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Chapter 1

Introduzione

The main contributions of this thesis are several. First of all, it shows the design
and implementation of a modular simulation and control system based on ROS 2,
with the integration of MoveIt for motion planning and Open 3D Engine (O3DE)
for realistic and high-quality 3D simulation. This architecture allows flexible
development and supports realistic visualization of robotic behaviour in virtual
scenarios.

Second, the framework uses generative AI models for automatic generation of
3D elements in the scenes, increasing the diversity and complexity of the simulated
environments. This method tries to better reflect the unpredictability and variation
typical of real-world situations, improving the robustness of the developed robotic
strategies.

Third, the system is validated by executing the same motion plans also on a
real UR10e robotic manipulator with a Robotiq gripper. This comparison with
the physical results gives a general evaluation of the accuracy and realism of the
simulation.

Finally, everything is included inside a containerized environment to guarantee
the reproducibility on different development platforms. This also helps easier
deployment, consistent testing, and better collaboration in research and development
teams.

1.1 Goal
The main goal of this thesis is to create a simulation-based framework for testing
robotic manipulation tasks in a virtual environment that is close to the real
execution. By using ROS 2, MoveIt, and Open 3D Engine (O3DE), the framework
wants to support precise motion planning, real-time visualization, and interaction
with the environment. Also, the integration of AI-generated 3D objects helps to
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improve the realism and variability of the scenes.
The final target is to check the consistency between simulation and real-world by

executing the same planned trajectories on a real UR10e robotic arm with Robotiq
gripper. A summary diagram of the general structure is shown in Figure 1.1

This kind of approach wants to reduce development time, lower the cost of
prototyping, and prepare the base for future extensions like coordination of multiple
robots and autonomous task planning.

Figure 1.1: System architecture showing the interaction between simulation,
planning, visualization, hardware and AI-based environment generation. All com-
ponents inside the Docker Compose boundary are containerized for reproducibility.

1.2 Thesis structure
The thesis is structured as follows.

• Chapter 2 provides an overview of the theoretical and technological background,
focusing on ROS 2, MoveIt, O3DE, and related tools.

• Chapter 3 presents the architecture of the implemented system, including its
main components and their interactions.

• Chapter 4 describes the simulation environment and the generation of 3D
virtual scenes.
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• Chapter 5 discusses the task execution and trajectory generation strategies
adopted.

• Chapter 6 illustrates the integration of the system with real robotic hardware.

• Chapter 7 reports on the results of the experiments conducted in both simulated
and physical contexts.

• Finally, Chapter 8 concludes the work and outlines possible directions for
future development.
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Chapter 2

State of the art

The development of intelligent robotic systems depends on many technologies,
like motion planning libraries, simulation tools, communication middleware, and
AI methods for scene generation. This chapter gives an overview of the main
frameworks and tools that are the technological base of the system developed in
this thesis. The discussion focuses on Robot Operating System 2 (ROS 2), the
MoveIt planning framework, the RViz tool for visualization, Docker strategies for
containerization, the Open 3D Engine (O3DE) for 3D simulation, and also recent
progress in AI-based environment modeling. All these technologies together support
the modular, realistic, and testable architecture proposed in this work.

2.1 ROS 2

The Robot Operating System 2 (ROS 2) is an open-source middleware framework
for robotics, made to support the development of scalable, distributed, and real-
time robotic applications. It is the evolution of the first ROS 1 version, and it
solves many architectural and functional problems that were limiting its use in
production-level, safety-critical, and embedded systems.

Differently from ROS 1, which was mainly created for academic and research
applications, ROS 2 introduces a modular and platform-independent architecture
that can run on many types of hardware—from small embedded systems with
limited resources to big and complex robotic platforms [1]. The main reasons
behind the development of ROS 2 are the need for real-time capabilities, better
multi-robot communication, improved security, and stronger support for industrial
environments. Table 2.1 gives a summary of the main architectural improvements
of ROS 2 compared to ROS 1, especially in communication, real-time features, and
security [2].
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Table 2.1: Comparison between ROS 1 and ROS 2

Feature ROS 1 ROS 2
Communication Custom protocol based on

TCPROS/UDPROS
DDS (Data Distribution Ser-
vice), standard middleware

Real-Time Support Limited or external Native support through real-
time DDS and executors

Multi-Robot Support Weak; complex workarounds
needed

Robust via namespaces,
remapping, and DDS discov-
ery

Security None built-in Security plugins via DDS
(authentication, encryption,
access control)

Operating Systems Primarily Linux (Ubuntu) Linux, Windows, macOS,
RTOS (real-time systems)

Launch System XML-based (roslaunch) Python/YAML-based
(launch system 2.0)

Modularity Monolithic nodes; poor com-
posability

Component-based architec-
ture; lifecycle nodes sup-
ported

Active Development No longer actively developed Actively maintained and ex-
tended (latest: ROS 2
Jazzy)

2.1.1 Architectural Overview
At its base, ROS 2 uses a distributed and peer-to-peer architecture where the
software parts are divided into nodes. Each node includes a specific function, like
perception, planning, or actuation, and it communicates with the others through a
clear interface using topics, services, and actions [2]:

• Topics enable asynchronous, many-to-many communication using a publish-
subscribe model.

• Services provide synchronous, request-reply communication for client-server
interactions.

• Actions allow for long-duration tasks that require feedback and intermediate
status updates.

The ROS 2 architecture uses a decentralized communication model with nodes,
topics, and services, as you can see in Figure 2.1. ROS 2 also adds the idea of
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executors, which take care of running callbacks, timers, and other components
that work with events. With this model, the developer can choose between
single-threaded or multi-threaded execution depending on the real-time needs and
hardware limits of the system.

Figure 2.1: ROS 2 node-level communication model, illustrating publishers,
subscribers, and client-server interactions using topics and services.

2.1.2 DDS-Based Communication Layer
One of the most significant changes introduced in ROS 2 is the transition from the
custom communication infrastructure used in ROS 1 to a standardized middleware
based on the Data Distribution Service (DDS) [3]. DDS offers a robust, real-time,
and decentralized communication framework that brings several key advantages.

First, it enables fine-grained control over Quality of Service (QoS) parameters,
including aspects such as reliability, durability, and latency constraints, allowing
systems to be tuned for specific performance requirements. Additionally, DDS
supports decoupled, peer-to-peer communication, removing the dependency on a
centralized master node and thereby improving overall system flexibility.

This architecture also enhances scalability and fault tolerance, making it particu-
larly well-suited for complex, distributed, or multi-agent robotic systems. Moreover,
ROS 2 provides compatibility with a variety of DDS implementations, such as
Fast DDS, Cyclone DDS, and RTI Connext, giving developers the flexibility to
choose the middleware that best fits their needs in terms of performance, licensing
conditions, and deployment scenarios.
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2.1.3 The ROS 2 Jazzy Distribution
This work is based on ROS 2 Jazzy distribution, officially released in May 2024. De-
signed to work with Ubuntu 24.04 LTS, Jazzy brings many important improvements
that increase usability and performance. Some of the main updates include native
support for C++20 and Python 3.10 or newer, giving developers the possibility to
use modern programming features and benefit from better runtime efficiency. The
distribution also comes with improved debugging and profiling tools, which help
to analyse and optimize the system in a more effective way [4]. Security has also
been improved by adding secure communication between nodes, making the system
more protected in distributed robotic applications. In addition, Jazzy introduces a
more modular launch system that supports both YAML and Python configuration
files, allowing more flexibility when setting up the system. The integration with
simulation tools and hardware drivers has also been enhanced, making the inter-
action with both virtual and physical elements smoother. To complete all these
improvements, the developer experience has been made better thanks to a more
advanced command-line interface (ros2), a more stable Colcon-based build process,
and better support for real-time features on Linux kernels that allow it.

2.1.4 ROS 2 for Multi-Robot Systems and Simulation
ROS 2 is now widely used in the area of multi-robot research and development,
mainly because of its strong support for distributed computing and efficient mes-
sage exchange between multiple agents [2, 1]. It provides powerful features like
namespaces and remapping, which make possible to run the same node instances
on different robots at the same time without any conflict. Its compatibility with
various simulation platforms (especially Gazebo and Ignition) has been recently
extended with the integration of Open 3D Engine (O3DE), allowing simulations
that are photorealistic and physically more accurate. Moreover, ROS 2 supports
real-time control of actuators and easy integration of sensors, using both standard
and custom hardware drivers. In this thesis, ROS 2 is used as the main infrastruc-
ture to manage task orchestration, enable communication between agents, execute
motion plans, and connect the virtual simulation environment with the real robotic
system.

2.2 MoveIt
MoveIt is one of the most widely used open-source motion planning frameworks for
robotic manipulation. Initially developed as part of the ROS ecosystem, MoveIt
provides a comprehensive suite of tools and libraries that support key aspects
of robotic motion, including kinematic modeling, collision avoidance, trajectory

7



State of the art

planning, and sensor integration. Its modular architecture, extensibility, and
active community support have made it a de facto standard in both academic and
industrial robotics applications [5].

2.2.1 Core Architecture and Capabilities
MoveIt integrates several key subsystems to support advanced robotic motion
planning:

• Kinematics: MoveIt supports both forward and inverse kinematics using
plugin-based solvers. While the default kinematic plugin is based on the
Kinematics and Dynamics Library (KDL), more efficient solvers such as
IKFast and Trac-IK can be used to improve the computational performance
[6].

• Motion Planning: The planning module is built on top of the Open Motion
Planning Library (OMPL), which offers a set of sampling-based motion plan-
ning algorithms like Rapidly-exploring Random Trees (RRT), Probabilistic
Roadmaps (PRM), and their improved variants [7].

• Collision Detection: MoveIt makes use of FCL (Flexible Collision Library)
and OctoMap for real-time collision checking and for the volumetric represen-
tation of the robot’s environment. These tools allow the system to update the
planning scene dynamically and to avoid both static and moving obstacles [8].

• Trajectory Execution: Once a valid trajectory is found, MoveIt communi-
cates with the ROS control stack or with custom hardware drivers to send
joint-level commands to the actuators. The trajectories are time-parameterized
and optimized to satisfy constraints on velocity, acceleration, and jerk.

• Planning Scene: At the center of MoveIt’s planning strategy is the Planning
Scene, which keeps a current model of the robot and its surrounding environ-
ment. This data structure contains all the necessary information for real-time,
constraint-aware motion planning.

• Sensor Integration: MoveIt supports the integration of external sensors
(e.g., RGB-D cameras, LiDAR), which can be used to update the planning
scene with real-time data and support reactive planning.

Figure 2.2 provides a high-level overview of MoveIt 2’s planning pipeline, illus-
trating how user interfaces, planning plugins, and control modules interact through
the move_group node.
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Figure 2.2: Functional architecture of the MoveIt 2 framework. The system
consists of user interface plugins (RViz, Commander), a planning pipeline integrating
various planners (OMPL, CHOMP, SBPL), and modules for robot execution
and control. Image sourced from the official MoveIt documentation: https:
//moveit.ai/documentation/concepts/

2.2.2 Setup and Configuration
MoveIt offers a semi-automatic setup process using its Setup Assistant, a tool that
helps developers to generate the needed configuration packages adapted to a specific
robotic platform. In this setup phase, the user defines important components like
the robot description—usually written in URDF or Xacro—and also the semantic
information through SRDF files. The configuration includes the definition of
kinematic chains, planning groups, and also the controller interfaces and execution
pipelines. In addition, the Setup Assistant allows to configure end-effectors and
grasping strategies, making possible more advanced manipulation behaviors. This

9
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modular design makes it easier to adapt MoveIt to different robotic systems, and it
supports both single-arm and multi-arm setups, increasing its flexibility for many
use cases.

MoveIt Setup Assistant: System Configuration
To configure MoveIt 2 correctly for the UR10e arm and the Robotiq 2F-140 gripper,
the MoveIt Setup Assistant was used. This graphical tool makes it easier to generate
the configuration package needed for motion planning.

The setup followed a structured sequence of steps, explained below:

• Importing the Robot Model (URDF/XACRO)
The file ur10e_adapter_robotiq_2f_140_.urdf was used to load the com-
plete robot description, including the UR10e manipulator, a mechanical
adapter, and the Robotiq 2F-140 gripper. The adapter was modeled as
an intermediate link connected to the wrist_3_link, representing the real
physical interface between the robot arm and the gripper.

• Automatic SRDF Generation
The SRDF (Semantic Robot Description Format) was automatically generated
by the Setup Assistant and included important semantic elements like planning
groups, end-effectors, and some predefined poses.

• Definition of Planning Groups
Two main planning groups were created:

– arm: including the six joints of the UR10e
– gripper: defined using the joints of the Robotiq 2F-140

• End-Effector Configuration with Adapter
The end-effector was not attached directly to the wrist_3_link, but to the
final link of the adapter. This solution reflects the real hardware configuration
and improves the accuracy of collision checking and motion planning. Even if
the adapter has only small influence on kinematics, it was included to keep
the geometry coherent between simulation and real robot, especially for tasks
where reach or object size is important.

• Joint Limits Configuration
Joint limits for position and velocity were directly imported from the URDF
file, without manual changes.

• Virtual Joint Creation
A fixed virtual joint was defined between the world frame and the base_link
of the robot.

10
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• Predefined Poses Setup
Several predefined poses were created using the Setup Assistant GUI, includ-
ing: home, pregrasp, grasp, and drop. These poses were then used during
simulations and physical executions.

• Collision Matrix Generation
The Setup Assistant also generated the default collision matrix, disabling
collision checking between adjacent or non-relevant links. This step helps
reduce unnecessary computations during motion planning while keeping the
system safe.

• Controller Configuration
A joint_trajectory_controller was configured for the arm group and made
compatible with ros2_control. The gripper was handled separately using a
dedicated action server.

• ROS 2 Controller YAML Files
The controller parameters were saved into YAML files inside the config folder.
These included:

– ros2_controllers.yaml, specifying the joint trajectory controller for the
arm and the gripper

– ros2_control.xacro, which loads the hardware interface and the con-
troller manager

• MoveIt Controller Configuration
The moveit_controller_manager was set up using the Setup Assistant. The
YAML file controllers.yaml maps each planning group to the right controller.
This allows MoveIt to communicate correctly with the ros2_control system.

• Planner Settings
RRTConnect was selected as the default planner. All the other MoveIt settings
were left as default.

• Configuration Package Generation
The generated ur10e_moveit_config package includes:

– Updated URDF and SRDF files
– YAML files for planning groups, controllers, and planner settings
– Launch files for move_group and RViz

The whole configuration was done using the Setup Assistant graphical wizard.
The adapter was considered from the beginning to ensure both geometrical accuracy
and correct functioning of the system, both in simulation and in the real robot.
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2.2.3 Transition to ROS 2: MoveIt 2
MoveIt has been progressively moved to ROS 2 through the MoveIt 2 project,
which focuses especially on improving performance, modularity, and support for
real-time systems. MoveIt 2 works fully with the ROS 2 Jazzy distribution and
uses DDS-based communication to handle planning requests, get feedback from
controllers, and observe the execution process [9]. Its architecture has been updated
to allow asynchronous planning and execution, which makes motion workflows
more reactive and less dependent from each other. MoveIt 2 also includes tools
for real-time monitoring of trajectories, better multi-threading support, and more
optimized callback management. The system is made to integrate well with ROS
2 executors and lifecycle nodes, following the component-based design of ROS 2
and helping to create robotic applications that are easier to maintain and more
predictable in their behavior.

2.2.4 Application in Simulation and Physical Systems
MoveIt is widely used in both simulation and real robotic systems. In simulation, it
is usually combined with RViz for visualization and debugging, and with simulators
like Gazebo, Ignition, or, in this work, Open 3D Engine (O3DE). In real setups,
MoveIt communicates with the low-level control through standard hardware ab-
straction layers. The framework supports interactive planning with GUI tools, but
also allows programmatic control through the MoveGroupInterface (C++/Python
APIs), making it good for both research projects and production-level applications.

2.2.5 Role in This Work
In this thesis, MoveIt 2 is used as the main engine for trajectory planning and
execution. It takes care of computing motion paths that avoid collisions for robotic
arms, both in simulation and in the real world, using the current planning scene
and task conditions. The flexibility of the framework—its capacity to work in
different environments, use sensor data, and run the same plans in both simulation
(with O3DE) and real robots—is a key part of the global system architecture.

2.3 RViz
RViz (ROS Visualization) is a 3D visualization tool that plays a critical role in the
development, debugging, and demonstration of robotic systems within the ROS
ecosystem. It provides a real-time graphical interface for visualizing a wide range of
sensor data, robot states, motion plans, and environmental models, thereby enabling
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intuitive understanding and rapid development of complex robotic applications
[10].

Originally developed for ROS 1, RViz has undergone significant updates to
support the ROS 2 middleware stack, maintaining its position as a core development
tool for roboticists and engineers.

2.3.1 Capabilities and Core Features

RViz provides a modular plugin-based architecture that allows users to customize
the visualization according to the specific data streams and components in use.
Among its most important features we can find:

• Robot Model Visualization: RViz shows 3D models of robots based on
URDF/Xacro descriptions, letting users monitor the current configuration of
joints, links, and end-effectors in real time.

• Sensor Data Rendering: Sensor outputs like point clouds (e.g., from LiDAR
or RGB-D cameras), laser scans, and camera images can be visualized directly
in RViz. These tools are very helpful for debugging perception systems and
for mapping the environment.

• TF Frames Visualization: RViz works closely with the TF (Transform)
library, making it possible to inspect in real time the transformations and
relationships between coordinate frames of the robot and the world.

• Interactive Markers and Planning Tools: RViz supports interactive
markers to give user input during manipulation tasks, for example to define
target poses or path constraints for robotic arms. This is especially useful
when working together with motion planning frameworks like MoveIt [11].

• Manual Joint Control and Reverse Planning: RViz allows users to
manually modify individual joint values, which is useful for debugging or testing
specific configurations. Additionally, when used with MoveIt, it supports
reverse planning from a desired end-effector pose, letting users generate joint
trajectories interactively by moving the goal markers in the 3D view.

• Path and Trajectory Visualization: Planned trajectories, feedback from
controllers, and goal targets can be shown as 3D paths and markers, allowing
users to verify and adjust motion plans and control strategies before executing
them on the real robot.
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2.3.2 Integration with ROS 2

RViz has been successfully ported to ROS 2 under the name RViz2, preserving
backward compatibility while incorporating a range of enhancements made possible
by the architectural advancements of ROS 2. Among these improvements is
native support for DDS-based communication, which facilitates more robust and
scalable data exchange across distributed nodes. RViz2 is fully compatible with
ROS 2 interfaces, including topics, services, and actions, and it extends support
to the new message types introduced in ROS 2. The visualization framework
also offers improved capabilities for plugin development, enabling the creation of
custom visualization tools tailored to specific robotic platforms and applications. In
alignment with ROS 2’s multi-threaded execution model, RViz2 delivers better real-
time performance and more efficient event handling [12]. Additionally, it integrates
with ROS 2 lifecycle nodes and offers enhanced utilities for logging, diagnostics,
and debugging—features that are critical for deploying and maintaining complex,
multi-node robotic systems in both simulated and real-world environments.

2.3.3 Role in Robotics Development

RViz is not only a development tool but also an important interface for operators,
researchers, and other people involved in robotics, to interact with and better
understand the internal state of robotic systems. In simulation processes, it offers a
stable front-end to visualize dynamic environments, planning results, and diagnostic
data. In real-world applications, RViz can be used for system monitoring, safety
control, and even for manual override of autonomous behaviors. Its high level of
customization makes it adaptable to many types of robots, like industrial arms,
mobile manipulators, or aerial drones.

2.3.4 Relevance to this Work

In this thesis, RViz2 had a central role in both the simulation and the testing phase
on real hardware. It was especially useful for showing the robot configurations and
motion trajectories created by MoveIt, and also for observing the planning scene,
including obstacles and target poses for the robot’s end-effector. RViz2 also allowed
direct interaction with the simulated environment, which was important to verify
the system behavior before testing on the physical robot. Thanks to its real-time
visualization, it was possible to get immediate feedback on task execution, motion
planning, and dynamic scene generation. For this reason, RViz2 has been a key
tool during the full development and debugging cycle.
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2.4 Containerization in Robotics: Docker
Modern robotic systems are becoming more and more complex, with many software
dependencies, hardware interfaces, and middleware components. Because of this,
reproducibility and portability are now big challenges in robotics development.
In this situation, Docker is becoming a powerful solution to package robotic
applications together with their execution environments into isolated and lightweight
containers. Even if Docker was originally made for cloud and web-scale applications,
today it is more and more used in robotics to make deployment, testing, and
collaboration easier [13].

2.4.1 Fundamentals of Docker
Docker is a platform that helps to automate the deployment of applications inside
containers. A container is a self-contained environment that includes everything
the application needs: code, libraries, and system tools. In contrast to virtual
machines, containers share the same OS kernel as the host system, which gives
faster startup times, less overhead, and better performance [14].

Key Docker concepts relevant to robotics include:

• Docker Images: Immutable blueprints for containers, defining the software
stack and configuration.

• Docker Containers: Running instances of images, isolated from the host
system.

• Dockerfiles: Scripts used to automate the creation of Docker images by
specifying system packages, dependencies, and configuration steps.

• Volumes and Networking: Mechanisms for sharing data between containers
or with the host system, and for enabling inter-container communication.

2.4.2 Benefits of Docker for Robotic Applications
The use of Docker in robotics brings several clear advantages:

• Dependency Management: Robotic systems often depend on many software
layers (e.g., ROS, drivers, libraries). Docker containers help to keep versions
and configurations consistent across development, testing, and production
stages.

• Reproducibility: Since Docker encapsulates the full execution environment,
it ensures that tests and behaviors can be reproduced reliably on different
machines or by different users [15].
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• Modularity: Robotic systems are usually modular (for example, perception,
planning, control), and containers match well with this structure. Each module
can be developed, tested, and deployed independently.

• Platform Independence: Containers can run on any system that supports
Docker, including local computers, cloud platforms, and embedded devices, as
long as the hardware requirements (like GPU access) are satisfied.

• Isolation and Stability: Containers isolate processes from each other,
reducing the risk of conflicts between dependencies or problems caused by
updates and parallel development.

2.4.3 GPU and Hardware Integration
Robotics applications that use simulation, machine learning or need high perfor-
mance computing often need GPU acceleration. Docker can work with NVIDIA
GPUs using the NVIDIA Container Toolkit, which allows the container to use
hardware acceleration like CUDA and cuDNN [16].

Also, Docker makes possible to mount device interfaces (for example USB, serial
ports, CAN bus) from the host to the container, so the container can talk directly
with sensors and actuators in the real world. This feature makes Docker not only
good for simulations but even for real robots used in practical environments.

2.4.4 Use in ROS and Robotics Frameworks
The ROS community officially supports Docker and provides prebuilt images and
tools for container orchestration that help in development process. For instance,
ROS Docker images can be found on Docker Hub and give ready-to-use environments
for all ROS versions, also ROS 2, making easier to setup and deploy robotic systems.
Many times, Docker Compose is used to manage systems with multiple containers,
like when simulation, perception and control are separated in different containers.
This allows to create more modular and scalable robotic architectures. Also, Docker
is now often part of CI/CD pipelines, where it helps in automatic building and
testing of robotics software. Modern robotics platforms such as Autoware and
Apollo use container-based architectures to allow scalable deployment and modular
development. This shows how containerization is becoming more and more popular
for increasing flexibility and efficiency in advanced robotic systems.

2.4.5 Relevance to this Work
In this thesis, Docker was used to containerize the full robotic development environ-
ment, including ROS 2 Jazzy, O3DE, MoveIt 2, some custom control nodes, and
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different support libraries. Using containerization in this way gave many important
benefits: it made easier the installation on different machines, keeping the setup
the same on all systems; it improved system stability during many simulation and
real robot tests; and it allowed to use GPU-accelerated simulation and NVIDIA
drivers without breaking the host system’s stability. Moreover, Docker containers
were very useful to run repeatable simulations, so the same environment could be
always reproduced exactly. This also helped a lot in moving from virtual robots to
real ones, making development and testing process more efficient and smooth.

2.5 Simulation Framework: Open 3D Engine
(O3DE)

2.5.1 Overview of O3DE in Robotics
The Open 3D Engine (O3DE) is a high-performance and open-source real-time 3D
platform, which comes originally from Amazon Lumberyard and now is managed
by the Linux Foundation. It was made not only for the game industry but also for
applications based on simulation. O3DE has a modern and modular architecture
that is able to support complex systems, like robotics and autonomous agents. Its
strong rendering features and the fact that it is very flexible make it a good option
for simulating environments that are detailed and physically realistic, where both
the visual quality and the computational performance are important [17].

O3DE supports advanced rendering technologies through APIs such as Vulkan
and DirectX 12 and includes a native physics engine based on NVIDIA PhysX [18].
This foundation allows for the simulation of dynamic, articulated systems under
realistic physical constraints, which is essential in applications involving robotic
manipulators and mobile platforms. Unlike traditional robotics simulators that
emphasize kinematic accuracy at the expense of graphical fidelity, O3DE offers an
integrated environment where physical realism and photorealistic rendering coexist
[19].

2.5.2 Physics and Control Integration
The physics subsystem in O3DE offers real-time simulation of rigid bodies, collision
detection, and support for articulated joints—features that are very important to
correctly simulate robotic arms, grippers, and interactions with the environment.
To simulate manipulators, it is necessary to define in detail the kinematic chains,
the constraints, and the movement limits. Putting all these elements together
makes possible to test complex motion plans, like the ones created by planners
such as MoveIt, inside a realistic virtual space.
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To connect O3DE with the robotic middleware, a communication interface
was created for exchanging control and sensor data with ROS 2. This included
publishing joint commands to the simulated robot and receiving state feedback
inside ROS 2 nodes, to keep the planning part and the simulation in sync. Thanks
to this integration, it was possible to verify correctly the execution of trajectories,
the interaction with the environment, and the collision detection, before applying
the same behavior to the real robot.

2.5.3 Scenario Realism and Visual Fidelity

More than just physical precision, O3DE also plays an important role in increasing
visual realism, which becomes more and more relevant in robotics research, especially
in fields like perception, scene understanding, and machine learning. The engine
supports dynamic lights, shadows, material rendering and also post-processing
effects that help to reproduce real-world conditions more closely. This kind of
visual quality is very useful when developing vision-based control systems or testing
AI models under different environmental situations [20, 21, 22].

Figure 2.3 presents a side-by-side comparison between O3DE and Gazebo
renderings. The difference in realism explains the choice of O3DE for simulation
tasks where high-fidelity perception is necessary.

In this thesis, O3DE has been used to build and test 3D scenes that look similar
to the real environments where the physical robot would work later. These virtual
scenarios had obstacles, different light conditions, and space arrangements that
tested the robot’s planning and control algorithms. The possibility to simulate
both structured and unstructured environments helped to improve the robustness
of the global system design.
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(a) O3DE simulation (b) Gazebo simulation

Figure 2.3: Comparison between simulated environments rendered in O3DE
and Gazebo for the same robotic manipulation task. The O3DE environment (a)
provides higher visual fidelity, including dynamic lighting and detailed textures,
while the Gazebo setup (b) is more limited in rendering quality. This visual
difference can impact perception-driven tasks and the realism of AI-generated
scenarios.

2.5.4 Advantages Over Traditional Simulators
Even if simulators like Gazebo and Ignition are often used with ROS, they can
have some limitations when advanced visual effects or detailed rendering control
are needed. On the other hand, O3DE solves these problems thanks to its native
support for ROS and its powerful rendering engine, which makes possible to create
real-time scenes with cinematic-level quality. This is very important in workflows
where we need generative environments, high-fidelity perception, or reinforcement
learning [20, 21, 22].

Also, O3DE’s modular design allows to build custom tools and extensions that
go further than what traditional, fixed simulators can do [17].

The flexibility of the engine, together with its support for GPU acceleration,
lets it scale well for big environments and fast update rates. This performance is
especially important when testing AI-based systems that must constantly check
the environment and adapt their behavior [19].

2.5.5 Application in This Work
In this thesis, O3DE was an important part in the validation loop of the robot
control system. By simulating the robotic arm movements and checking its behavior
in a realistic and high-quality environment, it was possible to find planning problems,
adjust trajectories, and improve the robustness of the whole system before trying
anything on the real robot.
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In addition, thanks to the integration with ROS 2 and MoveIt, it was possible
to transfer control policies and motion plans easily between the simulation and
the real robot. This consistency between simulation and reality helped to reduce
the chances of failure during deployment and allowed faster development cycles.
The results showed that the behaviors tested in O3DE were very similar to the
ones seen on the real robot, proving that the simulator is effective as a tool for
pre-deployment validation [19].

2.6 AI-Driven Environment Generation
In the last years, artificial intelligence (AI) has made big progress in automating
the creation and modification of virtual environments. In the field of robotic
simulation, generating environments is a very important step for testing and
validating autonomous systems in many different and complex situations. Before,
these environments were usually made by hand or using predefined templates.
But now, AI techniques—especially those from generative models and procedural
content generation—made possible to create and change simulation environments
in a more dynamic way, starting from some initial conditions or specific task
requirements [23].

2.6.1 Generative Models for Environment Creation
Generative models are a class of machine learning algorithms capable of creating new
data instances that resemble a given dataset. In the context of 3D environments,
AI models such as Generative Adversarial Networks (GANs) [24], variational
autoencoders (VAEs) [25], and neural networks have been employed to generate
realistic and diverse virtual environments that mimic real-world conditions. These
environments can range from simple object arrangements to highly complex scenes
that simulate physical constraints, lighting conditions, and various sensor inputs
[26].

One of the key advantages of AI-driven environment generation is the ability to
create environments with varying degrees of complexity and realism, which can
be tailored for specific testing scenarios. For example, AI models can generate
randomized obstacle courses or environments with varying lighting and textures,
which are essential for training robotic systems to handle diverse conditions in the
real world [27]. This ability to automatically generate such scenarios is particularly
valuable in the context of domain randomization, a technique often used to improve
the robustness of deep reinforcement learning models by exposing them to a wide
range of variations during training [27].

In the case of robotic manipulation tasks, AI can also be used to generate
task-specific environments. For example, a generative model could be trained on

20



State of the art

a dataset of kitchen environments and then be tasked with creating new, unseen
configurations of objects on kitchen countertops, enabling testing of robot arms in
scenarios that may not have been explicitly pre-designed.

2.6.2 Procedural Content Generation (PCG)
Procedural Content Generation (PCG) means creating content using algorithms
instead of designing it manually. In the field of robotics, PCG has been very helpful
for generating environments in a dynamic way during simulation. Compared to
the traditional static environments, PCG allows to create infinite and changing
worlds that can test the robot’s abilities in many different tasks.

PCG can be applied to generate both 3D objects and environmental elements
like terrains, buildings, paths, and obstacles. This method allows robots to interact
with a large variety of scenarios without needing to manually build each one, which
strongly increases the amount and diversity of data for training and testing. Many
of the modern game engines, including O3DE as mentioned before, support PCG
techniques, making it easy to combine AI-based content generation with realistic
and high-quality simulations [28].

2.6.3 Reinforcement Learning for Environment Adaptation
Even if reinforcement learning (RL) is more and more used to create environments
that change depending on how the agent behaves—allowing curriculum learning
and increasing task difficulty—this thesis does not follow that direction. Instead, it
focuses on static environment generation using AI models based on image and text
input. However, adaptive scene generation is still a very interesting path for future
work, especially for creating robotic behaviors that are more robust and able to
generalize better in simulation [29].

These AI-based adaptive environments could, for example, gradually add obsta-
cles, change object characteristics, or modify sensor conditions, making the robot
face a wider variety of tasks and situations.

2.6.4 Integration with ROS 2 and Simulation Frameworks
The integration of AI-generated environments with simulation tools like O3DE
and ROS 2 allows for very flexible and scalable testing workflows in robotics. In
this thesis, trained generative models were used to create different robotic arm
scenarios in a dynamic way, with random object positions, various lighting setups,
and multiple robot configurations. Compared to environments designed manually,
this method gave a much wider range and better realism to the test cases, helping
to evaluate the robot’s behavior in a more complete way.
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The simulated scenes could also adapt in real time, thanks to ROS 2’s Action and
Service interfaces, which managed updates in the environment using feedback from
the robot or its controllers. Moreover, the system was compatible with machine
learning libraries like TensorFlow and PyTorch, making easier to include generative
models focused on specific tasks. This helped even more to increase the variation
and reactivity of the virtual environments.
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System Architecture

The system architecture developed in this thesis is made to offer a flexible and
scalable framework for robot simulation and motion planning, using ROS 2, MoveIt,
RViz, O3DE, and Docker. The current configuration is based on semi-manual
interaction for planning robot poses and visualizing them, with real-time feedback
and connection between the simulation environment and the motion planning
module. This section explains the different components of the system, how they
work together, and how the whole setup is deployed.

3.1 Main System Components
The system architecture consists of several core components, each with specific
roles and interactions:

• ROS 2 Core: ROS 2 serves as the communication backbone for the entire
system. It facilitates message passing between the components and ensures
synchronization across different parts of the architecture, enabling efficient
data flow between the simulation environment, motion planning, and control
systems.

• MoveIt: MoveIt is responsible for the motion planning and trajectory gen-
eration. It is configured with a robot model (URDF), including predefined
poses and constraints. MoveIt plans motion trajectories based on target poses
sent from RViz and computes the necessary actions to move the robot to
those positions. The planned trajectories are subsequently sent to the robot’s
controller for execution.

• RViz: RViz acts as the primary visualization tool for robot status and motion
planning. It is used for manually setting target poses, visualizing the robot’s
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state, and monitoring the motion planning process. RViz interacts with MoveIt
by sending target poses and receiving feedback on planned trajectories.

• O3DE (Simulation Environment): O3DE serves as the 3D simulation
environment, providing a realistic visualization of the robot’s movements in
a virtual world. It is synchronized with ROS 2 through the ROS 2 Frame
Component, which allows O3DE to display real-time updates based on robot
movements. O3DE reflects the planned motions generated by MoveIt and
provides visual feedback through camera and environmental sensors.

• Camera (Simulated): A simulated camera is integrated into O3DE to
provide visual feedback of the robot’s surroundings. The images captured by
the camera are transmitted through ROS 2 (e.g., /camera/image_raw) and
can be used for debugging or further analysis.

• Joint State Broadcaster: This component broadcasts joint states from the
robot or simulator. It sends the joint positions to the /joint_states topic,
where they can be visualized and controlled through RViz.

These components create a semi-manual system that is used for planning,
visualizing, and executing robot poses. At the moment, the system allows to
configure pose targets using RViz, perform motion planning with MoveIt, and show
the results in real time inside O3DE. The architecture is modular and has been
designed to be easily extended in the future, for automating tasks and adding
higher-level coordination.

3.2 Component Interactions
The interactions between the different parts of the system are shown in the table
below:
Component Input Output
O3DE (Simulation) /robot_description, movement commands Robot state feedback, synchronization updates
ROS 2 Core – Transfers messages between components via topics
MoveIt Pose target (from RViz), URDF model Planned trajectories (sent to controller)
RViz /robot_description, TF, Pose Goals Pose target (sent to MoveIt), visual feedback
Camera (Simulated) Scene data from O3DE Images (e.g., /camera/image_raw)
Joint State Broadcaster Robot/simulator data /joint_states topic for visualization and control

Table 3.1: Overview of system components, their input data, and output interac-
tions

The system follows a semi-manual flow, where pose planning is carried out
through RViz and visualized in O3DE, allowing real-time evaluation of the robot’s
movements in the simulated environment.
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3.3 Integration between RViz, MoveIt, and O3DE
The integration between RViz, MoveIt, and O3DE forms the core of the system.
Each component has a distinct but interconnected role:

• RViz serves as the interface where users interact with the robot’s state and
manually set target poses for the motion planning system.

• MoveIt handles the motion planning process, generating feasible trajectories
to move the robot from its current position to the desired pose. These
trajectories are computed based on the robot’s configuration and constraints,
and the results are sent to the robot’s controllers.

• O3DE acts as the 3D simulator that provides a realistic visual representation
of the robot’s environment. It is synchronized with ROS 2 through the ROS
2 Frame Component and reflects the robot’s movements as dictated by the
trajectory planning in MoveIt.

The integration relies on consistent naming conventions for the robot’s frames
and joints across ROS 2, MoveIt, and O3DE. Specifically, O3DE uses the ROS 2
Frame Component to:

• Manage frame and joint names associated with each robot entity.

• Dynamically update and publish transformations to the /tf topic when entities
with components like JointComponent or ArticulatedComponent are present.

This makes sure that the motion generated by MoveIt is correctly shown inside
O3DE. In practice, when a pose is planned using RViz and executed through
MoveIt, O3DE receives the related transformations via ROS 2, updating the robot’s
joint positions and giving real-time visual feedback.

Even if O3DE does not directly control the robot (for example, it does not
send control commands through something like /joint_trajectory_controller), it
works as a passive but dynamic simulator. The robot’s movement is continuously
updated using the transformations published from ROS 2, so the visual feedback
stays accurate without needing an active controller.

This method allows to visually check the planned motion in detail, in a very
immersive environment. Because of that, O3DE becomes a strong tool for simulating
and testing robot behavior before using it on the real hardware.
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3.4 Handling Mimic Joints for Gripper Simula-
tion in O3DE

While integrating the Robotiq 2F-140 gripper into the simulated environment, an
important compatibility issue was found. The original robot URDF uses a mimic
joint configuration to keep the left and right fingers moving in sync. However, the
Open 3D Engine (O3DE), which uses NVIDIA PhysX, does not support mimic
joints natively. According to the official documentation, O3DE currently supports
only four types of PhysX joints: Ball, Fixed, Hinge, and Prismatic. None of them
can reproduce the mimic behavior between joints [30].

To address this problem, two possible solutions were considered. The first one
was to contribute to the O3DE engine by adding a custom mimic joint component.
Even if this was technically possible, it would have required a lot of time and
complex modifications to the engine, which were outside the goals of this thesis.
The second, and more practical option, was to handle the mimic behavior externally
through a control system based on ROS 2.

The chosen solution was to implement a ROS 2 node that listens to gripper
commands and programmatically reproduces the mimic joint behavior. The archi-
tectural limitation caused by the lack of mimic joint support in O3DE is illustrated
in Figure 3.1. Here, even though the gripper command is generated by MoveIt2,
the engine itself cannot reproduce the synchronized finger movement. As a result,
the simulation fails to show the correct motion, despite the control logic being
implemented externally through ROS 2.
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Figure 3.1: System architecture before the implementation of the mimic joint
handler. The gripper command is sent, but O3DE cannot simulate the effect due
to lack of mimic joint support.

Initially, the system was tested by publishing direct joint values to the simulation,
verifying that O3DE correctly interpreted individual joint movements. From
there, a translation layer was implemented to listen to standard ROS 2 gripper
commands—typically published by MoveIt—and convert them into synchronized
joint trajectories for the simulated gripper.

However, additional difficulties came up because MoveIt expects a gripper to be
controlled through an action server interface. To solve this, a fake action server was
created. This mock server received the goals sent by MoveIt and replied immediately
with a success result, even if the real execution was actually managed separately
by the control node. This trick made sure that MoveIt’s internal state machine
worked correctly and didn’t cancel the motion plans due to missing feedback.

The final version of the implementation combined all parts into a single and
unified ROS 2 node. This node managed the reception of commands, the replication
of the mimic behavior, the publishing of joint values, and the feedback to MoveIt—all
inside a small and flexible framework. Thanks to this, the simulated gripper could
perform stable and responsive pick-and-place actions, very similar to the ones of
the real hardware. The improved design of the system is shown in Figure 3.2.
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Figure 3.2: Updated architecture with a Python script acting as a mimic joint
handler and mock action server. This component simulates gripper success and
publishes synchronized joint values, enabling O3DE to replicate the expected
behavior.

This workaround shows the flexibility of ROS 2 and underlines how important
it is to customize the middleware layer when working with simulation engines
that don’t fully support the robot model specifications typically used in real-world
setups.

Limitations of the Implemented Solution

Even if the workaround was successful in reproducing the expected gripper behavior
inside the simulation, there are still some limitations. One main issue is that the
simulated execution does not include physically realistic feedback, like contact
forces or tactile sensing, which are very important when dealing with soft or reactive
objects. The mimic behavior is created in a deterministic way, using predefined
relationships between joints, which makes it hard to react or adapt to changes in
the environment. Another limitation is related to the synchronization between
MoveIt’s action interface and the node that publishes joint values. It requires
precise timing to avoid race conditions or inconsistent feedback, especially during
execution. These factors can affect the reliability of the system if not handled
carefully.
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3.5 AI-Driven Environment Generation
To make the simulated workspace more realistic and variable, this project includes
a dedicated pipeline for generating 3D objects with the help of AI. Instead of using
only pre-made assets or manual 3D modeling, some elements of the environment
were created through artificial intelligence, using both image-based and diffusion-
based techniques. This method allows to reconstruct real-world objects quickly
and flexibly from photos, which is very useful for simulating manipulation tasks in
a scene that looks and feels coherent both visually and spatially. For this purpose,
two complementary tools were used: Meshy (a cloud-based AI service), and StepFun
(an open-source toolchain that runs locally).

3.5.1 Meshy: Text and Image-Based 3D Model Generation
Meshy supports different input types, including single or multi-image to 3D, text-
to-3D, and combinations of image and text. In this thesis, the workflow was mostly
based on generating 3D models from one or more 2D images, sometimes improved
by adding text descriptions to better define structural or semantic details.

The Meshy platform uses vision-language models to guess the geometry, texture,
and proportions from images, and then exports the object as a textured .fbx file.
The .fbx format worked very well with the simulation engine, allowing direct import
of both the mesh and its texture. Some of the objects created with Meshy included a
joystick, spray can, adhesive tape, gripper, box, chair, and desk—each one inspired
by real objects used in the physical setup [31].

Even if Meshy produced meshes with good quality and realistic textures, one
frequent problem was the inconsistent scale of the models. Because the dimensions
were calculated only from visual input, without any real measurement reference, it
was necessary to adjust the size after importing them into the simulation. These
changes were made directly inside O3DE, to make sure the simulated objects
matched visually with the ones from the real environment.

3.5.2 StepFun: High-Fidelity Mesh and Texture Synthesis
A second AI pipeline was used with StepFun, an open-source tool that runs locally.
In contrast to Meshy, StepFun uses a combination of VAE-DiT models for generating
geometry and Stable Diffusion XL (SD-XL) for creating textures. The input is
a single 2D image, which is converted into a TSDF-based format that captures
surface shape and boundaries with high accuracy [32]. The final result is a textured
.fbx mesh.

StepFun gave good geometric quality, but the textures sometimes needed correc-
tions. In particular, there were issues with texture consistency and UV mapping,

29



System Architecture

which had to be fixed using Blender before importing into O3DE. Even if StepFun
accepts only image input (no descriptive text), it was still able to produce visually
accurate models that preserved the main shape of the original object very well.

3.5.3 Comparison Between Real and AI-Generated Objects

To evaluate the realism and visual quality of the AI-generated models, a direct
comparison was made between real-world objects and their versions generated using
Meshy and StepFun. As shown in Figures 3.3 to 3.5, three representative objects
were selected: a wire cutter, a game controller, and a green chair. The objective
was to check the geometry, the scale accuracy, and how well the textures were
reproduced.

Both tools were able to capture the general shape and visual appearance of the
objects, but some limitations were noticed. Meshy usually gave better results for
texture mapping, although sometimes the scale was not completely accurate. On
the other hand, StepFun generated sharper geometry, but in some cases it showed
less reliable UV mapping and texture details that were not very consistent.

Figure 3.3: Comparison between the real wire cutter (left), the model generated
with Meshy (center), and the model generated with StepFun (right).
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Figure 3.4: Comparison between the real joystick (left), the model generated
with Meshy (center), and the model generated with StepFun (right).

Figure 3.5: Comparison between the real chair (left), the model generated with
Meshy (center), and the model generated with StepFun (right).

3.5.4 Integration into O3DE
All the generated models were imported into the Open 3D Engine (O3DE) and
added to the simulation scene. After importing, each object was converted into a
.prefab, which made it easier to reuse and organize them in different scenes. Then,
physical components were assigned to each object, including:

• Static or dynamic colliders,

• Mass and inertia parameters,

• Friction and surface material properties.

This setup allowed the AI-generated objects to be directly used in simulated
robotic tasks. For example, items like the joystick, spray can, and tape roll were
used in pick-and-place experiments, while the AI-generated desk and chair helped
to define the spatial layout of the environment.
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3.5.5 Role in System Behavior
The AI-generated objects had an important role in improving both realism and
functionality of the simulation. Without these elements, the environment would
have remained too abstract or too simple, which would have reduced the ability
to test and validate the robot’s behavior in a meaningful way. The objects were
interactable, physically believable, and visually similar to their real versions, giving
a solid base for motion testing and system evaluation. Even if there are still
some limitations, like scaling issues or lack of real physical modeling—mainly
because there is no metric calibration—the use of AI for generating scene content
helped a lot to save time on manual modeling and allowed quick prototyping of
realistic scenarios. This part of the system was especially useful during testing and
demonstration phases.

3.6 Containerization and Deployment
The system was containerized using Docker to provide a replicable and portable
development environment. Unlike more complex setups that may require individual
containers for each node, this system uses a single container that includes all
necessary modules and dependencies:

• ROS 2 with MoveIt, RViz, and simulation packages.

• O3DE, including environment configuration and integration with ROS 2.

NVIDIA drivers were included to enable GPU support in the simulation envi-
ronment.

The choice to use a single container was made to simplify the deployment process
and avoid the complexity of managing multiple containers. This container includes
all the needed dependencies and ensures that the environment stays consistent on
different machines.

The Docker container was built using a Dockerfile, which defines the installation
of all required components and system configurations. This approach creates a
repeatable environment that can be used for development, testing, and deployment
on various setups.

The container is stateless, meaning that it doesn’t store any data permanently.
However, for future versions, it’s possible to add persistent storage if needed—for
example, to save logs, configuration files, or sensor data.
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Chapter 4

Simulation and Virtual
Environments

Simulation has an important role in the development and testing of robotic systems,
because it makes possible to run safe, repeatable, and cost-saving experiments
before applying algorithms and control logic to the real robot. In this chapter,
the simulation architecture developed for this thesis is presented, focusing on how
O3DE, ROS 2, and MoveIt have been integrated together. It also describes how
a realistic virtual environment was created, inspired by the real workspace, and
explains the components, testing process, and synchronization strategies that were
used to ensure that the simulated behavior is as close as possible to the planned
one.

4.1 Robotic Simulation with O3DE
The simulation framework is based on Open 3D Engine (O3DE), a modular, open-
source and real-time 3D engine that is able to support high-fidelity rendering and
physics simulation. The project started from an O3DE template already configured
for robotics, which included native support for ROS 2 through the ROS 2 Gem.
This integration removed the need to use external bridges and allowed a direct
communication between ROS 2 and the simulation engine.

The robot used in the simulation is a UR10e from Universal Robots, equipped
with a Robotiq 2F-140 gripper. The robot model was imported using the URDF
import tool available in O3DE, which helps to convert the robot description files
into simulation-ready entities. However, some manual adjustments were necessary
to fix small issues and to correctly import some mesh components that were not
converted in the right way.
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Several O3DE-specific components were then added to allow interaction between
the robot and the simulation environment [33, 34]:

• ROS 2 Frame Component: Synchronizes joint and link frames with ROS
2, publishing real-time transforms via the /tf topic.

• Camera Sensor Component: Simulates a vision sensor, providing image
data over ROS topics such as /camera/image_raw.

• ROS 2 Root Control Component: Facilitates the global placement and
orientation of the robot in the virtual environment.

• Joint Manipulation Editor Component: Provides tools for interactively
modifying joint configurations during simulation.

• Joint Trajectory Component: Receives joint trajectory messages and
updates the robot’s pose accordingly.

• Joint Positions Editor Component: Allows static configuration and
visualization of joint states.

• Finger Gripper Component and Gripper Action Server Component:
Emulate the behavior and control interfaces of the gripper, allowing realistic
interaction with objects.

As shown in Figure 4.1, each component plays a specific role in enabling
interaction between the O3DE simulation environment and the ROS 2 ecosystem,
supporting visualization, control, and physical realism within the robotic workflow.

These components collectively enable full visualization, interaction, and basic
control of the robot and its end-effector in a 3D simulated world, while maintaining
compatibility with ROS 2 motion planning and visualization tools.
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Figure 4.1: Diagram showing the main O3DE components and their interaction
with ROS 2. The ROS 2 Frame Component serves as the central communication
hub, interfacing with the camera sensor, joint trajectory executor, gripper action
server, and the PhysX physics engine.

4.2 Virtual Environment Modeling
Together with the robotic system, a typical office workspace was recreated inside
O3DE. This environment included a desk, various objects, and interactive elements
made to simulate the complexity of the real world. The scene was organized using
.prefab assets, which are a practical way to manage and reuse groups of components
and meshes. The single 3D models were first imported in .fbx format, then modified
and completed with physical and ROS-related properties, and finally saved as
reusable prefabs.

Even if the whole scene was not created fully by procedural generation or AI
tools, some decorative and interactive parts were designed using AI-generated
geometry. These elements were added on purpose to increase the realism and
diversity of the environment, without the need to model each object manually.

Figure 4.2 illustrates the simulated workspace created in O3DE, including the
UR10e robotic arm and various AI-generated objects arranged on a virtual desk.

The virtual environment was not static; it included physical attributes that
allowed for meaningful interaction. O3DE’s built-in physics engine (based on
NVIDIA PhysX) enabled the assignment of physical properties such as mass,
friction, restitution, and collision geometry to all simulated elements. This allowed
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the system to simulate physically plausible interactions such as grasping, contact
dynamics, and object displacements.

Figure 4.2: Simulated workspace in O3DE, showing the UR10e robot positioned
on a desk and surrounded by AI-generated objects such as a joystick, spray can,
and tape roll.

4.3 Testing in Simulation
Several test scenarios were carried out inside the simulated environment to check the
correctness of motion planning and the integration of the robotic system. The main
focus was on pick-and-place tasks, where the robot had to reach and manipulate
virtual objects placed in different positions on the desk.

The testing followed a semi-manual process. Target poses were set using RViz
and then sent to MoveIt for motion planning. The resulting trajectory was visualized
both in RViz and in O3DE, allowing to verify the movement from both a planning
and visual perspective. This dual-feedback approach was very useful to detect
any mismatch between the planned motion and its physical realism or graphical
correctness inside the virtual scene.

O3DE acted as a passive real-time simulator, reacting dynamically to joint
transformations published by ROS 2 without directly executing control commands.
The synchronization between RViz, MoveIt, and O3DE was effective, with no
perceptible latency in the simulation thanks to the high-performance hardware
used during development.

The presence of a realistic, real-time, physically active simulation allowed the
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validation not only of spatial and kinematic correctness but also of environmental
integration and task-level feasibility. The enhanced visual fidelity offered by O3DE,
compared to traditional tools such as RViz, proved especially useful for evaluating
how the robot would operate from a human-centered perspective. Figure 4.4
illustrates the simulation pipeline used during pick-and-place experiments, clarifying
the system’s modular flow from planning to execution.

Figure 4.3: Sequence of images showing the phases of a pick-and-place task
performed in the O3DE simulator. From left to right: (1) initial position, (2)
approach to the object, (3) pick, (4) transport, (5) place.

The enhanced visual fidelity offered by O3DE, compared to traditional tools
such as RViz, proved especially useful for evaluating how the robot would operate
from a human-centered perspective (see Figure 4.3).

This simulation infrastructure creates a solid foundation for future developments,
such as dynamic scenario generation, integration with reinforcement learning, and
full autonomy pipelines. The combination of O3DE with ROS 2 and MoveIt gives
a strong and flexible base where more intelligent and automated features can be
added in the next stages of the project.
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Figure 4.4: Execution pipeline for simulation-based validation. The process
begins with pose selection in RViz, followed by trajectory generation in MoveIt,
ROS 2 message publishing, and real-time update of the robot’s motion within the
O3DE environment.
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Chapter 5

Task Optimization and
Trajectory Generation

The ability to create feasible, collision-free, and realistic motion trajectories is
one of the main functions in any robotic manipulation system. In this thesis,
trajectory planning was done using the MoveIt 2 framework, integrated into the
ROS 2 environment and visualized with RViz. The planned trajectories were also
shown and validated inside a high-fidelity simulation using O3DE. Even if the
system right now supports only semi-manual execution—without full automation
or advanced optimization—the architecture built here allows for a flexible and
expandable planning pipeline.

5.1 Motion Planning Configuration
Trajectory generation in this system is mainly managed by MoveIt 2, which has
been set up to work with both OMPL (Open Motion Planning Library) [11] and
CHOMP (Covariant Hamiltonian Optimization for Motion Planning) as backends.
Both options were tested, but most of the planning was done using OMPL, because
of its good stability and its ability to deal with complex joint configurations.

The planning pipeline works using predefined goal poses, which are set through
the MoveIt Setup Assistant. These poses are selected interactively inside RViz,
where the user can define the desired configuration of the robot arm and the gripper.
Once the goal pose is chosen, MoveIt calculates a trajectory to reach it by using
sampling-based planning algorithms, such as RRTConnect—the default planner
available in OMPL for MoveIt.

Even though the motion planner parameters—like planning time, level of path
simplification, or sampling resolution, were not manually fine-tuned, attention was
given to synchronize the timing between RViz, MoveIt, and the O3DE simulator.
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This synchronization was set up in the system’s launch files and helps to keep the
trajectory execution and the simulation aligned in time, which allows real-time
feedback and makes debugging more accurate.

The Motion Planning panel in MoveIt (see Figure 5.1) offers an intuitive interface
inside RViz for setting up and executing motion plans. Users can choose the planning
group—like the robotic arm or the gripper—separately, which gives detailed control
over specific robot parts. It is also possible to select predefined start and goal
poses from a list configured using the MoveIt Setup Assistant, making it easier
to create repeatable motion tasks. In addition, users can change several planning
parameters, such as the allowed planning time, number of planning attempts, and
velocity or acceleration scaling factors. This graphical interface is very useful for
quickly testing different planning strategies without needing to write scripts, and
it supports real-time trajectory execution both in simulation and on the physical
robot.

Figure 5.1: Screenshot from RViz showing the UR10e robotic arm and the
trajectory generated by MoveIt. The planned path is highlighted in orange. No
obstacles are visible in the RViz planning scene, but they are present in the
corresponding simulated scenario within O3DE.

5.2 Trajectory Optimization Approach
In this work, no custom trajectory optimization methods were developed. The
system uses only the default optimization features provided by MoveIt. When the
CHOMP planner is selected, it improves the trajectory using cost gradients that
take into account both obstacle avoidance and smoothness of the path [35].
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Other trajectory optimization techniques, like STOMP (Stochastic Trajectory
Optimization for Motion Planning) and TrajOpt (Trajectory Optimization for
Motion Planning) [36, 37], were also reviewed during the early stages of the
project. These planners are especially suitable for complex planning problems in
high-dimensional spaces and dynamic environments, where soft constraints and
stochastic approaches may give better results in terms of convergence or constraint
handling. A summary of the main features of these planners is shown in Table 5.1.
However, they were not included in this thesis, since the main goal was to validate
basic motion planning strategies in static and semi-structured settings.

Table 5.1: Comparison of motion planning and trajectory optimization methods.

Planner Technique Advantages Limitations
OMPL Sampling-based Fast, flexible, easy to inte-

grate
Discrete paths, less smooth

CHOMP Gradient-based Smooth trajectories, obsta-
cle avoidance

Slower, requires good initial
guess

STOMP Stochastic optimization Handles noise, good for con-
straints

High computational cost

TrajOpt Sequential convex optimization Supports complex con-
straints

Requires accurate collision
checking

In contrast, OMPL planners generate trajectories using random sampling meth-
ods and typically include basic path simplification as a post-processing step.

As shown in Figure 5.2, MoveIt provides a dedicated interface to configure
OMPL planners, including workspace boundaries and optional database connections.
However, in this work, the planner was used with its default settings to maintain a
minimal and replicable configuration.
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Figure 5.2: Screenshot of the OMPL configuration tab in MoveIt’s Motion
Planning interface. This panel allows users to select the planning library (e.g.,
OMPL), connect to a planning database, and optionally define workspace boundaries
or planner-specific parameters. In this work, default parameters were used without
custom tuning.

While CHOMP also allows the use of custom constraints—such as keeping the
end-effector orientation, penalizing joint limit violations, or enforcing workspace
boundaries—these advanced options were not used or extended in this work. This
choice was made to keep the system simpler and to focus on building a minimal
but solid pipeline that could work reliably both in simulation and in real-world
scenarios.

Still, the system architecture is modular and can be extended in future develop-
ments to support constraint-based planning, especially for high-precision operations
or in environments with limited space.

5.3 Task-Level Planning and Workflow
The strategy used for task execution in this system is semi-manual and based on
interactive usage of RViz and MoveIt. Goal poses are defined during the setup
phase using the “Robot Poses” interface from the MoveIt Setup Assistant, which
lets users configure and save specific positions for the robot arm and the gripper
that can be reused later.

During operation, a target pose is selected in RViz, and MoveIt is used to
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generate a trajectory to reach it. The planned trajectory is then visualized in RViz
and mirrored in real time in O3DE, providing a dual-feedback channel to evaluate
correctness and feasibility. Notably, thanks to proper frame and topic configuration,
the system supports reverse planning, allowing the user to select an end-effector
pose and automatically compute the joint configuration required to reach it.

Although no scripts or automatic task sequences have been implemented at
this stage, the current architecture supports such extensions in the future, as the
planning and execution loop is fully accessible through the MoveIt API and ROS
action servers.

5.4 Simulation-Based Validation
A set of motion planning trials was performed in simulation to check the correctness
and realism of the generated trajectories. The robot, simulated as a UR10e
manipulator with a Robotiq 2F-140 gripper, was placed inside a virtual office
environment built in O3DE. This environment included a desk, several objects,
and physical constraints that tried to reproduce real-world interactions.

Different goal poses were tested in multiple scene variations, including changes
in object positions and small adjustments in the geometry of the workspace. These
tests were done to verify that the robot’s motions were compatible with its real
capabilities, and that the poses planned were actually reachable considering the
scene constraints.

Even though no quantitative metrics (like trajectory length, execution time, or
energy usage) were calculated, the visual feedback from RViz and O3DE made it
possible to evaluate the quality of the motions. It was possible to observe how
smooth the trajectories were, how well obstacles were avoided, and if the overall
behavior looked physically correct.
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Chapter 6

Integration with real
hardware

One of the main goals of this thesis was to validate the consistency and realism of
the simulation infrastructure by executing motion plans on a real robotic platform.
Moving from simulation to physical execution is a fundamental step of verification,
as it confirms that the control and planning strategies developed in the virtual
environment can also be applied reliably in real conditions. This chapter explains
how the integration between the ROS 2-based software stack and the real robotic
hardware was done, and it discusses the results, limitations, and insights observed
during the execution of trajectories on the actual robot.

6.1 Robotic Platform and Setup
The physical system used in this thesis includes a UR10e robotic arm by Universal
Robots, together with a Robotiq 2F-140 parallel gripper. This hardware setup is
exactly the same as the one used in the simulation phase. The robot was connected
to the development workstation through a direct USB connection, which allowed
low-latency communication for sending commands and monitoring feedback. The
physical workspace was organized to be as similar as possible to the virtual one
created in O3DE, with comparable furniture layout and object positions.

Hardware Specifications of the Development Environment

The development and validation procedures were executed on a high-performance
workstation configured to support real-time robotic simulation, GPU-accelerated
rendering, and low-latency communication with physical hardware. The system
setup is summarized in Table 6.1.
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Table 6.1: Hardware and software configuration of the development environment

Component Specification
Device Desktop Workstation
Operating System Ubuntu 24.04.2 LTS
CPU Intel Core Ultra 9 (Meteor Lake, 16 cores)
GPU NVIDIA GeForce RTX 5080, 16 GB VRAM
GPU Driver and CUDA NVIDIA Driver 570.xx, CUDA 12.4
Memory (RAM) 64 GB DDR5 @ 5200 MHz
ROS 2 Distribution ROS 2 Jazzy
O3DE Version O3DE 24.02 (custom Linux build)
Robot Connectivity USB 2.0 interface for UR10e
Gripper Connectivity Ethernet interface for Robotiq 2F-140
Containerization Docker with GPU support (NVIDIA Container Toolkit)

This configuration provided sufficient computational resources for real-time
physics simulation, AI-based 3D asset generation, and ROS 2-based motion planning.
The NVIDIA RTX 5080 GPU ensured smooth rendering and physics performance
within O3DE. Docker was used to containerize the entire stack, guaranteeing
reproducibility and cross-platform consistency during development and testing.

6.2 ROS 2 Integration and Control
The integration with ROS 2 was accomplished using the official driver packages
for both the UR10e arm (ur_robot_driver) and the Robotiq gripper. These
packages provide native ROS 2 support and expose standard interfaces for motion
execution, joint state publishing, and gripper control. No additional bridging layers
or wrappers were required, thanks to the drivers’ compatibility with the DDS-based
communication infrastructure of ROS 2.

The robot received planned trajectories via standard /joint_trajectory_controller
topics, managed by the ros2_control interface. The gripper control was han-
dled through a dedicated action server, consistent with the interfaces used during
simulation. Importantly, the exact same MoveIt 2 configuration used in simulation—
comprising the robot model, controller settings, planning parameters, and predefined
goal poses—was reused for the real hardware, demonstrating the simulation’s ability
to serve as a reliable precursor to real-world deployment.

A minor adaptation was required to replicate the gripper behavior in the physical
system, as the simulation logic was implemented through a script that also had to
be ported for hardware execution.
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6.3 Observed Performance and Correspondence
The execution of the planned trajectories on the real robot confirmed a strong
level of correspondence between the simulation and the physical setup. The robot
was able to follow the same poses and motion paths that were defined and tested
previously in the O3DE environment. However, some small differences were noticed
during execution, especially regarding latency, timing, and physical interaction.

Slight delays were observed between sending a command and the actual move-
ment of the robot. These delays are probably caused by the hardware feedback
mechanisms and communication overhead, which are not present in the simulation.
In addition, physical effects such as friction and mechanical tolerances introduced
minor variations in how the robot moved compared to the ideal behavior shown
in simulation. These differences show how important it is to carefully adjust the
physical properties in the simulated environment, especially when a high level of
accuracy is needed between virtual and real execution.

In addition, the mesh models used in the simulation—although visually accu-
rate—did not perfectly match the real geometry and material properties of the
physical objects. Because of this, small differences were noticed during grasping
and object clearance, but they did not affect the overall success of the tasks.

6.4 Safety Considerations and Experimental En-
vironment

No extra safety systems were added beyond those already available in the UR10e’s
built-in firmware, such as the emergency stop, joint limits, and force thresholds.
All physical experiments were carried out in a controlled environment designed to
reproduce the simulated scene as closely as possible. This included accurate posi-
tioning of the furniture and objects, which made it possible to compare simulation
and real execution in a consistent and meaningful way.
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Chapter 7

Results and validation

A key phase of this thesis was the evaluation of the system in both simulation
and real-world scenarios. The goal of this validation was to check the accuracy
and consistency of motion planning and execution between the two environments,
and also to verify how robust the system architecture was under realistic working
conditions. This chapter describes the testing process, the qualitative results that
were collected, and the differences observed between the simulation and the physical
execution.

7.1 Safety Considerations and Experimental En-
vironment

The tests have been done using both simulation tools and the real robot. For the
simulation part, RViz, MoveIt, and Open 3D Engine (O3DE) were used together to
provide full visualization, motion planning, and also realistic 3D rendering of the
robot movements. Many screenshots and some video recordings were taken during
the simulation phase to verify the correctness of the movements and how the robot
was interacting with the environment.

For the real-world validation, the same MoveIt configuration and planning
pipeline were used on a physical UR10e robotic arm with a Robotiq 2F-140 gripper.
The robot was positioned in a workspace that was built to be very close to the one
in simulation.

The evaluation was focused on pick-and-place tasks with common tabletop
objects like a joystick, adhesive tape, an aerosol can, a mechanical gripper, and
a cardboard box. These objects were selected because they have different shapes,
masses, and difficulty to be grasped. The tests were repeated with different object
positions, orientations, and table layouts, in order to give the system a variety of
motion planning and execution challenges.
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Additional scenario variations were introduced during simulation, such as:

• Slight shifts in object placement to test the adaptability of the planner.

• Inclusion of virtual obstacles (e.g., a coffee mug or a cable) to assess collision
avoidance.

• Varying end-effector orientations to challenge inverse kinematics resolution.

7.2 Validation Objectives and Criteria
The first goal of the validation was to be sure that the simulation stack—including
planning, visualization, and rendering—was able to reproduce the real robot
behavior in a faithful way. This included testing the accuracy of the kinematics, the
correct alignment of the coordinate frames, and the joint behavior under realistic
physical conditions.

The second objective was to verify that the trajectories planned in simulation
could be executed on the real robot directly, without the need of tuning parame-
ters, model adjustments, or reconfigurations. This kind of "simulation-to-reality
consistency" was considered very important to prove that the system can be used
as a reliable tool for fast prototyping and early testing.

Tests were considered successful if:

• The robot reached the target pose without collision or interruption.

• The motion appeared smooth and continuous, both visually and kinematically.

• The object was successfully grasped and placed within a reasonable spatial
margin.

• The result matched the simulation both in path shape and temporal structure
(within expected tolerances).

7.3 Observations and Qualitative Results
The simulation phase produced stable and reliable trajectories in all the tested
scenarios. The robot motions were visually smooth in RViz and were also correctly
reflected inside O3DE. The high graphical quality of O3DE helped to better evalu-
ate the spatial relationship between the robot and the environment, giving a more
realistic idea of how feasible the tasks were and how they could be perceived by a
human operator. The visual fidelity of AI-generated objects was qualitatively vali-
dated through direct comparison with real-world counterparts (see Figures 3.3–3.5),
confirming their suitability for perception-based testing in simulated environments.
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A summary of the grasp success rate for five different objects tested on the real
setup is shown in Table 7.1. These values show the consistency of the system even
with different object shapes and physical conditions. To better understand how
the execution worked, a detailed timing analysis was done for two representative
objects: the adhesive tape and the spray can. Each pick-and-place task was divided
into four phases: positioning, pick, transport, and place. Table 7.2 shows the
timing results for both simulation and real execution. Even if the simulation gave
a good approximation, some delays were noticed during real execution, especially
in the gripper activation and the placement steps. These delays are mainly due to
mechanical inertia and actuation latency.

In the real-world tests, the robot performed the same planned trajectories with
a high level of matching. However, some small differences were noticed:

• Slight latencies and timing mismatches between simulation and reality.

• Positional deviations in grasping tasks, likely caused by friction and inertial
effects not fully modeled in simulation.

• Variability in grasp success due to object properties not represented in the
simulator (e.g., material compliance, non-uniform mass distribution).

• Minor geometric inconsistencies between simulated and physical objects, at-
tributed to the use of AI-generated models based on 2D images, which intro-
duced estimation errors in depth and scale.

Despite these differences, the robot was in general able to complete the pick-
and-place tasks in a successful way. The qualitative behaviour of the hardware
confirmed that the simulation and planning pipeline was valid, with only small
performance differences that can be explained by known physical limitations.

Table 7.1: Grasp success rate across physical test objects

Object Attempts Successes Success Rate
Joystick 10 8 80%
Tape 10 10 100%
Spray Can 10 10 100%
Cutter 10 4 40%
Box 1 0 0%
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Table 7.2: Execution Time Breakdown

Object Phase Sim Time (s) Real Time (s) ∆ Time (s) ∆ %
Tape Spot 1.2 1.5 0.3 +25%
Tape Pick 0.8 1.1 0.3 +37.5%
Tape Transport 1.6 1.9 0.3 +18.8%
Tape Place 1.0 1.3 0.3 +30%
Spray Can Spot 1.1 1.4 0.3 +27.3%
Spray Can Pick 0.9 1.2 0.3 +33.3%
Spray Can Transport 1.5 1.8 0.3 +20.0%
Spray Can Place 1.0 1.2 0.3 +20.0%

7.4 Conclusions on System Fidelity
The experiments show that the system developed gives a valid and efficient simula-
tion environment for designing robotic manipulation tasks. The strong consistency
of configuration between simulation and real robot, thanks to ROS 2 and MoveIt,
made possible to transfer the trajectories from the virtual plan to the real execution
without big problems.

Anyway, the results show also that it is important to improve some parts of the
simulation fidelity, especially:

• The accuracy of 3D models, which could benefit from integration with depth-
sensing technologies or structured-light scanning.

• The physical properties of simulated objects, such as mass, center of gravity,
and surface friction, which currently rely on idealized parameters.

• Fine-tuning of the temporal dynamics, especially in scenarios where real-world
latencies and compliance could affect performance.

While these refinements fall outside the original scope of this thesis, they
represent natural directions for enhancing the realism and applicability of simulation-
driven development pipelines in future work.
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Chapter 8

Conclusions and future
works

The work showed in this thesis had the goal to investigate how to simulate intelligent
robotic behaviours in realistic environments, especially focusing on the generation
of 3D scenes, motion planning with ROS 2 and MoveIt, and the validation of
these parts on real robotic hardware. The main purpose was to build a virtual
environment that can be very close to the real working space, in order to allow safe
testing and development before deploying on the real system. This target has been
mostly reached thanks to the good integration between simulation, planning and
execution levels.

The system we proposed is based on ROS 2 as communication middleware,
MoveIt for the motion planning, and O3DE as simulation engine. Artificial intelli-
gence was also applied to create some elements of the environment, making the
virtual scenes more rich and useful for testing in different situations. During the
implementation, some adjustments were necessary, especially to make the Robotiq
gripper and the UR10e manipulator work correctly together. In the beginning,
different simulators and operating systems were taken into account; finally, the
choice of O3DE running on Ubuntu was made because of its good compatibility
with ROS 2 and the better visualization quality.

8.1 Contributions
This thesis has developed a complete and working simulation framework for robotics
that makes possible to quickly define, plan and test robot motions inside complex
environments. One of the most important contributions is the possibility to test
robot actions — including object manipulation — in a simulated world that is very
similar to the real one, and then perform the same actions on the real robot with
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only few adjustments. This fast workflow from simulation to real application can
help to reduce design costs and make the development process shorter, especially
in industrial or research scenarios.

Other important contributions are:

• The integration of MoveIt, RViz, and O3DE into a coherent ROS 2-based
architecture.

• The use of AI-generated 3D assets to populate the environment with realistic
scene elements.

• The validation of planned trajectories across both simulated and physical
platforms.

• The containerization of the environment using Docker, ensuring portability
and reproducibility.

As summarized in Table 8.1, the system developed in this thesis brings together
modular architecture, AI-driven simulation, and robust real-world validation.

Contribution Description
Integration of ROS 2,
MoveIt, and O3DE

A unified and replicable architecture combining
robotic planning, simulation, and visualization, de-
ployed through a Docker container.

AI-generated environ-
ment elements

Utilization of tools such as Meshy and StepFun to
create realistic and diverse 3D assets for simulation.

Sim-to-real validation
with UR10e and Robo-
tiq

Execution of identical planned trajectories in both
simulated and physical environments to assess behav-
ioral consistency.

Visual and functional
validation tools

Effective use of RViz and O3DE to support planning
visualization, trajectory debugging, and interactive
testing.

Table 8.1: Summary of the main technical contributions achieved in this thesis.

8.2 Limitations
Even if the developed system is solid and complete from a functional point of
view, there are still some limitations that have been observed. First of all, the
geometric and physical precision of the 3D objects generated by AI is not yet
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very high. In particular, the lack of proper information about depth, volume and
mass distribution from 2D inputs creates differences in grasp accuracy and contact
simulation. This problem can affect especially pick-and-place operations, where
small differences in object shape or friction can cause unexpected behaviours when
moved to the real robot.

One possible improvement to overcome these limits could be the use of depth-
sensing technologies like RGB-D cameras, LiDAR, or structured-light scanners, in
order to obtain 3D models with metric accuracy. These devices can give better
geometrical information, reduce the need of manual corrections, and increase the
realism of the simulation. Furthermore, combining the AI-generated meshes with
data coming from depth sensors might be a good compromise between high-quality
visual appearance and precise shape, making the simulation more useful and closer
to real validation needs.

In the future, the pipeline could be improved by automating several post-
processing steps that for now are still done manually. For example, the problems
with object scaling—caused by inconsistent sizes from AI-generated models—could
be solved by using Blender scripts (with the bpy module) to automatically normalize
the scale, fix object origins, and make sure that the physical representation in the
simulation is correct. Also, physical parameters like mass, center of gravity, and
friction could be estimated in automatic way using mesh analysis tools like Assimp
or some custom tool for inertia estimation. A system based on templates could also
be added to apply the same material and dynamic properties to all new objects,
making the integration of assets faster and more uniform.

For what concerns UV mapping and problems with textures, using automatic UV
unwrapping together with texture baking and adjustments through Blender scripting
could help a lot to improve how 3D models look and behave in the simulation.
These improvements would make assets more reliable and help to reduce errors or
differences when moving from simulation to the real-world manipulation.

Moreover, the current system does not support dynamic planning, automatic
task assignment, or coordination between multiple agents. All the robot actions are
configured and launched manually, which makes it hard to scale the system to more
complex or fully autonomous applications. In addition, the 3D models created with
AI-based tools like Meshy and StepFun still needed manual corrections during post-
processing, especially for scale and physical parameters. This shows that future
improvements should focus on adding automatic calibration techniques to make
the physical behaviour of simulated environments more realistic and trustworthy.

53



Conclusions and future works

8.3 O3DE limitations and practical challenges
Even if the Open 3D Engine (O3DE) has been a powerful tool for realistic sim-
ulation and for working together with ROS 2, several technical and practical
issues were faced during its usage in this project. First of all, the Linux version
of O3DE—compiled and installed manually during development—showed some
problems specific to the platform. These problems included graphical rendering
bugs, strange behaviour in the Asset Browser, and missing or incomplete features
in some parts of the editor. Some of these issues were fixed with the help of the
online community, workarounds or small custom patches, but others were still not
solved at the moment of writing. Even if these problems were not blocking for the
main simulation functionalities, they caused some delays and made the debugging
and testing process more difficult.

O3DE has native ROS 2 integration through the ROS 2 Gem, which is an
advantage because it does not require extra bridges. However, the support for
some features specific to robotics is still under active development. Some physical
elements, especially articulated joints used for robot grippers, were not fully
supported or needed extra steps to make them work properly. For example, when
integrating the Robotiq 2F-140 gripper, some problems appeared related to the
way O3DE handles joint constraints and actuation. These limitations affected the
correct functioning of the gripper during both simulation and real-world validation
phases.

Another technical constraint involved the lack of deterministic physics and
robust sensor emulation tools comparable to those available in more established
robotics simulators. As the system evolves, future improvements could include
custom O3DE components that replicate advanced ROS-compatible sensor outputs
and enable consistent physical interaction behavior across test runs. Integrating
configuration presets or scripting templates for physical entities—similar to those
used in Gazebo—would also help reduce scene preparation time and improve
simulation reproducibility.

Finally, the tools and plugins available around O3DE are still not as complete
or stable as the ones in more traditional simulators used in robotics. Functions
like real-time sensor simulation, deterministic physics, or standard ROS 2 robot
controllers needed to be implemented by hand or were not working directly with
the usual ROS 2 setup. These points should be carefully evaluated before selecting
O3DE for robotics research, especially when the project has strict time limits or
needs to run in production environments.

Another important point is the long-term stability and support of O3DE,
especially if we compare it with more established simulators like Gazebo or Ignition.
O3DE offers very good visual quality and uses a modern rendering engine, but its
usage in the robotics field is still not so common. Also, the documentation and

54



Conclusions and future works

official resources about ROS 2 integration are still not so complete or detailed.
Because of this, there is a possible risk of technological lock-in, where in the future
development or maintenance might need custom solutions that are not easy to
reuse or move on other platforms.

In contrast, tools like Gazebo (and its newer version Ignition Gazebo) have the
advantage of a big open-source community, regular updates, and strong support
from organizations like Open Robotics. For research or industrial applications
where stability, reproducibility or native ROS integration are more important
than high-quality graphics, these traditional simulators might be a safer and more
reliable option for the long term.

So, even if O3DE was chosen for its high-level visual realism, its use should be
carefully considered in future improvements of this work, especially when scalability,
community support, or compatibility across different platforms becomes a priority.

8.4 Future Work
Finally, improving the physical simulation parameters in O3DE—like object mass,
material settings, and friction values—would help the virtual environment to better
reflect how things behave in the real world, reducing even more the difference
between simulation and reality.

At the same time, a specific architectural improvement could be the native
support of mimic joints directly inside the O3DE physics engine. This could be
done by developing a dedicated component or by adding a custom extension at
the source level of the PhysX backend. With this upgrade, it would be possible to
simulate kinematic dependencies—especially in multi-fingered grippers—in a more
realistic and direct way, without using external control scripts. This would improve
the physical consistency during manipulation tasks and make the simulation setup
more clean and robust.

Beyond simulation and perception, future work could also look into the au-
tomation of task-level logic and decision making. Even if the current framework
allows pose-based motion planning using RViz and MoveIt, the task execution is
still semi-manual and limited to predefined goal poses. A possible improvement
could be the integration of task-level planning systems, like symbolic planners (for
example, PDDL) or hierarchical control structures such as Behavior Trees (BTs),
to let the system break down high-level goals into ordered motion sequences. This
kind of extension would make the system able to manage more complex tasks and
dynamic situations by itself, without the need of manual control from the user.
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