o
N\ 1859 e
S, w2

Politecnico di Torino

Master’s Degree in Artificial Intelligence and Data Analytics
A.a. 2024/2025
Graduation Session July 2025

Bridging the Communication Gap:
A Mobile App for Seamless
Integration of Sign Language in
Real-Time Video Communication

Supervisors: Candidate:
Prof. SARAH AZIMI DAVIDE NATALE
Dott. CORRADO DE SIO

Summary

Bridging the communication gap between deaf and hearing individuals remains
a significant challenge, particularly within specific domains such as education,
healthcare and public administration. Although sign languages are fully recognized
as natural languages, their limited integration into mainstream communication
tools contributes to the social and linguistic marginalization of deaf communities
worldwide. Addressing this gap requires the development of inclusive, privacy-aware,
and real-time technological solutions that facilitate seamless interaction between
individuals, regardless of their different modalities of communication.

This thesis aims to contribute to this objective by building an Android mobile
application that integrates an Al-powered bidirectional translation engine.
Specifically, the project involves the design and implementation of two distinct,
interconnected modules.

The first module is a backend system composed of multiple microservices, each
running in a Docker container. The core service is a Node.js-based web server
responsible for handling user authentication, video calls and user data, which is
stored in a relational PostgreSQL database. In particular, for video calls, the
server manages both the signaling process—using push notifications—and the routing
and forwarding of media streams among participants. Additionally, to support
real-time sign language translation, the server communicates with two Python-
based microservices that process media streams by executing the corresponding Al
translation algorithms.

The second module is an Android mobile application built with Expo, which
interacts with the backend via RESTful APIs. Users can use it to engage in video-
based interactions similarly to popular video conferencing tools, but enhanced by
real-time sign language translation features.

The result of this work is a fully functional prototype designed to provide a solid
foundation for future enhancements and further development.

11

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Sarah Azimi and
Corrado De Sio, as well as to Federico Buccellato, for their constant availability,
insightful guidance, and invaluable support throughout the development of this
project. I am especially thankful for the opportunity they gave me to work on such
a meaningful and stimulating topic.

[am also deeply grateful to my family and friends, in particular my cousin Valentina
and my friend Alessandro Carosetti, for their support and encouragement through-
out my academic journey. Their presence and belief in me have been essential in
reaching this important milestone.

v

Table of Contents

List of Tables VIII
List of Figures X
Acronyms XI
1 Introduction 1
1.1 Deaf People and Sign Language 1
1.2 Motivation 2
1.3 Goal 2
1.4 Thesis structure 3

2 Related Works 4
2.1 Early Approaches 4
2.2 Deep Learning Approaches)
2.2.1 Sign Language Detection and Identification. 5

2.2.2 Sign Language Segmentation 6

2.2.3 Sign Language Recognition 6

2.2.4 Sign Language Translation 7

2.2.5 Sign Language Production, 7

2.3 Commercial Solutions oo 8

3 Background 9
3.1 Development Tools & Versioning 9
311 Git .o 9

3.1.2 JSON . . . 10

3.1.3 Swagger (OpenAPI) 10

3.1.4 Docker 10

3.2 Frontend Technologies 11
3.2.1 JavaScript 11

3.2.2 React Native (Expo) 11

3.3 Backend & API Development

331 Python.
3.3.2 Nodejs (Express)
3.3.3 Sequelize
3.34 PostgreSQL
335 JWT . . .
3.3.6 Redis.
3.3.7 Nodemailer
3.3.8 Supabase
3.4 Real-time Communication & Notifications
34.1 WebSocket
3.4.2 FCM
3.4.3 Mediasoup
3.5 Media Processing oo
3.5.1 FFmpeg
4 Methodology
4.1 System Architecture
4.2 Mobile Application
4.2.1 Functional Requirements
422 Actorsand Use Cases
4.2.3 User Interface Design
4.3 Backend System
4.3.1 Authentication
4.3.2 Database Design L.
4.3.3 API Design and Implementation
4.3.4 Push Notification Architecture
4.3.5 Video Call Management
4.3.6 Integration with Translation Platform
5 Application Testing
5.1 Testing Setup
5.2 Evaluation Metrics
53 Results
6 Conclusion and Future Works
6.1 Thesis Summary
6.2 Future Works
Bibliography

VII

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1

Authentication APIs. 35
Users APIs. 35
Calls APIs. 36
Contacts APIs. 36
Profile APIs. 36
Downloads APIs. 37
Tokens APIs. 37

Average processing times (s) for each stage in both translation
directions. 47

VIII

List of Figures

4.1 System Architecture.o 19
4.2 Use Cases Diagram. 22
4.3 Application Structure.o 23
4.4 Registration and Authentication Screens. 24
4.5 Password Recovery Screens. 25
4.6 Calls Management Screens. 26
4.7 Info Call Screen. 27
4.8 Contacts Management Screens. 28
4.9 Profile and Preferences Management Screens. 29
4.10 Incoming Call Response Screens. 30
4.11 Database Structure.o 34
4.12 FCM Service Architecture. L. 38
4.13 Video Call Signaling Process. 40
4.14 Translation Platform Architecture. 42
4.15 Video Call Architecture. 44

IX

Acronyms

API

Application Programming Interface

Al
Artificial Intelligence

REST

Representational State Transfer

CNN

Convolutional Neural Network

JSON
JavaScript Object Notation

XML
Extensible Markup Language

JWT
JSON Web Token

FCM
Firebase Cloud Messaging

YAML
Yet Another Markup Language

ML

Machine Learning

XI

ORM
Object-Relational Mapping

SQL
Structured Query Language

HTTP
Hypertext Transfer Protocol

TTL

Time-to-Live

SMTP

Simple Mail Transfer Protocol

HTML
Hyper Text Markup Language

TCP

Transmission Control Protocol

SFU

Selective Forwarding Unit

RTP

Real-time Transport Protocol

ACID

Atomicity, Consistency, Isolation, Durability

URL

Uniform Resource Locator

STT
Speech-to-Text

TTS
Text-to-Speech

XII

SLP

Sign Language Processing

SLD
Sign Language Detection

SLI
Sign Language Identification

SLS

Sign Language Segmentation
SLR

Sign Language Recognition
SLT

Sign Language Translation

SLP

Sign Language Production

RNN

Recurrent Neural Network

ASLR

Automatic Sign Language Recognition

LIS
[talian Sign Language

ASL

American Sign Language

LSF
French Sign Language

CSLR

Continuous Sign Language Recognition

XIII

S2G2T
Sign2gloss2text

S2T
Sign2text
S2(G+T)
Sign2(gloss+text)

G2T
Gloss2text

oTp

One-Time Password

Ul

User Interface

UX

User Experience

FAB
Floating Action Button

CRUD
Create, Read, Update, Delete

WHO
World Health Organization

X1V

Chapter 1

Introduction

1.1 Deaf People and Sign Language

Deafness is a condition that affects millions of individuals globally and encom-
passes a broad spectrum of hearing impairments, ranging from partial hearing
loss to complete deafness. According to the World Health Organization (WHO),
over 1.5 billion people experience some degree of hearing loss, with approximately
430 million requiring rehabilitation services, including access to hearing aids and
communication technologies [1].

Deaf individuals are commonly classified into two main groups: those who are
prelingually deaf, meaning they lost their hearing before acquiring spoken language,
and those who are postlingually deaf, who lost their hearing after having developed
language skills. These classifications have significant implications for communica-
tion preferences and language acquisition strategies. Moreover, within the deaf
population, a distinction is commonly made between Deaf with a capital ‘D’ and
deaf with a lowercase ‘d’, which reflects not just the degree of hearing loss but
also cultural and linguistic identity. The term Big-D Deaf refers to individuals
who identify as part of a distinct sociolinguistic community, with sign language as
their primary mode of communication and a shared cultural heritage. Conversely,
small-d deaf refers to individuals with hearing loss who may rely on spoken lan-
guage, hearing devices, or lip-reading, and who typically do not participate in Deaf
culture. For members of the Deaf community, sign language plays a central role in
communication and identity.

Sign languages are fully developed natural languages with their own grammar,
syntax, and vocabulary, and they are independent from the spoken languages of
their respective countries [2]. However, they are often not widely understood or
supported outside the Deaf community, creating barriers to full participation in
society.

Introduction

These communication challenges significantly affect the everyday lives of deaf
individuals. Inadequate access to interpreters, limited awareness among hear-
ing individuals, and insufficient adoption of assistive technologies frequently lead
to systemic exclusion across domains such as education, healthcare, and public
administration. As a result, deaf individuals—especially those who use sign lan-
guage—often face limited educational and professional opportunities, restricted
access to essential services, and social marginalization.

These limitations underscore the urgent need for inclusive technologies that can
bridge the communication gap between deaf and hearing individuals. The de-
velopment of digital tools that can facilitate bidirectional communication—by
translating sign language into spoken or written language and vice versa—has
the potential to significantly improve accessibility and promote inclusion. In this
context, computer vision, natural language processing, and mobile computing are
emerging as promising enablers of real-time communication support for the deaf
community.

1.2 Motivation

Bridging the communication gap between deaf and hearing individuals remains a
pressing challenge, particularly in key contexts such as education, healthcare and
public administration. Language barriers and the lack of supportive technologies
significantly limit access to educational, professional, and social opportunities,
leading to a sense of isolation for deaf communities worldwide.

In the academic domain, for example, deaf students struggle to follow lectures
and interact with professors and peers due to the lack of appropriate supporting
technologies. The introduction of solutions that integrate the use of sign language
could help to bridge the existing gap, enabling more active and inclusive partici-
pation in university life. In the healthcare sector, such solutions could facilitate
communication between medical professionals and deaf patients, improving diag-
nostic accuracy and the overall quality of care. Similarly, in public services, they
could simplify access to information and legal rights, making interactions more
efficient and inclusive. In recent years, this issue has gained increasing importance,
attracting growing attention from the scientific community and leading to a rising
number of studies aimed at developing increasingly innovative solutions.

1.3 Goal

The goal of this thesis is to contribute to the field by designing and developing an
Android mobile application that facilitates seamless communication between deaf
and hearing individuals. To support this objective, a backend system was developed

2

Introduction

to integrate a real-time communication platform, enabling efficient bidirectional
interaction. This backend communicates with the mobile application to provide
real-time sign language translation functionalities.

The result of this work is a fully functional prototype, intended to serve as a solid
starting point for future improvements and further development.

1.4 Thesis structure

In the following chapters, I will describe in detail the work carried out in this
thesis. I will begin by providing an overview of the related works and theoretical
backgrounds, which are essential to understand the context of this project. This
includes a review of the most relevant studies in the fields of sign language process-
ing, pose estimation, and real-time communication technologies.

Next, I will present the methodology adopted for the design and development of
the entire system. In particular, I will provide a detailed overview of the system
architecture, focusing on the design decisions made during the development process
of both the mobile application and the backend system. Particular attention will
be given to the integration of the Al-based translation engine and the interaction
between the various components of the system.

Finally, I will conclude this work by discussing the results achieved and their
implications for the field. This will include potential future improvements and
development opportunities aimed at enhancing the system’s capabilities and ad-
dressing the challenges encountered in real-world scenarios, leading to more inclusive
communication solutions for the deaf communities.

Chapter 2

Related Works

This chapter presents an overview of related works in the field of sign language
processing, which serves as the foundation and starting point for the development
of this project.

2.1 Early Approaches

Over the past two decades, a wide range of technological solutions has been
developed and proposed to bridge the communication gap between deaf and hearing
individuals. Early approaches primarily focused on text-based messaging or Speech-
to-Text (STT) and Text-to-Speech (TTS) transcription systems, allowing deaf
users to engage in conversation through manual typing or automated subtitles.
These methods are often natively integrated into major operating systems; however,
they are largely limited to one-directional communication and fail to capture the
non-verbal expressiveness and emotional nuances inherent in human interaction [3].
More advanced platforms attempted to directly interpret or produce sign language
through the use of wearable sensors, depth cameras, or computer vision techniques.
For example, the SignAloud project, developed by researchers at the University of
Washington, employs sensor-embedded gloves to recognize specific hand gestures
and map them to spoken words [4]. Similarly, KinTrans provides real-time sign-to-
voice translation by leveraging depth sensors and skeletal tracking data [5].
Despite the notable progress achieved, these solutions typically suffer from at least
one of the following limitations:

o unidirectional functionality
o dependency on specialized hardware

o limited support for different languages and dialects

4

Related Works

These constraints hinder their integration into real-time applications on mobile
devices, significantly limiting their accessibility and scalability in everyday commu-
nication scenarios.

While such systems may be effective for delivering static content—such as in muse-
ums or public service announcements—their applicability remains constrained in
dynamic, real-world interactions.

2.2 Deep Learning Approaches

The advent of Computer Vision and the introduction of Deep Learning algorithms
have shifted the scientific community’s attention toward this field, leading to the
development of innovative new solutions.

In particular, the creation of dedicated datasets [6, 7] and the release of open-
source frameworks—such as MediaPipe [8] and OpenPose [9], which enabled pose
estimation—nhave facilitated the emergence of new specific tasks within the domain
of Sign Language Processing (SLP).

These tools allow for the extraction of anonymized, low-dimensional representa-
tions of human motion while preserving essential gestural features, making them
particularly suitable for applications where privacy and computational efficiency
are critical.

2.2.1 Sign Language Detection and Identification

Sign Language Detection (SLD) is a binary classification task aimed at determining
whether sign activity is present in a given video or video segment. It plays a critical
role in identifying regions of interest within video content.

Potential applications include the automatic tagging and categorization of sign
language videos, serving as an initial step toward auto-captioning, as well as
functioning as a preliminary filter for subsequent tasks such as Sign Language
Recognition (SLR) and Sign Language Translation (SLT).

Borg et al. [7] proposed a multi-layer RNN architecture composed of both CNN
and RNN components for SLD. Their objective was to provide a method that
could be applied to automatically initialize ASLR system, rather than relying on
predefined assumptions regarding the video content.

Subsequently, Moryossef et al. [10] refined this technique for real-time detection
by proposing a simple human optical-flow representation for video based on pose
estimation to perform a binary classification per frame. They compared various
possible inputs such as full-body pose estimation, partial pose estimation collected
through OpenPose [9], ultimately achieving a more efficient system suitable for
interactive and real-time applications.

While detection focuses on identifying the presence of signing activity within

5

Related Works

video content, Sign Language Identification (SLI) aims to classify the specific
sign language used—such as distinguishing between Italian Sign Language (LIS),
American Sign Language (ASL), and French Sign Language (LSF).

2.2.2 Sign Language Segmentation

Sign Language Segmentation (SLS) involves detecting the temporal boundaries
of signs or phrases in video data, effectively dividing the content into meaningful
units. Renz et al. [11] proposed an automatic sign segmentation model capable
of identifying the temporal boundaries between signs in continuous sign language.
Their approach demonstrated the effectiveness of coupling robust 3D-CNN rep-
resentations with an iterative 1D temporal CNN refinement module to produce
accurate sign boundary predictions.

The objective of their work was to provide a method with the potential to signifi-
cantly reduce annotation costs, thereby facilitating the creation of domain-specific
datasets and promoting further research and development in the field of Sign
Language Processing (SLP).

2.2.3 Sign Language Recognition

Sign Language Recognition (SLR) involves the detection and labeling of signs
within videos. This task plays a crucial role in facilitating the integration of deaf
individuals into society.

Based on the acquisition process, SLR systems can be classified into sensor-based
and vision-based approaches, or alternatively as isolated and continuous [12]:

o Isolated SLR: This approach focuses on classifying short video segments
under the assumption that each segment contains a single gloss. It typically
uses physically attached sensors to track head, finger, and body motion.
Compared to Continuous SLR, Isolated SLR tends to yield higher performance
due to its reduced complexity.

« Continuous SLR (CSLR): This approach aims to recognize sequences
of glosses in continuous, unsegmented videos. It commonly uses multiple
cameras (or webcams) to capture gestures, making it more suitable for real-
time applications.

Historically, research has focused more on isolated gloss recognition due to
its lower complexity. Nevertheless, both Isolated and Continuous SLR remain
highly challenging tasks, as they must comprise a wide range of gestures and facial
expressions.

Related Works

2.2.4 Sign Language Translation

Sign Language Translation (SLT) aims to convert sign language into spoken or
written language. While Sign Language Recognition (SLR) focuses on recognizing
signs as their corresponding glosses, SLT involves translating these recognized
glosses into natural language text that can be understood by non-signers.

Glosses represent a transcription of signs that preserve grammatical and semantic
elements specific to sign languages, such as tense, word order, spatial relationships,
and directional cues. In some cases, glosses also include information about sign
repetition or emphasis. As such, translating from gloss to natural language requires
additional processing to generate grammatically correct and semantically coherent
output. SLT approaches can be divided into four common categories [13]:

» Sign2gloss2text (S2G2T): This approach first recognizes the sign language
video as gloss annotations, which are then translated into spoken language
text.

« Sign2text (S2T): This end-to-end approach directly generates spoken lan-
guage text from sign language video, bypassing the intermediate gloss repre-
sentation.

 Sign2(gloss+text) (S2(G+T)): A multitask approach that jointly outputs
both glosses and spoken language text, often leveraging gloss annotations as
auxiliary supervision.

o Gloss2text (G2T): This approach focuses on translating gloss sequences
into spoken language text, typically used to evaluate the translation quality
independent of visual recognition.

Camgoz et al. [6] demonstrated that incorporating glosses—semantic labels
aligned with the structure of sign language—can significantly improve translation
performance. More recent Transformer-based models have further enhance this line
of research by capturing long-range dependencies and context information, thereby
enabling more accurate gloss-to-text and video-to-text translation [14, 15].

2.2.5 Sign Language Production

Sign Language Production (SLP), on the other hand, involves translating spoken
language to a continuous stream of sign language video. Avatar-based systems
such as JASigning, SIMAX, and PAULA have focused on producing sign language
from either text or speech input using 3D character animations. These systems
typically rely on formal sign transcription languages, such as HamNoSys or SiGML,
to generate synthetic sign sequences [16, 17].

7

Related Works

Saunders et al. [18] proposed Progressive Transformers, a novel Transformer-based
architecture capable of translating discrete spoken language into continuous 3D
sign pose sequences in an end-to-end fashion. Unlike previous approaches, which
primarily focused on generating concatenated isolated signs, this model aims to
produce fluid, continuous sign language sequences that more closely resemble
natural signing.

2.3 Commercial Solutions

Several commercial applications have been developed to support communication
for deaf and hard-of-hearing users, particularly in the context of phone or video
calls. Among the most widely used are Ava [19] and Pedius [20], both of which
leverage Speech-to-Text (STT) and Text-to-Speech (TTS) technologies to provide
real-time transcription and voice synthesis. Ava also offers integration with video
conferencing platforms such as Zoom, enabling live captioning during meetings.
Despite their utility, these tools present notable limitations when compared to more
sign language-centric solutions.

First, they do not support natural sign language communication, relying exclusively
on written text and voice, and therefore fail to convey the rich expressiveness,
spatial structure, and non-verbal cues that are intrinsic to sign language.
Moreover, their functionality often varies across operating systems (e.g., Android
vs. 108), leading to inconsistencies in the user experience. Additionally, several
advanced features—such as unlimited transcriptions or meeting integrations—are
gated behind subscription plans, which may limit accessibility for some users.

In contrast, the solution presented in this work focuses on native support for sign
language, offering a more inclusive and expressive communication channel without
relying solely on text-based interaction.

Chapter 3
Background

This chapter provides a brief overview of the technologies used in the project asso-
ciated with this thesis. It serves as a general introduction to the tools, frameworks
and technologies adopted, in order to facilitate the understanding of the subsequent
chapters.

3.1 Development Tools & Versioning

This category includes tools and standards that supported the overall development
workflow, version control, and system configuration. These technologies facilitated
collaborative coding, standardized data exchange formats, and ensured the repro-
ducibility and deployability of the application environment across different systems.
Each tool played a key role in the project’s infrastructure and daily development
lifecycle.

3.1.1 Git

Git is a distributed version control system widely used in software development to
manage and track changes in source code. Its core functionalities include branching,
merging, and support for non-linear development workflows, which allow developers
to organize and maintain different versions of a code base efficiently.

GitHub is a cloud-based platform that provides hosting for Git repositories and
extends its capabilities through features such as commit history visualization, issue
tracking, and integration with continuous deployment tools.

In this project, Git and GitHub were employed to version and manage the source
code of the various system components, allowing for a structured development
process, clear documentation of progress over time, and safe experimentation
through branch-based workflows.

Background

3.1.2 JSON

JavaScript Object Notation (JSON) is a lightweight data-interchange format that
is easy for humans to read and write, and straightforward for machines to parse
and generate. It is based on a subset of the JavaScript programming language, and
its syntax consists of key-value pairs and ordered lists, making it highly intuitive
and widely compatible across programming environments.

Due to its simplicity, readability, and language independence, JSON has become the
most widely adopted standard for data exchange in web applications, particularly
in client-server communication through RESTful APIs. Unlike XML, JSON offers
a more compact representation, reducing payload size and improving transmission
efficiency over the network.

In this project, JSON was adopted as the primary format for structuring and
transmitting data between the mobile client and the web server. Its hierarchical
structure allowed for a clear and organized representation of user inputs and
system responses, facilitating seamless integration between front-end and back-end
components.

3.1.3 Swagger (OpenAPI)

Swagger—now part of the OpenAPI Specification—is a widely adopted frame-
work for designing, documenting, and consuming RESTful APIs. The OpenAPI
Specification provides a standardized, language-agnostic format for describing
API endpoints, request and response schemas, authentication methods, and other
relevant metadata. This enables both humans and machines to understand the
capabilities of a web service without requiring access to source code or external
documentation.

Tools in the Swagger ecosystem, such as Swagger Ul and Swagger Editor, facilitate
the generation of interactive and machine-readable API documentation, improving
development efficiency and easing client-side integration.

In this project, the OpenAPI Specification was used to define and document the
RESTful APIs exposed by the web server. This approach enabled the automatic
generation of comprehensive and up-to-date API documentation, which may greatly
support future developments and maintenance efforts on the application.

3.1.4 Docker

Docker is an open-source platform designed to automate the deployment, scaling,
and management of applications through containerization. Containers encapsulate
an application along with its dependencies, configurations, and environment, ensur-
ing consistency across different systems and stages of development. This makes
Docker particularly valuable in facilitating reproducibility, portability, and isolation

10

Background

of software components.

Docker Compose is a complementary tool that enables the definition and orchestra-
tion of multi-container Docker applications using a declarative YAML configuration
file. It simplifies the management of services, networks, and volumes, allowing
developers to define complex application topologies and manage them with simple
commands.

In this project, Docker was employed to containerize the backend components, en-
suring environmental consistency and easing deployment across various development
and testing environments. Docker Compose was used to orchestrate the different
backend services, enabling coordinated startup, configuration, and interconnection
of components with minimal manual intervention.

3.2 Frontend Technologies

The frontend technologies were responsible for implementing the user interface and
enabling interaction between end users and the system. The tools in this category
were used to design and build a responsive, cross-platform application capable of
delivering a seamless user experience.

3.2.1 JavaScript

JavaScript is a high-level, interpreted programming language widely adopted in
web and mobile development due to its flexibility, event-driven architecture, and
broad compatibility across platforms. It supports functional and object-oriented
programming paradigms and serves as the foundation for various frameworks
dedicated to building user interfaces in modern applications, such as React and
React Native.

TypeScript is a statically typed superset of JavaScript that compiles to plain
JavaScript. It introduces type annotations, interfaces, and other advanced features
that enhance code reliability, readability, and maintainability—especially in large-
scale or long-term software projects.

Both languages are commonly utilized in modern development environments, with
the selection between them typically depending on project-specific requirements
and developer preferences.

3.2.2 React Native (Expo)

React Native is an open-source framework that enables the development of cross-
platform mobile applications using JavaScript or TypeScript, following the React
programming paradigm. It allows developers to define user interfaces through
reusable components and to access native functionalities via a unified bridge

11

Background

architecture. React Native inherits key principles from React—such as declarative
syntax and component-based design—making it particularly effective for building
responsive and maintainable mobile interfaces.

Expo is a framework built on top of React Native that simplifies the development
process by providing a comprehensive toolkit and a set of pre-configured libraries,
enabling the creation of mobile applications without requiring direct interaction with
native code. It abstracts many of the complexities of mobile development, offering
features such as live reloading, over-the-air updates and simplified configuration.
Expo supports both JavaScript and TypeScript, giving developers the flexibility to
adopt static typing where needed for better code quality and maintainability.

In this project, the mobile application was developed directly using Expo, taking
advantage of its streamlined workflow, built-in functionalities, and full compatibility
with the React Native ecosystem.

3.3 Backend & API Development

This category includes the technologies employed for implementing the backend
logic, managing data persistence, and exposing functionalities through RESTful
APIs. The components in this section enabled the system to process requests,
handle user authentication and authorization, interact with databases, and manage
asynchronous tasks. These tools formed the core of the server-side architecture.

3.3.1 Python

Python is a high-level, interpreted programming language known for its readability,
extensive standard library, and strong support for multiple programming paradigms.
Over the past decade, it has become the dominant language for scientific computing,
data analysis, artificial intelligence, and machine learning, due to its vast ecosystem
of libraries and frameworks specifically designed for these domains.

In the field of Artificial Intelligence (AI) and Machine Learning (ML), Python
provides seamless integration with powerful tools such as TensorFlow, PyTorch,
scikit-learn, and NumPy, allowing for efficient model development, training, and
deployment. Its simplicity and expressive syntax enable rapid prototyping and
facilitate collaboration among researchers and developers.

In this project, Python was used to implement the core backend components
responsible for translating sign language into audio and vice versa. TensorFlow
was employed for gesture recognition, leveraging Python’s mature ecosystem to
accelerate the integration of Al-driven functionalities within the system.

12

Background

3.3.2 Node.js (Express)

Node.js is a runtime environment that allows the execution of JavaScript code
outside the browser, built on the V8 JavaScript engine. It is particularly well-suited
for building scalable, event-driven, and non-blocking I/O applications, making
it a popular choice for server-side development. Its single-threaded architecture
combined with asynchronous programming capabilities enables high-performance
handling of concurrent operations.

Express is a minimalist and flexible web application framework for Node.js that
simplifies the development of web servers and APIs. It offers a streamlined interface
for routing, middleware integration, and HTTP request management.

In this project, Node.js was used in conjunction with Express to develop a web
server responsible for exposing RESTful APIs consumed by the mobile client,
enabling structured and efficient access to the system’s functionalities.

3.3.3 Sequelize

Sequelize is a promise-based Object-Relational Mapping (ORM) library for Node.js
that provides an abstraction layer over relational databases such as PostgreSQL,
MySQL, and SQLite. An ORM is a programming technique that allows developers
to interact with a database using object-oriented paradigms rather than writing raw
SQL queries. It maps database tables to classes and records to objects, enabling
more intuitive and maintainable data manipulation within application code.

The use of an ORM like Sequelize offers several advantages, including automated
query generation, schema synchronization, model validation, and support for
complex relationships between entities. It also enhances code readability, reduces
the chances of SQL injection vulnerabilities, and promotes a more consistent
development workflow.

In this project, Sequelize was employed to manage the application’s interaction with
a relational PostgreSQL database, facilitating the definition of data models and
enabling efficient implementation of persistence logic in a structured and type-safe
manner.

3.3.4 PostgreSQL

PostgreSQL is a powerful, open-source relational database management system
known for its reliability, robustness, and support for advanced data types and
operations. It adheres closely to SQL standards while also offering a wide range of
modern features, such as full-text search, JSON support, and extensibility through
user-defined functions and data types.

Designed with an emphasis on data integrity and transactional consistency, Post-
greSQL is widely adopted in applications that require complex queries, strong

13

Background

ACID compliance, and scalable performance. Its architecture supports concurrent
access and efficient indexing strategies, making it suitable for both small-scale and
enterprise-level deployments.

In this project, PostgreSQL was used as the primary data store to persist user data
and application-specific information. Its structured schema, combined with strong
query capabilities, ensured reliable data management and seamless integration with
the Sequelize ORM for efficient database operations.

3.3.5 JWT

JSON Web Token (JWT) is an open standard that defines a compact and self-
contained method for securely transmitting information between parties as a JSON
object. It is commonly used for authentication and authorization in modern web
and mobile applications due to its stateless nature and ease of integration with
HTTP-based protocols.

Unlike traditional session-based authentication, which relies on server-side session
storage, JWT enables stateless authentication by embedding user identity and
authorization claims directly within the token. This makes it particularly suitable
for mobile applications, where maintaining persistent sessions on the client side is
not feasible.

In this project, JWT was adopted to implement the authentication mechanism for
the mobile application. Upon successful login, the server issues an access token
for authorizing API requests, along with a refresh token that enables the client
to obtain new access tokens without requiring repeated logins. This mechanism
ensures secure and seamless user sessions, while also supporting scalability and
minimizing server-side storage dependencies.

3.3.6 Redis

Redis is an open-source, in-memory data structure store that supports a wide range
of data types, including strings, hashes, lists, sets, and more. It is widely used as a
caching layer, message broker, and key-value store due to its extremely low latency
and high throughput, making it suitable for performance-critical applications.
One of Redis’s key features is its support for automatic expiration of keys through
Time-to-Live (TTL) settings. This allows developers to associate a limited lifespan
with specific entries, enabling efficient management of temporary data such as
session tokens, cache entries, and rate-limiting counters.

In this project, Redis was employed to implement a JW'T token blacklist mechanism.
When a user logs out or when a token needs to be invalidated, the corresponding
token is stored in Redis with an expiration time matching its validity period.
This approach leverages Redis’s speed and TTL capabilities to efficiently manage

14

Background

invalid tokens without impacting overall system performance or requiring persistent
storage.

3.3.7 Nodemailer

Nodemailer is a module for Node.js applications that enables the programmatic
sending of emails through various transport mechanisms, including SMTP, OAuth2,
and third-party services. It provides a high-level API for composing and dispatching
emails, with support for attachments, HTML content, and templating, making it a
widely adopted tool for integrating email functionality into server-side applications.
In this project, Nodemailer was employed in combination with Gmail’s SMTP
service to implement the automated delivery of transactional emails from the web
server. These service messages included notifications such as successful registration
confirmations and account deletion acknowledgments. The use of Nodemailer
enabled seamless integration of email-based user communication while ensuring a
reliable and configurable delivery mechanism.

3.3.8 Supabase

Supabase is an open-source backend-as-a-service platform that provides a suite of
scalable services commonly required in modern applications, including authentica-
tion, real-time databases, and cloud storage. Built on top of PostgreSQL, it aims
to offer a developer-friendly alternative to proprietary backend solutions, while
maintaining flexibility and openness.

One of Supabase’s core features is its cloud storage system, which allows secure
and organized management of files such as images, documents, and media assets.
It includes access control policies, public and signed URLs, and integration with
authentication services to manage file-level permissions.

In this project, Supabase was used specifically for cloud storage of user profile
images. By leveraging its secure and scalable storage service, the system was able
to delegate file management to a dedicated cloud infrastructure, ensuring persistent
availability, ease of retrieval, and integration with user profile management.

3.4 Real-time Communication & Notifications

Real-time communication and notification mechanisms were critical for enabling
interactive features and timely user updates. This category includes technologies
that facilitated bidirectional communication between clients and the server, push
notifications, and media stream handling. Their integration allowed the system to
support synchronous interactions and real-time data delivery, which were essential
to the project’s requirements.

15

Background

3.4.1 WebSocket

WebSocket is a communication protocol that enables full-duplex, bidirectional com-
munication channels over a single, long-lived TCP connection. Unlike traditional
HTTP, which follows a request-response model, WebSocket allows servers and
clients to exchange data in real time without the overhead of repeated handshakes,
making it ideal for latency-sensitive applications such as live chats, online gaming,
and video conferencing.

In this project, WebSocket was used by the web server to manage the signaling
phase required for initiating video calls, in coordination with the Mediasoup library,
which handled the media transmission. During this phase, signaling messages—such
as transport parameters and connection metadata—were exchanged between the
mobile client and the server to establish and configure the media transport channels.
WebSocket provided the low-latency, persistent communication needed to support
real-time call setup and coordination.

3.4.2 FCM

Firebase Cloud Messaging (FCM) is a cross-platform messaging solution provided
by Google that enables reliable delivery of messages and push notifications to
client applications. It supports both upstream and downstream messaging and is
widely used in mobile and web development to engage users and facilitate real-time
communication.

FCM offers features such as message targeting based on device tokens, user segments,
or topics, as well as support for both notification and data payloads.

In this project, FCM was used to deliver push notifications to the mobile application,
allowing the system to inform users of relevant events such as incoming video calls.
Its reliability, scalability, and seamless integration with mobile platforms—in
combination with WebSocket—made it a suitable choice for implementing real-time
user notifications.

3.4.3 Mediasoup

Mediasoup is a modern, open-source Node.js library for building scalable and
customizable real-time audio/video communication systems. It acts as a Selective
Forwarding Unit (SFU), a media server architecture that receives media streams
from clients and selectively forwards them to other participants without mixing
them. This approach ensures low latency and efficient bandwidth usage, particularly
in group call scenarios.

Mediasoup offers a high degree of flexibility by allowing developers to intercept,
process, and re-inject media streams, enabling advanced features such as real-time
analysis, filtering, or recording. Its design abstracts much of the complexity of

16

Background

WebRTC while still providing full control over transport configuration and media
flow.

In this project, Mediasoup was chosen for its simplicity and extensibility, allowing
the implementation of a robust media server without the need to develop one
from scratch. Its SFU architecture and stream manipulation capabilities were
instrumental in enabling efficient and controllable video call management within
the system.

3.5 Media Processing

This section focuses on the technologies used for audio and video processing within
the system. Media processing tools were essential for encoding, decoding, and
manipulating multimedia content, allowing for its transformation, compression, and
transmission. These capabilities were fundamental for managing the media-intensive
aspects of the project, particularly in the context of real-time communication.

3.5.1 FFmpeg

FFmpeg is a powerful, open-source multimedia framework used for processing audio
and video data. It provides a rich set of tools for encoding, decoding, transcoding,
muxing, demuxing, streaming, and filtering media in a wide variety of formats. Due
to its flexibility and command-line interface, FFmpeg is widely adopted in both
production environments and research applications involving media processing.
In this project, FFmpeg served as an intermediary component between the web
server and Python-based microservices responsible for media translation. Specifi-
cally, it was used to capture RTP streams from Mediasoup, encode them into raw
audio or video formats, and forward them to the Python-based translation engine.
After processing, FFmpeg was again employed to re-encode the media into RTP
streams and inject them back into a Mediasoup transport. This setup enabled the
seamless integration of Al-based translation capabilities within live media flows,
leveraging FFmpeg’s efficiency and versatility in handling real-time multimedia
data.

17

Chapter 4

Methodology

This chapter presents a detailed description of the design and development process of
the proposed solution. It begins with an overview of the overall system architecture,
followed by an in-depth analysis of each individual system component.

4.1 System Architecture

The system designed and developed in my project is composed of two distinct and
interconnected modules. The overall system architecture is illustrated in Figure
4.1. The first module is the backend system, which was implemented using a
microservices architecture. As shown in Figure 4.1, the core service is a Node.js-
based web server responsible for handling user authentication and managing user
data, which is stored in a relational PostgreSQL database. Additionally, a Redis
in-memory data store is employed to manage the blacklisting of invalidated JWT
tokens, ensuring secure and efficient session control. The mobile client and web
server communicate by exchanging data in JSON format through RESTful APIs
exposed by the backend.

Moreover, the web server is also responsible for managing video calls, handling
both the signaling process and media stream routing. It communicates over TCP
socket with two Python-base microservices, which execute Al translation algorithm
to provide sign language translation features integrated in the video calls.

The second module is a mobile application designed to enable both deaf and hearing
users to engage in video-based communication, helping to bridge the communication
gap between them. In addition to video calls, the application also offers several
auxiliary features, which will be described in more detail in the following sections.
For this project, the application was developed to run on Android devices. However,
the adopted framework allows for straightforward extension to iOS platforms,
enabling future cross-platform development. In addition, particular attention was

18

Methodology

paid to ensuring that the design of the mobile application prioritized accessibility,
ease of use, and compliance with privacy regulations.

Idv 1S3

Mobile Client Backend System

Figure 4.1: System Architecture.

4.2 Mobile Application

This project was conceived with the goal of bridging the communication gap between
deaf and hearing individuals, enabling them to communicate through real-time
video interactions supported by sign language translation features. Accordingly,
this scenario will be adopted as the reference context throughout the chapter.
Nevertheless, the long-term objective is to provide an initial example of a practical
application that could be extended in future work to other sensitive domains, such
as education and healthcare.

4.2.1 Functional Requirements

Having established the reference scenario, the functional requirements that the
application must satisfy in order to provide the aforementioned features are as
follows:

1. Authentication: Users must be able to register on the platform by providing
a valid email address and a strong password. These credentials can then be
used to authenticate the user during the login process.

2. Credential Management: After registration, users can change their password
by providing a new one that meets the platform’s security requirements.

19

Methodology

Additionally, in case of a lost password, users can recover their credentials
through an OTP-based verification process sent to their registered email
address.

. Profile Management: Users can edit their personal profile, including updating
their personal information, email address, and phone number. Moreover, they
must be able to permanently delete their account if it is no longer needed.

. Preferences Configuration: Users must be able to configure their preferences
regarding accessibility features, specifically the real-time sign language transla-
tion service, as well as the activation of push notifications. These notifications
are used to alert users of incoming or missed video calls, even when the
application is running in the background or has been terminated.

. Contacts Management: Users must be able to create, edit, and delete their
contacts, as well as view their associated personal information. All local
changes must be continuously synchronized with the remote backend to ensure
a consistent and seamless user experience across multiple devices.

. Video Call Management: The application must support real-time video-based
communication, with optional sign language translation features depending on
the user’s personal preferences. Additionally, users must be able to manage
their recent call history by deleting entries that are no longer needed.

. Multi-Device Support: The application must support the use of a single
account across multiple devices. User data and recent activity (e.g., contacts,
call history, and notifications) must be synchronized in real time through
the backend infrastructure. This ensures a coherent and uninterrupted user
experience regardless of the device being used.

4.2.2 Actors and Use Cases

Having introduced the reference scenario and the functional requirements of the
application, it is now possible to identify the system’s main actors and the roles
they assume within it. In particular, the end users who interact with the mobile
application are as follows:

o Hearing user

e Deaf user

Both users assume the same role within the application, differing only in the

way they communicate: the deaf user relies on sign language, while the hearing user
communicates through voice. Nevertheless, the features provided by the application

20

Methodology

ensure a natural and seamless interaction between them.

The analysis of the application’s functional requirements led to the identification
of the fundamental actions needed to satisfy them. The diagram shown in Figure
4.2 illustrates the classification of the use cases along with their interrelationships.
The principal use cases identified are:

o Registration

e Login

o Password Recovery

o Profile Visualization

o Profile Editing

e Password Change

o Preferences Management
o Contacts Management
o Calls Management

o Video Call Initiation

o Incoming Call Response
e Logout

e Account Deletion

These use cases correspond to the key functionalities of the application. They
will be discussed in more detail in the following paragraphs. In particular, each use
case will be described alongside graphical examples, illustrating what the user must
do and how to interact with the application in order to perform the corresponding
action.

21

Methodology

Registration
Unauthenticats

Profile
Manage Push Editing ~Extends. Profile
Notifications Visualization

Configure -
Accessibility }--.__, S~

Settings

Contact

Contact Y

ontac 3

ntact Y o Extend
Editing ~ == -Extends. _ _

Password
Change
Tis Preferences
Management

s
-ly Contact
== T\ Visualization

henticated

_ Extends
Confact \ _.-~-~
User Deletion
Call
Call Extends ™\ visualization Account
Password Deletion
Recovery Incoming Call
Rejection TN
Extends_ _
Video Call
Inizialization

User

Incoming Call

Incoming Call __ Extends ~ Response

Ignoring

Figure 4.2: Use Cases Diagram.

4.2.3 User Interface Design

In relation to the identified use cases and functional requirements, it was also
necessary during the design phase to define the overall structure of the application
and to organize the information layout across the various screens, ensuring users
could access all key functionalities intuitively.

In particular, this process was carried out using Figma, one of the most widely
adopted platforms for User Interface (UI) and User Experience (UX) design. This
tool enabled the creation of mockups for each application screen and allowed for
full prototyping, making it possible to analyze the navigation flow in detail.

The diagram shown in Figure 4.3 illustrates the main application routes and the
navigation flow between them.

The UI and navigation design were guided by established best practices aimed
at creating a clean, intuitive interface that supports a smooth and natural user
experience. Regarding the implementation, the navigation system was developed
using the Expo Router library, part of the Expo framework.

Expo Router is a file-based routing solution for React Native applications, where
each file within the app directory corresponds to a specific route. Its adoption
enabled easier navigation management and ensured a cleaner and more organized
project structure.

The following paragraphs provide an in-depth overview of the main application
screens, in direct relation to the use cases introduced previously.

22

Methodology

Welcome
Login Registration
Password
Recovery
Calls Contacts Profile
Call Contact Profile
Visualization Visualization Editing
Call Contact Password
Deletion Editing Change
Call Contact Preferences
Inizialization Deletion Management
Contact Account
Creation Deletion

Logout

Figure 4.3: Application Structure.

Registration and Authentication

The entry point of the application is the Welcome Screen (Figure 4.4a), which
provides a brief overview of application’s features and presents two buttons allowing
users to navigate either to the Registration Screen (Figure 4.4b) or the Login Screen
(Figure 4.4c). On the Registration Screen, users can create a new account by
entering a valid email address and a strong password. Conversely, the Login Screen
allows users to authenticate by submitting previously registered credentials.

Both screens include input validation with contextual error messages to guide users
in correcting invalid or incomplete data. Additionally, the password fields feature a

23

Methodology

toggle button that allows users to show or hide the entered password, enhancing
both usability and security.

Let's Hey,
Get Started Welcome Back!

Please fill details to create an account Please login to continue.

Email Email

@ Password @ Password ®

Forgot Password?

@ Confirm Password

Get Started

2

(a) Welcome (b) Registration (c) Login

Figure 4.4: Registration and Authentication Screens.

Password Recovery

The Login Screen also includes a Forgot Password option, which, when pressed,
redirects the user to the password recovery system. This allows users to reset their
password in case of loss, thereby enhancing both the security and accessibility
of their account. The navigation flow of password recovery system is shown in
Figure 4.5. The process begins by prompting the user to enter the email address
associated with their account. After performing the necessary checks, the backend
verifies whether the email address is registered and, if so, sends an email containing
a 6-digit OTP code. The user must enter this code to confirm ownership of the
email address. Upon successful verification, the user is prompted to enter a new
strong password. Once the entire process is completed, the application displays a
confirmation message and provides a button that redirects the user to the Login
Screen, where they can authenticate using their new credentials.

24

Methodology

Forgot Password? OTP Verification

Don't /! ens. Pl enter the email er t tc 2nt to your email
addre: sosieted with y ccount

& Email
L @ Password

@ Confirm Password

(a) Forgot Password (b) OTP Verification (c) Reset Password

Password Changed

atulations! y changed your

Back to Login

(d) Password Changed

Figure 4.5: Password Recovery Screens.
25

Methodology

Calls Management

After authentication, the application adopts a tab-based structure, as shown in
Figure 4.3. The first tab corresponds to the Calls Screen (Figure 4.6a), which
displays the history of recent calls. In this screen, calls can be filtered by cate-
gory—for example, incoming, outgoing, or missed—as well as through a search bar
that allows users to filter calls by phone number or contact name.

Users can also personalize this list by clicking the options button located in the
top-right corner, a menu appears allowing them to either clear the entire call history
or selectively delete individual entries, as illustrated in Figure 4.6b.

Additionally, a Floating Action Button (FAB) positioned in the bottom-right corner
opens a bottom sheet (Figure 4.6¢) when clicked, allowing the user to select a
contact to call from a list. This list can also be filtered using a search bar by phone
number or contact name.

New call

Incoming Out

Incoming Outgoing

®
®
®
®
®
0]
®
®
Q
L
2]

Ale Mosca

(b) Edit Calls (c) New Call

Figure 4.6: Calls Management Screens.

Moreover, for each call in the history list, an info icon is provided that navigates
the user to the Call Info Screen (Figure 4.7), which summarizes all relevant
information about the selected call. This screen also allows the user to initiate a
new call with that contact, navigate to a dedicated screen containing the contact’s

26

Methodology

details, or remove the call from the history list.

Info Call

Incoming Video Call 26 May 2025

Figure 4.7: Info Call Screen.

Contacts Management

The second tab corresponds to the Contacts Screen (Figure 4.8a), which displays a
list of contacts grouped alphabetically. A search bar allows users to filter contacts
by phone number or name. Contacts who are not registered on the platform are
grouped separately and can be easily invited with a single tap, which triggers the
sending of a download link to the corresponding recipient.

Additionally, a FAB positioned in the bottom-right corner allows users to navigate
to a dedicated screen for creating a new contact. The contact’s information is
then saved both locally and remotely. By clicking on a specific contact, users are
redirected to the Contact Info Screen (Figure 4.8¢), which displays all personal
information related to the selected contact, along with a list of recent calls with
them. Moreover, this screen allows users to easily initiate a call with the contact,
edit the contact’s information (Figure 4.8d), or delete the contact both locally and
remotely.

27

Methodology

3:3200 M 33200 M

Info Contact

Contacts New Contact

First Name

Davide
Last Name
Davide
604304
{, Phone Number
(X Video Call

Incoming Video Call

Marianna

Valentina® & '@

Ale Mosca

Ale

(a) Contacts (b) New Contact (c) Contact Info

Edit Contact

Last Name

(d) Edit Contact

Figure 4.8: Contacts Management Screens.
28

Methodology

Profile and Preferences Management

The third and final tab corresponds to the Profile Screen (Figure 4.9a), which
displays the user’s personal information, including full name, email, phone number,
and profile image. By clicking the corresponding edit button, the user is redirected
to a dedicated screen where they can modify their personal information (Figure
4.9b), including the profile image. In particular, an edit icon on the profile image
opens a bottom sheet that allows users to choose whether to take a new photo
using the camera, upload one from the gallery, or remove the existing image.
Additionally, the Profile Screen allows users to configure their preferences. Specifi-
cally, they can enable or disable push notifications—which are used to alert them
of incoming or missed calls—as well as accessibility features, namely real-time sign
language translation integrated into video calls.

Finally, users can change their password by accessing the appropriate screen (Figure
4.9¢), where they must enter their current password along with a new, strong one.
They can also choose to log out or delete their account entirely.

310G ™M

Profile

. ‘g ’ Change Password

Viola Innocenti

& Edit Profile @ Current Password

Info

© signchat.clienti@gmail.com @ New Password

B Confirm New Password

Modify profile image
Take a photo

hoto

(a) Profile (b) Edit Profile (c) Password Change

Figure 4.9: Profile and Preferences Management Screens.

29

Methodology

Incoming Call Response

When users receive an incoming call, the backend system sends a push notification
to the target user, alerting them regardless of whether the application is in the
background or has been terminated. The notification displays relevant information
about the incoming call, such as the caller’s name and profile image. Users can
easily accept or decline the call directly from the notification, or tap it to open the
application, which redirects them to the Incoming Call Screen (Figure 4.10a). This
screen replicates the information and functionalities available in the incoming call
notification.

Jenza Nessuna SIM X & .l 54%& G &

11:59 Mer 25 Giu -3

@00+ &
G

Controllo dispositivo Output multimediale

Davide

Davide
3457604304

SignChat 00:23
Davide
Video call in progress

% Impostazioni notifiche

(a) Incoming Call (b) Ongoing Call (c) Call Notification

Figure 4.10: Incoming Call Response Screens.

If the user chooses to accept the call, they are redirected to the Ongoing Call
Screen (Figure 4.10b), which displays the caller’s information along with a timer
showing the duration of the call. This screen also includes a preview of the user’s
camera in the bottom-right corner, which can be dragged to any corner of the
screen based on user preference. Additionally, a dedicated button allows users to
switch between the front and rear cameras, while a control bar enables them to
manage both camera and microphone by turning them on or off.

In the case of a video call between a deaf user and a hearing user, the real-time

30

Methodology

translation feature provided by the backend system enables voice-to-sign and sign-
to-voice conversion. Specifically, the hearing user’s voice is translated into sign
language and displayed to the deaf user in a dedicated box in the bottom-left
corner, while the deaf user’s video is processed to recognize sign language and
translated into voice for the hearing user. Moreover, during a video call, an ongoing
notification (Figure 4.10c) is displayed in the notification panel. It summarizes the
key details of the current call and allows users to either return to the Ongoing Call
Screen or hang up if needed.

4.3 Backend System

In order to enable the mobile application to support all the functionalities described
in the previous section, it was necessary to design and develop a backend system
capable of managing all relevant aspects through interaction with the mobile client,
whose architecture was briefly introduced in Section 4.1.

The following paragraphs provide a more in-depth overview of each key functionality,
analyzing the design decisions and implementation choices made throughout the
development process.

4.3.1 Authentication

Authentication is the process of verifying the identity of a user attempting to access
a resource. It also serves as a prerequisite for authorization, which determines
which resources a user is permitted to access.

Since mobile applications cannot rely on traditional session-based authentica-
tion—where maintaining persistent sessions on the client side is not feasible—this
project adopts the JWT standard to implement a stateless authentication mech-
anism. JW'T embed the user’s identity and authorization claims directly within
a token, allowing for secure and scalable communication between the client and
server. Upon successful login, the server generates and returns two tokens:

o an access token, which must be included in subsequent API requests to
authorize the user,

o and a refresh token, which can be used to request a new access token once the
original token expires.

This mechanism ensures a seamless and secure user experience by avoiding
repeated logins. For security reasons, the access token is configured with a short
expiration time, while the refresh token has a longer validity period but is used only
when necessary. Importantly, only the access token is included in API requests,

31

Methodology

while the refresh token is used exclusively to renew expired sessions.

Regarding token generation, the system uses pre-generated secret keys for both
access and refresh tokens. These keys are generated securely once using the crypto
library in JavaScript, which allows the creation of cryptographically strong random
byte strings. The server then signs each token by combining a payload—typically
containing the user ID and metadata such as expiration time—with the appropriate
secret key. The resulting signed tokens are returned to the client.

On the client side, the mobile application uses Expo SecureStore to store both
tokens. SecureStore allows sensitive data such as authentication tokens to be stored
securely and in encrypted form as key-value pairs directly on the device, ensuring
that them are protected even in the event of local storage access attempts.

To further enhance the security of the system, a token blacklisting mechanism was
implemented. This mechanism allows the server to explicitly invalidate tokens
when necessary, thereby preventing their reuse in the event of compromise or after
logout. This ensures that potentially malicious actors cannot exploit previously
issued tokens to access protected resources.

For this purpose, Redis was used due to its high-speed in-memory operations and
native support for setting a TTL on entries. When a user logs out or a token must
be invalidated, it is added to Redis with an expiration time matching its original
validity, allowing for efficient and automatic management of invalid tokens without
requiring persistent storage or affecting system performance.

4.3.2 Database Design

Before implementing the Node.js-based web server, it was necessary to define
a strategy for the persistent storage of application data. A solution based on
an ORM approach was adopted, specifically leveraging the Sequelize library for
Node.js to interface with a PostgreSQL relational database. This choice enabled the
definition of database tables and their relationships by leveraging object-oriented
programming concepts such as classes and associations, thereby simplifying schema
design and maintenance.

Moreover, the use of an ORM facilitated a more intuitive and secure interaction with
the database, eliminating the need to manually write raw SQL queries. Instead, data
access and manipulation could be performed using high-level JavaScript methods,
improving code readability and reducing the risk of common database-related errors.
This approach also supports easier migrations, validation, and synchronization of
the database schema with the application logic.

Additionally, the use of Sequelize enabled the automatic inclusion of createdAt and
updatedAt attributes in each table. These timestamps provide valuable metadata
for tracking when records are created or modified, thereby facilitating debugging
and helping identify potential anomalies or inconsistencies in the database over

32

Methodology

time. The overall database structure is illustrated in Figure 4.11, which shows the
main entities and the relationships between them. The database consists of four
primary entities:

o Users: This table stores users’ personal information, such as first name,
last name, phone number, and profile image, along with their authentication
credentials. For security purposes, passwords are not stored in plaintext;
instead, only their hashed versions are saved.

o Contacts: This table stores each user’s contact list. Each contact is defined
by a first name, an optional last name, and a phone number. The table has
two relationships with the Users table: one through the ownerId foreign key,
representing the user who owns the contact, and one through the userId
foreign key, indicating the user associated with the contact. Both are one-
to-many relationships, although userId is optional, as a contact may not
correspond to any registered user.

o Calls: This table logs the history of calls made between users. Each record
represents a call made by a user (the owner), and for each call, two records are
stored—one per participant. Each call entry includes a phone number, call type
(incoming or outgoing), status (e.g., completed, missed, unanswered, rejected,
or ongoing), date, and duration. The table includes two optional foreign keys:
userld, linking to the user associated with the call, and contactId, linking
to the associated contact. These are optional because a call may involve a
user not stored in the contacts list or one who is no longer registered.

o Tokens: This table stores the FCM tokens used by the backend system to
send push notifications. Each token is associated with a specific user, through
the ownerId foreign key, and is defined by a combination of deviceId and
fcmToken. This design supports multi-device usage, allowing users to receive
notifications on all of their registered devices.

This database schema provides a robust and scalable foundation for supporting
all the application’s core functionalities. Its structure has been carefully designed
to enable efficient data retrieval and management, facilitate synchronization across
multiple devices, and ensure consistency in user interactions and communication
features.

33

Methodology

id2 intd NN
firstName varchar(255) NN
lastName varchar(255)
“ phone varchar(255) NN
) int4 NN ownerld intd NN
ownerld intd4 NN userld [
phone varchar(255) NN createdAt timestamptz NN
type enum_Calls_type E NN updatedAt timestamptz NN
status enum_Calls_status E NN
date timestamptz NN id intd NN
duration int4 NN ownerld int4 NN
contactld int4 deviceld varchar(255) NN
userld intd ide int4 NN fcmToken varchar(255) NN
createdAt timestamptz NN email varchar(255) (] createdAt timestamptz NN
updatedAt timestamptz NN password varchan255) i updatedAt timestamptz NN
firstName varchar(255)
lastName varchar(255)
phone varchar(255)
imageProfile varchar(255)
createdAt timestamptz NN

updatedAt timestamptz NN

Figure 4.11: Database Structure.

4.3.3 API Design and Implementation

Although the core functionality of the application is real-time video communica-
tion, several auxiliary features have been implemented to provide a complete and
seamless user experience. These features are supported through a set of RESTful
APIs exposed by the Node.js-based web server.

Tables 4.1-4.2 summarize the main information regarding these APIs, including
the HT'TP method, endpoint, description, and whether authentication is required.
The APIs are grouped by the corresponding resource, and for each resource, the
necessary CRUD operations have been implemented based on the system’s re-
quirements. Furthermore, comprehensive API documentation has been generated
using the Swagger/OpenAPI standard. This documentation is accessible through
the/api-docs endpoint and provides a web interface that details each API, includ-
ing the required parameters and response formats. It also enables manual testing
of each individual API endpoint.

The implementation of each API follows a consistent and structured pattern. For
endpoints requiring authentication, a custom middleware has been developed. This
middleware verifies the presence of a valid JWT token in the Authorization header
of the HTTP request. It checks whether the token is valid, not expired, and not
blacklisted by querying the Redis store. If any of these checks fail, the server

34

Methodology

returns a 401 Unauthorized error response to the client. Otherwise, the request
proceeds to the next step: input validation.

To validate all incoming data, the implementation relies on the express-validator
library—a middleware for Express.js that provides a comprehensive set of tools to
validate request bodies, query parameters, and URL parameters. It also supports
the creation of custom validators to enforce application-specific constraints. This
ensures that the data meets all expected criteria before any business logic is exe-
cuted. Once validation is successfully completed, the necessary data is extracted
from the HTTP request and used to perform the appropriate operations by inter-
acting with the database. All database operations are executed within transactions.
This approach ensures that, in the event of an error during execution, previous
operations can be rolled back to maintain data consistency and avoid a corrupted
or inconsistent state. By following this pattern, the API layer is made robust and
resilient to failures, providing meaningful error messages to the client whenever
issues arise and ensuring overall reliability and maintainability of the system.

Method Endpoint Description Auth
POST /auth /register Register a new user X
POST /auth/login Log in user X
POST /auth /refresh-token Refresh user tokens X
POST /auth/change-password Change user password v
POST /auth /reset-password /request Request reset password X
POST /auth/reset-password/verify-otp Verify email OTP code X
POST /auth/reset-password /confirm Confirm reset password v
POST /auth/logout Log out user v
POST Jauth/verify Verify authentication v

Table 4.1: Authentication APIs.

Method Endpoint Description Auth

GET /users/{id} Retrieve user info by id v

Table 4.2: Users APIs.

35

Methodology

Method Endpoint Description Auth
GET /calls Retrieve all calls v
GET Jcalls/{id} Retrieve call by id v
DELETE /calls Delete calls by id v

Table 4.3: Calls APlIs.

Method Endpoint Description Auth
GET /contacts Retrieve all contacts v
GET Jcontacts/{id} Retrieve contact by id v
POST /contacts Create a new contact v
PUT /contacts/{id} Update a contact by id v
DELETE /contacts/{id} Delete a contact by id v
POST /contacts/sync Sync local contacts info v

Table 4.4: Contacts APIs.

Method Endpoint Description Auth
GET /profile Retrieve user profile 4
PUT /profile Update user profile v
DELETE /profile Delete user profile v
POST /profile/image Upload user profile image v
DELETE /profile/image Delete user profile image v

Table 4.5: Profile APIs.

36

Methodology

Method Endpoint Description Auth

GET /downloads/app Retrieve app apk file X

Table 4.6: Downloads APIs.

Method Endpoint Description Auth

POST /tokens Register a new token v
POST /tokens/sync Synchronize an updated token v
DELETE /tokens Delete a registered token 4

Table 4.7: Tokens APIs.

4.3.4 Push Notification Architecture

This section provides a brief overview of the push notification mechanism, focusing
on its functionality and the implementation details of the service.

Push notifications are a form of asynchronous communication where messages are
sent from the server to the client without the client having to explicitly request
them. This approach differs from the traditional pull model, in which the client
periodically queries the server to check for updates. The push model is significantly
more efficient in terms of both network and energy consumption, especially in
mobile environments, as it eliminates the need for continuous polling.

In the context of the developed application, push notifications are crucial to ensure
that users are promptly informed of incoming or missed video calls—even when
the app is running in the background or has been terminated. This guarantees
a more responsive and seamless communication experience, which is particularly
important given the real-time and accessibility-oriented nature of the service.

In particular, the implementation of the push notification service FCM, a free
cloud messaging solution provided by Google. FCM enables reliable delivery of
messages between servers and client applications across platforms. Figure 4.12
illustrates the architecture of the notification service, highlighting the main actors
involved—mamely the Node.js-based web server, the FCM infrastructure, and the
mobile client—and the actions they must perform to enable the notification flow.

37

Methodology

e Web Server
Database
Generate Alert

FCM

Figure 4.12: FCM Service Architecture.

As shown, the operation of the architecture is based on different steps that can
be summarized as follows:

1. Device Registration: Before a user can receive push notifications, they must
explicitly enable them within the application. This action triggers the reg-
istration of the corresponding device with the backend system to allow the
delivery of push notifications via FCM.

Specifically, once the required permissions have been granted, the mobile
application registers the device with the FCM infrastructure and retrieves
a unique FCM token. This token, together with a device-specific identifier,
is then sent to the Node.js-based web server, which registers the device by
storing the token—identifier pair in the PostgreSQL database.

This approach allows the backend to associate multiple devices with the same
user, thereby enabling full multi-device support for push notifications. As a
result, users can receive incoming or missed call alerts on all their registered
devices, regardless of which one was last active.

In addition, a listener is implemented within the mobile application to monitor
FCM token changes and ensure synchronization with the backend. Users may
also choose to disable push notifications for a specific device at any time; in
this case, the corresponding token is removed from the database.

2. Alert Generation: When the web server needs to send a notification to a user,
it first retrieves all the tokens associated with the user’s devices from the

38

Methodology

database. Then, it generates an alert containing the relevant information and
sends it to the FCM infrastructure, which is responsible for forwarding the
message to the target devices using the push model.

3. Push Notification Delivery: Once the alert is received, the FCM backend
delivers the notification to all specified devices using the tokens provided by
the web server. FCM supports two types of messages: notification messages,
which are automatically displayed in the notification panel by the system, and
data-only messages, typically used for background data synchronization or
customized handling. In this implementation, only data-only messages are
used, as the Notifee library has been integrated into the mobile application.
This library allows for fine-grained control over the appearance and behavior
of notifications, as well as the definition of listeners to handle notification
events when the app is in the foreground, background, or terminated state.

4.3.5 Video Call Management

Among all the features supported by the backend system, video call management
constitutes its primary functionality, handled by the Node.js-based web server. The
following paragraphs offers a detailed overview of this feature, highlighting the
design choices and implementation strategies adopted during development.

Signaling Process

When a user initiates a video call to another user, a signaling phase is first required
to correctly establish the connection between the two endpoints. This signaling
process is entirely managed by the web server, which leverages both WebSocket and
FCM to enable real-time communication with the users’ devices. While FCM is
used exclusively to deliver push notifications—for example, to alert the callee of an
incoming call—WebSocket is employed for the remaining message exchange, thanks
to its capability to establish a bidirectional communication channel over a single,
long-lived TCP connection. This channel is used to exchange transport parameters
and connection metadata necessary for configuring the media transport channels.
Specifically, once the user logs in, a WebSocket connection is established with the
server, creating a persistent TCP connection that enables message exchange. At
this point, the server stores session-specific metadata, such as the socket identifiers
associated with each of the user’s devices (to support multi-device functionality),
and whether accessibility features are enabled. In compliance with user privacy, this
session data is not stored persistently in the database; instead, it is held in memory
only for the duration of the session and discarded when the user disconnects.
Figure 4.13 illustrates the sequence of messages exchanged between the mobile
client and the web server during this signaling phase.

39

Methodology

W

wer cal

| |
| |
| |
| |
| |
| I
I I
| ANS !
| |
| |
I |
I |
! !
|

|

|

Call answered W

e WebSocket
e FCM

Figure 4.13: Video Call Signaling Process.

As shown, the process begins when a user requests to initiate a video call by
providing the identifier of the target user. After performing several checks—such
as verifying that the caller is not already engaged in another call—the server alerts
the target user by sending a push notification to all of their registered devices.
Upon receiving the notification, the target user can choose to ignore or decline the
call, in which case the server informs the caller of the outcome. If the user accepts
the call, the server creates a new call entry in the database with the status set to
ongoing, updates the status of both users from available to busy, and notifies both
participants of the successful connection. At this point, the server also shares the
necessary transport parameters that will be used to establish the media transports
for streaming audio and video data.

Media Stream Management

In typical real-time communication applications, media stream management is often
not explicitly required, as peer-to-peer architectures handle the direct exchange of
media between participants. However, in this project, such an approach was not
suitable due to the need to intercept and process media streams through integrated
sign language translation algorithms. Consequently, it was necessary to implement
a dedicated media stream management system capable of routing and forwarding
streams between the participants in a controlled manner.

While this type of functionality is usually delegated to a dedicated media server, in

40

Methodology

order to reduce the complexity of the solution, a Node.js-integrated approach was
adopted using the Mediasoup library. Mediasoup acts as a SFU, a type of media
server that receives media streams from each participant and selectively forwards
them to other participants without decoding and re-encoding the streams. This
architecture allows for efficient media distribution, scalability, and, crucially in this
case, the interception and processing of media for accessibility features.

In Mediasoup, several key components are involved in this process:

» Worker: A separate process that handles all low-level operations related to
media transmission. For this application, a single Worker instance has been
employed to manage all media operations.

e Router: Each Worker can host one or more Routers, which are responsible
for routing media streams between participants. In this case, a single Router
instance has been associated with the Worker to handle all active calls.

o Transports: These represent the underlying network connections used for
media exchange. For each user participating in a call, two WebRTC transports
are created: one sending transport (for producing media streams) and one
receiving transport (for consuming media streams).

e Producers and Consumers: A Producer is created on a sending transport
and is responsible for sending an audio or video stream, while a Consumer is
created on a receiving transport to receive and process a specific media stream
produced by another participant.

After the signaling phase, during which the transports are created for both

participants, an additional exchange of signaling messages takes place between
the clients and the server via WebSocket to finalize the setup. This includes
connecting each transport to its remote counterpart and the creation of Producers
and Consumers. Specifically, each client produces its own audio and video streams
and consumes the audio and video streams of the other participant, ensuring a
bidirectional flow of media.
Furthermore, camera and microphone control during the call has been implemented
using the pause and resume methods provided by Mediasoup on Producers. When
a user disables their camera or microphone, the corresponding Producer is paused,
halting the stream transmission. When re-enabled, the Producer is resumed,
allowing for seamless control over media flow without requiring full reconnection or
renegotiation of the media session.

4.3.6 Integration with Translation Platform

To support the real-time sign language translation features, it was necessary to
integrate a real-time communication platform into the backend system, enabling

41

Methodology

seamless bidirectional interaction between deaf and hearing individuals. This
platform incorporates an Al-powered translation engine capable of translating text
into sign language representations and vice versa.

Gloss to
Pose

Speech to

Text

— >

Gloss

q) -

Text to »
’

i@]
Sign Language Pose to Text to
2 — — — Q)
=

Figure 4.14: Translation Platform Architecture.

The architecture of the communication platform is illustrated in Figure 4.14.
Each direction of the translation process consists of a multi-step pipeline, which is
described in detail in the following paragraphs.

Voice to Sign Language

This direction of the translation process enables spoken language to be translated
into sign language animations. It consists of the following steps:

o Speech to Text — Converts spoken language into written text using auto-
matic speech recognition.

o Text to Gloss — Translates the recognized text into a sequence of glosses,
which provides a condensed description of meaning, structured to closely
match the syntax of sign language.

e Gloss to Pose — Converts the glosses sequences into pose series, which
represent the body and hands movement required to perform a each sign. This
transformation relies on a lookup table that associates a predefined sequence
of poses to each gloss.

e Pose to Video — Renders pose information into a visual animation using a
virtual avatar.

42

Methodology

Sign Language to Voice

This direction of the translation process allows deaf users to communicate using
sign language, which is then translated into synthesized speech. It consists of the
following steps:

« Sign Language to Pose — Captures user’s skeletal data representing the
position of key body joints using pose estimation techniques based on computer
vision.

e Pose to Text — Interprets the sequence of poses and maps them to the
corresponding textual representation using a trained 3D-CNN model, which
analyzes pose sequences three-dimensionally over time and associates them
with natural language expressions.

o Text to Speech — Converts the generated text into natural-sounding speech
using a text-to-speech system.

Although the initial idea was to implement a separate Python-based server
exposing these functionalities, a microservices-based architecture was eventually
adopted. Specifically, the approach involved the development of Python-based
microservices responsible for real-time translation, which communicate with the
Node.js-based web server via TCP sockets. This architectural choice was motivated
by the need to ensure that the translation process would not negatively affect call
performance, minimizing the processing delay and thus enabling an optimal user
experience. Figure 4.15 shows a diagram illustrating the complete architecture.
To access and process user media streams, it was necessary to rely on Plain Trans-
ports—a special type of transport provided by Mediasoup that allows media streams
to be intercepted or injected for further forwarding. Since Mediasoup does not
expose APIs for directly accessing raw audio or video tracks, the use of FFmpeg
was also required. FFmpeg is an open-source multimedia framework that offers a
suite of tools for the processing and conversion of audio and video streams.

In the proposed solution, the Node.js-based web server spawns two FFmpeg pro-
cesses for each communication direction between the two users. These processes
act as intermediaries between the server and the corresponding Python-based
microservices. The first FFmpeg instance intercepts the RTP stream from a Plain
Transport, decodes it into a raw media stream, and forwards it to the corresponding
microservice listening on a dedicated TCP port. After the translation output is
generated, the microservice sends it to the second FFmpeg instance via TCP. This
second process re-encodes the media and injects it into another Plain Transport to
be delivered to the receiving user.

In this way, the hearing user’s audio stream is processed by the microservice and
translated into a sign language representation to be displayed to the deaf user.

43

Methodology

M FFmpeg raw video stream,_ video stream
@2
/ gz"’
Python
2
' ’?7‘,1:05_?.’ig audio RTP stream M FFmpeg
i L S !"l\‘ ¢

microservice

Deaf user
e video RTP stream
"/
%
Sugy, 6\”
Node.js io @Tp ,%
Hearlng user server Frea
raw audio stream, audio stream
M FFmpeg

Python
microservice

Figure 4.15: Video Call Architecture.

Conversely, the deaf user’s video stream is analyzed by a separate microservice

to recognize sign language gestures and convert them into voice, which is then sent
to the hearing user. Moreover, for the voice-to-text and text-to-voice conversion
operations—used as pre-processing or post-processing steps in the execution of sign
language translation algorithms—TTS and STT models were employed. In particu-
lar, lightweight local models were selected to strike a balance between accuracy and
processing speed, thereby reducing the overall latency of the translation pipeline.
These models were carefully downloaded and configured during the backend system
setup phase to avoid relying on external services, further minimizing delays caused
by remote communication.
These architectural choices, combined with the modular microservice-based design,
contributed to building a responsive, scalable, and efficient backend capable of sup-
porting real-time translation without compromising performance or user experience,
thereby enabling seamless communication between hearing and deaf users.

44

Chapter 5
Application Testing

This chapter provides a comprehensive description of the testing procedures con-
ducted on both the mobile application and the backend system after the completion
of their implementation. It begins with a brief overview of the testing setup,
outlining the tools and environments used. Subsequently, it presents a detailed
performance analysis based on key metrics, evaluating the system’s behavior to
assess its robustness, responsiveness, and overall reliability.

5.1 Testing Setup

To carry out the testing activities, the backend system was run locally on a
Windows 11 machine equipped with an AMD Ryzen 5 3600 processor, 16 GB
of RAM, and an NVIDIA RTX 3060 GPU. To simplify, speed up, and make
deployment more flexible—particularly with regard to managing dependencies and
supporting future deployments—all backend components were containerized using
Docker and organized into a microservices architecture orchestrated via Docker
Compose. As for the mobile application, it was tested on three different devices:

« Samsung Galaxy A04s (Android 14 — One UI 6.1)
« Samsung Galaxy A20e (Android 11 — One UI 3.1)

« Redmi Note 10 Pro (Android 13 — MIUI 14.0.9)

The use of these devices enabled performance analysis across different hardware
tiers, including lower-end configurations, ensuring that the application remains
functional and responsive even under suboptimal hardware conditions. Moreover,
testing across different Android versions allowed verifying compatibility and consis-
tent behavior of the application on multiple operating system releases. Additionally,

45

Application Testing

testing on multiple devices made it possible to verify the correct behavior of the
multi-device support functionality.

5.2 Evaluation Metrics

The main goal of the testing phase, beyond verifying the correct functioning
of the application and identifying potential bugs, was to evaluate its perfor-
mance—particularly the efficiency of the real-time sign language translation system
integrated into video calls. The tests aimed to assess whether the processing
operations required for translation introduced any noticeable delays that could
compromise the fluidity and effectiveness of communication between users.

In particular, the objective was to determine whether processing times remained
within acceptable limits to ensure a smooth and natural conversational experience.
For this reason, the metrics used in the evaluation focused on measuring the delays
introduced during the various stages of media stream processing in both directions.
These included the time required for data decoding, voice-to-text and text-to-voice
conversion using local STT and TTS models, as well as sign language to text and
text to sign language translation through the integrated algorithms.

This approach not only enabled the calculation of the overall additional processing
delay introduced by the system—on top of the transmission and forwarding latency
between clients, which is primarily influenced by external network conditions—but
also helped to identify the most computationally demanding stages of the pipeline,
highlighting potential targets for future optimization.

5.3 Results

The results of the delay measurements introduced by each stage of media stream
processing in both directions are presented in Table 5.1. In the Sign Language to
Voice direction, the total delay includes:

e Frame decoding , performed on the media stream captured via a Mediasoup
plain transport using FFmpeg,

e Pre-processing, which involves pose estimation to extract the keypoints used
as input for the sign-to-text translation model,

o Model inference,
o TTS conversion,

o and finally, audio encoding, which prepares the synthesized audio for injection
back into the Mediasoup plain transport through FFmpeg.

46

Application Testing

Processing Stage Video-to-Voice Voice-to-Video
Frame Decoding 0.002s -
Pre-processing 0.683s 0.002s
Model Inference 0.069s 0.269s

TTS / STT Conversion 0.071s 0.149s
Audio/Video Encoding 0.078s 0.003s
Total 0.907s 4.529s

Table 5.1: Average processing times (s) for each stage in both translation directions.

Although the overall latency introduced remains acceptable for a reasonably
smooth user experience, several stages still present optimization opportunities—in
particular the Pre-processing module, which could be replaced by a more efficient,
lightweight model. Improvements in T'TS conversion, audio encoding and model
inference times could also significantly reduce end-to-end delay. While, in the Voice
to Sign Language direction, the delay accounts for:

o Audio pre-processing (e.g., mono channel conversion),
o STT conversion
o Model inference, generating sign language representations from textual input,

o and frame encoding, which prepares the visual output for delivery into Media-
soup plain transport via FFmpeg. It is important to note that the encoding
time reported in the table refers to a single frame, but this process is repeated
for each frame, justifying the higher cumulative delay in this direction.

Despite the additional computational demand, the overall latency remains within

acceptable limits to ensure a smooth user experience. Nonetheless, further optimiza-
tions—particularly in frame encoding efficiency—could enhance the responsiveness
of sign language playback, especially when transmitting to deaf users.
In conclusion, the system demonstrates solid performance in real-time translation
tasks, with latency levels that support a fluid interaction. However, future improve-
ments may target both performance optimizations, especially in delay-critical stages,
and model accuracy, particularly for the sign-to-text translation component.

47

Chapter 6

Conclusion and Future
Works

This chapter serves as the concluding section, providing a comprehensive overview
of the work carried out throughout this thesis. It summarizes the key design
decisions and the main contributions made to the research. In addition, particular
attention is devoted to outlining potential improvements, optimizations, and future
developments that could enhance or extend the proposed solution.

6.1 Thesis Summary

This thesis aimed to bridge the communication gap between deaf and hearing
individuals by developing a mobile application that integrates a bidirectional sign
language translation platform. To achieve this goal, the development and imple-
mentation of two separate modules were required: a backend system responsible
for managing all functionalities, and a mobile application serving as the client
interface. The work began with a brief introduction outlining the core problem and
the starting point of the project, namely the bidirectional translation platform. Its
architecture and the functioning of each component were described to provide the
necessary background. A more detailed problem analysis followed, reviewing the
most relevant contributions from the scientific community over the years, highlight-
ing their strengths and limitations. After a brief technical overview of the tools
and frameworks used, the focus shifted to the architectural and implementation
choices that shaped the final solution.

Starting from a high-level overview of the system architecture, the thesis first
examined the mobile application, discussing its functional requirements, use cases,
and navigation design. It then explored the backend system in detail, describing
its components and the services they provide through mutual interaction. Special

48

Conclusion and Future Works

emphasis was placed on the authentication mechanism, the database design, and
the RESTful API structure. The discussion concluded with an in-depth look at
video call management and the integration of the translation platform.

Finally, the testing phase was presented, detailing the performance evaluation
process and analyzing the collected metrics. This analysis also identified the most
computationally demanding stages, suggesting potential areas for future optimiza-
tion. Overall, the resulting product is a fully functional prototype that provides a
solid foundation for future enhancements and developments.

6.2 Future Works

Although the developed system constitutes a fully functional prototype and a
solid foundation, several limitations remain that suggest opportunities for further
enhancement. Future developments may aim to improve both the system’s technical
capabilities and the overall user experience. The following directions are proposed
as potential avenues for future work:

1. Support for Group Video Calls: Extending the system to support multi-user
video calls would enable interaction among multiple participants without
sacrificing the benefits of real-time translation. This enhancement would
significantly improve the application’s usability in social, educational, or
professional settings.

2. Integration of a Chat Functionality: The addition of a chat system would
provide a complementary communication channel, enriching the overall in-
teraction experience. This could be further augmented by incorporating
accessibility-oriented features—such as voice message transcription via the
translation platform—thereby addressing communication barriers in text-based
conversations.

3. Implementation of Live Transcription Mode: A live transcription feature would
allow users to benefit from real-time translation without needing to initiate a
remote video call. This would enable live, in-person interactions using only
the phone’s microphone and camera. Such a feature would be especially useful
in educational (e.g., lectures for deaf students) and medical contexts (e.g.,
patient-doctor communication).

4. 108 Support: Extending support to iOS devices would ensure platform in-
dependence and provide broader accessibility to all users, regardless of the
operating system used.

5. Backend Deployment and Mobile App Publication: Deploying the backend
system and officially publishing the mobile application are essential steps for

49

Conclusion and Future Works

making the service publicly accessible. These steps should be preceded by
a thorough beta testing phase to identify and resolve any potential bugs or
usability issues.

. Integration with Existing Communication Platforms: Developing dedicated
plug-ins to integrate the translation features into widely adopted platforms,
such as Zoom, Microsoft Teams, or Google Meet, would expand the reach
and impact of the system. This is particularly valuable in educational and
professional environments where such platforms are already deeply integrated.

50

Bibliography

World Health Organization. World Report on Hearing. 2021. URL: https://ww
w.who.int/publications/i/item/9789240020481 (visited on 07/03/2025)
(cit. on p. 1).

Wendy Sandler and Diane Lillo-Martin. Sign Language and Linguistic Uni-
versals. Cambridge University Press, 2006 (cit. on p. 1).

Mandlenkosi Shezi and Abejide Ade-Ibijola. «Deaf Chat: A Speech-to-Text
Communication Aid for Hearing Deficiency». In: Advances in Science, Tech-

nology and Engineering Systems Journal 5 (Jan. 2020), pp. 826-833. DOI:
10.25046/aj0505100 (cit. on p. 4).

N. Azodi and T. Pryor. "SignAloud gloves" Multilingual Magazine, University
of Washington. 2016. URL: https://multilingual.com/signaloud-gloves/
(visited on 06/17/2025) (cit. on p. 4).

KinTrans Inc. “KinTrans: Real-Time Sign Language to Voice Translation”.
URL: https://dallasinnovates.com/kintrans-sign-1language-tech-
translates-movements-text-voice/ (visited on 06/17/2025) (cit. on p. 4).

Necati Cihan Camgoz, Simon Hadfield, Oscar Koller, Hermann Ney, and
Richard Bowden. «Neural Sign Language Translation». In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
June 2018 (cit. on pp. 5, 7).

Mark Borg and Kenneth P. Camilleri. «Sign Language Detection “in the
Wild” with Recurrent Neural Networks». In: ICASSP 2019 - 2019 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP).
2019, pp. 1637-1641. poI: 10.1109/ICASSP.2019.8683257 (cit. on p. 5).

Camillo Lugaresi et al. MediaPipe: A Framework for Building Perception
Pipelines. 2019. arXiv: 1906 .08172 [cs.DC]. URL: https://arxiv.org/
abs/1906.08172 (cit. on p. 5).

51

https://www.who.int/publications/i/item/9789240020481
https://www.who.int/publications/i/item/9789240020481
https://doi.org/10.25046/aj0505100
https://multilingual.com/signaloud-gloves/
https://dallasinnovates.com/kintrans-sign-language-tech-translates-movements-text-voice/
https://dallasinnovates.com/kintrans-sign-language-tech-translates-movements-text-voice/
https://doi.org/10.1109/ICASSP.2019.8683257
https://arxiv.org/abs/1906.08172
https://arxiv.org/abs/1906.08172
https://arxiv.org/abs/1906.08172

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity
Fields. 2019. arXiv: 1812.08008 [cs.CV]. URL: https://arxiv.org/abs/
1812.08008 (cit. on p. 5).

Amit Moryossef, loannis Tsochantaridis, Roee Aharoni, Sarah Ebling, and
Srini Narayanan. Real-Time Sign Language Detection using Human Pose
Estimation. 2020. arXiv: 2008.04637 [cs.CV]. URL: https://arxiv.org/
abs/2008.04637 (cit. on p. 5).

Katrin Renz, Nicolaj C. Stache, Samuel Albanie, and Giil Varol. Sign language
segmentation with temporal convolutional networks. 2021. arXiv: 2011.12986
[cs.CV]. URL: https://arxiv.org/abs/2011.12986 (cit. on p. 6).

M. Madhiarasan and Partha Pratim Roy. A Comprehensive Review of Sign
Language Recognition: Different Types, Modalities, and Datasets. 2022. arXiv:
2204.03328 [cs.CV]. URL: https://arxiv.org/abs/2204.03328 (cit. on
p. 6).

Zeyu Liang, Huailing Li, and Jianping Chai. «Sign Language Translation: A
Survey of Approaches and Techniquesy. In: Electronics 12.12 (2023). 1SSN:
2079-9292. DOI: 10.3390/electronics12122678. URL: https://www.mdpi.
com/2079-9292/12/12/2678 (cit. on p. 7).

Necati Cihan Camgoz, Oscar Koller, Simon Hadfield, and Richard Bowden.
Sign Language Transformers: Joint End-to-end Sign Language Recognition
and Translation. 2020. arXiv: 2003.13830 [cs.CV]. URL: https://arxiv.
org/abs/2003.13830 (cit. on p. 7).

Kayo Yin and Jesse Read. «Better Sign Language Translation with STMC-
Transformer». In: Proceedings of the 28th International Conference on Com-
putational Linguistics. Ed. by Donia Scott, Nuria Bel, and Chengqing Zong.
Barcelona, Spain (Online): International Committee on Computational Lin-
guistics, Dec. 2020, pp. 5975-5989. DOI: 10 . 18653 /v1 /2020 . coling -
main.525. URL: https://aclanthology.org/2020.coling-main. 525/
(cit. on p. 7).

Ralph Elliott, John Glauert, Richard Kennaway, Ian Marshall, and Eva Safér.
«Linguistic modelling and language-processing technologies for Avatar-based
sign language presentationy». In: Universal Access in the Information Society
6 (Feb. 2008), pp. 375-391. DOIL: 10.1007/s10209-007-0102~-z (cit. on p. 7).

Thomas Hanke. «HamNoSys — Representing Sign Language Data in Lan-
guage Resources and Language Processing Contextsy. In: 4th International
Conference on Language Resources and Evaluation (LREC 2004). Proceedings
of the LREC2004 Workshop on the Representation and Processing of Sign
Languages: From SignWriting to Image Processing. Information techniques

52

https://arxiv.org/abs/1812.08008
https://arxiv.org/abs/1812.08008
https://arxiv.org/abs/1812.08008
https://arxiv.org/abs/2008.04637
https://arxiv.org/abs/2008.04637
https://arxiv.org/abs/2008.04637
https://arxiv.org/abs/2011.12986
https://arxiv.org/abs/2011.12986
https://arxiv.org/abs/2011.12986
https://arxiv.org/abs/2204.03328
https://arxiv.org/abs/2204.03328
https://doi.org/10.3390/electronics12122678
https://www.mdpi.com/2079-9292/12/12/2678
https://www.mdpi.com/2079-9292/12/12/2678
https://arxiv.org/abs/2003.13830
https://arxiv.org/abs/2003.13830
https://arxiv.org/abs/2003.13830
https://doi.org/10.18653/v1/2020.coling-main.525
https://doi.org/10.18653/v1/2020.coling-main.525
https://aclanthology.org/2020.coling-main.525/
https://doi.org/10.1007/s10209-007-0102-z

BIBLIOGRAPHY

[19]

[20]

and their implications for teaching, documentation and communication. Ed. by
Oliver Streiter and Chiara Vettori. Lisbon, Portugal: European Language
Resources Association (ELRA), May 2004, pp. 1-6. URL: https://www.sign-
lang.uni-hamburg.de/lrec/pub/04001.pdf (cit. on p. 7).

Ben Saunders, Necati Cihan Camgoz, and Richard Bowden. Progressive
Transformers for End-to-End Sign Language Production. 2020. arXiv: 2004 .
14874 [cs.CV]. URL: https://arxiv.org/abs/2004.14874 (cit. on p. 8).

Transcense Inc. "Professional €& AI-Based Captions for Deaf €& HoH | Ava'.
URL: https://www.ava.me/ (visited on 06/17/2025) (cit. on p. 8).

Pedius srl. "Pedius - Phone calls for the deaf'. URL: https://www.pedius.
org/ (visited on 06/17/2025) (cit. on p. 8).

53

https://www.sign-lang.uni-hamburg.de/lrec/pub/04001.pdf
https://www.sign-lang.uni-hamburg.de/lrec/pub/04001.pdf
https://arxiv.org/abs/2004.14874
https://arxiv.org/abs/2004.14874
https://arxiv.org/abs/2004.14874
https://www.ava.me/
https://www.pedius.org/
https://www.pedius.org/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Deaf People and Sign Language
	Motivation
	Goal
	Thesis structure

	Related Works
	Early Approaches
	Deep Learning Approaches
	Sign Language Detection and Identification
	Sign Language Segmentation
	Sign Language Recognition
	Sign Language Translation
	Sign Language Production

	Commercial Solutions

	Background
	Development Tools & Versioning
	Git
	JSON
	Swagger (OpenAPI)
	Docker

	Frontend Technologies
	JavaScript
	React Native (Expo)

	Backend & API Development
	Python
	Node.js (Express)
	Sequelize
	PostgreSQL
	JWT
	Redis
	Nodemailer
	Supabase

	Real-time Communication & Notifications
	WebSocket
	FCM
	Mediasoup

	Media Processing
	FFmpeg

	Methodology
	System Architecture
	Mobile Application
	Functional Requirements
	Actors and Use Cases
	User Interface Design

	Backend System
	Authentication
	Database Design
	API Design and Implementation
	Push Notification Architecture
	Video Call Management
	Integration with Translation Platform

	Application Testing
	Testing Setup
	Evaluation Metrics
	Results

	Conclusion and Future Works
	Thesis Summary
	Future Works

	Bibliography

