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Summary

In building maintenance processes there is often the presence of fragmented data, the
absence of traceability, and centralized processes in building maintenance mechanisms are
the major drawbacks to transparency and efficient operations. In this thesis, the challenges
are overcome by presenting and developing a decentralized building maintenance manage-
ment system, combining Building Information Modeling (BIM) and blockchain technology.
The proposed solution is a decentralized application (DApp) for facility maintenance that
enables fault reporting, asset registration, and technician coordination through Ethereum-
based smart contracts. A 3D BIM model viewer (implemented with the IFC.js library and
React) provides an interactive interface for users to visualize building assets and report is-
sues in context, while smart contract logic written in Solidity manages maintenance tasks
and enforces role-based access via on-chain rules. Users interact with the system using
MetaMask for authentication and transaction signing, and the application is deployed on
an Ethereum-compatible network (Polygon) to leverage faster confirmations and signifi-
cantly lower transaction fees. The system’s architecture comprises a React front end with
an embedded BIM model, a set of Solidity smart contracts for core maintenance workflows
(asset registry, fault logs, job assignment, status updates), and an Express.js server with a
SQLite database to handle off-chain metadata and auxiliary functions such as logging gas
costs for reimbursement. Performance evaluation on Ethereum Sepolia versus the Poly-
gon testnet demonstrates that gas usage remains consistent across networks, but Polygon
dramatically improves cost and speed: the same transactions that cost about $0.88 and
take 13-15 seconds to fully confirm on Sepolia cost roughly $0.02 on Polygon with confir-
mations in a few seconds. Preliminary usability testing with sample end-users (occupant,
technician, administrator roles) confirms the DApp’s effectiveness: each role could suc-
cessfully use the role-specific features (e.g. occupants submitting fault reports, technicians
claiming and resolving tasks, admins overseeing payments and records), and access con-
trol was correctly enforced, while user feedback highlighted minor interface improvements
needed (such as clearer guidance when switching networks in MetaMask). Overall, by
showing that BIM and blockchain are indeed compatible and that the former can greatly
benefit the latter, this work will contribute a secure and transparent framework to the
smart building technologies and offer a basis of further improvements, like the integration
of predictive maintenance or alignment with the upcoming standards of digital building
logbooks.
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Chapter 1

Introduction

The management of building maintenance has been an intensive labor process in the past
because it involved often fragmented documentation, repetitive paper trails, and slow com-
munication between different stakeholders. Managers, technicians, and building owners
often face challenges in tracking the status of assets, scheduling repairs, and verifying
completed tasks in a timely manner. These problems are especially present in larger and
complex buildings, where even small errors can lead to higher costs and inefficiency. In
our era of rapid digitization, manual approaches are obsolete, so there is a need of more
transparent and automated systems.

Recent advances in Building Information Modeling (BIM) and blockchain technology pre-
sented new opportunities to improve building maintenance processes. BIM technology
creates a digital representation that contains facility design along with operational char-
acteristics, allowing stakeholders to visualize and manage assets with greater precision.
Meanwhile, blockchain can also be used as a secure technology, distributed ledger for
recording transactions and verifying data integrity. By merging BIM with blockchain is it
possible to develop decentralized applications (DApps) to store and track events in
an immutable way in the ledger, ensuring fault reports, repairs, and maintenance actions
are tamper-proof and transparently logged.

However, introducing blockchain into a maintenance scenario isn’t that simple. One known
challenge that the system will face is the cost of on-chain transaction, commonly referred
to as gas fees. In a standard maintenance flow, this would lead to a creation of twos
on-chain submission, doubling the operational costs. Small-scale projects along side those
with limited budgets may avoid implementing the system because of the additional burden
it imposes. Responding to this, a gas fees reimbursement system can be implemented
off-chain to track and log actual cost incurred by the user, avoiding repetitive charges and
simplifying the entire process. This model demonstrate how decentralized solution can be
made more efficient.

Another focus of this thesis is an intuitive system for user to interact. For decades,
building maintenance software has suffered from confusing interfaces. The use of React
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Introduction

and Three.js frameworks enables the development of an easy to use 3D space which of-
fers stakeholders a clear method to examine and work with building components. In this
way, an otherwise abstract concept of a “faulty lamp on the third floor” is represented
in an interactive model, considerably improving usability and situational awareness. Im-
portantly, role-based access control in the DApp ensures that only authorized actors
can execute certain actions, reducing both confusion and security risks.

Given these challenges and opportunities, this thesis aim to design, implement and
evaluate a blockchain based decentralized application for building maintenance manage-
ment that integrates BIM visualization with blockchain. Through a combination of smart
contracts (written in Solidity), off-chain data management (handled via an Express server
and SQLite database), and 3D model integration (using Three.js within a React front end),
the proposed system aims to improve transparency, reduce overhead costs, and op-
timize coordination among all stakeholders involved in maintenance tasks. The final
evaluation will compare this blockchain-centric approach with conventional maintenance
workflows, focusing on metrics such as cost effectiveness, transaction speed, and user
satisfaction. The hope is that these insights will establish a realistic use of blockchain’s
strengths in an industry not typically associated with decentralized technologies, all while
keeping day-to-day operational costs in check.

1.1 Background: Maintenance Management in Smart
Buildings and Its Challenges

Maintenance management includes all activities involved in keeping building systems op-
erational, from routine inspections and repairs to major overhauls. Efficient maintenance
ensures that systems (e.g. HVAC, lamp, elevator) run optimally, electrical and plumbing
systems remain safe, and structural components are preserved. Practical applications ex-
pose facility managers to multiple 4ssues during the coordination of maintenance work.
One major issue is data fragmentation. Information needed for maintenance is often
spread across disparate documents and systems, including original building plans, opera-
tion manuals, maintenance logs, and vendor contracts. These pieces of information are
rarely integrated, as a result, a manager might have to consult multiple sources to un-
derstand what assets exist in a building, their maintenance history, and their current
condition. The handover from construction to operations is a known point of data loss,
an industry analysis found that of all data generated during design and construction, 95%
is not used effectively during operations, essentially going to waste after handover [Mer-
genschroer and Lipsey [2024]]. This implies that building owners and facility managers
often encounter difficulties accessing complete data about their properties at the begin-
ning which creates circumstances that lead to inefficient maintenance practices.

The fragmentation of maintenance data is closely linked to inefficiencies and mistakes in
facility management. When information about building equipment and past maintenance
is not readily available or is inconsistent, maintenance personnel may spend excessive time
searching for data or reinventing solutions to known problems. Inefficient workflows are
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1.1 — Background: Maintenance Management in Smart Buildings and Its Challenges

common, for instance, imagine a maintenance technician who discovers a faulty sensor in
a smart building. If the building’s documentation is not centralized, the technician might
not easily find the sensor’s specifications or warranty information, causing delays. Such
delays compound across many tasks. Recent industry surveys underscore the severity of
the issue: 62% of facilities managers report problems with data centralization,
integration, and communication, which indicates that a majority struggle with siloed
systems that don’t “talk” to each other. Miscommunication between stakeholders (man-
agers, technicians, contractors, etc.) is another symptom of this fragmentation. Nearly
48% of delays in work order execution are attributed to miscommunication
among parties [Infraspeak [2025]]. In other words, almost half of maintenance delays
could potentially be avoided with better information flow and coordination.

Another challenge in current maintenance management is the insufficient trasparency
and lack of accountability measures. Building maintenance often involves multiple
stakeholders: the property owner, the facility management team, external service con-
tractors, equipment suppliers, and sometimes regulatory bodies. Each stakeholder may
maintain their own records of maintenance activities. These records are typically private
and easily modified, which can lead to disputes or uncertainties. For example, a building
owner might question whether a service contractor actually performed all the preventive
maintenance tasks they were contracted to do last year, if the records are paper-based or
kept in an internal database, they could be altered after the fact or may not be easily
shareable for verification. This opaqueness can erode trust. It also makes it difficult to en-
force service level agreements (SLAs) or compliance with safety regulations, since there is
no immutable “source of truth” about what maintenance has been done and when. The
need for transparency has been highlighted in safety-critical contexts. For instance, after
incidents like the Grenfell Tower fire (2017) regulators have stressed having a “Golden
Thread” of information, a complete, trustworthy record of all building information and
changes over time. In maintenance terms, this means having a tamper-proof log of inspec-
tions, repairs, and system performance data. Transparency becomes essential to achieve
accountability because hidden issues along with missed performance opportunities stem
from unreliable information.

Compounding these issues is the sheer scale and complexity of modern smart buildings.
Smart buildings are equipped with numerous IoT sensors and automated sys-
tems that generate real-time data on everything from temperature and air quality to
elevator performance and room occupancy. In theory, this wealth of data should enable
data-driven maintenance, for example, sensors could detect anomalies in equipment
operation and trigger maintenance requests automatically. In practice, however, if the
data streams from IoT devices are not integrated into maintenance management plat-
forms, they risk becoming yet another silo (isolated repository of data or functionality
that doesn’t communicate or integrate with other systems). Many existing Computerized
Maintenance Management Systems (CMMS) or other facility management software in use
were not designed with IoT and advanced analytics in mind, or they operate in isolation
from the building’s BIM (if one exists). The result is that the opportunity to shift from
reactive maintenance to proactive or predictive maintenance is often missed. Even when
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Introduction

data is available, it may not be trusted or utilized across organizations. A maintenance
manager might hesitate to rely on data they cannot verify or easily share with others, and
a building owner might be reluctant to invest in IoT upgrades without assurance of data
integrity and clear ROI.

Most maintenance issues arise from fragmented data systems, inefficient work pro-
cesses and unclear organizational information leading to poor maintenance results
and resource misallocation. It becomes evident through research that 93% of organiza-
tions identify their maintenance processes as inefficient [Infraspeak [2024]]. In
buildings, inefficient maintenance can lead to higher life-cycle costs, increased downtime
of critical systems, discomfort for occupants, and even safety risks. When equipment his-
tories are incomplete or trust in data is low, preventive maintenance might be skipped or
improperly done, leading to breakdowns. When communication is lacking, two different
teams might unknowingly service the same issue, or worse, assume each other has han-
dled it and leave an issue unresolved. Clearly, there is a pressing need to modernize
building maintenance management. To address the current data fragmentation the
perfect solution should link separated data systems while simultaneously establishing au-
tomated document management and trackable maintenance documentation. This is where
emerging digital technologies like BIM and blockchain become highly relevant. They offer
the ingredients to tackle the very pain points outlined above, potentially enabling a new
paradigm of maintenance management fitting the era of smart buildings.

1.2 BIM and Blockchain Technologies: Relevance to
the Problem

Building Information Modeling (BIM) and blockchain technology have each revolu-
tionized their respective domains, BIM in the architecture, engineering, and construction
(AEC) industry, and blockchain initially in finance (through cryptocurrencies) but now
across many fields requiring secure data sharing. While they originate from different
worlds, both technologies deal fundamentally with information management, and to-
gether they hold particular promise for facility maintenance in smart buildings.

BIM is essentially a digital foundation for building information. It involves creating
comprehensive 3D models of buildings enriched with data about every element, structural
components, mechanical systems, spaces, and even operational details. A BIM model
is often described as a centralized repository of building data or a digital twin of the
physical asset. Unlike traditional blueprints or CAD drawings, a BIM model can contain
functional information such as the specifications of a unit, the maintenance schedule for a
generator, and the warranty details of a window system, all linked to their location in the
3D space. By its very nature, BIM is designed to integrate data that would otherwise be
scattered. As one source puts it, “one of the standout advantages of BIM is its ability to
centralize and organize large volumes of building data in a highly accessible way,”
whereas in traditional facility management, important information is often scattered and
leads to inefficiencies and mistakes [bimcommunity [2025]]. In a BIM-centric approach,
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all stakeholders work off the same dataset, which greatly reduces inconsistencies.
For maintenance management, this means a technician or manager using a BIM-based
system could click on an asset (say a pump or a fire alarm device) within a digital model
and immediately retrieve its history, manuals, and pending work orders. BIM thus offers
a solution to the problem of fragmented data: it strives to ensure that every piece of
information about the building is “under one roof” digitally.

The use of BIM in the operations and maintenance phase of a building’s life (of-
ten called BIM for Facilities Management or BIM for FM) is an area of growing interest.
Traditionally, BIM has been used mainly in design and construction. However, as noted
earlier, there is often a drop-off in data utilization after handover. For example, owners
might receive a BIM model at project close-out, but it may not be kept up to date or ac-
tively used in day-to-day operations. This represents a missed opportunity. The industry
is aware of this gap: owners and facility managers often express that they struggle with
poor and fragmented data despite having plenty of data available [[Mergenschroer and
Lipsey [2024]]. By actively using BIM during the maintenance phase, facility managers
can have complete and consistent information, preventing the loss of knowledge that
typically occurs at handover. Furthermore, BIM enables better visualization and plan-
ning of maintenance activities. For instance, scheduling a complex repair in a hospital
or a high-rise can be improved by visualizing the affected areas and systems in the BIM
model, coordinating access, and simulating the work to avoid clashes with other ongoing
tasks. The maintenance management problem benefits from BIM because it functions as
an information integration platform which addresses the current practice deficiencies
of data silos and inefficiencies.

Blockchain technology, in contrast, addresses the dimension of data integrity,
transparency, and decentralization. A blockchain is a distributed ledger maintained
by a network of computers (nodes) that collectively verify and record transactions in
blocks, which are cryptographically linked (hence forming a chain). Once information is
recorded on a blockchain and confirmed, it becomes extremely difficult to alter retroac-
tively. This immutability, combined with the fact that the ledger is shared among multiple
parties, means that blockchain works as an authoritative trusth which all parties agree on.
The implementation of blockchain in maintenance management creates secure storage
for maintenance records along with sensor readings and work orders because the
system prevents any unauthorized alterations. If multiple stakeholders (owner, mainte-
nance contractor, equipment vendor, etc.) are part of a blockchain network for a building,
they can all access the same verified records in real time without relying on a single
central authority. Blockchain effectively provides a “distributed, single source of shared
truth,” functioning as the top record system for transactions [intellis]. By integrating this
capability it establishes digital trust between parties which might not fully trust each
other’s internal records [intellis]. Handing facility managers this capability allows them to
verify that maintenance activities occurred at specified times alongside unalterable sensor
readings which cannot be altered for hiding negligence or errors.

The transparency and security features of blockchain directly tackle the earlier
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mentioned issue of lack of accountability. With a blockchain-based maintenance log, each
maintenance activity (like an inspection, a repair, or a part replacement) could be
recorded as a transaction. Each transaction could include details like who performed
the work, when, on which component (perhaps referencing an ID from the BIM model),
and what the outcome was. Because these transactions are confirmed by the network and
cryptographically secured, once they are in the ledger they become a permanent part of
the building’s history. If an auditor or regulator wants to verify compliance, they can be
given access to the blockchain records. For example, a new regulation might require that
critical safety systems have certified maintenance every year; using blockchain,
an inspector could immediately see the verifiable timestamped records of those
maintenance events. Buildings can maintain a tamper-proof blockchain ledger for track-
ing inspection reports and maintenance records to make owners and managers account-
able according to an industry perspective [Oulton [2023]]. In essence, blockchain creates a
trusted environment for collaboration: even if multiple companies are involved in main-
taining a building, none can unilaterally manipulate the records to their advantage, and all
can trust the authenticity of the data. Additionally, blockchain can enable smart con-
tracts, which are self-executing agreements coded on the blockchain. In maintenance,
smart contracts might be used to automatically trigger payments when a job is completed
and verified, or to send alerts if scheduled maintenance does not occur by a deadline,
thereby automating compliance with service agreements.

By integrating blockchain, maintenance management can also be extended beyond a single
organization’s boundary. Consider a scenario with equipment manufacturers provid-
ing warranty service. If maintenance logs are on a blockchain, a manufacturer could verify
whether required maintenance was performed (to honor a warranty claim) without needing
to trust potentially biased reports from the owner. Or tenants in a smart building could
be given confidence about indoor air quality maintenance by viewing an immutable log of
filter replacements. These are new possibilities that a conventional centralized database
could not offer with the same level of credibility. The data-integrity protection com-
bined with visibility for authorized parties offered by blockchain technology complements
BIM’s role of capturing and structuring the data.

The synergy of BIM and blockchain in the maintenance context is particularly pow-
erful. BIM solves the “where and what” — it knows the building’s components, their
properties, and it can store rich information about them. Blockchain solves the “when
and who” — it provides a reliable record of events (like maintenance tasks or sensor trig-
gers) and who performed or initiated them, in chronological order. When combined, one
can envision a system where the BIM model serves as the user interface and data
environment, while blockchain runs under the hood to notarize every piece of
maintenance data. For example, a maintenance technician could navigate the BIM
model of a smart building, click on an air handling unit that needs servicing, update the
maintenance performed in the BIM-linked system, and that update would simultaneously
be recorded to the blockchain ledger. Later, anyone with access can see in the BIM model
that the unit was serviced on a certain date, and they can trust that record because the
blockchain entry confirms it. If a dispute arises about whether a task was done or whether
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a sensor reading was correctly logged, the blockchain provides an audit trail. In technical
terms, BIM data could includes references to blockchain transactions through hashes or
IDs thus uniting detailed building information with trustable event logs.

By leveraging blockchain, BIM’s data becomes more credible and usable among a
wider network of stakeholders. Conversely, by leveraging BIM, the data on the
blockchain is given context and structure (instead of being isolated transactions, they
are tied to real-world building elements and systems). This integrated approach can ad-
dress the existing gaps in maintenance management: it can ensure data completeness and
accessibility (through BIM) while also ensuring data reliability and transparency (through
blockchain). Such integration serves the requirements of smart buildings which need
big data management from BIM and trusted automation delivered by blockchain smart
contracts. In summary, BIM and blockchain together provide a complementary
solution to the challenges outlined in Section 1.1. This thesis investigates the integra-
tion assessment to prove how a blockchain-maintained management system which
connects with BIM produces substantial improvements in smart building maintenance
efficiency and visibility.

1.3 Problem Statement and Research Motivation

Despite benefits that BIM and blockchain promise, their combined application in real-
world building maintenance management remains nascent. Most facilities today do not
use BIM for daily maintenance work, and very few (if any) have incorporated blockchain
for maintenance record-keeping. The core problem addressed in this thesis can be stated
as follows:

Building maintenance management in smart buildings suffers from fragmented informa-
tion and lack of trust among stakeholders, leading to inefficiencies and suboptimal deci-
stons. There is currently no widely adopted solution that integrates a building’s digital
data (BIM) with a secure, decentralized platform (blockchain) to manage maintenance ac-
tivities. This gap results in missed opportunities for automation, increased transparency,
and collaboration in the maintenance process.

In simpler terms, facility managers lack a unified and trustworthy system to
manage maintenance in complex, sensor-rich buildings. Traditional maintenance software
may track work orders, but they often do not integrate with the building’s BIM data (if
it exists) and usually operate as centralized systems that stakeholders outside the organi-
zation cannot access. On the other hand, while blockchain has been proposed in various
research works as a way to create tamper-proof logs, there is a gap in how to practi-
cally connect those logs to the detailed technical data of the building and its
equipment. Without that connection, a blockchain by itself would be of limited use in
maintenance and it could become just an isolated ledger of transactions, lacking the rich
context needed to plan and execute maintenance tasks effectively. The motivation for this
research is to bridge that gap by combining the contextual power of BIM with the trust
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mechanism of blockchain into a single system tailored for maintenance management.

The motivation is further strengthened by observing the state of industry and re-
search: Owners and facility management firms are increasingly interested in digital twins
and smart maintenance platforms, yet they struggle with interoperability and data silos.
Meanwhile, the concept of using blockchain in the construction and real estate sector is
gaining traction for things like supply chain transparency and contract management, but
its application in the operations phase (post-construction) is still limited. This thesis
argues that integrating BIM with a blockchain-based decentralized application
can address key points such as data loss at handover, siloed maintenance databases, and
disputes over service delivery. By providing a proof-of-concept implementation and analy-
sis of such an integrated system, the work aims to show a viable path forward for industry
practitioners and add to the academic knowledge base on novel facility management so-
lutions.

In addition, modern buildings increasingly demand real-time and resilient mainte-
nance management. Imagine a smart building where thousands of sensor readings and
maintenance events occur daily, a centralized system might become a bottleneck or sin-
gle point of failure, whereas a blockchain-backed decentralized system could inherently
be more resilient (since multiple nodes maintain the data). Moreover, as cybersecurity
and data ownership become concerns (who owns the data coming from a building and
how it’s used), a blockchain approach can allow controlled sharing of maintenance data
without giving one party unilateral control. All these factors contribute to why this re-
search is both timely and important. In summary, the problem this thesis addresses is
the lack of a cohesive, secure information framework for maintenance management, and
the motivation is to harness BIM and blockchain together to fill this void and improving
efficiency, accountability, and ultimately prolonging the life and performance of smart
building assets.

1.4 Research Goals, Scope, and Assumptions

Given the problem statement and motivation above, the primary goal of this thesis
is to develop and evaluate a blockchain-based maintenance management system
integrated with BIM for smart buildings. This high-level goal can be broken down
into a few concrete objectives:

e Design a System Architecture: The thesis will propose an architecture for how
BIM and blockchain can work together in the context of maintenance management.
This includes defining how building data and maintenance events flow between a BIM
environment (which could be a BIM model and a database for building information)
and a blockchain network. Key questions to address are what information to store
on-chain vs off-chain, how to link blockchain transactions with BIM elements, and
how users (e.g., facility managers, technicians, users) will interact with the system.

« Implement a Decentralized Application (DApp) Prototype: To demonstrate
16
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the feasibility of the architecture, a prototype decentralized application will be built.
This application is designed to allow users to record maintenance activities via
blockchain (using smart contracts) while retrieving and updating data in the BIM
model. The implementation will utilize an existing blockchain platform (the candi-
dates are Polygon and Ethereum), a BIM software and database. The prototype will
operate in a simulated smart building environment, meaning that [oT sensor
inputs and building assets will be represented in a controlled setting (not a live de-
ployment in an actual building). This approach is chosen to focus on the technical
integration and to allow testing various scenarios without the unpredictability of a
real building.

« Demonstrate and Evaluate the System: The thesis will simulate typical main-
tenance management scenarios to test how the integrated BIM-blockchain system
performs. For example, scenarios may include a routine maintenance task being
logged, an [oT sensor automatically flagging an anomaly and creating a maintenance
request, or a technician updating a task completion which triggers a smart contract
for payment. The evaluation will consider functional criteria (does the system
improve data accessibility? can multiple parties successfully share information?) as
well as performance criteria (is the system responsive and scalable enough for
practical use?). It will also evaluate qualitative benefits such as transparency
(e.g., demonstrating that once a task is logged on the blockchain, it is visible and
verifiable by all authorized stakeholders via the BIM interface).

e Address Security and Privacy Considerations: The research will define what
assumptions are made (for instance, assuming the blockchain is secure and that
participants’ identities are managed properly) and what potential vulnerabilities
need to be mitigated. Issues like data privacy will be considered, maintenance logs
can contain sensitive information about a building, so the system must ensure that
only authorized parties can access certain data, even though the ledger is distributed.
The scope includes proposing measures such as permissioned blockchain networks or
encryption techniques if needed to protect sensitive maintenance information.

The scope of the thesis is focused on the technical implementation and demonstration
of the BIM-blockchain integrated system for maintenance management. It is important
to clarify what is within scope and what is outside. This research will focus on
a proof-of-concept system rather than a full production ready solution. That means
some simplifications are made: for example, IoT sensor data will be simulated rather
than collected from a physical building’s sensors. This assumption allows us to test how
sensor which triggers maintenance events can be handled on blockchain without needing
to deploy hardware. Similarly, the BIM model used in the prototype might be a subset of
a building (or a hypothetical building) containing enough complexity (some assets to test
the system) to illustrate the concept, rather than an entire real building with all details.

Another boundary of the scope is that the thesis will concentrate on the information
management and software architecture aspects, rather than on mechanical or struc-
tural engineering aspects of maintenance. In other words, the value of integrating BIM
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and blockchain will be analyzed in terms of data management (efficiency, transparency,
collaboration), not in terms of, say, improving the physical process of replacing an lamp
or HVAC unit. Likewise, economic analysis (like cost benefit over a building’s life) is not
the primary focus, although the thesis will qualitatively discuss expected benefits. The
assumption is that if the system improves information flow and trust, it will indirectly
lead to cost savings as evidenced by industry reports; quantifying those savings precisely
is beyond the scope of this work.

The system is also scoped to a certain scale, for instance, the prototype might assume
a single building managed on one blockchain network. Scaling to a city wide platform or
integration with smart city infrastructure is left for future exploration. Additionally, while
blockchain enables decentralization, in a facility management context we usually have a
consortium of known parties (owner, contractors, etc.). The project will assume a per-
missioned blockchain model where participants are vetted (as opposed to completely
open public blockchain), since this reflects real-world scenarios of a private building’s
stakeholders. This assumption simplifies identity management and aligns with likely de-
ployment models if such a system were adopted in industry.

It will not deploy in a real operational building, nor will it address every possible feature
of a commercial maintenance management system (such as complex resource scheduling
algorithms, integration with financial systems, etc.). However, it will address core features
needed to prove the concept: recording maintenance tasks immutably, querying asset in-
formation from BIM, multi-user access, and basic automation via smart contracts. The
security analysis will be inside the scope to ensure the proposed solution is robust against
common threats (data tampering, unauthorized access), reinforcing the trust objective of
the system.

1.5 Thesis Outline

This thesis is organized into seven chapters, which build on each other to cover the back-
ground, development, and implications of the proposed BIM-blockchain integrated main-
tenance management system:

o Chapter 2: Literature Review, The next chapter surveys relevant literature and
existing work in the domains of building maintenance management, BIM in facilities
management, and blockchain applications in construction and facility operations. It
identifies what technologies and methodologies have been previously explored (for
example, past attempts to use BIM for maintenance, or case studies of blockchain in
asset management) and highlights the gap that this thesis aims to fill. The literature
review establishes the theoretical foundation and justifies why combining BIM and
blockchain is a novel and worthwhile approach. It will also cover detailed definitions
for BIM, blockchain, smart contracts and digital twins among other concepts as
foundational knowledge before moving into later chapters.
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e Chapter 3: Proposed Architecture, In this chapter, the thesis presents the de-
sign of the decentralized application framework that integrates BIM and blockchain
for maintenance management. The architecture is described in detail, including
system components, their interactions, and data flows. For instance, the chapter
will show how a maintenance request moves from an IoT sensor or user input into
the blockchain, and how the BIM model gets updated with information from the
blockchain. The use of smart contracts to automate certain processes (like verifi-
cation of task completion) will be explained. Diagrams and models (such as UML
diagrams or system architecture diagrams) are provided to illustrate the proposed
system. Chapter 3 essentially serves as the blueprint for the implementation.

o Chapter 4: Implementation, This chapter describes the development of the pro-
totype system based on the proposed architecture. It discusses the tools, platforms,
and programming languages used. The implementation chapter walks through how
key features were realized: how we achieved linking a BIM element to a blockchain
record, how users interact with the system (perhaps via a web interface), and how
we simulated the smart building environment. Challenges encountered during devel-
opment and how they were overcome are also documented. By the end of Chapter
4, the reader should have a clear understanding of how the conceptual design was
turned into a working prototype.

o Chapter 5: Evaluation, Once the system is built, it needs to be evaluated to
validate that it meets the goals. Chapter 5 describes the scenarios and test cases used
to evaluate the prototype. The chapter then discusses the results: Did the system
improve the speed of information retrieval? Is the data consistency maintained across
BIM and blockchain? How do stakeholders benefit in terms of transparency? This
chapter may include performance metrics (like transaction times on the blockchain,
or the latency of retrieving data) and discuss whether these are within acceptable
bounds for practical use. It also critically examines any limitations observed, for
instance, if certain operations were too slow or if some types of data were too large
to store on the blockchain, etc. The evaluation ties back to the research objectives,
assessing to what extent each objective was achieved.

« Chapter 6: Conclusion and Future Work, The concluding chapter provides a
summary of thesis contributions together with its documented results. The integra-
tion of BIM and blockchain shows promise in finding solutions for the initial problem
of fragmented and untrusted maintenance data. The chapter highlights the key ben-
efits demonstrated, such as improved data accessibility, enhanced transparency, and
potential for more proactive maintenance workflows. The current work’s limitations
include prototype scale restrictions and any assumptions which were necessary while
future research potentials are explored for development. Future work might include
testing the system in a live building, extending it to incorporate machine learning
for predictive analytics, or exploring integration with other systems (like building
management systems or facility management enterprise software). The thesis ends
with closing thoughts on how decentralized, BIM-informed maintenance manage-
ment could fit into the broader evolution of smart cities and digital building lifecycle
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management.

In summary, Chapter 1 has set the stage by explaining the context, problems, and
proposed direction of using a blockchain-based decentralized application integrated
with BIM for smart building maintenance. The subsequent chapters will dive into the
details, from reviewing existing knowledge to designing and implementing the solution,
and finally evaluating its effectiveness and security. These chapters unite to present an
extensive study of digital technologies that will solve conventional building maintenance
management difficulties leading to better sustainable building management.
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Chapter 2

State of the Art and
Literature Review

2.1 Introduction to the Chapter

This chapter reviews the state of the art in applying blockchain and related technologies
in the AEC!/FM? domain, with a particular focus on integrated building maintenance
management. First, some concepts and terminologies are explained to establish a common
understanding of key technologies. Next, the literature is reviewed in thematic clusters
reflecting major research trends: (1) blockchain and IoT for maintenance, (2) smart
contracts in construction automation, (3) BIM and blockchain integration, (4) blockchain
for data and document management, and (5) blockchain for smart infrastructure and
cities. For every cluster, some studies are presented to point out the current trends,
findings, and limitations. Finally, a critical analysis brings together these findings to
show overlaps, limitations, and gaps in the existing literature. This chapter ends by
specifying the research gap addressed by this thesis and the lack of a fully integrated
decentralized application (DApp) that uses a 3D BIM model with blockchain-based smart
contract logic for building operations and maintenance and outlines how the proposed
work will contribute to filling this gap.

2.2 Foundational Definitions

To contextualize the literature review, this section provides definitions of the foundational
concepts used for this research.

! Architecture, Engineering, Construction

2Facility Management

21



State of the Art and Literature Review

2.2.1 Blockchain

Blockchain is a tamper-resistant and decentralized digital ledger technology in which trans-
actions are recorded in sequential blocks that are cryptographically linked, forming a chain
across a distributed network of computers (nodes). There isn’t a central authority con-
trols this ledger, instead, consensus mechanisms (such as proof-of-work or proof-of-stake)
allow the network of nodes to collectively verify and agree on new transactions, ensuring
that once data is added it is extremely difficult to alter or remove. This design provides a
high degree of immutability and transparency. All participants maintain a copy of the
ledger, and any attempt to tamper with past records would be evident and rejected by the
consensus of honest nodes. By establishing a single source of truth shared among parties
who may not fully trust each other, blockchain enables secure, auditable record-keeping
and value transfer without relying on intermediaries. The first implementation was in Bit-
coin in 2008 [Nakamoto and Bitcoin [2008]], blockchain systems now they look for a wide
range of applications beyond cryptocurrency, for example for supply chain management
or digital identity, due to their ability to uphold data integrity and decentralized trust
[Yaga et al. [2018]].

2.2.2 Ethereum

Ethereum is a decentralized blockchain platform introduced by Vitalik Buterin that ex-
tends the concept of blockchain with a built-in Turing-complete programming lan-
guage, enabling the creation and execution of smart contracts and decentralized appli-
cations on its network [Buterin et al. [2013]]. Launched in 2015, Ethereum’s architecture
goes beyond simple transactions (as in Bitcoin) by incorporating an Ethereum Virtual
Machine (EVM) on every node, which runs code expressed in smart contract languages
(like Solidity) and allows users to implement arbitrary logic on the blockchain [Wood et al.
[2014]]. Ether (ETH) is the platform’s native cryptocurrency, used not only as a digital
currency but also to pay gas fees for contract execution and network utilization, providing
an economic incentive for miners (or validators, in Ethereum’s current proof-of-stake sys-
tem) to secure the network and process computations [Buterin et al. [2013]]. Ethereum’s
innovation lies in making the blockchain a general-purpose, programmable infrastructure:
it guarantees that submitted code (smart contracts) will execute in a trustless manner
(without central servers or authorities) and yield the same result on every node, which
has led to a rich ecosystem of financial services, games, and other DApps running on the
Ethereum network [Buterin et al. [2013]].

Ethereum Sharding

Ethereum sharding is a planned scalability mechanism that will partition the Ethereum
blockchain’s workload into multiple parallel chains (called shards) in order to dramati-
cally increase throughput and capacity [Buterin|. Instead of requiring every node in the
network to process every single transaction (the current design, which can become a bot-
tleneck), sharding divides the network into groups of nodes each responsible for validating
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transactions for only a specific shard, allowing many transactions to be processed con-
currently across the different shards [Bez et al. [2019]]. A central beacon chain (coordi-
nating chain) will manage and secure the system by coordinating validators, maintaining
a global consensus, and facilitating cross-shard communication. For example, ensuring
that data and tokens can move from one shard to another in a consistent manner [Bez
et al. [2019]]. In Ethereum’s roadmap (previously referred to as “Ethereum 2.0”), shard-
ing works hand-in-hand with the proof-of-stake consensus to preserve security: validators
are randomly assigned to shards and to the beacon chain so that an attack on any single
shard would require controlling a significant portion of the overall network. The shard-
ing in Ethereum is expected to increase transactions per second that the network
can handle as Ethereum would scale to serve the global user demand without losing its
decentralization [Bez et al. [2019]].

2.2.3 Mainnet vs Testnet

In the Ethereum context, mainnet refers to the primary public Ethereum blockchain where
actual transactions are broadcast, validated, and recorded with real economic value at
stake, whereas a testnet (test network) is an alternate instance of the Ethereum network
used purely for experimentation and development [Antonopoulos and Wood [2018]]. On
the mainnet, Ether has real monetary value and smart contracts deployed there directly
interact with live assets and users; by contrast, a testnet (such as Goerli or Sepolia)
uses valueless tokens and mimics Ethereum’s functionality in a sandbox environment so
that developers can safely debug smart contracts or protocol upgrades without risking
funds or impacting the main ledger [Antonopoulos and Wood [2018]]. Testnets closely
resemble the mainnet in terms of software, consensus rules, and features, providing a
realistic environment to identify issues and ensure performance under network conditions
before deployment to mainnet. This separation is essential for the development pipeline
of Ethereum (and also most of the blockchains), because It enables client developers and
smart contract creators to guarantee reliability and security by solving problems on the
testnet, and then transferring their code only to the Ethereum mainnet after they have
tested their code thoroughly [Antonopoulos and Wood [2018]].

2.2.4 Polygon

Polygon is a blockchain platform and layer-2 scaling solution that operates alongside
Ethereum to provide faster and cheaper transactions through the use of sidechains and
other scaling techniques [Bjelic et al. [2022]]. Essentially, Polygon establishes a paral-
lel network that is compatible with the Ethereum Virtual Machine, where users can
run smart contracts and DApps with significantly lower fees and latency than on the
Ethereum mainnet; periodic checkpoints (cryptographic proofs of Polygon’s sidechain
blocks) are then submitted to the Ethereum mainnet to anchor Polygon’s security to
Ethereum’s robust consensus and to ensure state finality [Bjelic et al. [2022]]. Polygon’s
architecture is often described as an “Internet of Blockchains” for Ethereum: it sup-
ports multiple sidechains and rollup solutions, all connecting back to Ethereum, thereby
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expanding Ethereum’s ecosystem into a multi-chain system while still leveraging the ex-
isting developer tools, wallets, and standards of Ethereum (Bjelic et al., 2021). Using
a proof-of-stake consensus mechanism on its sidechain network, Polygon achieves block
times on the order of a couple of seconds and can handle a far greater transaction through-
put, which makes it well-suited for decentralized applications (like games, NFTs, or DeFi
platforms) that require high frequency interactions without incurring prohibitive gas costs
(Polygon, 2021). By adopting Polygon, developers and users benefit from the scalability
and user experience improvements of a dedicated chain (or layer) for their application,
while still retaining interoperability with Ethereum. For example, assets can be moved
between Polygon and Ethereum, and smart contract code can be deployed on Polygon
with minimal modifications since it’s EVM-compatible.

2.2.5 Oracles

In blockchain systems, an oracle is a trusted off-chain data provider or middleware ser-
vice that supplies a blockchain (and its smart contracts) with external information that
the blockchain itself cannot access directly [Beniiche [2020]]. Blockchains are inherently
isolated networks for security reasons (each node only has access to the data on the ledger
and the transactions it processes), so when a smart contract needs real-world input( such
as a price feed, weather condition, or the result of an event) it relies on an oracle to re-
trieve that data from an external source and deliver it onto the blockchain in a verifiable
manner. Importantly, the oracle is not the data source itself but acts as a bridge: it
queries and aggregates information from one or multiple sources, possibly adds a layer of
verification or authentication (to ensure the data is trustworthy), and then feeds the
formatted data into the smart contract’s environment [Beniiche [2020]]. Oracles can be
software-based (pulling data from online APIs), hardware-based (reading data from
IoT sensors or devices in the physical world), inbound (bringing off-chain data in) or out-
bound (sending data or triggering action outside the chain), and can be centralized or
decentralized networks of oracles. For example, a decentralized price oracle might take
the median price of an asset from 10 different exchanges to update a DeFi contract. By
using oracles, blockchains expand their usefulness allowing smart contracts to interact
with real-world events events and with traditional systems, but they also introduce a
trust consideration known as the “oracle problem,” which is why modern designs often
employ multiple oracles and cryptographic techniques to minimize reliance on any single
data source.

2.2.6 Smart Contracts

Smart contracts are self-executing pieces of code that are stored on a blockchain and
automatically enforce the terms of an agreement once predefined conditions are met ([Sz-
abo [1997]]; [Yaga et al. [2019]]). The concept was first defined by Nick Szabo (1997) as “a
computerized transaction protocol that executes the terms of a contract,” highlighting the
goal of reducing the need for trusted intermediaries in business agreements. In practical
terms, a smart contract on a blockchain like Ethereum is a program consisting of functions
(code logic) and state data that resides at a specific address on the blockchain, and which
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gets executed by the network’s nodes as part of the blockchain’s consensus process [Yaga
et al. [2019]]. When a user triggers a smart contract (typically by sending a transaction
calling one of its functions), every node in the network runs the contract’s code and, if the
conditions encoded in the contract are satisfied, the contract carries out the prescribed
actions—such as transferring funds to a beneficiary, updating a record, or even creating a
new contract—thereby automatically enforcing the agreement’s outcome. Because the
contract’s code and execution results are recorded on the blockchain, they are tamper-
evident and transparent: no party can unilaterally alter the contract or falsify its outcome
without the consensus of the network, which means all parties can trust the process even
in the absence of a central authority [Yaga et al. [2019]]. Smart contracts made it possible
to create a vast tyoe of decentralized applications, starting from a simple token swaps
to sophisticated financial products and organizational governance rules, by providing a
reliable and programmable way to handle digital assets and logic on a blockchain ([Szabo

[1997]]; [Yaga et al. [2019]]).

2.2.7 Decentralized Application

Decentralized applications (DApps) are software applications that run on a decentralized
network, typically a blockchain or peer-to-peer network, rather than on a single centralized
server (Logan, 2023). A DApp usually consists of back-end code (smart contracts) that
execute on the blockchain and a front-end user interface that can be very similar to a
conventional web or mobile app. Because the core logic resides on the blockchain, DApps
inherit properties of blockchain systems: they are generally open-source, operate without
a central authority’s control, and data/transactions on the back-end are transparent and
verifiable by the community (Johnston et al., 2014). For users, this means the application’s
behavior is predictable and not easily alterable by a single party—once a DApp is deployed,
no company or individual can unilaterally shut it down or censor its function as long as
the underlying blockchain continues to run. DApps exist for a wide array of purposes: for
example, cryptocurrency wallets, decentralized finance platforms, games, social media,
and marketplaces can all be implemented as DApps, leveraging blockchain-based trust
(ensuring that rules are enforced by code) and tokenization (using digital tokens to
incentivize users or represent assets) (Logan, 2023). While DApps can offer enhanced
security and user autonomy (e.g., users keep custody of their data or assets), they also
face challenges in scalability, user experience, and maintenance, since updates or bug fixes
may require consensus from the network’s community. Nonetheless, DApps represent a
fundamental shift in application design by combining user-facing functionality with the
decentralized, resilient back-end of blockchain networks (Johnston et al., 2014).

2.2.8 Building Information Modeling

Building Information Modeling (BIM) refers to both a technology and a collaborative pro-
cess for managing building project data, whereby a digital representation of a facility’s
physical and functional characteristics is created and maintained as a shared knowledge
resource for the building’s life cycle (National Institute of Building Sciences, 2015). In
practice, a Building Information Model is a rich 3D digital model of the structure that
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embeds not only geometric information (the building’s design and spatial layout) but also
a multitude of properties and attributes about building components — for instance, mate-
rials, structural loads, costs, manufacturer details, and maintenance schedules (Eastman
et al., 2011). All stakeholders (architects, engineers, contractors, owners, facility man-
agers, etc.) can contribute to and extract information from this single BIM model, which
streamlines communication and reduces information loss as a project progresses from
design to construction to operation (National Institute of Building Sciences, 2015). By
enabling conflict detection (e.g., spotting a plumbing route clashing with a beam in the
virtual model), simulation (such as energy performance or lighting analysis before the
building is built), and efficient documentation (automatic generation of plans, sections,
schedules from the model), BIM significantly improves decision-making and coordination
compared to traditional isolated drawings and documents (Azhar, 2011). Ultimately, BIM
is about leveraging a consistent, interoperable digital dataset of a facility to achieve better
outcomes: reducing errors and rework, improving cost and time efficiency, and providing
owners with a detailed digital twin of their asset for facilities management and future
renovations (National Institute of Building Sciences, 2015).

2.2.9 Internet of Things

The Internet of Things (IoT) is a computing paradigm in which everyday physical objects
and devices are embedded with sensors, software, and network connectivity so that they
can collect data about their environment and communicate that data over the internet
[Atzori et al. [2010]]. The underlying idea is a world where a myriad of “smart” objects
from appliances, vehicles, and wearable devices to industrial equipment and infrastruc-
ture sensors are interconnected, continuously sharing information and working with
the purpose to provide new services or automation. IoT devices typically have unique
identifiers (like IP addresses) and use wireless networks to transmit data they sense (e.g.,
temperature, location, usage metrics) to cloud platforms or directly to other devices, of-
ten without human intervention. By connecting the physical and the digital worlds, IoT
enables real-time monitoring, control, and analytics across diverse domains for example:

e in a smart home: IoT thermostats, lighting, and security systems can adjust
settings autonomously for comfort and energy efficiency

e in industrial settings: IoT sensors on machinery support predictive maintenance
by flagging performance anomalies

e in healthcare: wearable IoT devices can track patient vitals and alert doctors of
issues remotely.

The IoT ecosystem as a whole encompasses not just the “things” themselves, but also the
data networks, the cloud or edge computing systems that aggregate and analyze device
data, and the applications that turn raw data into actionable insights. As IoT grows to
billions of connected devices, important considerations include interoperability (common
standards so different manufacturers’ devices can work together), data management of the
vast information generated, and security and privacy measures to protect sensitive data
and prevent unauthorized control of devices [Atzori et al. [2010]].
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2.2.10 Digital Twin

A digital twin is a virtual replica or model of a physical object, system, or process that
runs in parallel to the real-world entity, continuously receiving data updates and reflecting
its current state and behavior [Sean Olcott]. A digital twin is dynamically linked to its
physical counterpart via sensors and data feeds, meaning changes or events in the real
world (for example, a machine’s temperature, a building’s energy usage, or a patient’s
health metrics) are captured and sent to the digital twin in real time, keeping the digital
model in sync with reality. With this live and connection with the real world, the digital
twin can be used to simulate and predict outcomes without risking the actual asset,
engineers and operators can run scenarios, test modifications, or forecast failures on the
digital twin, gaining insights that inform decisions in the physical domain. Originally
pioneered in manufacturing and aerospace (e.g., NASA using digital twins to simulate
conditions for spacecraft and aircraft), the approach is now applied in many fields: in
construction and facility management, for instance, a digital twin of a building (often de-
rived from a BIM model augmented with IoT sensor data) enables monitoring of real-time
performance and proactive maintenance, also in smart cities, digital twins of infrastruc-
ture help optimize traffic flow or utility distribution through simulation. By providing a
holistic virtual environment that mirrors the life cycle of physical assets, digital twins help
organizations achieve predictive maintenance, improved design and optimization, and
risk reduction, as decisions can be tested virtually before implementation [Sean Olcott].
The fidelity and usefulness of a digital twin depend on the quality and timeliness of data
it receives, and as such, advances in [oT, data analytics, and Al are continually enhancing
digital twin capabilities for more accurate representation and intelligent insights.

2.2.11 Computerized Maintenance Management System

A Computerized Maintenance Management System (CMMS) is a software solution that
supports organizations in planning, tracking, and optimizing maintenance activities by
centralizing maintenance information in a digital database [IBM]. Core functions of a
CMMS include an asset registry (recording details of equipment and facilities, such as
make, model, location, and maintenance history), work order management (scheduling
and assigning preventive maintenance tasks and repair jobs, and monitoring their com-
pletion), and inventory management for spare parts and supplies (ensuring that neces-
sary parts are available for maintenance work and tracking their usage) [[BM]. By moving
these processes from paper or disparate systems into one integrated platform, a CMMS
enables maintenance teams to receive automatic reminders for routine inspections, log
issues and resolutions, and analyze equipment performance over time. This leads to bene-
fits like reduced downtime (through timely preventive maintenance and faster response to
breakdowns), extended asset life (through better upkeep), and improved compliance with
regulatory standards (by keeping auditable records of maintenance and safety checks).
Modern CMMS software often provides a user-friendly interface (including mobile access
for technicians in the field) and generates reports or dashboards — for example, showing
metrics such as mean time between failures (MTBF) or maintenance backlogs — that help
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managers identify trends and make informed decisions about resource allocation and as-
set replacement [IBM]. In the end, a CMMS is the information backbone of maintenance
management, which improves the efficiency and consistency of maintenance activities in
industries such as manufacturing plants, hospitals, campus facilities, and transportation

fleets [IBM].

2.3 Literature Review

With these key concepts defined, the following sections review the literature by thematic
clusters. Each cluster corresponds to a specific intersection of technologies and application
areas in AEC/FM, highlighting how scholars have been combining blockchain, BIM, IoT,
and smart contracts to innovate in building maintenance and related fields.

As shown in Figure 2.1, the reviewed literature was grouped into five clustersas previ-
ously said: (i) Blockchain + IoT for Real-Time Maintenance, (ii) Smart Contracts for
Supply Chain and Automation, (iii) Smart Building and Digital Twin Integration, (iv)
Blockchain for Document and Data Management, and (v) Blockchain for Smart City In-
frastructure. These clusters reflect recurring research directions and guided the structure
of the literature review in the sections that follow.

2.3.1 Cluster 1: Blockchain and IoT for Maintenance

One prominent stream of research explores the integration of blockchain with the Internet
of Things (IoT) to enable real-time monitoring and maintenance of buildings and infras-
tructure. The advent of IoT in construction around 2014 and blockchain in 2017 opened
the door to combining these technologies, and studies have found their integration promis-
ing for addressing challenges in real-time data collection, remote monitoring, and
automated maintenance workflows. In essence, IoT sensors provide timely and rich
data from the physical environment, while blockchain offers a secure and decentralized
way to transmit, store, and trigger actions based on that data. Research in this cluster
has proposed various frameworks to leverage this synergy for maintenance management.

Real-time Maintenance Tracking with Sharded Blockchains: [Wang et al. [2023]]
present a framework for building operations and maintenance that uses blockchain sharding
to improve scalability in processing loT-driven maintenance transactions. The proposed
approach, supported by IoT devices, allows maintenance events (e.g., sensor-detected
faults) to be recorded on different shards, reducing latency and improving the throughput
of the system. The authors demonstrate that as the complexity and size of the mainte-
nance management system grows, sharding can significantly benefit performance. In a
maintenance context, this means even a large volume of sensor alerts and work orders
can be handled on-chain without bottlenecking the entire network. The use of sharded
blockchain, therefore, addresses one of the key concerns of applying blockchain in IoT
heavy scenarios — the limited transaction processing rate, which is critical if every sensor
reading or maintenance action is logged as a blockchain transaction.
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Figure 2.1. Thematic clustering of reviewed literature in the domain of blockchain, IoT,
and BIM for smart building maintenance

Smart Construction Objects (SCOs) as Blockchain Oracles: A notable challenge
in merging IoT with blockchain is how to feed real-world data into smart contracts in a
trustworthy manner. [Li and Kassem [2021]] tackle this by introducing Smart Construc-
tion Objects (SCOs) as blockchain oracles in a construction supply chain setting. In
their framework, SCOs are physical components (devices) of construction (or attached to
assets) that are equipped with sensors and unique identifiers (e.g. QR codes), which are
able to sense the condition as well as to digitally sign or confirm data. These SCOs relay
valid data to the blockchain, which, in turn, become trusted data feeds for smart con-
tracts. For example, an SCO attached to a building component could detect an anomaly
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in the case of this thesis (e.g. a temperature spike indicating an overheating light fix-
ture) and automatically trigger a maintenance smart contract once that data is recorded
on the blockchain. instead, they demonstrated this concept in a logistics and materials
tracking scenario, but it is equally applicable to facility maintenance. The implication is
that authenticated IoT data (via SCOs) can autonomously initiate maintenance processes
on-chain — a crucial capability for any decentralized maintenance management system.
By ensuring the data’s reliability, SCO-based oracles increase stakeholders’ trust that au-
tomated maintenance triggers (such as work order creation or emergency shutdowns) are
based on genuine, tamper-proof sensor readings.

Machine-as-a-Service (MaaS) for Industrial Maintenance: Another illustration
of blockchain-IoT integration is provided by [Tran et al. [2023]], who developed a Machine-
as-a-Service (MaaS) platform for managing industrial machinery maintenance using blockchain,
IoT, and decentralized storage (IPFS). In their scenario, each machine in a factory has
IoT sensors that detect operational status and failures. When a sensor flags an issue, it
sends a notification to a blockchain network dedicated to maintenance. The blockchain
logs this event as a maintenance request (a transaction on the ledger) which is visible to all
authorized maintenance service providers (who operate as nodes on the network). Smart
contracts coordinate the response: for instance, the first available maintenance provider to
acknowledge the request on-chain is assigned the task (a “first-come, first-served” assign-
ment logic encoded in the contract). The maintenance provider then services the machine
and logs the completion on the blockchain, which could automatically trigger payment via
cryptocurrency. The inclusion of IPFS (InterPlanetary File System) in the architecture
allows large data (e.g. machine logs, repair documents, sensor datasets) to be stored in
a decentralized off-chain manner while the blockchain stores references and assures in-
tegrity. This case study is compelling because it demonstrates a working prototype that
automates the maintenance workflow end-to-end: fault detection — blockchain event —
service dispatch — confirmation — payment, all mediated by IoT and smart contracts.

In conclusion, the research in Cluster 1 highlights the viability and advantages of in-
tegrating the IoT sensing with the blockchain networks for the maintenance management.
The key contributions include frameworks for improving blockchain’s performance in IoT
settings (through sharding), methods to trustworthily connect IoT data to smart con-
tracts (using SCO oracles), and prototypes of autonomous maintenance dispatch systems
(MaaS). Collectively, these works show that blockchain can provide a reliable, tamper-
proof log of real-time asset conditions and maintenance actions, while IoT provides the
data stream to populate that log and trigger automated responses. The increased trans-
parency and timeliness can enable predictive and preventive maintenance strategies that
were difficult to coordinate in traditional systems. However, most studies in this cluster
focus on specific technical elements (scalability, oracle design, etc.) in isolation; a fully
integrated solution that marries real-time BIM models with IoT inputs and blockchain
logging is still in an nascent stage, which we will revisit in the critical analysis.
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2.3.2 Cluster 2: Smart Contracts in Construction Automation

The second cluster of literature focus on the use of blockchain smart contracts to automate
workflows in construction and facilities management, including supply chain transactions,
payment processes, and multi-party task coordination. The construction industry is no-
torious for its fragmented supply chains and heavy reliance on intermediaries for contract
management and payments. Smart contracts provide a potential solution by embedding
in code business logic (agreements, rules, conditions) that self-executes on a blockchain,
eliminating the need for central oversight and opportunities for dispute. Research in this
cluster demonstrates how smart contracts can streamline processes like progress payments,
procurement, and contractor selection in construction projects.

Automating Payments with Smart Contracts: A representative work by [Li and
Kassem [2021]] explores applications of blockchain and smart contracts in construction,
including a prototype system for automated milestone payments. In traditional construc-
tion projects, payments to contractors or suppliers are often tied to milestones or deliv-
erables and require verification (inspections, certificates) and manual approval workflows.
[Li and Kassem [2021]] implemented a smart contract that holds project funds in es-
crow and automatically releases payment when a milestone completion is confirmed on
the blockchain. For example, once an inspector logs on the blockchain that “Phase X
is complete” (perhaps by digitally signing a transaction), the smart contract triggers a
payment to the contractor’s address. This ensures payments occur only after the required
work is completed. The blockchain record provides a transparent and immutable trail
of who certified completion and when, reducing delays in approval and opportunities for
disputes over whether a milestone was met. The authors reported that such a system can
significantly reduce the administrative overhead and latency associated with processing
invoices, as well as build trust that payments will not be released prematurely.

Collaborative Project Platforms and Workflow Automation: Another impor-
tant study is by [Udokwu et al. [2021]], who designed a collaborative construction
project platform on blockchain to improve information symmetry and trust among all
project participants. Their platform uses smart contracts to automate workflow steps
and share data securely in real-time between stakeholders such as owners, contractors,
subcontractors, and inspectors. The goal is to ensure that all parties see a single source
of truth for project information (contracts, change orders, schedules, etc.) and that key
events (approvals, completions, deliveries) are recorded immutably. [Udokwu et al. [2021]
specifically address transparency, traceability, and information symmetry, noting
that when all data (documents, approvals, transactions) are stored on a blockchain ledger
accessible to participants, it greatly increases trust and reduces coordination frictions. In
their prototype, for instance, a smart contract could automatically route a work order to
the appropriate subcontractor when approved by the general contractor, and log this event
for everyone to see. They found that such platforms can automate workflow (reducing
manual communication and data reconciliation) and enhance inter-party trust since no
single entity can manipulate the records.
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Automating Contractor Selection and Procurement: Researchers have also ex-
plored how smart contracts could autonomously handle procurement decisions and con-
tractor selections. [Boonpheng et al. [2020]] discuss theoretical approaches for smart con-
tracts to run auction-like processes to select suppliers or maintenance contractors based
on predefined criteria such as lowest cost or highest reputation rating. In a conventional
scenario, choosing a vendor for a job (like replacing a set of light fixtures) might involve
soliciting bids and negotiating, often through a centralized system or manual process. In
a blockchain scenario, one could encode a “tender” smart contract: when a maintenance
need arises, the contract accepts bids from registered contractors (each bid perhaps sub-
mitted as a transaction) and automatically awards the job to the best bidder according
to the criteria coded (for example, the lowest bid from a contractor with at least a 4-star
rating). This paper highlight that such a system would not only speed up the procure-
ment process but also leave a clear audit trail of how the decision was made (all bids are
on-chain and time-stamped). They note this approach could reduce bias and enable more
open competition.

Benefits and Challenges Identified: Across the cluster 2 literature, the demonstrated
benefits of smart contracts in construction automation include increased efficiency (pro-
cess steps that used to take days or weeks can be executed in seconds on-chain), improved
transparency and accountability (every transaction and decision is recorded for stakehold-
ers to review, reducing disputes), and reduced need for intermediaries (which can lower
costs and complexity). Likewise, automated workflows can impose compliance to agreed
procedures (no step is skipped since smart contract won’t proceed without inputs). These
works, however, recognize challenges and limitation. One issue is integration with exist-
ing processes and legacy systems and construction firms might have established project
management software or practices that are not easily replaced by blockchain systems.
Another challenge is the need for clear standards and legal frameworks: while a smart
contract can execute a payment, the legal enforceability of such an automated release, or
handling of exceptions (e.g., what if a milestone’s quality is disputed?), require careful
consideration outside the code. Scalability and user friendliness of these solutions are also
noted concerns — early prototypes work in small trials, but industry-wide adoption would
demand robust performance and intuitive interfaces (so that non-technical stakeholders
can comfortably use the DApp). Lastly, standardization across platforms is mentioned
as an open issue: if different projects use different blockchain networks or standards, it
hinders interoperability and broad adoption. These challenges represent important gaps
that subsequent research (including this thesis) aims to address by designing architectures
that can bridge new and old systems and by evaluating the practical aspects of deploying
such solutions in real maintenance scenarios.

2.3.3 Cluster 3: BIM and Blockchain Integration

The third cluster of literature focuses on integrating blockchain with Building Informa-
tion Modeling (BIM) and digital twin concepts, specifically targeting improvements in
data management over the building lifecycle, enhanced collaboration, and traceability of
changes in smart building environments. As BIM provides a centralized digital model of
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a building, linking it with blockchain can create a trusted record of all modifications and
transactions related to the building, from construction through operations and mainte-
nance. This cluster examines how such integration can enable smarter buildings through
secure data sharing and real-time synchronization between the physical and digital realms.

Enhancing Smart Buildings with Blockchain and Digital Twins: [Adu-Amankwa
et al. [2023]] investigate the synergy between blockchain and digital twins for building life-
cycle management. They argue that while digital twin technology can give a real-time
reflection of a building’s state (through BIM models updated with live IoT sensor data),
blockchain can serve as a reliable backbone to log all changes to the digital twin and ensure
the integrity of the data. Every time the building’s digital twin is updated, either with
an activity (maintenance or sensor reading), or change (renovation), or any other update,
this information can be captured as a blockchain transaction, creating an immutable au-
dit trail during the building’s lifetime. This approach yields multiple benefits: it enables
predictive maintenance by combining real-time monitoring (IoT + digital twin) with the
assurance that all sensor data and predictive analytics outputs are trustworthy (thanks
to blockchain). It also guarantees that any modification in the building (for example,
replacing a component or updating a system setting) is transparently documented. As a
result, stakeholders can always verify the history of an asset or system via the tamper-
proof ledger. [Adu-Amankwa et al. [2023]] show that such an integrated system could
lead to more accurate maintenance (since decisions are based on comprehensive, reliable
data) and better accountability. If something goes wrong, one can trace back through
blockchain records to see when and how a related change was made.

BIM-Blockchain Fusion in the Metaverse Context: [Huang et al. [2022]] take
a forward-looking and more theoretical perspective by exploring the fusion of BIM and
blockchain in the context of the metaverse, which they frame as a convergence of virtual
and physical realities. In their survey, they discuss how integrating BIM models with
blockchain could enable rich virtual simulations and collaborative digital environments
for building design and management. For example, a BIM model secured by blockchain
could be placed in a shared virtual space (metaverse) where multiple stakeholders (ar-
chitects, engineers, facility managers) interact with it simultaneously, confident that any
changes made in that environment are verifiable and traceable. Although much of their
work is conceptual, they highlight use cases relevant to maintenance: virtual reality sim-
ulations for training or planning maintenance tasks, using blockchain tokens to represent
building assets or maintenance tickets in a metaverse platform, and ensuring that whatever
occurs in the virtual model (e.g., a simulated sensor trigger or a maintenance procedure
tested virtually) can be synchronized and validated against the real building’s data. An
insight from [Huang et al. [2022]] work is that blockchain can facilitate cross-platform
interoperability. 1f a BIM model exists in a metaverse or any digital twin platform, a
blockchain can act as the neutral ground where every system records approved changes
or exchanges data. This is particularly useful when envisioning future smart cities where
many digital systems need to coordinate. While this survey is theoretical, it provided
numerous ideas and underscored that BIM—blockchain integration is gaining interest as a
means to manage increasingly complex building data environments.
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Integration Frameworks and Key Findings: Overall, studies in Cluster 3 demon-
strate that combining BIM /digital twins with blockchain and IoT yields smart building
systems with enhanced reliability and traceability. Key findings include: (1) Enhanced
Change Management: Blockchain’s immutable logs can record all changes to a BIM
model or digital twin, making a reliable version history for the facility. This is impor-
tant in maintenance management, and knowing what was done, who did it, and when
(and in knowing that it isn’t altered later) is key to accountability and quality control.
(2) Cross-Stakeholder Collaboration: A blockchain-integrated BIM allows different
stakeholders (owners, maintenance contractors, inspectors, etc.) to confidently collabo-
rate on the same model, since any data they contribute is secured and origin-stamped. It
reduces fear of data tampering and enables a more decentralized contribution model for
updating facility information. (3) Potential for Predictive Maintenance: As noted,
the fusion of real-time sensor data (IoT) with BIM (as a digital twin) and blockchain (as a
secure database) sets the stage for predictive maintenance — the system can predict faults
and automatically log and perhaps even address them with smart contracts, all while the
BIM model reflects the latest status of the building. The literature provides evidence that
such setups can work in pilot scenarios, although fully operational industry examples are
still limited.

It is worth noting that many works in this cluster, while optimistic, are in early stages
(conceptual frameworks, surveys, or small-scale prototypes). They clearly demonstrate the
potential of BIM—blockchain integration, but also hint at the complexity of bringing these
together. For example, ensuring real-time synchronization between BIM databases and
blockchain transactions is non-trivial (BIM tools are not naturally built to interface with
blockchain networks). Additionally, storing detailed BIM data on-chain is impractical due
to size, so careful system architecture (on-chain vs off-chain division) is required. These
considerations inform the architecture proposed in this thesis and will be discussed in the
next chapter. Nonetheless, the state-of-art suggests that bridging BIM and blockchain is
a promising path to smarter, more maintainable buildings, by combining the strengths
of each technology: BIM’s rich information model and blockchain’s trust and automation
capabilities.

2.3.4 Cluster 4: Blockchain for Data and Document Manage-
ment

The fourth cluster focuses on how blockchain can be used in document and data man-
agement in construction and facility management, security of sharing, version control,
and traceability. Construction projects and facility operations involve a good amount
of documentation, like contracts, drawings, specifications, maintenance logs, compliance
certificates, etc. Historically, these things are stored in separate systems or even on
paper, and this causes problems in consistency and access. Blockchain’s core features
(immutability, distributed access, cryptographic security) make it a possible solution for
solving critical data management tasks where trust and coherence are paramount. This
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cluster’s literature focuses on frameworks that leverage blockchain as a backbone for doc-
ument management and information tracking.

Blockchain-Based Document Management Frameworks: [Das et al. [2022b]] pro-
pose an integrated document management framework for construction that uses blockchain
and smart contracts to handle the flow of project documents. In their system, each docu-
ment (for example, a blueprint, RFI, or maintenance report) is registered on the blockchain
with a unique hash, and transactions are used to record actions on documents (creation,
approval, revision, etc.). A smart contract ensures that only authorized parties can submit
revisions and that the latest version of each document is easily verifiable. This effectively
creates a secure, tamper-proof version control system. For instance, if a maintenance
manual is updated or a new inspection report is issued, the blockchain log would show
exactly which version is current and who approved it. The authors illustrate how this
could prevent common issues like lost paperwork or conflicting document versions. In a
maintenance scenario, such a framework could track work orders and service records: each
maintenance request and its outcome report could be a document whose lifecycle (issued,
assigned, completed, verified) is managed by blockchain, guaranteeing that no entry can
be altered or deleted retroactively. The transparency and integrity provided can increase
confidence in the data, for example a facility manager can trust that a “completed work
order” record is legitimate and final, since it’s sealed on the blockchain.

Immutable Logs for Project and Asset Data: [Turk and Klinc [2017]] early on recog-
nized blockchain’s potential for information traceability in construction management.
They talked about how an immutable ledger could track project events and changes, and
that the changes in plans and schedule are duly documented. In their perspective, even if
their focus was broad, one can see the application to maintenance: imagine an immutable
maintenance log for an asset (say an elevator) — every service action, part replacement,
or inspection is appended to that asset’s log on the blockchain. Years of records could
never be accidentally lost or intentionally doctored; stakeholders (owners, insurers, inspec-
tors) could retrieve the full maintenance history with confidence in its fidelity. [Turk and
Klinc [2017]] highlighted that such transparency can reduce informational disputes and
improve regulatory compliance (auditors could instantly verify whether required mainte-
nance was performed). They also pointed out the usefulness in monitoring modifications:
if a change is made to a design or a maintenance procedure, the blockchain could notify
relevant parties and serve as evidence of who authorized the change. While their work was
conceptual, later studies (like [Das et al. [2022b]]) have built on those ideas to implement
actual frameworks.

Secure Data Integration for IoT and BIM: [Zhong et al. [2023]] present a study
on “blockchain-driven integration technology for the AEC industry,” focusing on data
from IoT sensors and BIM models. They position blockchain as a secure data layer that
sits between IoT/BIM systems and end-user applications. In their approach, data pro-
duced by IoT devices (environmental readings, occupancy, equipment status) and data
from BIM-based systems (asset info, spatial layouts) are time-stamped and stored or ref-
erenced in a blockchain, which acts as a unified, trustworthy data exchange platform. This
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ensures that whether data is coming from a sensor or a BIM database, when it’s retrieved
through the blockchain layer, it carries a proof of authenticity and hasn’t been tampered
with. The efficiency of the system is maintained by not storing the raw data on-chain (due
to volume) but by storing secure hashes or indices and using off-chain storage for bulk
data. For example, a temperature sensor’s readings might be stored in a cloud database,
but each significant reading or threshold-crossing event would be hashed and recorded in
a blockchain transaction along with a reference to the data. Similarly, a BIM change (like
updating an asset’s property) might be logged on-chain. [Zhong et al. [2023]] found that
this approach creates an ecosystem of data that is more reliable and readily shareable
among systems. In practical terms, for building maintenance, this means one could build
dashboards or analytics that draw from both BIM and live sensor data via blockchain
queries.

Common Themes: The papers in Cluster 4 address some of the most important pain
points regarding data fragmentation and security. They show how blockchain is able
to standardize handling of the data from different sources and stakeholders through its
provision of a single source of truth. Important themes include:

o Data Fragmentation: Traditionally, maintenance data might be siloed (some in
a CMMS, some in spreadsheets, some in email threads). Blockchain-based systems
encourage integration, as data from different subsystems (sensors, BIM, maintenance
logs) can all register on the same ledger. This helps break down silos and ensure
everyone is looking at consistent information.

e Data Security and Integrity: By leveraging cryptographic hashes and decen-
tralized consensus, these systems protect data from unauthorized changes. This is
especially important for compliance documents or safety records in maintenance and
any attempt to fudge a record (like skipping a safety check) would be evident if the
blockchain entry is missing or conflicting.

o Auditability: Maintenance and operation processes can be reviewed after the fact
by examining blockchain logs. For example, an investigation into a critical equipment
failure can trace all related maintenance actions on that equipment via its blockchain
history, revealing if any required maintenance was missed. This auditability is a form
of accountability that can drive better performance from maintenance teams.

o Interoperability: A subtle but powerful aspect is that blockchain doesn’t replace
existing systems, but rather links them. The document management framework can
tie into existing document repositories, the IoT integration can tie into existing sensor
networks, etc., but through blockchain they become more interoperable (everyone
uses the blockchain as the reference for data exchanges). This means upgrades can
be incremental..

In summary, cluster 4 shows that using blockchain for data/document management in
AEC/FM moves the industry toward more transparent, secure, and collaborative
information management. These approaches align with the needs of integrated mainte-
nance management: maintenance is fundamentally a data management challenge (keeping
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track of what needs to be done, what has been done, and by whom, with what outcome),
and blockchain-based solutions are proving to be effective tools to manage such informa-
tion at scale and with high integrity.

2.3.5 Cluster 5: Blockchain for Smart Infrastructure and Cities

The fifth cluster broadens the scope to smart infrastructure and smart cities, examin-
ing how blockchain (often combined with IoT) can support urban-scale maintenance and
resource management. While not focused solely on building maintenance, these works
provide insights into large-scale, distributed maintenance problems (like city infrastruc-
ture upkeep) and sustainability initiatives (like energy grids), which parallel challenges in
building maintenance and operations. The cluster underscores how blockchain can facili-
tate secure data sharing and coordination in complex urban ecosystems, and these ideas
can trickle down to inform building-scale systems.

Smart City Maintenance and Resource Management: [Alnahari and Ariaratnam
[2022]] explore blockchain applications in smart city infrastructure, particularly for man-
aging utilities like energy and water. They propose ideas such as blockchain-enabled
peer-to-peer energy exchanges between city buildings and using blockchain to track the
maintenance of public infrastructure assets (streetlights, pipelines, etc.). A key point is
that smart cities involve myriad connected devices and stakeholders (city authorities, pri-
vate citizens, utility companies), so a high level of transparency and trust is needed in data
and transactions. Blockchain, coupled with IoT, is posited as a solution to ensure data
from distributed sensor networks is collected and used in a trustworthy way for decision-
making. For example, a sensor on a public water pipe detects a leak; a blockchain-based
maintenance system could automatically create a record of that event and perhaps issue
a repair token or contract to a maintenance crew, visible to both the water department
and city auditors. [Alnahari and Ariaratnam [2022]] highlight that while their approach
was more focused on resource transactions (like energy trading).

Improving Traceability in Construction Supply Chains: [Elghaish et al. [2021]]
present a study on blockchain and IoT for the construction industry that, among other
things, addresses resource tracking and automation in construction supply chains. While
not explicitly about “maintenance”, their findings on traceability and automated manage-
ment of construction components have clear parallels. They describe how blockchain and
IoT can together ensure that every component (like a pre-fabricated wall panel or a crit-
ical piece of equipment) is tracked from manufacturing to installation, with all handoffs
recorded on-chain. This has implications for maintenance because knowing the provenance
and history of building components is valuable when servicing them, e.g., if a certain batch
of materials was defective, a blockchain record could quickly identify all buildings contain-
ing those materials. Additionally, [Elghaish et al. [2021]] discuss automation of processes
using smart contracts, such as auto-ordering a replacement when a stock level goes low
or triggering maintenance workflows when IoT sensors report anomalies. They note that
even though their work was focused on active construction management, the same prin-
ciples apply to operational phase: the combination of blockchain and IoT can provide
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end-to-end visibility of assets and orchestrate actions without manual oversight.

Relevance and Adaptation to Building Maintenance: The studies in cluster 5 are
somewhat tangential to building maintenance in that they often consider either a broader
scale (city infrastructure) or adjacent processes (supply chain, resource sharing). How-
ever, the reason to include them is that they introduce innovative ideas and architectures
that can be adapted to maintenance DApps. They showcase the versatility of blockchain
beyond single buildings — proving its value in distributed, large-network environments. For
example, if a smart city platform can manage hundreds of thousands of IoT devices via
blockchain, then a building with a few hundred sensors is quite feasible. They also focus
on sustainability and efficiency, which goes in line with the idea that a maintenance
system should not only repair, but also optimize (reduce energy consumption by main-
taining equipment better). The key takeaways applied to our context are: a) blockchain
can handle coordinating maintenance across multiple sites or organizations (important if
facility management is outsourced or if one service provider handles many buildings), and
b) the transparency blockchain offers is beneficial at any scale (from a building to a city)
for accountability and performance tracking.

To summarize cluster 5: Blockchain and IoT in smart infrastructure contexts have
been used to increase transparency, data trust, and efficiency in managing public assets
and resources. These works, while not directly solving building maintenance, provide proof
that the technology stack we consider (blockchain 4+ IoT + smart contracts, possibly plus
BIM/digital twin) can work in even the most complex, large-scale settings. They also
inspire some features (like peer-to-peer service models or automated cross-organization
workflows) that could be innovative if applied to building maintenance. For instance, one
could envision a future where buildings in a city share a blockchain network for main-
tenance, and a maintenance contractor can service any building, logging their work on
the same ledger, leading to a city-wide maintenance marketplace, analogously to the P2P
energy trading concept.

2.4 Critical Analysis of Literature

To synthesize the literature reviewed from Cluster 1 to Custer 5, Table 2.1 categorizes
each analyzed paper according to key technological dimensions: Blockchain (BC), Smart
Contracts (SC), [oT, Smart Buildings (SB), Maintenance Tasks (MT), Construction Op-
erations (COT), Traceability /Fidelity (T/F), and whether the paper presented a Proto-
type or Idea. This matrix allows for cross-comparison of contributions and reveals which
technologies have been most frequently combined in the existing literature.
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Reference Year | Type BC | SC | IoT|SB | MT | COT | T/F | P/I

Pub
[Lu et al. [2021] | 2021 | Journal VA A VA VA 4 v v Prototype
[Das et al. [2022b] | 2022 | Journal v v X X v v X Prototype
[Adu-Amankwa 2023 | Journal v v v v v v v Prototype
et al. [2025]
[Wang et al. | 2023 | Journal v v v v oY v X Idea
[2023]
[Li and Kassem | 2021 | Journal v vV v v v v Idea
[2021]
[Tran et al. [2023] | 2023 | Journal v v X X v v v Prototype
[Lokshina et al. | 2019 | Conference | v/ v v v v v X Prototype
[2019]
[Elghaish et al. | 2021 | Journal v vV v v X v idea
[2021]
[Mahmudnia et al. | 2022 | Journal v v X X v v v Idea
[2022]
[Zhong et al. | 2020 | Journal v v v X v v X Prototype
[2023]
[Turk and Klinc | 2017 | Conference | v/ v X v v v X Idea
[2017]
[Kim et al. [2020] | 2020 | Journal v vV X v v X Idea
[Wang et al. | 2017 | Journal v v v v v X v Idea
[2017]
[Boonpheng et al. | 2020 | Journal v v X X v v X Idea
[2020]
[Alnahari and | 2022 | Journal v o vV v v v v Idea
Ariaratnam
[2022]
[Das et al. [2022a] | 2023 | Journal v v X X v v X Idea
[Huang et al | 2022 | Journal v v v v v v X Idea
[2022]
[Udokwu et al. | 2021 | Conference | v/ v v v v X v idea
[2021]

Table 2.1.  Summary of reviewed papers

Having reviewed five thematic clusters, we now synthesize the insights and identify
trends, overlaps, and gaps in the state of the art. A clear pattern emerges: blockchain
technology is being explored as a foundational infrastructure to enhance trust, trans-
parency, and automation in AEC/FM processes, often in conjunction with IoT and BIM.
Most studies converge on the notion that blockchain’s immutable and decentralized ledger
can solve many information management issues prevalent in construction and maintenance
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— from disjointed data and lost documents to payment disputes and lack of accountabil-
ity. At the same time, each cluster highlights different facets of the problem space, and
together they paint a picture of progress as well as areas needing further development.

Across clusters, there is a strong overlap in the recognition of blockchain’s core benefits:
immutability, transparency, and decentralization are repeatedly cited as game-
changers for collaboration in AEC/FM. Whether it is real-time maintenance logs (cluster
1), automated payment and workflow records (cluster 2), BIM change logs (cluster 3),
document version histories (cluster 4), or city-wide sensor data (cluster 5), the literature
agrees that having a tamper-proof, shared ledger accessible to all relevant parties increases
trust and efficiency. Many works also overlap in combining technologies: it is rare to find
a blockchain application in AEC/FM that does not involve IoT or BIM or both. For
example, cluster 1 and cluster 5 both heavily involve IoT sensors feeding blockchain sys-
tems; cluster 3 and cluster 4 both involve BIM or structured data models interfacing with
blockchain. There is consensus that blockchain is not a standalone silver bullet but part
of a tech ecosystem including smart devices (for data input) and data models/analytics
(for making sense of the information). Another overlapping point is the emphasis on
automation via smart contracts. Clusters 1, 2, and 5, in particular, all use smart
contracts to replace or streamline traditional human-mediated processes — be it assigning
a maintenance job, executing a payment, or initiating a data-sharing process. This shows
a common belief that many routine tasks in maintenance management can be encoded
in smart contracts to reduce delays and errors. Overlaps are also seen in the anticipated
outcomes: improved response times, reduced operational costs (by cutting out middlemen
or redundant steps), better compliance (since everything is logged), and improved stake-
holder satisfaction due to transparency.

Despite these overlaps in vision, the works also have distinct focuses and, in some cases,
limitations when viewed collectively. One noticeable divergence is the level of imple-
mentation and realism: Some studies present fully developed prototypes and case
studies (e.g., the Maa$S system in cluster 1, or the document management prototype in
cluster 4), whereas others remain theoretical or exploratory (e.g., the metaverse fusion
in cluster 3, or broad surveys in cluster 5). This indicates that certain subdomains (like
automated payments or [oT maintenance triggers) are closer to practical realization, while
integrated BIM-blockchain systems are still largely conceptual.

In terms of technical scope, many works simplify one dimension to focus on another
— for instance, a loT+blockchain maintenance prototype might not incorporate BIM
at all, working with a simple database model of assets instead. On the other hand, a
BIM+blockchain framework might assume sensor data input but not deeply address how
that data is ingested (perhaps glossing over IoT integration complexities). As a result,
when surveying the whole field, we see fragmentation: different pieces of the overall puz-
zle (sensing, data modeling, blockchain logic, user interface) are addressed in isolation
by different researchers. This fragmentation is partly due to the nascency of the field —
tackling all aspects at once (IoT + BIM + blockchain + actual maintenance process) is
challenging, so researchers have understandably broken the problem down. However, it
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means that a gap exists in uniting these threads into a coherent whole.

Several works identify issues like lack of standardization, regulatory uncertainty, and in-
tegration with legacy systems as barriers. For instance, if each project uses a different
blockchain platform, there is no interoperability; if there are no agreed data standards,
every integration becomes a custom job. Very few papers propose solutions to these is-
sues — they are acknowledged but left for future work. Security is another aspect: while
blockchain itself is secure, the applications built on it (smart contracts, oracles, etc.) could
have vulnerabilities. Only a minority of works (perhaps some in cluster 1 regarding secure
oracles) touch on cybersecurity of the overall system. Moreover, performance concerns
like blockchain transaction costs (gas fees) and latency are only occasionally discussed
(one mention in cluster 1 noted sharding to tackle performance). In practical mainte-
nance management, if reporting a fault or updating a model incurs a fee or delay, users
might be reluctant. So far, the literature has not fully resolved how to make these systems
cost-effective and fast enough for real-world use, especially public blockchain networks.
Many prototypes use either private/permissioned blockchains or simply do not address
the cost model.

User adoption and human factors are not deeply studied in the technical literature. We
can deduce that if technicians and managers are to use a blockchain-based DApp, it must
be user-friendly and clearly superior to their current tools (CMMS, etc.). While the tech-
nical benefits are documented, we don’t see studies on user acceptance or training. This
is a shortfall that suggests future research (and indeed our thesis) should consider the
end-user perspective: building a system that not only functions technically but also aligns
with how people can and want to work.

Identified Gaps in the Literature: Based on the analysis, the following gaps have
been identified:

o Lack of Fully Integrated Prototypes: As mentioned, no existing work appears
to deliver a complete DApp that integrates a 3D BIM model interface with blockchain
smart contracts to manage maintenance tasks in a real-world scenario. We see
BIM-blockchain integration in theory, IoT—blockchain prototypes in isolation, and
smart contract automation for discrete processes, but a holistic system combining
all these (a true end-to-end maintenance management DApp) is missing. In other
words, there’s a gap between concept and reality, few if any studies demonstrate a
maintainer clicking on a BIM model, creating a blockchain-backed work order, and
then updating the BIM model based on blockchain records all in one pipeline. This is
precisely the kind of demonstration needed to validate the viability of the integrated
approach.

o User-Centric Evaluation: The current state of the art lacks evaluation of these
systems in practice, for example pilot deployments in a facility management depart-
ment or feedback from facility managers. Most works validate on technical criteria
(does it work? is it faster? more secure?) but not on organizational criteria (does
it fit existing workflows? improve user satisfaction? require regulatory changes?).
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This gap means it’s not yet proven how blockchain maintenance systems perform in
the messy reality of daily operations.

o Interoperability and Standards: Another gap is the need for standards. While
not a single study can fill this, collectively the field would benefit from common data
models or protocols (perhaps extending IFC for BIM with blockchain transaction
hooks, or a standard for IoT oracles in construction). Right now, each prototype
might use its own assumptions. The absence of standards is noted as a barrier, and
future work (including this thesis as a stepping stone) should ideally contribute to
or at least be compatible with emerging standards in digital building logbooks, etc.

o Scalability and Performance in Maintenance Context: We also identify a
gap in evidence about how these systems scale in a busy maintenance environment.
For example, a skyscraper could have thousands of sensors and maintenance tickets
per year, can a blockchain handle that volume smoothly? Techniques like sharding
(cluster 1) or permissioned chains might be needed, but more data is required. Our
thesis can help fill this by measuring our prototype’s performance and discussing
how to mitigate costs (perhaps by using layer-2 solutions or permissioned networks
for internal data, etc.).

In summary, the literature has firmly established the promise of blockchain in in-
tegrated maintenance management but has yet to deliver a fully realized, widely
tested solution. The works overlap in showing what could be done and why it’s beneficial,
but they fall short of showing it all working together in practice. There is a noticeable
gap in taking these converging technologies from the conceptual and prototype stage to a
production-ready, user-accepted system.
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Chapter 3

Proposed Architecture

This chapter presents the high-level architecture of the decentralized building mainte-
nance DApp. It provides a conceptual overview of how the system’s components interact,
without going into low-level implementation or code. The goal is to describe system
design choices and how they meet the requirements of a building maintenance platform
on blockchain. Key elements of the architecture are introduced, including a React front
end with an IFC model viewer, on-chain smart contracts, and an off-chain server. The
roles of different actors (building users, maintenance technicians, and administrators) are
outlined to show how the DApp manages a maintenance workflow in a decentralized yet
efficient manner. By the end of this chapter, the reader should understand the overall
system structure and the rationale behind design decisions such as integrating both
on-chain and off-chain components and using dual identifiers (physicalld and positionld)
for assets.

3.1 Motivation and Context

One of the main motivations for implementing the maintenance Dapp is the absence of
an integrated solution that merges blockchain and BIM in a single maintenance manage-
ment framework. Blockchain is still a new technology in the costruction building field, it
started gaining attention from the industry since 2017 and most of the pubication are still
conceputal [[Elghaish et al. [2021]]. This leaves a substantial room for new applications
and deeper investigations.

Many current maintenance systems rely on central servers or third-party services, this
can lead to single points of failure problems, potential data tampering, and a lack of
transparency for stakeholders. Instead, blockchain technology delivers decentralized stor-
age alongside transaction immutability: each transaction or record is confirmed and
stored across a distributed network, reducing the possibility of unauthorized modifica-
tions. This immutable nature proves crucial for building maintenance operations because
it establishes verifiable records of faults and repair histories that act as essential evidence
in audits and disputes.

43



Proposed Architecture

Integrating smart contracts into a BIM context offers a complete new approach to
automating tasks like fault reporting, maintenance scheduling, and payment workflows.
Smart contracts removes many of the manual checks required in centralized systems and
this ensures the process is both trustless and verifiable. Given the early stage of this
combined technology stack in the literature, the present work aims to address a clear
gap, demonstrating how a decentralized application (DApp) can simplify building main-
tenance while offering higher data security, transparency, and process automation
than existing centralized platforms.

The objective of this system is to achieve an integration of a blockchain ledger with
a 3D BIM model so that building maintenance data is both trustworthy and easy to
use. User experience side, a React based interface is implemented with a 3D IFC model
viewer which ensures that non-technical users have a easy way to visualize assets, submit
fault reports, and track progress. Inside this interface, a role based access management
is enhanced with smart contracts that imposes role-based access control, ensuring only
approved users and technicians can execute certain actions. All critical events, such as
a broken asset or successful maintenance (technician side), are logged in the blockchain.
Meanwhile, an off-chain server handles non-critical data such as gas reimbursement records
to reduce on-chain costs. This architecture is designed to achieve several key requirements:

o Transparent Maintenance Logs: All major events (like broken assets, completed
repairs) are recorded on-chain to prevent tampering.

o BIM Integration: A 3D model interface allows maintenance staff to pinpoint and
manage physical assets visually.

+ Role Management: Smart contracts enforce separate permissions for unregistered
users, regular users, technicians, and administrators.

« Cost Efficiency: Off-chain storage minimizes transaction fees, and a reimbursement
mechanism compensates users who pay gas to log faults.

« Scalable/Extensible: The architecture can expand to include more advanced fea-
tures, such as automated scheduling or Al-driven analytics, without changing its
fundamental components.

In the subsequent Implementation chapter, we will examine the actual React components
that realize these ideas, along with the specific Solidity contracts, database schema, and
the data flows that make the system operational.

3.2 System Architecture Overview

In order to achieve transparent, tamper-proof maintenance logging while retaining a user-
friendly experience, this system is composed of three primary layers that together form
a hybrid decentralized application (DApp). These layers are: front-end, on-chain con-
tracts, and off-chain components. They collectively meet the goals set out in the previous
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section (e.g., transparency, cost efficiency, role-based access). Figure 3.1 illustrates how
these layers interconnect at a conceptual level. From a technical standpoint, the React
app is responsible for:

3.2.1 Front-End Client (React + IFC Viewer)

At the forefront is the user interface, which runs entirely in the browser. Built with
React, this client enables building occupants, technicians, and administrators to interact
with the system through a clear, intuitive interface. One of the key features is a fully
integrated 3D IFC (Industry Foundation Classes) model viewer, which allows a user to
visually inspect assets in their correct spatial context. For example, someone reporting
a fault can literally click on a lamp or an HVAC unit within the 3D environment, and
the application will link that click to the corresponding asset data. From a technical
standpoint, the React app is responsible for:

« Visualizing the Building: It fetches a BIM model (in IFC format) and renders it
using a library based on Three.js. This model provides immediate visual feedback
to the user, showing them exactly which floor or room they are dealing with.

« Handling User Actions: Whether someone reports a broken fixture, a technician
initiates a maintenance operation, or an admin approves payment, the React app
packages these user requests and sends them to the appropriate smart contract in
order to register them inside the blockchain for critical state changes.

o Wallet Connectivity & Metamask Integration: Since this is a decentralized
application, user authentication and transaction signing happen through Metamask.
This ensures every maintenance event or role-related action is cryptographically
signed and traceable.

In this layer, the role-based views also come into play. An unregistered user might have
minimal access with only viewing building assets or requesting registration, while a techni-
cian and admin will see richer dashboards: open tasks, pending maintenance approvals, or
administrative panels. All these role constraints are enforced at the smart-contract level,
too, but the front end implements them in the UI to keep the user experience straightfor-
ward and reduce potential errors.

3.2.2 Blockchain Smart Contracts (On-Chain Layer)

The second layer is the “On-Chain”, it represents the core decentralized logic of the
system. It is written in Solidity, these contracts store and manage crucial data structures,
such as registered building assets, reported faults, maintenance events, and user roles.
For instance, each asset might be represented in a contract with fields like an assetld,
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a positionId (location in the building), a physicalld (individual device reference), and
a status (“Operational”, “Broken”, “Under Maintenance”). When a user reports a fault
(e.g., “Broken lamp in Room 1017), the transaction updates that asset’s status, logs a
brief description of the fault, and records the reporter’s wallet address for later reference
or reimbursement. Additional contract functions allow:

* Role Management: An administrator can approve or deny a user’s request to
become a “Technician,” while the system ensures only recognized technicians can
initiate or complete maintenance.

o Payment Flows: Once a job is completed on-chain, the admin can trigger a pay-
ment from a payment manager contract loaded with funds. The same mechanism
may reimburse users for the gas fees they spent on important transactions (like re-
porting a fault), ensuring the solution is fair and cost effective for building occupants.

o Event Emissions: Whenever a fault is reported, maintenance is started, or a job is
finalized, the contract emits structured events. The events are detected real-time by
the frontend client, which triggers an immediate UI updates for all relevant parties.

3.2.3 Off-Chain Backend (Express Server + SQLite Database)

Although a large portion of the system’s logic resides on-chain, certain tasks are imprac-
tical or cost-inefficient to implement entirely via blockchain. To address those needs, this
architecture includes a minimal off-chain component, accessible via a standard REST API.
Types of data handled off-chain mainly includes:

+ Gas Fee Tracking: When a user reports a fault, they pay a small transaction fee
(gas). The front-end can log that cost with the off-chain server, so an admin can
later confirm the exact amount and reimburse it—without forcing extra complexity
on the blockchain.

« High-Volume or Large Data Storage: In this database off-chain are stored all
the raw reading from the simulated IoT sensor, because storing them directly on-
chain would be too expensive.

o Optional Integrations: If in the future the system needs to send automated no-
tifications (SMS/email) or integrate with existing corporate software, the off-chain
server can facilitate these connections. It can forward relevant on-chain events to
external services or store partial data for bridging legacy systems to the DApp.

Thanks to this design, the heavy, high frequency queries or big data storage does not
occur on the blockchain. Instead, it remains on a familiar server-based environment,
reducing the burden on end users. Meanwhile, the critical ledger of maintenance events
remains decentralized, giving the system the transparency and security that purely cen-
tralized frameworks often lack.
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Figure 3.1. System Architecture Diagram

Figure 3.1 would visually represent the three layers (front end, on-chain layer, off-chain
server) and the predictive system, along with arrows demonstrating how data flows among
them. For instance, the figure might show a building occupant or a technician on the left
interacting with the React 4+ IFC front end, which then, in one arrow path, sends
transactions to the smart contracts on Polygon for updating or retrieving asset states,

47



Proposed Architecture

and, in another arrow path, makes API calls to the Express + SQLite backend to log gas
costs or retrieve large data sets. In a textual label, you could highlight how each user role
sees a slightly different interface, but they all go through the same front-end module to
reach the underlying logic.

Placing this diagram and short description helps the reader grasp the overall solution
at a glance. They will see that:

¢« Smart contract logic ensures trust and enforces role-based policies.

« React + IFC serves as the user-facing layer, bridging building data and blockchain
calls.

« Express/SQLite complements on-chain data for cost, performance, and conve-
nience.

This structure lays the foundation for subsequent sections that detail either the workflow
(how user — technician — admin interactions proceed in a real maintenance
scenario) or deeper architectural considerations (like how assets are tagged with both
physicalld and positionld). By presenting the system in layered form, you clarify how
each piece cooperates to create a robust, scalable building maintenance DApp.

3.3 Components of the Proposed System

This section examines the architecture’s main components and describes each in detail.
Each subsection covers the role and responsibilities of one part of the system, highlighting
how it contributes to the overall DApp functionality. The focus is on what each component
does in the architecture (conceptually), and how it interfaces with other components,
rather than how to implement it in code.

3.3.1 Front-End Application (React and IFC Model Viewer)

A significant element of this system’s architecture is the front-end client, a React-based
single-page application (SPA) that mediates between building occupants, technicians, ad-
ministrators, the blockchain layer, and an off-chain server. Its design emphasizes user-
friendliness, role-based controls, and deep integration with 3D building information mod-
els.

User Interface and IFC Integration: One of the distinguishing features of this front-
end is the inclusion of a 3D IFC model viewer, which renders a digital representation
of the building directly within the browser. The Industry Foundation Classes (IFC) for-
mat is an open standard for Building Information Modeling (BIM), representing physical
and functional building data in a structured manner. By embedding an IFC viewer, the
front-end enables occupants or maintenance staff to visualize the real-world layout of a
facility: floors, rooms, structural elements, and equipment.
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When a user identifies a defective resource, for example, a flickering light or a malfunction-
ing HVAC unit—they can click on the corresponding element in the 3D model, rather
than guessing an asset ID or specifying it by textual description alone. This linking of
physical location to digital data offers a more intuitive approach, reducing errors in fault
reporting. Rather than writing “Lamp #47 in Hallway 27 the user can simply select the
lamp in the viewer, automatically capturing its unique identifiers for the maintenance
request. This integration thus increases context-awareness for maintenance tasks and en-
sures each fault is correctly associated with the right building component.

Role-Based Interface Views: The React design of the front end is heavily influenced
by the various user roles in the system: wunregistered visitors, reqular building owners,
technicians, and administrators, each of whom needs different views and functionalities.
When a user connects their crypto wallet (e.g. via MetaMask), the app queries the
blockchain to ascertain that account’s role. Based on the response:

1. Unregistered Users may only see limited options, such as the ability to request
registration.

2. Building Occupants (Regular Users) can file fault reports, check the status of
open maintenance tickets, or see a simplified asset overview.

3. Technicians gain additional panels to view and accept unassigned jobs, record
maintenance progress, and eventually mark tasks as completed.

4. Administrators can access administrative dashboards, such as pending user or
technician approvals, asset registration forms, and the ability to authorize payments
or reimbursements.

Web3 Wallet Connectivity: To maintain decentralizaion, the front end rely on user’s
blockchain wallet (e.g., MetaMask) which serves as their identity. The React application
integrates with a web3 provider library (such as Ethers.js) to handle:

o Transaction Signing: Whenever a user wants to report a fault, accept a job, or
confirm a maintenance completion, the front end prompts them to sign and broadcast
a blockchain transaction from their wallet.

« Read Calls to Smart Contracts: The app invokes read-only contract functions
to fetch data about assets, role statuses, or maintenance records. This ensures the
Ul is always displaying up-to-date information directly from the on-chain source.

Because any significant system state change triggers a blockchain transaction, the user’s
private key (in their wallet) is required for each high-level action—improving security.
The front end never sees or handles the private key, it only requests the wallet’s
signature, thus preserving the trustless nature of the application.

Communication with Backend: While the smart contracts store and manage the
core maintenance logic (asset states, fault logs, role checks), certain support data is more
economically or functionally handled off-chain. For instance, when a user reports a fault,
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the transaction itself costs some amount of gas and this cost might be reimbursable under
the organization’s policy. To facilitate that, the front-end makes an HTTP request to
an off-chain server, recording the user’s address and the exact gas fee they spent. Later,
the admin can verify and compensate them via a separate on-chain payment. Similar
back-end interactions might arise for:

« Uploading or retrieving large files (e.g., extended documentation or image attach-
ments)

o Caching IFC models or subsets for performance

« Integrating with external enterprise software (like emailing notifications or updat-
ing a corporate asset-management system)

Importantly, the blockchain remains the authoritative source of truth for everything es-
sential to maintenance records and system logic, while the off-chain server only augments
that data. Hence, losing back-end data would not compromise the system’s integrity (it
would only affect convenience features).

3.3.2 Smart Contract Layer (On-Chain Logic in Solidity)

A core part of this decentralized maintenance system is that mission-critical data
and workflows are handled by self-executing smart contracts that are on a blockchain. This
approach guarantees trust, transparency, and immutability in storing building assets, fault
reports, maintenance assignments, and payment disbursements. Rather than relying on a
proprietary or central server, the on-chain layer acts as the application’s “backend logic,”
forming a secure foundation for the entire DApp.

On-Chain Responsibilities: The smart contracts, written in Solidity, fulfill several
pivotal duties:

1. Asset Registry and State Tracking: Each building asset—whether it be a light
fixture, HVAC component, or elevator panel which is registered on-chain and linked
to relevant metadata, such as its status (“Operational,” “Broken,” “Under Mainte-
nance”), any fault descriptions, and timestamps of changes. When a user or tech-
nician interacts with an asset (e.g., reporting a fault or starting maintenance), the
contract updates the asset record accordingly and stores a tamper-proof audit trail
of events.

2. Maintenance Request Management: To initiate any maintenance process, a
user’s blockchain transaction is made, which changes the asset’s state to “Broken”.
Once under maintenance, further functions move the asset to “Under Mainte-
nance” or “Operational”, culminating in a closed loop that thoroughly records
every maintenance step.

3. Enforcing Roles and Permissions: Different participants have distinct privileges
(User, Technician, Admin). The contract ensures that only authorized technicians
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can mark maintenance tasks complete, and only an admin can approve new users,
update roles, or register brand-new assets. This on-chain role-based access ensures
that malicious or unqualified actors cannot claim or finalize maintenance tasks, nor
can they unilaterally alter a record. If the front end’s role-based Ul is circumvented,
the contract logic still blocks any disallowed functions from unauthorized addresses,
underscoring the system’s integrity.

4. Immutability and Event Logging: All status changes, fault reports, or role up-
dates are stored in the contract’s state or emitted as events. Because these actions
require blockchain transactions, they are irreversibly recorded. This property pro-
vides robust auditability, letting administrators or external auditors prove exactly
when a fault was reported, who accepted it, and when it was finished—all without
trusting a single centralized authority.

Role Management and Security: to keep the system secure in an open blockchain
environment, the contracts implement a clear role structure:

o Unregistered: A default role for addresses not yet recognized by the contract.
Typically, unregistered users can only request registration.

o User: A building occupant, allowed to create fault reports and track existing main-
tenance records.

o Technician: A verified maintenance specialist. Only addresses labeled “Techni-
ctan” are able to perform key maintenance operations on-chain, such as starting or
completing repairs.

e Admin: A privileged address or set of addresses capable of approving registrations,
removing or adding technicians, registering new assets in the system, and issuing
critical commands (e.g., final payment approvals).

The contract implements address-based authorization to verify that users attempt autho-
rized operations within their assigned domains. For instance, if a random user tries to
complete the maintenance, the contract would reject that call unless the caller is recog-
nized as a technician. This mechanism offers the security of a zero trust environment: no
matter how an attacker tries to manipulate front-end code or API calls, the final on-chain
logic stands firm, disallowing any role-violating actions.

Maintenance Workflow Logic: The on-chain system provides all the key steps needed
to reflect real-world maintenance processes. In practice, these steps often align with the
workflow described in Section 3.4 but from the contract’s perspective:

1. Report Fault: A user transaction reports the fault within the asset with a message
for the technician/admin. The contract updates the asset’s status to “Broken,” logs
the reporter’s address, sets a time/date stamp, and emits an event (e.g., fault has
been reported).
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2. Start Maintenance: A technician that comes in the building start the mainte-
nance in the Web Application, switching the asset to “Under Maintenance,” setting
the assigned technician’s address, and possibly storing initial commentary or a start
timestamp.

3. Complete Maintenance: When the technician is done, they complete the main-
tenance for that asset with the transaction. The contract sets the status to “Oper-
ational” and logs the completion details.

4. Verification/Payment: I dedided not to make this step automatic, so the admin
approves the maintenance done by the technician and finalyze the process by trig-
gering the payment contract. This final step is optional in some designs if immediate
payment is not required, but it’s typical in an escrow scenario.

Because these transitions all require blockchain transactions, they leave a permanent
record of the building’s maintenance timeline. Anyone can query the chain (via, e.g.,
Ethers.js or blockchain explorers) to see the complete history for a particular asset, rein-
forcing system transparency.

Payment and Incentives via Smart Contracts: One of the system’s distinctive
features is that technicians’ compensation can be managed by a dedicated payment
contract or an integrated module within the main maintenance contract. The chosen
approach depends on how one wishes to organize logic, but the essential idea is:

o Escrowed Funds: An admin or building manager can deposit a certain quantity of
POL (Polygon’s native token) into the payment contract.

» Conditional Release: Once the technician completes a job and the admin validates
it (on-chain), the contract automatically transfers the agreed-upon fee to the techni-
cian’s address. Optionally, the same contract can reimburse the fault reporter’s gas
fee.

o Transparency: All transfers are public, allowing building owners to see exactly
how much is spent on maintenance each time and allowing technicians to track their
verified payouts confidently.

This blockchain-based payment flow removes the need for an external accounting or
invoice system to settle bills. Provided the contract is properly tested and has enough
balance, technicians know their compensation is guaranteed without manual overhead or
potential disputes.

Network Deployment (Sepolia Testnet and Polygon Testnet): In practice, these
contracts were first deployed on Ethereum Sepolia testnet to allow safe trial runs
without incurring real world fees or risking production data. After verifying correctness,
the final code was migrated to Polygon Mainet, known for:
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o Lower Transaction Fees: On Polygon, typical gas fees are only a fraction of the
cost on Ethereum mainnet, enabling frequent updates (e.g. multiple daily fault
reports or asset updates) without prohibitive expenses.

o Faster Block Times: Confirmations are generally quicker, improving user experi-
ence (no long waits to confirm a fault report).

« EVM Compatibility: Code written for Ethereum works on Polygon with minimal
changes, significantly easing deployment and maintenance.

o Security via Ethereum Anchoring: Polygon periodically commits checkpoints to the
Ethereum chain, leveraging mainnet security for its sidechain consensus.

This deployment choice underscores a real world architectural trade off: a strongly de-
centralized, trustworthy solution must remain cost-effective for practical usage. Polygon’s
environment meets both functional and economic needs, making it well-suited for an ap-
plication that might see many small value transactions.

3.3.3 Off-Chain Backend (Express.js Server and SQLite Database)

While the primary logic and state are on-chain, the architecture includes a support-
ing off-chain backend component. This subsection describes why an off-chain server is
used and what role it plays in the overall system. Key points to cover:

Rationale for Off-Chain Components: Clarify that not all aspects of an applica-
tion are efficient to handle on a blockchain. Some data might be too large, change too
frequently, or be auxiliary (not worth the cost of on-chain storage). The off-chain backend
in our architecture addresses these needs by handling complementary tasks that aug-
ment the on-chain functionality. It’s important to note that this does not re-centralize the
core of the application, instead, it is a purposeful design to achieve a hybrid architec-
ture where the blockchain is used where it adds value (trust, integrity) and conventional
server/database is used for everything else (performance, cost savings).

Express Server and REST API: The backend is built with Express.js (a Node.js
framework) and provides a RESTful API that the front-end can call. Describe how the
front end might send HTTP requests to this server for certain operations. For example, one
implemented feature is tracking the gas costs that users spend when they report faults.
When a user submits a maintenance request (which costs a small amount of cryptocur-
rency as transaction fee), the front end can record this cost by calling an API endpoint on
the Express server. The server will store that information in its SQLite database. This
way, the system can later retrieve it (e.g., when an admin is ready to reimburse the user’s
gas fee via the smart contract, they can query the backend for how much the user spent).
By using a simple REST API, the integration between the front-end and this backend is
straightforward, and it allows capturing useful data without putting it on-chain (since
recording every gas fee on-chain would ironically cost more gas).
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SQLite Database for Lightweight Data: Explain that the backend uses a lightweight
file-based database (SQLite) to persist the data it manages. The data stored is relatively
small and specific. Emphasize that this database is not a source of truth for mainte-
nance status, it only holds supplemental information. All critical state (like whether an
asset is broken or fixed, or who the technician is) lives on the blockchain. The SQLite just
helps with things like tracking usage metrics, gas maintenance track and the predictive
maintenance log data.

Security and Trust Considerations: Since we introduce an off-chain element, ad-
dress how we maintain trust. Note that the data kept off-chain is either non-critical or
is cross-validated with on-chain data. For instance, if the backend suggests reimbursing
a certain gas cost to a user, the admin will still cross-check that a legitimate fault report
transaction exists on-chain for that user/asset before actually approving reimbursement.
The architecture deliberately keeps the authoritative data on-chain to avoid any sin-
gle point of failure or tampering on the server. Additionally, because the backend is not
involved in core decision-making (it cannot, for example, change an asset’s status, only
the contract can do that), the worst-case impact of a backend failure is limited to some
convenience features, not the integrity of the maintenance process.

3.4 Workflow of Maintenance Operations

After describing the static components of the system, this section focuses on the dynamic
behavior: how the different actors interact with the system through a sequence of steps
to accomplish building maintenance tasks. We provide a conceptual flow of actions from
the moment a maintenance issue is identified to the resolution and payment. A flowchart
(Figure 3.2) will accompany this explanation, illustrating the interactions among a User,
a Technician, and an Admin through the DApp. Also, a BIM model of the building used
in this DApp is shown in Figure 3.3. The flowchart should depict the key stages (reporting
a fault, performing maintenance, and payment authorization) and how information and
control passes between the actors and the system components (front end, smart contract,
etc.). Below is a narrative (and step-by-step breakdown) of the maintenance process:
Figure 3.2 Maintenance Interaction Flow. This diagram will show the sequence of actions
and decisions in the system. For instance, it can be drawn as a diagram with four lanes
for User, Technician. Admin and Smart Contract. Arrows will indicate actions like “User
submits fault report” going to the smart contract, and then “Technician receives task” and
so on. Ensure the figure captures the logic that only valid role players can perform certain
actions (e.g., only technician can complete the task, only admin can approve payment).
In the text, each major step in the flow is described.

User Identifies a Fault & Reports It: The process begins when a building occu-
pant (in the role of User) encounters a maintenance issue (for example, a broken light
or malfunctioning equipment). Using the DApp front-end, the user selects the affected
asset. They do this by clicking on the asset’s location in the IFC model viewer (which
provides the asset’s unique identifiers to the system). The user then fills in a fault report
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Figure 3.2. Workflow Diagram

form describing the issue (fault type, notes) and submits it. When the user submits,
the front end triggers a smart contract transaction (calling the function to report a
fault for that asset). The smart contract logs this fault: it updates the asset’s status to
“Broken” (or an equivalent status indicating it needs maintenance) and records the fault
details along with the reporter’s address. An event (FaultReported) is emitted on-chain,
which can be picked up by the interface to confirm the action. The user’s interface now
shows that the fault has been reported successfully. (If applicable, mention that at this
point the front end also calls the backend to record the gas cost of this transaction for
potential reimbursement, as a behind-the-scenes step.) From the user’s perspective, their
job is done until the issue is fixed; they can later check on status updates through the
app. All the relative graphic implementation is shown in Figure 3.4.

Task Creation & Technician Awareness: Once reported, the maintenance issue be-
comes visible to those in the Technician role. Describe how the system makes technicians
aware of new faults. Each technician using the DApp can see a list of open maintenance
jobs awaiting attention. The architecture allows a technician to self-assign a task. In
our implementation, any authorized technician can choose to handle the task, the first to
respond will effectively get it, as they will initiate maintenance in the next step. This is a
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Figure 3.3. Building

design choice to keep the system decentralized and flexible, avoiding the need for manual
assignment by admin in every case.

Technician Starts Maintenance: A technician decides to address the reported fault.
Through the front-end, the technician selects the task (the specific asset fault) and initi-
ates the maintenance process. This triggers another smart contract transaction, such as a
“start maintenance” function for that asset. The contract will change the asset’s status to
“Under Maintenance” and record the technician’s address as the one responsible for this
job, Figure 3.5. It may also timestamp the start of the maintenance. This on-chain update
prevents other technicians from also starting the same job (ensuring one technician per
task) and provides accountability (we now know on-chain who is handling the issue). The
DApp’s Ul can update in real time, for example: the asset changes to a different status
in the model (e.g., Under Maintenance), and other technicians’ interfaces will show that
this task is no longer available. Also, users they see a status update (“Technician XYZ
is fixing the issue”) when they check the app, providing transparency that their request
is being handled. Also, both technician and admin can see all the asset registered in the
blockchain with the relative "Locate" button to locate assets in the building, this is shown
in Figure 3.6.
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Asset Info

Asset ID Transaction request

Request from & HTTP localhost:3000
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Floor
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Max fee
Room
1

Actions

Fault Description Confirm

Figure 3.4. User Report Fault

Maintenance Work Performed (Off-Chain Human Step): At this point, the tech-
nician actually performs the required maintenance in the real world (this is outside the
digital system, e.g., replacing the light bulb or repairing the equipment). While this phys-
ical work is being done, the DApp might not have much activity, but it’s worth noting in
the flow that the system can allow the technician to input some details. For example, if
the maintenance requires replacing a part, the technician might prepare to input a new
physicalld for the asset (since the physical device could have changed, see Section 3.5.1
on asset identification). The technician might also have a place to add comments about
the maintenance done. These details, if any, would be submitted in the next step when
closing the task.

Technician Completes Maintenance: After fixing the issue, the technician uses the
DApp to mark the maintenance as completed. They may enter notes about what was done
(e.g., “replaced broken part, tested working”) and, if a part was replaced, provide the new
physicalld of the asset now in place. When the technician submits this, a transaction
to the smart contract is executed to mark completion. In Figure 3.7 we can see the
technician sumbitting the task of completing the maintenance for a certain asset. The
contract will update the asset’s status back to “Operational” (or equivalent) and record
the maintenance completion details: who the technician was, what time it finished, and
any metadata (like the old vs new physicalld and technician’s comment) in a maintenance
record. Also, crucially, this action flags that this maintenance task is now awaiting
approval/payment. In the contract’s data model, there might be a record indicating
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Figure 3.6. Locating Fault

“maintenance done, pending admin confirmation/payment” along with a suggested pay-
ment amount (if the technician is to be paid, they might input an expected cost or it’s
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predetermined). At this stage, the heavy lifting by the technician is done. The system
now has a logged record of a completed maintenance action, but payment is not released
yet and it’s awaiting the admin’s review.
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Figure 3.7. Technician completed maintenance

Administrator Verification & Payment Authorization: The final part of the work-
flow involves the Admin (e.g., building manager or owner) reviewing the completed main-
tenance. The admin will have an interface in the DApp showing all tasks that have been
completed by technicians and are pending approval. The admin checks the details (they
might verify on-site that the issue is resolved, or simply rely on the technician’s report and
maybe user feedback). Once satisfied, the admin authorizes the payment by entering the
approved amount (or confirming the suggested amount) and confirming the task. This
triggers the last important smart contract transaction, the one responsible to pay the
technician for the job done. The smart contract, upon this call, will transfer the payment
to the technician’s address from the on-chain funds. Moreover, the architecture includes
reimbursing the user’s reporting cost (as we have designed), and the contract will also
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refund the user’s gas cost at this point, sending a small amount back to the user’s ad-
dress. After executing the payments, the contract marks the task’s record as closed/paid.
This completes the on-chain workflow for the maintenance request. Figure 3.8 shows the
interface for releasing funds held by the smart contract.

Payment Manager

Contract Balance: 0.119890363319199101 POL

Refresh Balance

Deposit Amount (POL)

Pending Maintenance Payments

Asset #0 — Technician: 0xDb8AB06aD7 1485bF331700e9870624BdcF10EFE2
Address to Reimburse: 0xe115B3335d6beFac13eb4eb198187218d98352CT

Gas Cost: 0.001908695100131182 POL
Payment (POL})

05

Pay

Figure 3.8.  Admin pays technician

After enumerating these steps, tie them together in a concluding paragraph for this section.
Emphasize how the flowchart (Figure 3.2) captures these interactions: the user, techni-
cian, and admin each interact via the front-end to invoke on-chain transactions that drive
the process. The smart contracts orchestrate state changes and enforce rules at each step,
while the front-end and (occasionally) the backend coordinate to provide a smooth user
experience (such as updating status in real-time, etc.). This workflow demonstrates the
end-to-end operation of the DApp, showing how a real-world maintenance procedure
is translated into a series of digital interactions that ensure accountability, transparency,
and automation (e.g., automatic payment) through the proposed architecture.

3.5 Key Design Decisions and Considerations

In designing this architecture, several important decisions were made to meet the project’s
goals and to address challenges unique to building maintenance in a decentralized context.
This section highlights two key design considerations: the strategy for uniquely identi-
fying building assets (to tie physical equipment to the digital system) and the choice of
platforms/technology for deployment. These decisions significantly influenced the archi-
tecture’s effectiveness and are discussed here at a conceptual level to justify why they
were taken.
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3.5.1 Asset Identification Scheme: physicalld & positionld

One notable design choice in the system is the use of two distinct identifiers for each asset
in the building: a physicalld and a positionld. This subsection explains the reasoning
behind this dual-ID scheme and how it is reflected in the architecture (without going into
code specifics).

Definition of the IDs: Clarify what each identifier represents. The physicalld is
an identifier for the actual physical device or component. It could be a serial number, a
manufacturer ID, or any tag that uniquely marks that piece of equipment. For example,
a specific fire extinguisher or a lamp might have a physicalld like “Lamp ABC123”. On
the other hand, the positionld denotes the asset’s location or position within the build-
ing’s context. This is a stable identifier tied to where the asset is installed, for instance,
“Floor2_Room10_LampSpot#1” might indicate the light fixture in Room 10 on Floor
2, position 1. In the context of an IFC model, the positionld could relate to the BIM
hierarchy (building > floor > room > spot) or even correspond to an IFC element GUID
if that element’s placement is fixed. Essentially, positionld encodes where the asset is,
while physicalld encodes what the asset is as an individual unit.

Motivation for Dual Identifiers: Discuss why a single identifier was not sufficient.
In building maintenance, assets can be moved, replaced, or swapped over time. If we only
used a physicalld, tracking an asset’s history would become confusing when that device
is replaced with a new unit — the new device would have a different physicalld, breaking
the historical continuity if we tried to attach it to the same record. Conversely, if we
only used a location-based identifier (positionld), different physical units occupying that
location over the years would be conflated as one “asset,” which could obscure the fact
that a new device with potentially different properties is now in place. By using both:

e The positionld provides continuity in the maintenance log for a given
location in the building. No matter how many times a component is replaced at
that spot, all maintenance records for that location can be aggregated, which is
useful for facilities management (e.g., “this particular light socket has had 3 bulbs
replaced in 2 years”).

o The physicalld allows differentiation of individual units. Maintenance records
can explicitly note that a physical device with ID X was removed/replaced on a
certain date and a new device Y installed. This is crucial for asset inventory and
warranty tracking (e.g., “Chiller unit serial #SN1001 was installed in the rooftop
location replacing #SN1000, which failed” — now if #SN1001 fails, you know it’s a
different unit with its own warranty).

Architectural Role of Each ID: Explain how these IDs are used in the system archi-
tecture. The smart contract (asset registry) stores both identifiers for each asset, treating
them as part of the asset’s metadata. When a user reports a fault via the front-end’s IFC
model, the system likely uses the position-based info (from the model selection) to identify
which asset record to update. The physicalld might be displayed to admins/technicians
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so they know exactly which device they’re dealing with (especially if the device has a la-
bel). When technicians complete maintenance, if they replaced the device, they update the
physicalld in the contract for that asset’s record, while the positionld remains the same
(because the location in the building hasn’t changed). This way, the architecture cleanly
separates the concept of “asset identity” into two layers: physical identity and spatial
identity. Both are needed for a comprehensive maintenance system. The front-end’s
design also reflects this: it can highlight assets in the 3D model via positionld/globalld
(for spatial context) while showing the physicalld in information panels for clarity about
the equipment piece.

Benefits of the Dual-ID Approach: Summarize why this design improves the sys-
tem. It enhances data consistency and historical traceability. For example, if a
trend shows that every summer the AC unit in Room 301 fails, that is tied to posi-
tionld (the location) — perhaps that room has high usage or some environmental issue.
Meanwhile, if a particular pump (physicalld) fails wherever it is installed, tracking by
physicalld helps identify a faulty batch or model of equipment. In terms of architecture,
this means our system can answer different queries: “What maintenance has been done in
this location?” versus “What maintenance has been done on this particular device across
locations?”, which is powerful for a facility manager. Another benefit is during initial
asset registration: having both IDs forces the data model to capture installation info
(position) and device info separately, which is aligned with BIM practices. The positionld
usually doesn’t change unless you physically relocate the asset, which typically would be
a new maintenance event itself.

Comparison to Alternatives: Optionally, mention what it would look like if only
one ID were used, to reinforce the point. If only a physicalld were used, once device
ABC123 is replaced by XYZ789, the system might treat it as a completely different asset
with no link to past records at that site. If only a positionld were used, replacing a device
would overwrite or merge details, potentially losing the fact that it’s a new physical unit.
Neither scenario is ideal for a long-term maintenance log. Thus, the dual identifier scheme
is a deliberate architectural decision to model the reality of building maintenance more
accurately.

With this asset identification scheme, we demonstrate how the architecture is customized
for building management through its asset identification system. By implementing this
approach we obtain a more resilient system which manages physical environment changes
efficiently though it adds some complexity to the data model. It exemplifies the thought
process of aligning the DApp’s design with real-world requirements, which is critical in
an academic project of this nature.

3.5.2 Platform and Deployment Considerations

Another important aspect of the architecture is the choice of technology platforms and how
the system is deployed. This subsection briefly discusses decisions around the blockchain
network and other technology choices that impact the architecture:
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Choice of Blockchain Network: Reiterate that the DApp was developed and tested
on Ethereum Sepolia (testnet) and then deployed to Polygon Testnet Amoy for
testing use. The decision to use Polygon was strategic: Polygon is known for its scalability
and low fees, which aligns with the need for frequent transactions in a maintenance sys-
tem (reporting issues, status updates, payments, etc.) without incurring high costs. From
an architectural standpoint, Polygon being EVM-compatible means we could write the
smart contracts in Solidity once and use them on both networks with minimal changes.
The architecture remains blockchain-agnostic to some extent (it could run on any EVM
network), but choosing Polygon ensures the system is economically feasible to run.
The decision showcases understanding of the operational reality which building main-
tenance often includes numerous small transactions, a high fee environment like Ethereum
mainnet could discourage usage, whereas Polygon’s environment encourages active par-
ticipation by users and IoT devices alike.

Off-Chain Tech Stack Choice: Note the simplicity of the off-chain stack, Express.js
and SQLite. This was a deliberate choice for ease of deployment and because the off-chain
needs were lightweight. SQLite, being a file-based DB, removes the need for managing
a separate database server, which fits the scale of this project. If in the future the off-
chain component grew (more data or more concurrent use), one could switch to a larger
database (like PostgreSQL) or a more robust server framework. However, architecturally,
keeping the off-chain part minimal ensures the focus remains on the blockchain part for
critical functions. It’s also easier to maintain and can be run on modest infrastructure
(even a small cloud VM or a Raspberry Pi, for example, could host the Express server for
a pilot installation).

Integration of BIM (IFC) Technology: Including an IFC model viewer in the front-
end was a design decision to leverage existing building data for maintenance. This required
choosing a suitable IFC viewing library and ensuring the front end could handle render-
ing a potentially complex 3D model in the browser. The architectural consideration here
was that the front-end needed to handle potentially heavy graphical content.
This influenced using React (which can integrate with Three.js through IFC libraries)
and making sure the user’s device does some processing. It’s worth noting that using IFC
ties the system to having IFC model data available. In practice, that means initial setup
of the DApp for a building would involve loading the building’s IFC file into the viewer.
The design expects that as an input, which is fine for our context. This decision roots
the maintenance system deeply in the building’s digital twin, providing a richer context
than a traditional maintenance ticket system. From an academic perspective, it shows an
interdisciplinary approach (combining BIM with blockchain).
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Chapter 4

Implementation and
Development

4.1 Introduction to the Implementation

In this chapter, we present the implementation of the proposed architecture. The system
was realized as a decentralized web application with a layered structure, composed of a
React front end, smart contracts deployed on a blockchain network, and an Express-based
off-chain server. The overall structure is illustrated in Figure 4.1.

4.2 Development Tools and Environment

The development of this decentralized application (DApp) leveraged a modern web and
blockchain tech stack. The smart contracts are written in Solidity (version 0.8.28) for ex-
ecution on the Ethereum compatible blockchain, in our case Polygon. The frontend client
is built in JavaScript using React, a popular library for building user interfaces [React]).
React enables a single-page application (SPA) architecture with dynamic components
and state management on the client side. On the server side, Node.js (JavaScript run-
time) is used with Express.js, which is a fast and minimalist web framework for Node
that provides a robust set of features for building web applications and APIs [Express].
The Express server interacts with an SQLite database for lightweight storage, offering a
file-based relational database suitable for prototyping and low to moderate data volumes.
The overall project is thus hybrid: Solidity for on-chain logic, and JavaScript/Node for
off-chain and client logic.

Development and Blockchain Tools: For blockchain development, the project uses
Hardhat, a development environment for Ethereum that streamlines compilation, testing,
and deployment of smart contracts [hardhat]. Hardhat enables running a local Ethereum
node for testing and includes plugin support (e.g., for Ethers.js library integration) to
manage contract interactions. The Ethers.js library is used both in scripts and in the

65



Implementation and Development

User Roles
.

- ' - f
KUnregistered User] LBuildingOccupant] { Technician ] L Administrator ] loTSensors(simulateca

HTTP(s) + Metamask HTTP(s) + Metamask
(Ul Interactions) (Ul Interactions) TTP(s) + Metj.amask :
HTTP(s) + Metamask (Ul Interactions) Sensor readings
(Ul access & registration :
requests
React Front-End SPA
- Web Ul (Role-based View) A4
- 3D IFC Model Viewer Predictive Maintenance Service
- Web3.js/Ethers integration
- Event Listener (WebSockets) Web3 tx
= -reportFault
Web3 (Transactions & Calls) \ -storePredictiveHash

Direct DB writeing

EWebS Events (via WebSocket) ( dings)
SeNsor readings

i- FaultReported,

-register assets
-reportFault

-start/completeMaintenance MaintenanceStarted, HTTP REST API
-role requests/approval ete.
-confirmPayment, etc. : B -GET/DELETE /gasCosts
Off-chain Backend
AssetManager Contract § Express.js Server (Node.js)
calls transfer 5QL queries
:(payTech reimburse)
L

SQLite DB
(GasCost, SensorReadings)

PaymentManager Contract

Figure 4.1. Diagram Dapp

React front-end for communicating with the Ethereum network (to deploy contracts, call
functions, listen to events, etc.). During development, MetaMask was used as the in-
browser wallet to manage accounts and sign transactions from the React app. For version
control and project organization, the codebase is structured as a monorepo with separate
sections for frontend, contracts, and backend. The repository structure is organized
into folders such as /contracts (Solidity sources and Hardhat config), /frontend (React
application source code), and /backend (Express server and database files). This sepa-
ration aligns with the three-tier architecture of the system (client, on-chain, off-chain).
The project also utilizes configuration files for environment-specific settings: for example,
a .env file or config module holds network URLs (e.g., Infura endpoints for Polygon),
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contract addresses after deployment, and private keys (kept out of source code) for de-
ployment.

Environment and Version Info: The smart contracts were developed and tested on
Ethereum’s Sepolia test network initially, then migrated to Polygon Amoy (an Ethereum
Layer2 testnet) for testing. Polygon was chosen due to its EVM-compatibility and low
transaction costs, providing faster and cheaper transactions compared to Ethereum main-
net [Crypto.com [2025]]. The front-end uses React 18 with modern React Hooks (for state
and effects) and the interface is styled with Material-UI (MUTI), a component library
that accelerates Ul development. The IFC model viewer relies on Three.js, a JavaScript
3D engine, via a specialized IFC viewing library. Three.js is a powerful webGL-based
library for rendering 3D graphics in the browser [SourceForge [2025]], and the IFC com-
ponent library (@Qthatopen/components, part of the IFC.js toolkit) builds on Three.js
to provide BIM-specific functionality [ThatOpen|. The Node/Express server was run on
Node.js v16 LTS during development, and SQLite3 was used as the database engine (no
separate DB server needed). In summary, the environment consisted of Node.js (for run-
ning development scripts, backend, and build tools), Hardhat for blockchain development,
and React/Webpack for the front-end development server. All components were developed
on a Linux environment, with cross-platform compatibility (the Node and browser-based
components are OS-agnostic).

Development Workflow: We utilized Hardhat for compiling smart contracts and run-
ning tests locally. Hardhat’s testing environment allows for Solidity tests, ensuring the
AssetManager and PaymentManager contracts behaved correctly before deployment. The
React app was bootstrapped with Create React App, providing a convenient development
server with hot-reloading to iterate on the user interface. The development tools also
included browser devtools for debugging the React app and MetaMask interactions, and
Hardhat’s console for directly invoking contract calls when needed. Source code man-
agement was done with Git, and project dependencies were managed via npm (Node’s
package manager). Tables from 4.2 to 4.6 provide a summary of the key tools, libraries,
and their versions used in the implementation.

4.3 Front-End Implementation (React 4+ IFC Viewer)

The front-end is a React single-page application that serves as the user-facing layer for
all interactions. It was designed to be intuitive for non-technical building occupants, while
still providing advanced functionality for technicians and administrators. The interface
is organized around a 3D Building Model Viewer and context-aware panels for asset
information and actions. One of the distinguishing features is the integration of a 3D
IFC model viewer (IFC = Industry Foundation Classes). IFC is an open standard for
representing building information models, containing data about building components in
a software-neutral [Ren and Zhang [2020]]. The frontend’s IFC viewer functionality al-
lows users to explore the building visually while they can interact with building elements
in components in their spatial context. For example, a user can rotate and zoom into
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Blockchain Interaction and Deployment

Tool/Library Version Role in Project

transactions (front-end + Node).

Ethers.js 6.13.5 Library for calling smart contracts, signing

Web3.js 4.16.0 Alternative JS library for Ethereum (included
for compatibility).

(user side).

MetaMask - Browser wallet used for signing transactions

Infura v3 API Cloud node provider (RPC, WSS endpoints)
for Polygon/Ethereum networks.

DApp’s contracts are deployed.

Polygon - EVM-compatible sidechain on which the

Table 4.1. Tools enabling blockchain calls, user authentication, and Polygon deployment.

the virtual building model and click on a specific asset (like a lamp or an HVAC unit) to
select it. This triggers the display of that asset’s details and relevant maintenance options.

Layout and Components: The React app uses a responsive layout with a top nav-
igation bar and a main content area. The top bar includes the application title and a
WalletConnector component (displayed as a user account icon) for managing blockchain
wallet connection and user identity. The main content area is split between the 3D model
view and various overlay panels or lists that appear based on user interactions and role.
Key React components include the following components. Table 4.2 lists all the libraries

Front-End Tools

Tool /Library Version Role in Project

React 18.2.0 Main front-end JS library for SPA, providing
a component-based architecture.

Material-UI (MUTI) 6.4.5 UI component framework for React, offering
pre-styled elements and layout utilities.

Emotion (CSS-in-JS) | 11.14.0 Styling library (used with MUI) for writing

CSS within JavaScript.

React-based single-page application.

Create React App 5.0.1 Toolchain to bootstrap and configure the

Table 4.2. Key libraries and versions used for the front-end (React) implementation.

and frameworks used in the front-end of the DApp, along with their version numbers.
IFCViewer is a custom component encapsulating the IFC model rendering. It utilizes
the IFC.js (Open BIM Components) library to load a .ifc model file of the building and
render it with Three.js. In different words, this sets up a Three.js scene, camera, and
controls, then parses the IFC geometry and properties. The IFCViewer component also
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implements picking logic: using Three.js raycasting, it detects when the user double-clicks
on an object in the scene and maps that to a specific building element. The IFC model pro-
vides each element’s unique Globalld (an IFC-assigned UUID for the object). The viewer
retrieves the Globalld of the clicked element and calls an onObjectSelected callback with
that ID. This allows the rest of the app to identify which asset (if any) corresponds to the
selected model object.

The integration of the 3D BIM model allows users to select an asset in the building’s

BIM Model (IFC)
User selects component
(Globalld identified)

Selected object metadata

React Front-End
Extracts metadata
(Globalld, position, expressID)

registerAsset call
with metadata

Smart Contract
(registerAsset function)

Asset stored on-chain

h 4

Blockchain Asset Registry
Stores: Globalld, positionld,
physycalld, ...

Figure 4.2. TFC to Blockchain

digital representation and trigger an on-chain registration. As shown in Figure 77, the
system extracts metadata such as Globalld, positionld, and physicalld from the selected
IFC element and submits it via a blockchain transaction to the AssetManager contract.

The use of this BIM viewer fulfills the goal of an intuitive, visual interface application
and users can see the facility virtually and select assets by location rather than by cryptic
IDs. The IFC viewer is powered by an open-source BIM toolkit built on Three.js, which
provides ready-made tools for viewing and interacting with IFC models in the browser
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[ThatOpen [2025]]. This integration demonstrates how a complex BIM model (which
might be tens of thousands of polygons and many object metadata) can be handled on
the client side and linked to blockchain records.

BIM Visualization Tools

Tool /Library Version Role in Project

@thatopen/components | 2.4.5 IFC-based library enabling a 3D viewer inside
React, linking building elements to data.

O@thatopen/fragments | 2.4.0 3D features on top of Three.js for parsing and
rendering IFC geometry.

Three.js 0.160.1 Core WebGL library used to render the IFC
model in the browser.

web-ifc 0.0.66 Parser that reads IFC files in the browser, ex-
posing building element data to React.

Table 4.3. Key libraries for IFC-based BIM integration and 3D visualization.

FloatingAssetPanel is a component that appears when an IFC object is selected. This
is a floating info panel (rendered as a Material-UI Paper) positioned near the cursor, show-
ing details and actions for the selected asset. It displays the asset’s name, ID, current
status (with color-coded text: e.g., green for Operational, red for Broken and yellow for
Under Maintenance), and other metadata such as location (building, floor, room) and
any model identifiers (like the IFC Globalld and a physical tag ID). If the selected object
does not correspond to any known asset on the blockchain, the panel indicates “No linked
asset found on-chain,” meaning that element is not managed by our maintenance system.
For linked assets, the panel provides context-specific actions:

o For a regular user (building occupant) viewing an operational asset, the panel

allows them to report a fault. There is a text field to describe the issue (fault de-
scription) and a "Report Fault" button. This triggers a transaction via Ethers.js to
call the AssetManager.reportFault(assetld, description) function on the blockchain.
On success, the Ul will update the asset’s status to Broken. The use of a visual
click on the model to report a fault makes it easy for non-technical users to precisely
identify the asset because they don’t need to know any database IDs since the system
automatically links the model’s Globalld to the on-chain asset ID.

For a technician, if the asset is in Broken status, the panel will show a “Start
Maintenance” button (and an optional text field to add a comment about the
maintenance start). This calls the startMaintenance(assetld, comment) function in
the contract, changing the asset’s status to Under Maintenance and logging the
start time and technician info. Omnce an asset is under maintenance and being
viewed by the assigned technician, the panel then provides a “Complete Mainte-
nance” button (with a field for an end comment). Clicking this calls completeMain-
tenance(assetld, comment) on-chain, which marks the maintenance as completed
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(asset status back to Operational) and internally flags the task as pending admin
approval for payment. Technicians also have an option to input if they replaced
a physical component: the panel includes a field to record a new physicalld and
a button to submit replacePhysicalltem(assetld, newld) to the contract (this up-
dates metadata like serial numbers in case the maintenance involved swapping out
hardware).

o For an administrator, the FloatingAssetPanel might show administrative overrides
such as the ability to cancel a reported fault. For instance, if a fault was reported
erroneously or has been addressed outside the system, the admin can input a reason
and click “Cancel Fault”, which invokes the cancelFault(assetld, reason) function.
This returns the asset status to Operational and emits an event so everyone is aware
the fault case was closed. The panel consolidates asset information and actions in
one place, improving the UX by providing immediate feedback and available actions
in context.

AssetList is a component that lists all registered assets in a table form. This is primarily
used by technicians and admins for an overview of assets and their statuses. The table
displays columns such as Asset ID, Category (equipment type), Location (building-floor-
room), Status, and assigned Technician (if under maintenance). For each asset in the
list, context-specific action buttons are provided similar to the floating panel: e.g., an
admin or technician viewing the list can also initiate or complete maintenance from here.
Regular users (occupants) don’t see this component since they interact through the 3D
model instead. The AssetList is mainly shown to Technician and Admin roles (in fact,
in our implementation it is rendered only if the user’s role is Technician or Admin). This
design choice was made to simplify the interface for end users, while giving power-users
(tech/admin) a more direct tabular interface in addition to the 3D view. Each row in the
AssetList also has a “View History” toggle. If expanded, it fetches the maintenance his-
tory for that asset (via AssetManager.getMaintenanceHistory(assetld) which returns an
array of past maintenance records) and displays a list of past maintenance events (dates,
technician, summary of actions).

WalletConnector is a component that manages user authentication and role. It ap-
pears as an icon (account avatar) in the top bar. When clicked, it opens a menu for
the user to connect/disconnect their Ethereum wallet (MetaMask). Upon connecting, the
DApp obtains the user’s blockchain address and queries the AssetManager contract for
that address’s assigned role (by calling a getRole(address) view function). Based on the
returned numeric code (0=Unregistered, 1=User, 2=Technician, 3=Admin), the front-end
adjusts what the user can see and do. The WalletConnector also allows unregistered users
to register as a User. If the contract indicates the address is not registered, an option
“Register as User” is shown. Clicking it will send a transaction calling requestUser-
Registration() on the contract, thereby adding the user to the pending registration list.
The UI then indicates the registration is pending admin approval. Similarly, if the user
is already a registered User, the menu will offer “Request Technician Role” (unless
they have already requested it). This calls requestTechnicianRole() on-chain. By using
on-chain role data and transactions for role changes, the front-end ensures that role-based
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access control is enforced by the smart contract, not just by the UIL. However, the Ul
gives helpful prompts and hides unauthorized buttons. For example, if you are logged
in as a Technician, you won'’t even see the admin-only controls in the interface (they are
conditionally rendered only for role=Admin). This prevents accidental usage and guides
the workflow.

AdminActions is this is a component shown only to administrator accounts (role=Admin).
It presents an interface for all administrative functions in an organized manner (using
Material-UI Accordions to group sections). The sections include: User and Technician
Approvals, Asset Registration, Funding & Payments, and System Monitoring.
In the User/Technician Approvals accordion, the admin can see lists of pending user
registrations and technician role requests (fetched via getPendingUsers() and getPend-
ingTechnicians() from the contract). Each entry has Approve/Deny buttons which call
the respective contract functions approveUser(address) or denyUser(address) (for users)
and approveTechnician(address)/denyTechnician(address) (for techs). When a user is ap-
proved as a User on-chain, the contract also triggers an automatic micro-payment of 0.01
POL to that user’s address as a gas cost reimbursement (this uses the PaymentMan-
ager, see next section). The UI reflects this with a confirmation message. The Asset
Registration section allows the admin to add new assets to the system. It provides a
form to input all asset metadata: category (e.g., HVAC, Electrical), building name, floor
number, room number, brand/model, an IPFS hash (if an associated document or model
fragment is stored on IPFS), the IFC Globalld for linking to the BIM model element,
a positionld (a human-readable stable location identifier), and a physicalld (e.g., a se-
rial number or barcode of the physical equipment). Upon form submission, it calls the
AssetManager.registerAsset(...) function, which creates a new asset entry on-chain and
emits an event. Successful registration updates the asset list. By capturing the Globalld
at registration, the system cements the link between the 3D model and the blockchain
record — when the IFCViewer later provides a Globalld on click, the front-end can find
which on-chain asset corresponds to it. The AdminActions component also has a section
for Funding the Payment Pool, where the admin can view the current balance in the
PaymentManager contract and deposit funds (in POL) to ensure there is money available
for technician payouts and user reimbursements. This calls a deposit() function on the
PaymentManager (a simple payable function to transfer POL into it).

Another critical part of AdminActions is the Maintenance Payments management.
After a technician completes maintenance on an asset, the contract marks the mainte-
nance record as readyForPayment. The admin interface fetches all such pending payments
(by scanning all assets for any CompletedMaintenance records that are ready and not yet
paid). These are shown in a list with details: asset ID, technician’s address, and the times-
tamp of completion. The interface also integrates data from the off-chain server here: it
queries the Express API at /gasCosts to retrieve any logged gas cost that a user spent
for reporting that asset’s fault. If available, it shows the address of the user who reported
the fault and the gas cost they incurred (in POL). The admin can then input the amount
to pay the technician (e.g., the agreed maintenance fee) and click “Pay”. This triggers a
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call to the AssetManager.confirmPayment(assetld, techFee, userAddr, userGasCost) func-
tion (through Ethers.js). In the contract, this function in turn calls PaymentManager to
transfer the specified techFee to the technician’s address and, if userGasCost is > 0, to
reimburse the user who reported the fault. After the transaction is confirmed, the Ul
will move that maintenance task from “pending” to “paid” (there is another accordion
listing paid maintenance history). The admin’s payment interface ensures technicians are
compensated and users are reimbursed, with a single on-chain transaction per mainte-
nance task. Importantly, because the gas cost data was fetched from off-chain storage,
the contract did not have to compute or store the gas used — the admin just passes it in as
a parameter. The design choice to combine on-chain events with off-chain data fetching
provides a balance between trustlessness and cost-efficiency: critical state changes
(asset status changes, role changes, etc.) are on the blockchain, but supplemental data
(like exact gas spent by whom) can be kept off-chain until needed. The React app clearly
separates these concerns: for authoritative data it queries the smart contracts (via Ethers
providers), and for auxiliary data it queries the Express REST API.

TechnicianActions is a smaller component for technicians that shows a summary of
their work. Specifically, it lists “My Completed Jobs,” i.e. all maintenance tasks that the
logged-in technician has finished and whether they have been paid. This is done by calling
a view function getTechnicianCompleted Assets(techAddr) on the AssetManager to get a
list of asset IDs the tech worked on, then for each, retrieving its maintenance records and
checking payment status. The UI then displays each asset ID with either “Paid on [date]
amount X” or “Payment pending” etc. This gives technicians a transparent view of their
work and earnings. It’s essentially a convenience feature since the same data could be
obtained by scanning events or calling the contract directly, but a Ul listing improves
usability.

Role-Based Views and Routing: The front-end heavily uses conditional rendering
instead of multi-page routing, given the SPA nature. Depending on the current user’s role
(which is stored in a React state after login), different components are shown or hidden.
For example, when an Admin is logged in, the AdminActions and AssetList components
are rendered, whereas a normal User would not have those in the DOM at all. This ap-
proach ensures that the interface remains uncluttered and appropriate for each user type.
Unregistered users (not logged in with MetaMask or not approved yet) will see a mini-
mal interface — basically just the model viewer and the wallet connector prompting them
to connect and register. Once registered, their available actions increase. The applica-
tion does not use URL-based navigation; all interaction happens in one view, but React’s
state and conditional components create an experience of distinct “screens” (e.g., an admin
essentially has an asset management dashboard, whereas a user has a reporting interface).

Wallet Integration: The React app uses Ethers.js to integrate with MetaMask. When
the user clicks “Connect Wallet”, the app prompts MetaMask and fetches the user’s ac-
count. It then automatically calls a function to query the smart contract for the user’s role,
as described. The app also listens for account or network changes (MetaMask can notify
the DApp if the user switches accounts or networks) to update the UI accordingly. The
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addresses of deployed contracts (AssetManager and PaymentManager) and their ABIs are
configured in a central config.js file, which the React components import. This config is
updated with the Polygon deployment addresses so that the front-end knows where to
direct its calls. For reading data and events, the app uses both Web3Provider (which
routes through MetaMask for transactions) and a WebSocketProvider (Infura’s WebSock-
ets endpoint for Polygon) for listening to events. In our implementation, on app load,
we establish a WebSocket connection to the AssetManager contract and set up listeners
for events like FaultReported, MaintenanceStarted, MaintenanceCompleted, etc. When
those events fire (meaning some state change happened on-chain), the listener callbacks
will refresh the local asset list state to keep the UI in sync. This event-driven update
mechanism ensures that if, say, a technician starts maintenance (triggering a Mainte-
nanceStarted event), the admin’s view and others will update the asset’s status to “Under
Maintenance” in near real-time without needing a page refresh. It makes the DApp reac-
tive to blockchain changes, which is important in a decentralized setting where multiple
users might be interacting concurrently.

In summary, the front-end implementation delivers a rich, role-sensitive UI on top of a
complex backend. It combines declarative Ul components (React/MUI) with blockchain
interactions (via Ethers.js) and a 3D BIM model viewer to meet the usability and trans-
parency goals. By allowing visual selection of assets and providing immediate feedback
(e.g., updating model colors or status labels after transactions succeed), the UI helps
bridge the gap between the physical facility (represented by the BIM model) and the
digital ledger (the blockchain records).

4.4 Smart Contract Implementation

The on-chain component of the system is realized with two smart contracts written in So-
lidity: AssetManager and PaymentManager. AssetManager handles the core mainte-
nance logic and data (assets, faults, roles, maintenance records), while PaymentManager is
a dedicated vault and payment processor for financial transactions (holding funds, paying
technicians, reimbursing users). Dividing the functionality across two contracts improves
modularity and security: the PaymentManager contract can be kept simple and nar-
rowly scoped to monetary operations, and it is only callable by the AssetManager (through
known interfaces), reducing the risk of misuse. Class diagrams of both smart contract are
shown in Figure 4.3.
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Smart Contract Development

Tool/Library Version Role in Project

Solidity 0.8.28 Language for Ethereum-compatible contracts
(AssetManager, PaymentManager).

Hardhat 2.22.18 Framework for compiling, testing, and deploy-
ing the Solidity contracts.

Hardhat Toolbox 5.0.0 Plugin set (includes Ethers.js, debugging util-
ities) simplifying contract workflows.

Table 4.4. Smart contract-related frameworks and tools used for on-chain logic.

4.4.1 AssetManager Contract

This is the primary smart contract that represents the state of building assets and the
workflow of maintenance. It contains data structures to track assets, user roles, mainte-
nance history, and events to signal important changes. Key components of AssetManager
include the following.

Roles and Access Control: An enum Role{Unregistered, User, Technician, Admin} de-
fines the possible roles for addresses. The contract maintains a mapping userRoles(address)
-> Role and functions for role requests and approvals. Only an address with the Admin
role can approve/deny user registrations or technician promotions. The contract uses
modifier-based access control (onlyAdmin, onlyTechnician, onlyUser) on functions to
ensure that only authorized roles can invoke certain actions. For instance, reportFault is
onlyUser and this means that only a registered building user can report a fault (this pre-
vents a random technician from marking something broken). Similarly, startMaintenance
and completeMaintenance are onlyTechnician (only a technician can perform those), and
the various approval functions are onlyAdmin. Role management functions in AssetMan-
ager:

o requestUserRegistration() allows an unregistered user to apply to join;

 approveUser(address) and denyUser(address) let the admin finalize the registration
(assign Role.User or reject);

o requestTechnicianRole() is for Users to request upgrade to technician

o approveTechnician(address)/deny Technician(address) for the admin to grant or refuse
the Technician role. These maintain internal lists of pending requests (arrays of ad-
dresses) so the admin can query who is awaiting approval.

When a user is approved, an event UserApproved(address) is emitted (and the Payment-
Manager is instructed to reimburse initial gas), and similarly TechnicianApproved(address)
is emitted for techs. The contract also provides a view getRole(address) returning the enum
value, which the front-end calls on login to get the user’s current role.
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AssetManager

Enums:
- Role: {Unregistered, User, Technician, Admin}

State Variables:

- paymenthlanager: PaymentManager

- assets: mapping(uint256 + Asset)

- assetMetadata: mapping(uint256 -+ AssetMetadata)

- userRoles: mapping(address = Role)

- maintenanceHistory: mapping(uint256 -+ MaintenanceRecord(])
- completedMaintenances: mapping(uint256 -+ CompletedMaintenancel])
- technicianRequests: mapping(address + bool)

- pendingTechnicians: address|]

- pendingUsers: mapping(address + bool)

- pendingUsersList: address|]

- counterMiss: mapping(address - uint256)

- faultReporter: mappingluint256 + address)

- predictiveHashes: mapping(uint256 + string(])

- nextAssetld: uint256

- owner: address

<<calls>>

PaymentManager

State Variables:
- assetManager : address
- owner : address

Modifiers:
+onlyOwner()

|+ onlyAssetManager()

Modifiers:

+ onlyAdmin()

+ onlyTechnician()
+ onlyUser()

Functions:

+ constructor()

+ setPaymentManager{address)

+ getRole(address): Role

+ requestUserRegistrationi)

+approveUser{address)

+denyUser(address)

+ getPendingUsers(): address|]

+onlyTechnician()

+ requestTechnicianRole()

+ approveTechnician(address)
+denyTechnician(address)

+ hasRequestedTechnician(address): bool+ onlyAdmin()
+ getPendingTechnicians(): address(]

+ registerAsset(Asset)

+ deleteAsset(uint256)

+ reportFault{uint256, string)

+ cancelFault{uint256, string)

+ startMaintenance(uint256, string)

+ completeMaintenance(uint256, string)

+ replacePhysicalltem(uint256, string)

+ confirmPaymentiuint256, uint256, address, uint256)

+ getMaintenanceHistory(uint256): MaintenanceRecordl]
+ getTechnicianCompletedAssets(address): uint256(]

+ getCompletedMaintenanceCount{uint256): uint256

+ getCompletedMaintenance(uint256, uint256): CompletedMaintenance
+ getAllCompletedMaintenance(uint256): Completed Maintenance(]
+ storePredictiveHash(uint256, string)

+ getAssetStatus(uint256): string

Figure 4.3.

Functions:

+ setAssetManager(newassetManager : address) : void
+depositl) : void

+withdrawPartiallamountinWei : uint) : void

+ payTechnician(technician : address, amountinWei : uint) : void
+ getBalance() : uint256

+ reimburseUser(user : address, amountinWei : uint256) : void

+ receive() : void

+ fallbacki) : void

+ constructor() : void

CLass Diagram Smart Contracts

Asset Data Model: Each asset in the system is represented by two structs: Asset
and AssetMetadata. The Asset struct holds the primary mutable state of an asset, for
example an id (uint identifier), a status string (Operational, Broken, Under Maintenance),
the address of the currently assigned technician (if under maintenance), a timestamp of
last maintenance, a faultType description if it’s broken, and a boolean isDeleted flag.
The separate AssetMetadata struct contains more static info: category, building, floor,
room, brand, model, an ipfsHash for any associated documents, the globalld (IFC model
GUID for linking), positionId (a stable human label for location), and physicalld (like a
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serial number). These metadata fields are set on registration and not frequently changed
(except physicalld might change if an asset is replaced during maintenance). In the con-
tract, we have mappings assets(uint => Asset) and assetMetadata(uint => AssetMeta-
data) keyed by asset ID. The asset IDs are generated sequentially (the contract has a
nextAssetld counter that increments on each new registration). The separation into two
structs/mappings is partly to avoid stack too deep errors and also to logically separate
frequently-updated vs mostly-constant data. The registerAsset function populates both
mappings for a new ID and emits an AssetRegistered event. The contract also allows
an admin to logically delete an asset (deleteAsset(id) setting isDeleted flag and emitting
AssetDeleted), in case an asset is permanently removed from service.

Fault Reporting and Maintenance Workflow: This is the core logic enabling the
maintenance use case. When a user notices an issue with an asset, they invoke report-
Fault(uint assetld, string fault Type). The function checks that the caller is a User and that
the asset exists and is currently "Operational'. Then it sets the asset’s status to "Broken'
and records the fault type (the description provided). It emits a FaultReported(assetld,
"Broken', faultType) event to notify off-chain listeners.

Note that in this design, the contract does not assign a technician at fault report time,
it simply marks it broken. Assignment of a technician could be handled off-chain by an
admin or by a future extension (like auto-assigning the next available technician). In our
system, a technician would see the asset is Broken (via the front-end) and then proceed
to address it.

The next step is startMaintenance(uint assetld, string startComment), callable by a Tech-
nician. This checks the asset is in Broken status (so the fault was acknowledged). Tt
then creates a new entry in the maintenance history: we keep an array maintenanceHis-
torylassetld] of struct MaintenanceRecord (containing start time, end time, technician
addr, oldPhysicalld, newPhysicalld, and a comment).

On start, it appends a MaintenanceRecord with startTime = now, endTime = 0
(meaning ongoing), technician = msg.sender, oldPhysicalld set to the current assetMeta-
data.physicalld (so we log what physical component was there), and the technicianCom-
ment set to the startComment. The asset’s status is updated to "Under Maintenance"
and the asset’s technician field is set to msg.sender (to mark who is working on it). Then
an event MaintenanceStarted(assetld, technicianAddr) is emitted.

Once the technician finishes the work, they call complete Maintenance(uwint assetld, string
endComment). This requires the asset to be "Under Maintenance" and that a Mainte-
nanceRecord exists with endTime=0 (meaning the maintenance was indeed started and
not yet completed). The function then updates that record’s endTime to now and, if
an endComment is provided, attaches it (in our implementation, it simply overwrites or
appends to the technicianComment). It sets the asset’s status back to '"Operational”,
clears the faultType, and updates lastMaintenanceTimestamp. Most importantly, it cre-
ates an entry in a separate completedMaintenances[assetld| array (mapping asset -> list
of CompletedMaintenance structs).

A CompletedMaintenance struct stores info about a finished maintenance task that
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might need admin actions: it has fields like readyForPayment (bool), technician (address),
suggestedAmount (if the tech suggested a fee, but in our case we left it as 0 for admin
to decide), isPaid (bool), paymentTimestamp, paid AmountWei, and fields to record if a
user was reimbursed for this maintenance.

On completion, we push a new CompletedMaintenance with readyForPayment=true, tech-
nician = msg.sender, and the rest default (payment info empty). This data structure
accumulates all maintenance jobs per asset, which the admin can later review. Finally,
MaintenanceCompleted(assetld, technician, timestamp) event is emitted. There are addi-
tional helper functions in this workflow: cancelFault(uint assetld, string reason) allows an
admin to cancel a reported fault before maintenance starts (resetting status to Operational
and emitting FaultCancelled (assetld, reason)).

Also replacePhysicalltem(uint assetld, string newPhysicalld) for a technician to log
that they swapped a device during an ongoing maintenance (it updates the assetMeta-
data.physicalld and the current MaintenanceRecord’s newPhysicalld field). This ensures
traceability of component replacements and the history will show old and new serial num-
bers.

Payments and Reimbursements Triggers: The AssetManager itself does not hold
or transfer funds (that’s PaymentManager’s job), but it does orchestrate when payments
should happen. The key function is confirmPayment(uwint assetld, uint technicianWei,
address faultReporter, uwint faultCost Wei).

This function is onlyAdmin, after verifying a maintenance is ready for payment and not
already paid, it invokes the PaymentManager: first paymentManager.payTechnician(techAddress,
technicianWei) to transfer the technician’s fee, then if faultCostWei>0 it calls payment-
Manager.reimburseUser(faultReporter, faultCost Wei).

It then marks the CompletedMaintenance record as paid (isPaid=true, stores the payment
timestamp and amount, and change readyForPayment to false). We emit events for im-
portant things like UserApproved, TechnicianApproved, AssetRegistered, FaultReported,
MaintenanceStarted, MaintenanceCompleted, and also PredictiveHashStored (discussed
later).

These events serve as log entries on the blockchain that the off-chain systems or
any observer can subscribe to, thereby creating an immutable audit trail of all significant
maintenance events. Indeed, one of the system requirements was to have transparent
maintenance logs on-chain by emitting events and also by making the state queryable
(functions like getMaintenanceHistory, getCompletedMaintenance, etc.), the blockchain
becomes the source of truth for the maintenance history.

The AssetManager contract thus encapsulates a finite-state workflow for assets (Oper-
ational -> Broken -> Under Maintenance -> back to Operational) with appropriate role
checks at each transition. It uses on-chain data to enforce that sequence and uses events
to inform external systems. The logic ensures that only valid transitions happen (e.g.,
you cannot start maintenance on an asset that isn’t broken, or complete maintenance
that wasn’t started), which prevents inconsistent states. All of this is done transparently:

78



4.4 — Smart Contract Implementation

because the contract is on Polygon, all participants can verify these state changes on a
public ledger, fulfilling the transparency and trust goals for the maintenance process.

4.4.2 PaymentManager Contract

The PaymentManager is a much simpler contract whose only purpose is handling funds
(denominated in the native cryptocurrency of the chain, which on Polygon is POL). It is
owned by the admin and linked to the AssetManager. The keys aspects of Payment-
Manager are:

It stores an owner address (set to the deployer/admin in constructor) and an asset-
Manager address (which must be set after deployment). The modifiers onlyOwner and
onlyAssetManager restrict who can call certain functions. The AssetManager address is
given permission to call the payout functions.

Deposit & Balance: The admin (owner) can deposit funds into PaymentManager by
sending a transaction with value or calling the deposit() function. PaymentManager does
not have any complex logic on deposit; it uses Ethereum’s standard ability to hold a bal-
ance. We included a getBalance() view function to retrieve how much POL it currently
holds. The admin can also withdraw funds (there’s a withdrawPartial(amount) function in
code for owner, though it might not be used in practice if admin manages funds externally).

Paying Technicians: The function payTechnician(address technician, wint amountin-
Wei) transfers the specified amount from PaymentManager’s balance to the technician’s
address. It is marked only AssetManager, meaning only our AssetManager contract (once
set) can call it — technicians cannot directly call PaymentManager to pay themselves. This
function also checks that the contract’s balance is sufficient before transferring. The trans-
fer uses the transfer or call method (in our case, payable(technician).transfer(amount) as
shown), which sends the funds out. If it fails (insufficient balance), it will revert to ensure
no partial logic goes through.

Reimbursing Users: Similarly, reimburseUser(address user, wint amount) is available
for AssetManager to call. This will transfer the specified amount to the user (presum-
ably covering the gas fees they spent in maintenance reporting). We separated this from
payTechnician for clarity, though both are simple transfers. Emitting an event for pay-
ments was optional (the code comments note we could emit TechnicianPaid or GasRe-
imbursed events). Even without explicit events, these transfers will be visible as internal
transactions on the blockchain.

Security considerations: By isolating the funds in PaymentManager, we reduce the
attack surface on the main AssetManager. Even if, hypothetically, a vulnerability ex-
isted in AssetManager’s logic, the funds can only move if PaymentManager receives a
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valid call from AssetManager. The admin linkage is set up by calling PaymentMan-
ager.set AssetManager(assetManagerAddress) after both contracts are deployed. Con-
versely, AssetManager stores a reference to PaymentManager set via setPaymentMan-
ager(address) (only callable by admin). This mutual reference setup is done once during
deployment and initialization. After that, the AssetManager’s calls like paymentMan-
ager.payTechnician(...) route to the correct contract.

4.4.3 Final Thought

Contract Relationships and Data Flow: The two contracts work in tandem during
the payment phase of the maintenance workflow: AssetManager accumulates the inten-
tion to pay (in its CompletedMaintenance record and confirmPayment function), and
PaymentManager executes the value transfers. This design also means we could upgrade
or replace the PaymentManager (if needed to move to a different funding model, for ex-
ample) without affecting AssetManager’s other logic, since the interface is abstracted to
a few calls. All other logic (registration, reporting, status changes, history logging) lives
in AssetManager.

We also carefully considered gas costs and optimization in the contract implementa-
tion. Each on-chain operation (especially ones storing data) costs gas, and since we expect
possibly many maintenance events, we stored only necessary information on-chain. For
instance, instead of storing long text for comments or descriptions on-chain extensively,
we keep them reasonable (short strings like “Lamp broken” or “Replaced filter”). The
sensor readings themselves (which can be high-frequency data) are not stored on-chain at
all, but only their hashes (discussed below). This aligns with common blockchain design
practices: store only hashes or pointers to large data, not the data itself, due to
cost [Stackexchange [2019]]. Indeed, storing even a single 32-byte hash on Ethereum costs
around 20,000 gas [Stackexchange [2019]], so one would not put raw sensor logs on-chain.
Our solution is to use the chain for integrity (hashes) and use the off-chain database for
raw data, achieving a balance. This principle is evident in our contracts where the pre-
dictiveHashes mapping holds arrays of hash strings for each asset but no raw sensor values.

In summary, the smart contracts implement a robust, self-contained logic for asset lifecy-
cle in maintenance. They ensure integrity (because all critical changes are on-chain and
thus tamper-proof), role-based security (only authorized roles can do certain actions,
enforced by code), and financial automation (automatic payouts and reimbursements
once admin triggers a single function). By deploying these contracts on the Polygon
blockchain, we benefit from the decentralization and security of blockchain — no central
server can secretly alter a maintenance record, and all stakeholders (users, technicians,
auditors) can verify the history of events. The contract code (provided in Appendix B)
was carefully tested for edge cases (e.g., double reporting faults, completing maintenance
out of order, etc.) to ensure the state machine cannot be broken by improper usage.
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4.5 Off-Chain Backend and Predictive Maintenance

While the blockchain contracts provide the trust and transparency backbone, certain
aspects of the system are handled off-chain by a Node.js/Express server and a Pre-
dictive Maintenance service. These components manage data that either does not
need to be on-chain or is impractical to put on-chain, and they complement the DApp by
providing automation (predictive fault detection) and cost-saving measures (logging gas
usage off-chain).

Express.js Server and SQLite Database: The Express server exposes a simple REST-
ful API used mainly by the admin interface and the predictive service. It serves two
primary purposes:

1. Gas Cost Logging: Every time a user reports a fault (which is a blockchain trans-
action they pay for), we want to record how much gas they spent so that the admin
can later reimburse that cost. Capturing gas cost via a smart contract would itself
cost gas and add complexity, so instead the front-end (or a script) communicates
with the Express server to log this information in a database. The server has an
endpoint GET /gasCosts which returns a list of recorded gas expenditures. These
records include the assetld for which the fault was reported, the user’s address, and
the cost in Wei (smallest unit of Ether/MATIC) that the user spent.

In practice, when a user calls reportFault via MetaMask, we can get the transac-
tion receipt and gas used on the client side. The front-end then sends an HT'TP
request to our server, e.g., POST /gasCosts with JSON assetld, user, costWei.
The server stores this in the SQLite database (in a table, e.g., GasCosts(assetld,
user, costWei)). Then, when an admin is deciding on payments, the front-end calls
GET /gasCosts to retrieve all entries, and filters for the relevant asset. In our imple-
mentation, the AdminActions component’s load GasCostsFromServer() fetches from
http://localhost:4000/gasCosts and maps the list into an in-memory map keyed by
assetld. This provides the costData (user and cost) that we displayed in the “Pend-
ing Payments” section for each asset. After the admin processes a payment and
reimbursement on-chain, the front-end calls a DELETE /gasCosts endpoint to
remove that entry (it sends the assetld and user in the query, and the server deletes
that row).

This cleanup prevents reusing the same record twice and keeps the off-chain log
lightweight. The use of an off-chain database for gas records drastically reduces
on-chain storage requirements while still maintaining integrity in a practical sense
(the admin is trusted to use the correct values; even if not, any user can see on-
chain whether they were reimbursed or not). It is worth noting that in a fully
trustless design, one might record a hash of the gas receipt on-chain to prove the
value later. However, since the admin is anyway a trusted party in terms of approving
payments, a simpler approach suffices. This aligns with a hybrid architecture
principle: critical state transitions are on-chain, but supplementary data is off-chain
for efficiency.
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2. Sensor Data Storage for Predictive Maintenance: The SQLite database also
contains tables for predictive maintenance sensor readings. In this project, we
simulate sensors (e.g., temperature sensors on equipment) to demonstrate predictive
maintenance integration. The predictive maintenance microservice (described below)
inserts sensor readings into the database via the Express API or direct DB access. For
example, a table SensorReadings(assetld, timestamp, value) might store temperature
values for a given asset over time. Storing these on-chain would be infeasible due to
volume and cost, so we keep them in SQLite.

The server retrieves recent readings for display (e.g., an admin could query the last
week’s data if needed). In our setup, the predictive service actually runs in the
same environment and can write to SQLite directly, so the Express endpoint for
sensor data is not strictly necessary for function, but could be used if one wanted to
decouple the services.

Backend Tools

Tool /Library Version Role in Project

the Express server and scripts.

Node.js 18 LTS JavaScript runtime environment executing

Express.js 5.1.0 REST API server enabling off-chain data ac-
cess (gas costs, sensor logs, etc.).

SQLite 3.x Lightweight file-based SQL database storing
off-chain records.

better-sqlite3 11.9.1 Node.js library for synchronous, performant
SQLite interactions.

dotenv 16.5.0 Loads environment variables for config (e.g.,

private keys, Infura keys).

Table 4.5. Key dependencies for the Node.js/Express backend and SQLite database.

The Express server and database thus act as the off-chain data layer for our DApp.
The database schema is fairly simple: one table for GasCosts, one for SensorReadings.
We also included an endpoint GET /resetDB during development to clear the database
(this was helpful to reset the state between test runs without redeploying contracts). The
presence of an off-chain database does not compromise the integrity of the maintenance
records because the source of truth for asset status and maintenance events remains the
blockchain. The off-chain data is used for enhancements: cost calculations, sensor ana-
lytics, etc., which complement the on-chain records. This synergy is typical in enterprise
blockchain solutions, where a blockchain is used alongside databases to get the best of
both worlds (immutability vs. query efficiency).

One interesting feature we’ve implemented in our system is the integration of a predic-
tive maintenance module. It is microservice that simulates IoT sensors monitoring the
building’s assets and automatically flags issues or records data on-chain. The predictive
service operates as follows:
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e Sensor Simulation: The service periodically generates sensor readings for certain
assets. For example, suppose we have a temperature sensor on an HVAC unit (asset
ID 5). The service will, every N minutes, produce a random /real temperature value
and timestamp it. It then stores this reading in the SQLite database (SensorReadings
table). Over time, this creates a historical log of conditions.

o Fault Prediction Logic: The service monitors these readings to detect anomalies.
In our implementation, we use a simple rule: if 3 consecutive readings exceed
a certain high temperature threshold (e.g., 70°C), the service will interpret that as
an impending failure. This is a rudimentary predictive model (essentially threshold-
based anomaly detection). When this condition is met, the service triggers a fault
report on behalf of the system.

How can the service report a fault? There are a couple of approaches: (a) have
the service directly call the AssetManager.reportFault function using a dedicated
Ethereum account (like an “IoT agent” account with User role for that asset), or
(b) have it notify the admin/off-chain and let an admin confirm it. We opted for the
automated on-chain route for demonstration. The predictive service is configured
with an Ethereum wallet (private key) that is recognized by the system (it could be
pre-registered as a User or even given a special role if desired). When a predicted
fault occurs, the service uses Ethers.js to send a transaction to reportFault(assetld,
"Auto-detected high temperature”). This marks the asset as Broken on-chain just as
if a human user reported it.

The event FaultReported will then propagate through the system and the front-
end will catch it and update the Ul, alerting technicians/admin that asset 5 has a
fault. This is a powerful concept: the DApp not only accepts manual input, but can
also leverage IoT data to proactively log issues on the blockchain, ensuring they are
noticed and cannot be ignored. (In a real deployment, one might require the admin
to approve auto-generated faults, to avoid false positives, but our implementation
focuses on the concept.)

« Data Hashing and On-Chain Storage: To further secure the sensor data and
provide an audit trail, the predictive maintenance service periodically takes a batch
of recent sensor readings and computes a cryptographic hash (e.g., SHA-256) of that
data. It then stores this hash on-chain via the AssetManager.store PredictiveHash(assetId,
dataHash) function. The AssetManager maintains a mapping predictiveHashes[asset]d]
which is essentially an array of strings (hashes) for each asset.

When storePredictiveHash is called, it appends the provided hash to the array and
emits an event PredictiveHashStored(assetld, hash). This mechanism provides data
integrity assurance for the sensor readings. Even though the raw readings are off-
chain, by periodically anchoring a hash of them on-chain, we can later prove that
the off-chain data wasn’t tampered with (as long as we have the original data).
This pattern is aligned with known best practices for blockchain and data integrity:
only store the hash of large data on-chain to ensure integrity without incurring high
storage costs.
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In our case, the predictive service might, for example, take the last 10 readings for
asset 5, concatenate them in a JSON string, compute SHA-256, and get a digest
like Oxabc123.... It then calls storePredictiveHash(5, "Oxabc123..."). That hash is
now forever on the blockchain. If later someone questions the accuracy of the sensor
data, we can produce the 10 readings and recompute the hash to show it matches
the on-chain record, proving those readings were indeed observed at that time (and
not altered retroactively). We scheduled the service to do this hashing maybe every
hour or every day per asset, depending on data frequency. The predictiveHashes
stored on-chain effectively act as an audit log or blockchain-anchored log of the
sensor telemetry.

Implementation details of the predictive service: This service is written in
Node.js (so it can reuse code and config from the main project, e.g., using Ethers with
the same contract ABIs). It runs in a loop or uses timers. For example, it may have
a setInterval for each asset of interest. On each interval, generate a reading, save to
DB. After saving, check the last 3 values for that asset (it can query the DB easily)
— if the last 3 are all above threshold and the asset isn’t already marked Broken
(it can call AssetManager.getAssetStatus(assetld) via a provider to double-check),
then trigger the reportFault transaction. Additionally, on every 10th reading or at a
timed interval, compute the hash of the recent chunk and call storePredictiveHash.
To avoid spamming the blockchain, one might batch multiple assets’ data into one
hash or adjust frequency. In our controlled setup, the volume is low, so we directly
store each asset’s hash periodically.

Predictive Maintenance

Tool/Library Version Role in Project

Node.js scripts 18 LTS Periodic sensor data simulation, threshold

checks, auto-fault submission.

ethers.js 6.13.5 Used by Node scripts to call AssetManager

(reportFault, storeHashes).

SQLite 3.x Local database storing sensor values for each

asset, hashed on-chain.

Table 4.6. Predictive maintenance components for automated fault detection.

The interplay between the predictive service and the on-chain contract is an illustra-
tion of how IoT and blockchain integration can work. Blockchain alone typically
cannot pull data from sensors (known as the oracle problem, it relies on external services
to push data). Here, our predictive module acts as an oracle that feeds the contract with
sensor-based insights. By doing so, the blockchain ledger now contains some information
about the conditions of the asset (in form of events and stored hashes) without the need
to store every data point. This approach is congruent with literature suggestions to use
blockchain for data provenance in maintenance and IoT scenarios, where hashed data on-
chain ensures later verification [Stackexchange [2019]]. It demonstrates a next-generation
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maintenance approach: issues can be detected automatically and recorded in a tamper-
proof way, enabling a shift from reactive maintenance to proactive maintenance.

Express API structure summary: To enumerate the key endpoints:

o GET /gasCosts: returns all gas reimbursement records (assetld, user, costWei) as
JSON. Used by admin UI

o DELETE /gasCosts?assetld=XEuser=YEcost Wei=2: deletes a specific gas cost record
after reimbursement

e POST /gasCosts: (implied) to add a new record; the front-end would call this right
after a fault report transaction is sent. The server code for this would parse the body
JSON and insert a row in SQLite. (We ensure to include the unique combination of
asset and user so duplicates are not created.)

o GET /resetDB: (development only) clears the database tables for a fresh start.

o POST /sensorData: (optional, if predictive service used HTTP) to add a new sensor
reading. In our case, not needed because the service writes to DB directly.

o GET /sensorData?assetld=X: to retrieve recent sensor readings for an asset (could
be used for visualization or debugging of predictive logic). These endpoints are pro-
tected or open depending on context; since this is a prototype, we didn’t implement
authentication for the API, but in a real deployment, you'd secure it or keep it
internal.

In conclusion, the off-chain backend components provide necessary support to the
DApp by handling data that either doesn’t need global consensus (like gas usage logs)
or would overwhelm a blockchain (high-frequency sensor data). They are kept relatively
simple and their data can be cross-verified with on-chain references (hashes and events)
to ensure trust.

The presence of the predictive maintenance service highlights the extensibility of the
architecture, it is straightforward to plug in additional services (even AI/ML analytics)
that observe the on-chain state and off-chain data and then act by sending transactions to
the contracts. This demonstrates an integrated cyber-physical system: IoT sensors
feed a blockchain-based maintenance log, and the blockchain in turn triggers real-world
actions (maintenance work orders) all while being user-friendly via the BIM front-end.

4.6 Integration of Components

With the front-end, smart contracts, backend server, and predictive service described in-
dividually, it’s important to explain how they interoperate as a cohesive system. The
integration of components in this DApp follows a hybrid architecture where on-chain
and off-chain parts communicate through well-defined interfaces (web3 calls, HTTP calls,
and events). Here we outline typical interaction flows and how data moves through the
system:
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User-Initiated Maintenance Workflow: Consider a building occupant using the ap-
plication to report a problem:

1.

The user opens the React app in a browser and connects their MetaMask wallet. The
front-end retrieves their blockchain address and role by calling the AssetManager’s
getRole function. Suppose the user is already registered as a User (Role=User).

. The user navigates the 3D model (via IFCViewer) and double-clicks on, say, a light

fixture that is flickering in real life. The IFCViewer captures the click, finds the
object’s IFC Globalld, and calls handleObjectSelected(Globalld) in the React app.
The app looks up a mapping of Globalld to asset ID (this mapping was built when
the app loaded all assets via AssetManager calls on startup). It finds that Globalld
corresponds to asset ID 7, “Ceiling Light in Room 101"

. The FloatingAssetPanel for asset 7 is shown, displaying its status (Operational) and

details. The user enters “Light is flickering and about to fail” in the fault description
field and clicks Report Fault. The front-end uses Ethers.js to send a transaction:
assetManagerContract.reportFault(7, "Light is flickering. .. "). This transaction goes
to the Polygon network. The MetaMask prompt shows the estimated gas (say 50,000
gas, costing 0.001 POL) to the user.

. On-chain, the AssetManager checks permissions (the user’s address is in userRoles

as User) and updates asset 7’s status to Broken, stores the fault string, and emits
FaultReported(7, "Broken", "Light is flickering. ..").

. The user’s MetaMask confirms the transaction. The front-end, after getting the

tx receipt, sends an HTTP request to the Express server: POST /gasCosts with
assetld:7, user:"OxUserAddress", costWei: <actual gas cost> (the actual gas cost is
obtained by multiplying gasUsed * gasPrice from the receipt). The server logs this
in SQLite.

. Meanwhile, the front-end’s WebSocketProvider (listening to AssetManager events)

catches the FaultReported event emitted from Polygon. In the callback, it calls
loadAssets() which fetches updated asset info from the contract (or it could simply
update asset 7’s status in state). The UI updates: asset 7 now appears as Broken
(in red) in the asset list and on the model (we could even change the object’s color
in the Three.js view to indicate it’s broken).

A maintenance technician looking at the app (maybe on their own login) will also
see asset 7 marked Broken (since the event is broadcast and their front-end also
refreshes, or they manually refresh asset list). The technician goes to Room 101 in
real life to inspect the light.

. The technician, using the app, selects asset 7 from the list or model and clicks Start

Maintenance. This sends a tx startMaintenance(7, "Investigating light flicker").
On-chain, asset 7 status -> Under Maintenance, tech address recorded, Mainte-
nanceStarted event emitted. All Uls update accordingly (admin and user Uls will
see that asset 7 is now being serviced).
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10.

11.

12.

13.

After fixing or replacing the light, the technician in the app clicks Complete Main-
tenance, adding a comment “Replaced ballast, issue resolved”. This calls com-
pleteMaintenance(7, "Replaced ballast"). On-chain, asset 7 status -> Operational,
maintenance record closed, CompletedMaintenance entry added (readyForPayment=true),
event MaintenanceCompleted emitted.

The admin’s interface picks up MaintenanceCompleted (through event or by polling
pending payments) and now sees asset 7 in “Pending Payments” with technician
= TechAddress. The Express server is queried for gasCosts: it returns that user
OxUserAddress spent e.g. 0.00087 POL on asset 7. The admin sees this info.

The admin enters a technician fee (say 0.02 POL) and clicks Pay on asset 7’s en-
try. The front-end calls confirmPayment(7, 20000000000000000 wei, OxUserAddress,
870000000000000 wei) (passing the user address and gas cost in wei). On-chain,
AssetManager calls PaymentManager: transferring 0.02 POL to TechAddress and
0.00087 POL to UserAddress. These transfers occur from the funds the admin had
deposited earlier. The CompletedMaintenance entry is updated as paid.

The admin UI refreshes: asset 7 disappears from pending list and appears in paid
history with details (who was paid how much, when). The front-end also issues
a DELETE /gasCosts?assetld=7Tuser=0xUserAddress... to remove the gas log now
that it’s handled.

The cycle concludes with asset 7 fully operational and all parties updated. The
blockchain now has an indelible record that asset 7 had a fault at a certain time, was
repaired, and payment was made, all traceable via events and state. The off-chain
DB has the raw sensor and gas info (should anyone need to audit energy usage or
costs).

Predictive Maintenance Workflow: Now consider the predictive service’s operations:
The predictive service is running continuously. Every 5 minutes, it logs a temperature
reading for, say, asset 10 (an HVAC unit). These go into the DB as [time, value]. Over
an hour, values might be normal (e.g., 60°C). But then it starts reading 85°C, 88°C,
90°C consecutively. Upon the third high reading, the logic triggers. The service uses its
Ethereum key (it could be the admin key or a special oracle key pre-registered as a user)
to send reportFault(10, "Overheat detected") automatically. This transaction is mined,;
asset 10 becomes Broken. The event FaultReported is emitted.

All clients (admin dashboard, etc.) see asset 10 turn Broken with fault "Overheat de-
tected". A technician is dispatched proactively before a complete failure occurs. This
could prevent downtime. The admin knows this came from the predictive system (by the
fault description or by the fact no human submitted it).

The predictive service also computes a hash of the day’s readings for asset 10. Sup-
pose the hash is H. It calls storePredictiveHash(10, H). On-chain, this is stored in the
predictiveHashes mapping and event PredictiveHashStored is emitted. The admin inter-
face could have a view to see these hashes (or it could ignore them; they are mainly for
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audit). Storing the hash costs a small amount of gas (to save a 32-byte string), but this
is done maybe once per day.

Later, if someone wants to verify that the data which led to the fault was legitimate,
they can retrieve all readings for that day from the database and hash them to see if they
match the on-chain hash H. If they match, it proves those readings haven’t been altered
(ensuring trust in the predictive process). This approach addresses trust in automated
decisions by anchoring data provenance on the blockchain.

Communication Patterns: The integration uses several communication channels:

1. Web3 calls (transactions and queries): Front-end to blockchain, Admin backend
to blockchain, Predictive service to blockchain. The system interacts with smart con-
tracts through user-initiated MetaMask/Ethers transactions and predictive module
programmatic transactions. Users and the predictive module both access identical
smart contracts which maintain state consistency.

2. Web3 events: Blockchain to front-end. The React app listens to events from
AssetManager via WebSocket (Infura) and updates UI state. This decouples the
front-end from constantly polling and provides real-time feedback to users. For
example, when one user reports a fault, another user’s interface updates almost
immediately. It leverages the publish-subscribe nature of blockchain logs.

3. HTTP REST API calls: Front-end to Express server (for gas costs) and Predictive
service to Express or DB (for sensor data). These are standard web requests on the
local network (in our dev setup, the React app calls localhost:4000 for the API). The
server responds typically in JSON. This pathway is entirely off-chain and is used for
data not stored in the contracts.

4. Direct DB access: Predictive service to SQLite. Running in the same environment,
the predictive script can use an SQLite client library to insert/query data without
going through HTTP. This improves performance for large data ingestion. The trade-
off is it bypasses the Express API validations (not a big concern in our controlled
scenario).

The components are synchronized via the unique IDs of assets and the consistent
logic of the workflow. For instance, asset 7 in the database corresponds to asset 7 on-chain
(we use the same ID as the primary key in both realms). When an event refers to assetld,
the front-end can join that with any off-chain info by assetld. Similarly, the predictive
service uses the same assetld when logging data and when calling on-chain functions. By
designing a clear interface (asset IDs and perhaps Globallds when needed), we ensure all
parts speak the same “language” regarding referencing assets.

Error Handling and Resilience: Integration-wise, we considered cases like the Ex-
press server being down or the predictive service failing. The system is designed such that
these would not compromise the core functionality:

88



4.7 — Deployment Process and Execution

o If the Express server is down, users can still report faults and technicians can still do
maintenance, only the gas reimbursement logging would be temporarily unavailable.
Those could be cached client-side and sent later, or worst case the admin manually
reimburses by checking transaction receipts on Polygonscan.

o If the predictive service is down, the system just loses the automated insights, but
manual reporting still works. Predictive service can be restarted and it will continue
logging data. Because it stores data in the DB, a restart doesn’t lose past readings.
And because it stores hashes on-chain occasionally, even a restart (which might
produce a different hash slice) is fine as long as it eventually covers the data in a
new hash.

o If the WebSocket event connection fails, the front-end will not get live updates, but
the UI has manual refresh pathways (the admin can always click "Refresh Assets"
which calls loadAssets() from the blockchain directly). In our implementation, we
call loadAssets() after each important user action anyway as a fallback to ensure Ul
state is synced.

Polygon Network Integration: Using Polygon (or any EVM network) is abstracted
away by Ethers.js configuration. The contract addresses (for Polygon deployment) are
plugged into the React config, and Infura provides a WebSocket URL for Polygon. We
also had to ensure MetaMask was pointed to the correct network (Polygon mainnet or
testnet) when users connect, otherwise transactions would fail. The integration tested on
Sepolia vs Polygon required only changing network RPC URLs and contract addresses,
all code remained the same because the EVM interface is consistent. This proves the
portability of the DApp across Ethereum-compatible chains.

In summary, the integration of components is orchestrated such that blockchain is the
single source of truth for asset states and critical events, while the Express
server and predictive service enrich the system with additional data and au-
tomation. The React front-end acts as the unifying interface that pulls from both sources:
it fetches blockchain state via ethers and calls Express APIs via HTTP, present-
ing a seamless experience to the user. Figure 4.1 (in document) illustrates this interaction
flow: users on the left interact with the React+IFC front end, which sends transactions
to Polygon and fetches data from the smart contracts, while also making requests to the
Express server for supplemental data; simultaneously, the predictive maintenance module
feeds data into the system and triggers smart contract calls when conditions are met. This
integration approach ensures that each technology is used for what it’s best at: blockchain
for immutability and trust, [dibs42 [2023]] databases for efficient storage and query,
and a 3D front-end for user-friendly visualization

4.7 Deployment Process and Execution

Deploying and running the entire system requires setting up each component in the correct
order and providing the necessary configuration (particularly the contract addresses to all
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parts that need them). This section outlines the step-by-step deployment and execution
procedure, as documented for our prototype:

Smart Contract Deployment: We use Hardhat for deploying the AssetManager and
PaymentManager contracts to the blockchain network. A deployment script (e.g., scripts/deploy.js)
automates this. The script likely does the following:

» Uses Hardhat’s runtime environment to get a signer (the deployer account, which in
our case is also the admin).

o Deploys PaymentManager first. This returns the deployed address (say OxPaymen-
tAddr).

o Deploys AssetManager next. Since AssetManager’s constructor doesn’t require Pay-
mentManager’s address (it has none in constructor), we deploy it independently and
get its address (OxAssetAddr).

o Calls assetManager.setPaymentManager (0xPaymentAddr) from the deployer account
(admin) to link the PaymentManager into AssetManager

o Calls paymentManager.setAssetManager(0xAssetAddr) from the deployer (owner)
to reciprocally link AssetManager into PaymentManager

o Optionally, we might preset the deployer’s role as Admin in AssetManager. In our
design, by default the deployer could be considered Admin (for example, we could
initialize userRoles|[deployer|=Admin in the constructor or just treat the deployer as
an implicit admin since only they have the keys to call admin functions initially). If
needed, a function could assign an Admin role to the deployer’s address.

o The script outputs the two contract addresses and perhaps saves them to a config
file or prints to console.

On migrating from Sepolia (Ethereum testnet) to Polygon, we had to update Hard-
hat’s network configuration. We added a network entry for Polygon (or Polygon Amoy
if using testnet) with the RPC URL (Infura or Alchemy endpoint) and chain ID. The
private key of the deployer is provided (via environment variable) so Hardhat can sign
deployments. We then ran npx hardhat run scripts/deploy.js —network polygon to deploy
to Polygon. This yielded new addresses for AssetManager and PaymentManager on Poly-
gon. These addresses were then inserted into the front-end configuration and any other
place they are needed (e.g., predictive service).

Environment Variables: We used environment variables to avoid hardcoding sensi-
tive or environment-specific info:

o PRIVATE_ KEY: the deployer/admin’s private key for deployment (Hardhat uses
it).

« INFURA_API_KEY ): for connecting to Polygon network.
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« POLYGON_RPC_URL: the full RPC endpoint constructed using the above key.
These are loaded in Hardhat config. Similarly, the front-end might have a .env for
REACT_APP_INFURA_ID or the Infura WebSocket URL (though in our case we
put the WSS in a config constant). The Express server might use env for its port or
DB file path, etc.

2. Front-End Setup and Launch: After deploying the contracts, we update the
React app’s config.js with:

« ASSET MANAGER ADDRESS = "0xAssetAddr" (from deployment).

o ASSET MANAGER_ABI = ... ] (the contract ABI JSON, which we can generate
from Hardhat artifacts).

« PAYMENT MANAGER_ADDRESS = "0xPaymentAddr".
PAYMENT MANAGER_ABI = [ ... |.

o INFURA_WSS = "wss://polygon.infura.io/ws/v3/_ PROJECT _ID" (the WebSocket
endpoint for events). These ensure the front-end talks to the correct contracts on
the correct network. Next, we build/serve the React app. In development mode,
running npm start will start the dev server on localhost (port 3000 by default). For
production, we would build (npm run build) and deploy the static files to a web
server. In our testing, we ran the dev server which opened the app in a browser.
The front-end will immediately try to connect to MetaMask and the blockchain. It’s
important that the user’s MetaMask is on the Polygon network (or the network we
deployed to). If not, we prompt the user to switch network. Once connected, the
front-end loads initial data by calling loadAssets() — this function uses Ethers to
connect to the blockchain and fetch all assets (likely by iterating asset IDs up to
nextAssetld). It will also fetch pending user/tech requests if the user is admin, etc.,
to populate the UL

3. Backend Server Setup: We navigate to the /backend directory and install de-
pendencies (if any, e.g., npm install express sqlite3). We ensure a SQLite database file is
in place (the server code might create one if missing). We then start the Express server,
e.g., node server.js or npm start depending on how it’s set up. The server prints a mes-
sage like "Express listening on port 4000". We verify it by calling GET /gasCosts which
should return an empty list (since nothing logged yet). The Express server is relatively
independent; it doesn’t need to know contract addresses (except maybe if it also listened
to events, which in our case it does not). It just needs to be accessible to the front-end
(which it is, since both can be on localhost different ports, or they could be hosted to-
gether).

4. Predictive Maintenance Service: We launch the predictive script, e.g., node
predictiveService.js. This script will likely output logs like "Simulated sensor reading X
for asset Y" every few seconds/minutes. If it detects a threshold breach, it might log "High
temp detected on asset Y, reporting fault..." and then "Transaction hash: Oxabc...". We
ensure this service has access to:
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 The blockchain (it might use the JSON RPC HTTP endpoint or WebSocket). We
provide it with the RPC URL and perhaps use the deployer’s key or a dedicated key
for signing transactions.

o The contract addresses/ABIs (so it can call the functions).

o The SQLite DB (if it writes directly). If it uses HTTP to server, it needs server
address. For simplicity, we might just import the Hardhat artifacts (which include
ABIs) and use Ethers with the same INFURA API key. We also load a private key
for it (which could be the admin’s or another account that has User role). Ideally,
we register that account in the system: e.g., if using a separate key, after contract
deployment, we (as admin) call approveUser(predictionBotAddress) to authorize it
as a User so it can call reportFault. This step would be done either in deployment
or manually via Hardhat console.

5. Populate Initial Data (if needed): With everything running, the admin may
want to register some assets initially to test. This can be done through the Admin Ul: go
to “Register New Asset”, fill details (including a valid Globalld from the IFC file), and
submit. Alternatively, one could have a migration script that registers a bunch of assets
via Hardhat after deployment. We did it manually for demonstration, registering a few
sample assets corresponding to elements in the IFC model (ensuring the Globallds match
those in the MyBuilding.ifc used by the viewer).

6. Running the System: At this point:

« The React front-end is served (http://localhost:3000), the user can open it and use
the app.

o The Express server is running (http://localhost:4000) to handle logs.
e The predictive service is running in the background.

o The contracts are deployed on Polygon and contain whatever initial state (e.g.,
maybe admin already approved themselves and the predictive bot as users).

o MetaMask is configured for Polygon with the user’s account funded with a bit of
POL for transactions (e.g., a few tenths of a POL for testing). When a user performs
actions, we watch the terminal running the Express server — it will show any incoming
requests (for instance, after a fault report, we’d see a POST log). We also watch the
Hardhat or Infura logs for contract events or the predictive service output. If using
Infura, one can also monitor transactions on Polygonscan by the contract address to
see events getting recorded.

Migrating from Sepolia to Polygon: Initially, we tested the system on the Ethereum
Sepolia testnet. That involved deploying the contracts to Sepolia (which uses ETH test
tokens) and configuring MetaMask to use Sepolia. Once things were stable, we transi-
tioned to Polygon Amoy (the Polygon testnet) for further tests, and finally to Polygon
mainnet for demonstration. The migration steps included:
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o Deploying new instances of the contracts on the target network.

o Updating the front-end config with new addresses and possibly using the appropriate
ABI (if unchanged, ABI is same).

o Switching Infura endpoints from Sepolia to Polygon.
« Distributing POL to test accounts (instead of ETH).

o Different currency: PaymentManager code was initially written with “ETH” in mind
(naming), but on Polygon those are POL. This required no code change since POL
is also the native currency (just semantic clarity that 0.01 ether in code means 0.01
POL on Polygon). We double-checked all constants like the reimbursement amount
(0.01) to ensure it made sense value-wise on Polygon.

o Because Polygon has faster blocks and lower gas, the UX improved (transactions
confirmed within 5 seconds, and costs were pennies).

o We also took into account chain IDs and network differences in MetaMask: Meta-
Mask may treat Sepolia and Polygon networks differently, so we had to add the
Polygon network config to MetaMask (RPC URL, chain ID 137 or 80001 for Mum-
bai) in order for it to connect. The front-end can prompt this by an Ethereum API
call to switch network if needed.

Verification and Final Checks: After deployment, we performed a (full integration
test): registering a new user via the UI, approving them via admin UI (checked that
PaymentManager did reimburse 0.01 POL, verifying the PaymentManager balance de-
creased accordingly), that user reporting a fault, etc. We also tested the predictive flow
by artificially triggering sensor conditions (or by lowering the threshold temporarily). We
monitored the Polygon explorer to see events: for example, a FaultReported event car-
ries the assetld and description in logs we could see those on the blockchain, proving the
system’s transparency.

For maintaining the system, we documented how to restart each component. The state
mostly lives on-chain, so restarting the front-end or server doesn’t lose data. The SQLite
DB holds sensor data and gas logs; if it’s deleted, the only loss is the gas log (which could
be recovered manually by checking past transactions if absolutely needed). We set up the
server such that it creates the DB file if not present, so redeploying backend is simple.

In a production scenario, one would likely containerize each component (Docker for the
server and possibly the service, serve the React build on a CDN or static server) and use
environment-specific config for dev vs prod (for example, pointing to testnet or mainnet).
Our focus was to get a working prototype in a local environment and on a public test
network.
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4.8 Summary of Implementation

This chapter detailed the realization of a decentralized application for building mainte-
nance management, integrating blockchain and BIM technologies. We described how a
React front-end with a 3D IFC model viewer was developed to provide an intu-
itive interface, allowing users to click on building elements and report issues in-context.
The front-end is role-aware, altering available actions for building occupants, technicians,
and administrators, thereby enforcing usability constraints on top of the smart contract’s
role-based access control. We leveraged the IFC (Industry Foundation Classes) BIM
model to bridge the physical world and the digital records, an occupant sees a faulty
light in the 3D model and generates a blockchain transaction to log that fault, all in a
few clicks. The use of the IFC model viewer (built on Three.js) demonstrates how im-
mersive, data-rich environments can be combined with blockchain to enhance user
experience and reduce ambiguity in maintenance processes.

On the blockchain side, we implemented two Solidity smart contracts: AssetManager
and PaymentManager. The AssetManager contains the core logic of maintenance work-
flows: asset registration, fault reporting, maintenance tracking, and role management. By
storing asset states and emitting events for each significant change (faults, maintenance
start/completion, etc.), it creates an immutable ledger of maintenance events that
stakeholders can trust and verify. The PaymentManager contract handles the financial
transactions, enabling automated, rule-based disbursement of maintenance fees and gas
reimbursements. This smart contract layer realizes the key promises of blockchain in our
context: transparent logs (any broken equipment report or completed repair is recorded
on-chain), permissioned actions (only authorized roles can do certain things, enforced
by code rather than human procedures), and automatic execution of payments(once
conditions are met, the contract logic ensures technicians and users are compensated
fairly).

We also integrated an off-chain Express server and SQLite database which serve
as a supportive subsystem for data that is either too voluminous or not security-critical
enough to warrant on-chain storage. This includes tracking the gas costs that users ex-
pend (to facilitate an off-chain reimbursement mechanism that feeds into on-chain trans-
actions) and storing high-frequency sensor data for predictive maintenance analysis. By
off-loading this data, we keep on-chain operations efficient and cost-effective, a design
choice consistent with best practices to use off-chain storage for large datasets while using
blockchain for verification. The server acts as a mediator that the front-end can query for
aggregated info (like cost reports), complementing the direct smart contract calls. This
demonstrates a pragmatic approach to DApp architecture: using blockchain where it adds
value (integrity, decentralization) and traditional databases where they are more practical
(complex queries, large data).

A significant extension we built is the predictive maintenance microservice. This
component underscores the flexibility and extensibility of our architecture. It simulates
IoT sensors monitoring asset conditions and uses a simple algorithm to predict faults
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(e.g., detecting an overheating pattern). Upon detecting a likely issue, it autonomously
interacts with the blockchain by invoking the same smart contract functions that a human
user would (reporting a fault). Thanks to this, it creates a record on-chain of a poten-
tial failure was detected by the system, initiating the maintenance workflow without the
need of the user. We also ensured the trustworthiness of this process by hashing sensor
data periodically and storing it on-chain, thereby timestamping and sealing thedata in
the blockchain. This approach merges IoT and blockchain, illustrating how automated
data-driven decisions can be made transparent and auditable. The predictive service’s
integration shows that our DApp is not just a static application, but part of a larger cyber-
physical ecosystem that can include AI/ML analytics, sensor networks, and more. In the
context of facility management, this enables the system to detect upcoming maintenance
requirements which it records in an auditable ledger to shift from reactive maintenance
methods to proactive ones.

Overall, the implementation achieves the goals set out in the architecture (Chapter 3).
We have a working system where:

« Users, Technicians, and Admins interact through a unified platform (web
app) that ties together a BIM model and blockchain backend. The role-based inter-
face and smart contract permissions together enforce the correct workflows and data
visibility for each stakeholder

o All critical maintenance events are recorded on the blockchain, ensuring an
immutable history. For example, if a dispute arises whether a repair was made on
time or if a device consistently fails, the blockchain logs provide evidence. We met
the requirement of transparency and tamper-resistance by using Polygon’s public
ledger for these events.

« The BIM integration (via IFC) provides context, making the data easily un-
derstandable (seeing which asset in which room is broken, rather than dealing with
IDs in isolation). This addresses the usability and data integration aspect — bridging
maintenance management systems with BIM models, which has been a challenge
identified in prior research

¢ Off-chain components optimize performance and cost, handling things like
gas cost tracking and sensor storage, which would be impractical on-chain. At the
same time, we didn’t compromise the trust model: for every off-chain piece of data
that matters, we anchored it to the blockchain via hashes or events (for instance,
the gas usage ultimately gets approved by admin on-chain, and sensor data gets
hashed on-chain). This hybrid approach satisfies cost efficiency requirements without
sacrificing too much decentralization

o Payments to technicians and reimbursements to users are automated and
trustless. The admin just confirms the amounts, and the smart contract executes
the transfer from a prefunded contract. This removes the need for separate account-
ing outside the system; all parties can verify payment events on-chain. It showcases
how blockchain can streamline financial workflows in maintenance operations (no
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need to wait for end-of-month billing cycles; payment can trigger immediately upon
job completion and approval).

« Deployment on Polygon gave us real-world feasibility insight. The transactions in
our tests cost on the order of $0.01 each and confirmed within seconds, which proves
that the system could be used in a live setting without prohibitive costs or latency.
Polygon’s EVM-compatibility meant we could use the same code from Ethereum
testnets, highlighting the portability of our solution across blockchain networks.

In conclusion, the DApp demonstrates complete blockchain integration for building
maintenance management while IoT data and BIM visualization provide addi-
tional efficiency benefits. These technologies validate their combined ability to establish
a better maintenance process that functions transparently and efficiently while providing
users with friendly interfaces. The successful realization of this prototype sets the stage
for further evaluation (Chapter 5) regarding its performance, security, and user accep-
tance, and it lays the groundwork for potential enhancements (such as more sophisticated
predictive analytics, integration with facility management systems, or scaling to larger
deployments). The work in this implementation chapter confirms that the architecture
proposed is not only theoretically sound but also practically achievable with today’s web3
tooling, and it serves as a reference blueprint for similar blockchain+BIM applications in
the construction and facility management domain. The key accomplishments include es-
tablishing an immutable maintenance log, achieving real-time synchronization between a
BIM model interface and blockchain state, and introducing automated maintenance trig-
gers, all in a decentralized application that operates across multiple platforms (browser,
blockchain, server) in concert. The infrastructure implementation achieves the core ob-
jective of this thesis through proof of decentralized technology success for maintenance
management. The system demonstrates decentralized technology can effectively improve
maintenance management by delivering greater data security and automated process-
ing while integrating better than centralized systems.
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Chapter 5

Testing and Validation

5.1 Blockchain Network Evaluation (Ethereum vs. Poly-
gon)

We conducted a comparative evaluation of deploying the maintenance DApp’s smart con-
tracts on two blockchain testnet networks: Ethereum (Sepolia testnet) and Polygon (Amoy
testnet). The goal was to empirically assess transaction costs and performance on each
network and determine which would be more suitable for a real-world deployment of our
system. Key metrics observed include gas fees for typical operations, transaction confir-
mation times, and overall user experience in terms of responsiveness and cost-effectiveness.

Empirical Comparison Summary: Table 5.1 summarizes the empirical data from our de-
ployments on the two networks:

Ethereum Sepolia Polygon Amoy
Function & Role Gas Used Cost (ETH) tcont [s] | Gas Used Cost (POL) tcont [s]
Admin registerAsset 362877 1.81x107* 14.2 362877 3.6x1072 5.6
User reportFault 65 687 4.2x107° 13.4 65 687 6.6x107° 5.1
Tech. startMaintenance 141492 8.9x1075 10.4 141492 1.4x1072 5.2
Tech. completeMaintenance | 114628 7.4x107° 13.4 114628 1.1x1072 5.2

Table 5.1. Gas usage, on-chain fee, and confirmation latency for core mainte-
nance calls on Sepolia vs Amoy

5.1.1 Cost-Efficiency Comparison (ETH vs. POL per Function
Call)

Ethereum Sepolia and Polygon Amoy differ greatly in cost per transaction due to both
gas price and token value differences. On Sepolia, gas fees are paid in ETH, which is
highly valuable, whereas on Amoy (Polygon’s testnet), fees are in POL which has a much
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lower USD value. In our tests, an identical transaction cost orders of magnitude less on
Amoy than on Sepolia, for example, let’s take the function register Asset:

« Sepolia (Ethereum): For the same function execution, the fee was about 0.000181
ETH. At current prices on 25 July 2025 ($2,106 per ETH [coinmarketcap [a]]), that’s
roughly $0.38 in cost. Smaller function calls (e.g. tens of thousands of gas) would
correspond to only fractions of this ETH amount, but still notably higher in USD
than on Polygon.

o Amoy (Polygon): The POL fee for the same transaction was about 0.036 POL.
With POL trading around $0.1567 USD [coinmarketcap [b]] on 25 July 2025, this
comes out to only about $0.0056. Even when using a high priority gas price (30 Gwei
on Amoy) the dollar-cost remains negligible due to POL’s low price and Polygon’s
efficiency.

Polygon Amoy is far more cost-efficient. Even after accounting for gas usage being the
same, each unit of gas on Polygon costs less in USD because POL is cheaper than ETH
and Polygon’s network fees are lower. Function calls that might cost a few cents or dollars
worth of ETH on Ethereum cost mere fractions of a cent on Polygon. This cost advantage
makes Polygon very attractive for dApps concerned with transaction fees. For example,
deploying our test smart contract on Sepolia cost about $0.38 vs $0.005 on Amoy for
the same gas used.

5.1.2 Gas Usage Analysis per Function

Gas consumption for each function call was virtually identical on Sepolia and Amoy.
This is expected, since both networks run the Ethereum Virtual Machine (EVM) with
the same gas cost schedule. The provided data shows that for every tested function, the
gas units used were the same on both chains (differences, if any, were negligible).
For example, the contract deployment itself consumed about 2,879,407 gas on Sepo-
lia and the same 2,879,407 gas on Amoy. If a particular function used 50,000 gas on
Sepolia, it would use ~50,000 on Amoy as well.

This parity occurs because gas usage depends on the computational steps and storage
operations of the function, which do not change between Ethereum and Polygon. Our
contract’s bytecode was executed in the same way on both networks. The gas usage per
function in the table5.1 can be analyzed without worrying about chain-specific quirks.
Flor example, a state write or a hash computation costs the same gas on Sepolia as on
Amoy. The identical 2.88M gas used in deploying the contract on both networks confirms
this consistency. In summary, Polygon doesn’t reduce gas usage, but it reduces what
you pay for that gas (as seen above). Gas usage optimizations must come from the code
itself; the EVM charges the same gas for the same logic on both chains.

5.1.3 Confirmation Latency Analysis

Transaction confirmation was significantly faster on Polygon Amoy. Ethereum Sepolia
operates with a block time roughly in line with Ethereum mainnet with about 12 seconds

98



5.1 — Blockchain Network Evaluation (Ethereum vs. Polygon)

per block under PoS. In contrast, Polygon’s PoS chain (and thus Amoy testnet) has
a much higher block frequency, yielding typical confirmation times on the order of only
4-6 seconds.

In our observations, a transaction sent to Sepolia generally got included in the next
block within ~10-15 seconds and achieved full confirmation within ~1-2 minutes (after
a handful of blocks). Sepolia’s block finalization is around 12-24 seconds per block
in normal conditions, meaning even one block (first confirmation) takes that long. On
Polygon Amoy, blocks are produced far more quickly (multiple per 10 seconds), so trans-
actions were often confirmed within 2 seconds or a few seconds at most. Our contract
deployment on Amoy was mined in the first block (block position 0) and was confirmed
almost instantly after submission, whereas on Sepolia the deployment had to wait for the
next 12-second slot to be mined. This aligns with Polygon’s design as a high-throughput
chain: “on average, confirmation time ranges from 2 to 5 seconds” on Polygon ([maxelpay
[2024]]), versus Ethereum’s fixed ~12-second blocks.

Faster confirmation on Polygon can greatly improve user experience for dApps (near-
instant feedback), while on Ethereum one usually waits at least ~12 seconds for a single
block confirmation. However, it’s worth noting that finality on Ethereum (the point at
which a transaction cannot be reverted) is very robust with its PoS consensus, whereas
Polygon PoS relies on checkpointing to Ethereum, but for typical app purposes, the speed
of Amoy’s block confirmations is a clear advantage.

5.1.4 Current ETH and POL Token Prices (Today)
As of today (May 20, 2025), the token prices are as follows:

« Ethereum (ETH): Approximately $2,106.29 USD per ETH [coinmarketcap [a]].
Ethereum’s price is up about 5.4% in the last 24 hours. This high value per ETH
is why even tiny fractions of ETH in gas fees can translate to significant cost (e.g.
0.001 ETH ~$2.53).

« Polygon (POL): Approximately $0.1567 USD per POL token [coinmarketcap
[b]]. POL is up ~0.9% in the last 24 hours. With a price well under a dollar, POL
makes gas fees on Polygon extremely cheap in absolute terms. For instance, 1 POL
(worth ~$0.23) can pay for many transactions on Amoy.

These up-to-date prices put the cost differences in perspective. Paying 0.000181 ETH
is about $0.38, whereas 0.036 POL is only about $0.0056, as noted. The huge gap
between ETH’s and POL’s unit price underpins the cost-efficiency of Polygon for trans-
action fees.

The same smart contract deployment address is currently:
¢ Ethereum Sepolia Contract: 0x8D6427c2a8Ed5bC{83246E8ch59CD926742C6B40
o Polygon Amoy Contract: 0x02d6Ae3bFClaecd57D732610b5A2d0e6fc252735
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Both testnet contracts were deployed by the same account and have the same logic (and
gas profile).

5.1.5 Conclusion

Ethereum Sepolia and Polygon Amoy both executed the same smart contract with equal
gas requirements, but Polygon Amoy achieved vastly cheaper and faster trans-
actions. Gas usage per function did not change between networks, underscoring that
performance in terms of execution is equivalent. However, the cost to the user (in USD
or fiat terms) was dramatically lower on Polygon because of lower gas prices and a lower-
value token. Likewise, transaction throughput and confirmation speed on Poly-
gon outpaced Sepolia, with users seeing confirmations in a few seconds on Amoy versus
around 12+ seconds on Sepolia. These differences highlight the typical trade-offs between
Ethereum mainnet (simulated by Sepolia testnet) and Polygon PoS sidechain (Amoy test-
net): Ethereum offers the base security and decentralization at higher cost
and latency, while Polygon provides speed and cost-efficiency at the expense
of being a separate chain anchored to Ethereum.

5.2 Usability Evaluation of the DApp

Beyond technical performance, we evaluated the usability of the front-end decentralized
application (DApp) to ensure that end-users can interact with the maintenance system
effectively. This DApp provides a 3D BIM interface (IFC model viewer) and various forms
for reporting issues and managing tasks. A usability test was designed with scenarios
covering all user roles and their primary tasks. The aim was to identify any UI/UX prob-
lems and measure how easily typical users (occupants, technicians, administrators) can
complete maintenance workflows using the system.

User Roles and Test Participants: We defined three key roles in the system, and
for each role recruited representative test participants or personas:

« Building Occupant (End-User): Typically a resident or office worker who would
use the DApp to report maintenance issues (faults) in the building. This user has
basic permissions (can report a fault on an asset they select in the BIM model, view
status updates on their reports, etc.). For testing, we assumed a participant with
minimal technical knowledge to see if the interface is intuitive for laypersons.

e Maintenance Technician: A user responsible for addressing and fixing faults.
In the DApp, technicians can view assigned work orders, update the status of a
maintenance task (e.g., start or complete maintenance), and possibly add notes.
We enlisted a participant with some technical background to perform technician
tasks, ensuring the workflow (from seeing a reported fault to logging completion) is
straightforward.

o Administrator (Facility Manager): This is the admin role with the highest
privileges. Admins can register new assets, approve new users or technicians, assign
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reported faults to technicians, and initiate payment reimbursements. The test par-
ticipant for this role might be, for example, a facility manager or an I'T manager
familiar with maintenance processes. This role tests more complex interactions in
the DApp (like navigating admin dashboards and managing user roles).

Test Tasks and Scenarios: We crafted realistic tasks for each role to perform during
the usability test. Each task was designed to be representative of a core use-case of the
DApp:

e Occupant Task: Report a Fault on an Asset, The occupant is instructed to use
the 3D model to locate a specific building element (e.g., a HVAC unit on the third
floor) and submit a fault report describing an issue with that element. This task
evaluates the intuitive nature of the BIM interface (can the user find the item by
clicking the model or searching?) and the simplicity of the fault reporting form. We
measure if the occupant can complete the report without guidance, and how long it
takes.

o Administrator Task: Assign a Fault to a Technician, After a fault is reported, the
admin must review the new fault report and assign it to an available technician. The
admin may need to navigate to an admin panel, view a list of pending fault tickets,
and use an interface to choose a technician and assign the task. This scenario tests
whether the admin UI clearly presents pending issues and provides an easy way to
dispatch them. It also checks that role-based features (only admins see the assign
option) work correctly. Time to complete the assignment and any confusion in the
process are noted.

o Technician Task: Complete a Maintenance Task, The technician finds that an
issue has been assigned to them (perhaps they receive a notification or see it in their
task list). The task is to update the system when the maintenance work is done.
This involves changing the asset’s status to "Operational” via the DApp and possibly
triggering the PaymentManager smart contract to record a maintenance completion
(which might include a reimbursement or payment if applicable). We observe if the
technician can easily locate their tasks, mark one as completed, and whether the
interface provides appropriate feedback (like a confirmation that the status changed
and an event was emitted). This scenario assesses how well the system supports the
technician’s workflow and whether all necessary information (asset location, fault
details) is accessible for them in the UL

Overall, the usability evaluation provided valuable feedback. It confirmed that our role-
based front-end design is largely effective (each user could access the features they needed
and no one could perform unauthorized actions), and it identified a few areas to refine
(mostly in front-end clarity and guidance).
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5.3 Smart Contract Security Testing

To ensure the robustness of the blockchain logic, we performed a static security analysis
of the smart contracts using Slither in a local environment, an open-source Solidity ana-
lyzer. Slither is a security framework by Trail of Bits that automatically detects common
vulnerabilities and code issues in smart contracts [Feist]. It is crucial to use such a tool
in blockchains since it can detect flaws very fast, before launching, with very little human
work required. By detecting bugs and issues ahead of time, this way of working helps
ensure the contract won’t have problems that require costly fixes in the future.

Using Slither on our AssetManager.sol and PaymentManager.sol contracts revealed several
issues, which we addressed as follows:

+ Missing Event Emissions: Slither flagged that some state-changing functions did
not emit events. For example, operations like asset registration or owner updates
were being performed without logging an event. This is a vulnerability for trans-
parency, as off-chain systems would find it difficult to track critical changes without
events [slither|. Resolution: We introduced appropriate Solidity events and emit
calls for all important state changes (e.g., asset status updates, new asset or user
registrations, payment disbursals). Emitting events ensures that every critical action
(such as a change of ownership or a fault report) is recorded on-chain logs, facilitating
off-chain monitoring and audits.

o Dangerous Use of Timestamps: The analysis warned about the use of block.timestamp
in the contracts. Relying on timestamps can be unsafe because miners can manipu-
late the timestamp within a reasonable range [slither]. In our maintenance system,
timestamps were used (for instance, to record when a fault was reported or to en-
force time-based conditions). Resolution: We reviewed all timestamp usages. In
contexts where exact timing was not security-critical (e.g., for logging events), using
block.timestamp is acceptable. However, we added comments and minor checks to
ensure that any time comparison has a tolerable window. In future designs, a safer
approach could be using block numbers for critical time logic. The key point is
that we acknowledged this warning and confirmed that no game-breaking reliance
on timestamps (such as for randomness or strict deadlines) was present.

o Costly Operations in Loops: Slither identified loops in our contract functions
that could become costly if the arrays grew large. For instance, iterating through
a list of all assets or maintenance requests on-chain could consume a lot of gas and
even lead to out-of-gas errors if not bounded [slither]. Resolution: We refactored
functions to avoid unbounded loops. In cases where loops were necessary, we ensured
that the list sizes are limited by design (for example, an admin function that iterates
over a small set of pending reimbursements in PaymentManager). We also considered
moving some logic off-chain if iteration over many items was needed. To solve this
vulnerability we used mappings and splitting certain tasks, we eliminated any costly-
loop Slither warnings. This optimization not only prevents potential denial-of-service
via heavy loops but also improves overall gas efficiency.
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e Naming and Shadowing Issues: The analysis discovered that some variable
names were being used twice. For example, a local variable name in a function
might have shadow a state variable or built-in name, which can lead to confusion
or errors [slither]. Such shadowing can make the code harder to understand or even
cause logic to malfunction if the wrong variable is referenced. Resolution: We
corrected these by renaming variables and functions for clarity and uniqueness. Any
function or variable that triggered a shadowing warning was reviewed and adjusted to
follow Solidity best practices (e.g., prepend _ to function parameters that shadow
state variables, or choose distinct names). This resolved Slither’s naming-related
warnings and improved code readability. Additionally, we enforced Solidity naming
conventions (like capitalizing constant names, camelCase for functions) to align with
community standards.

After these fixes, the smart contracts passed the Slither analysis with no high-severity
issues. No reentrancy, arithmetic overflow, or access control bugs were detected by the
tool, giving us confidence in the contracts’ security. In summary, static analysis with
Slither proved valuable: it highlighted subtle weaknesses (missing events, timestamp re-
liance, gas-inefficient code, and naming problems) that were not obvious at first glance,
and we systematically resolved each issue. This process strengthened the smart contracts
before they were deployed to any network, which is crucial for a decentralized maintenance
system where vulnerabilities could compromise trust.
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Chapter 6

Conclusion and Future Work

This final chapter provides a summary of the accomplishments of this research, discusses
the limitations of the developed decentralized maintenance management system, and out-
lines directions for future work. The implemented prototype demonstrated how Building
Information Modeling (BIM) and blockchain can be integrated to improve building main-
tenance processes. Even though the results are good for transparency and efficiency, the
system is still considered a proof-of-concept. This means that it is important to study the
current barriers and think ahead about future improvements to move from a prototype to
a working solution.

6.1 Summary of Achievements

The project successfully met its primary objective of creating a decentralized application
for building maintenance management that leverages both BIM and blockchain technolo-
gies. On the blockchain side, a set of smart contracts was developed to handle mainte-
nance task delegation, verification of work completion, and record-keeping of tasks. These
smart contracts enforce the workflow rules transparently: for instance, a maintenance task
can be delegated to a technician as a blockchain transaction, and the task is only marked
as completed (and potentially triggers payment) once the assigned technician submits
proof of completion on-chain.

This on-chain verification and tracking mechanism ensures that maintenance actions
are tamper-evident and accountable. It aligns with concepts in prior research where smart
contracts in a decentralized autonomous organization (DAQO) setup automatically release
payments upon human confirmation of task completion, thereby increasing trust and ac-
countability in maintenance workflows. By using blockchain as the backbone, the system
creates an immutable audit trail of all maintenance activities, which can boost trans-
parency among stakeholders (facility managers, contractors, etc.) and reduce disputes
over whether and when a task was performed.

On the front-end side, the system features a web application built with React, in-
tegrated with a 3D BIM viewer capable of rendering Industry Foundation Classes (IFC)
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models. This user interface allows maintenance personnel to interact with a digital twin of
the building. They can navigate the building model, click on building elements to retrieve
maintenance history, and visualize active or past work orders in their exact spatial con-
text. The inclusion of BIM is a key functional achievement: the building model provides
an intuitive 3D visualization and a standardized representation of building information
across the facility’s lifecycle.

In recent years, researchers have emphasized that BIM can support facilities manage-
ment teams by linking maintenance data to the physical context of assets and by providing
visual analytics for maintenance tasks [Bouabdallaoui et al. [2021]]. Our implementation
realizes this by connecting each maintenance task to an element in the BIM model. For
example, if a lamp or a HVAC unit requires servicing, the user can locate that component
in the 3D model, view its details and past records, and even attach new maintenance
records to it. This seamless integration of the Ul with BIM greatly improves situational
awareness: technicians can better understand the location and environment of equipment
before going on-site, and managers can more easily comprehend which parts of the build-
ing are experiencing frequent issues.

System performance was evaluated through comparative testing on two blockchain
networks: Ethereum Sepolia (a proof-of-stake Ethereum test network) and Polygon Amoy
(a Polygon PoS test network). This comparison highlighted notable differences in trans-
action cost, speed, and scalability. The Ethereum network (Sepolia) exhibited higher gas
fees and longer transaction confirmation times, and that is similar to the Ethereum main-
net’s well-known performance constraints. In contrast, the Polygon network processed
transactions faster and with negligible fees. Quantitatively, Ethereum’s base capacity is
on the order of only tens of transactions per second (roughly 15-25 TPS on mainnet)
and transactions often incur dollar-scale fees, whereas Polygon can theoretically handle
thousands of TPS with gas costs amounting to fractions of a cent [Arthur [2024]].

Our experiments reflected this gap: operations that would be expensive on Ethereum
(even though Sepolia testnet ETH has no real monetary cost, the gas usage is indicative
of cost on mainnet) were way cheaper on Polygon. For example, a typical task delegation
transaction on Sepolia might consume a similar amount of gas units as on Polygon, but
due to Polygon’s lower gas price and faster block times, the transaction would confirm in
around 2 seconds with a trivial fee, whereas on Sepolia it might take 15 seconds and cor-
respond to a much higher theoretical fee. This performance edge of Polygon demonstrates
the viability of the system at scale: a maintenance platform needs to handle potentially
hundreds of transactions (work orders, updates, confirmations) in a day for a large facility,
and doing so on Ethereum mainnet would be cost-prohibitive and slow. Using a Layer-2
solution like Polygon, the system gets the required speed and cost savings it needs to be
practical and overcome the scalability problem blockchain apps often face.

In implementing the prototype, special consideration was given to user convenience
and data management. One notable feature is the handling of blockchain transaction
fees (gas costs) for end-users. In a naive blockchain application, each maintenance staff
or building manager using the system would need to pay gas fees for every transaction
(e.g., creating a task or marking a task complete), which would be a significant barrier to

106



6.2 — Limitations

adoption. To mitigate this, our design employs an off-chain gas fee reimbursement mech-
anism. In practice, this means the DApp can be configured such that a central entity (for
example, the facility owner or a dedicated relayer service) ultimately bears the gas costs.

By handling gas fees off-chain (for the user reimbursement service), the system lowers
the entry barrier for users who may not be familiar with cryptocurrency. Another technical
achievement is the use of off-chain data storage combined with on-chain hashes to manage
large maintenance-related data. BIM models and maintenance records can include sizeable
files or numerous sensor readings, which are impractical to store directly on the blockchain
due to cost and size limitations.

Following best practices, the implementation stores detailed data (such as the gener-
ated data for the simulation of I0T) in off-chain repositories (database) and only keeps
a cryptographic hash of that data on the blockchain. Storing hashes on-chain preserves
the ability to verify the integrity and timestamp of the data—any future retrieval of the
file can be checked against the hash to ensure it has not been altered. Crucially, this
design avoids bloating the blockchain with large files and keeps transactions lightweight,
as recommended in blockchain architecture guidelines (large data should remain off-chain
with only links or hashes on-chain).

This approach was applied, for instance, to the predictive maintenance metadata: when
sensor data was collected for equipment condition monitoring, the raw data remained
in an off-chain database, but a hash of that dataset was recorded in a smart contract
transaction. This way, if an algorithm later flags a potential fault (using the sensor data),
we have an immutable on-chain proof of exactly which data was used for that prediction,
ensuring trust in the predictive maintenance process without overloading the blockchain.
Collectively, these measures — gas fee abstraction and off-chain data handling, improve
the system’s practicality and set the stage for scaling up to real-world use.

6.2 Limitations

Despite its technical progress, the system in its current form has several limitations.
First, it has only been evaluated in a controlled, non-production environment. The
testing was performed on Ethereum and Polygon test networks and with simulated main-
tenance scenarios, but no live deployment in an actual building has taken place yet.
This means that real-world factors such as unpredictable user behavior, long-term system
robustness, and integration with actual facility management processes remain untested.
The prototype demonstrates feasibility and functionality, but issues of scale and reliability
might emerge in a real deployment.

For example, in a large campus with hundreds of users, the throughput of even Poly-
gon might be challenged, or network connectivity issues could disrupt MetaMask usage
on-site. Likewise, we have not observed the system’s behavior over months or years of
operation; smart contracts cannot be easily changed once deployed, so any minor bug
could become a long-term issue in production. The absence of a field trial thus far is
a significant gap — one that is common in academic prototypes in this domain. Many
prior studies on blockchain-BIM integration stopped at the conceptual or prototype stage
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without reporting lessons from real deployment, and our work, at this stage, shares that
limitation.

Without direct user exposure in a live setting, we cannot fully assess user acceptance
or measure concrete benefits like reduction in maintenance resolution times. This gap be-
tween the controlled environment results and the complexities of a real facility deployment
is something that needs to be addressed before claiming the system is ready for industry
use.

Secondly, the access control and security model of the system is relatively simple
and not yet suitable for a production environment. The smart contracts and applica-
tion assume a moderate level of trust and tech-savvy behavior from users. There is no
fine-grained role-based access control implemented beyond the basic distinction of dif-
ferent Ethereum addresses. In practice, maintenance management involves roles such
as administrators, supervisors, technicians, and external contractors, each with specific
permissions.

In the current prototype, if someone has the right contract address and a funded
account, they could call functions that perhaps they shouldn’t (unless explicitly restricted
by the contract logic). For example, any user with a valid account could attempt to mark
a task as completed; the system relies on the contract checking that the caller is indeed
the one assigned to the task, but there is no broader organizational authentication beyond
that. There is no integration with existing identity management or authentication systems
(like an LDAP/Active Directory or even a simple username/password server).

This lack of complex access control means the system may be vulnerable to misuse if
deployed as-is—for instance, nothing currently prevents a user from registering themselves
as a “manager” if they somehow obtained the necessary keys or if the Ul does not enforce
role separation strictly. Moreover, while the blockchain provides integrity of records, it
does not inherently secure the front-end: an attacker with knowledge of the contract ABI
could bypass the application and interact directly with the smart contract.

If our contract functions are not carefully permissioned, such direct interaction could
break the intended business logic. In summary, the prototype does not yet implement
the rigorous security measures (like multi-signature approvals, hierarchical roles, or smart
contract-based role management) that a real system would require. This is a conscious
limitation left for future enhancement, as the focus was on proving the core concept.

Another limitation is that the DApp depends on MetaMask and client-side logic
and this could cause problems with how easy it is to use and how dependable the system
is. Users have to use MetaMask (or an Ethereum wallet like it) to verify and authorize
their transactions. This dependency implies that every end-user must have a certain level
of familiarity with blockchain tools: they need to install the extension, manage a pri-
vate key, switch to the correct network (Sepolia, Polygon, etc.), and handle transaction
confirmations.

For maintenance staff who may not have any experience with cryptocurrencies, this
is a significant hurdle. In its current form, the system’s user experience is geared toward
tech-savvy users or developers. There is a risk that non-technical users would find it
cumbersome to carry out what should be simple tasks (like closing a work order) due
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to the extra steps of dealing with a cryptographic wallet. Additionally, because much of
the workflow logic (such as form input validation, certain business rule enforcement, and
triggering of transactions) is implemented in the React front-end, the system’s correctness
partly relies on the front-end functioning properly and as intended. If the front-end
application has a bug, or if a user decides to interact with the blockchain back-end directly
(bypassing the UI), there could be inconsistencies.

For example, the front-end might prevent a user from creating a task without attach-
ing a certain document by design, but the smart contract might not strictly enforce that
rule; a direct call to the contract could create a task without the document, leading to
data inconsistency. Relying on the client side for critical checks is a known weak point,
as it assumes users will not or cannot circumvent the provided interface. While this is
acceptable in a prototype, a production system would need more robust server-side or
on-chain enforcement of all rules.

Finally, the project’s testing and quality assurance processes are limited. Beyond
basic functionality tests during development and the use of Slither (a static analysis tool)
to scan the smart contract code for common security vulnerabilities, no extensive auto-
mated testing framework was applied. There is a lack of unit tests for smart contracts
and integration tests for the end-to-end system. This means there might be edge cases or
concurrency issues (e.g., two users trying to update the same task at the same time) that
were not observed.

Additionally, no formal code audit was performed; in industry, it is common to have
third-party security audits for smart contracts, but our contracts have only undergone
informal review. The absence of rigorous testing increases the risk that undetected bugs
or security flaws remain in the system. For instance, while Slither can catch certain issues
(like reentrancy vulnerabilities or unused variables), it cannot guarantee the absence of
logical errors. Without deploying the system widely, we have also not tested its user
acceptance.

We do not know how intuitive the interface is for facility managers or technicians in
practice, or whether the blockchain latency would frustrate users accustomed to instanta-
neous app responses. In summary, the prototype’s reliability and user-friendliness have not
been proven under diverse scenarios, which is a limitation that tempers the interpretation
of the results.

6.3 Future Work

Considering the above limitations and the evolving nature of technology, there are several
important directions for future work to extend and improve the system:

1. Real-world deployment and evaluation: The immediate next step is to deploy
the system into use in real operations to check its effectiveness and usefulness. You could
start by conducting an experiment in a set-up area managed by the facility department,
where pilots are encouraged. By conducting a pilot deployment, one can collect data on
how the system behaves with real users, real maintenance tasks, and live integration into

109



Conclusion and Future Work

facility operations.

Key questions to answer would include: Does the blockchain-based workflow noticeably
improve (or hinder) the efficiency of maintenance processes? How do actual users (tech-
nicians, managers) adapt to using MetaMask and the BIM viewer in their daily routine?
What is the realistic transaction volume, and can the chosen blockchain network handle
it with low latency at all times? During such a pilot, it would be valuable to measure
quantitative metrics (e.g., the time taken from issue report to issue resolution before and
after the system’s introduction, number of tasks closed per week, etc.) and qualitative
feedback (user satisfaction, perceived ease of use). Performing this kind of field study will
likely reveal unforeseen challenges and guide refinements.

For example, users might say thatswitching networks in MetaMask is confusing, or the
BIM model may be too hard to navigate on a tablet during on-site use. Those discoveries
are important for guiding future adjustments. Moreover, real deployment would let us
check how well the system works when many people use it and whether its security is
maintained. Learnings from the field will add to the prototype findings and are necessary
before scaling up. It is worth noting that many academic projects on blockchain in con-
struction have stopped short of real deployment, leading to a gap in understanding the
practical viability. Sharing the results of the deployment would help prove how BIM and
blockchain can be used together outside of research settings.

2. Enhancing BIM visualization with spatial analytics: The integration of a
BIM viewer opens up numerous possibilities for advanced functionality, and future work
can focus on adding features like indoor navigation and spatial queries within the BIM
interface. Currently, users can see the location of maintenance tasks in 3D, but they must
rely on their own knowledge or external guidance to physically reach that location in the
building.

A valuable enhancement would be an indoor navigation module that uses the
BIM data to guide users through the building. For instance, if a technician needs to
service an electrical panel, the system could not only highlight the panel in the model
but also provide step-by-step directions (potentially on a floor plan or even in augmented
reality) to get there from the technician’s current position. This requires integrating
indoor positioning systems (like Bluetooth beacons or Wi-Fi triangulation) or at least
providing maps that technicians can follow. Implementing spatial query capabilities is
another promising improvement.

Users could query the model for assets by type, location, or condition. For example, a
manager might ask the system to “find all fire dampers on the second floor that haven’t
been inspected in the last year” — the system would then highlight those components in
the BIM view and list relevant tasks or records. This kind of query-driven interaction
would leverage the rich data in BIM and the blockchain records together. In the future,
our system could incorporate AR features: using a tablet or AR glasses, a technician could
hold up the device and see navigation arrows or equipment information layered on their
view of the building, using the BIM model as the source of truth for where things are.

While AR and indoor positioning bring additional complexity (in terms of technology
and calibration), they represent a frontier for improving maintenance efficiency. Thus, a
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future iteration of this project should explore integrating such spatial technologies, mak-
ing the maintenance platform not just a passive record system, but an active guide for
technicians moving through real space.

3. Usability and user experience research: Future work should also rigorously
address the usability of the system. Introducing novel technology like blockchain into
maintenance operations will only succeed if the end-users—maintenance technicians, fa-
cility managers, etc.—find the system accessible and helpful. A structured user experience
(UX) study should be conducted following standard evaluation frameworks.

One recommendation is to use the NASA Task Load Index (NASA-TLX), which
is a widely-used tool for assessing perceived workload across mental, physical, temporal,
performance, effort, and frustration criteria [Bouabdallaoui et al. [2021]]. Maintenance
personnel could be asked to perform a set of typical tasks using the new system (for
example, receiving a work assignment, finding the location in the BIM viewer, and logging
the completion on the blockchain) and then fill out a NASA-TLX questionnaire. This
would quantify how demanding the system is to use compared to their current maintenance
management process. If the scores indicate high frustration or effort, that would highlight
areas for improvement in the interface or workflow. Another metric to consider is the
System Usability Scale (SUS), which provides a quick measure of overall usability.

In addition to surveys, observational studies and interviews should be used. Watching
how technicians interact with the application can uncover Ul pain points (perhaps they
struggle to rotate the 3D model or to understand the MetaMask prompts). Interviews can
the preferences for the user to us, such as “I would like that the system could do X” or
“For me it takes too long to do Y”. When human-centered design principles are followed
and feedback is acted on, the system can be adjusted to work smoothly in people’s daily
lives.

The final goal is to ensure that the technology augments the maintenance process
without overwhelming the user. Blockchain and BIM in the background can be com-
plex, but the front-end should strive to present a simple, almost invisible, experience of
those technologies. Continued usability testing, especially after major updates, will be
important to track improvements. Over time, such evaluations can be documented and
perhaps contribute to industry guidelines on how to design decentralized applications for
non-technical users in the construction/facility sector.

4. Predictive maintenance and Al integration: A long-term and impactful direc-
tion for future work is the incorporation of machine learning (ML) and predictive
analytics into the maintenance management system. Right now, the system is largely
reactive: it logs issues that humans report and tracks the completion of scheduled or
on-demand tasks. However, with IoT sensors increasingly deployed in modern buildings
(monitoring equipment vibration, temperature, air quality, etc.), there is an opportunity
to predict issues before they escalate.

The concept of predictive maintenance is to analyze operational data from equipment
to anticipate failures, rather than waiting for a breakdown or following a fixed schedule.
Future versions of the system could integrate data streams from building sensors and use
ML models to detect anomalies or degradation in performance.
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For example, an ML model could continuously analyze the current draw and tem-
perature of an HVAC motor; if it notices a pattern indicative of impending failure, it
could automatically create a maintenance task on the blockchain for a technician to in-
vestigate that motor. By doing so, maintenance becomes proactive: addressing problems
before occupants even realize them. Research in facility management has shown that
such data-driven approaches can significantly reduce unplanned outages and maintenance
costs. Implementing this would require a pipeline where sensor data is collected (probably
off-chain due to volume), processed by ML algorithms, and then triggers smart contract
interactions.

The blockchain can play a role by timestamping sensor data hashes (to ensure the
authenticity of data feeding the algorithms) and by recording the issuance of predictive
alerts in a tamper-proof way. One could even envision smart contracts that hold a simple
logic: if a trusted oracle or off-chain service signals that “Component X is likely to fail in
5 days,” the contract could automatically flag this in the system and perhaps notify the
responsible personnel via the UL It is also useful to use ML to help manage maintenance
activities by forecasting the right time to work on an asset to avoid causing much trouble
and expense. Since these components are important, it will likely take experts from data
science, building engineering and blockchain oracles to implement them. It also raises new
considerations: ensuring the ML model’s recommendations are explainable and justified
(especially if they will trigger automated actions), and maintaining occupant privacy if
sensors capture environmental data.

Still, introducing a predictive maintenance module would make the system far more
valuable, allowing it to act as a guide that helps avoid problems and choose the best
ways to maintain equipment. This aligns with the broader industry trend of moving from
purely corrective or preventive maintenance to a predictive paradigm, leveraging IoT and
Al for smarter facilities management. Our blockchain-BIM framework, enhanced with
such capabilities, could serve as a foundation for an autonomous maintenance ecosystem
where data flows securely, and the building effectively helps to take care of itself through
advanced analytics.

Concluding remarks: In short, this thesis has demonstrated that decentralized building
maintenance management is possible, as it connects the detailed data from BIM to the
security and automated processes of blockchain. The prototype achieved core functional-
ities—secure task delegation, transparent tracking, and an interactive 3D interface—that
show clear potential for improving how maintenance operations are conducted. At the
same time, the project pointed out some of the issues that come up as you move from a
prototype to a final system such as getting it to work smoothly, improving its security and
ensuring it matches current practices. The work discussed above shows the path forward to
address these issues. By deploying the system in real settings, refined for users, improved
with new tech features and linked to business systems, the solution can transform into a
strong industry tool. Ultimately, this research contributes to the vision of smarter, more
resilient building management. A decentralized BIM and blockchain-based maintenance
platform, once fully realized, can ensure that information flows more freely and securely
between building stakeholders, that maintenance actions are verified and optimized, and
that the built environment is managed with greater foresight and transparency. As these
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systems improve and different experts collaborate, they could become essential for the
next phase of facility management, resulting in safer, more efficient and more sustainable
buildings.
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