
POLITECNICO DI TORINO

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA (COMPUTER
ENGINEERING)

COLLEGIO DI INGEGNERIA INFORMATICA , DEL C INEMA E MECCATRONICA

CODICE CLASSE LM-32 (DM270)

ARTIF ICIAL INTELLIGENCE AND DATA ANALYTIC S

Adversarial Patch Attacks Against
Deep-Learning Based UAV Detection

Supervisor Author

Prof. Enrico Magli Quaranta Gabriele

Co-Supervisor

Ivonne Valente

Luca Morino

ACADEMIC YEAR 2024-2025

IMPRINT

Adversarial Patch Attacks Against Deep-Learning Based UAV Detection
Copyright © 2025 by Quaranta Gabriele.
All rights reserved. Printed in Italy.
Published by the Politecnico di Torino, Torino, Italy.

COLOPHON

This thesis was typeset using LATEX and the tufte-book document-
class.

It is based on Matteo Belenchia’s thesis Unicam Template for The-
sis1, based on Aaron Turon’s thesis Understanding and expressing scal-1 https://www.overleaf.

com/latex/templates/
unicam-template-for-thesis/
nptgrmpghfkh

able concurrency2 which is itself a mixture of classicthesis3 by

2 https://people.mpi-sws.org/
~turon/turon-thesis.pdf
3 https://bitbucket.org/
amiede/classicthesis/

André Miede and tufte-latex4, based on Edward Tufte’s Beautiful

4 https://github.com/
Tufte-LaTeX/tufte-latex

Evidence.

The bibliography was processed by Biblatex. All graphics and plots are
made with Matplotlib.

Matthew Carter’s Charter acts as the text typeface. Monospaced text
uses Jim Lyles’s Bitstream Vera Mono. The display typeface can
be set to Knuth’s Concrete Modern, Euler or the standard LATEX display
font.

https://www.overleaf.com/latex/templates/unicam-template-for-thesis/nptgrmpghfkh
https://www.overleaf.com/latex/templates/unicam-template-for-thesis/nptgrmpghfkh
https://www.overleaf.com/latex/templates/unicam-template-for-thesis/nptgrmpghfkh
https://www.overleaf.com/latex/templates/unicam-template-for-thesis/nptgrmpghfkh
https://people.mpi-sws.org/~turon/turon-thesis.pdf
https://people.mpi-sws.org/~turon/turon-thesis.pdf
https://bitbucket.org/amiede/classicthesis/
https://bitbucket.org/amiede/classicthesis/
https://github.com/Tufte-LaTeX/tufte-latex
https://github.com/Tufte-LaTeX/tufte-latex

DECLARATION

I herewith declare that I have produced this paper under the supervision of Prof. Enrico Magli at the
Politecnico di Torino, without the prohibited assistance of third parties and without making use of aids,
other than those specified. Notions taken over directly or indirectly from other sources have been identified
as such. This paper has not previously been presented in an identical or similar form to any other Italian or
foreign examination board.

Quaranta Gabriele
2025

Abstract

The increased use of Unmanned Aerial Vehicles (UAVs) in both military and civilian domains has pushed
the development of deep learning-based systems for automated detection. While effective these systems are
vulnerable to adversarial attacks that can undermine their reliability. This thesis explores the design and
implementation of adversarial patch attacks intended to evade state of the art detectors.

The research begins by evaluating existing adversarial patches from the literature, finding their effec-
tiveness to be limited when transferred to new models, which underscores the need for a custom tailored
approach. This motivates the development of a white-box attack strategy targeting the YOLO family of object
detectors (v5, v8, and v10). Initial experiments revealed a critical insight: an adversarial signal’s efficacy is
dramatically enhanced when applied as a repeating, tiled pattern across the object’s surface, rather than as
an isolated patch.

This principle forms the basis of the primary contribution: an advanced generator that optimizes a base
patch element with a masked, repeating pattern, effectively creating an adversarial camouflage. The re-
sulting textures reduce the detection capabilities of all targeted YOLO models. Quantitative analysis shows
these patterns achieve increasing Attack Success Rate for system configured with higher confidence detec-
tion threshold. The findings demonstrate a practical and replicable method for creating and testing effective
adversarial camouflage by analyzing this significant vulnerability in modern AI-based surveillance.

Contents

LIST OF FIGURES x

LIST OF TABLES xii

I PROLOGUE 1

1 INTRODUCTION 3
1.1 Motivation . 3
1.2 Public Safaty Importance 4
1.3 Military Applications . 4
1.4 Contributions . 5

II ADVERSARIAL ATTACKS 7

2 ADVERSARIAL ATTACKS 9
2.1 Introduction . 9
2.2 History . 9
2.3 Types of Adversarial Attacks 10
2.4 Adversarial Patch Attacks 11

3 ADVERSARIAL PATCHES - LITERATURE REVIEW 15
3.1 Introduction . 15
3.2 Background: Adversarial Examples and Early Patch At-

tacks . 15
3.3 Adversarial Patch Attacks for Aerial and Vehicle Camou-

flage . 17
3.4 Evaluation Metrics and Experimental Studies 19
3.5 Defense Strategies and Future Directions 20
3.6 Conclusion . 21

III DATA AND DETECTION FRAMEWORK 23

4 THE DATASET 25
4.1 The Importance of Data in Machine Learning 25
4.2 Synthetic Data . 26
4.3 Creating the Dataset . 26

5 YOLO - YOU ONLY LOOK ONCE 29

v

vi

5.1 History and Importance 29
5.2 Base Architecture . 30
5.3 YOLO Versions Utilized 31
5.4 Finetuning and Baselines 32

IV EVALUATING PATCHES FROM LITERATURE 35

6 PATCH SELECTION AND EVALUATION 37
6.1 Patch Selection . 37
6.2 Evaluating Patches Impact 38

7 PATCHES AS PATTERN 43
7.1 Generating and applying the pattern 44
7.2 Performances . 44
7.3 3eyes Patch . 46

V WHITE-BOX PATCH GENERATION 49

8 WHITE-BOX PATCH GENERATION 51
8.1 Introduction . 51
8.2 Objectives and the loss function 52
8.3 The Loss equation . 53
8.4 Extracting the gradient 55

9 RESULTS 59
9.1 Introduction . 59
9.2 YOLOv5 Patch . 60
9.3 YOLOv8 Patch . 60
9.4 YOLOv10 Patch . 61
9.5 Mosaic Pattern . 62
9.6 Other Palettes . 63
9.7 White and random noise not-optimized patches 65

10 IMPROVED PATCH GENERATOR 67
10.1 Introduction: Beyond Single-Patch 67
10.2 Integrated Pattern Optimization 67
10.3 Key Methodological Enhancements in Generator V2 . . . 68
10.4 Implications and Expected Benefits of the V2 Approach . 70
10.5 Improved Generator Results 70

VI FINAL RESULTS 73

11 ATTACK SUCCESS RATE ANALYSIS 75
11.1 Introduction: Defining and Understanding Attack Suc-

cess Rate . 75
11.2 Attack Success Rate Results for V2 Patterns 76

12 LIVE VIDEO FEED EXPERIMENT 79
12.1 Motivation . 79

vii

12.2 Experiment Setup . 79
12.3 Qualitative Results and limitations 80

VII EPILOGUE 83

13 CONCLUSION 85
13.1 Summary of Findings . 85
13.2 Implications of the Research 85
13.3 Limitations and Future Work 86
13.4 Concluding Remarks . 86

List of Figures

2.1 Classic Adversarial Attack Example. 9
2.2 Types of adversarial attacks. 10
2.3 A real-world attack on VGG16 using a physical patch. . . 12

3.1 Adversarial examples generated for AlexNet. 16
3.2 YOLO cannot detect bike after adding DPATCH 16
3.3 A camouflage net used for hiding an object1 (left), and

a plane with patch camouflage that can hide it from
being automatically detected (right). 17

3.4 Selected examples of physical attacks on Yolo-V3. 18
3.5 Examples of successful adversarial attacks in the physi-

cal domain in different angles and environments. 18
3.6 DTA texture rendering results with detection. 19

5.1 mAP@50-95 Comparison for all YOLO Models. 30
5.2 The network architecture of Yolov5. 31
5.3 The network architecture of Yolov8. 32
5.4 The network architecture of Yolov10. 32

6.1 Selected adversarial patches from literature. 38
6.2 Patch scores across all models. 40

7.1 Applying the adversarial pattern as a texture on a 3D
object. 44

7.2 Patterns from the best three patches. 45
7.3 The 3eyes patch. 46
7.4 Sample images with patterns applied. 48

9.1 The Best Patch from the YOLOv5 patch generation and
the corresponding Pattern. 60

9.2 The Best Patch from the YOLOv8 patch generation and
the corresponding Pattern. 61

9.3 The Best Patch from the YOLOv10 patch generation and
the corresponding Pattern. 62

9.4 Mosaic generated from the three best patches. 63
9.5 Patches for respectively YOLOv5, YOLOv8 and YOLOv10

generated using a sand palette. 64
9.6 Patches for respectively YOLOv5, YOLOv8 and YOLOv10

generated using a green palette. 65

ix

x

9.7 White (bordered here) and random noise patches. . . . 66

10.1 Blue patterns generated with the V2 generator. From
left to right: YOLOv5, YOLOv8, and YOLOv10 patterns. 71

10.2 Green patterns generated with the V2 generator. From
left to right: YOLOv5, YOLOv8, and YOLOv10 patterns. 71

10.3 Sand patterns generated with the V2 generator. From
left to right: YOLOv5, YOLOv8, and YOLOv10 patterns. 72

11.1 Best patterns generated by the V2 generator for each
palette. Respectively generated by YOLOv5, YOLOv8,
and YOLOv10. 76

11.2 Attack Success Rate for the Blue Pattern generated by
the V2 against YOLOv5. 77

11.3 Attack Success Rate for the Green Pattern generated by
the V2 against YOLOv8. 77

11.4 Attack Success Rate for the Sand Pattern generated by
the V2 against YOLOv10. 77

12.1 Some frames from the live video feed experiment. 82

List of Tables

5.1 Baseline metrics for all the YOLO models. 34

6.1 Impact of the three best performing patches. 41

7.1 Impact of the three best performing patches applied as
pattern. 45

7.2 Scores of the best three patches applied as pattern. . . . 46
7.3 Impact of the 3eyes patch applied as a patch and pattern. 47
7.4 Scores of the best three patches applied as pattern. . . . 47

9.1 Impact of the patch and pattern generated with YOLOv5
on the three models. 60

9.2 Scores for the patch and pattern generated with YOLOv5. 60
9.3 Impact of the patch and pattern generated with YOLOv8

on the three models. 61
9.4 Scores for the patch and pattern generated with YOLOv8. 61
9.5 Impact of the patch and pattern generated with YOLOv10

on the three models. 62
9.6 Scores for the patch and pattern generated with YOLOv10. 62
9.7 Impact of the mosaic pattern on the three models. . . . 63
9.8 Scores for the mosaic pattern. 63
9.9 Impact of the sand patches and patterns on the three

models. 64
9.10 Scores for the sand patches and patterns. 64
9.11 Impact of the green patches and patterns on the three

models. 65
9.12 Scores for the green patches and patterns. 65
9.13 Impact of the white and random noise patches and pat-

terns on the three models. 66
9.14 Scores for the white and noise patches and patterns. . . 66

10.1 Impact of the blue patterns generated with the V2 gen-
erator. 71

10.2 Scores for the blue patterns generated with the V2 gen-
erator. 71

10.3 Impact of the green patterns generated with the V2 gen-
erator. 72

10.4 Scores for the green patterns generated with the V2
generator. 72

xi

xii

10.5 Impact of the sand patterns generated with the V2 gen-
erator. 72

10.6 Scores for the sand patterns generated with the V2 gen-
erator. 72

11.1 Attack Success Rate (%) at Various Confidence Thresh-
olds for Selected V2 Patterns. 76

PART I

PROLOGUE

1

1
Introduction

Giraffes are heartless creatures
—Anonymous

1.1 MOTIVATION

In recent years, drone technology has significantly reshaped the land-
scape of warfare and public security. Unmanned Aerial Vehicles (UAVs)
commonly known as drones, have become indispensable tools on the
battlefield, offering rapid reconnaissance, precise targeting, and en-
hanced situational awareness. However their growing importance in
military operations also introduces new risks and vulnerabilities, not
only threatening strategic assets but also raising concerns about public
safety. As both state and non-state actors increasingly exploit drones,
the potential for this technology to be misused in acts of aggression or
terrorism is an important issue that demands more investigation.

Modern drone operations and the defensive systems designed to
counteract them rely heavily on machine learning algorithms (partic-
ularly object detection models) to perform critical tasks such as target
identification, threat assessment, and navigation. This reliance on au-
tomated detection increases efficiency but also creates a new point of
vulnerability: even minor imperfections or intentional manipulations
in the input data can lead to significant misclassifications or failures in
detection.

A key topic in understanding these vulnerabilities is the study of ad-
versarial attacks on machine learning based object detection systems.
Adversarial attacks refer to techniques where intentionally crafted per-
turbations are introduced into data to deceive and mislead machine
learning models. These perturbations can be subtle enough to be im-
perceptible to human observers but cause significant misclassifications
or complete failures in automated systems. One prominent example is
the creation of adversarial patches: physical modifications that when
applied to objects can trick detection systems into either ignoring the
object entirely or misidentifying it.

3

4 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

1.2 PUBLIC SAFATY IMPORTANCE

As drones become increasingly embedded in everyday applications,
from aerial surveying and delivery to emergency response, their po-
tential for misuse escalates dramatically. Understanding the ways in
which drones operate, especially their reliance on machine learning-
based object detection systems, is essential for mitigating risks and
protecting public safety.

In December 2018 Gatwick Airport[31] was thrown into chaos[31] Shackle, The mystery of the Gatwick
drone when a series of unauthorized drone sightings led to widespread flight

cancellations and significant disruptions. This incident not only un-
derscored the vulnerability of critical public spaces but also revealed
how easily drone operations can be exploited to create panic and un-
dermine security.

Recent reports have highlighted incidents where drones were de-
tected in close proximity to nuclear power plants in the UK[2]. These[2] Allison, Drone sightings reported over

British nuclear facilities from 2021 to
2023

sightings have sparked intense debate over the adequacy of current
security measures, as such breaches could potentially be orchestrated
into deliberate attacks on vital infrastructure.

These real-world examples illustrate the urgency of developing ro-
bust defenses against drone-based threats. By understanding the op-
erational mechanics of drones and their dependence on automated
detection systems, researchers can design countermeasures that en-
hance safety in both urban and critical infrastructure environments.
A comprehensive understanding of their vulnerabilities is also crucial
not only for preventing potential tragedies but also for ensuring that
the benefits of drone technology do not come at the expense of public
security.

1.3 MILITARY APPLICATIONS

In recent years drones have fundamentally transformed modern war-
fare becoming indispensable tools for intelligence, surveillance, recon-
naissance, and precision strikes. Their versatility and cost effectiveness
has led to widespread adoption across various military operations.

Ukraine has emerged as a leading producer of military drones, de-
livering over 1.3 million units to frontline soldiers in 2024 alone, with
long-range models capable of striking targets up to 1,700 kilometers
away[32]. This surge in drone utilization has not only enhanced op-[32] Spirlet, Ukraine says it’s taken the

top spot in the race to make combat
drones

erational capabilities but also leveled the playing field between well-
funded militaries and technologically adept forces with more limited
resources[7].[7] Caspi, Drones in Defense: Reshaping

Modern Warfare and its Economics Object detection systems, powered by advanced machine learning
algorithms, have become integral to modern military operations, en-
abling automated identification and tracking of assets in various envi-
ronments. These systems are extensively utilized in applications such
as drone surveillance, where they analyze aerial imagery to detect and
classify objects of interest.

The increasing reliance on these automated systems has exposed

INTRODUCTION 5

vulnerabilities, particularly to adversarial attacks. Adversarial patches,
carefully crafted visual patterns, can be applied to objects to deliber-
ately mislead object detection algorithms. These patches introduce
small perturbations that cause the system to misclassify or entirely ig-
nore the object, effectively camouflaging it from detection. This tech-
nique has been demonstrated in scenarios where adversarial patches
were used to disguise military aircraft from object detectors trained
on drone surveillance footage, highlighting the potential to mislead
enemy sensors and evade detection.

The strategic applications of adversarial patches in military contexts
are twofold. Offensively they can be employed to deceive enemy de-
tection systems by applying these patches to drones or decoy objects,
causing adversaries to misidentify or ignore critical assets. Defensively
they can enhancing stealth and operational security by integrating ad-
versarial patches onto friendly equipment to reduce the likelihood of
detection by hostile systems, .

As object detection technologies become increasingly prevalent in
military operations, the development and deployment of adversarial
patches offer a novel approach to camouflage and deception. By ex-
ploiting the vulnerabilities of machine learning-based detection sys-
tems, these patches provide a means to enhance the stealth and re-
silience of military assets in both offensive and defensive scenarios.

1.4 CONTRIBUTIONS

This thesis will investigate the design, implementation, and efficacy of
adversarial attack patches aimed at fooling object detection models,
with a particular focus on military drones.

The study will explore a range of adversarial patch designs and eval-
uate their performance under diverse operational conditions, showing
how subtle physical modifications can compromise the integrity of au-
tomated detection systems.

Then the research will focus in the development of a novel adver-
sarial patch generation and application methodology, focused on the
use of patterns, to simulate a more realistic camouflage. This approach
will be evaluated against state-of-the-art object detection models, in-
cluding YOLOv5, YOLOv8, and YOLOv10, to assess its effectiveness in
evading detection and misclassifying objects.

PART II

ADVERSARIAL ATTACKS

7

2
Adversarial Attacks

2.1 INTRODUCTION

Adversarial attacks encompass a class of techniques where small, de-
liberately engineered perturbations are added to input data to induce
misclassification by machine learning models. These attacks exploit
the fact that deep neural networks can be highly sensitive to small
changes in input, changes that can often be invisible to human ob-
servers.
[14]

Figure 2.1: Classic Adversarial Attack
Example.

[14] Goodfellow, Shlens, and Szegedy,
Explaining and Harnessing Adversarial
Examples

2.2 HISTORY

The vulnerabilities of machine learning systems have been known for
nearly two decades. At the MIT Spam Conference in January 2004,
John Graham-Cumming[15] demonstrated that one machine-learning [15] Graham-Cumming, How to beat an

adaptive spam filterspam filter could defeat another by automatically learning which “good
words” to insert into a spam email, causing the system to misclassify
it as legitimate. In the same year, Nilesh Dalvi[9] and colleagues [9] Dalvi et al., Adversarial classification

observed that even simple linear classifiers used in spam filters were
susceptible to “evasion attacks”: spammers could insert benign words

9

10 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

into malicious emails to fool the filter. This early work laid the foun-
dation for a broader exploration of machine learning security.

In 2006, Marco Barreno and others formalized a taxonomy of at-
tacks in their influential paper, "Can Machine Learning Be Secure?"[4].[4] Barreno et al., Can machine learning

be secure? Despite hope that more complex non-linear classifiers (like support
vector machines and early neural networks) might be robust to adver-
sarial manipulations, researchers in 2012-2013 (e.g., Battista Biggio
and collaborators[5]) demonstrated the first gradient-based attacks[5] Biggio et al., Evasion attacks against

machine learning at test time that exploited vulnerabilities in these systems.
As deep neural networks began to dominate computer vision around

2012, Christian Szegedy et al.[34] further illustrated that even state-[34] Szegedy et al., Going Deeper with
Convolutions of-the-art deep models could be fooled by imperceptible perturbations.

More recently, while laboratory attacks using digital images have
advanced, real-world adversarial attacks remain challenging: environ-
mental factors like slight rotations or variations in illumination can
neutralize the carefully engineered perturbations.

2.3 TYPES OF ADVERSARIAL ATTACKS

Image-based adversarial attacks exploit vulnerabilities in computer vi-
sion models by introducing perturbations that are often imperceptible
to the human eye but significantly impact model predictions. These
attacks pose a substantial risk in security-sensitive applications such
as facial recognition, medical imaging, and autonomous driving.

This section categorizes image-based adversarial attacks into three
primary types[20]: white-box attacks, black-box attacks, and physical[20] Kong et al., A Survey on Adversarial

Attack in the Age of Artificial Intelligence attacks, detailing their methodologies and implications.

Figure 2.2: Types of adversarial attacks.

White-Box Attacks

White-box attacks assume that the adversary has full knowledge of
the model, including its architecture, parameters, and gradients. This
enables precise and efficient generation of adversarial examples.

• Optimization-Based Adversarial Example Generation: These attacks
formulate the adversarial perturbation as an optimization problem,

ADVERSARIAL AT TACKS 11

minimizing the difference between the adversarial and original im-
age while maximizing misclassification probability.

• Gradient-Based Adversarial Example Generation: These methods lever-
age the gradient information of the model’s loss function to op-
timize adversarial perturbations. It includes techniques such as
Fast Gradient Sign Method (FGSM) and Projected Gradient Descent
(PGD).

Black-Box Attacks

Black-box attacks assume the attacker has no direct access to the model’s
parameters or architecture and can only interact with it through queries.

• Iterative Query-Based Attacks: The attacker iteratively modifies the
input image based on feedback from the model, refining the pertur-
bation until misclassification occurs.

• Transfer Learning-Based Attacks: These attacks leverage adversar-
ial examples generated on a surrogate model with similar charac-
teristics, exploiting the transferability of adversarial perturbations
across models.

Physical Attacks

Physical adversarial attacks involve modifications to real-world objects
to deceive computer vision models when images of these objects are
processed. These attacks are particularly concerning in real-world ap-
plications such as autonomous driving and surveillance, where adver-
saries can subtly alter objects to evade detection or classification.

• Physical Perturbation via Model Feedback: The attacker iterates mod-
ifications to a physical object based on feedback from the model
until it achieves misclassification in real-world scenarios.

A notable approach involves adversarial patches, which are carefully
designed patterns or stickers that can be placed on objects, causing
AI models to misinterpret them. These patches can be universal, af-
fecting multiple models and environments, and have been success-
fully demonstrated in real-world settings to fool object detection
and classification systems.

2.4 ADVERSARIAL PATCH ATTACKS

Adversarial patch attacks represent a specialized subset of adversarial
attacks. Instead of applying small distributed perturbations across the
entire input, these attacks concentrate modifications into a bounded
image region: a “patch.” The patch is designed through an optimiza-
tion process so that when applied to any image it reliably forces the
model to predict a target class.

In many cases, adversarial patches exploit vulnerabilities deep within
the feature extraction layers of object detectors (e.g., Faster R-CNN or

12 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

Figure 2.3: A real-world attack on
VGG16 using a physical patch.

YOLO). The localized perturbation distorts the convolutional features
so significantly that the network’s bounding box regression and classi-
fication outputs are misdirected.

Optimization Framework

The optimization of an adversarial patch typically employs an Expecta-
tion over Transformations (EOT) framework. Let x be an input image,
δ the adversarial patch, and m a binary mask indicating the patch loca-
tion. A transformation t (which could include rotation, translation, or
scaling) is applied to the patch, and the patch is then integrated into
the image via the operator:

A(x, δ, t) = (1−m)⊙ x+m⊙ t(δ)

The objective is to find a patch δ∗ that maximizes the probability of
a target class ytarget across a distribution of images and transforma-
tions:

δ∗ = arg max
δ

Ex∼X, t∼T

[
log P

(
ytarget | A(x, δ, t)

)]
This formulation ensures that the patch is not only effective on a

single image but generalizes across different scenes and under a range
of conditions, a feature that makes it particularly dangerous for real-
world applications.

The Use Case for Adversarial Patches

Adversarial patches have emerged as a particularly effective method of
attacking machine learning models in real world scenarios. Unlike dig-
ital perturbations that require direct modification of input images ad-
versarial patches can be physically deployed in an environment, mak-
ing them practical and versatile for attacks.

Below are key reasons why adversarial patches are useful and often
preferable over other types of adversarial attacks:

• Robustness to Environmental Variations: Adversarial patches are de-
signed to remain effective under different lighting conditions, view-

ADVERSARIAL AT TACKS 13

ing angles, and occlusions. Unlike pixel-level perturbations that
assume a static input, patches can maintain their adversarial effect
across a range of real-world conditions, making them more reliable
for practical attacks.

• Model-Agnostic Nature: Many adversarial attacks require knowledge
of the target model’s architecture or parameters. However, adver-
sarial patches can often generalize across different models without
requiring extensive knowledge of their internals. This makes them
particularly effective in black-box attack scenarios.

• Ease of Deployment: Unlike digital adversarial examples that require
modifying input images at the pixel level, adversarial patches can
be physically printed and placed in an environment. This allows
attackers to manipulate real-world object detection systems without
requiring digital access to the model.

• Long-Term Effectiveness: Unlike evasion attacks that require modi-
fying each new input instance, adversarial patches remain effective
as long as they remain in the scene. This means an attacker can
place a patch on a road sign, a piece of clothing, or a physical ob-
ject and achieve sustained adversarial effects without continuous
intervention.

• Scalability: A single adversarial patch can be used across multiple
settings, making it a cost-effective attack strategy. For example, a
patch designed to deceive facial recognition models can work across
different individuals and camera setups without modification.

These advantages make adversarial patches one of the most prac-
tical and concerning threats in adversarial machine learning, particu-
larly in security-sensitive applications such as surveillance, authenti-
cation systems, and autonomous navigation.

3
Adversarial Patches - Literature
Review

3.1 INTRODUCTION

The rapid development of unmanned aerial vehicles (UAVs) and over-
head imaging technologies has revolutionized warfare, surveillance,
reconnaissance as well as various civilian applications such as environ-
mental monitoring and urban planning. Deep learning based object
detection systems now routinely analyze vast amounts of aerial im-
agery, however these systems are vulnerable to adversarial examples,
carefully designed perturbations that can mislead even state-of-the-art
neural networks. In particular adversarial patch attacks, small and of-
ten universal perturbations applied to an images, have emerged as a
powerful method to force object detectors into misclassifying or com-
pletely overlooking targets. Such attacks are especially attractive for
military applications, where conventional camouflage methods (e.g.,
camouflage nets) may be impractical. This literature review exam-
ines the evolution of adversarial patch attacks, from early discoveries
of adversarial examples to recent work on naturalistic camouflage for
aerial and vehicle detection, and discusses both digital and physical
attack settings along with emerging defense strategies.

3.2 BACKGROUND: ADVERSARIAL EXAMPLES AND EARLY PATCH

ATTACKS

Adversarial Examples in Deep Learning

The vulnerability of deep neural networks (DNNs) to small perturba-
tions was first brought to light by Szegedy et al.[35], who demon- [35] Szegedy et al., Intriguing properties

of neural networksstrated that carefully designed modifications can cause a DNN classi-

15

16 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

fier to misclassify images. Building on these findings Goodfellow et al.
[14] introduced the Fast Gradient Sign Method (FGSM) as a fast and[14] Goodfellow, Shlens, and Szegedy,

Explaining and Harnessing Adversarial
Examples

efficient means of generating adversarial examples. These early stud-
ies focused primarily on image classification revealing a fundamental
fragility in DNNs that has since started extensive research into both
attack and defense techniques.

Figure 3.1: Adversarial examples gener-
ated for AlexNet.

(Left) is a correctly predicted sample, (center) difference between correct im-
age, and image predicted incorrectly magnified by 10x (values shifted by 128
and clamped), (right) adversarial example. All images in the right column are
predicted to be an “ostrich, Struthio camelus”.

[35][35] Szegedy et al., Intriguing properties
of neural networks

Emergence of Adversarial Patch Attacks

In 2017 Brown et al.[6] introduced the concept of the adversarial[6] Brown et al., Adversarial Patch

patch, a localized perturbation that when applied to any image can
force a misclassification regardless of its background. Unlike global
noise constrained by Lp norms these patches are designed to be uni-
versal and robust under various transformations. This breakthrough
paved the way for physical-world attacks: the patch can be printed
and applied to real-world objects effectively deceiving deep neural net-
works in operational settings.

Subsequent research extended adversarial patch attacks to object
detection. Liu et al.[23] developed DPatch which targets object de-[23] Liu et al., DPatch: An Adversarial

Patch Attack on Object Detectors tectors by optimizing both bounding box regression and classification
losses.

Figure 3.2: YOLO cannot detect bike af-
ter adding DPATCH

Later studies such as Thys et al.[36] demonstrated that adversar-[36] Thys, Ranst, and Goedemé, Fooling
automated surveillance cameras: adver-
sarial patches to attack person detection

ADVERSARIAL PATCHES - LITERATURE REVIEW 17

ial patches can render people invisible to automated surveillance cam-
eras, laying the base for later work on camouflaging larger military
assets and vehicles in aerial imagery.

3.3 ADVERSARIAL PATCH ATTACKS FOR AERIAL AND VEHI-
CLE CAMOUFLAGE

Challenges in the Aerial Domain

Aerial imagery introduces unique challenges compared to conventional
natural images. Remote sensing images typically contain a large num-
ber of small-scale objects captured under variable conditions (e.g., dif-
ferent altitudes, angles, and lighting). The high density of targets
means that an adversarial patch must be effective over multiple in-
stances and scales while remaining inconspicuous. Traditional cam-
ouflage methods are often impractical. In contrast adversarial patch
attacks offer a promising alternative by directly manipulating the pixel
patterns used by detection algorithms.

Adhikari et al.[1] were among the first to explore adversarial [1] Adhikari et al., Adversarial Patch
Camouflage against Aerial Detectionpatches for aerial detection. Their work demonstrated that even a

small patch, strategically applied to a military asset in drone surveil-
lance footage, could cause state-of-the-art detectors to miss the target
entirely. This “disappearance attack” serves as an effective digital cam-
ouflage technique, directly exploiting the vulnerabilities of automated
detection systems.

Figure 3.3: A camouflage net used for
hiding an object1 (left), and a plane with
patch camouflage that can hide it from
being automatically detected (right).

Scale Adaptation and Physical-World Deployment

Scale variability is one of the biggest challenges in aerial scenarios. As
drones change altitude the size of objects in the image varies dramati-
cally. Lu et al.[24] addressed this issue by proposing a scale-adaptive [24] Lu et al., Scale-adaptive adversarial

patch attack for remote sensing image air-
craft detection

adversarial patch that dynamically adjusts its size based on the image’s
height metadata, ensuring robustness across multiple scales. Similarly
Zhang et al.[43] demonstrated that a universal patch can be opti- [43] Zhang et al., Adversarial patch at-

tack on multi-scale object detection for
UAV remote sensing images

mized to maintain high attack success rates even when object sizes
vary considerably.

Moving from digital experiments to physical-world attacks intro-
duces additional challenges. Kurakin et al.[21] and Athalye et al.[3] [21] Kurakin, Goodfellow, and Ben-

gio, Adversarial examples in the physical
world
[3] Athalye et al., Synthesizing Robust
Adversarial Examples

18 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

introduced the Expectation Over Transformation (EOT) framework to
simulate physical conditions (such as rotations, translations, and illu-
mination changes) during patch optimization.

Figure 3.4: Selected examples of physi-
cal attacks on Yolo-V3.

Building on these methods, Wise and Plested[40] developed imper-[40] Wise and Plested, Developing Im-
perceptible Adversarial Patches to Camou-
flage Military Assets From Computer Vi-
sion Enabled Technologies

ceptible adversarial patches that both fool detectors and remain subtle
to human observers. Furthers research from Wang et al.[38] explores

[38] Wang et al., FCA: Learning a
3D Full-coverage Vehicle Camouflage for
Multi-view Physical Adversarial Attack

3D camouflage methods for vehicles, suggesting that full-coverage at-
tacks may be necessary when complete concealment is required.

Naturalistic Camouflage and Style Transfer Approaches

Early adversarial patches often resulted in conspicuous, high-contrast
noise patterns. More recent research has focused on generating patches
that blend naturally into the scene. For example, Deng et al.[10] in-[10] Deng et al., Rust-style patch: A phys-

ical and naturalistic camouflage attacks
on object detector for remote sensing im-
ages

troduced a “Rust-Style Patch” framework that leverages style trans-
fer techniques to mimic natural textures, such as rust or weathering,
while maintaining the attack’s strength. By incorporating both content
loss (to preserve structural details) and style loss (to emulate natural
textures), their approach produces patches that effectively suppress
object detection while remaining visually subtle.

Figure 3.5: Examples of successful ad-
versarial attacks in the physical domain
in different angles and environments.

ADVERSARIAL PATCHES - LITERATURE REVIEW 19

Visual attention techniques, such as Grad-CAM[30], further refine [30] Selvaraju et al., Grad-CAM: vi-
sual explanations from deep networks via
gradient-based localization

the patch generation process. Chattopadhyay et al.[8] provide saliency

[8] Chattopadhyay, Goswami, and Chat-
topadhyay, Adversarial Attacks and Di-
mensionality in Text Classifiers

maps that highlight critical regions influencing the detector’s decision.
By restricting the perturbation to these areas, the resulting patch is
both more effective and less conspicuous. Approaches like Dual At-
tention Suppression[39] leverage these maps to shift the detector’s [39] Wang et al., Dual attention suppres-

sion attack: Generate adversarial camou-
flage in physical world

focus, leading to misclassification or complete disappearance of the
target.

Differentiable Transformation and 3D Camouflage

Recent research has employed differentiable transformation networks
to simulate diverse physical conditions during patch generation. For
instance, the Dta Method by Suryanto et al.[33] learns optimal trans- [33] Suryanto et al., Dta: Physical cam-

ouflage attacks using differentiable trans-
formation network

formations (e.g., scaling, rotation) for the patch, further enhancing
its robustness. Moreover FCA[38] extends these ideas into the three-
dimensional domain, enabling the creation of patches that fully cover
an object from multiple viewing angles. These techniques are cru-
cial for applications where vehicles or aircraft must be camouflaged
against detectors operating under varying perspectives.

Figure 3.6: DTA texture rendering re-
sults with detection.

Alternative Physical Attack Modalities

Beyond patches, other modalities have been explored for physical ad-
versarial attacks. For example Wu et al.[42] demonstrate a cloak- [42] Wu et al., Making an invisibility

cloak: Real world adversarial attacks on
object detectors

like adversarial design that physically conceals a target from detection
systems. Similarly Lin et al.[22] highlight how makeup can alter [22] Lin et al., Real-world adversarial ex-

amples involving makeup applicationfacial appearances to evade face recognition. Although these stud-
ies are not directly focused on aerial camouflage, they underscore the
broader challenge of creating imperceptible yet effective physical per-
turbations.

3.4 EVALUATION METRICS AND EXPERIMENTAL STUDIES

Metrics for Assessing Attack Performance

Evaluating adversarial patch attacks requires a multi-faceted approach.
Standard detection metrics such as Average Precision (AP), recall, and
precision are commonly used; however, these metrics may be insuffi-
cient if false positives are high. The Attack Success Rate (ASR) is now

20 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

widely adopted as a more focused metric, representing the percentage
of targets that are either misclassified or rendered undetectable. In ad-
dition, the Structural Similarity Index Measure (SSIM) quantifies how
closely the adversarial example resembles the original image, while
the patch size ratio (i.e., the proportion of the object area covered by
the patch) provides insight into the visual intrusiveness of the attack.

Digital and Physical Experiments

Digital experiments, such as those reported by Zhang et al.[43] on[43] Zhang et al., Adversarial patch at-
tack on multi-scale object detection for
UAV remote sensing images

the COCO and NWPU VHR-10 datasets, demonstrate high ASRs (often
above 90%) when the adversarial patch is applied to aerial imagery.
However, the performance drops when these patches are transferred
to the physical domain. For instance, Eykholt et al.[12] reported[12] Eykholt et al., Note on Attacking Ob-

ject Detectors with Adversarial Stickers lower success rates when patches were printed and applied in real-
world scenarios. Wise and Plested[40] and Deng et al.[10] found[40] Wise and Plested, Developing Im-

perceptible Adversarial Patches to Camou-
flage Military Assets From Computer Vi-
sion Enabled Technologies
[10] Deng et al., Rust-style patch: A phys-
ical and naturalistic camouflage attacks
on object detector for remote sensing im-
ages

that although digital ASRs can reach as high as 95%, physical attacks
typically achieve success rates in the range of 65%–75% due to factors
such as viewing angle, illumination, and sensor noise.

Ablation Studies and Trade-offs

A key challenge in adversarial patch design is balancing attack success
with visual naturalness. Smaller patches tend to be less conspicuous,
with higher SSIM values and lower patch size ratios, but may not suffi-
ciently lower detection confidence. Detailed ablation studies such as in
Dual et al.[11] ’s work demonstrate that careful tuning of patch size,[11] Duan et al., Adversarial camouflage:

Hiding physical-world attacks with natu-
ral styles

position, and style constraints is critical. Moreover methods using dif-
ferentiable transformation networks (as in DTA[33]) help optimize[33] Suryanto et al., Dta: Physical cam-

ouflage attacks using differentiable trans-
formation network

these trade-offs by simulating diverse physical conditions during train-
ing.

3.5 DEFENSE STRATEGIES AND FUTURE DIRECTIONS

Emerging Defense Techniques

The proliferation of adversarial patch attacks has prompted the de-
velopment of various defense mechanisms. One common strategy is
adversarial training, in which models are trained on both clean and
adversarial examples to enhance robustness ([Madry et al.[26]).[26] Madry et al., Towards Deep Learning

Models Resistant to Adversarial Attacks Other approaches include input transformation methods, such as im-
age smoothing and denoising, and specialized patch detection tech-
niques based on local gradient smoothing (Kang et al.[17]). Deep[17] Kang et al., Diffender: Diffusion-

based adversarial defense against patch
attacks

ensemble models, as discussed in Lu et al.[25] ’s work , further re-

[25] Lu, Sun, and Xu, Adversarial robust-
ness enhancement of UAV-oriented auto-
matic image recognition based on deep en-
semble models

duce vulnerability by combining predictions from multiple models.

Open Challenges and Future Research

Despite significant advances, several challenges remain:

ADVERSARIAL PATCHES - LITERATURE REVIEW 21

• Physical Robustness: The drop in physical ASR underscores the need
for improved simulation of real-world conditions, potentially via en-
hanced EOT frameworks and multi-view 3D modeling (as in FCA).

• Naturalness vs. Efficacy: Finding a balance between imperceptibility
and high attack success rates remains a open challenge. Future re-
search may use more advanced style transfer techniques or human
perceptual studies.

• Transferability: With numerous object detectors in use (e.g., YOLO,
SSD, Faster-RCNN), ensuring that adversarial patches transfer effec-
tively is an active research area. Ensemble training and cross-model
validation may improve transferability.

• Standardized Benchmarks: The development of shared datasets and
standardized evaluation protocols, encompassing both digital and
physical scenarios, would facilitate more rigorous comparisons of
attack and defense methods.

• Integrated Defense Frameworks: Comprehensive frameworks that
combine adversarial training, patch detection, and human-in-the-
loop verification are needed to mitigate the risks posed by adver-
sarial patch attacks.

3.6 CONCLUSION

Adversarial patch attacks have evolved from early digital perturbation
studies to sophisticated physical-world attacks capable of camouflag-
ing critical objects from advanced detection systems. Seminal works
by Szegedy et al.[35] and Goodfellow et al.[14] laid the foundation [35] Szegedy et al., Intriguing properties

of neural networks
[14] Goodfellow, Shlens, and Szegedy,
Explaining and Harnessing Adversarial
Examples

for understanding adversarial vulnerability, while Brown et al.[6] in-

[6] Brown et al., Adversarial Patch

troduced the universal adversarial patch concept. Subsequent studies,
such as DPatch[23] and den Hollander et al.[1], have shown that

[23] Liu et al., DPatch: An Adversarial
Patch Attack on Object Detectors
[1] Adhikari et al., Adversarial Patch
Camouflage against Aerial Detection

even complex object detectors are susceptible to well-crafted patches.
In aerial imagery, additional challenges such as scale variability and

diverse physical conditions necessitate adaptive patch designs. Scale-
adaptive methods (Lu et al.[24]) and EOT frameworks ([Kurakin

[24] Lu et al., Scale-adaptive adversarial
patch attack for remote sensing image air-
craft detection

et al.[21]) have been instrumental in crossing the digital-physical

[21] Kurakin, Goodfellow, and Ben-
gio, Adversarial examples in the physical
world

gap. Recent advances using style transfer for naturalistic camouflage
(Deng et al.[10]) and differentiable transformation networks (e.g., in
DTA[33]) further enhance the realism and effectiveness of these at-
tacks.

On the defense side, while adversarial training and patch detec-
tion methods have been proposed, robust defenses for aerial detection
remain underdeveloped. Future work should aim to improve physi-
cal robustness, balance naturalness with attack efficacy, and establish
standardized benchmarks.

PART III

DATA AND DETECTION FRAMEWORK

23

4
The Dataset

4.1 THE IMPORTANCE OF DATA IN MACHINE LEARNING

Data is the cornerstone of machine learning. The quality, quantity, and
diversity of the data used to train algorithms directly impact the per-
formance, robustness, and generalizability of predictive models. High-
quality data, characterized by its accuracy, consistency, and relevance,
ensures that models learn the true underlying patterns rather than fit-
ting noise or biased information. Empirical studies have shown that
even slight degradations in data quality can lead to significant drops
in model performance and reliability, especially in critical applications
like healthcare and finance[28] [18]. [28] Mohammed et al., The Effects of

Data Quality on Machine Learning Perfor-
mance
[18] Kariluoto et al., Quality of Data in
Machine Learning

At the same time, while large volumes of data are often desirable,
the mere accumulation of records does not guarantee superior model
performance. Rather, it is the representativeness and diversity of the
data that empower models to generalize well to unseen scenarios. Di-
verse datasets capture a broad range of variability and edge cases,
reducing overfitting and improving robustness.

While large datasets are valuable, their true power is unlocked
through techniques like data augmentation and synthetic data gen-
eration. These tools allow us to enrich the training data in controlled
ways. For instance, we can apply simple geometric transformations or
inject noise to make the model more resilient to minor variations. On
a more advanced level, we can use Generative Adversarial Networks
(GANs) to create new, realistic training samples, which is particularly
useful for representing scenarios that are rare in the collected data.

Building a powerful machine learning model is therefore a process
of careful data curation. It begins with preprocessing but must be
followed by a deliberate augmentation strategy focused on maximizing
diversity. By taking these steps we ensure that our models are not just
trained to recognize patterns but are also prepared to adapt to the

25

26 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

unpredictable conditions of the real world.

4.2 SYNTHETIC DATA

Synthetic data is artificially generated data that closely mimics real
world data distributions. In many machine learning applications, col-
lecting large amounts of high-quality, labeled data is challenging due
to privacy concerns, high collection costs, or the rarity of events. Syn-
thetic data generation techniques address these challenges by creating
data that replicates the statistical properties of real data while avoid-
ing sensitive or hard toobtain details.

Various techniques are employed for synthetic data generation de-
pending on the domain and the nature of the data. Common methods
include:

• Simulation-based and rule-based methods: These approaches use
mathematical models or domain-specific rules to generate data. They
are particularly useful when the underlying process is well under-
stood.

• Generative models: Advanced deep learning methods such as Gen-
erative Adversarial Networks (GANs) and Variational Autoencoders
(VAEs) learn to produce realistic data by modeling complex distri-
butions from real examples. GANs, for instance, have shown im-
pressive results in generating synthetic images and text.

Synthetic data offers several advantages:

• It can alleviate data scarcity especially in scenarios where real data
is limited or costly to obtain.

• It helps address privacy issues since synthetic data does not contain
personal or sensitive information.

• It enables augmentation of the training dataset by providing addi-
tional examples to balance class distributions and enhance diversity.

The success of synthetic data depends on its fidelity and diversity.
The generated data must be representative of the real-world phenom-
ena otherwise models may learn qualities that do not generalize well.
Recent research has introduced quantitative metrics, such as the Di-
versity Coefficient, to evaluate the quality and diversity of synthetic
datasets, thereby reinforcing their role in robust model training [27].[27] Miranda et al., Beyond Scale: The

Diversity Coefficient as a Data Quality
Metric for Variability in Natural Language
Data

Integrating synthetic data with real data can significantly enhance
the overall quality and breadth of the training set. This integrated
approach not only improves model generalization but also helps in
scenarios where gathering a comprehensive real dataset is impractical.

4.3 CREATING THE DATASET

Data Collection

The dataset for UAV detection is comprised of two primary training
datasets and one testing dataset.

THE DATASET 27

Training Dataset 1 contains 3997 drone images, which were ob-
tained by integrating images from multiple online sources, mainly the
Kaggle dataset dasmehdixtr/drone-dataset-uav1. The original dataset 1 https://www.kaggle.com/

datasets/dasmehdixtr/
drone-dataset-uav

was split into training, validation, and test sets, but only the training
and valildation set was used to fine-tune the YOLO models for UAV
detection.

Training Dataset 2 extends the first training set by incorporat-
ing an additional 706 synthetic images from the HuggingFace dataset
mazqtpopx/cranfield-synthetic-drone-detection[41]. This results in a to- [41] Wisniewski et al., Drone Detection

using Deep Neural Networks Trained on
Pure Synthetic Data

tal of 5566 training images.
For evaluation, the Testing Dataset comprises 100 drone images

that were manually selected to avoid cases where the bounding boxes
are too small to yield meaningful information on the impact of patches
and patterns. The testing images were retained at their original reso-
lution to preserve fine details.

Data Preprocessing

Preprocessing was conducted to standardize the input for the detection
models. All images in both training datasets were resized to a uniform
resolution of 640x640 pixels. This resizing ensures consistent input
dimensions for the YOLO models, facilitating efficient learning and
inference. In contrast, the testing images were not resized in order to
maintain their original scale and detail, which is crucial for a reliable
evaluation of the detection performance.

Data Augmentation

Data augmentation was applied to increase the diversity of the training
data and to improve the generalization capability of the models. For
both training datasets, augmentation techniques included:

• Horizontal Flipping: Randomly flipping the images horizontally to
simulate different viewpoints.

• Rotation: Randomly rotating the images by angles between -15°
and +15° to mimic variations in drone orientation.

These augmentations help the model become more robust against vari-
ations in perspective and orientation that are commonly encountered
in real-world UAV detection scenarios.

Dataset Links

• Training Dataset 1: https://universe.roboflow.com/uavdetection-1ccvd/
uav-dataset-mldbs/dataset/1

• Training Dataset 2: https://app.roboflow.com/ds/zfPSXbXLkK?
key=qIMOD2PZlR

• Testing Dataset: https://universe.roboflow.com/uavdetection-1ccvd/
test-data-2-zl2w6/dataset/1#

https://www.kaggle.com/datasets/dasmehdixtr/drone-dataset-uav
https://www.kaggle.com/datasets/dasmehdixtr/drone-dataset-uav
https://www.kaggle.com/datasets/dasmehdixtr/drone-dataset-uav
https://universe.roboflow.com/uavdetection-1ccvd/uav-dataset-mldbs/dataset/1
https://universe.roboflow.com/uavdetection-1ccvd/uav-dataset-mldbs/dataset/1
https://app.roboflow.com/ds/zfPSXbXLkK?key=qIMOD2PZlR
https://app.roboflow.com/ds/zfPSXbXLkK?key=qIMOD2PZlR
https://universe.roboflow.com/uavdetection-1ccvd/test-data-2-zl2w6/dataset/1#
https://universe.roboflow.com/uavdetection-1ccvd/test-data-2-zl2w6/dataset/1#

5
YOLO - You Only Look Once

The YOLO framework represents a significant paradigm shift in the
field of object detection, wherein the detection task is reformulated as
a single regression problem. By simultaneously predicting bounding
boxes and class probabilities directly from full images, YOLO has en-
abled real-time detection with competitive accuracy, thereby influenc-
ing a broad range of applications from autonomous driving to surveil-
lance systems.

5.1 HISTORY AND IMPORTANCE

Introduced by Redmon et al. in 2015[29], the YOLO (You Only Look [29] Redmon et al., You Only Look Once:
Unified, Real-Time Object DetectionOnce) framework marked a paradigm shift in object detection by re-

casting the task as a single regression problem. Unlike earlier meth-
ods that relied on computationally expensive sliding-window or re-
gion proposal techniques, YOLO employs a unified convolutional neu-
ral network to simultaneously predict bounding boxes and class prob-
abilities directly from full images. This innovation dramatically im-
proved inference speed, making real-time detection feasible and open-
ing new avenues for applications in fields such as autonomous driving
and surveillance.

Over the years, the evolution of YOLO has been marked by con-
tinuous refinements in architecture, training strategies, and perfor-
mance. YOLOv2 (also known as YOLO9000, 2017) improved upon
its predecessor by incorporating multi-scale training and a joint opti-
mization over detection and classification datasets, thereby extending
the range of detectable object categories. YOLOv3 (2018) introduced
enhancements such as feature pyramid networks and residual connec-
tions, which bolstered its ability to detect objects at various scales with
greater accuracy.

With YOLOv4 (2020), the framework further evolved through ad-

29

30 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

vanced data augmentation, optimized training techniques, and refined
architectural design, striking a better balance between speed and ac-
curacy. The subsequent introduction of YOLOv5 later in 2020 gained
widespread adoption for its ease of implementation in PyTorch and its
competitive performance.

YOLOv6 and YOLOv7 emerged with further optimizations in effi-
ciency and real-time performance through improved feature aggrega-
tion and network design. YOLOv8 and YOLOv10 continued this trend
by integrating state-of-the-art techniques such as dynamic anchor ad-
justments and advanced feature fusion strategies, thereby pushing the
limits of accuracy and speed. YOLOv9 and YOLOv11, developed by the
community, further refined these innovations with subtle architectural
adjustments and improved inference pipelines.

Most recently, YOLOv12 was released just a few days ago. This
latest iteration introduces an attention-centric architecture that har-
nesses the power of modern attention mechanisms, such as area at-
tention and optimized residual feature aggregation, while retaining
the hallmark real-time efficiency of the YOLO series.

Together, these successive versions not only highlight a remarkable
progression in detection performance and speed but also underscore
YOLO’s enduring impact on both academic research and practical ap-
plications in computer vision.

5.2 BASE ARCHITECTURE

At its core, YOLO utilizes a single CNN to divide the input image into
a grid, where each cell is responsible for detecting objects whose cen-
ters fall within it. The network predicts a fixed number of bounding
boxes per cell, along with associated confidence scores and class prob-
abilities. The architecture is designed to optimize for speed, using
a lightweight backbone for feature extraction coupled with detection
layers that perform regression and classification simultaneously.

While early versions of YOLO traded off some localization precision
in favor of processing speed, later enhancements have focused on re-
fining feature representations and incorporating multi-scale prediction
strategies. This balance between computational efficiency and detec-
tion accuracy remains central to the YOLO philosophy.

Figure 5.1: mAP@50-95 Comparison for
all YOLO Models.

YOLO - YOU ONLY LOOK ONCE 31

5.3 YOLO VERSIONS UTILIZED

We evaluate multiple versions of the YOLO framework, each of which
embodies distinct architectural refinements and optimizations to ad-
dress specific challenges in object detection.

YOLOv5

YOLOv5[37] has garnered attention due to its implementation in Py- [37] Ultralytics, YOLOv5: A state-of-the-
art real-time object detection systemTorch and its accessibility to the research community. Although not de-

veloped by the original authors, YOLOv5 integrates several enhance-
ments such as optimized anchor box generation, improved loss func-
tions, and advanced data augmentation techniques. These modifica-
tions have contributed to superior detection performance on a variety
of datasets while maintaining a high inference speed, making YOLOv5
a practical choice for real-world applications.

Figure 5.2: The network architecture of
Yolov5.

YOLOv8

Building on its predecessors YOLOv8 introduces further refinements
to both accuracy and scalability. Key innovations include an enhanced
backbone network that improves feature extraction and a more robust
feature pyramid network for better handling of scale variations. The
design choices in YOLOv8 show improvements in small object detec-
tion and adaptability to diverse environments. Such advancements
show its potential for deployment in scenarios where precision and
speed are equally critical.

YOLOv10

YOLOv10 represents the next evolution of the YOLO framework. This
iteration integrates dynamic anchor adjustments and advanced fea-
ture fusion techniques to better capture contextual relationships across
varying image scales. YOLOv10 also incorporates elements of self-
supervised learning to enhance its adaptability in challenging lighting

32 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

Figure 5.3: The network architecture of
Yolov8.

conditions and complex scenes. Its architecture is optimized for edge
computing, ensuring energy efficiency without compromising detec-
tion performance. The development of YOLOv10 illustrates a com-
mitment to pushing the SOTA of real-time object detection with the
broader trend of making sophisticated deep learning models more ac-
cessible and efficient in future applications.

Figure 5.4: The network architecture of
Yolov10.

5.4 FINETUNING AND BASELINES

To balance complexity and accuracy, the M-size checkpoint is selected
for each model’s weights. Each model undergoes fine-tuning on two
training datasets, the real dataset and an augmented dataset enriched
with synthetic data. The fine-tuning process spans 50 epochs, after
which the best checkpoint from each dataset and base architecture is
saved for further use.

As a result, each model architecture produces two variants: one
fine-tuned on the real dataset and another fine-tuned on the aug-
mented dataset, leading to a total of six models.

Following training, the models are systematically evaluated using a
test dataset. The evaluation process consists of comparing model pre-
dictions against ground truth labels and computing key performance
metrics. These metrics include:

• Precision: Measures the proportion of correctly predicted positive
instances among all instances classified as positive. A higher preci-

YOLO - YOU ONLY LOOK ONCE 33

sion indicates fewer false positives.

Precision =
TP

TP + FP

• Recall: Represents the proportion of correctly predicted positive in-
stances among all actual positive instances. A higher recall signifies
fewer false negatives.

Recall =
TP

TP + FN

• F1 Score: The harmonic mean of precision and recall, providing
a balanced measure when both false positives and false negatives
are important. It is especially useful when there is an imbalance
between positive and negative samples.

F1 Score = 2× Precision × Recall
Precision + Recall

• Mean Average Precision (mAP): A key metric in object detection,
mAP evaluates the precision-recall curve across multiple thresholds.
It is computed as the mean of the Average Precision (AP) over differ-
ent Intersection over Union (IoU) thresholds, with values reported
at 0.5, 0.75, and 0.95. A higher mAP score indicates better overall
detection performance.

mAP =
1

n

n∑
i=1

APi where n is the number of classes

Performances

The evaluation results highlight the performance differences between
models trained on real data (Training Dataset 1) and those trained on
augmented datasets (Training Dataset 2).

YOLO5_Real achieves the highest precision (1.0) and mAP@0.5
(0.96), indicating strong detection accuracy with minimal false posi-
tives. However, its mAP@0.95 (0.0016) is significantly lower, suggest-
ing reduced performance at stricter localization thresholds. The aug-
mented version, YOLO5_Synth, maintains similar recall and precision
but shows a slight decrease in mAP@0.75 (0.4274) and mAP@0.95
(0.0002).

For YOLO10 models, the real dataset variant (YOLO10_Real) achieves
a strong F1 score (0.933) and mAP@0.5 (0.9054), but its mAP@0.95
(0.0167) remains low. The synthetic-augmented counterpart (YOLO10_Synth)
exhibits comparable performance, with slightly lower mAP@0.75 (0.5078)
and mAP@0.95 (0.0033), indicating that augmentation may not sig-
nificantly enhance fine-grained localization.

Similarly, the YOLO8 models show a trend where augmentation im-
proves F1 score and recall slightly, as seen in YOLO8_Synth (F1 =
0.945, Recall = 0.94) compared to YOLO8_Real (F1 = 0.943, Recall
= 0.91). However, YOLO8_Real achieves higher mAP@0.5 (0.9068)
than YOLO8_Synth (0.9332), while the latter performs slightly better

34 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

Table 5.1: Baseline metrics for all the
YOLO models.

Model Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real 1.000 0.960 0.980 0.960 0.518 0.007
YOLO5_Synth 0.990 0.960 0.975 0.959 0.427 0.0002
YOLO8_Real 0.978 0.910 0.943 0.907 0.414 0.006
YOLO8_Synth 0.949 0.940 0.945 0.933 0.457 0.009
YOLO10_Real 0.958 0.910 0.933 0.905 0.522 0.017
YOLO10_Synth 0.940 0.940 0.940 0.934 0.508 0.003

at mAP@0.75 (0.4569 vs. 0.4139).

Overall, models trained on real data generally achieve better pre-
cision and localization accuracy, while synthetic data augmentation
slightly improves recall and F1 score. However, at higher IoU thresh-
olds, performance declines across all models, suggesting that fine lo-
calization remains a challenge irrespective of dataset augmentation
and model architecture.

PART IV

EVALUATING PATCHES FROM LITERATURE

35

6
Patch Selection and Evaluation

6.1 PATCH SELECTION

To conduct a thorough evaluation of adversarial patch effectiveness,
we have selected a set of ten patches from existing literature. These
patches have been chosen based on their demonstrated impact on
model performance in various studies. The selected patches originate
from three key research papers, each contributing valuable insights
into adversarial patch design and application.

The first five patches (Patches 1-5) were sourced from the paper
Adversarial Patch Camouflage Against Aerial Detection[1]. This study [1] Adhikari et al., Adversarial Patch

Camouflage against Aerial Detectionfocuses on generating adversarial patches to evade aerial detection
systems, presenting a novel approach to adversarial camouflage tech-
niques. These patches have been specifically designed to disrupt object
detection models used in aerial surveillance and reconnaissance.

Patches 6 to 9 were taken from the work Fooling Automated Surveil-
lance Cameras: Adversarial Patches to Attack Person Detection[36]. This [36] Thys, Ranst, and Goedemé, Fooling

automated surveillance cameras: adver-
sarial patches to attack person detection

research explores the effectiveness of adversarial patches in deceiving
person detection models commonly deployed in security and surveil-
lance applications. The patches proposed in this study have demon-
strated a high success rate in fooling state-of-the-art object detection
frameworks.

The final patch was selected from the seminal paper Adversarial
Patch [6]. This work introduced one of the earliest adversarial patch [6] Brown et al., Adversarial Patch

concepts, highlighting the feasibility of localized adversarial attacks
that are independent of the scene context. The patch is designed to be
universal, meaning it can be applied in a variety of environments to
effectively disrupt classification and detection models.

All patches were extracted as PNG images directly from their respec-
tive papers. Minor modifications were made to upscale them, ensuring
compatibility with our experimental setup. No significant alterations

37

38 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

were introduced that could affect the transferability oftheir adversar-
ial properties.

Figure 6.1: Selected adversarial patches
from literature.

patch1 patch2 patch3

patch4 patch5 patch6

patch7 patch8 patch9

patch10

6.2 EVALUATING PATCHES IMPACT

In object detection, precision measures the fraction of detections that
are correct, so a decrease in precision under attack indicates the patch
is inducing more false positives. Recall assesses the fraction of actual
objects that are detected; if recall drops, it means the patch is caus-
ing the model to miss objects. The F1 score is the harmonic mean
of precision and recall, providing a single balanced measure of over-
all detection performance. Meanwhile, mean Average Precision (mAP)
aggregates performance over multiple Intersection over Union (IoU)
thresholds. For example, mAP at 0.5 (a lenient threshold) captures
general detection capability, while mAP at 0.75 and mAP at 0.95 re-
quire increasingly precise localization, thereby offering a more strin-
gent evaluation of the model’s accuracy. Since adversarial patches aim
to disrupt both the classification and localization aspects of detection,
mAP, especially at higher IoU thresholds, is critical for understanding
the true impact of the attack.

To specifically evaluate false negatives, recall is the most appropri-

PATCH SELECTION AND EVALUATION 39

ate metric. Recall is defined as the ratio of true positives (TP) to the
sum of true positives and false negatives (FN):

Recall =
TP

TP + FN

This metric directly measures the proportion of actual objects that
the model successfully detects. A lower recall indicates a higher num-
ber of false negatives relative to the total number of true objects.

Applying The Patches

To ensure a fair evaluation of the selected patches, all ten patches
are applied consistently. Each patch is first scaled to 0.5 × min_dim
of the corresponding bounding box and then placed at its center. No
additional transformations are applied. For each patch, an attacked
dataset is generated, and all models are evaluated on each of these
attacked datasets.

Performances

To assess the impact of each patch on each model, we evaluate the
performance on the attacked dataset and subtract the baseline results
obtained from the fine-tuned models. This approach quantifies the
effect of each patch on model performance, if a patch leads to a per-
formance drop, the resulting difference will be negative.

To quickly identify the most effective patches, we compute a patch
performance score as a weighted sum of the differences in performance
across all metrics and models. These weights allow us to account for
the relative importance of each metric. Since recall is particularly cru-
cial, we evaluate the best patches based on both their overall impact
on all metrics and their specific impact on recall.

We identify Patch2, Patch1 and Patch5 as the most effective patches
6.2 based on their overall performance scores. These patches consis-
tently induce the most significant performance drops across all models,
with Patch2 outperforming the others. The full metrics for these three
best performaing patches are shown in the table below6.2.

However, it is noteworthy that the overall impact of the patches
on model performance remains relatively small. Several factors could
contribute to this observation:

• Limited transferability across domains: The patches were originally
designed for specific object detection models and may not general-
ize effectively to this particular use case.

• Model robustness: The fine-tuned models may exhibit greater re-
silience than expected, allowing them to handle adversarial pertur-
bations with minimal performance degradation.

Patch effectiveness differs across models and datasets. YOLO5 trained
on synthetic data consistently shows the highest performance degrada-
tion, particularly in precision, recall, and mAP@.5. For example, with

40 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

Patch 2, precision drops by 0.1602, recall by 0.1493, and mAP@.5
by 0.2303, indicating a strong negative impact. In contrast, YOLO10
models exhibit minimal performance changes, with YOLO10 trained
on real data showing only a 0.0119 increase in recall and a negligible
decrease in precision (-0.0119) and mAP@.5 (-0.0276). In some cases,
such as Patch 5 applied to YOLO10 trained on real data, there is even
a slight improvement in precision (+0.0048), further reinforcing the
idea that more recent YOLO versions are more resilient to adversarial
perturbations.

Figure 6.2: Patch scores across all mod-
els.

Among the patches, Patch 2 causes the highest performance drop
across multiple models, particularly in YOLO5 trained on synthetic
data, where mAP@.5 decreases by 0.2303. Patch 1 has a slightly
weaker impact but still results in notable performance degradation,

PATCH SELECTION AND EVALUATION 41

such as a 0.1293 decrease in precision and a 0.1705 drop in mAP@.5
for YOLO5 trained on synthetic data. Patch 5 exhibits the least impact
overall, with YOLO10 models showing little to no change, as seen in
YOLO10 real data where mAP@.5 only decreases by 0.0025.

Precision tends to decrease consistently across all models, whereas
recall sometimes remains stable or even improves. For example, YOLO8
trained on synthetic data shows an increase of 0.0186 in recall when
Patch 2 is applied, and a similar effect is observed for Patch 1, where
recall increases by 0.0182. This suggests that while the patches may
cause more false positives, leading to lower precision, the models still
maintain their ability to detect objects.

PATCH 2 Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.052509 -0.032609 -0.070000 -0.074696 0.117228 -0.001473
YOLO5_Synth -0.160186 -0.149265 -0.170000 -0.230253 -0.016904 0.000178
YOLO8_Real -0.051701 -0.002304 -0.090000 -0.095011 -0.031268 0.004091
YOLO8_Synth -0.006579 0.018590 -0.030000 -0.023295 0.018915 0.002053
YOLO10_Real -0.011867 0.009138 -0.030000 -0.027617 -0.007515 -0.006364
YOLO10_Synth -0.055789 -0.006667 -0.100000 -0.098464 -0.111558 0.000333
PATCH 1 Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.050299 -0.061224 -0.040000 -0.051017 -0.048724 -0.001367
YOLO5_Synth -0.129258 -0.117350 -0.140000 -0.170542 0.015342 -0.000222
YOLO8_Real -0.032952 -0.012202 -0.050000 -0.051064 -0.002642 0.004091
YOLO8_Synth -0.012081 0.018247 -0.040000 -0.036088 0.061427 0.001488
YOLO10_Real -0.000691 0.009847 -0.010000 -0.012685 -0.066897 -0.003333
YOLO10_Synth -0.049948 -0.005934 -0.090000 -0.088470 -0.029436 -0.000833
PATCH 5 Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.036002 -0.031579 -0.040000 -0.044841 0.008245 -0.001600
YOLO5_Synth -0.142132 -0.144330 -0.140000 -0.185656 -0.011165 -0.000222
YOLO8_Real -0.052953 -0.044429 -0.060000 -0.062895 0.016403 0.004408
YOLO8_Synth -0.022444 0.007494 -0.050000 -0.045091 0.072184 -0.003661
YOLO10_Real 0.004811 0.010190 0.000000 -0.002487 0.009138 -0.006667
YOLO10_Synth -0.021633 -0.002500 -0.040000 -0.041126 0.025485 -0.000556

Table 6.1: Impact of the three best per-
forming patches.

7
Patches As Pattern

A particularly compelling variant of patch attacks involves tiling or
replicating a single adversarial patch in a grid-like pattern across the
entire image. By “multiplying” the patch, this technique ensures that
every sub-region of the image is affected, which leads to several ad-
vantages.

• Full spatial coverage: The repeated pattern ensures that the adver-
sarial signal is present throughout the image, making the attack
less sensitive to the precise placement of a single patch. This re-
dundancy means that even if parts of the image are cropped or
occluded, many copies of the patch remain intact.

• Cumulative Effect: The cumulative effect of multiple overlapping ad-
versarial cues can overwhelm local defenses and force misclassifica-
tion even under severe physical transformations, such as changes in
viewing angle, lighting, or partial occlusion. Studies like AdvTex-
ture[16] have highlighted that introducing adversarial patterns in [16] Hu et al., Adversarial Texture for

Fooling Person Detectors in the Physical
World

a distributed manner not only increases the attack’s robustness but
also enhances its transferability.

In real-world applications applying a patterned design is often more
practical than affixing a single, discrete square patch. A continuous
or tiled pattern can be printed on flexible materials like fabric or de-
cals, which naturally conform to the irregular shapes of physical ob-
jects. This flexibility means that precise alignment or exact positioning
is less critical, reducing installation complexity and potential errors
during application. Patterned designs can be integrated more subtly
into everyday objects, helping the adversarial patch blend with its sur-
roundings and remain less conspicuous to both human observers and
automated detection systems.

43

44 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

7.1 GENERATING AND APPLYING THE PATTERN

Starting from a single adversarial patch, the pattern is generated by
replicating it in a grid of size n.

Simply overlaying the pattern onto the image, as done with stan-
dard patches, is insufficient. To better simulate real-world scenarios it
must conform to the object’s shape and surface characteristics.

To achieve this, we first generate a binary mask of the target object
using SAM by Meta[19], based on the original image and its corre-[19] Kirillov et al., Segment Anything

sponding label. This mask ensures that the pattern is applied exclu-
sively to the object, preventing interference with the background.

However, directly applying the pattern in this manner would make
it appear as a rigid sticker, lacking realism. To enhance the effect and
make the pattern blend naturally, it must retain the object’s shading
and edges.

This is accomplished by extracting a grayscale cutout of the ob-
ject using the generated mask. The transparency of this cutout is
then scaled according to its brightness, where brighter regions become
more transparent and darker regions remain more opaque. By over-
laying this processed cutout onto the pattern, the pattern is effectively
distorted to match the object’s shape, preserving natural lighting vari-
ations and surface details.

Figure 7.1: Applying the adversarial pat-
tern as a texture on a 3D object.

7.2 PERFORMANCES

The three best patches from the previous section were selected for the
pattern attack. The patches were applied to the same set of images
used in the previous section, and the results were evaluated using the
same metrics.

PATCHES AS PAT TERN 45

Figure 7.2: Patterns from the best three
patches.

Table 7.2 presents the impact of the three best-performing adversar-
ial patches when applied as a pattern across different YOLO models.
The results indicate that the effect of the pattern varies significantly
depending on the model, the type of training data (real vs. synthetic),
and the specific patch used.

In general, most metrics exhibit negative or marginal improvements,
suggesting that applying the patch as a pattern is less effective at re-
ducing detection performance compared to isolated adversarial patches.
Interestingly, while some configurations, such as YOLO8_Real on Patch
2, show small positive gains in precision and recall, these are incon-
sistent across different models. The mAP values, particularly at higher
IoU thresholds (mAP@.75 and mAP@.95), indicate that the pattern’s
ability to degrade object detection diminishes as stricter localization
criteria are applied.

PATCH 2 Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real 0.005333 0.020000 -0.010101 0.019293 0.169608 -0.000666
YOLO5_Synth -0.015856 -0.030000 -0.000329 -0.030452 0.090718 0.000135
YOLO8_Real 0.026383 0.040000 0.011089 0.040057 0.116600 -0.000421
YOLO8_Synth 0.019743 0.010000 0.029886 0.016295 0.001542 -0.007974
YOLO10_Real -0.017544 -0.040000 0.008772 -0.036466 -0.015058 -0.009301
YOLO10_Synth -0.001856 -0.030000 0.028085 -0.023591 -0.006502 -0.001963
PATCH 1 Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.015489 -0.020000 -0.010526 -0.020526 0.066967 -0.001600
YOLO5_Synth -0.031030 -0.040000 -0.021270 -0.042254 0.083000 -0.000222
YOLO8_Real -0.004861 0.000000 -0.010410 -0.000435 0.058164 0.004758
YOLO8_Synth -0.011390 -0.030000 0.008400 -0.024362 -0.001359 -0.007571
YOLO10_Real -0.007018 -0.030000 0.019883 -0.026110 -0.005760 -0.016333
YOLO10_Synth -0.012165 -0.040000 0.017447 -0.034246 -0.025845 0.000303
PATCH 5 Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.031675 -0.050000 -0.010870 -0.050435 0.060099 -0.001392
YOLO5_Synth -0.036475 -0.050000 -0.021606 -0.051169 0.096101 -0.000222
YOLO8_Real -0.004861 0.000000 -0.010410 0.001093 0.119398 0.004091
YOLO8_Synth -0.011390 -0.030000 0.008400 -0.024820 0.027388 -0.008565
YOLO10_Real 0.008466 -0.020000 0.042105 -0.015436 -0.005855 -0.014167
YOLO10_Synth -0.008063 -0.050000 0.038022 -0.043811 -0.056043 -0.002333

Table 7.1: Impact of the three best per-
forming patches applied as pattern.

Overall, the results suggest that while adversarial patterns do im-

46 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

pact detection performance, their effect is less pronounced than single-
patch attacks, likely due to blending with object textures and model
robustness to distributed perturbations.

To obtain a quick overview of the pattern’s impact a pattern score is
calculated in the same way as the previous section:

Table 7.2: Scores of the best three
patches applied as pattern.

PATCH Overall Score Recall Weighted
Patch 1 -0.24 -0.16
Patch 2 0.05 -0.03
Patch 5 -0.24 -0.20

The same trend observed in the previous section is evident here:
while applying adversarial patches as a pattern does result in an over-
all negative impact on detection performance, the magnitude of this
effect remains small.

The primary reason for this reduced impact is the blending of the
pattern with the object’s texture compunded with the already low per-
formance of the patches themselves. Unlike isolated patches, the pat-
tern is less immediately recognizable as an adversarial element to the
classifier, as it becomes transformed by the object’s shape and shading.

Notably, Patch 2 performs significantly worse when applied as a
pattern compared to its effectiveness as a standalone patch. This could
be attributed to its bright red color, which, when applied to images of
flying drones, increases the visual contrast against the background,
making the objects more distinguishable rather than less.

7.3 3EYES PATCH

All three of the best-performing patches exhibit a concentric pattern
with a central eye-like structure. Patch 1 appears to be an evolved
version of Patch 5, incorporating an additional eye-like structure in
the center. This recurring pattern suggests that the eye-like structure
plays a significant role in deceiving the object detection model.

To further investigate this hypothesis, a new patch, referred to as
the 3eyes patch, has been manually designed. This patch features three
concentric circles, each containing a smaller circle at its center, closely
resembling the structure observed in the top-performing patches. The
aim is to evaluate whether this specific pattern has a stronger adver-
sarial effect on detection performance.

Figure 7.3: The 3eyes patch.

The same analysis was conducted on the 3eyes patch, evaluating its

PATCHES AS PAT TERN 47

performance both as a single patch and as a repeated pattern.

3eyes Patch Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.010753 -0.026224 -0.040000 -0.043226 -0.020578 0.001733
YOLO5_Synth -0.126533 -0.133594 -0.140000 -0.192176 -0.034636 -0.000222
YOLO8_Real -0.045910 -0.064698 -0.080000 -0.085150 0.017072 0.004091
YOLO8_Synth 0.007952 -0.016889 -0.040000 -0.037383 0.047313 0.003065
YOLO10_Real 0.000000 0.000000 0.000000 0.002695 -0.005773 -0.002952
YOLO10_Synth -0.014468 -0.043093 -0.070000 -0.067850 -0.063308 -0.000714
3eyes Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.010989 -0.037183 -0.060000 -0.060110 0.050102 -0.000356
YOLO5_Synth -0.000680 -0.032211 -0.060000 -0.060933 0.131950 -0.000222
YOLO8_Real 0.000229 0.005448 0.010000 0.009824 0.104492 0.005854
YOLO8_Synth 0.005561 -0.045253 -0.090000 -0.083416 0.012729 -0.008400
YOLO10_Real 0.030611 -0.013547 -0.050000 -0.045436 -0.056307 -0.016667
YOLO10_Synth 0.036744 -0.036774 -0.100000 -0.093709 -0.055245 -0.001019

Table 7.3: Impact of the 3eyes patch ap-
plied as a patch and pattern.

The 3eyes patch, when applied as a single patch, has a higher neg-
ative impact on most YOLO models than Patches 1, 2, and 5. Specifi-
cally, YOLO5_Synth (-0.1265 Precision, -0.1336 Recall, -0.1922 mAP@.5)
and YOLO8_Real (-0.0459 Precision, -0.0647 Recall, -0.0851 mAP@.5)
show a greater decrease in performance compared to the best-performing
patches.

3eyes Overall Score Recall Weighted
as Patch -0.84 -0.37
as Pattern -0.45 -0.35

Table 7.4: Scores of the best three
patches applied as pattern.

As a pattern its overall negative effect is lower than when used as a
patch, similar to the trend seen with Patches 1, 2, and 5 but still obtain-
ing better results than them. The 3eyes patch’s performance trend as a
pattern is consistent with the other patches, indicating that its specific
pattern design is the primary factor influencing the adversarial effect.

The 3eyes patch’s overall impact is more pronounced than the best-
performing patches, but still remains relatively small, suggesting that
the eye structure’s effectiveness is not enought to overcome the issues
discussed for the patches from literature.

48 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

Figure 7.4: Sample images with patterns
applied.

PART V

WHITE-BOX PATCH GENERATION

49

8
White-Box Patch Generation

8.1 INTRODUCTION

Initial investigations, detailed in ADD PART REF, evaluated the effi-
cacy of adversarial patches sourced from existing literature against
our target drone detection models. These experiments consistently
demonstrated significant limitations in transferability; patches effec-
tive against one model architecture or dataset in the original paper
exhibited markedly reduced performance when applied to the specific
models under study in this research.

To achieve effective adversarial examples tailored for this specific
case, the best approach is a white-box attack paradigm. This approach
leverages privileged information derived from the target model’s in-
ternal structure.

White-box attacks fundamentally assume comprehensive knowledge
of the target neural network, including its architecture, learned param-
eters (weights and biases), and the computational graph. This level of
access is important as it permits the use of powerful gradient-based
optimization techniques. The core principle involves calculating the
gradient of a chosen objective function (representing the attack’s goal)
with respect to the input pixel values, specifically, the pixels constitut-
ing the adversarial patch. This gradient vector indicates the direc-
tion of steepest ascent for the objective function; in essence, it reveals
how infinitesimal changes to each patch pixel value will influence the
model’s output (e.g., its confidence in detecting a drone).

By iteratively adjusting the patch pixels in the direction dictated by
the gradient we can systematically guide the patch’s appearance to-
wards a state that maximally disrupts the model’s intended function.
This programmatic, gradient-driven modification allows for the pre-
cise crafting of patches designed to induce specific types of errors in
the target model’s predictions. Furthermore, developing the patch ad

51

52 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

hoc provides granular control over its characteristics, enabling the for-
mulation of precise optimization objectives aligned with the specific
desired adversarial outcome.

8.2 OBJECTIVES AND THE LOSS FUNCTION

The primary objective of the adversarial patch in this context is detec-
tion evasion: to manipulate the input image such that the model fails
to detect the presence of a drone. This goal is translated into a quan-
tifiable loss function centered on the model’s detection confidence. For
each potential drone detection within the image that overlaps with the
patch’s location, the optimization process seeks to minimize the asso-
ciated confidence score provided by the model for the ’drone’ class.
Iteratively updating the patch based on the gradient of this confidence-
lowering loss effectively trains the patch to present visual features that
the model associates with non-drone objects or background clutter,
suppressing the drone detections.

Only minimizing confidence might not suffice in all scenarios. A
model might still produce a detection bounding box, albeit with re-
duced confidence. To enhance the patch’s disruptive effect a secondary
objective targeting bounding box precision is introduced. This is im-
plemented by incorporating a loss component based on the Intersec-
tion over Union (IoU) metric. The optimization is configured to min-
imize the IoU between the predicted bounding box for a drone and
its corresponding ground truth bounding box. This encourages the
patch not only to reduce detection certainty but also to actively skew
the model’s spatial localization, potentially causing any residual de-
tections to be inaccurately positioned and thus less useful or easier to
filter out in downstream processing.

Practical Constrains

Optimizing exclusively for the adversarial objectives (confidence re-
duction and IoU degradation) can often lead to patches characterized
by high-frequency noise and visually chaotic patterns. While poten-
tially effective in simulation, such patches present significant chal-
lenges for physical realization and deployment. They can be difficult
to reproduce accurately using standard printing hardware and may
contain jarring visual artefacts.

To promote the generation of physically plausible and "printer-friendly"
patches, a regularization term based on Total Variation (TV) is incor-
porated into the overall loss function. The TV loss penalizes abrupt
changes in colour and intensity between adjacent pixels within the
patch. This not only helps with printability but can also incidentally
improve robustness to minor physical imperfections or viewing condi-
tion variations.

A final consideration comes from the intended operational use case:
minimizing the patch’s visibility. A patch that is highly effective adver-
sarially but starkly contrasts with the drone’s surface or the typical

WHITE -B OX PATCH GENERATION 53

operational environment (e.g., sky, foliage, urban background) may
increase the drone’s detectability by human observers or non-targeted
sensor systems.

To address this, the patch generation process is constrained to uti-
lize a predefined, limited colour palette. This constraint is enforced
by adding a "palette loss" term to the optimization objective. This loss
component measures the distance (e.g., Euclidean distance in RGB or
LAB colour space) between each pixel’s colour in the generated patch
and the closest colour available in the predefined palette. By mini-
mizing this palette loss alongside the other objective terms, the opti-
mization process yields patches whose colours adhere strictly to the
specified set, resulting in patterns that integrates adversarial proper-
ties with principles of camouflage.

8.3 THE LOSS EQUATION

• Let B be the batch size.

• Let P ∈ RC×H×W denote the adversarial patch tensor, where C is
the number of color channels, H is the height, and W is the width.

• Let Ri be the set of detection results for the i-th image in the batch
(i = 1, . . . , B). Each detection d ∈ Ri has a predicted class label l(d),
a confidence score c(d), and a bounding box bd. We assume class
label 0 represents the target class (drone).

Confidence Loss (Lconf):

This loss aims to minimize the sum of confidence scores for all detec-
tions belonging to the target class (class 0) across the entire batch.

Lconf =
∑B

i=1

∑
d∈Ri,l(d)=0 c(d)

• The inner summation
∑

d∈Ri,l(d)=0 c(d) calculates the total confi-
dence of all class 0 detections for a single image i. If no class 0
detections are found in image i, this sum is implicitly 0.

• The outer summation
∑B

i=1 sums these confidence totals across all
images in the batch.

Total Variation Loss (LTV):

This loss encourages spatial smoothness in the patch by penalizing
large differences between adjacent pixel values. It is calculated as the
sum of the mean generalized Lp norms (controlled by ’power’ p) of the
horizontal and vertical pixel differences, with a small epsilon (ϵ) for
numerical stability.

LTV = 1
C(H−1)W

∑C
c=1

∑H−1
h=1

∑W
w=1

(
(Pc,h+1,w − Pc,h,w)2 + ϵ

)p/2
+

1
CH(W−1)

∑C
c=1

∑H
h=1

∑W−1
w=1

(
(Pc,h,w+1 − Pc,h,w)2 + ϵ

)p/2
• Pc,h,w is the value of the patch pixel at channel c, height h, and

width w.

54 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

• The first term calculates the average powered difference vertically,
and the second term calculates it horizontally.

• p corresponds to the ’tv_power’ parameter in the code, controlling
the strength of the smoothing (e.g., p = 2 relates to an L2-like
penalty on the gradient magnitude).

• ϵ corresponds to ’tv_epsilon’, preventing issues when differences
are zero, especially for p < 2.

Color Restriction Loss (Lpalette):

This loss encourages the patch pixels to adopt colors from a prede-
fined target palette T. Given the main target of this study, camouflag-
ing flying drones, the palette is chosen to be shades of white, blue,
and black. It calculates the average minimum Euclidean distance (L2
norm) between each patch pixel’s color and the closest color in the
target palette.

• Let phw ∈ R3 be the color vector of the patch pixel at spatial location
(h,w) (assuming C = 3).

• Let T = {t1, t2, . . . , tK} be the set of K target colors, where each
tk ∈ R3.

Lpalette = 1
HW

∑H
h=1

∑W
w=1 mink=1,...,K ∥phw − tk∥2

• ∥phw − tk∥2 calculates the Euclidean distance between the pixel
color phw and a target palette color tk.

• mink=1,...,K finds the smallest distance from the pixel color to any
color in the palette T.

• The outer summation and division by HW average these minimum
distances over all pixels in the patch.

IoU Loss (LIoU):

This loss aims to minimize the spatial overlap (Intersection over Union)
between the predicted bounding boxes for the target class and the cor-
responding ground truth bounding box. The loss is formulated as 1
minus the *maximum* IoU found for each image, averaged over the
batch. Maximizing this loss term encourages low IoU.

• Let Di,0 = {bd | d ∈ Ri, l(d) = 0} be the set of predicted bounding
boxes for class 0 in image i.

• Let gi be the ground truth bounding box for the target object in
image i.

• Let IoU(bd, gi) denote the Intersection over Union between pre-
dicted box bd and ground truth box gi.

We define max ∅ = 0.
LIoU = 1

B

∑B
i=1 (1− maxbd∈Di,0

IoU(bd, gi))

WHITE -B OX PATCH GENERATION 55

• maxbd∈Di,0
IoU(bd, gi) finds the highest IoU score between any pre-

dicted class 0 box and the ground truth box for image i. If no class
0 boxes are predicted (Di,0 is empty), the maximum is 0.

• (1 − max IoU) converts the maximization of IoU (good detection)
into a minimization objective for the loss. A perfect overlap (IoU=1)
results in zero loss from this term for that image, while zero overlap
(IoU=0, or no detection) results in a loss of 1.

• The sum and division by B average this per-image loss across the
batch.

8.4 EXTRACTING THE GRADIENT

The generation of adversarial patches using white-box attack strate-
gies is predicated on the ability to compute the gradient of a chosen
loss function with respect to the input patch pixels. This gradient infor-
mation guides the iterative optimization process, allowing the patch to
be progressively modified to achieve the attacker’s objective, typically
fooling or degrading the performance of the target object detection
model 2.3. Consequently, a prerequisite for implementing such at-
tacks against models like those provided by the Ultralytics framework
is obtaining gradient flow from the model’s output back to its input.

Input Formulation and Model Output Structure

The input to the models is typically composed of a base image tensor
onto which the candidate adversarial patch tensor is superimposed.
The placement of this patch is important: for targeted attacks aiming
to make a specific object undetectable or misclassified, the patch is
usually positioned centrally within the object’s ground-truth bounding
box coordinates.

The output structure of Ultralytics YOLO models (including versions
v5, v8, and v10) during inference is standard. The primary prediction
output is encapsulated within a list of Results objects. Each Results
object corresponds to an input image and contains various attributes
pertaining to the detection process. For object detection tasks, the
most pertinent information resides within the boxes attribute, which is
an instance of the Boxes class.

The Boxes class provides several methods and properties to access
detection results in different formats.For the purpose of crafting adver-
sarial patches aimed at degrading detection performance, two proper-
ties within the Boxes object are of primary interest:

• conf : This tensor contains the confidence scores associated with
each predicted bounding box. Object detectors typically employ a
confidence threshold during post-processing to filter out low-confidence
detections. By accessing the gradient of the model’s predicted confi-
dence score (conf) with respect to the input patch, we can optimize
the patch to specifically minimize this score for the target object,

56 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

potentially causing it to fall below the detection threshold and thus
become "invisible" to the model.

• xywhn: This tensor provides the bounding box coordinates in a nor-
malized [xcenter, ycenter, width, height] format. Accessing the gra-
dient for these predicted coordinates allows the patch optimization
process to manipulate the predicted box location and size. A com-
mon attack objective here is to maximize the spatial discrepancy
between the predicted bounding box and the ground-truth bound-
ing box, often quantified by minimizing the Intersection over Union
(IoU). Modifying the patch based on the xywhn gradient can there-
fore directly degrade the localization accuracy of the detector.

Enabling Gradient Flow in Ultralytics

By default, the Ultralytics library is optimized for efficient inference,
not for facilitating gradient-based analysis or attacks. To achieve high
throughput and simplify common usage scenarios, gradient compu-
tation is explicitly disabled during the forward pass of the models
at inference time. This is primarily enforced through the use of a
Python decorator, @smart_inference_mode(), applied to various pre-
diction and post-processing functions within the library’s codebase.
This decorator effectively wraps the decorated function within a torch.no_grad()
or equivalent context, preventing PyTorch’s autograd engine from track-
ing operations and computing gradients.

Therefore, obtaining the necessary gradients for a white-box attack
requires modifications to the underlying Ultralytics package source
code. This involves several targeted adjustments [13]:[13] GitHub, Ultralytics Pull n.8645:

Avoid in-place operations when disabling
the smart_inference_mode to compute the
gradients. 1. Disabling Inference Mode Decorators: The most fundamental

step is to locate and disable the @smart_inference_mode() decora-
tors in the relevant execution paths. This typically involves com-
menting out or removing the decorator line preceding the function
definitions responsible for model inference and output processing.
Key locations often include prediction methods within the specific
model classes (e.g., YOLO detection models).

2. Addressing Gradient-Incompatible Operations: Since the stan-
dard inference pipeline assumes gradients are disabled, some in-
ternal functions may utilize PyTorch operations that are incompat-
ible with gradient tracking, most notably in-place tensor modifica-
tions. When gradients are enabled, such operations can raise errors
or silently lead to incorrect gradient calculations. Therefore, spe-
cific functions must be inspected and potentially refactored to avoid
these in-place operations. Two functions required adjustment:

• The postprocess function, located within ultralytics/models/yolo/detect/predict.py
(or similar paths depending on the exact model type), often per-
forms filtering and coordinate adjustments that may involve in-
place operations.

WHITE -B OX PATCH GENERATION 57

• The clip_boxes function, found in ultralytics/utils/ops.py, which
ensures bounding box coordinates remain within image bound-
aries, might also use in-place clipping.

3. YOLOv10 Specific Adjustment: While the above modifications
are generally sufficient for enabling gradient flow in YOLOv5 and
YOLOv8 architectures, the more recent YOLOv10 model introduces
an additional consideration. Within the definition of its detection
head module, specifically in the file ultralytics/nn/modules/head.py
(or a similarly named file depending on the exact implementation
version), there exists code that manually detaches parts of the com-
putation graph using the .detach() method on tensors involved in
the prediction output. This explicit detachment prevents gradients
from flowing backward through that point, even if @smart_inference_mode()
is disabled. To obtain gradients for YOLOv10 outputs, this manual
detachment call must also be located and removed or commented
out.

9
Results

9.1 INTRODUCTION

This section presents the empirical results obtained from evaluating
the adversarial patches generated using the white-box attack method-
ology detailed before. The primary objective of these experiments was
to assess the efficacy of gradient-guided patches in degrading the per-
formance of the detection models.

A core aspect of the experiment involved generating distinct adver-
sarial patches tailored individually for each of the three target mod-
els.During the patch generation/optimization phase, the procedure
was standardized as follows:

• Patch Initialization and Dimensions: Each adversarial patch was
instantiated as a square canvas of 100× 100 pixels. The initial pixel
values for every patch were randomly sampled.

• Patch Placement during Optimization: For training purposes, the
100 × 100 patch tensor was superimposed directly onto the center
coordinates of the ground-truth bounding box associated with the
target object within each training image instance.

• Optimization Parameters: The patches were evolved iteratively
over a fixed duration of 150 epochs. A batch size of 16 images was
used for processing training data and calculating gradient updates.
The optimization utilized an initial learning rate set to 0.5.

To simulate a more realistic application scenario the optimized 100×
100 pixels patches were tested both as single patch like during the op-
timization process but also as a 3×3pattern, applied to the test images
according to the methodology previously described in Section 7.1.

Each of the three individually generated patches was subsequently
tested against all three models. This allows to measure not only how

59

60 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

effective a patch is against the specific model architecture it was trained
on but also its ability to degrade the performance of the other related
architectures.

9.2 YOLOV5 PATCH

Figure 9.1: The Best Patch from the
YOLOv5 patch generation and the cor-
responding Pattern.

The adversarial patch and pattern generated using YOLOv5 show
varied effectiveness. The single patch has its most significant negative
impact on its target model YOLOv5, causing a drastic drop in Recall
(-0.57) and mAP@.5 (-0.626), while having a much smaller effect on
YOLOv8 (-0.01 Recall, -0.005 mAP@.5) and YOLOv10 (-0.07 Recall,
-0.072 mAP@.5). Conversely, applying the attack as a pattern resulted
in more consistent degradation across all models, significantly reduc-
ing Recall and mAP@.5 for YOLOv5 (-0.30, -0.30), YOLOv8 (-0.26,
-0.26), and YOLOv10 (-0.25, -0.25).

Table 9.1: Impact of the patch and
pattern generated with YOLOv5 on the
three models.

Single Patch Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real 0.152174 -0.570000 -0.445345 -0.625994 -0.396867 -0.001600
YOLO8_Real 0.020366 -0.010000 0.004167 -0.005436 -0.163356 -0.006359
YOLO10_Real -0.001750 -0.070000 -0.039779 -0.072049 -0.073428 -0.005909
Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.029412 -0.300000 -0.193878 -0.301820 -0.054454 0.008941
YOLO8_Real 0.006354 -0.260000 -0.159873 -0.257879 -0.099362 0.004091
YOLO10_Real 0.012693 -0.250000 -0.147619 -0.247412 -0.091641 -0.016667

Table 9.2: Scores for the patch and pat-
tern generated with YOLOv5.

YOLOv5 Patch Overall Score Recall Weighted
as Patch -1.24 -0.65
as Pattern -1.32 -0.81

The summary scores reflect this, with the pattern achieving slightly
stronger overall negative scores (-1.32 Overall, -0.81 Recall Weighted)
compared to the single patch (-1.24 Overall, -0.65 Recall Weighted),
indicating the pattern’s broader effectiveness, particularly in suppress-
ing detections (Recall).

9.3 YOLOV8 PATCH

The patch generated targeting YOLOv8 demonstrates strong effective-
ness against its source model when applied as a single patch, severely

RESULTS 61

Figure 9.2: The Best Patch from the
YOLOv8 patch generation and the cor-
responding Pattern.

degrading YOLOv8’s performance (Recall -0.59, mAP@.5 -0.616). How-
ever, its transferability as a single patch to YOLOv5 (Recall -0.06) and
especially YOLOv10 (Recall -0.02) is limited. When applied as a pat-
tern, the attack becomes highly effective across all models, causing
substantial drops in Recall and mAP@.5 for YOLOv5 (-0.38, -0.38),
YOLOv8 (-0.30, -0.30), and YOLOv10 (-0.26, -0.25).

Single Patch Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real 0.000000 -0.060000 -0.032223 -0.060000 -0.106569 0.000464
YOLO8_Real -0.216590 -0.590000 -0.492301 -0.615698 -0.313358 -0.002576
YOLO10_Real 0.020127 -0.020000 -0.001396 -0.015547 -0.179815 -0.006368
Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.049180 -0.380000 -0.259095 -0.380506 -0.132636 -0.001421
YOLO8_Real -0.010241 -0.300000 -0.194539 -0.302089 -0.088441 -0.005909
YOLO10_Real 0.012255 -0.260000 -0.154890 -0.257093 -0.093885 -0.016667

Table 9.3: Impact of the patch and
pattern generated with YOLOv8 on the
three models.

YOLOv8 Patch Overall Score Recall Weighted
as Patch -1.39 -0.67
as Pattern -1.59 -0.94

Table 9.4: Scores for the patch and pat-
tern generated with YOLOv8.

Although the single patch was more damaging specifically to YOLOv8,
the pattern shows much better generalization. This is confirmed by the
summary scores, where the pattern yields significantly more negative
results (-1.59 Overall, -0.94 Recall Weighted) than the single patch (-
1.39 Overall, -0.67 Recall Weighted).

9.4 YOLOV10 PATCH

The adversarial attacks generated using YOLOv10 show a stark differ-
ence between the single patch and the pattern application. The sin-
gle patch is moderately effective against its source model, YOLOv10
(Recall -0.26, mAP@.5 -0.27), but exhibits very poor transferability,
causing only minor performance drops for YOLOv5 (Recall -0.05) and
YOLOv8 (Recall -0.05). In contrast, the pattern derived from this at-
tack is highly effective and transfers extremely well, causing significant
degradation across YOLOv5 (Recall -0.39, mAP@.5 -0.39), YOLOv8
(Recall -0.31, mAP@.5 -0.30), and YOLOv10 (Recall -0.34, mAP@.5
-0.33). Notably, the pattern is more effective against the source model
(YOLOv10) than the single patch itself.

62 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

Figure 9.3: The Best Patch from the
YOLOv10 patch generation and the cor-
responding Pattern.

Table 9.5: Impact of the patch and pat-
tern generated with YOLOv10 on the
three models.

Single Patch Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.031915 -0.050000 -0.041448 -0.052407 0.068883 0.003400
YOLO8_Real 0.010011 -0.050000 -0.023219 -0.048427 -0.076899 -0.005717
YOLO10_Real -0.055117 -0.260000 -0.177519 -0.270355 -0.316996 -0.006667
Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.033898 -0.390000 -0.262611 -0.391884 -0.110768 -0.001600
YOLO8_Real -0.010753 -0.310000 -0.202264 -0.309158 -0.115053 0.004091
YOLO10_Real -0.023469 -0.340000 -0.225259 -0.337993 -0.138146 -0.016667

The summary scores illustrate this difference: the single patch has
a relatively weak impact (-0.68 Overall, -0.36 Recall Weighted), while
the pattern achieves a very strong negative impact (-1.59 Overall, -
0.94 Recall Weighted), comparable to the most effective pattern gen-
erated from YOLOv8.

9.5 MOSAIC PATTERN

The results revealed a degree of transferability for the generated patches
across different models, an effect particularly noticeable when these
patches were applied in a pattern format. Based on this observation,
it can be hypothesized that combining multiple effective patches could
yield a more robust and broadly applicable adversarial pattern. To ex-
plore this, a mosaic pattern was designed by integrating the three most
successful patches from the previous section into a 6 × 6 grid. The
idea was to create a single pattern possessing enhanced transferabil-
ity characteristics, yet retaining potent adversarial capabilities against
each individual target model.

The application method for this mosaic pattern remained the same
as with prior experiments. The performance of this composite pat-
tern is evalulated against the three original models, with the results
presented below.

The results for the mosaic pattern strongly support the hypothe-
sis that combining effective individual patches can create a more ro-
bust and broadly effective adversarial attack. This composite pattern
demonstrates significant degrading effects across all three target mod-
els, achieving substantial reductions in Recall (-0.42 for YOLOv5, -0.35

Table 9.6: Scores for the patch and pat-
tern generated with YOLOv10.

YOLOv10 Patch Overall Score Recall Weighted
as Patch -0.68 -0.36
as Pattern -1.59 -0.94

RESULTS 63

Figure 9.4: Mosaic generated from the
three best patches.

Mosaic Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.052632 -0.420000 -0.291694 -0.425916 -0.143243 -0.001044
YOLO8_Real 0.003962 -0.350000 -0.229629 -0.349274 -0.126706 0.005909
YOLO10_Real 0.024864 -0.340000 -0.211814 -0.335609 -0.159910 -0.016667

Table 9.7: Impact of the mosaic pattern
on the three models.

for YOLOv8, -0.34 for YOLOv10) and corresponding drops in mAP@.5
(-0.426, -0.349, -0.336 respectively).

Mosaic Scores Overall Score Recall Weighted
-1.87 -1.11

Table 9.8: Scores for the mosaic pattern.

Compared to the individual patterns generated earlier, the mosaic
pattern generally achieves equal or superior performance degradation,
particularly showing enhanced impact against YOLOv5. The summary
scores further underscore its potency, with an Overall Score of -1.87
and a Recall Weighted score of -1.11, both considerably more negative
than those achieved by any single-source pattern. This indicates the
mosaic pattern successfully integrates the strengths of its constituent
patches, resulting in a highly effective and transferable adversarial at-
tack.

9.6 OTHER PALETTES

The palette used in the previous experiments was specifically chosen to
maximize the effectiveness of the generated patches against the target
object detection models in the main use, flying drones with a "clear
sky" background. However, it is important to explore the impact of
different palettes on the performance of the generated patches, both
to account for different real world scenarios and to understand if the
palette choice has a significant effect on the performance of the gener-
ated patches. To do this, patches for all models were generated using
palettes of sand tones and green tones, common in different natural en-

64 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

vironments. The patches were generated using the same methodology
as before and tested in the same way by generating a 3× 3 pattern.

Sand Palette

The sand palette was chosen to simulate a hot environment use case,
the palette contains the same shades of white and black as the blue
palette, but with sand tones.

Figure 9.5: Patches for respectively
YOLOv5, YOLOv8 and YOLOv10 gener-
ated using a sand palette.

Table 9.9: Impact of the sand patches
and patterns on the three models.

YOLOv5 Patch Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.102941 -0.350000 -0.253401 -0.377293 -0.331475 -0.000767
YOLO8_Real -0.036634 -0.100000 -0.072037 -0.108350 -0.131813 -0.005909
YOLO10_Real 0.010190 0.000000 0.004811 -0.002355 -0.165390 -0.001078
YOLOv5 Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.060000 -0.490000 -0.352925 -0.493581 -0.142369 -0.001356
YOLO8_Real 0.004264 -0.340000 -0.221486 -0.338542 -0.138745 -0.005492
YOLO10_Real 0.011336 -0.280000 -0.169697 -0.277780 -0.170809 -0.016667
YOLOv8 Patch Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.107143 -0.210000 -0.164374 -0.239481 -0.265638 -0.001600
YOLO8_Real -0.407066 -0.670000 -0.604977 -0.718097 -0.345049 -0.005909
YOLO10_Real -0.000905 -0.020000 -0.011054 -0.025578 -0.172092 -0.006667
YOLOv8 Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.066667 -0.400000 -0.279592 -0.401701 -0.185381 -0.000171
YOLO8_Real 0.02150 -0.350005 -0.225056 -0.346818 -0.084356 -0.005709
YOLO10_Real 0.028407 -0.190000 -0.100963 -0.186258 -0.047174 -0.016497
YOLOv10 Patch Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.030303 0.000000 -0.014768 -0.003411 0.098968 0.000400
YOLO8_Real -0.000967 -0.040000 -0.022370 -0.037847 -0.090773 -0.005157
YOLO10_Real -0.073837 -0.300000 -0.211440 -0.308475 -0.356440 -0.006667
YOLOv10 Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.019231 -0.450000 -0.308539 -0.450577 -0.140763 -0.001600
YOLO8_Real 0.005632 -0.290000 -0.182269 -0.286977 -0.126366 0.006266
YOLO10_Real 0.014327 -0.210000 -0.119380 -0.208026 -0.103079 -0.015758

Table 9.10: Scores for the sand patches
and patterns.

YOLOv5 Patch Overall Score Recall Weighted
as Patch -0.90 -0.45
as Pattern -1.89 -1.11
YOLOv8 Patch Overall Score Recall Weighted
as Patch -2.19 -0.90
as Pattern -1.56 -0.94
YOLOv10 Patch Overall Score Recall Weighted
as Patch -0.69 -0.34
as Pattern -1.56 -0.95

Green Palette

Like the sand palette above, the green palette was chosen to simulate
a natural environment use case, the palette contains the same shades
of white and black as the blue palette, but with green tones.

RESULTS 65

Figure 9.6: Patches for respectively
YOLOv5, YOLOv8 and YOLOv10 gener-
ated using a green palette.

YOLOv5 Patch Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.107143 -0.460000 -0.338566 -0.498900 -0.374982 -0.001600
YOLO8_Real -0.015995 -0.140000 -0.087450 -0.139439 -0.172326 -0.005705
YOLO10_Real 0.031353 0.010000 0.020035 0.014134 -0.138273 -0.006259
YOLOv5 Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.035714 -0.420000 -0.287284 -0.426460 -0.084298 0.009006
YOLO8_Real 0.005376 -0.300000 -0.189919 -0.297140 -0.067283 0.005202
YOLO10_Real 0.042105 -0.280000 -0.160327 -0.275436 -0.108963 -0.016667
YOLOv8 Patch Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.057971 -0.310000 -0.210361 -0.317008 -0.254568 0.008400
YOLO8_Real -0.160313 -0.370000 -0.292403 -0.438119 -0.247939 -0.005909
YOLO10_Real 0.019117 -0.060000 -0.024242 -0.055553 -0.175299 -0.002261
YOLOv8 Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.067797 -0.410000 -0.287768 -0.415023 -0.094760 -0.001215
YOLO8_Real -0.010241 -0.300000 -0.194539 -0.299767 -0.108791 0.009785
YOLO10_Real -0.007895 -0.150000 -0.088889 -0.150847 0.004066 -0.016396
YOLOv10 Patch Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.020619 -0.010000 -0.015125 -0.012904 0.122779 -0.001600
YOLO8_Real -0.001222 -0.050000 -0.028112 -0.047967 -0.073110 -0.005242
YOLO10_Real -0.051228 -0.230000 -0.156190 -0.232826 -0.337610 -0.011667
YOLOv10 Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.019231 -0.450000 -0.308539 -0.454231 -0.107705 -0.001387
YOLO8_Real 0.005632 -0.290000 -0.182269 -0.287453 -0.112407 0.005267
YOLO10_Real 0.026721 -0.270000 -0.157576 -0.265898 -0.138577 -0.015667

Table 9.11: Impact of the green patches
and patterns on the three models.

YOLOv5 Patch Overall Score Recall Weighted
as Patch -1.09 -0.59
as Pattern -1.62 -1.00
YOLOv8 Patch Overall Score Recall Weighted
as Patch -1.47 -0.74
as Pattern -1.52 -0.86
YOLOv10 Patch Overall Score Recall Weighted
as Patch -0.56 -0.29
as Pattern -1.65 -1.01

Table 9.12: Scores for the green patches
and patterns.

9.7 WHITE AND RANDOM NOISE NOT-OPTIMIZED PATCHES

[h] The patches generated in the previous sections were specifically
designed to maximize the effectiveness of the generated patches against
the target object detection models. To understand the impact of this
optimization, the same metrics are calculated for completely white
patch and a random noise patch.

Even these rudimentary patches exert some influence on the ob-
ject detection models. This suggests that any form of significant vi-
sual occlusion or alteration can, to some extent, disrupt the mod-
els’ detection capabilities. As expected the degradation tends to be
more pronounced when these patches are applied as a repeating pat-
tern rather than a single patch. For instance, the ’White Pattern’ on
YOLO5_Real incurs a recall drop of -0.270000, considerably larger
than the -0.100000 drop from the single ’White Patch’. A similar trend
is observable for the random noise patch.

66 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

Figure 9.7: White (bordered here) and
random noise patches.

Table 9.13: Impact of the white and ran-
dom noise patches and patterns on the
three models.

White Patch Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.011494 -0.100000 -0.059806 -0.103218 0.052851 0.001733
YOLO8_Real -0.001750 -0.070000 -0.039779 -0.071263 0.015625 -0.004798
YOLO10_Real 0.019883 -0.030000 -0.007018 -0.027122 0.017297 -0.006241
White Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.080000 -0.270000 -0.191020 -0.280043 -0.141189 0.008400
YOLO8_Real -0.048917 -0.250000 -0.171075 -0.282320 -0.168320 0.005758
YOLO10_Real 0.030057 -0.090000 -0.037158 -0.085557 -0.123999 -0.006322
Noise Patch Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.045455 -0.120000 -0.085975 -0.123764 -0.011320 0.000826
YOLO8_Real -0.000967 -0.040000 -0.022370 -0.037492 -0.000365 -0.005909
YOLO10_Real 0.042105 0.010000 0.025000 0.014564 -0.025568 -0.001167
Noise Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.046154 -0.340000 -0.228077 -0.343051 -0.106719 -0.000350
YOLO8_Real 0.007013 -0.230000 -0.138271 -0.227398 -0.054740 0.008377
YOLO10_Real -0.009177 -0.170000 -0.101873 -0.171177 -0.067947 -0.015848

The takeaway from these baseline experiments is the magnitude of
their impact relative to the optimized patches. While the white and
random noise patches, particularly in their pattern forms, do affect
model performance (e.g., the Noise Pattern inducing a recall reduction
of -0.340000 on YOLO5_Real), this influence is less pronounced than
that achieved by the patches specifically engineered for adversarial
efficacy in the preceding sections.

Table 9.14: Scores for the white and
noise patches and patterns.

White Patch Overall Score Recall Weighted
as Patch -0.30 -0.20
as Pattern -1.10 -0.61
Noise Patch Overall Score Recall Weighted
as Patch -0.24 -0.15
as Pattern -1.26 -0.74

This disparity underscores the significance of the optimization pro-
cess itself, suggesting that that while simple visual disruptions can
cause a degree of interference, the substantial degradation observed
with optimized patches is not merely a byproduct of occlusion but a
direct consequence of their tailored design to exploit model-specific
vulnerabilities. Therefore, the effectiveness of the previously detailed
adversarial patches can be attributed to their strategic, optimized na-
ture rather than just the introduction of a visual artifact.

10
Improved Patch Generator

10.1 INTRODUCTION: BEYOND SINGLE-PATCH

The preceding investigations into adversarial patches, including the
baseline white and noise patches, highlighted the efficacy of opti-
mized perturbations. However, the initial adversarial patch generator
(henceforth V1) focused on optimizing a singular, monolithic patch.
This patch was then scaled and applied to a central region within the
target’s bounding box during the optimization loop, and the tested
both as optimized and applied as a pattern. While effective to a degree,
this approach inherently limits the contextual information available
during optimization and may not fully represent how such adversarial
textures might be deployed or perceived in more realistic scenarios,
particularly if an entire object surface were to be treated.

To address these limitations and explore more robust and poten-
tially more transferable adversarial designs, an enhanced patch gener-
ation methodology (V2) was developed. The V2 generator shifts the
paradigm from optimizing an isolated patch to optimizing a base patch
element that is subsequently applied as a repeating, masked pattern
across the target object’s visible surface during the training process
itself, in the same way as the pattern was created and tested in previ-
ous chapters. This chapter details the conceptual and methodological
advancements in the V2 generator.

10.2 INTEGRATED PATTERN OPTIMIZATION

The core innovation in the V2 generator lies in its approach to how
the adversarial perturbation is conceived and optimized. Instead of
learning a single, fixed-size patch intended for one-off placement, V2
learns a smaller, tileable base patch. During each training iteration,
this base patch is:

67

68 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

1. Tiled: Repeated according to a configurable patch_tiling_factor
(e.g., 3x3 repetitions) to form a larger pattern.

2. Resized and Applied to Bounding Box: This tiled pattern is then
resized to fit the dimensions of the target object’s bounding box in
the training image.

3. Masked by Segmentation: Crucially, the application of this re-
sized pattern is constrained by a per-instance segmentation mask.
This ensures the adversarial pattern is only applied to pixels corre-
sponding to the actual target object within its bounding box, rather
than indiscriminately filling the entire rectangular region.

This “optimize-as-pattern” strategy is fundamentally different. The
V1 generator optimized a patch in isolation, which was then tested
either as a single instance or by manually tiling it post-optimization.
In contrast, V2 optimizes the base element with full awareness of its
destiny as a tiled, masked pattern. The gradients used to update the
base patch are derived from the loss computed after the entire tiling,
resizing, masking, and application process.

10.3 KEY METHODOLOGICAL ENHANCEMENTS IN GENERA-
TOR V2

The shift described above necessitates several significant methodolog-
ical changes within the AdversarialPatchGenerator (V2) from
the previous version, with the steps being taken and re-adapeted from
testing the patches as pattern in previous sections.

Pattern Tiling and Contextual Application

The V1 generator’s apply_patch_to_imagemethod scaled and placed
a single patch. The V2 generator introduces a more sophisticated
apply_pattern_to_image_torch method, that first tiles the cur-
rent learnable self.patch (the base element) creating a larger, repet-
itive pattern from the base element. This complete pattern is then
resized to the dimensions of the target’s bounding box.

Integration of Segmentation Masks

A pivotal enhancement is the mandatory use of segmentation masks
(provided via mask_path), which are loaded as binary arrays. Af-
ter the tiled pattern is resized to the bounding box dimensions, it is
applied to the image selectively, only where the corresponding pixels
in the (similarly resized) segmentation mask are true. This ensures
the adversarial pattern conforms to the object’s silhouette within its
bounding box, providing a more realistic application scenario. The
optimization, therefore, learns a base patch that is effective when dis-
tributed across potentially irregular and non-contiguous visible parts
of an object.

IMPROVED PATCH GENERATOR 69

Adaptive Blending Mechanism

To potentially improve the stealthiness or natural integration of the
pattern, V2 introduces an optional adaptive blending mechanism, con-
trolled by blend_alpha_strength. If this strength is greater than
zero, the applied pattern is blended with a grayscale representation
of the original image content within the masked region. The blend-
ing alpha is modulated by the local brightness of the original im-
age pixels under the mask (normalized within the masked region’s
brightness range). For darker underlying regions, the pattern might
be blended more transparently or with an inverted relationship com-
pared to lighter regions, controlled by is_dark logic. This allows
the pattern to subtly adapt its appearance based on the underlying
texture it is covering, potentially making it less conspicuous. The
blend_alpha_strength parameter directly scales the intensity of
this blending effect. If set to 0, this blending step is bypassed, and the
pattern is applied opaquely (within the mask).

Refined Gradient Handling

While V1 exclusively used sign-based gradient updates (torch.sign()),
V2 introduces more nuanced gradient control via the gradient_clipping_mode
parameter in the patch_trainer. This can be set to:

• ’sign’: Replicating the V1 behavior.

• ’norm’: Applying gradient norm clipping (torch.nn.utils.clip_grad_norm_)
with a max_grad_norm.

This flexibility can help stabilize training, prevent excessively large up-
dates to the patch, and fine-tune the optimization dynamics, especially
when dealing with the complex loss landscape arising from patterned
application.

Adjustments to Loss Components

Minor refinements were also made to some loss component calcula-
tions:

• Total Variation (TV) Loss: The formulation was slightly adjusted,
though its fundamental purpose of promoting patch smoothness re-
mains.

• Color Restriction Loss: Instead of averaging the minimum dis-
tance to target colors for all pixels, V2 calculates the mean of the
top_k_distances (top 10% of distances). This focuses the penalty
on the most errant pixels, potentially allowing more flexibility in
color usage while still constraining extreme deviations.

70 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

10.4 IMPLICATIONS AND EXPECTED BENEFITS OF THE V2
APPROACH

The transition to optimizing a masked, tiled pattern directly within the
training loop is anticipated to yield several benefits:

1. Enhanced Robustness: By optimizing the base patch element in
the context of its tiled application across the entire object (as de-
fined by the mask), the resulting pattern is expected to be more
robust to variations in object scale, partial visibility, and intra-class
morphological differences. The generator learns features that are
effective when spatially distributed.

2. Improved Realism and Applicability: The use of segmentation
masks ensures the adversarial pattern is applied only to the target
object, mimicking a more realistic "skin" or "texture" attack rather
than an arbitrary overlay. This also means the optimization is not
penalized for, nor benefits from, affecting background pixels.

3. Potentially Increased Transferability: Patterns learned with aware-
ness of broader object surface characteristics, rather than a small
central region, might generalize better to unseen instances or even
different (but related) object detectors.

4. Greater Control over Pattern Characteristics: Parameters like
patch_tiling_factor and blend_alpha_strength offer finer
control over the visual characteristics and application style of the
generated adversarial pattern.

10.5 IMPROVED GENERATOR RESULTS

The primary objective of this research is the development of adversar-
ial patterns effective against drone detection. The V2 generator, de-
tailed in the preceding chapter, was specifically designed to optimize
a base element for tiled, masked application—mimicking a real-world
scenario like camouflaging a drone’s surface. Consequently the follow-
ing results focus exclusively on the performance of these patterns, as
single patch metrics are less relevant to this advanced methodology.

A central finding evident in the subsequent sections, is the markedly
improved efficacy of V2-generated patterns compared to those from
V1.

Blue Patterns

The blue patterns developed with the V2 generator demonstrate a
significant degradation in detector performance, as evidenced in Ta-
ble 10.5, all three patterns achieve substantial reductions in recall
and mAP@.5 across all tested YOLO versions.The YOLOv5-optimized
blue pattern reduces YOLOv5’s recall by 0.630000 and mAP@.5 by
0.630000, while still managing a 0.400000 recall reduction against

IMPROVED PATCH GENERATOR 71

Figure 10.1: Blue patterns generated
with the V2 generator. From left to right:
YOLOv5, YOLOv8, and YOLOv10 pat-
terns.

YOLOv8. The overall scores, consistently around -2.27 to -1.33, con-
firm their potent adversarial nature when applied as a full surface pat-
tern, showcasing the effect of the V2 "optimize-as-pattern" strategy.

YOLOv5 Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.029412 -0.630000 -0.487055 -0.630000 -0.289354 -0.001600
YOLO8_Real 0.021505 -0.400000 -0.267508 -0.396818 -0.228713 -0.005692
YOLO10_Real 0.010359 -0.300000 -0.184867 -0.300149 -0.154658 -0.016667
YOLOv8 Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.040816 -0.490000 -0.348719 -0.492542 -0.180275 -0.001243
YOLO8_Real 0.021505 -0.540000 -0.402859 -0.536818 -0.214426 -0.005242
YOLO10_Real -0.004049 -0.290000 -0.181818 -0.289369 -0.128199 -0.016667
YOLOv10 Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.057692 -0.470000 -0.334855 -0.470781 -0.163792 0.009453
YOLO8_Real 0.021505 -0.360000 -0.233328 -0.356818 -0.111202 -0.002273
YOLO10_Real 0.022497 -0.410000 -0.271082 -0.406809 -0.209612 -0.016667

Table 10.1: Impact of the blue patterns
generated with the V2 generator.

YOLOv5 Pattern Overall Score Recall Weighted
-2.27 -1.33

YOLOv8 Pattern Overall Score Recall Weighted
-2.09 -1.24

YOLOv10 Pattern Overall Score Recall Weighted
-2.27 -1.33

Table 10.2: Scores for the blue patterns
generated with the V2 generator.

Green Patterns

Figure 10.2: Green patterns generated
with the V2 generator. From left to right:
YOLOv5, YOLOv8, and YOLOv10 pat-
terns.

Similarly, the green V2 patterns exhibit robust adversarial capabili-
ties across the board. The pattern optimized for YOLOv8, in particular,
stands out with an Overall Score of -2.38 and a Recall Weighted score
of -1.39, the strongest in this color group. It achieves impressive re-
call reductions of -0.520000 against YOLOv5, -0.510000 against itself
(YOLOv8), and -0.360000 against YOLOv10.

Sand Patterns

The sand-colored patterns, generated using the V2 methodology, also
show substantial efficacy in degrading detector performance. Both

72 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

Table 10.3: Impact of the green patterns
generated with the V2 generator.

YOLOv5 Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.028571 -0.620000 -0.475888 -0.622000 -0.259342 -0.001600
YOLO8_Real 0.021505 -0.420000 -0.285287 -0.416818 -0.172065 0.004091
YOLO10_Real 0.011802 -0.270000 -0.162249 -0.269458 -0.070770 -0.016667
YOLOv8 Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.022222 -0.520000 -0.372695 -0.521333 -0.171768 -0.001600
YOLO8_Real 0.021505 -0.510000 -0.371577 -0.506818 -0.184497 -0.005909
YOLO10_Real -0.009619 -0.360000 -0.237131 -0.357935 -0.132235 -0.016481
YOLOv10 Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.039216 -0.470000 -0.330585 -0.471200 -0.165027 -0.000171
YOLO8_Real 0.021505 -0.300000 -0.185241 -0.296818 -0.108224 0.006948
YOLO10_Real 0.004369 -0.400000 -0.266667 -0.398353 -0.186624 -0.016667

Table 10.4: Scores for the green patterns
generated with the V2 generator.

YOLOv5 Pattern Overall Score Recall Weighted
-2.22 -1.31

YOLOv8 Pattern Overall Score Recall Weighted
-2.38 -1.39

YOLOv10 Pattern Overall Score Recall Weighted
-1.96 -1.17

Figure 10.3: Sand patterns generated
with the V2 generator. From left to right:
YOLOv5, YOLOv8, and YOLOv10 pat-
terns.

the YOLOv5-optimized and YOLOv10-optimized sand patterns yield
strong Overall Scores of -2.27. The YOLOv5 pattern, for example,
reduces recall by a significant 0.630000 on its target model and main-
tains a notable 0.400000 recall reduction on YOLOv8, indicating ef-
fective cross-model impact. These outcomes, consistent with the other
color sets, further validate the V2 generator’s improved approach.

Table 10.5: Impact of the sand patterns
generated with the V2 generator.

YOLOv5 Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.029412 -0.630000 -0.487055 -0.630000 -0.289354 -0.001600
YOLO8_Real 0.021505 -0.400000 -0.267508 -0.396818 -0.228713 -0.005692
YOLO10_Real 0.010359 -0.300000 -0.184867 -0.300149 -0.154658 -0.016667
YOLOv8 Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.020833 -0.490000 -0.344457 -0.490208 -0.169154 -0.001267
YOLO8_Real -0.028495 -0.530000 -0.400148 -0.536218 -0.219466 -0.005909
YOLO10_Real -0.010526 -0.370000 -0.245435 -0.367015 -0.156351 -0.016667
YOLOv10 Pattern Precision Recall F1 mAP@.5 mAP@.75 mAP@.95
YOLO5_Real -0.043478 -0.520000 -0.376852 -0.520662 -0.206392 0.009983
YOLO8_Real -0.023949 -0.490000 -0.359672 -0.489182 -0.206782 -0.005242
YOLO10_Real -0.007895 -0.530000 -0.390476 -0.529936 -0.266141 -0.016667

Table 10.6: Scores for the sand patterns
generated with the V2 generator.

YOLOv5 Pattern Overall Score Recall Weighted
-2.25 -1.32

YOLOv8 Pattern Overall Score Recall Weighted
-2.44 -1.39

YOLOv10 Pattern Overall Score Recall Weighted
-2.74 -1.54

PART VI

FINAL RESULTS

73

11
Attack Success Rate Analysis

11.1 INTRODUCTION: DEFINING AND UNDERSTANDING AT-
TACK SUCCESS RATE

While metrics like mean Average Precision (mAP), precision, and re-
call provide a comprehensive overview of how adversarial patterns de-
grade the overall performance of object detection models, the Attack
Success Rate (ASR) offers a more direct measure of an attack’s efficacy
from the perspective of an adversary. ASR quantifies the percentage of
instances where an attack successfully fools the detector regarding a
specific target object. In the context of object detection, a "successful"
attack can mean either causing the detector to fail to detect the target
object entirely (a false negative) or causing the object to be detected
with a confidence score below a certain operational threshold.

The confidence score assigned by a detector to its predictions is a
crucial element in practical deployments. Operators often set a mini-
mum confidence threshold to filter out low-quality detections and re-
duce false positives. Therefore, an adversarial attack might be consid-
ered successful not only if it makes an object invisible to the detector
but also if it significantly erodes the confidence in the detection, push-
ing it below this operational threshold.

To capture this nuance, ASR is typically evaluated at various con-
fidence thresholds. For instance, ASR@0.75 would measure the per-
centage of attack instances where the target object is either not de-
tected or detected with a confidence score of less than 0.75. Analyzing
ASR across a spectrum of confidence thresholds (e.g., from 0.50 to
0.95) is vital for several reasons:

1. Practical Relevance: It reflects how the attack would perform
against systems configured with different sensitivity levels. A sys-
tem requiring high certainty (e.g., a 0.90 threshold) might be more
vulnerable than one operating at a lower threshold (e.g., 0.50) if

75

76 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

the attack primarily reduces confidence rather than eliminating de-
tections outright.

2. Robustness Assessment: It reveals the attack’s strength. An attack
maintaining high ASR even at stringent confidence thresholds is
demonstrably more potent and robust.

3. Understanding Attack Mechanism: It can provide insights into
whether the attack primarily causes detections to be missed entirely
or if it consistently lowers their confidence scores across the board.

By examining ASR at multiple levels, we gain a more fine-grained un-
derstanding of the adversarial patterns’ ability to compromise the de-
tector’s reliability in real-world scenarios.

11.2 ATTACK SUCCESS RATE RESULTS FOR V2 PATTERNS

To further assess the practical impact of the patterns generated by the
V2 methodology, we conducted an Attack Success Rate (ASR) analy-
sis. This investigation focused on the most effective pattern identified
for each of the three color palettes—blue, green, and sand—based
on their overall performance metrics and recall degradation discussed
in Chapter 10 (specifically, the patterns yielding the best overall and
recall-weighted scores against their respective target models). For
the blue palette the best performing pattern was generated against
YOLOv5, the green palette’s best pattern was generated against YOLOv8,
and the sand palette’s best pattern was generated against YOLOv10.

Figure 11.1: Best patterns gener-
ated by the V2 generator for each
palette. Respectively generated by
YOLOv5, YOLOv8, and YOLOv10.

For each selected pattern, the ASR was evaluated against all the
yolo models. The success of an attack was defined as an instance
where the target object (e.g., a drone) was either completely missed
by the detector or was detected with a confidence score below a spec-
ified threshold. These confidence thresholds were systematically var-
ied from 0.50 (50%) up to 0.95 (95%), with increments of 0.05 (5%).
This range allows for a comprehensive view of how the patterns per-
form, from moderately confident detections to those requiring very
high certainty. The results, presented below, illustrate the percentage
of successful attacks at each of these critical confidence junctures.

Table 11.1: Attack Success Rate (%) at
Various Confidence Thresholds for Se-
lected V2 Patterns.

Confidence Threshold 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Blue Pattern ASR (%) 65.66 67.68 73.74 78.79 85.86 88.89 93.94 98.99 100.00 100.00
Green Pattern ASR (%) 53.12 54.17 60.42 63.58 72.92 80.21 86.46 98.96 100.00 100.00
Sand Pattern ASR (%) 53.06 55.10 59.18 67.35 74.49 84.69 92.86 98.98 100.00 100.00

AT TACK SUCCESS RATE ANALYSIS 77

Figure 11.2: Attack Success Rate for the
Blue Pattern generated by the V2 against
YOLOv5.

Figure 11.3: Attack Success Rate for
the Green Pattern generated by the V2
against YOLOv8.

Figure 11.4: Attack Success Rate for
the Sand Pattern generated by the V2
against YOLOv10.

78 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

The Attack Success Rate (ASR) figures presented in Table 11.2 of-
fer compelling insights into the practical impact of the V2-generated
patterns. A clear and consistent trend emerges across all three color
palettes: as the detection confidence threshold is raised, the ASR for
each pattern steadily increases. This indicates that the patterns are
not only causing some detections to be missed entirely but are also
significantly eroding the confidence scores of detections that do occur.

Initially, at the lower confidence threshold of 0.50, the Blue pattern
demonstrates a notable edge, achieving an ASR of 65.66%. The Green
and Sand patterns, while still effective, start slightly lower at 53.12%
and 53.06% respectively. As we move towards moderate confidence
levels, such as 0.70, all patterns show substantial efficacy, with ASRs
climbing to 85.86% for Blue, 72.92% for Green, and 74.49% for Sand.

By the 0.85 mark, all patterns are achieving near-perfect success,
with ASRs of 98.99% for Blue, 98.96% for Green, and 98.98% for
Sand. Crucially, for any system demanding a detection confidence of
0.90 or 0.95, all three V2 patterns achieve a 100% Attack Success Rate
on the testing dataset.

The results strongly suggest that the V2 generator’s methodology,
which optimizes the patch element in the context of its tiled and masked
application, produces adversarial textures capable of defeating detec-
tors under various operational conditions.

12
Live Video Feed Experiment

12.1 MOTIVATION

The preceding chapters have quantitatively established the effective-
ness of the V2-generated patterns against static images. Howeve a
question remains regarding their performance in a dynamic context,
which more closely approximates real-world deployment scenarios.
Real-world detection systems do not operate on individual, high-quality
images but on continuous video feeds, which are often subject to mo-
tion, temporal inconsistencies, etc.

This chapter details an experiment designed to evaluate the ad-
versarial patterns’ robustness in a simulated live-stream environment.
The objective was not to replicate the full complexity of a physical field
test, but to serve as a intermediate step assessing the pattern’s ability
to disrupt detection when presented as a continuous, streaming video
source.

12.2 EXPERIMENT SETUP

The experiment was structured in two main phases: the preparation
of an adversarial video stream, and the setup for live inference and
visualization.

To create a suitable test video, a clean, high-resolution video of a
drone in flight was used as a baseline. The core task was to apply the
YOLOv10 optimized blue pattern from the previous chapter across ev-
ery frame of this video. The process was automated using a combina-
tion of custom Python scripts and the FFmpeg multimedia framework.

• Video Deconstruction: The source video was first decomposed into
a sequence of individual PNG frames using an FFmpeg command.

• Per-Frame Adversarial Application: A Python script iterated through

79

80 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

each extracted frame. For every frame, it applied the adversarial
pattern using the exact same methodology developed for the pat-
tern application. This involved generating a segmentation mask
of the drone within the frame and then applying the tiled pattern,
blended according to the drone’s texture and lighting.

• Video Recomposition: Once all frames were processed, FFmpeg was
used again to recombine the sequence of modified frames into a
new MP4 video file.

The goal of this phase was to treat the adversarial video as if it were
a live feed from an IP camera on a network.

• Local Network Streaming: VLC media player was used to stream the
modified video file over the local network using the IP streaming
option available in VLC.

• YOLO Inference on the Stream: A key advantage of the Ultralytics
YOLO framework is its native support for various input sources,
including network streams. The fine-tuned YOLOv10 model was
set up to use the IP stream URL as its direct input source, allowing
it to perform inference on the video feed in real time.

• Real-Time Visualization: To observe the model’s performance live
OpenCV was used to retrieve the frames being analyzed by YOLO,
and overlay the predicted bounding boxes (or lack thereof) on the
video. The result was displayed on-screen, providing immediate
visual feedback on the attack’s effectiveness.

12.3 QUALITATIVE RESULTS AND LIMITATIONS

Quantifying the performance of a live video experiment on paper is a
challenges, as metrics like mAP are not easily calculated on a stream-
ing source and it is impossible to show the full video in a thesis format.

During the live feed, the adversarial pattern demonstrated a sig-
nificant and consistent ability to disrupt the YOLOv10 detector. The
model, which could reliably track the drone in the original, unmod-
ified video, struggled with the adversarial stream. Detections were
successfully suppressed for a good part of the stream’s duration. On
the occasions that a detection did occur, the bounding box was was
often assigned a very low confidence score by the model.

These real-time observations support the quantitative results from
the patches analysis confirming that the pattern’s effectiveness is not
limited to isolated images.

While this experiment successfully demonstrated the pattern’s effi-
cacy in a simulated live environment, the approach has several impor-
tant limitations that must be acknowledged:

• Frame-by-Frame Inconsistency: Applying the pattern to each frame
individually introduces temporal inconsistencies. Because the drone’s

LIVE VIDEO FEED EXPERIMENT 81

position shifts slightly from one frame to the next, the precise align-
ment of the segmentation mask and the pattern can create a shifting
effect on the pattern.

• Impact of Video Compression: Live video streaming, by its nature,
relies on compression algorithms to transmit data efficiently. This
process inevitably leads to a loss of quality and can introduce com-
pression artifacts.

This live video test serves as a successful proof-of-concept. It con-
firms the adversarial pattern’s robustness beyond static images, while
also showing the inherent limitations of a purely digital simulation.
The definitive test, which could resolve these limitations, lies in phys-
ical application, a key direction for future work.

82 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

Figure 12.1: Some frames from the live
video feed experiment.

PART VII

EPILOGUE

83

13
Conclusion

XXXX
—XXX

13.1 SUMMARY OF FINDINGS

This research was focused to explore a critical match of opportunity
and vulnerability: the use of deep learning for UAV detection. The in-
vestigation began with a foundational premise, that existing adversar-
ial attack methods might compromise these systems, and culminated
in the development of a methodology that demonstrates a profound
and systematic weakness in state-of-the-art object detectors.

The initial evaluation of patches from literature served as a impor-
tant baseline revealing that effectiveness is not easily transferred be-
tween different models. This shows the need for a custom approach,
leading to a white-box generation strategy. The key insight emerged
not from the initial generator, but from the analysis of its output: the
spatial distribution of an adversarial signal, when applied as a tiled
pattern, greatly amplifies its impact and transferability.

This principle became the cornerstone of the V2 generator. By op-
timizing a base patch element within the full context of a masked, re-
peating pattern, we developed a method to create adversarial textures
that are not just effective, but also simulate a practical, full-surface
camouflage. The V2-generated patterns consistently dismantled the
detection capabilities of YOLOv5, v8, and v10, achieving a 100% at-
tack success rate against any system configured with a high-confidence
threshold.

13.2 IMPLICATIONS OF THE RESEARCH

The findings of this thesis show direct implications for the develop-
ment and deployment of secure AI systems.

First, this research demonstrates the practical feasibility of creat-
ing adversarial camouflage that can systematically evade detection.

85

86 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

By moving from a theorical concern to a practical method of evasion
the work highlights a tangible vulnerability in automated surveillance
systems reliant on deep learning. This underscores the need for de-
velopers and security practitioners in both commercial and defense
sectors to consider this attack vector in their system designs and risk
assessments.

Second, the primary value of identifying a vulnerability lies in the
opportunity to address it. The patterns developed in this thesis can
provide a benchmark for developing and validating defensive mea-
sures. They offer a more challenging standard than simple noise per-
turbations and can serve as a tool for creating effective adversarial
training regimens. The goal of such training would be to produce the
next generation of models that are resilient not only to basic attacks,
but to comprehensive, surface-level camouflage.

13.3 LIMITATIONS AND FUTURE WORK

While this thesis achieved its objectives, its conclusions are framed by
certain limitations, each of which presents a starting point for future
research.

The most significant limitation is the digital nature of our experi-
ments. Though designed to simulate real-world application, the digital
realm is a clean room, free from the physical variables that complicate
reality. The most logical next step is to transition from simulation
to practice: printing these patterns onto physical materials, applying
them to operational drones, and evaluating their performance under
the unpredictable conditions of real-world flight, with its shifting light,
atmospheric distortion, and complex backgrounds.

Furthermore, the focus was confined to the YOLO family of archi-
tectures. While this provided a consistent environment for analysis,
the broader landscape of object detection includes diverse frameworks
like Faster R-CNN or transformer-based models. A notable next step
would be to investigate the universality of our V2 patterns. Do they
exploit a weakness fundamental to all convolutional neural networks,
or is their success tied to specific architectural motifs of YOLO?

13.4 CONCLUDING REMARKS

The rapid integration of artificial intelligence into critical systems rep-
resents one of the great technological shifts of our time. It promises
unprecedented efficiency and capability, but it also introduces novel
and subtle fragilities.

By demonstrating that we can systematically blind the very systems
designed to provide sight, we underscore a fundamental principle: our
trust in AI must be earned, not assumed. It must be forged through
rigorous testing that confronts not only the expected challenges, but
also the unexpected and the malicious.

Bibliography

[1] Ajaya Adhikari et al. Adversarial Patch Camouflage against Aerial
Detection. 2020. arXiv: 2008.13671 [cs.CV]. URL: https:
//arxiv.org/abs/2008.13671.

[2] George Allison. Drone sightings reported over British nuclear fa-
cilities from 2021 to 2023. 2024. URL: https://ukdefencejournal.
org.uk/drone-sightings-reported-over-british-
nuclear-facilities/.

[3] Anish Athalye et al. Synthesizing Robust Adversarial Examples.
2018. arXiv: 1707.07397 [cs.CV]. URL: https://arxiv.
org/abs/1707.07397.

[4] Marco Barreno et al. Can machine learning be secure? New York,
NY, USA, 2006. URL: https://doi.org/10.1145/1128817.
1128824.

[5] Battista Biggio et al. Evasion attacks against machine learning
at test time. Springer, 2013.

[6] Tom B. Brown et al. Adversarial Patch. 2018. arXiv: 1712.
09665 [cs.CV]. URL: https://arxiv.org/abs/1712.
09665.

[7] Ido Caspi. Drones in Defense: Reshaping Modern Warfare and its
Economics. 2024. URL: https://www.globalxetfs.com/
drones-in-defense-reshaping-modern-warfare-
and-its-economics.

[8] Nandish Chattopadhyay, Atreya Goswami, and Anupam Chat-
topadhyay. Adversarial Attacks and Dimensionality in Text Clas-
sifiers. 2024.

[9] Nilesh Dalvi et al. Adversarial classification. 2004.

[10] Binyue Deng et al. Rust-style patch: A physical and naturalistic
camouflage attacks on object detector for remote sensing images.
2023.

[11] Ranjie Duan et al. Adversarial camouflage: Hiding physical-world
attacks with natural styles. 2020.

[12] Kevin Eykholt et al. Note on Attacking Object Detectors with Ad-
versarial Stickers. 2018. arXiv: 1712.08062 [cs.CR]. URL:
https://arxiv.org/abs/1712.08062.

87

https://arxiv.org/abs/2008.13671
https://arxiv.org/abs/2008.13671
https://arxiv.org/abs/2008.13671
https://ukdefencejournal.org.uk/drone-sightings-reported-over-british-nuclear-facilities/
https://ukdefencejournal.org.uk/drone-sightings-reported-over-british-nuclear-facilities/
https://ukdefencejournal.org.uk/drone-sightings-reported-over-british-nuclear-facilities/
https://arxiv.org/abs/1707.07397
https://arxiv.org/abs/1707.07397
https://arxiv.org/abs/1707.07397
https://doi.org/10.1145/1128817.1128824
https://doi.org/10.1145/1128817.1128824
https://arxiv.org/abs/1712.09665
https://arxiv.org/abs/1712.09665
https://arxiv.org/abs/1712.09665
https://arxiv.org/abs/1712.09665
https://www.globalxetfs.com/drones-in-defense-reshaping-modern-warfare-and-its-economics
https://www.globalxetfs.com/drones-in-defense-reshaping-modern-warfare-and-its-economics
https://www.globalxetfs.com/drones-in-defense-reshaping-modern-warfare-and-its-economics
https://arxiv.org/abs/1712.08062
https://arxiv.org/abs/1712.08062

88 ADVERSARIAL PATCH AT TACKS AGAINST DEEP-LEARNING BASED UAV DETECTION

[13] Bimo99B9 on GitHub. Ultralytics Pull n.8645: Avoid in-place
operations when disabling the smart_inference_mode to compute
the gradients. URL: https://github.com/ultralytics/
ultralytics/pull/8645/commits.

[14] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and Harnessing Adversarial Examples. 2015. arXiv:
1412.6572 [stat.ML]. URL: https://arxiv.org/abs/
1412.6572.

[15] J. Graham-Cumming. How to beat an adaptive spam filter. 2004.

[16] Zhanhao Hu et al. Adversarial Texture for Fooling Person Detec-
tors in the Physical World.

[17] Caixin Kang et al. Diffender: Diffusion-based adversarial defense
against patch attacks. Springer, 2024.

[18] Antti Kariluoto et al. Quality of Data in Machine Learning. 2021.
arXiv: 2112.09400 [cs.LG]. URL: https://arxiv.org/
abs/2112.09400.

[19] Alexander Kirillov et al. Segment Anything. 2023.

[20] Zixiao Kong et al. A Survey on Adversarial Attack in the Age of
Artificial Intelligence. 2021. DOI: https://doi.org/10.
1155/2021/4907754. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1155/2021/4907754. URL:
https://onlinelibrary.wiley.com/doi/abs/10.
1155/2021/4907754.

[21] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversar-
ial examples in the physical world. 2017. arXiv: 1607.02533
[cs.CV]. URL: https://arxiv.org/abs/1607.02533.

[22] Chang-Sheng Lin et al. Real-world adversarial examples involv-
ing makeup application. 2021.

[23] Xin Liu et al. DPatch: An Adversarial Patch Attack on Object De-
tectors. 2019. arXiv: 1806.02299 [cs.CV]. URL: https:
//arxiv.org/abs/1806.02299.

[24] Mingming Lu et al. Scale-adaptive adversarial patch attack for
remote sensing image aircraft detection. 2021.

[25] Zihao Lu, Hao Sun, and Yanjie Xu. Adversarial robustness en-
hancement of UAV-oriented automatic image recognition based
on deep ensemble models. 2023.

[26] Aleksander Madry et al. Towards Deep Learning Models Resistant
to Adversarial Attacks. 2019. arXiv: 1706.06083 [stat.ML].
URL: https://arxiv.org/abs/1706.06083.

[27] Brando Miranda et al. Beyond Scale: The Diversity Coefficient as
a Data Quality Metric for Variability in Natural Language Data.
2024. arXiv: 2306.13840 [cs.CL]. URL: https://arxiv.
org/abs/2306.13840.

[28] Sedir Mohammed et al. The Effects of Data Quality on Machine
Learning Performance. 2024. arXiv: 2207.14529 [cs.DB].
URL: https://arxiv.org/abs/2207.14529.

https://github.com/ultralytics/ultralytics/pull/8645/commits
https://github.com/ultralytics/ultralytics/pull/8645/commits
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/2112.09400
https://arxiv.org/abs/2112.09400
https://arxiv.org/abs/2112.09400
https://doi.org/https://doi.org/10.1155/2021/4907754
https://doi.org/https://doi.org/10.1155/2021/4907754
https://onlinelibrary.wiley.com/doi/pdf/10.1155/2021/4907754
https://onlinelibrary.wiley.com/doi/pdf/10.1155/2021/4907754
https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/4907754
https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/4907754
https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1806.02299
https://arxiv.org/abs/1806.02299
https://arxiv.org/abs/1806.02299
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/2306.13840
https://arxiv.org/abs/2306.13840
https://arxiv.org/abs/2306.13840
https://arxiv.org/abs/2207.14529
https://arxiv.org/abs/2207.14529

BIBLIOGRAPHY 89

[29] Joseph Redmon et al. You Only Look Once: Unified, Real-Time
Object Detection. 2016. arXiv: 1506.02640 [cs.CV]. URL:
https://arxiv.org/abs/1506.02640.

[30] Ramprasaath R Selvaraju et al. Grad-CAM: visual explanations
from deep networks via gradient-based localization. 2020.

[31] Samira Shackle. The mystery of the Gatwick drone. 2018. URL:
https://www.theguardian.com/uk-news/2020/dec/
01/the-mystery-of-the-gatwick-drone.

[32] Thibault Spirlet. Ukraine says it’s taken the top spot in the race to
make combat drones. 2024. URL: https://www.businessinsider.
com/ukraine-says-world-largest-producer-tactical-
strategic-drones-war-russia-2025-2?utm_source=
copy- link&utm_medium=referral&utm_content=
topbar.

[33] Naufal Suryanto et al. Dta: Physical camouflage attacks using
differentiable transformation network. 2022.

[34] Christian Szegedy et al. Going Deeper with Convolutions. 2014.
arXiv: 1409.4842 [cs.CV]. URL: https://arxiv.org/
abs/1409.4842.

[35] Christian Szegedy et al. Intriguing properties of neural networks.
2014. arXiv: 1312.6199 [cs.CV]. URL: https://arxiv.
org/abs/1312.6199.

[36] Simen Thys, Wiebe Van Ranst, and Toon Goedemé. Fooling
automated surveillance cameras: adversarial patches to attack
person detection. 2019. arXiv: 1904.08653 [cs.CV]. URL:
https://arxiv.org/abs/1904.08653.

[37] Ultralytics. YOLOv5: A state-of-the-art real-time object detection
system. https://docs.ultralytics.com. 2021.

[38] Donghua Wang et al. FCA: Learning a 3D Full-coverage Vehi-
cle Camouflage for Multi-view Physical Adversarial Attack. 2021.
arXiv: 2109.07193 [cs.CV]. URL: https://arxiv.org/
abs/2109.07193.

[39] Jiakai Wang et al. Dual attention suppression attack: Generate
adversarial camouflage in physical world. 2021.

[40] Chris Wise and Jo Plested. Developing Imperceptible Adversarial
Patches to Camouflage Military Assets From Computer Vision En-
abled Technologies. 2022. arXiv: 2202.08892 [cs.CV]. URL:
https://arxiv.org/abs/2202.08892.

[41] Mariusz Wisniewski et al. Drone Detection using Deep Neural
Networks Trained on Pure Synthetic Data. 2024. arXiv: 2411.
09077 [cs.CV]. URL: https://arxiv.org/abs/2411.
09077.

[42] Zuxuan Wu et al. Making an invisibility cloak: Real world adver-
sarial attacks on object detectors. Springer, 2020.

[43] Yichuang Zhang et al. Adversarial patch attack on multi-scale
object detection for UAV remote sensing images. 2022.

https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://www.theguardian.com/uk-news/2020/dec/01/the-mystery-of-the-gatwick-drone
https://www.theguardian.com/uk-news/2020/dec/01/the-mystery-of-the-gatwick-drone
https://www.businessinsider.com/ukraine-says-world-largest-producer-tactical-strategic-drones-war-russia-2025-2?utm_source=copy-link&utm_medium=referral&utm_content=topbar
https://www.businessinsider.com/ukraine-says-world-largest-producer-tactical-strategic-drones-war-russia-2025-2?utm_source=copy-link&utm_medium=referral&utm_content=topbar
https://www.businessinsider.com/ukraine-says-world-largest-producer-tactical-strategic-drones-war-russia-2025-2?utm_source=copy-link&utm_medium=referral&utm_content=topbar
https://www.businessinsider.com/ukraine-says-world-largest-producer-tactical-strategic-drones-war-russia-2025-2?utm_source=copy-link&utm_medium=referral&utm_content=topbar
https://www.businessinsider.com/ukraine-says-world-largest-producer-tactical-strategic-drones-war-russia-2025-2?utm_source=copy-link&utm_medium=referral&utm_content=topbar
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1904.08653
https://arxiv.org/abs/1904.08653
https://docs.ultralytics.com
https://arxiv.org/abs/2109.07193
https://arxiv.org/abs/2109.07193
https://arxiv.org/abs/2109.07193
https://arxiv.org/abs/2202.08892
https://arxiv.org/abs/2202.08892
https://arxiv.org/abs/2411.09077
https://arxiv.org/abs/2411.09077
https://arxiv.org/abs/2411.09077
https://arxiv.org/abs/2411.09077

Acknowledgements

I wish to express my sincere gratitude to everyone who has supported me throughout my master’s studies
and the completion of this thesis.

My deepest appreciation goes to my family. To my parents, Patrizia and Gianfranco, and my sister Sole,
thank you for believing in me, for your support, patience, and encouragement over these years. I could not
have undertaken this journey without you.

I am incredibly grateful to MBDA for the opportunity to conduct my thesis work within their organization.
I would like to specifically thank Luca Morino and Ivonne Valente for their generous assistance and profes-
sional guidance throughout my time there. Your insights, critical feedback, and support were fundamental
to the development of this work.

I extend my profound thanks to my thesis supervisor, Prof. Enrico Magli for giving me the opportunity to
work on this project and for the help in navigating this final part of my academic journey.

	List of Figures
	List of Tables
	I Prologue
	Introduction
	Motivation
	Public Safaty Importance
	Military Applications
	Contributions

	II Adversarial Attacks
	Adversarial Attacks
	Introduction
	History
	Types of Adversarial Attacks
	Adversarial Patch Attacks

	Adversarial Patches - Literature Review
	Introduction
	Background: Adversarial Examples and Early Patch Attacks
	Adversarial Patch Attacks for Aerial and Vehicle Camouflage
	Evaluation Metrics and Experimental Studies
	Defense Strategies and Future Directions
	Conclusion

	III Data and Detection Framework
	The Dataset
	The Importance of Data in Machine Learning
	Synthetic Data
	Creating the Dataset

	YOLO - You Only Look Once
	History and Importance
	Base Architecture
	YOLO Versions Utilized
	Finetuning and Baselines

	IV Evaluating Patches From Literature
	Patch Selection and Evaluation
	Patch Selection
	Evaluating Patches Impact

	Patches As Pattern
	Generating and applying the pattern
	Performances
	3eyes Patch

	V White-Box Patch Generation
	White-Box Patch Generation
	Introduction
	Objectives and the loss function
	The Loss equation
	Extracting the gradient

	Results
	Introduction
	YOLOv5 Patch
	YOLOv8 Patch
	YOLOv10 Patch
	Mosaic Pattern
	Other Palettes
	White and random noise not-optimized patches

	Improved Patch Generator
	Introduction: Beyond Single-Patch
	Integrated Pattern Optimization
	Key Methodological Enhancements in Generator V2
	Implications and Expected Benefits of the V2 Approach
	Improved Generator Results

	VI Final Results
	Attack Success Rate Analysis
	Introduction: Defining and Understanding Attack Success Rate
	Attack Success Rate Results for V2 Patterns

	Live Video Feed Experiment
	Motivation
	Experiment Setup
	Qualitative Results and limitations

	VII Epilogue
	Conclusion
	Summary of Findings
	Implications of the Research
	Limitations and Future Work
	Concluding Remarks

