self.use_batch_norm = use_batch_norm
116 self.use_layer_norm = use_layer_norm
117 self.use_weight_norm = use_weight_norm
118 self.go_backwards = go_backwards
119 self.return_state = return_state
120

121 if sum([use_batch_norm, use_layer_norm, use_weight_norm]) > 1:
122 raise ValueError("Only one normalization method can be used at a time.")
123 if padding not in {'causal', 'same'}:
124 raise ValueError("Padding must be 'causal' or 'same'.")
125

126 self.residual_blocks = []
127 self.skip_connections = []
128 self.layers_outputs = []
129 self.output_slice_index = None
130 self.padding_same_and_time_dim_unknown = False
131

132 @property
133 def receptive_field(self):
134 return 1 + 2 * (self.kernel_size - 1) * self.nb_stacks * sum(self.dilations)
135

136 def build(self, input_shape):
137 self.build_output_shape = input_shape
138 self.residual_blocks = []
139

140 for s in range(self.nb_stacks):
141 for i, d in enumerate(self.dilations):
142 filters = self.nb_filters[i] if isinstance(self.nb_filters, list) else self.nb_filters
143 block = ResidualBlock(d, filters, self.kernel_size, self.padding,
144 self.activation_name, self.dropout_rate,
145 self.kernel_initializer, self.use_batch_norm,
146 self.use_layer_norm, self.use_weight_norm,
147 name=f'residual_block_{len(self.residual_blocks)}')
148 block.build(self.build_output_shape)
149 self.build_output_shape = block.res_output_shape
150 self.residual_blocks.append(block)
151 setattr(self, block.name, block)
152

153 time = self.build_output_shape[1]
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154 self.output_slice_index = (time // 2 if time is not None else None) if self.padding == 'same' else -1
155 self.padding_same_and_time_dim_unknown = self.padding == 'same' and time is None
156

157 self.slicer_layer = Lambda(lambda tt: tt[:, self.output_slice_index, :], name='Slice_Output')
158 self.slicer_layer.build(self.build_output_shape.as_list())
159

160 def call(self, inputs, training=None, **kwargs):
161 x = tf.reverse(inputs, axis=[1]) if self.go_backwards else inputs
162 self.layers_outputs = [x]
163 self.skip_connections = []
164

165 for block in self.residual_blocks:
166 x, skip = block(x, training=training)
167 self.skip_connections.append(skip)
168 self.layers_outputs.append(x)
169

170 if self.use_skip_connections:
171 x = layers.add(self.skip_connections, name='Add_Skip_Connections') if len(self.skip_connections) > 1 else self.skip_connections[0]
172 self.layers_outputs.append(x)
173

174 if not self.return_sequences:
175 if self.padding_same_and_time_dim_unknown:
176 self.output_slice_index = K.shape(x)[1] // 2
177 x = self.slicer_layer(x)
178 self.layers_outputs.append(x)
179 return x
180

181 def compute_output_shape(self, input_shape):
182 if not self.built:
183 self.build(input_shape)
184 if self.return_sequences:
185 return [v.value if hasattr(v, 'value') else v for v in self.build_output_shape]
186 else:
187 return [self.build_output_shape[0], self.build_output_shape[-1]]
188

189 def get_config(self):
190 config = super().get_config()
191 config.update({
192 'nb_filters': self.nb_filters,
193 'kernel_size': self.kernel_size,
194 'nb_stacks': self.nb_stacks,
195 'dilations': self.dilations,
196 'padding': self.padding,
197 'use_skip_connections': self.use_skip_connections,
198 'dropout_rate': self.dropout_rate,
199 'return_sequences': self.return_sequences,
200 'activation': self.activation_name,
201 'kernel_initializer': self.kernel_initializer,
202 'use_batch_norm': self.use_batch_norm,
203 'use_layer_norm': self.use_layer_norm,
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204 'use_weight_norm': self.use_weight_norm,
205 'go_backwards': self.go_backwards,
206 'return_state': self.return_state
207 })
208 return config
209

210

211 def compiled_tcn(num_feat, num_classes, nb_filters, kernel_size, dilations, nb_stacks, max_len,
212 output_len=1, padding='causal', use_skip_connections=False, return_sequences=True,
213 regression=False, dropout_rate=0.05, name='tcn', kernel_initializer='he_normal',
214 activation='relu', opt='adam', lr=0.002, use_batch_norm=False, use_layer_norm=False,
215 use_weight_norm=False) -> Model:
216

217 dilations = adjust_dilations(dilations)
218 input_layer = Input(shape=(max_len, num_feat))
219 x = TCN(nb_filters, kernel_size, nb_stacks, dilations, padding, use_skip_connections,
220 dropout_rate, return_sequences, activation, kernel_initializer,
221 use_batch_norm, use_layer_norm, use_weight_norm, name=name)(input_layer)
222

223 def get_optimizer():
224 if opt == 'adam':
225 return optimizers.Adam(lr=lr, clipnorm=1.)
226 elif opt == 'rmsprop':
227 return optimizers.RMSprop(lr=lr, clipnorm=1.)
228 raise ValueError("Unsupported optimizer. Use 'adam' or 'rmsprop'.")
229

230 if regression:
231 x = Dense(output_len, kernel_regularizer=regularizers.l2(0.0001))(x)
232 x = Activation('linear')(x)
233 model = Model(input_layer, x)
234 model.compile(optimizer=get_optimizer(), loss='mean_squared_error')
235 else:
236 x = Dense(num_classes)(x)
237 x = Activation('softmax')(x)
238 model = Model(input_layer, x)
239

240 def accuracy(y_true, y_pred):
241 if K.ndim(y_true) == K.ndim(y_pred):
242 y_true = K.squeeze(y_true, -1)
243 y_pred_labels = K.argmax(y_pred, axis=-1)
244 return K.cast(K.equal(y_true, K.cast(y_pred_labels, K.floatx())), K.floatx())
245

246 model.compile(optimizer=get_optimizer(), loss='sparse_categorical_crossentropy', metrics=[accuracy])
247

248 return model
249

250

251 def tcn_full_summary(model: Model, expand_residual_blocks=True):
252 versions = [int(v) for v in tf.__version__.split('-')[0].split('.')]
253 if versions[0] <= 2 and versions[1] < 5:
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254 original_layers = model._layers.copy()
255 model._layers.clear()
256 for layer in original_layers:
257 if isinstance(layer, TCN):
258 for sublayer in layer._layers:
259 if isinstance(sublayer, ResidualBlock) and expand_residual_blocks:
260 for l in sublayer._layers:
261 model._layers.append(l)
262 else:
263 model._layers.append(sublayer)
264 else:
265 model._layers.append(layer)
266 model.summary()
267 model._layers.clear()
268 model._layers.extend(original_layers)
269 else:
270 print('WARNING: tcn_full_summary is compatible only with TensorFlow 2.5.0 or below. Use TensorBoard for inspection.')
271

272

TCN Residual based Pytorch Code
1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4 from typing import List, Union
5

6

7 def is_power_of_two(num: int):
8 return num != 0 and ((num & (num - 1)) == 0)
9

10

11 def adjust_dilations(dilations: List[int]) -> List[int]:
12 if all([is_power_of_two(i) for i in dilations]):
13 return dilations
14 return [2 ** i for i in dilations]
15

16

17 class Chomp1d(nn.Module):
18 def __init__(self, chomp_size):
19 super().__init__()
20 self.chomp_size = chomp_size
21

22 def forward(self, x):
23 return x[:, :, :-self.chomp_size].contiguous()
24

25

26 class ResidualBlock(nn.Module):
27 def __init__(self, in_channels, out_channels, kernel_size, dilation,
28 activation='relu', dropout=0.05,
29 use_batch_norm=False, use_layer_norm=False, use_weight_norm=False):
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30 super().__init__()
31

32 self.activation = getattr(F, activation)
33 self.use_batch_norm = use_batch_norm
34 self.use_layer_norm = use_layer_norm
35

36 self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size,
37 padding=0, dilation=dilation)
38 self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size,
39 padding=0, dilation=dilation)
40

41 if use_weight_norm:
42 self.conv1 = nn.utils.weight_norm(self.conv1)
43 self.conv2 = nn.utils.weight_norm(self.conv2)
44

45 self.norm1 = nn.BatchNorm1d(out_channels) if use_batch_norm else (
46 nn.LayerNorm(out_channels) if use_layer_norm else nn.Identity())
47 self.norm2 = nn.BatchNorm1d(out_channels) if use_batch_norm else (
48 nn.LayerNorm(out_channels) if use_layer_norm else nn.Identity())
49

50 self.dropout1 = nn.Dropout(dropout)
51 self.dropout2 = nn.Dropout(dropout)
52

53 self.downsample = nn.Conv1d(in_channels, out_channels, 1) if in_channels != out_channels else nn.Identity()
54

55 def forward(self, x):
56 # x shape: [batch, channels, time]
57 residual = self.downsample(x)
58

59 pad1 = (self.conv1.dilation[0] * (self.conv1.kernel_size[0] - 1), 0)
60 out = F.pad(x, pad1)
61 out = self.conv1(out)
62 out = self.norm1(out.transpose(1, 2)).transpose(1, 2)
63 out = self.activation(out)
64 out = self.dropout1(out)
65

66 pad2 = (self.conv2.dilation[0] * (self.conv2.kernel_size[0] - 1), 0)
67 out = F.pad(out, pad2)
68 out = self.conv2(out)
69 out = self.norm2(out.transpose(1, 2)).transpose(1, 2)
70 out = self.activation(out)
71 out = self.dropout2(out)
72

73 out += residual
74 return self.activation(out), out
75

76

77 class TCN(nn.Module):
78 def __init__(self, input_size, output_size, num_channels, kernel_size=2,
79 dropout=0.01, dilations=None, nb_stacks=1, padding_type='causal',
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80 use_skip_connections=True, activation='relu',
81 use_batch_norm=False, use_layer_norm=False, use_weight_norm=False,
82 return_sequences=True, regression=False):
83 super().__init__()
84

85 if dilations is None:
86 dilations = [1, 2, 4, 8, 16, 32]
87

88 layers = []
89 self.skip_connections = use_skip_connections
90 self.return_sequences = return_sequences
91 self.regression = regression
92

93 in_channels = input_size
94 for s in range(nb_stacks):
95 for d in dilations:
96 pad = (kernel_size - 1) * d if padding_type == 'causal' else (kernel_size - 1) // 2
97 block = ResidualBlock(
98 in_channels=in_channels,
99 out_channels=num_channels,

100 kernel_size=kernel_size,
101 dilation=d,
102 activation=activation,
103 dropout=dropout,
104 use_batch_norm=use_batch_norm,
105 use_layer_norm=use_layer_norm,
106 use_weight_norm=use_weight_norm
107 )
108 layers.append(block)
109 in_channels = num_channels
110

111 self.network = nn.ModuleList(layers)
112

113 self.linear = nn.Linear(num_channels, output_size)
114 if not return_sequences:
115 self.output_slice = -1
116

117 def forward(self, x):
118 # x: [batch, seq, features] => [batch, features, seq]
119 x = x.transpose(1, 2)
120 skip_outputs = []
121

122 for block in self.network:
123 x, skip = block(x)
124 if self.skip_connections:
125 skip_outputs.append(skip)
126

127 if self.skip_connections:
128 x = torch.stack(skip_outputs, dim=0).sum(dim=0)
129
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130 # [batch, features, seq] => [batch, seq, features]
131 x = x.transpose(1, 2)
132

133 if self.return_sequences:
134 out = self.linear(x)
135 else:
136 out = self.linear(x[:, self.output_slice, :])
137

138 if not self.regression:
139 out = F.log_softmax(out, dim=-1)
140 return out
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