
Master of Science in Computer Engineering

Master Degree Thesis

An in-depth comparative analysis
of Kubernetes authorization
mechanisms for fine-grained

access control

Supervisors
prof. Riccardo Sisto
prof. Fulvio Valenza

dott. Daniele Bringhenti

dott. Francesco Pizzato Candidate

Ines Muka

Academic Year 2024-2025

This work is subject to the Creative Commons Licence

Summary

Cloud computing delivers on-demand computing resources over the Internet, driv-
ing modern infrastructure with unparalleled scalability, cost-efficiency, and adapt-
ability. Moreover, Kubernetes has become the de facto standard for cloud orches-
tration tools for this paradigm, automating the deployment and administration of
containerized applications across clusters. This dynamic, multi-tenant environment
enables shared resources across various users, teams, and microservices. However, it
poses security vulnerabilities if permissions are improperly managed. Consequently,
granular access control is essential, ensuring tenant isolation while maintaining the
operational advantages of Kubernetes.

The goal of this thesis is to present an in-depth comparative analysis of
Kubernetes authorization mechanisms for fine-grained access control. First, an
analysis of native and open source Kubernetes authorization mechanisms has been
carried out. In particular, the considered mechanisms include Role-Based Access
Control (RBAC), Attribute-Based Access Control (ABAC), and Webhook for na-
tive solutions, alongside Open Policy Agent (OPA) representing Policy-Based Ac-
cess Control (PBAC) and SpiceDB representing Relationship-Based Access Control
(ReBAC) for the open source alternatives. Then, for comparison, they have been
assessed against multi-tenant scenarios that closely mirror real-world conditions.
Finally, this work is concluded with a complete cross-evaluation of the complexity,
granularity, scalability, and performance of each authorization mechanism and the
paradigm it represents.

As a result, this work provides a practitioner’s guide to selecting, imple-
menting, and optimizing authorization mechanisms. In future research work, this
analysis could be extended to integrate real-time threat response and automated
validation tools.

3

Acknowledgements

I want to start by thanking my supervisors, prof. Riccardo Sisto, prof. Fulvio
Valenza, dott. Francesco Pizzato and dott. Daniele Bringhenti, for giving me the
opportunity to work on this thesis, which acted as a solid bridge between my ending
academic life and my new professional career.

Special thanks go to my parents, who have selflessly sacrificed their whole
lives to support my dreams. Ma, Ba, this is also your achievement. Thanks to
Ani, my brother, my all-time favorite role model, and the reason why I set foot on
this engineering journey in the first place. Thank you, Ro, for the always-present
support and positivity all the way through.

And a big thank you to my person. Fra, thank you for being by my side
and reminding me what this is all about. I could not have done this without you.
And without the new family you brought me into.

Last but not least, I want to thank my old and new friends. The ones that
supported me from different countries scattered around the world, and the ones we
shared a life of fuorisede here in Torino. You made it all worth it.

4

Contents

List of Figures 7

Listings 8

1 Introduction 10

2 Kubernetes 12
2.1 A bit of history . 12
2.2 Workload management evolution 13
2.3 Container orchestrators . 15
2.4 Kubernetes architecture . 16

2.4.1 Control plane components 17
2.4.2 Node components . 18

2.5 Kubernetes objects . 19
2.6 Kubernetes access control . 22

3 Thesis objectives 25

4 Native k8s authorization mechanisms 27
4.1 Role-Based Access Control (RBAC) 27

4.1.1 Configuration . 32
4.1.2 Scenario-based analysis . 34
4.1.3 Strengths and limitations . 49

4.2 Attribute-Based Access Control (ABAC) 50
4.2.1 Configuration . 52
4.2.2 Scenario-based analysis . 56
4.2.3 Strengths and limitations . 62

4.3 Webhook . 62
4.3.1 Configuration . 65
4.3.2 Scenario-based analysis . 70
4.3.3 Strengths and limitations . 75

5 Open source authorization solutions 77
5.1 Limitation of native mechanisms and evolution paths 77
5.2 Policy-Based Access Control (PBAC) 78

5.2.1 Open Policy Agent (OPA) 79
5.2.2 Configuration . 82
5.2.3 Scenario-based analysis . 85

5

5.2.4 Strengths and limitations . 89
5.3 Relationship-Based Access Control (ReBAC) 89

5.3.1 SpiceDB . 91
5.3.2 Configuration . 93
5.3.3 Scenario-based analysis . 95
5.3.4 Strengths and limitations . 98

6 Comparative Analysis 100
6.1 Evaluation matrix . 100
6.2 Cross-comparison of all solutions 101
6.3 Final takeaways . 103

7 Conclusions 105

Bibliography 106

6

List of Figures

2.1 Evolution of applications deployments 14
2.2 Kubernetes architecture . 16
2.3 Access control in Kubernetes . 22

4.1 RBAC model . 30
4.2 RBAC scenario 1 . 35
4.3 RBAC scenario 2 . 36
4.4 RBAC scenario 3 . 37
4.5 RBAC scenario 4 . 39
4.6 RBAC scenario 5 . 40
4.7 RBAC scenario 6 . 41
4.8 RBAC scenario 7 . 42
4.9 RBAC scenario 8 . 43
4.10 RBAC scenario 9 . 45
4.11 RBAC scenario 10 . 46
4.12 RBAC scenario 11 . 47
4.13 RBAC scenario 12 . 49
4.14 ABAC policy . 52
4.15 ABAC scenario 1 . 56
4.16 ABAC scenario 2 . 58
4.17 ABAC scenario 3 . 59
4.18 ABAC scenario 4 . 60
4.19 ABAC scenario 5 . 61
4.20 Webhook scenario 1 . 71
4.21 Webhook scenario 2 . 74

5.1 OPA deployment pattern . 84
5.2 PBAC with OPA scenario 1 . 86
5.3 Communication schema between spicedb-kubeapi-proxy and Kuber-

netes . 94
5.4 ReBAC with SpiceDB scenario 1 98

7

Listings

4.1 RBAC Role object sample manifest 28
4.2 RBAC ClusterRole object sample manifest 28
4.3 RBAC RoleBinding object sample manifest 29
4.4 RBAC ClusterRoleBinding object sample manifest 29
4.5 Kind configuration file . 32
4.6 CertificateSigningRequest object manifest 33
4.7 Kubeadm configuration file for ABAC mode 53
4.8 ABAC policy file sample . 54
4.9 Authentication token file sample . 54
4.10 Request to Webhook via SubjectAccessReview object 63
4.11 Permissive response from Webhook via SubjectAccessReview object 63
4.12 Denying response from Webhook via SubjectAccessReview object . 64
4.13 Absolute denying response from Webhook via SubjectAccessReview

object . 64
4.14 Webhook configuration file . 66
4.15 API server modification for Webhook authorization mode 67
4.16 Dockerfile example for the Webhook server image 68
4.17 SubjectAccessReview object in Webhook 1st scenario 71
4.18 Script snippet of Webhook server in Webhook 1st scenario 71
4.19 labelSelector in the SubjectAccessReview object 73
4.20 Script snippet of Webhook server in Webhook 1st scenario 73
5.1 Rego language in OPA . 81
5.2 OPA policy template snippet for time-based policy 86
5.3 OPA policy constraint for time-based policy 87
5.4 SpiceDB Schema example . 92
5.5 SpiceDB scenario 1 first schema . 96
5.6 SpiceDB scenario 1 second schema 97

8

Chapter 1

Introduction

Cloud computing has profoundly transformed the landscape of today’s infrastruc-
ture by delivering on-demand computing resources over the Internet. This paradigm
shift allows unparalleled scalability, cost efficiency, and flexibility, allowing enter-
prises to allocate resources dynamically, optimize operational costs, and accelerate
innovation. At the core of this shift lies Kubernetes, which has emerged as the de
facto standard for container orchestration [1]. Kubernetes simplifies and automates
the deployment, scaling, and management of containerized applications across clus-
ters, offering a robust framework for managing complex distributed workloads. The
dynamic, multi-tenant environment enables resource sharing among multiple users,
teams, and microservices, thereby maximizing operational agility and resource uti-
lization.

However, the complexity and dynamism of Kubernetes pose considerable
security challenges. In multi-tenant setups, improper management of permissions
can lead to vulnerabilities, such as unauthorized access, data breaches, and compro-
mised tenant isolation. Therefore, granular access control is not just an improve-
ment but a critical requirement, as evidenced also by OWASP, which consistently
lists broken access control and broken authorization as the primary risks in sev-
eral of their top 10 reports [2] [3]. Such a control would ensure that each tenant
functions within a secure perimeter while maintaining the operational benefits of
Kubernetes. Given the complex nature of modern applications, along with evolving
threat scenarios, advanced authorization systems are required that balance secu-
rity with usability, allowing fine-grained control without impeding the agility that
defines cloud-native ecosystems.

The main goal of this thesis is to deliver an in-depth comparative anal-
ysis of Kubernetes authorization mechanisms for fine-grained access control. To
achieve this, the research systematically evaluates both native and open source so-
lutions. For native mechanisms, we will consider Role-Based Access Control
(RBAC), Attribute-Based Access Control (ABAC), and Webhook, while
for open source alternatives, we are choosing Open Policy Agent (OPA) to rep-
resent the Policy-Based Access Control (PBAC) paradigm and SpiceDB to
represent the Relationship-Based Access Control (ReBAC) paradigm. Each
mechanism is examined in multi-tenant scenarios that closely mirror real-world

10

Introduction

conditions, revealing their practical applicability, strengths, and limits. The evalu-
ation concludes with a comprehensive cross-comparison of all mechanisms and the
paradigms they represent across four dimensions: complexity, granularity, scalabil-
ity, and performance. The outcome is a practitioner’s handbook that assists in the
selection, implementation, and optimization of authorization methods tailored to
specific organizational needs.

Methodologically, this work integrates theoretical analysis with empirical
validation. The theoretical framework analyzes the architectural principles, policy
paradigms, and integration workflows for each mechanism. In contrast, empirical
validation uses scenario-based testing to assess practical performance, including
tenant isolation, dynamic policy enforcement, and resilience under load conditions.
This dual methodology guarantees that the findings are both conceptually sound
and practically applicable.

This thesis is organized to provide a logical progression from fundamental
concepts to a detailed analysis. Chapter 2 introduces Kubernetes architecture,
core components and objects, and the principles of access control, thereby laying
the necessary technical groundwork. Chapter 3 clarifies the thesis objectives,
specifying the scope and methodology. Chapter 4 analyzes native Kubernetes
authorization mechanisms (RBAC, ABAC, and Webhook) through architectural
blueprints, configuration workflows, and scenario-based assessments. Chapter 5
extends this research to open source alternatives (OPA and SpiceDB), highlighting
their enhanced functionalities and integration paradigms. Chapter 6 offers a com-
parative evaluation within the four-dimensional matrix, consolidating findings into
strategic recommendations. Chapter 7 concludes with a summary of significant
contributions and recommendations for future research directions. This structure
provides practitioners and researchers with an extensive framework to navigate the
intricacies of authorization in Kubernetes.

11

Chapter 2

Kubernetes

This chapter provides an overview of Kubernetes architecture, including its long
history and evolution. It will serve as a summary outlining several topics that we
will focus on in the later chapters. Kubernetes, often referred to as K8s, is a large
framework that would require more time and effort for a comprehensive analysis,
so only an overview of the fundamental concepts and elements is presented here.
For further details, refer to the official documentation [4].

2.1 A bit of history

Before we move on to presenting the intricate details of the workings of Kubernetes,
let us start by giving a historical perspective on how Kubernetes actually came
to be. Around 2004, Google built the Borg [5], a relatively small initiative that
initially involved fewer than five individuals. The initiative was developed alongside
an updated version of Google’s search engine. Borg was a large-scale management
system for internal clusters that executed hundreds of thousands of jobs from several
applications across multiple clusters, each including up to tens of thousands of
machines.

Later, in 2013, Google launchedOmega [6], a robust and scalable scheduler
for large compute clusters. Omega offered a parallel scheduler architecture centered
on shared state, utilizing lock-free optimistic concurrency control to attain both
implementation adaptability and performance scalability.

Finally, in mid-2014, Google introduced Kubernetes as an open source
variant of Borg. Kubernetes was created by Joe Beda, Brendan Burns, Craig
McLuckie, and more engineers at Google. The creation and architecture of Ku-
bernetes were significantly shaped by Borg, with numerous first contributors hav-
ing prior experience with Borg. The initial Borg project was developed in C++,
whereas Kubernetes was implemented in the Go programming language.

Kubernetes v1.0 was released in 2015. Simultaneously with the release,
Google collaborated with the Linux Foundation in creating the Cloud Native
Computing Foundation (CNCF) [7]. Kubernetes has greatly expanded since
then, reaching CNCF graduated status and being adopted by nearly all big orga-
nizations.

12

Kubernetes

Currently, we can say with certainty that Kubernetes serves as the de facto
standard for container orchestration [1]

2.2 Workload management evolution

Kubernetes is defined as a portable, flexible, open source platform for manag-
ing containerized workloads and services, enabling declarative configuration and
automation. It possesses a vast, rapidly expanding ecosystem, with its services,
support, and tools easily accessible. But to understand the importance of such
a definition, we should first provide some historical context of the evolution of
workload management [8]

Traditional deployment era

Initially, enterprises hosted applications on physical servers. The inability to set
resource limits for applications on a physical server resulted in resource allocation
challenges. For instance, when several applications operate on a physical server,
one application could take over the majority of resources, thus leading to poor
performance of the other applications. A viable alternative would be to deploy
each application on a separate physical server. However, this approach did not scale
effectively due to the underutilization of resources, resulting in high maintenance
costs for enterprises managing several physical servers.

Virtualized deployment era

Virtualization was implemented as a solution of the issues of the previous era. It en-
ables the execution of multiple virtual machines (VMs) on a single physical server’s
central processing unit (CPU). Virtualization enables the isolation of applications
into virtual machines (VMs), hence enhancing security by preventing unrestricted
access to one application’s data by another.

Virtualization improves resource efficiency on a physical server and pro-
motes scalability by enabling the seamless addition or updating of applications,
hence reducing hardware expenses and offering many other advantages. It also
allows for the representation of a collection of physical resources as a cluster of
ephemeral virtual machines, where each virtual machine operates as a complete
system, executing all components, including its operating system, atop the virtu-
alized hardware.

Container deployment era

Containers resemble virtual machines (VMs), although they consist of more relaxed
isolation properties, allowing applications to share the operating system (OS). Con-
sequently, containers are seen as lightweight. Like a virtual machine, a container
owns its own filesystem, allocation of CPU, memory, process space, and additional
resources. Being separated from the underlying infrastructure, they are portable
across many cloud environments and operating system distributions.

Containers have gained popularity due to their additional advantages, in-
cluding:

13

Kubernetes

• Agile application development and deployment, enhancing simplicity and ef-
ficiency in container image creation relative to virtual machine image usage.

• Continuous development, integration, and deployment ensure dependable and
frequent container image creation and deployment, allowing rapid and efficient
rollbacks due to image immutability.

• Separation of concerns between development and operations, generating ap-
plication container images throughout the build/release phase instead of dur-
ing deployment, thus separating apps from infrastructure.

• Observability includes not only operating system-level information and met-
rics but also application health and various other indicators.

• Uniformity of the environment across development, testing, and production,
thus operating identically on a laptop as it does in the cloud.

• Portability of cloud and operating system distributions, since it is compat-
ible with Ubuntu, RHEL, CoreOS, on-premises environments, major public
clouds, and additional platforms.

• Application-centric management, which elevates the abstraction level from
an operating system on virtual hardware to executing an application on an
operating system utilizing logical resources.

• Decoupled, distributed, elastic, and autonomous microservices, meaning ap-
plications are segmented into smaller independent components that can be
deployed and controlled dynamically, rather than relying on a monolithic ar-
chitecture operating on a singular specialized computer.

• Resource isolation with consistent application performance.
• Resource utilization with enhanced efficiency and density.

Figure 2.1 illustrates the evolution of workload management, highlighting
the differences between various forms of application deployments.

Figure 2.1. Evolution of applications deployments

Along with technological progress, there has been a shift in workload man-
agement techniques, transitioning from managing VMs as individual units to adopt-
ing a ”cattle” paradigm, wherein VMs are regarded in a more generalized manner.

14

Kubernetes

Even though their management remains closely linked to their lifecycle, the ob-
jective is to advance towards a decoupled methodology, like that utilized by Ku-
bernetes: a declarative approach that states overall intentions, which the system
then implements across all relevant resources, without requiring dealing with indi-
vidual instances. This results in a more detached perspective in which resources
are perceived as commodities that may be created, eliminated, and substituted as
required.

2.3 Container orchestrators

Now that we have seen how workload management has evolved over time and what
the present era of containerized deployment offers us, it brings us back to the core
definition of Kubernetes and how it fits into the big picture.

As hundreds or thousands of containers get created, the necessity for effec-
tive management arises; therefore, container orchestrators have emerged. A con-
tainer orchestrator is a system engineered to efficiently handle intricate container-
ized deployments across several machines from a centralized location. Currently,
Kubernetes serves as the de facto standard for container orchestration, offering a
framework for the resilient operation of distributed systems. It manages scaling
and failover for our applications, offers deployment patterns, and provides addi-
tional functionalities.

Kubernetes offers [9]:

• Service discovery and load balancing Kubernetes may expose a container
via its DNS name or its designated IP address. It can effectively load balance
and distribute network traffic when there is considerable traffic to a container,
ensuring deployment stability.

• Storage orchestration Kubernetes enables the automatic mounting of a
preferred storage solution, including local storage and public cloud providers,
among others.

• Automated rollouts and rollbacks Kubernetes allows you to articulate
the desired state for your deployed containers, and it may adjust the actual
state to align with the desired state at a regulated rate.

• Automatic bin packing Kubernetes is supplied with a cluster of nodes
for executing containerized jobs. You specify the CPU and memory (RAM)
requirements for each container, and it will optimally allocate containers to
your nodes to maximize resource use.

• Self-healing Kubernetes restarts failing containers, replaces them, kills un-
responsive containers based on user-defined health checks, and withholds ad-
vertisement to clients until they are prepared to serve.

• Secret and configuration management Kubernetes allows for storing and
managing sensitive information, including passwords, OAuth tokens, and SSH
keys. Secrets and application configurations can be deployed and updated
without the necessity of rebuilding container images, hence preventing the
exposure of secrets within your stack configuration.

• Batch execution Kubernetes can manage your batch and CI workloads,
replacing failed containers if required, in addition to providing services.

15

Kubernetes

• Horizontal scaling Kubernetes allows adjusting the scale of the applica-
tion effortlessly with a command, via the user interface, or automatically in
response to CPU utilization.

• IPv4/IPv6 dual-stack Allocation of IPv4 and IPv6 addresses to Pods and
Services in a dual-stack configuration

• Designed for extensibility Integrate functionalities into your Kubernetes
cluster without modifying the upstream source code.

2.4 Kubernetes architecture

Having looked at Kubernetes’ role in the containerized deployment scene and its ad-
vantages as a container orchestrator, we can now explore its architecture in greater
detail [10].

When we deploy Kubernetes, a cluster is set up. A cluster comprises
nodes that execute containerized applications. At least one node handles the
control plane and is referred to as control plane or master. Its function is
to oversee the cluster and provide an interface for the user. Instead, the pods,
which are components of the application, are hosted on the worker node(s).
The master oversees the worker nodes and the pods inside the cluster. There is
also the case of single-node clusters, where the control-plane node also acts as a
worker node. In production environments, the control plane typically operates over
multiple machines, while a cluster generally spans several nodes, ensuring fault
tolerance and high availability. Kubernetes adopts a modular architecture with
various components that are responsible for different aspects of the cluster. The
main ones are represented in Figure 2.2 and will now be briefly introduced.

Figure 2.2. Kubernetes architecture

16

Kubernetes

2.4.1 Control plane components

The components of the control plane take global decisions regarding the cluster,
such as scheduling, and also identify and react to cluster events. Control plane
components may be executed on any machine inside the cluster, but for the sake
of simplicity, setup scripts often initiate all control plane components on a single
system and do not execute user containers on that machine.

Some of the components of the control plane are as follows:

API server

The API server is probably the most important component in the Kubernetes con-
trol plane that interfaces with the Kubernetes API. It serves as the front end for
the Kubernetes control plane. The default implementation of a Kubernetes API
server is kube-apiserver. The kube-apiserver is engineered for horizontal scal-
ability, meaning it expands by deploying additional instances. Multiple instances
of kube-apiserver can be executed, allowing for traffic distribution among them.

etcd

etcd is a reliable and highly accessible key-value store, utilized as the backup
store for all cluster data in Kubernetes. It keeps configuration data, state data,
and metadata within Kubernetes. In order to guarantee data storage consistency
among all cluster nodes for a fault-tolerant distributed system, etcd is based on
the Raft consensus algorithm [11]. In a Kubernetes cluster, etcd is implemented
as pods within the control plane. To enhance security and resilience, it may also
be implemented as an external cluster.

Scheduler

It is a control plane component that monitors freshly produced pods lacking an as-
signed node and assigns a node to host them. The default scheduler offered by Ku-
bernetes is known as kube-scheduler. However, it can be tailored by incorporating
additional schedulers and specifying in the pods to use them. Scheduling decisions
consider individual and collective resource requirements, hardware/software/pol-
icy limitations, affinity and anti-affinity specifications, data locality, inter-workload
interference, and deadlines.

kube-controller-manager

It is the component in charge of executing controller processes. It constantly com-
pares the desirable state of the cluster, as defined by the object specifications, with
the current state retrieved from etcd. Logically, every controller operates as an
independent process, but in order to decrease complexity, they are all compiled
into a singular binary and executed within a single process.

Several kinds of controllers exist. We can mention some of them here:

• Node controller: detects and addresses node failures.
• Job controller: monitors job objects that signify one-off tasks and subse-
quently generates pods to execute those tasks till completion.

17

Kubernetes

• EndpointSlice controller: completes EndpointSlice objects to establish a
connection between Services and Pods.

• ServiceAccount controller: generates default ServiceAccounts for newly
created namespaces.

cloud-controller-manager

A component of the Kubernetes control plane that integrates cloud-specific con-
trol mechanisms. The cloud controller manager enables the connection of your
cluster with your cloud provider’s API, distinguishing the components that en-
gage with the cloud platform from those that just engage with your cluster. The
cloud-controller-manager exclusively operates controllers tailored to your cloud
provider. If you are operating self-hosted Kubernetes or in a personal learning
environment on your local machine, the cluster lacks a cloud controller manager.

Similar to the kube-controller-manager, the cloud-controller-manager
merges multiple conceptually distinct control loops into a singular binary run as
one single process. Horizontal scaling (executing many instances) enhances perfor-
mance and increases fault tolerance.

The subsequent controllers may have dependencies on cloud providers:

• Node controller: verifies with the cloud provider whether a node has been
removed from the cloud following its failure to respond.

• Route controller: configures routes within the base cloud infrastructure
• Service controller: creates, modifies, and deletes cloud provider load bal-
ancers.

2.4.2 Node components

Node components operate on each node, managing running pods and delivering the
Kubernetes runtime environment.

Container runtime

An essential element that enables Kubernetes to run containers properly. It over-
sees the execution and lifecycle management of containers within the Kubernetes
ecosystem. Kubernetes accommodates container runtimes, including contain-
erd, CRI-O, and any other implementation of the Kubernetes Container Runtime
Interface (CRI). Basically, we need a properly working container runtime on each
node within our cluster so that the kubelet can launch Pods and their respective
containers.

kubelet

An agent operates on every node within the cluster. It ensures that containers
are operational within a pod. The kubelet receives a collection of PodSpecs via
multiple ways and guarantees that the containers specified in those PodSpecs are
operational and in good health. The kubelet is not in charge of containers that
were not instantiated by Kubernetes.

18

Kubernetes

kube-proxy (optional)

kube-proxy is a network proxy that operates on each node within your cluster,
enabling a part of the Kubernetes Service concept. It regulates network configu-
rations on nodes, where these network regulations provide communication to your
Pods from network sessions both within and outside your cluster. It utilizes the
operating system’s packet filtering layer when it is present and accessible, or alter-
natively, kube-proxy directly routes the traffic by itself. Instead, if we are using a
network plugin, then kube-proxy is unnecessary on the nodes within our cluster.

Addons

Addons utilize Kubernetes resources to implement cluster functionalities that are
not yet native to Kubernetes. As these offer cluster-level functionalities, names-
paced resources for addons must be under the kube-system namespace. Some
examples are DNS, Web UI, network plugins, monitoring, and logging.

2.5 Kubernetes objects

After we have seen the architectural components of Kubernetes, we can move on to
focus on the real building blocks that make up the ecosystem; Kubernetes objects
are entities that remain persistent within the Kubernetes ecosystem [12]. Kuber-
netes leverages these entities to express the state of the cluster. They can specifically
define:

• Which containerized applications are operational and on which nodes
• The resources accessible to those applications
• The policies governing the behavior of those applications, including restart
rules, upgrades, and fault tolerance.

A Kubernetes object serves as a ”record of intent”. Upon its creation, the
Kubernetes system persistently tries to sustain the object’s existence. By con-
structing an object, you are explicitly defining the desired state of your cluster’s
workload within the Kubernetes system. To interact with Kubernetes objects,
whether for creation, modification, or deletion, you must utilize the Kubernetes
API. One practical way is to use the kubectl command-line interface to execute
the requisite Kubernetes API calls on your behalf.

Nearly every Kubernetes object comprises two nested fields that dictate the
object’s configuration: spec and status. For objects with a spec, it is necessary to
establish this at object creation by detailing the qualities you wish the resource to
possess, describing its desired state. Instead, status defines the present state of the
object, provided and refreshed by the Kubernetes system and its components. The
Kubernetes control plane consistently and proactively regulates the actual state of
each object to align with the desired state you provided.

Kubernetes establishes various object types that serve as its basic building
blocks. A Kubernetes resource object typically comprises the following fields:

• APIVersion: denotes the versioned schema of this object’s representation.
• Kind: a string value denoting the REST resource this object signifies

19

Kubernetes

• ObjectMeta: metadata pertaining to the object, including its name, annota-
tions, labels, and other relevant details.

• ResourceSpec: user-defined, it delineates the intended state of the item.
• ResourceStatus: populated by the server, it indicates the current condition
of the resource.

The permitted operations on these resources consist of the standard CRUD
actions:

• Create: create generates the resource within the storage backend. Upon
the creation of a resource, the system enforces the specified state.

• Read: includes three variations.
– get: obtain a specific resource object by its name.
– list: obtain all resource objects of a particular type inside a namespace,

with the option to limit results to those that meet a selector query.
– watch: stream updates for an object(s) as modifications occur.

• Update: includes two variations.
– replace: substitute the current specification with the supplied one.
– patch: implement a modification to a designated field.

• Delete: delete removes a resource. Child objects of the deleted resource
may or may not be subject to garbage collection by the server, depending
upon the specific resource.

We will also outline the most important objects needed for the chapters
that follow.

Labels and Selectors

Although not classified as objects, these elements are essential for object descrip-
tion, so we address them first. Labels are key-value pairs applied to a Kubernetes
object, utilized for the organization and identification of a subset of objects. Selec-
tors are the grouping constructs that enable the selection of a collection of objects
sharing the same label.

Namespaces

Namespaces serve as virtual partitions inside the cluster. Kubernetes, by default,
generates four namespaces:

• kube-system: comprises items generated by the Kubernetes system, mostly
control-plane agents.

• default: comprises items and resources generated by users and is the one
entity used by default

• kube-public: accessible to all users, including unauthenticated individuals,
and utilized for specific functions such as sharing public information about
the cluster.

• kube-node-lease: responsible for preserving items related to heartbeat data
from nodes.

Dividing the cluster into many namespaces is an effective strategy for en-
hancing its virtualization.

20

Kubernetes

Pods

Pods represent the fundamental processing units within Kubernetes. A pod is a
logical aggregation of one or more containers that utilize the same network and
storage and are concurrently scheduled within the same pod. Pods are ephemeral
and lack auto-repair capabilities; hence, they are typically governed by a controller
that manages replication, fault tolerance, and self-healing.

ReplicaSet

ReplicaSets manage a collection of pods, enabling the scaling of the current pod
count implementation. Upon the deletion of a pod within the set, the ReplicaSet
detects an inconsistency between the current number of replicas, as indicated in
the Status, and the desired count, as stated in the Spec, prompting the creation
of a new pod. Typically, ReplicaSets are not utilized directly. Instead, Kubernetes
offers a higher-level abstraction known as a Deployment that we are considering
next.

Deployment

Deployments oversee the creation, alteration, and deletion of pods. A deployment
automatically generates a ReplicaSet, which then produces the specified number
of pods. Consequently, an application is generally deployed within a deployment
rather than in an individual pod.

Service

A service is an abstract mechanism for exposing an application operating on a
collection of Pods as a network service. It may have varying access scopes based
on its ServiceType:

• ClusterIP: A service accessible solely from within the cluster. It is the default
type.

• NodePort: Exposes the service on a fixed port of each Node’s IP address. The
NodePort Service is accessible externally by reaching <NodeIP>:<NodePort>.

• LoadBalancer: Exposes the service externally using a cloud provider’s load
balancer.

• ExternalName: Associates the service with an external entity, enabling local
applications to use it.

ConfigMaps

ConfigMaps are Kubernetes objects utilized for the storage of container configura-
tion data in key-value pairs. ConfigMaps facilitate the development of lighter and
more portable images by isolating configuration data from the remainder of the
container image.

Secrets

A secret is an object that holds a limited quantity of sensitive information, including
a password, token, or key. This information may alternatively be included in a pod

21

Kubernetes

specification or within a container image. But utilizing a secret eliminates the
necessity of embedding sensitive information within your application code. This
way, as secrets can be generated separately from the pods that utilize them, the risk
of exposing the secret and its data throughout the processes of creation, viewing,
and modifying Pods is minimized. In some ways, secrets resemble ConfigMaps but
are specifically designed to store sensitive information.

ServiceAccount

A service account is a non-human account that offers a unique identity within a
Kubernetes cluster. Application pods, system components, and entities within as
well as outside the cluster can utilize the credentials of a designated ServiceAc-
count to authenticate as that ServiceAccount. This identity is beneficial for several
contexts, such as authenticating with the API server or enforcing identity-based
security regulations. They are namespaced, lightweight, and portable. Upon the
creation of a cluster, Kubernetes automatically generates a ServiceAccount object
designated as default for each namespace within the cluster. When a pod is de-
ployed in a namespace without a manually assigned ServiceAccount, Kubernetes
automatically allocates the default ServiceAccount of that namespace to the pod.

At this point, we have covered the fundamentals of Kubernetes, and we are
well prepared to dive deep into the details of access control and authorization that
are going to be our main focus throughout this thesis.

2.6 Kubernetes access control

Since our work is going to be focused on the authorization mechanisms in Kuber-
netes, we see it as necessary to first introduce it from the perspective of access
control fundamentals [13], and then we will move on to focusing more on the au-
thorization implementation.

Both human users and Kubernetes service accounts may be granted au-
thorization for API access. Upon receiving a request, the API undergoes multiple
phases: authentication, authorization, and admission control, before grant-
ing access, as demonstrated in Figure 2.3.

Figure 2.3. Access control in Kubernetes

22

Kubernetes

We start with a short introduction of the authentication mechanism [14].
Authentication is the procedure by which one’s identity is verified using certain cre-
dentials. In Kubernetes, after the establishment of TLS for secure communication,
the HTTP request proceeds to the authentication phase. The API server is config-
ured to execute one or more authenticator modules, specified in the cluster startup
or the following configuration. They consist of client certificates, passwords, plain
tokens, bootstrap tokens, and JSON Web Tokens (for service accounts). Several
authentication modules may be defined, where each is attempted sequentially until
one succeeds. Requests that cannot be authenticated are denied with an HTTP
status code of 401. Otherwise, the person is authorized under a specific username,
which is exposed for the following steps.

Next in line is the authorization mechanism [15]. Once the request is ver-
ified as coming from a specific user, it must undergo authorization. A request has
to include the requester’s username, the desired action, and the object impacted
by the action. The request is approved if a current policy indicates that the user
possesses permission to carry out the action requested. Kubernetes authorization
demands the utilization of standard REST attributes in order to engage with pre-
existing organization-wide or cloud-provider-wide access control systems. Using
REST formatting is essential also because these control systems may interface with
APIs beyond the Kubernetes API. Kubernetes supports many authorization mod-
ules, which we are going to specify in more detail later on. If several of these
are specified upon cluster startup or later configuration, Kubernetes evaluates each
module sequentially, and if any of them grants authorization, the request may then
proceed. If all modules reject the request, the request gets denied with an HTTP
status code of 403.

The last mechanism in line is called Admission Control [16]. These mod-
ules are software components that can alter or deny requests. Besides the attributes
visible to authorization modules, admission control modules are allowed to access
the object’s contents that are being created or updated. Admission controllers re-
spond to requests that create, modify, delete, or proxy an object. They do not
respond to requests that solely read objects. When multiple admission controllers
are configured, they are invoked sequentially. In contrast to authentication and
authorization modules, a rejection by any admission controller module results in
the instant denial of the request. Upon being successfully processed through all ad-
mission controllers, a request undergoes validation using the designated procedures
for the respective API object, and after that, gets written in the object store.

Now that we have an idea of how the authorization mechanism is positioned
in the access control process in Kubernetes, we can move on to providing more
details on how this mechanism is implemented. Starting with the authorization
modes supported by the Kubernetes API server:

AlwaysAllow

As the name suggests, this mode permits all requests, bypassing authorization.
Since authorization mechanisms generally give either a denial or a no-opinion out-
come, activating the AlwaysAllow mode will permit all the requests after all other
authorizers provide a ”no opinion” response. The AlwaysAllow mode should not

23

Kubernetes

be utilized on a Kubernetes cluster accessible from the Internet or in environments
where there is no full trust in all possible API clients, including the workloads
deployed. The sole acceptable context is maybe within a testing scenario.

AlwaysDeny

As the name suggests, this mode denies all requests. The sole acceptable context
is maybe within a testing scenario.

Node

It is a specialized authorization mode that only authorizes kubelet-generated API
requests.

RBAC

Role-based access control is a mechanism for controlling access to computer or
network resources based on the roles of individual users within an organization.
We are going to see this authorization mode in full detail later.

ABAC

Attribute-based access control establishes a paradigm of access control in which
access permissions are given to users via policies that bring together different at-
tributes. We are going to see this authorization mode in full detail later.

Webhook

This mode does a synchronous HTTP callout, stalling the request until the third-
party HTTP service replies to the query. We are going to see this authorization
mode in full detail later.

One note at this point about the system:masters group, which is a prede-
fined Kubernetes group that provides unrestricted access to the API server. Users
appointed to this group possess complete cluster administrator rights, bypassing
any boundary of authorization established by the RBAC or Webhook mode. There-
fore, it is advised not to add users to this group. If you indeed have a need to allow
cluster-admin rights to a user, you may do so by making a ClusterRoleBinding to
the built-in cluster-admin ClusterRole.

We believe this covers, for now, the broad view of Kubernetes architecture,
objects, and the basis of access control and authorization. We will go into detail
about the different native authorization mechanisms and the open source solutions
in Kubernetes in the following chapters.

24

Chapter 3

Thesis objectives

Having established our motivation and general goal for this thesis, as well as pre-
sented the principles of Kubernetes to lay out our groundwork, we will now outline
our thesis objectives in more detail, describing how we will carry out this research
and what the expected contributions are.

The evolution of cloud computing and container orchestration has elevated
Kubernetes to a pivotal role in modern infrastructure. However, the security impli-
cations of its multi-tenant architecture require robust authorization mechanisms ca-
pable of enforcing fine-grained access control. While Kubernetes offers native solu-
tions and the ecosystem provides open source alternatives, a systematic comparison
of their efficacy, scalability, and operational viability remains underexplored. This
thesis addresses this gap by conducting an exhaustive comparison of Kubernetes
authorization mechanisms, including both native and open source alternatives, go-
ing beyond theoretical explanations and into assessing mechanisms in scenarios that
replicate real-world multi-tenant needs to finally evaluate them systematically.

This thesis employs a three-phase methodology grounded in theoretical
rigor, empirical validation, and comparative synthesis. The initial phase establishes
a thorough theoretical foundation by analyzing the architecture and fundamental
principles of each authorization method and the paradigm they represent. This
involves analyzing the implementation mechanics for each of the chosen authoriza-
tion mechanisms, be they native to Kubernetes or open source alternatives. So
we will be exploring the general workings of the mechanism alongside more spe-
cific aspects. Like, for example, for Role-Based Access Control (RBAC), this will
include role-binding semantics, privilege escalation safeguards, and role aggrega-
tion while emphasizing its inability to enforce deny rules or context-aware policies.
Moving on to Attribute-Based Access Control (ABAC), we will examine it with
a focus on attribute-policy mapping procedures and the operational limitations of
static file management, while specifically addressing the difficulties in policy con-
flict resolution and version control. The assessment of Webhooks covers HTTP
callback workflows and security prerequisites, highlighting their dependency on the
availability of external services and network resilience. Moving on to open source al-
ternatives, we will focus specifically on those that offer a paradigm extension. Open
Policy Agent (OPA) is analyzed for its Policy-As-Code paradigm utilizing Rego,
facilitating dynamic context-aware decision-making, while SpiceDB’s graph-based

25

Thesis objectives

Relationship-Based Access Control (ReBAC) paradigm is evaluated for its efficient
navigation of resource hierarchies and inherited permissions. This phase clarifies
how each mechanism interprets access requests, processes policy logic, and inte-
grates with Kubernetes’ API server, revealing underlying strengths or limitations
and how they impact the granular access control.

The second phase shifts to empirical validation using scenario-based prac-
tical analysis. These meticulously designed scenarios try to replicate real-world
challenges across isolated Kubernetes clusters, each configured with a single autho-
rization mechanism. So we will encounter namespace isolation tests for RBAC’s
role-binding efficacy, policy order tests for seeing its impact on ABAC’s correctness,
label-matching testing policy for Webhook’s flexibility, time-based testing policy for
OPA’s Rego capabilities, attribute-based capabilities in the relationship schema of
SpiceDB to test the fusion of ReBAC with ABAC, and many more. This empiri-
cal methodology connects theoretical insights with practical applications, making it
easier to evaluate not only their individual strengths and limitations, but also useful
for the subsequent cross-comparison among all solutions. To maintain methodolog-
ical clarity, these theoretical and empirical investigations are conducted in parallel
for each mechanism.

Lastly, the third phase conducts a cross-comparative evaluation using a
four-dimensional matrix, composed of complexity, granularity, scalability, and per-
formance, to assess trade-offs. Complexity is determined via setup procedures, tool-
ing dependencies, and development efforts. Granularity is evaluated through policy
expressiveness, including aspects like support for context-aware decisions, label se-
lectors, and explicit denial rules. Scalability is assessed in scenarios of role/policy
explosion and the capabilities of the architecture to support a large number of re-
sources, users, or requests. Performance is evaluated by decision-making speed and
overhead or network-induced latencies based on the architectural characteristics.
Mechanisms are ranked dimensionally, specifying them as the most and least opti-
mal choices. The concluding summary converts these findings into a practitioner’s
guide, aligning organizational needs with solutions and trying to give recommen-
dations on how to choose the most optimal one.

After having explained our methodology in detail, we can state the thesis
contributions more clearly. Three fundamental contributions are made to Kuber-
netes security, particularly regarding fine-grained access control. First, it establishes
a comprehensive taxonomy of authorization paradigms, systematically categorizing
native mechanisms, clarifying architectural principles, policy semantics, and in-
tegration workflows. Second, it delivers an extensive empirical validation utilizing
scenario-based analysis. The findings from this are further explored through a cross-
comparison analysis among all present mechanisms, based on a four-dimensional
evaluation matrix spanning complexity, granularity, scalability, and performance.
Last, the work synthesizes these theoretical and empirical insights into a prac-
titioner’s handbook, enabling informed selection, practical implementation, and
optimization reasoning for the authorization mechanisms, enabling practitioners to
manage Kubernetes’ security challenges while maintaining innovation speed.

What remains for us is to deep-dive into our analysis and achieve our defined
objectives.

26

Chapter 4

Native k8s authorization
mechanisms

In this chapter, we are going to provide a deep dive into native Kubernetes au-
thorization mechanisms. We covered the high-level description of access control
in Kubernetes and the authorization mechanisms supported natively by it in the
Kubernetes chapter. Therefore, we can go into more details on the main triplet
of these mechanisms, RBAC, ABAC, and Webhook, not just providing a high-
level view introducing their workings and characteristics, but proceeding with a
scenario-based analysis and results drawn from it. All the high-level descriptions of
the authorization mechanisms are true to the official documentation of Kubernetes
[17].

4.1 Role-Based Access Control (RBAC)

Role-based access control is one of the authorization mechanisms present in the
group of native authorization mechanisms in Kubernetes. As the name suggests,
RBAC is a mechanism for controlling access to computer or network resources based
on the roles of individual users within an organization.

RBAC authorization uses the rbac.authorization.k8s.io API group to
facilitate authorization decisions, enabling dynamic policy configuration using the
Kubernetes API. The RBAC API defines four types of Kubernetes objects: Role,
ClusterRole, RoleBinding, and ClusterRoleBinding. RBAC objects can be
described or modified using command-line tools like kubectl, similar to any other
Kubernetes object.

An RBAC Role or ClusterRole comprises rules that define a collection of
permissions. Permissions are only additive, with no space for ”deny” rules. The
difference between the two stands on the fact that a Role specifies permissions inside
a specific namespace, which you are constrained to pick upon creation, whereas a
ClusterRole is not namespace-scoped. Consequently, ClusterRoles serve multiple
purposes. They can be utilized to:

• Establish permissions on namespaced resources and allow access inside specific
namespace(s).

27

Native k8s authorization mechanisms

• Establish permissions on namespaced resources and allow access across all
namespaces.

• Establish permissions for resources that are scoped to the cluster.

So the choice is clear: if you need to define a position within a namespace, utilize
a Role. Instead, if a role across the cluster is needed, ClusterRole is the correct
object.

As we mentioned before, the set of permissions is defined through rules.
In the rule, we specify the allowed apiGroups, their resources (or non-resources),
and verbs that can be applied to these resources. In the Kubernetes API, the
majority of resources are represented and accessible via a string denoting their ob-
ject name, such as pods for a Pod. RBAC denotes resources utilizing the identical
naming found in the URL of the corresponding API endpoint. Certain Kubernetes
APIs include a subresource, like the logs of a Pod that in RBAC role is repre-
sented as pods/log using a slash to differentiate the resource from the subresource.
For specific requests, you may also reference resources by their names using the
resourceNames list. Upon specification, requests may be confined to particular
instances of a resource. But you cannot limit create or delete collection re-
quests based on their resource name. This constraint arises because the name of the
new item is unknown at the time of authorization. To restrict listing or watching
by resourceName, clients have to include a metadata.name field selection in their
request that aligns with the designated resourceName to obtain authorization.

Instead of specifying individual resources, apiGroups, and verbs, one may
utilize the wildcard (represented with *) to denote all such entities. For
nonResourceURLs, the wildcard can be used as a suffix glob match. But the uti-
lization of wildcards in resource and verb entries may lead to excessively liberal
access to critical resources. The principle of least privilege must be implemented,
utilizing specified resources and actions to guarantee that only the necessary rights
for the workload’s proper operation are granted.

Simple samples of Role and ClusterRole manifests are as follows:

Listing 4.1. RBAC Role object sample manifest

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

name: secret-reader

namespace: namespace-a

rules:

- apiGroups: [""]

resources: ["secrets"]

verbs: ["get", "list", "watch"]

Listing 4.2. RBAC ClusterRole object sample manifest

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

name: cross-namespace-secret-reader

28

Native k8s authorization mechanisms

rules:

- apiGroups: [""]

resources: ["secrets"]

verbs: ["get", "list", "watch"]

A role binding applies the permissions specified in a role to an individual
or group of users. It contains a list of subjects (users, groups, or service accounts)
and a reference to the role being bound to. A RoleBinding allows permissions within
a designated namespace, but a ClusterRoleBinding extends that access throughout
the entire cluster. A RoleBinding can reference any Role inside the same namespace
or, alternatively, can reference a ClusterRole, in this way binding that ClusterRole
to the namespace of the RoleBinding. Instead, to associate a ClusterRole with all
namespaces in your cluster, utilize a ClusterRoleBinding.

To elaborate a bit more on the subjects, as stated before, they may include
groups, users, or ServiceAccounts. Kubernetes denotes usernames as strings. It is
the responsibility of the cluster administrator to set up the authentication mod-
ules to generate usernames in your desired format. Be cautious about the prefix
system:, as it is designated for Kubernetes system use. Ensure that no individuals
or groups accidentally possess names that begin with system:. Aside from this spe-
cific prefix, the RBAC authorization mechanism imposes no format requirements
for usernames.

In Kubernetes, authenticator modules supply group information. Groups,
similar to users, are denoted as strings, which have no requirement of format rules,
except that the prefix system: is designated for reserved usage. ServiceAccounts
are designated with names that begin with system:serviceaccount:, and are
associated with groups that have names starting with system:serviceaccounts:.

Simple samples of RoleBinding and ClusterRoleBinding manifests are as
follows:

Listing 4.3. RBAC RoleBinding object sample manifest

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

name: user-a-secret-reader

namespace: namespace-a

subjects:

- kind: User

name: user-in-A

apiGroup: rbac.authorization.k8s.io

roleRef:

kind: Role

name: secret-reader-a

apiGroup: rbac.authorization.k8s.io

Listing 4.4. RBAC ClusterRoleBinding object sample manifest

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

29

Native k8s authorization mechanisms

metadata:

name: admin-cluster-secret-reader

subjects:

- kind: User

name: cluster-admin-user

apiGroup: rbac.authorization.k8s.io

roleRef:

kind: ClusterRole

name: cross-namespace-secret-reader

apiGroup: rbac.authorization.k8s.io

To put it in a visualized manner, Figure 4.1 shows how everything is inter-
connected in RBAC.

Figure 4.1. RBAC model

RBAC API in Kubernetes offers some special solutions that other native
mechanisms do not support.

First, it supports the aggregation of ClusterRoles. Multiple Cluster-
Roles can be consolidated into a single, unified ClusterRole. A controller, operat-
ing within the cluster control plane, monitors ClusterRole objects that possess an
aggregationRule configuration. The aggregationRule specifies a label selector
utilized by the controller to identify other ClusterRole objects that should be com-
bined into the rules field of this particular object. Since the control plane replaces
any settings you explicitly input in the rules field of an aggregate ClusterRole, and
then to modify or append rules, adjust the ClusterRole objects identified by the
aggregationRule. ClusterRole aggregation. It is used for the default user-facing
roles, enabling the cluster administrator to add rules for custom resources, like
those provided by CustomResourceDefinitions (CRD) or aggregated API servers,
therefore expanding the default roles.

Next, it includes the newly mentioned default user-facing roles as part
of the default roles and role bindings. API servers provide a collection of de-
fault ClusterRole and ClusterRoleBinding objects. Many of these are prefixed
with system: indicating that the resource is directly governed by the cluster con-
trol plane. Every default ClusterRole and ClusterRoleBinding is annotated with

30

Native k8s authorization mechanisms

kubernetes.io/bootstrapping=rbac-defaults. This way it can support auto-
reconciliation, API discovery roles, user-facing roles, core component roles, and
other component roles. With auto-reconciliation, upon each start-up, the API
server updates default cluster roles by including any absent permissions and up-
dates default cluster role bindings by adding any missing subjects. This enables
the cluster to fix unintentional modifications and helps in keeping the roles and
role bindings updated when permissions and subjects evolve in future Kubernetes
releases. As for API discovery roles, default cluster role bindings provide both
unauthenticated and authenticated users access to API information considered safe
for public disclosure, including CustomResourceDefinitions. We can disable anony-
mous unauthenticated access by incorporating the --anonymous-auth=false flag
into the API server settings. As for user-facing roles, we have to know that there
exist some default ClusterRoles without the prefix system: intended as user-facing
roles. They contain super-user roles (cluster-admin), roles designated for cluster-
wide assignment via ClusterRoleBindings, and roles designed for specific names-
paces through RoleBindings (admin, edit, and view). User-facing ClusterRoles
utilize ClusterRole aggregation to enable administrators to add rules for custom
resources within these ClusterRoles. The same thing is applied to core component
roles and other cluster roles.

Last, RBAC API supports privilege escalation prevention and boot-
strapping. This enforcement happens at the API level; therefore, it is applicable
even in the absence of the RBAC authorizer. There are clear restrictions on role
creation and updating, and role binding creation. A role can only be created or
updated if at least one of the following conditions is met:

• You possess all the permissions associated with the role, applicable at the
same scope as the object being altered (cluster-wide for a ClusterRole, or
within the same namespace or cluster-wide for a Role).

• You are explicitly authorized to execute the escalate verb on the roles or
clusterroles resource within the rbac.authorization.k8s.io API group.

A role binding can only be created or updated if at least one of the following
conditions is met:

• You possess all the permissions associated with the role, applicable at the
same scope as the object being altered (cluster-wide for a ClusterRoleBinding,
or within the same namespace or cluster-wide for a RoleBinding).

• You are explicitly authorized to execute the bind verb on the Roles or Clus-
terRoles resource within the rbac.authorization.k8s.io API group.

The last thing to mention regarding RBAC is how it can be an upgrade
from ABAC. One of the differences between these two mechanisms that makes the
transition difficult is that ABAC, with its permissive policies, allows full API ac-
cess for all the service accounts, while RBAC, even though it gives scoped access to
control-plane components, nodes, and controllers, denies permissions to service ac-
counts outside of the kube-system namespace. Although significantly more secure,
this may disturb existing workloads that anticipate automatic API authorization.
This can be fixed in two ways: either by running both authorizers in parallel or
replicating the permissive policies of ABAC by using RBAC role bindings.

We have now concluded by providing a high-level overview of the workings

31

Native k8s authorization mechanisms

of RBAC in Kubernetes. We have familiarized ourselves with the way it works
in principle and are prepared to advance to the next phase of exploring RBAC
in action. Prior to engaging in a scenario-based analysis where we will explore
the practical implementation of RBAC, we are going to examine further specifics
regarding its configuration for use within the cluster.

4.1.1 Configuration

RBAC authorization mode is certainly the easiest to configure in our cloud-agnostic
Kubernetes scenario. Since the Kubernetes API server comes by default with RBAC
configured as one of the authorization modes under the --authorization-mode

flag, we do not need to carry out extra configuration in cluster startup. This is true
for cluster setups with kubeadm, as well as kind clusters. Actually, under this
category also falls the Node authorization mode. And it is important to note that
these two authorization modes, RBAC and Node, cannot be removed or added in
a later configuration, only reordered. This is a very crucial point, because in the
following ABAC and Webhook authorization modes, we are going to deal with a
significantly complex configuration at cluster startup. Therefore, all we have to do
to use RBAC authorization mode for our following scenario-based analysis is set
up the cluster itself.

In kubeadm, we can set up our cluster by carrying out the following com-
mands in a terminal [18]:

#intiate cluster

sudo kubeadm init --pod-network-cidr=a.b.c.d/e --service-cidr=f.h.i.j/k

#configure kubectl

mkdir -p $HOME/.kube

sudo cp /etc/kubernetes/admin.conf $HOME/.kube/config

sudo chown $(id -u):$(id -g) $HOME/.kube/config

#install a CNI

curl -L --remote-name-all https://github.com/cilium/cilium-cli/releases/\

download/v0.18.3/cilium-linux-amd64.tar.gz

sudo tar xzvfC cilium-linux-amd64.tar.gz /usr/local/bin

cilium install

#run this command in the worker node to join it to your cluster

kubeadm join control-plane-ip:port --token itValue \

--discovery-token-ca-cert-hash itValue

#or for a one-node cluster

#run this to be able to schedule workloads in control plane node

kubectl taint node --all node-role.kubernetes.io/master:NoSchedule-

In kind, we can simply set up our cluster with the following command [19]:

#create one-node cluster

kind create cluster

#create a multi-node cluster

kind create cluster --config kind-config-file.yaml

Where the configuration file passed in the command looks like this:

Listing 4.5. Kind configuration file

32

Native k8s authorization mechanisms

kind: Cluster

apiVersion: kind.x-k8s.io/v1alpha4

nodes:

- role: control-plane

- role: worker

The only extra configuration in this case has to do with the authentication
mechanism instead. For our RBAC scenarios, we have chosen to authenticate our
users via the means of X.509 certificates. We can carry out the following com-
mands to prepare our environment for our scenario-based analysis that is next on
our agenda [20]:

#generate private key:

openssl genrsa -out user.key 2048

#create CSR:

openssl req -new -key user.key -out user.csr -subj \

"/CN=user/O=which-namespace"

#encode CSR in base64

cat user.csr | base64 | tr -d "\n"

#make sure to copy this to insert in the CertificateSigningRequest

#create a CertificateSigningRequest Kubernetes object

#(file structure shown later)

kubectl create -f certificate-signing-request.yaml

#approve the certificate

kubectl certificate approve user-csr

#you can check CSRs (should show approved and issued state)

kubectl get csr

#retrieve and store the approved certificate

kubectl get csr user-csr -o jsonpath='{.status.certificate}' | base64 -d \

> user.crt

#finally set user credentials

kubectl config set-credentials user --client-certificate=user.crt \

--client-key=user.key

And as promised, the file structure for the CSR object manifest looks like
the below.

Listing 4.6. CertificateSigningRequest object manifest

apiVersion: certificates.k8s.io/v1

kind: CertificateSigningRequest

metadata:

name: user-csr

spec:

groups:

- system:authenticated

request: <base64-encoded-csr>

signerName: kubernetes.io/kube-apiserver-client

usages:

- client auth

33

Native k8s authorization mechanisms

Last, we are going to quickly review some command-line utilities to manage
RBAC objects. Even though in our scenarios we are going to deploy these types of
objects by applying manifests, for the sake of completeness, we are going to show
here also the individual commands that make it possible to dynamically configure
and manage these objects and, as a consequence, RBAC accsess control.

#create a Role allowing to perform these verbs on these resources

kubectl create role name-of-role --verb=verb1,verb2 \

--resource=resource1,resource2

#create a ClusterRole

kubectl create clusterrole name-of-clusterrole --verb=verb1,verb2 \

--resource=resource1,resource2

#create a RoleBinding between a Role and user

kubectl create rolebinding user-role-binding --role=name-of-role \

--user=name-of-user --namespace=namespace-of-role

#create a RoleBinding between a ClusterRole and user

kubectl create rolebinding user-clusterrole-binding \

--clusterrole=name-of-clusterrole --user=name-of-user \

--namespace=which-namespace

#create a ClusterRoleBinding between a ClusterRole and a service account

kubectl create clusterrolebinding user-clusterrole-clusterbinding \

--clusterrole=name-of-clusterrole \

--serviceaccount=namespace:name-of-serviceaccount

#apply a manifest of RBAC objects

kubectl auth reconcile -f my-rbac-rules.yaml

#delete any Role, ClusterRole, RoleBinding, ClusterRoleBinding

#with the following command adjusted to the case

kubectl delete role name-of-role

As for testing our policies, we can do this by using the kubectl auth can-i

commands, where we can impersonate whatever user we want. They look like the
following:

#kubectl auth can-i verb resource -n namespace --as user

#returns yes or no depending if the established policies allow it or not

kubectl auth can-i get secrets -n namespace-a --as user-in-A

At this point, we have carried out all the configurations needed, so we can
move on to implementing our scenario-based analysis.

4.1.2 Scenario-based analysis

In this section, we will examine various scenarios demonstrating the implementation
of RBAC. We will observe close to real-life applications of RBAC while highlighting
the strengths and limitations of its mechanism and the paradigm itself.

Scenario 1

In this scenario, we are going to show a simple case of RBAC authorization where
users have access to the secrets only in their respective namespaces. It involves
two distinct namespaces (namespace-a and namespace-b), each containing two
secrets (in namespace-a: secret-a1, secret-a2; in namespace-b: secret-b1,

34

Native k8s authorization mechanisms

secret-b2), accessible only to users associated with the respective namespace. We
establish two roles (secret-reader-a and secret-reader-b) that possess permis-
sions exclusively to get, list, and watch over secrets as resources within their
designated namespaces. We have already authenticated our two users (user-in-A
and user-in-B), one within each namespace, and so we can bind them to their
corresponding roles, secret-reader-a and secret-reader-b.

Figure 4.2 illustrates an outline of the scenario.

Figure 4.2. RBAC scenario 1

We have all our objects ready in manifests, and once we have deployed
everything in our cluster, we can move on to testing our scenario to see if it behaves
as we want it to.

kubectl auth can-i get secrets -n namespace-a --as user-in-A #return yes

kubectl auth can-i get secrets -n namespace-b --as user-in-B #return yes

kubectl auth can-i get secrets -n namespace-b --as user-in-A #return no

#if we run

kubectl get secrets -n namespace-b --as=user-in-A

#returns Error from server (Forbidden): secrets is forbidden:

#User "user-in-A" cannot list resource "secrets" in API group ""

#in the namespace "namespace-b"

#if we run

kubectl get secrets --as=user-in-A

#returns Error from server (Forbidden): secrets is forbidden:

#User "user-in-A" (or "user-in-B") cannot list resource "secrets"

#in API group "" in the namespace "default"

We tested that the users are able to see all secrets belonging to their names-
pace (the namespace appointed by the role they are bound to), so our implemen-
tation is behaving correctly as expected. With this scenario, we were able to see
how easy it is to set authorization with RBAC and deploy it in the cluster.

Scenario 2

In this scenario, we are going to show another simple case of RBAC authorization,
where a user has limited access only to a specific secret in a namespace. Similar

35

Native k8s authorization mechanisms

to scenario 1, there are two distinct namespaces (namespace-a and namespace-b),
each containing two secrets (in namespace-a: secret-a1, secret-a2; in
namespace-b: secret-b1, secret-b2). Unlike Scenario 1, this scenario involves
a single user with limited access, permitted to view only a certain secret within
their namespace. We do this by establishing a role (restricted-secret-reader)
that is permitted only to get, list, and watch secret-a1 within the namespace
namespace-a. This is achieved by using the resourceNames associated with the
role. Consequently, the behavior and execution of the verbs are modified. The user
restricted-user-in-A, bound to this role, must explicitly indicate the name of
the secret they are permitted to access when executing the kubectl get command;
otherwise, an error will occur.

Figure 4.3 illustrates an outline of the scenario.

Figure 4.3. RBAC scenario 2

The following commands test the behavior:

kubectl get secrets secret-a1 -n namespace-a --as=restricted-user-in-A

#gets you the secret

kubectl get secrets -n namespace-a --as=restricted-user-in-A

#returns an error: Error from server (Forbidden): secrets is forbidden:

#User "restricted-user-in-A" cannot list resource "secrets" in API

#group "" in the namespace "namespace-a".

We mentioned this behavior in the RBAC implementation: when list or
watch operations are restricted by resourceName, to obtain authorization, clients
are required to include in their requests for list or watch a metadata.name field
selector corresponding to the specified resourceName. Here we can see more clearly
that when utilizing resourceNames, the list verb fails to filter the results to
display just the resources to which one has access, hence limiting the ability for a
comprehensive listing action altogether.

Also, just to check that restricted-user-in-A has only access in
namespace-a, we test with the following command:

kubectl auth can-i get secrets -n namespace-b --as=restricted-user-in-A

#returns no

It is important to note that this scenario was initially designed to imple-
ment a form of discrimination based on resource details, preferably a label rather

36

Native k8s authorization mechanisms

than a name. This is due to the knowledge that certain resources are ephemeral
and may cease to exist only to be regenerated under a different name; thus, it is
mostly conceptually meaningless to differentiate based on the name of the resource.
However, this scenario revealed a limitation of RBAC, being its inability to restrict
resources based on their labels. This will only be possible in the Webhook scenario
later on.

Scenario 3

In this scenario, we are going to show the creation of the admin role in two different
ways, one that is limited in certain namespaces and one that has access cluster-
wide. As in the prior cases, there are two distinct namespaces (namespace-a
and namespace-b), each containing two secrets (in namespace-a: secret-a1,
secret-a2; in namespace-b: secret-b1, secret-b2). We create a ClusterRole
named cross-namespace-secret-reader that has the permission to get, list,
and watch secrets as resources. Although these permissions are now defined at the
cluster level, this does not imply that they are automatically granted across all
namespaces. To demonstrate this, we have a user named admin-user and bind it
with RoleBindings in each namespace with the ClusterRole. We grant this user ac-
cess to many namespaces by establishing unique RoleBindings for each namespace,
thereby scoping access to those specific namespaces. This allows us to explicitly
specify the namespace to which it has access, but it becomes challenging to manage
when numerous RoleBindings require human configuration.

Figure 4.4 illustrates an outline of the scenario.

Figure 4.4. RBAC scenario 3

We can test this setting with the following commands:

kubectl auth can-i get secrets -n namespace-a --as=admin-user#returns yes

kubectl auth can-i get secrets -n namespace-b --as=admin-user#returns yes

kubectl auth can-i get secrets -n kube-system --as=admin-user#returns no

To grant full access listing all secrets across all namespaces with a single
command, we bind a new user, cluster-admin-user, with a ClusterRoleBinding to
the previously specified ClusterRole. The new user now possesses access to secrets
in all existing namespaces and any future namespaces that may be created. This
authorization is extremely powerful and presents a significant risk. We can see a
simple example when running the following command:

37

Native k8s authorization mechanisms

kubectl get secrets --as=cluster-admin-user --all-namespaces

#returns all secrets cluster-wide

It indeed can read all four secrets deployed from the two namespaces,
as well as secrets from the kube-system namespace (or, in our case, also the
cilium-secrets namespace due to our cluster configuration). To mitigate risk,
we have to reconsider our strategy, avoiding permitting cluster access unless ab-
solutely essential and instead adhering to the principle of the least privilege. In
this case, we observed the simplicity of granting cluster-wide access, as well as the
potential risks that may arise from improperly configured policies.

Scenario 4

This scenario adopts a more realistic perspective on behavior in applications de-
ployed within Kubernetes. We have an application deployment that reads environ-
mental variables from a ConfigMap and does so via a ServiceAccount. Its access
permissions are restricted to read-only at runtime and must not be allowed for alter-
ation in any manner. Instead, we have an administrator who can create, update,
patch, and delete the ConfigMaps, in addition to having read access.

Prior to clarifying the process for achieving this, we will briefly review the
concept of service account [21]. A ServiceAccount in Kubernetes is a non-human
account that offers a unique identity within the cluster. They are crucial in au-
thenticating with the API server or enforcing security policies based on identity.
Upon the creation of a cluster, Kubernetes automatically generates a ServiceAc-
count object named default for each namespace within the cluster. By default,
this account possesses no permissions, aside from the basic API discovery permis-
sions (essentially read-only access) that Kubernetes allocates to all authenticated
principals when RBAC is enabled. Defining customized ServiceAccounts enables
more precise access control using RBAC by associating them with specific roles or
cluster roles. The question that arises is, what benefits do service accounts pro-
vide us? Similar to how users require identities to use Kubernetes, apps operating
within the cluster require identities to interact with Kubernetes resources in a regu-
lated manner. This also facilitates the separation of human identities and machine
identities, hence simplifying the management of permissions and auditing as nec-
essary. This way, automated techniques for interacting with the Kubernetes API
without the necessity of human credentials are more easily accomplished. Overall,
it makes it possible for fine-grained access control to be accomplished with RBAC,
in addition to the fact that ServiceAccounts are scoped to namespaces.

Let us return to our scenario. We create a simple deployment in
namespace-a named sample-app, which possesses a distinct identity via a Ser-
viceAccount referred to as app-service-account. The sample-app must read con-
figuration from ConfigMap (we are talking about data like DATABASE_URL and
LOG_LEVEL), but must not have the capability to modify them. Both ConfigMap
and ServiceAccount are deployed within the same namespace, named as
namespace-a. Subsequently, we create an RBAC Role named configmap-reader,
which possesses the capability to get, list, and watch ConfigMaps within
namespace-a. We bind this role with RoleBinding to the app-service-account.

Figure 4.5 illustrates an outline of the scenario.

38

Native k8s authorization mechanisms

Figure 4.5. RBAC scenario 4

We can test whether the service account can access the ConfigMap with
the following command:

kubectl auth can-i get configmaps \

--as=system:serviceaccount:namespace-a:app-service-account

\-n namespace-a #returns yes

kubectl auth can-i update configmaps \

--as=system:serviceaccount:namespace-a:app-service-account \

-n namespace-a #returns no

To gain the necessary permissions for modifying (associated with verbs like
create, update, patch, delete) ConfigMaps, rather than just reading (associ-
ated with verbs like get, list, watch), we bind our new user, admin-user via
a RoleBinding to a Role named configmap-admin, which includes all previously
mentioned permissions for ConfigMaps within namespace-a. We can verify that
the admin user is capable of modifying the ConfigMap with the following command:

kubectl auth can-i update configmaps --as=admin-user -n namespace-a

#returns yes

So with this scenario, we were able to show how service accounts can be
utilized in achieving a more fine-grained RBAC policy.

Scenario 5

This scenario extends Scenario 4 to demonstrate that ServiceAccount and RBAC
permissions are namespace-scoped. In contrast to the prior case, we have introduced
an additional ConfigMap in namespace-b, which bears the same name as the one
in namespace-a, although with different data. The identical ServiceAccount name
(app-service-account) has been used in both namespaces. The RBAC Role and
RoleBinding are applied exclusively to namespace-a, hence leaving namespace-b

without explicitly granted permissions. This configuration demonstrates that the
ServiceAccount in namespace-a may access the ConfigMap within that namespace;
however, the identically named ServiceAccount in namespace-b cannot access Con-
figMaps, as having the same name does not imply it is the same ServiceAccount.
The admin-user rights are consistent with the previous scenario, indicating that it
can manage just the ConfigMaps in namespace-a, but not in namespace-b.

39

Native k8s authorization mechanisms

Figure 4.6 illustrates an outline of the scenario.

Figure 4.6. RBAC scenario 5

We can test this implementation with the following commands:

kubectl auth can-i get configmaps \

--as=system:serviceaccount:namespace-a:app-service-account \

-n namespace-a #returns yes

kubectl auth can-i get configmaps \

--as=system:serviceaccount:namespace-a:app-service-account \

-n namespace-b #returns no

kubectl auth can-i get configmaps \

--as=system:serviceaccount:namespace-b:app-service-account \

-n namespace-b #returns no

kubectl auth can-i update configmaps --as=admin-user \

-n namespace-a #returns yes

kubectl auth can-i update configmaps --as=admin-user \

-n namespace-b #returns no

In this scenario, we demonstrated the powerful interaction of RBAC with
service accounts, which facilitates fine-grained access control; yet, it simultaneously
introduces complexity in granting access across namespaces.

Scenario 6

This scenario aims to demonstrate a behavior common to multi-team or multi-
environment settings within Kubernetes, where shared configurations exist across
environments. One of the cases, and the one we are going to consider here, is
an application deployment in one namespace that requires access to ConfigMaps
from another namespace. We will configure the ServiceAccount associated with our
sample-app deployment to be granted read permissions for ConfigMaps in names-
paces other than its own. The sample-app deployment and the ServiceAccount
cross-namespace-reader are located in namespace-a, while the required Con-
figMap is situated in namespace-b. Additionally, an RBAC Role named
configmap-reader is created in namespace-b, granting permissions to get, list,
and watch resources as ConfigMaps. This Role is associated with a RoleBind-
ing named cross-namespace-configmap-reader in the destination namespace,

40

Native k8s authorization mechanisms

namespace-b, linking to the ServiceAccount cross-namespace-reader from its
original namespace-a, specifying this namespace clearly in the subject reference
along with the name of the service account.

Figure 4.7 illustrates an outline of the scenario.

Figure 4.7. RBAC scenario 6

We can verify this works with the following command:

kubectl auth can-i get configmaps \

--as=system:serviceaccount:namespace-a:cross-namespace-reader \

-n namespace-b #returns yes

In this scenario, we successfully addressed the limitation established in the
preceding one. While the process for obtaining this access level is comprehensible,
it may become challenging when managing numerous cross-namespace policies.

Scenario 7

In this scenario, we are going to focus more on restricting resources and subresources
via RBAC authorization. In this case, we are proceeding to RBAC regulations
for pod-related activities. A typical real-world case involves providing log access
without execution authorization.

Let us start with a brief overview of logging and execution functionali-
ties. Both are pod-specific activities executed as subresources of the Pod resource,
namely pods/log and pods/exec. Container runtimes collect logs from streams
(stdout and stderr) of processes of containers, which are subsequently obtained
by the kubelet (node agent) and made accessible via the Kubernetes API server
through the pods/log subresource. Log access can be granted via RBAC by assign-
ing a read-only role. Exec creates an interactive connection to the container within
a pod, enabling bidirectional streaming. The client (in this case, kubectl) initiates
an exec session request over the Kubernetes API, which validates the request and
forwards it to the relevant kubelet, which subsequently sets up a connection, via
the container runtime, to the container. To give executive access using RBAC, it
is necessary to configure permissions on the subresource named pods/exec.

In our situation, we intend to permit log access without allowing execution.
However, it is known that RBAC provides only permissive rules, with no capacity

41

Native k8s authorization mechanisms

to define denying rules. The question that arises is, how shall we configure this to
achieve the level of access desired?

First, let us clarify why this level of access is required. To adhere to the
security principle of least privilege, you may have the ability to inspect logs for
diagnostic purposes, but not necessarily possess the authority to execute commands
within active containers. This would also assist in audit compliance, which often
demands a distinction between observation (logging) and modification (execution).
This rule set also prevents accidental alterations and safeguards data. Logs are, by
default, read-only and generally comprise operational data that is not inherently
sensitive. However, the exec command permits potentially destructive operations,
and given that pods may contain sensitive information, this presents an elevated
risk.

We will now proceed to the implementation of this scenario. Initially, we
need a Pod to serve as a sample, along with a ServiceAccount. Following that, we
create an RBAC Role that defines permissions to get, list, and watch pods and
their logs. Instead, for pods/exec, we are deliberately leaving the verbs in the rules
empty, so tricking RBAC into implementing a form of deny rule. Last, we associate
this Role with RoleBinding to the ServiceAccount, remembering that all of these
are confined to the namespace-a scope.

Figure 4.8 illustrates an outline of the scenario.

Figure 4.8. RBAC scenario 7

We can test with the following command:

kubectl auth can-i get pods/log \

--as=system:serviceaccount:namespace-a:logs-viewer \

-n namespace-a #returns yes

kubectl auth can-i create pods/exec \

--as=system:serviceaccount:namespace-a:logs-viewer -\

n namespace-a #returns no

However, it is essential to recognize that we are presuming our pod is ac-
cessed exclusively via the ServiceAccount to be more realistic. Let us hypothetically
imagine that an attacker acquires valid kubectl credentials (via a compromised ma-
chine, theft of kubeconfig files, etc.), and these credentials possess broader rights

42

Native k8s authorization mechanisms

than those granted to ServiceAccounts. If this attacker tried, it would effectively
execute, bypassing the poorly constructed RBAC rules, which may be well set for
service accounts but not for human users. In this case, it turned out necessary
to implement user-level RBAC with stringent restrictions applicable to all human
users. We can test the attacker’s situation with the following command:

kubectl exec -n namespace-a <name-of-the-pod>\

--as=authenticated-user -- date #would actually execute

In this scenario, we successfully illustrated the rules governing the use of
resources and subresources, as well as the particular risks associated with inade-
quately constructed RBAC authorization.

Scenario 8

In Scenario 7, we observed the implementation of log access without execution
rights, presuming that we accessed the pods utilizing ServiceAccount. However,
towards the conclusion of the scenario, we examined a hypothetical circumstance in
which an attacker acquires valid kubectl credentials (via a compromised machine,
theft of kubeconfig files, etc.), and these credentials possess broader permissions
than those granted to ServiceAccounts. If this attacker attempted to exploit this
vulnerability, it would successfully execute, bypassing the poorly constructed RBAC
rules, which may be appropriately configured for service accounts but not for human
users. In this instance, it became necessary to implement user-level RBAC with
stringent restrictions applicable to all human users.

In this scenario, we will demonstrate how to accomplish it. The RBAC Role
will stay unchanged, giving read-only permissions to pods/logs and deliberately
leaving empty the verbs applicable on pods/exec, renamed as
restricted-pod-viewer, and will be bound to subjects identified as the group
called system:authenticated using RoleBinding, hence applying to all authenti-
cated users. This would prohibit all human users from executing commands within
the pod.

Figure 4.9 illustrates an outline of the scenario.

Figure 4.9. RBAC scenario 8

Following that, we use an authenticated test-user to evaluate our configu-
ration using the following command:

43

Native k8s authorization mechanisms

kubectl auth can-i create pods/exec -n namespace-a --as=test-user

#returns no

It is important to understand that by establishing this RoleBinding with
system:authenticated as a subject, we are granting permissions to all authen-
ticated users without altering or canceling any pre-existing rights they may own.
This remains a limitation to RBAC. For improved security, we must either adopt
a multi-layered strategy incorporating Pod Security Standards, Admission Con-
trollers, OPA Gatekeeper, etc., or establish role-based user accounts alongside sep-
arated admin credentials, break-glass procedures, and identity management inte-
gration.

Scenario 9

This scenario examines the construction of RBAC authorization that restricts ac-
tions based on the permitted verb, and we demonstrate this in a common strategy
setting employed in production environments to avert service interruptions by re-
moving pods. We will set up a role that permits the development team to create,
update, and patch, in addition to having reading access, but prohibits deletion in
the production environment. Additionally, to be more realistic, we have a lower-
level environment where the development team faces fewer restrictions and is per-
mitted to delete as well. This demonstrates their ability to operate autonomously
and safely. The separation between creation and deletion permissions is a stan-
dard practice in production environments for various reasons. Firstly, it safeguards
against unintentional downtime, therefore contributing to the maintenance of a
stable environment. The decommissioning process is rendered more restricted, re-
quiring elevated permissions for the removal of production resources, in this case,
pods; however, this principle can be applied more broadly to the entire set of
resources. Ultimately, it enables secure CI/CD pipelines wherein automated de-
ployments can build, but not eliminate, pods or other resources. However, when
evaluating lower-level environments, such as development or testing, we should of-
fer greater flexibility while still preserving isolation to prevent interference with
production.

To execute this scenario, we initially create two namespaces, named
production and testing, to be consistent with the narrative, and then deploy a
Pod and a ServiceAccount within each namespace. Following that, we construct a
Role within the production environment, whose rules apply to pods and permit
the verbs get, list, and watch (for read access), as well as create, update, and
patch, while excluding delete. Next, we associate this Role via RoleBinding to the
ServiceAccount that identifies our pod in the production environment. We also
establish an RBAC role within testing that applies to pods and permits the verbs
get, list, and watch (for read access), as well as create, update, and delete.
Next, we associate this Role with RoleBinding to the ServiceAccount that identifies
our testing pod.

In practical applications, this pattern would typically be extended to en-
compass higher-level resources, like Deployments or StatefulSets, rather than being
applied straight to pods; nonetheless, the underlying concept remains the same.

Figure 4.10 illustrates an outline of the scenario.

44

Native k8s authorization mechanisms

Figure 4.10. RBAC scenario 9

We can test our setup by running the following commands:

kubectl auth can-i create pods --as=system:serviceaccount:production:dev\

-n production #returns yes

kubectl auth can-i delete pods --as=system:serviceaccount:production:dev\

-n production #returns no

kubectl auth can-i delete pods --as=system:serviceaccount:testing:dev \

-n testing #returns yes

kubectl auth can-i delete pods --as=system:serviceaccount:testing:dev \

-n production #returns no since no cross-namespace access

In this case, we successfully demonstrated the construction of RBAC au-
thorization that restricts based on permitted verbs.

Scenario 10

This scenario demonstrates how to aggregate multiple ClusterRoles into a sin-
gle, unified ClusterRole, enabling the creation of more complex roles through a
combination of smaller, specialized ones. A controller operating within the con-
trol plane monitors ClusterRole objects that possess a aggregationRule. This
aggregationRule specifies a label selector for the controller to utilize in matching
other ClusterRole objects for integration into the rules field. Be aware that the
control plane will replace any values manually configured in the rules field of the
aggregate ClusterRole. To modify or add rules, alterations should be made directly
to the ClusterRole objects picked by the aggregationRule. The default user-facing
roles also utilize ClusterRole aggregation. As a cluster administrator, you can set
rules for custom resources to add to the default ones. To do this, you include
rbac.authorization.k8s.io/aggregate-to-admin: "true,"

rbac.authorization.k8s.io/aggregate-to-edit: "true," or
rbac.authorization.k8s.io/aggregate-to-view: "true" within the labels field.

In our case, we establish three base ClusterRoles: pod-reader, log-reader,
and events-reader, each granting access to examine pods, pod logs, and Kuber-
netes events, respectively. Every base role bears a common label:
rbac.example.com/aggregate-to-monitoring: "true". We create an aggregat-
ing ClusterRole named monitoring-role, which has an empty rules field, and use

45

Native k8s authorization mechanisms

the aggregationRule to indicate the base ClusterRoles to be aggregated according
to the label specified.

A ServiceAccount named monitoring-account has been deployed in the
monitoring namespace and is bound to our aggregating ClusterRole using a Clus-
terRoleBinding. It is essential to recognize that although the ServiceAccount is a
namespaced resource, this does not constrain the permissions conferred by a Clus-
terRole via a ClusterRoleBinding, as these are applicable across all namespaces,
since they themselves are cluster-wide resources not associated with any particular
namespace. We specify the namespace for the ServiceAccount solely to indicate
its location; nonetheless, it has been granted cluster-wide access via the Cluster-
RoleBinding.

Figure 4.11 illustrates an outline of the scenario.

Figure 4.11. RBAC scenario 10

We can test our setup by running the following commands:

kubectl auth can-i get pods \

--as=system:serviceaccount:monitoring:monitoring-account #returns yes

kubectl auth can-i get pods/log \

--as=system:serviceaccount:monitoring:monitoring-account #returns yes

kubectl auth can-i get events \

--as=system:serviceaccount:monitoring:monitoring-account #returns yes

kubectl auth can-i get pods -n testing --\

as=system:serviceaccount:monitoring:monitoring-account #returns yes

kubectl auth can-i create pods \

--as=system:serviceaccount:monitoring:monitoring-account #returns no

This methodology of constructing aggregating ClusterRoles yields multi-
ple advantages. It offers a better understanding of modularity by deconstructing
permissions into logical and reusable components. It improves maintainability, as
updates are required solely for the base roles without requiring alterations to the
overall structure. Supports scalability by allowing the addition of new permissions
through the creation of new base roles with corresponding labels. Finally, it main-
tains consistency by universally applying these common permission settings. This
method is highly beneficial for establishing uniform role descriptions that can grow
over time without requiring updates to all bindings, hence preserving the overall
structure. It is important to highlight that this can only be accomplished using
RBAC among all native Kubernetes authorization mechanisms.

46

Native k8s authorization mechanisms

Scenario 11

In this scenario, we are going to explore how the privilege escalation prevention
works in RBAC. So, we have two ClusterRoles: team-leader-role-manager and
super-team-leader-role-manager, which vary in their privileges. They possess
permissions to get, list, watch, create, update, and delete pods, services, and
deployments. However, regarding the creation or modification of roles and role bind-
ings, the team-leader-role-manager is restricted to creating or updating roles
and role bindings solely within the scope of their existing permissions and cannot
escalate privileges. The super-team-leader-role-manager possesses additional
privileges to create Role, ClusterRole, RoleBinding, and ClusterRoleBinding, with
extended permissions due to the explicit inclusion of the verbs escalate and bind.

Subsequently, we assign these two ClusterRoles to two already authenti-
cated users: team-leader-user and super-team-leader-user, respectively.

Figure 4.12 illustrates an outline of the scenario.

Figure 4.12. RBAC scenario 11

We may test our configuration using the following commands:

kubectl create role developer --verb=get,list,watch \

--resource=pods,deployments --as=team-leader-user \

-n testing #successfully executed and role created

kubectl create rolebinding dev-binding --role=developer \

--user=dev-user --as=team-leader-user -n testing

#successfully executed and rolebinding created

kubectl create role admin-role --verb=get,list,update,delete \

--resource=nodes --as=team-leader-user -n testing

#gives an error: (Error from server (Forbidden):

#roles.rbac.authorization.k8s.io "admin-role" is forbidden:

#user "team-leader-user" (groups=["system:authenticated"]) is attempting

#to grant RBAC permissions not currently held:{APIGroups:[""],

#Resources:["nodes"], Verbs:["get" "list" "update" "delete"]})

kubectl create rolebinding super-binding \

47

Native k8s authorization mechanisms

--clusterrole=cluster-admin --user=special-user \

--as=team-leader-user -n testing

#gives an error: failed to create rolebinding:

#rolebindings.rbac.authorization.k8s.io "super-binding" is forbidden:

#user "team-leader-user" (groups=["system:authenticated"]) is attempting

#to grant RBAC permissions not currently held:{APIGroups:[""],

#Resources:[""], Verbs:[""]}{NonResourceURLs:[""], Verbs:[""]}

kubectl create role super-role --verb=get,list,update,delete \

--resource=nodes --as=super-team-leader-user -n testing

#successfully executed and role created

kubectl create rolebinding super-binding \

--clusterrole=cluster-admin --user=special-user \

--as=super-team-leader-user -n testing

#successfully executed and rolebinding created

In the end, this protection is essential for numerous reasons. Firstly, it
helps in preserving security boundaries, ensuring that the delegation of work does
not jeopardize security. It enforces the principle of least privilege, as even role ad-
ministrators cannot surpass their authorized access level. It also prevents backdoor
privileges, stopping users from creating roles with augmented permissions to obtain
malicious advantages. Finally, it mitigates the danger of accidental or intentional
misconfiguration, ensuring that administrators cannot create risky roles regardless
of their intentions. Likewise, we must remain alert and cautious when granting
explicit authorization for escalation or binding, since this could present significant
risks and contradict the previously mentioned considerations. Last, it is impor-
tant to highlight that this can only be accomplished with RBAC among all native
Kubernetes authorization mechanisms.

Scenario 12

This scenario will examine the creation of non-resource-related RBAC rules. It
is essential to recognize that non-resource URLs are generally endpoints such as
/metrics, /livez, /readyz, etc., mostly utilized for system-level pathways and
utility endpoints. They do not signify Kubernetes objects/resources such as pods,
services, secrets, etc. In our case, we are creating two ServiceAccounts with
varying access levels to Kubernetes metrics endpoints. First, metrics-reader,
and then basic-health-checker. We then create two ClusterRoles: one for
metrics-viewer, which can access non-resources such as /metrics and /api,
and another for health-checker, which can access non-resources like /livez and
/readyz. They are bound to metrics-reader and basic-health-checker by
ClusterRoleBindings, respectively.

A brief overview of the selected endpoints:

• /metrics endpoint delivers Prometheus-formatted metrics for Kubernetes
components. These metrics comprise performance data of API server, etcd
interactions information, and resource use statistics. This endpoint is essential
for assessing the performance and health of your Kubernetes cluster.

• /livez endpoint serves as a Kubernetes API server interface that signals the

48

Native k8s authorization mechanisms

present operational status of the API server, indicating whether the compo-
nent is ”alive.”

• /readyz endpoint is another endpoint of the API server that indicates the
current status of the API server, similar to the livez endpoint, which signals
whether the component is prepared to handle requests.

Figure 4.13 illustrates an outline of the scenario.

Figure 4.13. RBAC scenario 12

We can test our setup with the following commands:

kubectl auth can-i get /metrics \

--as=system:serviceaccount:monitoring:metrics-reader #returns yes

kubectl auth can-i get /api \

--as=system:serviceaccount:monitoring:metrics-reader #returns yes

kubectl auth can-i get /livez

--as=system:serviceaccount:monitoring:basic-health-checker #returns yes

kubectl auth can-i get /metrics \

--as=system:serviceaccount:monitoring:basic-health-checker #returns no

In that scenario, we demonstrated the simplicity of managing access to non-resources
in Kubernetes.

This scenario concludes our practical analysis of RBAC in Kubernetes.

4.1.3 Strengths and limitations

RBAC provides significant advantages focused mainly on manageability and opera-
tional efficacy. The model’s fundamental strength lies in its conceptual and practical
simplicity, making it easy to comprehend, implement, and manage. Administrators
experience minimal initial configuration overhead for the cluster, as the native Ku-
bernetes RBAC mode typically requires no complex setup at startup. Authorization
objects, including Roles, ClusterRoles, RoleBindings, and ClusterRoleBindings, are
dynamically controlled via the API by any client with the appropriate permissions,
allowing efficient management. Moreover, the use of default roles and role bindings
accelerates the initial bootstrapping and offers clear examples for customization.
The capacity to aggregate rules from various ClusterRoles into a singular role in-
creases flexibility and reduces redundancy in the formulation of complex permission
sets for users or groups. RBAC inherently integrates essential security measures
to prevent privilege escalation, whereby a user might alter roles to get elevated
permissions above their original rights, and contains mechanisms for the secure

49

Native k8s authorization mechanisms

bootstrapping of initial administrative permissions. Ultimately, authorization de-
cisions within the RBAC paradigm are generally faster due to the uncomplicated
nature of the permission evaluations required through native Kubernetes objects.

Nonetheless, its simplicity and manageability have inherent trade-offs,
mainly regarding granularity and scalability in complex settings. A notable con-
straint is the relatively coarse granularity of access control that can be attained.
Permissions are strictly linked to predefined roles, often very box-shaped, limiting
the implementation of fine-grained, context-aware authorization rules. For example,
establishing rules that dynamically adjust according to certain resource attributes,
user context, or environmental factors is beyond the scope of the RBAC paradigm.
This inflexibility directly leads to another significant disadvantage, the risk of role
explosion. As organizational complexity and unique permission requirements grow,
administrators are forced to set up a constantly increasing number of highly special-
ized roles to meet complex access needs. The growth of roles affects management,
auditing, and the overall understanding of the access control layout, presenting con-
siderable scalability issues. Moreover, RBAC does not provide explicit definitions
of ”deny” rules, which can occasionally offer a clearer and more concise method for
articulating certain exclusionary policies than constructing overly liberal ”allow”
roles. This Kubernetes mechanism’s shortcomings also involve listing and filtering
operations, since it lacks the built-in ability for end-users to efficiently filter results
according to their individual permissions, which may sometimes unintentionally
reveal more information than necessary.

To summarize the usefulness of RBAC, it is especially well-suited for en-
vironments that prioritize administrative simplicity, fast deployment, and clear
hierarchical structures. Its advantages are evident in contexts characterized by rel-
atively static, well-defined roles and predictable permission needs. The mechanism
excels in leveraging default roles, preventing privilege escalation, and enabling fast
authorization decisions, which are key operational needs. Consequently, RBAC is
particularly useful in organizations or systems of modest complexity, where the min-
imal administrative load and ease of management surpass the necessity for highly
detailed, context-sensitive access regulations, or as only the first step in a chain of
several authorization mechanisms, covering the basis before the more context-aware
and complex authorization modes take over.

4.2 Attribute-Based Access Control (ABAC)

Attribute-based access control establishes a paradigm of access control that grants
access rights to users based on attributes combined into policies. These attributes
vary through a wide range, from user to environment, resources, object, etc.

The Kubernetes official documentation does not provide a detailed expla-
nation of the ABAC paradigm itself, so we turned our focus to different sources.
According to [22] description of the ABAC paradigm, attributes denote the proper-
ties or values of a component associated with an access event. ABAC evaluates the
components’ attributes in relation to predefined rules. These rules specify the
permissible attribute combinations necessary for the subject to effectively exe-
cute an action on an object. This way, the ABAC mechanism can assess attributes

50

Native k8s authorization mechanisms

based on their interactions within an environment and apply rules and relation-
ships accordingly. Policies, then consider attributes to delineate permissible and
forbidden access situations.

Consequently, the primary advantage of ABAC is flexibility. The con-
straints of policy-making are fundamentally determined by the attributes that must
be considered and the circumstances that the computational language may articu-
late. ABAC facilitates the widest range of subjects to access the maximum resources
without requiring administrators to define relationships between each subject and
object. These attributes and access control regulations may be further adjusted to
align with the requirements of the organization. Moreover, accommodating new
subjects becomes very easy in ABAC, provided that new subjects have been fitted
with the required attributes for the access control regulations, making it unneces-
sary to alter current rules or object properties.

Up until this point, it seems that the advantages of the ABAC paradigm
significantly surpass the disadvantages. However, one disadvantage to be considered
before adopting attribute-based access control is the complexity of implementation.
Administrators must manually specify characteristics, allocate them to each compo-
nent, and establish a centralized policy engine that dictates permissible actions for
these attributes based on certain criteria. The model’s focus on attributes compli-
cates the assessment of rights granted to individual users prior to the establishment
of all attributes and regulations. Nonetheless, this yields significant rewards since
we can duplicate and repurpose attributes for similar components and user roles,
and the flexibility of ABAC ensures that managing policies for new users and access
scenarios is a largely automated process.

Now that we have a clear view of the paradigm itself, we can go on to con-
sider the official guide [23] on how ABAC is implemented in Kubernetes. ABAC
policies are defined in a single policy file upon cluster startup, facilitating central-
ized configuration and management. The file format consists of one JSON object
per line. Where each line represents a policy object, wherein each object is a map
containing the following properties: versioning properties and spec properties.
The versioning properties are two: apiVersion and kind. They both are useful to
help with versioning and conversion of the format of the policies. Kubernetes sup-
ports abac.authorization.kubernetes.io/v1beta1 for apiVersion and Policy

as kind. It is worth mentioning here that the ABAC API is in beta version, and na-
tive ABAC mode in Kubernetes is slowly becoming obsolete, giving more priority to
the RBAC one since it is better supported. Let’s move on to spec properties, which
can be divided into subject-matching properties, resource-matching properties,
non-resource-matching properties, and readonly property that works as a verb-
matching property. As the name suggests, each of these sets of properties defines
the properties for each group they are named after. So, in subject-matching

properties, we can distinguish user and group. user corresponds to the username
from the token file for authentication, which we will see in detail later. Instead,
if we specify group, it then corresponds to one of the groups associated with the
authenticated user, like system:authenticated corresponds to all requests that
are authenticated. system:unauthenticated corresponds to all requests that lack
authentication. Moving on to resource-matching properties, we can distin-
guish apiGroup, namespace, and resource. The names are pretty explanatory

51

Native k8s authorization mechanisms

at this point; the only thing worth mentioning here is that when used, the wild-
card symbol (*) matches all the resource types it is being used on. Then we have
non-resource-matching properties that have only nonResourcePath listed, and
this one is very self-explanatory. Here, the wildcard symbol can be interpreted in
two ways: either matching all non-resource requests when used alone or match-
ing all subpaths of the path it is associated with. Last, we said the readonly

property is the verb-matching property because when set to true, it indicates that
the resource-matching policy is applicable solely to get, list, and watch verbs,
whereas the non-resource-matching policy is restricted to the get operation only.
Instead, if false, it applies all the verbs with no discrimination whatsoever. It is
important to note that an unset property is equivalent to a property assigned the
zero value corresponding to its type (e.g., an empty string, 0, or false).

To put it in a visualized manner, Figure 4.14 shows how policy is con-
structed in ABAC.

Figure 4.14. ABAC policy

Now that we know how a policy is constructed, we can explain the workings
of the authorization algorithm. It starts with a request arriving at the API server
from any client. This request contains attributes that align with the properties of
the already explained policy object. These attributes are identified as soon as the
request is received. Undefined attributes are assigned the default value according
to their type, and also the wildcards will correspond to any value of the relevant
attribute. The attribute tuple is verified for compatibility with each policy in the
policy file in order. If at least one line corresponds to the request attributes, the
request is approved. Otherwise, it is rejected.

In conclusion, this high-level overview of ABAC in Kubernetes demon-
strates that it is an intuitive authorization paradigm while also providing significant
flexibility in its use. However, this implies an increased complexity in the correct
design of your policy. We will also see that the configuration and maintainability
show an increased complexity. Similar to our approach with RBAC, before starting
our scenario-based analysis to explore the practical implementation of ABAC, we
will further examine the specifics of its configuration for use within the cluster.

4.2.1 Configuration

As anticipated, the configuration of the ABAC authorization mechanism in Kuber-
netes comes with an increased complexity compared to the RBAC one. This starts
from the fact that ABAC mode does not come as a default authorization mode
when you set up a normal cluster. You need to accommodate further configura-
tions in order to be able to use it. So to begin with, to activate ABAC mode, it is
necessary to add ABAC to the --authorization-mode= ABAC,Node,RBAC, and to

52

Native k8s authorization mechanisms

provide --authorization-policy-file=SOME_FILENAME at cluster startup. When
setting up our cluster with the kubeadm tool, and after numerous trials and mis-
takes, we have determined that it is more effective to set it up by providing a
YAML configuration file with the --config option in the kubeadm init command
like below:

sudo kubeadm init --config=kubeadm-config.yaml

At this point, after having created the cluster successfully, we can follow the same
configuration for kubectl, CNI, and joining worker nodes as in the RBAC config-
uration.

Going back to the reason why we chose to set up our cluster like this.
Although the previously mentioned flags are accessible via the command line, and
it is commonly recommended to alter your API server manifest, we discovered that
these techniques frequently result in errors and lead to the failure of the API server
pod.

The configuration file looks like the following:

Listing 4.7. Kubeadm configuration file for ABAC mode

apiVersion: kubeadm.k8s.io/v1beta3

kind: InitConfiguration

apiVersion: kubeadm.k8s.io/v1beta3

kind: ClusterConfiguration

networking:

podSubnet: "10.245.0.0/16"

serviceSubnet: "10.255.0.0/16"

apiServer:

extraArgs:

authorization-mode: "ABAC,Node,RBAC"

authorization-policy-file:

"/etc/kubernetes/abac/policies.jsonl" #path to policy file

token-auth-file: "/etc/kubernetes/token.csv" #path to token

file

extraVolumes:

- name: abac-policies

hostPath: "/etc/kubernetes/abac"

mountPath: "/etc/kubernetes/abac"

readOnly: true

pathType: DirectoryOrCreate

- name: token-auth

hostPath: "/etc/kubernetes/token.csv"

mountPath: "/etc/kubernetes/token.csv"

readOnly: true

pathType: File

It is important to note that we are using apiVersion:
kubeadm.k8s.io/v1beta3 rather than v1beta4, as the latter results in an error
during cluster initialization. The ordering of authorization modes is crucial when

53

Native k8s authorization mechanisms

many authorization modules are configured, as they are evaluated in order; if any
authorizer authorizes or refuses a request, that decision is promptly returned with-
out considering additional authorizers. To accurately implement a system utilizing
ABAC, we are positioning it as the primary authorization mode in the hierarchy,
succeeded by Node and RBAC. The removal or omission of these two default en-
tries leads to the failure of the API server pod. In the configuration file, we see
the declaration of Volumes for our policy file, with appropriate mounting specified
by mountPath, hostPath, name, and type. This is crucial, since omitting this will
prevent our cluster from accurately recognizing the policy file.

The configuration file also indicates that we are declaring token-auth-file
as an extra argument and appropriately mounting it as an extra volume, as it
is essential for user authentication and accurate policy parsing. We previously
authenticated our users using X.509 certificates for RBAC scenarios; however,
through experimentation, we have identified issues with this approach in ABAC
scenarios. Instead, it requires a token-based authentication, where a user in
subject-matching properties corresponds to a username linked to an authenti-
cated user via the user name from the --token-auth-file. It is crucial to note
that these files and directories must already exist prior to the initialization of our
cluster, and we can thereafter alter their contents to suit our demands. This pro-
vides a brief description of file formats, with further details to be elaborated in the
following scenarios.

As explained in the introductory section for ABAC, its policy file format
must be in jsonl, with one JSON object per line, where each line describes a policy
object. This is an example of what a policy file would resemble:

Listing 4.8. ABAC policy file sample

{"apiVersion": "abac.authorization.kubernetes.io/v1beta1",

"kind": "Policy", "spec": {"user":"user-1","namespace":

"namespace-1", "resource": "*","apiGroup": "*","readonly":

true }}

{"apiVersion": "abac.authorization.kubernetes.io/v1beta1",

"kind": "Policy", "spec": {"user":"user-2","namespace":

"namespace-2", "resource": "pods","apiGroup": "*","readonly":

false}}

The authentication token CSV file comprises a minimum of three columns:
token, user name, and user UID, with optional group names following. If there
are several group names, the column must be enclosed in double quotes. Tokens
may endure indefinitely. This is an example of what an authentication tokens file
would resemble:

Listing 4.9. Authentication token file sample

user-1-token,user-1,1000,group-1

user-2-token,user-1,2000,"group-1,group-2"

At this point, we have set up our cluster, activated ABAC correctly, and
become familiar with the file formats for both policy and token. We can now go

54

Native k8s authorization mechanisms

over the technicalities of how we can apply changes in our cluster since we are
dealing with two static files.

Initially, we must ensure that the tokens and policies are accurately con-
figured. Both files are supposedly read-only, preventing direct modifications at the
path where they reside. Therefore, when we want to do alterations, we must create
a new file and then move or copy it to the appropriate directory, which might re-
quire sudo privileges. Additionally, it is essential to ensure that the file permissions
are appropriately configured, so we might need to modify the access level of the file.
Once having successfully modified the needed files, it is necessary to restart the API
server for the modifications to take effect. To execute this correctly, we must tem-
porarily remove the API server manifest (kube-apiserver.yaml file in our case,
located in /etc/kubernetes/manifests) and afterwards restore it. This will force
the API server to restart. We could alternatively remove the pod instance, as it is a
static pod in kubeadm; however, it occasionally fails to perform a complete restart,
resulting in the changes in files not being applied. The subsequent instructions will
do a complete restart of the API server:

sudo mv /etc/kuberentes/manifests/kube-apiserver.yaml /tmp/

sleep 10

sudo mv /tmp/kube-apiserver.yaml /etc/kubernetes/manifests/

Confirmation of a successful restart of the API server instance is indicated
by a new Restart entry (along with the elapsed time since the restart), a Status

of Running, and a Ready state of 1/1 when you run:

kubectl get pods -n kube-system

In the cases where it happened that we could not access the cluster at all
and needed to quickly restore functionality, the following commands were handy:

sudo systemctl stop kubelet

sudo systemctl start kubelet

As for testing our policies, we can do this by using the kubectl auth can-i

commands, where we can impersonate whatever user we want. They look like the
following:

#kubectl auth can-i verb resource -n namespace --as user

#returns yes or no depending if the established policies allow it or not

kubectl auth can-i get secrets -n namespace-a --as user-in-A

After having covered also how to handle making changes in the cluster, it
brings us to the realization of one of the biggest downsides of ABAC in Kubernetes.
Since we are declaring our policy and authentication token files statically, to imple-
ment any changes to policies and tokens, we are forced to access the control plane
directly, edit the static files on disk, and, moreover, restart the API server to apply
the changes. This is very different from what we encountered with RBAC, where
we were able to manage all our access control dynamically through the Kubernetes
API objects like Roles, ClusterRoles, RoleBindings, and ClusterRoleBindings via
any client holding the appropriate credentials. Instead, here you need direct ac-
cess to the control plane node, which, logically, in many environments (like those
in cloud provider-powered clusters), is a node restricted to access due to security

55

Native k8s authorization mechanisms

reasons. Therefore, limiting the use of ABAC to only self-managed Kubernetes clus-
ters. Moreover, it obviously causes service disruptions, since you need to restart the
API server each time you want to modify your policy. Which, because of the fact
that this policy file exists as a static file on disk, the version control is challenging.
This also leads us to the issues of scalability and maintainability, as the growth of
the cluster renders the policy file increasingly complex and its management more
burdensome.

The challenges associated with establishing and maintaining native ABAC
in Kubernetes clusters are the cause for its declining popularity, despite its po-
tentially more expressive policy capabilities. ABAC has been mainly restricted to
earlier Kubernetes versions, and transitioning to RBAC is recommended.

At this point, we have carried out all the configurations needed, so we can
move on to implementing our scenario-based analysis.

4.2.2 Scenario-based analysis

In this section, we will examine various scenarios demonstrating the implementation
of ABAC. We will observe close to real-life applications of ABAC while highlighting
the strengths and limitations of its mechanism and the paradigm itself.

Scenario 1

For the first scenario, we will follow the example presented in [24] to familiarize our-
selves with a basic configuration. We have a single namespace: projectcaribou,
and two users: alice and bob, who have varying levels of access permissions; alice
has full permissions, whilst bob has only read-only ones. We create the namespace
projectcaribou and deploy a pod within it for the sake of completeness.

Figure 4.15 illustrates an outline of the scenario.

Figure 4.15. ABAC scenario 1

56

Native k8s authorization mechanisms

After these steps, we are ready to test our scenario with the following
commands:

kubectl auth can-i get pod -n projectcaribou --as=alice #returns yes

kubectl auth can-i get pod -n projectcaribou --as=bob #returns yes

kubectl auth can-i delete pod -n projectcaribou --as=alice #returns yes

kubectl auth can-i delete pod -n projectcaribou --as=bob #returns no

kubectl auth can-i get pod -n kube-system --as=alice #returns no

Insights gained during the implementation of this straightforward scenario
indicate that ABAC complexity can rapidly escalate. For instance, if we included
a policy with "group":"system:authenticated" granting comprehensive access
to the namespace projectcaribou before our policies for alice and bob, it would
intercept all requests and authorize them without consideration for the following
policies. It suggests that the order of the policies is crucial, and if necessary, we
should position these extensive, inclusive policies towards the end of the policy
file to ensure they get processed after. Additionally, clashing policies may result
in complications within our system. This may be easily identified and fixed in a
small-scale context, but in a real-world situation, it could become quite challenging
to handle.

Scenario 2

In this scenario, we will set up a more realistic situation than the previous one
and attempt to provide access based on environments. We presume the exis-
tence of three distinct environments: development, testing, and production. There
are two development namespaces, one designated for each team: team1-dev and
team2-dev. There exists a single namespace in the testing environment, designated
for the exclusive use of team2: team2-testing. Finally, there exists a single names-
pace designated for production, referred to as production. There are three users:
one intern assigned to team2, who has full permissions only in the testing environ-
ment but instead has read-only access in the development environments to assist
with their tasks. A senior employee coordinates activities between the two teams
and possesses full access to both development and testing environments. However,
neither of these two users possesses permission in the production environment. The
admin holds complete access in the production environment but lacks permissions
in the other environments.

We may test our implementation using the following commands:

kubectl auth can-i get pod -n team1-dev --as=intern #returns yes

kubectl auth can-i get pod -n team2-dev --as=intern #returns yes

kubectl auth can-i delete pod -n team1-dev --as=intern #returns no

kubectl auth can-i delete pod -n team1-test --as=intern #returns yes

kubectl auth can-i get pod -n team1-dev --as=senior #returns yes

kubectl auth can-i delete pod -n team1-dev --as=senior #returns yes

kubectl auth can-i get pod -n production --as=intern #returns no

kubectl auth can-i get pod -n production --as=admin #returns yes

kubectl auth can-i get pod -n team1-dev --as=admin #returns no

Figure 4.16 illustrates an outline of the scenario.

57

Native k8s authorization mechanisms

Figure 4.16. ABAC scenario 2

To execute this seemingly simple scenario, it is necessary to define distinct
policy entries for each namespace to which the user has access, resulting in a linear
increase in the size of the policy file corresponding to the number of namespaces.
Pattern matching on namespaces, such as "namespace": "*-dev", cannot be uti-
lized, which would otherwise serve as an efficient tool. It is essential to remember
that the wildcard * is applicable alone in the following manner: "namespace": "*",
exclusively matching all potential namespaces. This presents a drawback regarding
the maintainability of ABAC policies, particularly given that the order of policies
is crucial and a minor misconfiguration might result in conflicts between policies,
hence disrupting access control. In RBAC, this issue would be addressed by es-
tablishing a singular Role and using RoleBindings to implement it across various
namespaces, no matter the order. But it is crucial to note that with RBAC, there
is a potential for role explosion, whereas ABAC mitigates this risk. Assuming that
policies are well-crafted, ABAC achieves a greater level of granularity with fewer
words. Additionally, the disruption of service caused by API server restarts will
repeatedly provide a challenge in our ABAC situations.

Scenario 3

In this scenario, we will implement access control based on resource attributes across
various environments. We will reutilize the Scenario 2 framework, including its set-
tings, namespaces, and two of the users: intern and senior, while adjusting the
permissions to better align with our new configuration. Assume we authorize the
intern to access all pods across all namespaces, excluding production. senior can
access all pods across all namespaces. Defining the policy for senior is straightfor-
ward; we simply assign "namespace":"*". However, for interns, it is necessary to
create a policy entry for each namespace, deliberately excluding production from
any of them.

Figure 4.17 illustrates an outline of the scenario.

58

Native k8s authorization mechanisms

Figure 4.17. ABAC scenario 3

We can test our implementation with the following commands:

kubectl auth can-i get pod -n team1-dev --as=intern #returns yes

kubectl auth can-i get pod -n production --as=intern #returns no

kubectl auth can-i get pod -n production --as=senior #returns yes

kubectl auth can-i delete pod -n team1-dev --as=intern #returns no

kubectl auth can-i get service -n team1-dev --as=senior #returns no

With this scenario, we are being presented with a challenge compared to
RBAC, where one must establish a Role and bind it across namespaces using
RoleBinding, however, here it is done in a single line. In RBAC, it is not possible to
create a ClusterRole with a ClusterRoleBinding that excludes a specific namespace
through labelSelector, which would be a highly effective and rational approach.
To restrict the resource, we can use "resource":"pod" in both instances, ensur-
ing that the restriction exclusively applies to pods. However, permitting access
to senior on resources such as pods, services, and deployments, while excluding
secrets, would require the specification of policy rules for each resource, hence expo-
nentially increasing the total number of policy entries required. In RBAC, one may
effortlessly describe the list of resources directly within the Role or ClusterRole,
eliminating the necessity to create several entries for each resource. But then, if we
had to establish several levels of access, the box-like roles of RBAC would suffer the
same. Instead, with ABAC, however, the additional complexity in policy creation
also presents the opportunity for fine-tuned access control, enabling more flexible
combinations of rights across users, namespaces, and resources.

Scenario 4

This scenario will examine the functionality of ABAC using service accounts rather
than user accounts, as well as the grant of access based on non-resource attributes.

We assume the existence of a ServiceAccount named metrics-collector-sa
within the kube-system namespace that requires rights to access nonResources

such as /metrics. We implement our ServiceAccount and declare in our policy
"user": system:serviceaccount:kube-system:metrics-collector-sa. The of-
ficial Kubernetes documentation states that each service account is assigned a cor-
responding ABAC username generated according to a specific naming pattern

59

Native k8s authorization mechanisms

system:serviceaccount:<namespace>:<serviceaccountname>, without the need
to authenticate it any further. Be aware that creating a new namespace results in
the creation of a new service account in the specified format:
system:serviceaccount:<namespace>:default.

We may test our implementation using the following commands:

kubectl auth can-i get /metrics \

--as=system:serviceaccount:kube-system:metrics-collector-sa #returns yes

kubectl auth can-i get pods \

--as=system:serviceaccount:kube-system:metrics-collector-sa #returns no

Figure 4.18 illustrates an outline of the scenario.

Figure 4.18. ABAC scenario 4

In this scenario, the formulation of rules in ABAC for non-resource URLs
is comparatively more straightforward and concise than in RBAC, where it is nec-
essary to create a ClusterRole and ClusterRoleBindings. Although there is no
substantial difference, ABAC syntax is somewhat more plain and intuitive.

Scenario 5

This scenario will examine group-based access involving several resource types and
the implications of integrating user and group policies.

Assume there are two environments: production and testing, each con-
taining a distinct namespace. There are two groups of users: developers and
testers. In developers, we have intern, dev, and senior-dev. In testers,
we have a tester. We are assigning group-based rights to developers, providing
them full access to deployments while restricting them to read-only access for pods
in production. We are providing testers with complete access to all resources in
the testing environment. We are attempting to restrict access permissions for the
intern, stipulating that while being part of the developers group, they possess
only read-only access to deployments. Our policies define group-based policy entries
for developers and testers, along with a user-based policy entry for intern.

Figure 4.19 illustrates an outline of the scenario.

60

Native k8s authorization mechanisms

Figure 4.19. ABAC scenario 5

We try to test our implementation with the following commands:

kubectl auth can-i get pods -n production --as=dev --as-group=developers

#returns yes

kubectl auth can-i get deployments -n production --as=senior-dev \

--as-group=developers #returns yes

kubectl auth can-i delete deployments -n production --as=senior-dev \

--as-group=developers #returns yes

kubectl auth can-i get deployments -n testing --as=tester \

--as-group=testers #returns yes

kubectl auth can-i delete pods -n testing --as=tester \

--as-group=testers #returns yes

kubectl auth can-i get pods -n production --as=tester \

--as-group=testers #returns no

kubectl auth can-i get pods -n testing --as=dev\

--as-group=developers #returns no

kubectl auth can-i get deployments -n production --as=intern \

--as-group=developers #returns yes

kubectl auth can-i delete deployments -n prodcution --as=intern \

--as-group=developers #expected to return no but returns yes

Although we believed we had restricted its access permissions inherited
from the group-based policy for developers to read-only, this does not actually
work. This is due to a significant characteristic of Kubernetes ABAC authorization.
ABAC employs a permissive approach for permissions when multiple policies align,
with the more permissive policy prevailing. In native Kubernetes ABAC, there is
no notion of ”denying policy”; hence, attempting to override a more liberal policy
with a more restricted one, as we aimed to do, is ineffective. Thus, the difficulty in
articulating ”deny” rules in ABAC is a contributing factor to the switch to RBAC in
Kubernetes. Although the additive approach to permissions is applicable to RBAC

61

Native k8s authorization mechanisms

as well, managing restrictions is far more straightforward when addressing the issue
with a different architectural perspective. In ABAC, the considerable flexibility is
accompanied by significant complexity in such scenarios.

This scenario concludes our practical analysis of ABAC in Kubernetes.

4.2.3 Strengths and limitations

ABAC offers a significant boost in granularity and contextual awareness relative to
more simplistic models such as RBAC. Its principal advantage resides in its ability
to define complex authorization rules that assess multiple attributes (including user
characteristics, resource traits, environmental factors, or action types) to render
more dynamic access control choices. This enables highly detailed access control,
exceeding the capabilities of role-based assignments, and allows rules to adjust to
complex, real-world situations. Furthermore, policies in ABAC are defined within
a single, centralized file, providing a unified perspective on the authorization rules
that govern the cluster. Authorization decisions in ABAC are typically fast since
they still take place within the API server, but loading and parsing each policy
object in the policy file results in a slower execution relative to RBAC.

However, this power implies significant operational complexity and manage-
ment challenges. A notable drawback is the necessity for additional configuration
during cluster startup, as the ABAC policy file must be explicitly supplied to the
API server. The syntax for constructing sophisticated, attribute-driven rules is
inherently complicated, affecting policy definition, validation, and maintenance,
which may result in errors and present scalability challenges for large or constantly
evolving environments. ABAC policies are statically defined at the cluster startup,
so any modification to these policies requires a restart of the API server, resulting
in unavoidable service disruptions and excluding dynamic, version-controlled pol-
icy updates with associated audit trails, but also limiting ABAC implementation
to self-managed Kubernetes clusters. Similar to RBAC, ABAC falls short in es-
tablishing explicit deny rules and encounters difficulties in effectively listing and
filtering based on user permissions.

To summarize the usefulness of ABAC, it shines in settings requiring highly
detailed, context-aware authorization choices that must dynamically adjust based
on a multitude of conditions, such as tightly regulated industries or complex multi-
tenant systems. Its strengths are especially advantageous in situations requiring
fine-grained control over sensitive resources or operations based on combinations
of user attributes, resource properties, and environmental context. Thus, ABAC
is ideally suited for security-critical applications where the operational burden of
policy management and cluster restarts is an acceptable compromise for attaining
the necessary level of dynamic, attribute-based access control accuracy, particularly
in cloud-native environments abundant in resource metadata.

4.3 Webhook

A WebHook is an HTTP callback, specifically an HTTP POST triggered by an
event; it serves as a straightforward event notification through HTTP POST. A

62

Native k8s authorization mechanisms

web application utilizing Webhooks will send a POST request to a URL upon
the occurrence of specific events. When designated, the Webhook mode prompts
Kubernetes to consult an external REST service to determine user privileges.

As a consequence, the authorization mechanism of a Webhook can be ex-
plained in more detail on how the requests and responses are constructed, the format
they follow, and the flexibility offered. Upon encountering an authorization deci-
sion, the API server submits a JSON-serialized authorization.k8s.io/v1beta1

SubjectAccessReview object detailing the action being taken. This object comprises
fields that identify the user initiating the request, together with either specifics re-
garding the resource being accessed or the attributes of the request. We have to
keep in mind that Webhook API objects obey the same versioning compatibility
regulations as other Kubernetes API objects. So when implementing an autho-
rization Webhook, we should recognize the less strict compatibility guarantees for
beta objects and verify the apiVersion field of the request to guarantee accurate
deserialization. A simple request would look like this:

Listing 4.10. Request to Webhook via SubjectAccessReview object

{

"apiVersion": "authorization.k8s.io/v1beta1",

"kind": "SubjectAccessReview",

"spec": {

"resourceAttributes": {

"namespace": "namespace-x",

"verb": "get",

"group": "",

"resource": "pods"

},

"user": "user-x",

"group": [

"group-x",

"group-y"

]

}

}

In the case of non-resource paths, it would have nonResourceAttributes instead
of resourceAttributes, defining path and verb.

The remote service is supposed to provide the status field of the request
and respond with either permission or denial of access. The spec field in the
response body is disregarded and can be excluded. A positive response, considered
permissive, would look like the following:

Listing 4.11. Permissive response from Webhook via SubjectAccessReview object

{

"apiVersion": "authorization.k8s.io/v1beta1",

"kind": "SubjectAccessReview",

"status": {

"allowed": true

63

Native k8s authorization mechanisms

}

}

Instead, there are two methods for denying access. The primary option
is favored in most instances, indicating that the authorization Webhook neither
permits nor expresses a stance on the request; however, if additional authorizers
are enabled, they are allowed the opportunity to approve the request. If there are
no additional authorizers or if none provide permission, the request is prohibited.
An example of how this denying response would look is as follows.

Listing 4.12. Denying response from Webhook via SubjectAccessReview object

{

"apiVersion": "authorization.k8s.io/v1beta1",

"kind": "SubjectAccessReview",

"status": {

"allowed": false,

"reason": "reason why user does not have access"

}

}

But this option leaves room for edge cases where, due to a misconfiguration, a
request that we want to completely deny may only be partially denied by the
Webhook authorizer, perhaps leading to approval by another authorizer following
that. So it is advised to make a thorough decision in case we have the knowledge
that the request should be fully denied. The second option instantly denies, so
it doesn’t even give a chance to the other configured authorizers that stand in
order after the Webhook one. This should be utilized exclusively by Webhooks
that possess full knowledge of the complete authorizer settings of the cluster and
an example of how it would look is as follows.

Listing 4.13. Absolute denying response from Webhook via Subjec-
tAccessReview object

{

"apiVersion": "authorization.k8s.io/v1beta1",

"kind": "SubjectAccessReview",

"status": {

"allowed": false,

"denied": true,

"reason": "reason why user does not have access"

}

}

When the AuthorizeWithSelectors functionality is activated, the request’s
field and label

selectors are transmitted to the authorization Webhook. The Webhook may
make permission decisions based on the defined field and label selectors, if
desired. The SubjectAccessReview documentation [25] provides instructions on

64

Native k8s authorization mechanisms

the interpretation and management of these fields by authorization Webhooks, em-
phasizing the use of parsed requirements over raw selector strings and detailing the
safe handling of unrecognized operators since several CVEs have been identified.

Last, we must also consider that further measures may be necessary to
secure our authorization Webhooks. Given the fact that the authorization Web-
hook functions as an external service, it indicates a transition from the Kubernetes
API server directly executing authorization decisions (like when using RBAC and
ABAC) to a cluster service taking on this responsibility. Then it is only logical that
we must implement additional safeguards to maintain the integrity of this service.
To mention some of them: properly establishing TLS for all Webhook traffic and
permitting only authenticated traffic to access the Webhook, implementing addi-
tional network policies to limit service access to external networks, etc. This is a
concern that should not be taken lightly, and it should be addressed in accordance
with the specific use case.

We explained the working mechanisms for the Webhook. The key point to
highlight from this thorough description is the flexibility presented by this method.
By conforming to the protocols of request deserialization and response serialization,
we can construct intricate authorization rules, enabling fine-grained access control.
Two novel elements have emerged that were previously absent in the native autho-
rization methods of Kubernetes. First, we can now express deny rules. Secondly,
the ability to discriminate based on selectors, these being field or label selectors.

However, this higher level of flexibility results in an elevated level of com-
plexity. The effectiveness of our authorization mechanism is directly dependent
upon the capabilities of the Webhook we design. This is why constructing custom
Webhooks from scratch is uncommon, leading us to favor existing solutions that
provide Webhook-like authorization.

4.3.1 Configuration

Prerequisite configurations must be handled to utilize a Webhook as an authoriza-
tion mechanism. These configurations relate to setting up the cluster to accept the
Webhook as a valid authorization mode or setting up the Webhook server itself.
The official Kubernetes documentation [26] states that the Webhook mode re-
quires a file for HTTP configuration, following the kubeconfig file format, specified
using the --authorization-webhook-config-file=SOME_FILENAME flag. Instead,
there are few existing guides to setting up an authorization Webhook mechanism
from scratch, and there is a lack of comprehensive explanations for each step in-
volved. The sole guide we will be examining to some extent [27] tries to describe
both how to set up the cluster and how to create a Webhook server. However, the
setup of the authorization Webhook has been a process of trial and error until we
successfully accomplished its proper functionality.

We begin by generating the TLS certificates for the CA (Certification
Authority), which in this case will be a self-signed CA, and the Webhook server
itself. The CA certificate establishes a basis for trust for TLS connections. The
server certificate is provided by your Webhook upon client connection. The server’s
private key is utilized to establish a secure connection. They fulfill entirely distinct

65

Native k8s authorization mechanisms

functions and are utilized in various segments of the TLS handshake. Since the cer-
tificates were one of the steps that were most confusing in setting up the Webhook,
we will provide the following commands to carry out this step correctly.

#create a private key for the CA

openssl genrsa -out ca.key 2048

#create a self-signed CA certificate

openssl req -x509 -new -nodes -key ca.key -days 365 -out ca.crt -subj \

"/CN=webhook-ca"

#create a private key for the server

openssl genrsa -out server.key 2048

#create a CSR for the server

cat > server.conf << EOF

[req]

req_extensions = v3_req

distinguished_name = req_distinguished_name

[req_distinguished_name]

[v3_req]

basicConstraints = CA:FALSE

keyUsage = nonRepudiation, digitalSignature, keyEncipherment

extendedKeyUsage = serverAuth

subjectAltName = @alt_names

[alt_names]

DNS.1 = webhook-server.default.svc.cluster.local

EOF

openssl req -new -key server.key -out server.csr -subj \

"/CN=webhook-server.default.svc.cluster.local" -config server.conf

#sign the server certificate with the CA

openssl x509 -req -in server.csr -CA ca.crt -CAkey ca.key \

-CAcreateserial -out server.crt -days 365 -extensions v3_req -extfile \

server.conf

#rename the ca.crt since we are might confuse it later in our cluster

mv ca.crt webhook-ca.crt

After we are done with the certificates, we can move on to the Webhook
configuration file. As mentioned before, it follows the kubeconfig file format and
looks like the following:

Listing 4.14. Webhook configuration file

#Kubernetes API version

apiVersion: v1

#kind of the API object

kind: Config

#clusters refer to the Webhook service

clusters:

- name: webhook-server

cluster:

#CA for verifying the remote service.

66

Native k8s authorization mechanisms

certificate-authority-data: #webhook-ca.crt base64 encoded

here

#URL of remote service to query. Must use 'https'. Also, we

need to provide the service's full name for correctness

server:

https://webhook-server.default.svc.cluster.local:443/authorize

users refers to the API server's Webhook configuration

users:

- name: kube-apiserver

user:

token: test-token

#can also include cert for the Webhook plugin to use

#and key matching the cert

kubeconfig needs contexts

current-context: webhook

contexts:

- context:

cluster: webhook-server

user: kube-apiserver

name: webhook

Then we can start up our cluster normally with the kubeadm init com-
mand and follow the same configuration for kubectl, CNI, and joining worker
nodes as in the RBAC configuration.

However, further steps are required to enable Webhook as an authorization
mechanism in our cluster. Prior to changing our API server, we must ensure that
the Webhook configuration file and its CA certificate are present on the control node
of our cluster. Subsequently, we modify the API server, first to add the Webhook
mode as the authorization mode, since the default options are limited to Node and
RBAC, and then add the Webhook configuration file and its CA certificate, like
below:

Listing 4.15. API server modification for Webhook authorization mode

#adding Webhook mode

- --authorization-mode=Node,RBAC,Webhook

#adding the Webhook configuration file

- --authorization-webhook-config-file=

/etc/kubernetes/webhook-config.yaml

#mounting the Webhook configuration file and its CA certificate

volumeMounts:

- mountPath: /etc/kubernetes/webhook-config.yaml

name: webhook-config

readOnly: true

- mountPath: /etc/kubernetes/pki/webhook-ca.crt

name: webhook-ca

readOnly: true

volumes:

67

Native k8s authorization mechanisms

- hostPath:

path: /etc/kubernetes/webhook-config.yaml

type: File

name: webhook-config

- hostPath:

path: /etc/kubernetes/pki/webhook-ca.crt

type: File

name: webhook-ca

Keep in mind that this way of setting up indicates that the authorization
modes will be activated sequentially, with Webhook as the last one. If no applicable
RBAC rule exists, the system will proceed to evaluate the Webhook; if no rules
are specified there either, the request will be immediately rejected. In the event
of a match in the Webhook, the request will be processed with respect to the
corresponding rule, either permitting or denying it. Furthermore, be aware that
if a rule exists in RBAC, it will be enforced immediately without consulting the
Webhook.

Once we are done with the previous step, it is necessary to restart the
API server for the modifications to take effect. The procedure is identical to that
outlined in the ABAC configuration, either by temporarily removing the API server
manifest or by stopping and restarting the kubelet.

The cluster has been set up completely, and the only remaining task is to
configure the Webhook server and deploy it within our cluster.

We chose to develop our Webhook server in Go due to its increasing pop-
ularity in cloud computing, intending to adopt an updated approach in the devel-
opment process. The script for the Webhook server exhibits remarkable flexibility
in the formulation of our policies and rules. We can fully leverage the information
obtained from the SubjectAccessReview object to construct intricate rules as de-
sired. But not to forget that it comes at a cost of elevated overall complexity. We
will give more details on the Go scripts themselves when we discuss scenarios, in
order not to overcomplicate our flow here.

Following that, we can easily construct a Docker image, simplifying the
deployment of our Webhook server as a remote service within the cluster. The
Dockerfile shown below is able to construct a lightweight image through a multi-
stage build, incorporating the Webhook server certificate and its private key within
the Docker image to ensure full completeness. It is essential to ensure that the
mentioned files are located in the directory where we are constructing the Docker
image. An example of Dockerfile for our Webhook server image is as follows.

Listing 4.16. Dockerfile example for the Webhook server image

FROM golang:1.24.1 AS builder

WORKDIR /app

Copy the Go code

COPY go.* ./

RUN go mod download

COPY . .

68

Native k8s authorization mechanisms

RUN CGO_ENABLED=0 GOOS=linux go build -a -installsuffix cgo -o

webhook-server .

Use a minimal image for the final container

FROM alpine:latest

WORKDIR /app

RUN apk --no-cache add ca-certificates

Copy the binary from the builder stage

COPY --from=builder /app/webhook-server /app/

COPY server.crt /app/

COPY server.key /app/

Create a non-root user and switch to it

RUN adduser -D -H -u 10001 webhook && \

chown -R webhook:webhook /app

USER webhook

Expose the port respecting the one set in Go script

EXPOSE 8443

Set the entrypoint

ENTRYPOINT ["/app/webhook-server"]

After creating the Docker image, we can deploy it to our cluster using
two different approaches. We can either upload it locally to our cluster, but this
requires ensuring its presence on every node, which is tedious and limits scalabil-
ity. Alternatively, we may upload it to a Container Registry and select the image
upon deploying our server within the cluster. We opted for the second alternative
and utilized the GitHub Container Registry because of its simplicity and effective
version control management.

What is left as the final step is to deploy the Webhook server in the cluster.
And we can do this simply by creating a Deployment based on the image we build
and exposing the container port correctly (in our case, is 8443 as declared in the
Dockerfile and, moreover, in the Go script of our Webhook server) and then a
Service related to that Deployment with the exposed port corresponding to the one
from our Webhook configuration file (in our case, 443) and target port, or the port
where the Service directs traffic to on the container of the Pod (in our case, 8443).

At this point, the cluster and the Webhook server should be up and running,
and we can utilize our Webhook authorization.

Before we conclude this section, we have some important remarks to make.
First, sometimes we had problems with DNS resolution when we declared our Web-
hook server as an internal Kubernetes service URL. As mentioned also in [28], this
might be because the API server itself starts before most of the other components
of a cluster, also including DNS services (like CoreDNS). So, logically, we cannot
depend on those to resolve hostnames that are part of the authorizer Webhook
configuration. But there are some tricks offered on how to still achieve this and
run our Webhook inside the cluster. We actually tried configuring the Webhook
service to run with a static clusterIP and then have our API server directed to
that IP instead of a hostname, but as warned in the guide, it gave a problem re-
garding the certificates we were using, since they were issued on hostnames and
not IP addresses. So we tried modifying the API server with its own hosts entry,

69

Native k8s authorization mechanisms

resolving manually with hostAliases the clusterIP of the Webhook service to
the hostname declared in our Webhook configuration file and the certificates, and
finally it resulted in success.

Second, having to manually restart the API server static pods when we
are configuring our cluster to use the Webhook authorization mechanism poses
a big drawback in its usage, and that is why we see the Webhook more used
within the scope of admission controllers. As stated in [28] again, this act of
restarting often demands access to certain components of the underlying system
hosting Kubernetes, an access level that is hardly granted in managed Kubernetes
settings. So, it leaves us with the sole possibility of utilizing it in self-managed
Kubernetes clusters, excluding a significant part of the Kubernetes community.
Therefore, even though the flexibility that comes with building your Webhook server
from scratch is quite high and beneficial, it is improbable that we will witness similar
thriving ecosystems related to custom Webhook authorizer modules as observed
with admission control, where the flexibility remains but is accompanied by easy
deployment as well.

At this point, we have carried out all the configurations needed, so we can
move on to implementing our scenario-based analysis.

4.3.2 Scenario-based analysis

In this section, we will examine various scenarios demonstrating the implementa-
tion of Webhook. We will observe close to real-life applications of Webhook while
highlighting the strengths and limitations of its mechanism and the paradigm itself.

Scenario 1

In this first scenario, we will demonstrate a basic version of an authorization Web-
hook. Evaluating the flexibility offered by an authorization Webhook will be ben-
eficial, although it will also highlight the increased complexity associated with de-
veloping it from scratch.

We are attempting to provide a certain level of access to a ServiceAccount
named test-user located in the default namespace. The service account will
have the capability to get and list every type of resource and non-resource, but
it will lack the right to delete any of them.

Figure 4.20 illustrates an outline of the scenario.

70

Native k8s authorization mechanisms

Figure 4.20. Webhook scenario 1

The mechanism works as follows: when this ServiceAccount attempts to
carry out an action within the cluster (such as getting pods in the default names-
pace), it will prompt the API server to take an authorization decision. The API
server will thereafter POST a JSON-serialized authorization.k8s.io/v1beta1

SubjectAccessReview object detailing the action. We expect the request body to
look like the following.

Listing 4.17. SubjectAccessReview object in Webhook 1st scenario

{

"apiVersion": "authorization.k8s.io/v1beta1",

"kind": "SubjectAccessReview",

"spec": {

"resourceAttributes": {

"namespace": "default",

"verb": "get",

"group": "",

"resource": "pods"

},

"user": "system:serviceaccount:default:test-user"

}

}

Authorization Webhook receives the SubjectAccessReview via POST and
is able to parse any field of interest in a set order to determine whether to permit
or deny the request. The following snippet is from the script of the Webhook server
implemented in our case.

Listing 4.18. Script snippet of Webhook server in Webhook 1st scenario

if req.Spec.User == "system:serviceaccount:default:test-user" {

71

Native k8s authorization mechanisms

if req.Spec.ResourceAttributes != nil {

if req.Spec.ResourceAttributes.Verb == "get" ||

req.Spec.ResourceAttributes.Verb == "list" {

req.Status.Allowed = true

}

if req.Spec.ResourceAttributes.Verb == "delete" {

req.Status.Allowed = false

}

}

if req.Spec.NonResourceAttributes != nil {

if req.Spec.NonResourceAttributes.Verb == "get" ||

req.Spec.NonResourceAttributes.Verb == "list" {

req.Status.Allowed = true

}

if req.Spec.NonResourceAttributes.Verb == "delete" {

req.Status.Allowed = false

}

}

}

return ctx.JSON(req)

We refer to our SubjectAccessReview object as req, and we can parse
req.Spec.User, checking if it matches the string
system:serviceaccount:default:test-user. If not, we need to deny access,
therefore returning the status field in the SubjectAccessReview object as false.
We accomplish this by setting req.Status.Allowed as false, which later will be
returned back to the API server in JSON format. Once we are sure that the user
is the ServiceAccount, we can parse the object further for resources with
req.Spec.ResourceAttributes are not null and non-resources with
req.Spec.NonResourceAttributes are not null, and then move on to checking
the verbs the access is requested on with req.Spec.ResourceAttributes.Verb

and req.Spec.NonResourceAttributes.Verb. If these last ones are get or list,
we set the req.Status.Allowed to true and return it back to the API server in
JSON format. Instead, if the verb is delete, the req.Status.Allowed is set to
false. Once the API server receives the response, it is able to interpret it to allow
or deny the initial request for action from the ServiceAccount.

We can test our scenario very simply with the following commands:

kubectl auth can-i get pods \

--as=system:serviceaccount:default:test-user -n default #returns yes

kubectl auth can-i delete pods \

--as=system:serviceaccount:default:test-user -n default #returns no

As previously said, we can determine the flexibility, customizability, and
consequently the power of an authorization Webhook. We hold full control over
the fields to consider and the methods of comparison, enabling us to determine the

72

Native k8s authorization mechanisms

granularity level of access control. We can also leverage the option of integrating
external application logic, such as user-defined functions, into the evaluation of the
SubjectAccessReview object, which may allow for more complex decision-making.
However, it is important to note that substantial flexibility also introduces an ad-
ditional level of complexity. We must address every detail, every use case, and
every edge case, which may be manageable on a small scale but would undoubtedly
become considerably more challenging to manage as we scale up with additional
users, resources, and rules within the cluster. Ultimately, the decision on whether
to use the Webhook authorization mode depends on the specific circumstances and
the trade-offs we are willing to make.

Scenario 2

In the present scenario, we will leverage the authorization Webhook’s capability
to make decisions based on label selectors, a functionality that was previously
unavailable with RBAC and ABAC.

An authenticated user named intern has been established with X.509 cer-
tificates. We aim to allow this user to list solely the pods labeled with env=test,
excluding those labeled with env=prod. When an intern attempts to list pods
with a specific label, the API server must make an authorization decision and will
POST a JSON-serialized authorization.k8s.io/v1beta1 SubjectAccessReview
object outlining the action. In the scope of this request, we anticipate the Subjec-
tAccessReview object to look like the following:

Listing 4.19. labelSelector in the SubjectAccessReview object

"labelSelector": {

"requirements": [

{"key":"label-name", "operator":"In",

"values":["label-value"]}

]

}

Authorization Webhook receives the SubjectAccessReview via POST and is able to
parse any field of interest in a set order to determine whether to permit or deny the
request. In our case, the authorization Webhook is more interested in parsing the
labelSelector field once it has established that the request is coming from the
user intern trying to list pods. In our Webhook server script, it looks as follows:

Listing 4.20. Script snippet of Webhook server in Webhook 1st scenario

if req.Spec.User == "intern" {

if req.Spec.ResourceAttributes != nil {

if req.Spec.ResourceAttributes.Verb == "list" ||

req.Spec.ResourceAttributes.Resource == "pods" {

allowedSelector := metav1.LabelSelector{

MatchExpressions:

[]metav1.LabelSelectorRequirement{

{

Key: "env",

73

Native k8s authorization mechanisms

Operator: metav1.LabelSelectorOpIn,

Values: []string{"test"},

},

},

}

if req.Spec.ResourceAttributes.LabelSelector != nil &&

reflect.DeepEqual(*req.Spec.ResourceAttributes.LabelSelector,

allowedSelector) {

req.Status.Allowed = true

} else {

req.Status.Allowed = false

}

}

}

}

return ctx.JSON(req)

We refer to our SubjectAccessReview object as req, and we can parse
req.Spec.User, checking if it matches the string intern. Then we check the
requested verbs and resources with req.Spec.ResourceAttributes.Verb and
req.Spec.ResourceAttributes.Resource. Then we construct the
allowedSelector and then compare it with the labelSelector in our SubjectAc-
cessReview, here referred to as req.Spec.ResourceAttributes.LabelSelector.
If we find a match, we set the req.Status.Allowed to true and return it back to
the API server in JSON format. If not, the req.Status.Allowed is set to false.
Once the API server receives the response, it is able to interpret it into allowing or
denying the initial request for action from the user intern.

Figure 4.21 illustrates an outline of the scenario.

Figure 4.21. Webhook scenario 2

74

Native k8s authorization mechanisms

We can test our scenario very simply with the following commands:

kubectl auth can-i list pods -l env=test --as=intern #returns yes

kubectl auth can-i list pods -l env=prod --as=intern #returns no

In this case, we observed the appearance of a new, powerful feature in access
control through the Webhook authorization method. This further demonstrates
the efficacy of the authorization Webhook while still highlighting the complexity of
developing one from scratch.

This scenario concludes our practical analysis of Webhook in Kubernetes.

4.3.3 Strengths and limitations

Webhook authorization provides exceptional flexibility and customization by dele-
gating access control decisions to an external service. The primary advantage lies
in its ability to execute highly detailed and dynamic authorization policies tailored
to precise requirements, potentially integrating complex business logic, real-time
context, or external application logic on comparative tasks, surpassing the func-
tionalities of the other native mechanisms of RBAC or ABAC. This paradigm natu-
rally enables centralized policy management, allowing for unified governance across
various tenants in a cluster or even multiple Kubernetes clusters from a singular au-
thoritative source. Importantly, policy modifications are administered dynamically
within the external service, where updates are implemented instantaneously with-
out necessitating cluster restarts or inducing service disruptions except for those
at cluster startup, thus enabling dynamic security management. Moreover, in con-
trast to RBAC and ABAC, the Webhook architecture clearly accommodates the
construction of ”deny” rules, hence enhancing its expressive capability for specific
security policies.

However, such power and flexibility lead to considerable operational com-
plexity and interdependencies. A primary drawback is the need for additional
configuration during cluster startup, which involves precise setup of the Webhook
endpoint and related certificate authorities for secure connection, but also service
disruptions due to API server restarts, limiting its implementation to self-managed
Kubernetes clusters. The mechanism’s core dependency on an external service
causes significant risks. Like that of the external service becoming a single point
of failure, in that its unavailability impacts all authorization decisions within the
cluster. It also introduces an innate latency overhead for each API request as the
cluster awaits the external service’s response. Establishing, securing, and sustain-
ing a resilient, highly available external authorization service is complex, requiring
considerable skill and resources. Similar to previous mechanisms, Webhooks also
lack inherent solutions for efficiently listing and filtering based on user permissions.
Moreover, securing the communication between the API server and the authoriza-
tion Webhook, usually over mutual TLS, and hardening the external service against
attacks imposes significant operational burdens.

Webhook authorization is ideally deployed in environments requiring ex-
tensive customization and flexibility, where previous RBAC or ABAC mechanisms
are inadequate. Its advantages are essential for organizations requiring centralized,

75

Native k8s authorization mechanisms

high-level policy enforcement across complex environments. This mechanism is par-
ticularly effective in high-security or heavily regulated environments that require
customized authorization logic, which integrates dynamic, real-time data feeds,
like threat intelligence and business context, or extensive integration with external
systems, assuming that the operational complexity of managing and securing the
external authorization service is an acceptable compromise.

76

Chapter 5

Open source authorization
solutions

5.1 Limitation of native mechanisms and evolu-

tion paths

A thorough analysis of native authorization mechanisms in Kubernetes reveals sig-
nificant limitations that restrict their efficacy in complex, dynamic, and large-scale
environments. Although each method targets particular aspects of access control,
their combined shortcomings highlight a significant weakness: the lack of native
support for advanced authorization paradigms required in modern cloud-native
ecosystems. This naturally leads us to explore alternative solutions that can en-
hance fine-grained access control to meet the demands of today’s cloud computing
world.

In this light, we regard RBAC and ABAC as well-explored authorization
paradigms with not much to be extended on. On the other hand, Webhooks hold
substantial potential that, unfortunately, is not fully leveraged in their native au-
thorization mechanism form within Kubernetes. It is even somehow overlooked, as
Mutating and Validating Webhooks in the Admission Control phase have gained
more popularity and are better realized in Kubernetes. Thus, we concentrated on
seeking open source solutions that extend the authorization Webhook mechanism
with new and avant-garde underlying paradigms that are able to provide what is
lacking from the native mechanisms considered.

We are going to analyze two of them in this chapter: thePolicy-Based Ac-
cess Control (PBAC) paradigm realized through Open Policy Agent (OPA)
and the Relationship-Based Access Control (ReBAC) paradigm realized
through SpiceDB. Without further ado, let us move on, not just exploring the
general workings from a high-level view, but also delivering a scenario-based anal-
ysis and results drawn from it.

77

Open source authorization solutions

5.2 Policy-Based Access Control (PBAC)

We will first provide an overview of the Policy-Based Access Control (PBAC)
paradigm itself and subsequently discuss its implementation via a specific open
source solution. Even though we will see several converging points between the
paradigm notion and the architecture of OPA as the chosen open source, we think
it is beneficial to have the full picture.

Policy-Based Access Control (PBAC) is an authorization mechanism that
regulates access to resources according to policies aligned with an organization’s
business objectives [29] [30]. The PBAC paradigm employs both attributes and
roles to formulate policies, in contrast to conventional access control paradigms
that utilize just roles or attributes to determine access rights. This feature ren-
ders PBAC a genuinely potent and dynamic method for parameter control. In
contrast to old methods, policies are now enforced automatically, are scalable, and
include a structured framework for implementation. The PBAC paradigm imple-
ments policies in a totally different manner, leveraging a methodology known as
Policy-as-Code (PaC), indicating that policy can be directly coded. It eliminates
the manual labor of compliance teams and integrates into the code, thus automat-
ing its procedures concurrently. All processes, from version control to review and
validation, are automated entirely.

According to [30], there are numerous advantages to automating policy
administration with Policy-as-Code. It demonstrates significant improvements in
dynamic flexibility, security strength, and compliance adherence, establishing it as
a leading modern authorization framework.

The primary advantage is its dynamic and flexible policy enforcement, al-
lowing for detailed access decisions via real-time assessment of several parameters.
In contrast to static models, PBAC integrates attributes of user, resource, action,
and environment. This ”if-then” decision framework enables firms to establish
context-sensitive regulations, such as prohibiting access systems from non-corporate
devices on weekends, ensuring accurate, adaptive governance in accordance with
changing operational demands. The model’s intrinsic flexibility enables effortless
expansion across various organizational sizes, while centralized management allows
for rapid policy distribution throughout all interconnected systems.

In terms of security and reliability, PBAC reduces human error and sys-
temic weaknesses via automation and privilege separation. Automating policy
evaluation and updating removes manual oversight shortcomings characteristic of
manual systems. Architecturally, PBAC implements rigorous privilege separation,
guaranteeing that breaches in one network segment do not spread laterally. This
confinement method, along with proactive policy enforcement, mitigates signifi-
cant security vulnerabilities inherent in reactive RBAC models. The framework’s
uniform application of policies across the system mitigates configuration drift and
improves security-in-depth strategies against insider threats and data theft.

To guarantee compliance and consistency, PBAC offers auditable and me-
thodical governance crucial for regulatory adherence. The unified policy engine
organically connects access restrictions with legal demands, like GDPR, by codify-
ing data privacy and security needs into enforceable regulations. Organizations can

78

Open source authorization solutions

consistently limit access to sensitive data across hybrid environments, producing
immutable decision logs for auditing purposes. This consistency enables compli-
ance demonstrations, speeds up policy alignment after mergers or expansions, and
guarantees that access control advances in sync with regulatory landscapes. Thus,
PBAC surpasses conventional access frameworks by integrating compliance, secu-
rity, and operational agility into a unified, policy-driven architecture.

Having gained a clearer understanding of the paradigm, we may proceed by
focusing on the practical application of it through OPA as an open source solution.

5.2.1 Open Policy Agent (OPA)

Open Policy Agent (OPA) is an open source, general-purpose policy engine in-
tended to separate policy decision-making from application logic. Created by Styra
and now under incubation at the Cloud Native Computing Foundation, it is now
the go-to choice for a policy engine unifying policy enforcement across the stack.
It facilitates cohesive, context-sensitive policy enforcement across several domains,
including microservices, Kubernetes, CI/CD pipelines, and infrastructure-as-code
technologies. Utilizing a high-level declarative language known as Rego, OPA
enables the precise articulation of policies as code, thereby simplifying dynamic
oversight of authorization, resource allocation, compliance, and configuration man-
agement without altering foundational services [31].

Before we focus on the working details of OPA, let us start by defining what
a policy is [32]. A policy is a collection of rules that regulates the software service’s
behavior. The policy is versatile in what it can define, from rate limitations to
identification of trusted servers, deployment clusters for an application, authorized
network routes, or accounts from which a user may withdraw funds. Authorization
is a specific type of policy that often determines which individuals or computers
are permitted to execute particular actions on designated resources. Authorization
is often confused with Authentication: the process by which individuals or systems
verify their identity. Authorization and policy in general frequently employ the
outcomes of authentication, such as username, user attributes, groups, and claims;
however, they base judgments on a broader array of information beyond mere user
identity. Abstracting from authorization back to policy clarifies the distinction
further, as certain policy decisions are unrelated to users, like in the cases where
policy only defines invariants that must be maintained within a software system, say,
all binaries must originate from a trustworthy source. Policies can be implemented
manually based on documented regulations or implicit conventions that encompass
an organization’s culture. Policies may be enforced by application logic or statically
set upon deployment.

Currently, policy is frequently an integral, fixed component of the software
service it regulates. Open Policy Agent enables the separation of policy from the
software service, allowing those responsible for policy to read, write, analyze, ver-
sion, distribute, and manage policy independently from the service. OPA provides
a unified toolbox to separate policy from any software service and to formulate
context-aware policies utilizing any desired context. In simpler words, OPA en-
ables the decoupling of policies from any context across any software system.

79

Open source authorization solutions

This brings us to a very important feature offered by OPA, that of policy
decoupling. When software services enable the declarative specification of poli-
cies, they permit updates at any moment without the need for recompilation or
redeployment, ensuring automatic enforcement, particularly when choices require
rapid processing beyond human capability. In today’s setting, the decoupling pol-
icy enables the development of scalable software services, enhances adaptability to
evolving business needs, improves the detection of violations and conflicts, increases
consistency in policy adherence, and reduces the likelihood of human error. The
regulations we construct can more readily adjust to the external environment, like
factors that the developer may not have anticipated during the software service’s
design phase.

In the absence of OPA, we would have to develop policy management for our
product independently. The essential components, including the policy language
(syntax and semantics) and the evaluation engine, must be meticulously planned,
built, tested, documented, and updated to guarantee accurate functionality and an
optimal user experience for clients. Additionally, one must meticulously evaluate
security, tools, management, and other factors. That would result in an enormous
amount of effort.

This naturally brings us to the question of how OPA actually works [31]
[32]. Architecturally, OPA functions as a lightweight binary or container deployed
alongside host applications. Services assign policy decisions to OPA using REST-
ful API calls, supplying structured JSON data that outlines the request context,
like user attributes and resource metadata. Then OPA assesses this information
according to established Rego policies, articulated in a specialized, high-level lan-
guage designed for querying hierarchical document architectures to generate policy
decisions. This data is typically referred to as a document, a set of attributes,
a piece of context, or simply ”JSON”. Most importantly, OPA policies may pro-
duce decisions taking into consideration arbitrary structured data, since it is not
associated with any specific domain model. Likewise, OPA policies can encapsu-
late decisions as arbitrary structured data (e.g., booleans, strings, maps, lists of
maps, etc.). These decisions are provided as JSON outputs. OPA distinctly dif-
ferentiates policy formulation from enforcement, facilitating centralized policy
administration and dynamic updating without the need for service redeployment.

To clarify a bit on the document model of OPA, data can be imported
into OPA from external sources through push or pull interfaces that function syn-
chronously or asynchronously to policy assessment. All data imported into OPA
from external sources is referred to as base documents. These primary sources
consistently inform the policy decision-making process. Yet, your policies may also
influence one another’s decisions. Policies typically comprise several rules that
reference further rules, maybe created by various parties. In OPA, the values pro-
duced by rules, also known as decisions, are referred to as virtual documents.
The term ”virtual” in this context signifies that the document is generated by the
policy, meaning it is not externally sourced into OPA.

Base and virtual documents can denote identical types of information, such
as integers, strings, lists, maps, etc. Additionally, Rego allows for the referencing of
both base and virtual documents utilizing the identical dot/bracket-style reference

80

Open source authorization solutions

syntax. The uniformity in the representation of values and their referencing allows
policy authors to master a single method for modeling and referencing information
that feeds policy decision-making. Furthermore, due to the absence of a concep-
tual distinction between the types of values or their references in base and virtual
documents, Rego permits the referencing of both base and virtual documents.

And the last thing to emphasize in this introduction of OPA is its primary
policy language, Rego. It enhances declarative programming paradigms to accom-
modate intricate rule definitions. It utilizes pattern recognition, logical synthesis,
and internal functions to examine hierarchical data. The following shows a snippet
of what Rego looks like [33].

Listing 5.1. Rego language in OPA

import rego.v1

default allow := false #deny requests by default

#more of RBAC approach

allow if user_is_admin #allow admins to do anything

user_is_admin if "admin" in data.user_roles[input.user] #how you

actually check is admin

#allow the action if the user has permission to perform that

action

allow if {

some grant in user_is_granted #find grants for the user

input.action == grant.action #check if the grant permits the

action

input.type == grant.type #check if the grant permits the action

}

#more of ABAC approach

#allowing the action if the attribute value is valid

allow if {

attribute_is_valid

}

attribute_is_valid if

data.data_attributes[input.attribute].value == input.value

Policies can reference many data sources to implement context-sensitive
rules such as RBAC, ABAC, ReBAC [33], or tailored evaluations like ABAC with
a broader range of attributes or RBAC with blacklisting [34]. Rules are fundamen-
tally if-then logical statements that allow for the encapsulation and reutilization of
reasoning using Rego. Rules are categorized as either complete or partial. We define
them as complete when the if-then statements assign a singular value to a variable,
and we define them as partial if the conditional statements produce instead a set of
values and assign all to a variable. If OPA is unable to identify variable assignments
that match the rule body, we declare the rule as undefined. Rego’s testability and

81

Open source authorization solutions

modularity facilitate version control, validation, and simulation of policies in devel-
opment environments, hence improving dependability and auditability. Essential
characteristics comprise dynamic policy bundling, wherein OPA routinely re-
trieves updated policies and external data from distant servers, alongside decision
logging for audit trails and guaranteeing of idempotent enforcement. At the
end, this allows OPA to naturally connect with cloud-native ecosystems through
sidecar installations, such as a Kubernetes admission controller, HTTP middleware,
or SDKs. The stateless architecture facilitates horizontal scaling, while tools such
as the Rego Playground [35] enhance policy creation and debugging.

5.2.2 Configuration

We start by discussing what the recommended deployment patterns for OPA on
Kubernetes are, and then move on to how we configured our clusters to perform
our scenario-based analysis.

Deploying OPA as a Policy Decision Point (PDP) on Kubernetes is a
prevalent method for implementing fine-grained policy management within con-
tainerized workloads, and then enforcing policy decisions in real-time with Policy
Enforcement Points (PEPs).

There are several recommended deployment patterns for OPA on Kuber-
netes, encompassing both cluster- and application-level deployments [36].

• Sidecar (Application) When a Policy Enforcement Point (PEP) applica-
tion requires low-latency policy decisions, OPA can be implemented as a
sidecar within the same pod as the application containers. This design fa-
cilitates per-application OPA configuration, exhibits network fault tolerance,
and scales with the application. But we need to keep in mind that loading
large volumes of data into OPA can be resource-intensive. So, for substantial
data loads into OPA, it would be better to go with a centralized OPA deploy-
ment to minimize cluster memory consumption or utilize Enterprise OPA for
enhanced memory efficiency.

• The Sidecar (Service Mesh) Integrates Enterprise OPA and the
opa-envoy-plugin, both of which enhance OPA’s native API functionalities
to accommodate Envoy’s External Authorization API. This enables OPA to
apply L7 policy on requests prior to their landing at the application. In this
scenario, the PEP is the Envoy proxy; nevertheless, the OPA sidecar contin-
ues to provide additional APIs for local policy determinations as previously
mentioned.

• Cluster Service At times, operating a cluster service is the optimal method
for executing OPA. This deployment approach not only addresses Kubernetes
Admission Review requests but also facilitates PEPs apps utilizing a highly
available OPA PDP service. But take into consideration that this may result
in increased latencies and provide a single point of failure if misconfigured.

• External Service Analogous to a cluster service, deploying a cluster OPA
PDP service behind a load balancer can effectively facilitate the sharing of
OPA with external PEPs. This may be advantageous for apps operating on
alternative products or on-premises. The main issues to consider prior to
going with this way of deployment are latency and network fault tolerance.

82

Open source authorization solutions

• Cluster Daemonset Generally, executing OPA as a Daemonset is not sug-
gested. This pattern may present challenges in scalability for applications and
necessitate meticulous resource allocation. Nevertheless, if you are operating
with a limited number of pods per node and cannot implement a sidecar, this
may serve as an appropriate alternative.

Let us proceed with explaining the route we followed for configuring OPA
in our clusters. Initially, we attempted to deploy OPA in the same manner as
an authorization Webhook by establishing the Webhook mode in the API server
(kube-apiserver) along with its configuration files and mounted volumes, setting
up the Webhook, certificates, scripts, and manifests, and deploying it within the
cluster as a service. The only distinction from the native authorization Webhook
lies in the format of the policy declaration. We would encounter the same challenges
with DNS resolution, and most importantly, this deployment pattern would still
require access to the control-plane node to perform the necessary configuration
for the Webhook mode, thus restricting this approach to self-hosted Kubernetes
clusters only.

We additionally explored the cluster DaemonSet approach as outlined in the
[37] repository. This repository, like most others documenting OPA implementation
in Kubernetes, is significantly outdated and mostly nonfunctional. This specific one
has incompatibilities in the kubeadm version, image version, Rego language version,
and other related aspects.

This led us to reconsider the practical significance of OPA in Kubernetes.
The power and benefits of OPA as a unified policy agent throughout the stack are
undeniable; yet, in the context of Kubernetes deployment, we observed that OPA’s
popularity in this area is mostly attributed to its admission controller functional-
ities. As described in [34], dynamic Admission Control is constrained by the
fact that Webhooks are invoked exclusively for create, update, and delete actions
involving Kubernetes resources. It is, for instance, not possible to refuse get re-
quests. However, they possess advantages over the authorization Webhook module
as they can reject requests based on the content of a Kubernetes resource. Instead,
the authorization Webhook module lacks access to this information. Instead, it
takes decisions based on SubjectAccessReviews, while the ValidatingWebhook and
MutatingWebhook make decisions based on AdmissionReviews. We have incor-
porated OPA through the authorization module and the MutatingWebhook in our
implementation. So for our requests to be authorized, they need to follow the route
as shown in Figure 5.1.

83

Open source authorization solutions

Figure 5.1. OPA deployment pattern

The request must be authenticated beforehand. After that, go through
the authorization Webhook, which may either reject the request or notify the next
authorization module, specifically RBAC in this instance. Subsequently, RBAC
goes into effect, and if it fails to authorize the request, it is immediately re-
jected. If our request involves modifications to resources, such as creation, up-
dating, or deletion, then Admission Controllers are invoked. For the sake of sim-
plicity, since we have already explained the downsides of deployment of OPA as
a webhook, with a cluster service, we are going to skip that part and have only
RBAC and OPA through means of the Admission Controller. The module known
as Kubernetes-Policy-Controller is, in fact, the Gatekeeper [38], a policy con-
troller for Kubernetes that enables the conversion of Kubernetes SubjectAccessRe-
views and AdmissionReviews objects into OPA queries, given that OPA lacks a
REST interface implementation with Kubernetes. It provides improved function-
alities, all contained within a single, optimized package. Moreover, Gatekeeper
supports native Kubernetes Custom Resource Definitions (CRDs) for the instanti-
ation and enhancement of the policy library.

Although Gatekeeper is mostly recognized as an Admission Controller tool,
it may effectively enable fine-grained authorization and validation when used wisely
in carefully constructed scenarios. Consequently, we deem it appropriate to pro-
vide this here, not only in the context of authorization mechanisms but also to
expand our perspective by examining real-life scenarios where many authorization
paradigms are interconnected and the admission control layer is established as well,
reviewing in full the access control framework.

With all this being said, the only preconfiguration that we need to carry out
before starting our scenario-based analysis is to install Gatekeeper in our already
set-up clusters. This time we opted for Kind clusters, since they are lightweight and
easy to use without any extra configuration (like CNI in kubeadm, for example).
So with the following commands, we are good to go and implement our scenarios.

kind create cluster --name opa-scenario #create Kind cluster

kubectl apply -f https://raw.githubusercontent.com/open-policy-agent/\

gatekeeper/master/deploy/gatekeeper.yaml #install gatekeeper

kubectl -n gatekeeper-system get pods

84

Open source authorization solutions

#check if all gatekeeper pods are running fine

#meaning it was installed correctly

And to conclude, we expect to have two important manifests in our scenar-
ios. One is the policy template that defines the Rego policy logic, and the other is
the policy constraint that enforces the policy on specified resources. Then OPA
evaluates the policies using the Rego language so that valid requests pass through
and invalid ones get rejected. But we will see this last part in more detail in the
coming scenarios.

At this point, we have explained our deployment pattern and carried out all
the configurations needed, so we can move on to implementing our scenario-based
analysis.

5.2.3 Scenario-based analysis

In this section, we will examine one scenario demonstrating the implementation
of PBAC with OPA while being close to real-life application of the paradigm and
mechanism and highlighting the strengths and limitations of its mechanism and the
paradigm itself.

Scenario 1

In this scenario, we are going to implement an advanced Policy-based access con-
trol using OPA. We aim to utilize two key features of OPA: first, the capacity to
incorporate time-based attributes for context-aware policies, and second, the abil-
ity to implement ”blacklisting”, allowing for the formulation of deny rules. These
are two features that are absent in native Kubernetes authorization mechanisms.
It may be feasible with native authorization Webhooks, but it would involve sig-
nificant complexity and challenges in scalability. OPA manages these two aspects
efficiently. We will utilize Gatekeeper, even though it is mainly seen as an admis-
sion controller; when properly set, it serves as a powerful tool for fine-grained access
control. Alongside Gatekeeper, we will implement RBAC to establish the basis of
our access control. This demonstrates how we can integrate these two mechanisms
and distinct access-control paradigms.

The scenario involves a user named dev who has access throughout the
week across three designated namespaces: dev, test, and prod. He is permitted to
read and write in pods, services, and deployments, except on Fridays, when he loses
the ability to create, update, patch, or delete resources in the prod namespace.
We will implement the Role and Rolebindings to grant the user dev access to all
resources across the three namespaces. And then on top of RBAC, there will be
the Gatekeeper that, in case the day is Friday, will actually prevent user dev write
access in the prod namespace. Figure 5.2 illustrates an outline of the scenario.

85

Open source authorization solutions

Figure 5.2. PBAC with OPA scenario 1

As outlined in the configuration section, we begin by creating a basic Kind
cluster and installing Gatekeeper within it. We take the appropriate precautions to
authenticate a user using X.509 certificates, referred to as dev, as we have repeatedly
done before. We ensure the proper creation of all three namespaces: dev, test,
and prod. Subsequently, we set up RBAC for the user dev. This will maintain the
workflow for all other weekdays, excluding Friday, across all three namespaces, for
every applicable verb concerning pods, services, and deployments.

At this point, we must develop a policy template that defines the Rego
policy logic. In this case, for the time-based policy. It will function as an additional
layer that can obstruct access even when RBAC would typically permit it. Utilizing
time.now_ns(), we can figure out the current weekday on which the request is
being made, with Friday represented as the integer 5. Subsequently, we verify the
user and the corresponding namespace. Upon having a match involving a restricted
user, within a restricted namespace, concerning a restricted resource, on a restricted
day, we trigger a violation message in Rego. A snippet of the policy template is as
follows.

Listing 5.2. OPA policy template snippet for time-based policy

rego: |

package k8stimerestriction

This rule triggers a violation when all conditions are met

violation[{"msg": msg}]{

#get current day

now_ns := time.now_ns()

current_day := time.weekday(now_ns)

#is current day restricted

input.parameters.restrictedDays[current_day]

#is requested namespace restricted

86

Open source authorization solutions

input.review.object.metadata.namespace==

input.parameters.restrictedNamespaces

#is user doing the request up for restriction

user_annotation :=

input.review.object.metadata.annotations["requested-by"]

user_annotation==input.parameters.targetUsers

#construct the violation message to be displayed

msg := sprintf("%s Current day: %d, Namespace: %s, User:

%s", [

input.parameters.message,

current_day,

input.review.object.metadata.namespace,

user_annotation

])

}

We can verify it is created with the following command.

kubectl get constrainttemplates

Then we need to define the meaning of a restricted user within a restricted
namespace concerning a restricted resource on a restricted day. We accomplish
this by creating a constraint that, as the name suggests, constrains the policy on
specified cases. This acts as a policy enforcement that specifies the restricted user
as dev, the restricted namespace as prod, the restricted resources as pod, service,
and deployment, and the restricted day as Friday. It also serves the purpose of
policy decoupling that we have presented before. A snippet of the policy constraint
is as follows.

Listing 5.3. OPA policy constraint for time-based policy

apiVersion: constraints.gatekeeper.sh/v1beta1

kind: K8sTimeRestriction

metadata:

name: friday-prod-block

spec:

enforcementAction: dryrun #only for testing. 'deny' in prod

match:

kinds:

Target pods

- apiGroups: [""]

kinds: ["Pod"]

Target services

- apiGroups: [""]

kinds: ["Service"]

Target deployments

- apiGroups: ["apps"]

kinds: ["Deployment"]

parameters:

restrictedDays: [5] #Friday only (int 5 = Friday)

87

Open source authorization solutions

restrictedNamespaces: ["prod"] #only restrict prod namespace

targetUsers: ["dev"] #only apply to dev user

message: "BLOCKED: Dev user cannot access prod namespace on

Fridays!"

We can verify everything is as it should be with the following command.

kubectl get k8stimerestriction friday-prod-block

kubectl describe k8stimerestriction friday-prod-block

In order to test out our scenario, we first need to check what day Gatekeeper thinks
it is by creating a template that, as a violation message, will output the current
day perceived by Gatekeeper. It will also need a constraint to supply the restricted
values.

Small note here: if we have the template and the constraint in one file, we
might get an error when applying it, saying the CRD does not exist. We should
know it is just because it needs a little bit of time for the CRD to be applied, and
if the constraint is immediately after in the manifest, it might be that when it is
being executed, the CRD is still not fully applied in the cluster. We can just rerun
it until everything is created.

At this point we can create a test pod in our cluster. And since we have
set the enforcementAction: dryrun in the constraint for debug, the pod will be
created, but we can see the debug information in the constraint status with the
following command.

kubectl describe k8stimedebug time-debug

We will see here the message with the current day. Let’s say that we run
this scenario on a Wednesday. So if we try to access the pod in prod namespace
impersonating user dev, we would succeed. We can test for this with the following
command.

kubectl auth can-i get pods --namespace=prod --as=dev #returns yes

But if we were to run this scenario on a Friday, or even create a simulation
with a template that has the current day hardcoded as integer 5, representing
Friday, attempting to create a pod in prod namespace impersonating user dev we
would fail. We can test for this with the following command.

kubectl auth can-i create pods --namespace=prod --as=dev #returns no

This scenario holds significance as it illustrates the complicated details of OPA and
its integration with native authorization mechanisms that handle base cases for
simplicity. It is worthy to acknowledge that while the fine-grained authorization
provided by this implementation is notable, it implies a steep learning curve for
those who need to get familiar with OPA and Rego in particular.

Different from the native authorization mechanisms, the scenarios on the
open source solutions are able to cover much more ground with less effort. This
explains the reason we are presenting only one scenario and concluding here our
practical analysis of PBAC and OPA in Kubernetes.

88

Open source authorization solutions

5.2.4 Strengths and limitations

PBAC, implemented through OPA, presents a paradigm shift to unified, context-
aware governance across various systems. Its main advantage lies in offering a
single, cross-platform framework for authorization and access control, facilitating
uniform policy enforcement across Kubernetes, and not only that, but also APIs,
microservices, CI/CD pipelines, and cloud infrastructure. Policies are articulated
declaratively in Rego, the specialized language of OPA, facilitating highly com-
plex, context-aware decisions that assess intricate links among people, resources,
activities, and external data sources. This includes innate support for explicit black-
listing (deny rules), addressing a significant constraint of native RBAC and ABAC
in Kubernetes. Moreover, policy modifications are executed dynamically, mean-
ing updates are implemented instantaneously without requiring cluster restarts or
causing service disruptions, thus allowing agile security management and ongoing
compliance.

However, achieving these capabilities involves considerable complexity and
operational burden. A principal drawback is the significant learning curve linked to
mastering Rego syntax, comprehending OPA’s deployment patterns, and properly
integrating it with Kubernetes. Connecting OPA to the Kubernetes API server
requires an extra component, such as the Kubernetes Policy Controller (or Gate-
keeper), which increases deployment and maintenance complexity. This architec-
tural dependency, along with the necessity to evaluate potentially complex policies
for each relevant API request, results in latency overhead as compared to simpler
native mechanisms such as RBAC. Meticulous performance optimization and pol-
icy formulation are crucial for mitigating this side effect. Again, there is difficulty
with efficiently listing and filtering based on user permissions.

PBAC and OPA shine in situations requiring unified, auditable policy en-
forcement across hybrid or multi-platform infrastructures, such as Kubernetes clus-
ters, cloud services, and on-premises systems. Its advantages are essential for en-
terprises requiring extremely detailed, context-aware authorization governed by in-
tricate business logic, regulatory compliance, or evolving security demands that are
beyond the functionalities of RBAC or ABAC. Thus, OPA is perfectly suited for
security-sensitive, large-scale implementations where the commitment to mastering
Rego and managing Gatekeeper is justified by the necessity for dynamic, auditable,
and uniformly enforced policies that can integrate real-time data and explicit denial
rules throughout the entire stack.

5.3 Relationship-Based Access Control (ReBAC)

Relationship-based Access Control (ReBAC) is a promising authorization paradigm.
As described in [39], the fundamental concept of ReBAC is that the presence of
a sequence of relationships between a subject and a resource defines access. This
abstraction can replicate all existing authorization paradigms, including the widely
used RBAC and ABAC models. The idea was initially outlined by Carrie Gates in
a 2006 paper titled Access Control Requirements for Web 2.0 Security and Privacy
[40], with Facebook recognized as a pioneer adopter of this paradigm. Nonethe-
less, it was not until the release of the Zanzibar paper [41] in 2019 that ReBAC

89

Open source authorization solutions

gained popularity beyond applications that were already using graph abstractions
for their data. With Broken Access Control currently leading the OWASP Top 10
[2], ReBAC is now regarded as the recommended approach for developing reliable
authorization systems [42]. To give a little bit more detail on the paradigm itself,
let’s start by defining what a relationship is [43]. Relationships bind two enti-
ties or objects, these being either a Subject or a Resource, through a Relation.
The principle of ReBAC authorization systems is that access may be determined
by tracing a chain of relationships. The core of authorization logic can be sim-
plified to a single question: ”Is this user allowed to perform this action on this
resource?” We can break this down into its fundamental components: the actor
being the subject object, the resource being, as the name suggests, the resource
object, and the action being the permission or relation. The true power of ReBAC
lies in rephrasing this basic question into a more complex one: ”Is there a chain
of relationships beginning from this resource via this relation that eventually leads
to this subject?” This question is related to graph reachability. General-purpose
graph databases optimize for various graph traversals, typically depth-first search
and breadth-first search. In contrast, ReBAC systems are specifically designed to
efficiently and scalably compute reachability, using all relevant assumptions asso-
ciated with the domain of authorization. So the final word on relationships is that
they have significant power due to their dual nature, serving as both the question
and, when considered together, the answer.

Let us briefly describe the Google Zanzibar paper that contributed to
the superiority of ReBAC [44]. Google Zanzibar is a globally distributed autho-
rization system created internally at Google to solve the significant challenge of
handling fine-grained permissions on a global scale. Emerging from necessity as
Google’s product ecosystem broadened, it addressed a critical fragmentation is-
sue, that of each service having established its own ad hoc authorization protocols,
resulting in inconsistencies, redundant engineering efforts, and operational vulner-
abilities. Zanzibar consolidated these independent systems into a single platform,
facilitating centralized administration of access control policies across numerous
services while managing trillions of permission evaluations daily. The development
was motivated by the necessity for a system that could uniformly enforce secu-
rity invariants, minimize developer overhead, and adapt to Google’s exponential
growth. Zanzibar pioneered an innovative paradigm focused on relationship-based
access control (ReBAC). In contrast to RBAC and ABAC, Zanzibar conceptualizes
permissions as explicit relationships among entities organized inside a graph-like
structure. Authorization decisions depend on navigating these relationships, or
”walking the graph”. It utilizes distributed technologies such as globally consistent
storage (via Spanner), concurrent graph traversal, and cache layers to effectively
resolve queries in milliseconds, even over billions of edges. Its architecture guaran-
tees robust external consistency while preserving low latency, which is essential for
user-facing services.

So we can say that Zanzibar’s approach provides major advantages by fun-
damentally redefining authorization on a large scale. The centralized logic guaran-
tees consistency and reliability, resolving policy conflicts while enforcing uniform
security compliance across all services. The scalability of its distributed architec-
ture efficiently manages millions of requests per second, accommodating Google’s

90

Open source authorization solutions

worldwide user base without performance decline. Developer efficiency is signifi-
cantly improved by a straightforward API that delegates complex permission logic,
hence accelerating product development cycles. Expressive flexibility arises from
its relationship-graph architecture, which intuitively depicts real-world hierarchies,
such as organizational structures or nested resources, facilitating complex regu-
lations like inherited permissions. Low latency, attained via optimized caching
and concurrent evaluation, ensures sub-10 ms response times for the majority of
queries, facilitating uninterrupted user experiences even under significant loads.
Collectively, these features create a paradigm shift in secure, scalable access con-
trol.

To sum up, even though Zanzibar is closely related to ReBAC, it is not
identical. Zanzibar is Google’s authorization system, whereas ReBAC is an au-
thorization paradigm that emphasizes relationships between objects to determine
access rights. Zanzibar employs ReBAC as its foundational authorization frame-
work, so it can be classified as a ReBAC system; yet, it encompasses additional
complexities. It also includes the infrastructure, algorithms, and optimizations
that enable its operation at Google’s vast scale [39]. But as we will see in the
following section, Zanzibar will be the source of inspiration for SpiceDB, the final
authorization mechanism we are going to analyze in this thesis.

5.3.1 SpiceDB

SpiceDB is AuthZed’s open source, Google Zanzibar-inspired database system for
real-time, security-critical application permissions [45]. It is engineered to deliver
comparable capabilities to Zanzibar but focuses on accessibility and adaptability for
a broader spectrum of use cases. It aligns with Zanzibar’s fundamental concepts,
comprising relationship-based access control (ReBAC), scalability, performance,
and robust consistency.

Let us begin by examining the operational mechanisms of SpiceDB. In
SpiceDB, a functional Permissions System consists of Schema, which outlines
the data structure, and Relationships, which represent the data itself. A SpiceDB
schema establishes the types of objects present, the relations between them, and the
permissions derivable from those relations [46]. The top level of a Schema consists
of zero or more Object Type definitions and Caveats.

An Object Type definition serves to define a new type of object. Objects
serve as the representation of instances of resources or subjects in SpiceDB. Object
Type definitions can be likened to class definitions in object-oriented programming
or table definitions in an SQL database.

Caveats are a feature in SpiceDB that enables the conditional definition of
relationships, meaning that the relationship is deemed present only if the caveat
expression evaluates to true during query execution. This will be crucial later to
mix ABAC with ReBAC.

A relation defines how two objects (or an object and a subject) can be re-
lated. For example, a reader of a document or a member of a team. Relations are
consistently identified with a name (preferably a noun) and one or more allowed
object types that may serve as the subjects of that relation. Relations can also

91

Open source authorization solutions

”contain” references to other relations/permissions. A worthy note here on wild-
cards. Relations may utilize wildcards to denote that a grant applies to the entire
resource type rather than to a specific resource. This permits public access to a
specific subject type.

A permission defines a calculated set of subjects possessing a specific type
of permission about the parent object; for example, a user is part of the group
authorized to modify a document. Permissions are consistently identified by the
name and an expression that establishes the computation of the permissible set
of subjects for that permission. Since permissions define a collection of objects
capable of performing an action or possessing a particular attribute, they need to
be named as verbs or nouns. Permissions support four kinds of operations: union
(+), intersection (&), exclusion (-), and arrow (->). The first three are quite self-
explanatory, while the arrow allows the traversal of the hierarchy of relations and
permissions established for an object’s subject, referencing a permission or relation
relevant to the resultant subject’s object.

Listing 5.4. SpiceDB Schema example

schema: |-

definition user {}

definition group {

relation member: user | group#member

}

definition folder{

relation reader: user

permission read = reader

}

definition document {

relation parent_folder: folder

relation writer: user | group#member

relation reader: user | group#member

permission write = writer

permission read = reader + write + parent_folder->read

}

Unlike Zanzibar, which makes no distinction between relations and per-
missions, SpiceDB introduces distinct terminology and syntax to categorize them
as two different concepts, as we have seen previously. Permissions are best regarded
as the ”public API” utilized by applications to verify access. Permissions are de-
fined by set semantics; instead, relations are entirely abstract relationships between
objects kept in SpiceDB. The API can query them, but it is strongly advised to ex-
clusively call Permissions using the API, as Permissions may be modified to provide
backward compatibility in access computation.

One last cool feature of SpiceDB is Reverse Indices. As described by Lea
Kissner, Zanzibar coauthor, ”Reverse-index expand answers the question ’What

92

Open source authorization solutions

does this employee have access to?’, which most organizations validate as part of
meeting those compliance obligations. But, even more critically, organizations use
this information to debug access issues and as baseline data to ensure careful data
handling.” [47]. Zanzibar and SpiceDB both have a Reverse Index Expand API.
This API returns a tree structure that might be troublesome for applications to pro-
cess, particularly when it is preferred to separate permissions logic from application
code. Consequently, SpiceDB offers supplementary APIs, such as LookUpResources
and LookUpSubjects, to facilitate the utilization of Reverse Indices without a de-
fined structure. They are intended to address the following questions, respectively:
”What are all of the resources this subject can access?” and ”What are all of the
subjects with access to this resource?” [47].

In conclusion of our introduction to SpiceDB and the ReBAC paradigm it
embodies, let us examine the distinguishing features that set SpiceDB apart from
other systems [45]. It actually differentiates itself through a suite of integrated capa-
bilities tailored for modern authorization challenges. It offers expressive gRPC and
HTTP/JSON APIs that provide granular authorization checks, extensive access
listings, and developer tool integrations, optimizing both implementation and de-
bugging processes. SpiceDB fundamentally operates as a distributed parallel graph
engine that rigorously follows the architectural concepts established in Google’s
Zanzibar paper, guaranteeing proven scalability and reliability. The foundation is
improved by a configurable consistency model per request, incorporating essential
safeguards against edge cases. SpiceDB provides an expressive schema language for
policy administration, together with an interactive playground [48] and comprehen-
sive CI/CD interfaces, facilitating the effortless validation and testing of complex
authorization frameworks prior to deployment. The pluggable storage layer accom-
modates many production-grade databases, including in-memory, Spanner, Cock-
roachDB, PostgreSQL, and MySQL, hence offering deployment flexibility across
different infrastructure configurations. Ultimately, thorough observability features
incorporate Prometheus metrics, pprof profiling, structured logging, and Open-
Telemetry tracing, providing exceptional insight into authorization performance
and system behavior. Together, these features position SpiceDB as a unified plat-
form for relationship-oriented authorization that balances expressiveness, resilience,
and operational efficiency.

5.3.2 Configuration

The most straightforward method for deploying SpiceDB in Kubernetes environ-
ments leverages the open source spicedb-kubeapi-proxy [49]. This proxy inter-
mediates between Kubernetes clients and the API server, performing authorization
by delegating access control decisions to an embedded or remote SpiceDB instance
while concurrently filtering API responses. In simpler words, it allows for making
any Kubernetes API call (through any command-line tool, like kubectl) to the
proxy, which will then use SpiceDB to answer access control questions, and it even-
tually forwards the authorized requests onto the Kubernetes API server that will
perform the actions outlined in the authorized request and respond back to the
client again through the proxy. Figure 5.3 illustrates an outline of the architecture.

93

Open source authorization solutions

Figure 5.3. Communication schema between spicedb-kubeapi-proxy and Kubernetes

Most importantly, this architecture introduces no hard dependencies; the
proxy operates transparently and can be bypassed during SpiceDB outages or de-
bugging without disrupting cluster operations, which is a significant advantage over
Webhook-based extensions that deeply integrate with the API server’s authoriza-
tion chain.

Configuration occurs through declarative rules defined as Kubernetes cus-
tom resources. Each rule specifies the precise permission to evaluate within SpiceDB’s
relationship graph and the relationships to update when users modify governed re-
sources. The proxy dynamically loads these rules at runtime, executing queries
against SpiceDB without interpreting request semantics or cluster state. This ab-
straction ensures the proxy remains stateless and efficient, solely translating Ku-
bernetes operations into SpiceDB queries and responses.

A critical innovation is its support for atomic transactions: the proxy or-
chestrates synchronized writes to both Kubernetes and SpiceDB, guaranteeing con-
sistency between cluster state and relationships. Consequently, standard kubectl

operations automatically propagate real-time updates to SpiceDB’s graph, acting
the same way as direct schema manipulations via SpiceDB’s native zed CLI. This
capability enables seamless adoption of relationship-based access control without
altering existing Kubernetes workflows.

Deployment in Kubernetes is extremely simple. As described in the README
of the repo [49], we can set up a development kind cluster with the proxy running
in it with an embedded SpiceDB with the following commands.

#the project uses mage to offer several development-related commands

#so run this to get all available commands

brew install mage

mage

#set up the development environment

mage dev:up

#configure your client to talk to the proxy

kubectl --kubeconfig $(pwd)/dev.kubeconfig --context proxy get namespace

With this set of commands, we are all set to further explore SpiceDB within
our Kubernetes cluster. At the end, we utilized this deployment pattern due to its
simplicity and adequate fit for our scenario-based analysis.

94

Open source authorization solutions

Just for the sake of completeness, we are going to describe briefly another
deployment pattern available for SpiceDB in Kubernetes. The SpiceDB Operator

[50] is a Kubernetes Operator that oversees the installation and lifecycle manage-
ment of SpiceDB clusters. Considering the fact that SpiceDB is engineered with
both cloud-native and Kubernetes-native principles, it makes SpiceDB Operator

the optimal method for deploying SpiceDB in a production environment. It is
worth noting here that all managed AuthZed products essentially leverage the
SpiceDB Operator.

Upon installation of the SpiceDB Operator, Kubernetes clusters acquire a
new resource named
SpiceDBCluster. These clusters, created with the SpiceDBCluster resource, pos-
sess certain features, like centralized administration for cluster configurations, au-
tomated updates of SpiceDB, and automated datastore migrations with zero down-
time during SpiceDB upgrades. For further details, we recommend checking out
the official GitHub page of AuthZed [51].

As a final note, we want to emphasize how well documented SpiceDB is.
There are up-to-date guides, examples, and video tutorials. And also a cool feature
of Playground [48] where you can learn and test out how to build Schemas and
learn your way around SpiceDB, all supported with tutorials.

At this point, we have explained the deployment pattern and carried out all
the configurations needed, so we can move on to implementing our scenario-based
analysis.

5.3.3 Scenario-based analysis

In this section, we will examine one scenario demonstrating the implementation of
ReBAC with SpiceDB while being close to a real-life application of the paradigm
and mechanism, and highlighting the strengths and limitations of its mechanism
and the paradigm itself.

Scenario 1

For this final scenario in our analysis, we are going for a more interactive approach
in order to highlight the responsiveness of SpiceDB.

We start by executing the following command.

kubectl get namespaces

It shows that we have one active namespace named spicedb-kubeapi-proxy, and
at the same time, we can check the SpiceDB instance logs, and we can see several
LookupResources calls. They literally show that the proxy is asking SpiceDB
which namespaces we, as the user, can view. We can check that the information is
consistent on SpiceDB itself with the zed CLI.

Executing the following command:

zed relationship read namespace

will show all the relationships existing for the namespace object. At this moment,
it will show namespace:spicedb-kubeapi-proxy#viewer@user:rakis since it is

95

Open source authorization solutions

the only one existing in the bootstrap schema and relationships that come with the
proxy.

In case we were to create a new namespace in our cluster, the proxy will
automatically create two relationships, one with us, the user, as the creator of the
namespace, looking like:
namespace:name-of-new-namespace#creator@user:rakis. And another one with
a cluster object, useful if we want to grant some permissions at the cluster level
later on. Meanwhile, we can check SpiceDB logs and see that several read/write
operations were indeed executed on it, showing how the proxy is able to write to
both SpiceDB and Kubernetes in one single transaction.

We can try and create a pod via kubectl as we have normally done through-
out our scenarios. At the same time that it is executed, a new relationship will be
added, connecting us, the user, as the creator of the pod. In this moment, if we try
to delete ourselves as the creator of the pod with the following command:

zed relationship delete pod:namespace-of-pod/name#creator@user:rakis

It would immediately block us from getting the pod via kubectl, even if
the pod still exists in our cluster. Even more interesting, if we were to run the
kubectl get pod with the -watch tag before deleting the relationship, we would
see exactly the pod disappearing from the watchlist the moment we run the delete
command on SpiceDB.

We can also make changes to the schema in real time. We have the new
schema like the following listing.

Listing 5.5. SpiceDB scenario 1 first schema

schema: |-

definition cluster {}

definition user {}

definition namespace {

relation cluster: cluster

relation creator: user

relation viewer: user

permission view = viewer + creator

}

definition team {

relation member: user

}

definition pod {

relation namespace: namespace

relation creator: user

relation viewer: user | team#member

permission edit = creator

permission view = viewer + creator

96

Open source authorization solutions

}

We are defining a team object consisting of a member related to a user. In the pod
object, we are setting as the viewer of the pod, either the user or a member of a
team that has permission to view the pod. Meaning the team has permission to
view the pod, and as a result, the member of the team also inherits this permission.
We can apply the new schema with the following command.

zed schema write name-of-schema.zed

We can continue by creating a relationship so that a team foo is a viewer
of the pod with the following command.

zed relationship create pod:namespace-of-pod/name#viewer@team:foo#member

And then add ourselves as a member of that team with the next command.

zed relationship create team:foo#member@user:rakis

As soon as we have added ourselves to the team that has access to the said pod, we
instantly regain access to the pod. Even though we are not a direct viewer, because
of the fact of being a member of the team that is a viewer, by the transitive property
of the graph, we inherit the permission as well.

We can establish the organization notion with SpiceDB, even though it is
not a native notion to Kubernetes. We do this simply by declaring it as a separate
object in our schema, with a member related to a user and a permission to view
granted to a member. Let’s say that we want any member of the organization to be
able to view the pod. So we modify the view permission in the pod object like
permission view = viewer + creator + organization->member. That basi-
cally forces the decision process to walk every organization through the view per-
missions. In order to try this out, we first remove ourselves from the team in order
to not have access anymore to the pod. We do this with the following command.

zed relationship delete team:foo#member@user:rakis

We update the schema to the new one by applying a modified file as we did before,
and then grant the organization access to the pod by creating a relationship and
adding ourselves as a member to the organization with the following commands.

zed relationship create \

pod:namespace-of-pod/name#organization@organization:org

zed relationship create organization:org#member@user:rakis

As soon as we have added ourselves to the organization, we regain access to the
pod.

Last, we will see how to integrate ABAC within ReBAC. We define a new
schema like in the following listing.

Listing 5.6. SpiceDB scenario 1 second schema

schema: |-

definition user {}

caveat somepolicy (current_day string){

current_day == "Friday"

}

97

Open source authorization solutions

definition pod {

relation creator: user

relation viewer: user with somepolicy

permission edit = creator

permission view = viewer + creator

}

We are defining the viewer of the pod as a user with some policy, and
then defining some caveat that processes this policy. If you then execute the view
permission and walk to the viewer, and you have a relationship that exists in the
system like pod:namespace-of-pod/name#viewer@user:username(somepolicy).
The trick is that this relationship will only be considered existing if the conditions
are met. It might not be as powerful as a real policy, but you get a good tradeoff of
the scalability and performance of ReBAC and the powerfulness of ABAC in such
a simple implementation.

Figure 5.4 illustrates an outline of the scenario, and moreover, it serves as
a visualization of the schema in SpiceDB.

Figure 5.4. ReBAC with SpiceDB scenario 1

This scenario concludes our practical analysis of ReBAC and SpiceDB in
Kubernetes.

5.3.4 Strengths and limitations

ReBAC, implemented through SpiceDB, presents a robust paradigm focused on
modeling access via explicit relationships among entities, these being users, groups,
resources, or more hierarchical organizations, inside a graph architecture. Its prin-
cipal advantage resides in allowing exceptionally fine-grained permissions and com-
plex authorization decisions that adjust dynamically according to the presence and
particulars of relationships. SpiceDB serves as the core engine, offering outstand-
ing scalability and superior performance, effectively navigating dense relationship

98

Open source authorization solutions

graphs to produce low-latency authorization decisions in demanding environments.
The authorization schema and relational data are dynamically managed by API re-
quests from any authorized client, allowing for instantaneous modifications without
service disruption. Importantly, ReBAC and SpiceDB inherently enable efficient
listing and filtering actions, addressing a significant issue found in native RBAC,
ABAC, Webhook mechanisms, and even basic OPA integrations.

However, the implementation and management of ReBAC and SpiceDB
present specific challenges. Although SpiceDB runs through a proxy divided from
Kubernetes, thus avoiding a hard technical dependency within the core Kuber-
netes control plane, it still introduces considerable operational complexity to the
infrastructure, requiring the deployment, scaling, monitoring, and securing of this
additional essential service. Moreover, mastering the notion of graph-based permis-
sions, building an appropriate schema, and integrating SpiceDB requires a signifi-
cant learning curve, demanding expertise beyond traditional role- or attribute-based
models.

ReBAC, powered by SpiceDB, shines in contexts demanding complex,
relationship-based permission models that reflect real-world organizational frame-
works or resource hierarchies. Its qualities are essential for large-scale, performance-
sensitive applications requiring ultra-fast permission checks across extensive, inter-
connected data schemas, where fine-grained control and efficient listing and filtering
capabilities are vital. Thus, SpiceDB is optimally designed for entities developing
access control frameworks focused on dynamic resource relationships and inher-
itance, especially when the operational demands of managing SpiceDB and the
effort to master its schema design are justified by the need for exceptional granu-
larity, performance, and dynamic manageability.

99

Chapter 6

Comparative Analysis

6.1 Evaluation matrix

In the preceding chapters, we have thoroughly examined the access control frame-
work in Kubernetes and an extensive selection of authorization mechanisms, cov-
ering both the native alternatives within Kubernetes and those provided by open
source solutions. We explored these mechanisms both theoretically and in terms of
the potential of their paradigms, as well as conducted an in-depth analysis of their
practical implementation through scenario-based assessments, providing a thorough
understanding of their implementation, configuration, strengths, and limitations.
The work completed thus far provides an excellent foundation for a final compara-
tive review of all the alternatives we have been evaluating. To do this, we have opted
to employ a four-dimensional evaluation matrix that spans complexity, granularity,
scalability, and performance, enabling us to assess their operational viability, access
control precision, growth potential, and efficiency in a more methodical way.

Complexity

Assesses the burdens associated with implementation and maintenance, including
initial configuration challenges and policy lifecycle management with updating,
version control, and auditing. It also assesses conceptual clarity, dependence on
other components, and the need for specialized skills. Reduced complexity favors
rapid adoption and minimizes operational cost, although it often trades off against
advanced functionalities.

Granularity

Evaluates the precision of access control, determining whether mechanisms allow for
only basic allow/deny rules or more complex context-aware policies that incorporate
dynamic attributes, relationships, or external data. Increased granularity enables
finer security boundaries and compliance adherence, although it consequently com-
plicates policy management.

100

Comparative Analysis

Scalability

Examines how each mechanism accommodates growth in users, resources, policies,
or clusters without degradation. Key variables include architectural limitations
such as role explosion and constraints on policy file size or structure, the influence of
policy complexity on decision latency, and the overhead associated with propagating
policy state.

Performance

Measures the speed of authorization decisions, considering the architectural per-
spective, possible network latency in case of external services involved, and the
computational overhead of policy evaluation. Performance directly impacts user
experience and system responsiveness, particularly for listing and filtering opera-
tions or high-traffic APIs.

This matrix is optimal for cross-comparison among all solutions, as it blends
technical ability with operational sustainability. It exposes inherent trade-offs, such
as cases where solutions that excel in granularity may experience drawbacks in
complexity or performance, or highly scalable systems may sacrifice fine-grained
control. By methodically assessing all the mechanisms across these interconnected
dimensions, we identify an optimal alignment between organizational needs and
technical solutions. With this being said, we can move on to conducting our final
cross-comparison analysis.

6.2 Cross-comparison of all solutions

As anticipated in the previous section, we are going to cross-evaluate all the mech-
anisms and their respective paradigms through each dimension of the evaluation
matrix. Without much further ado, we start with the first dimension being com-
plexity. RBAC demonstrates the least complexity among all mechanisms. The
role-binding model is conceptually simple, requires no external services or cluster
restarts for updates, and leverages native Kubernetes objects controlled using reg-
ular kubectl commands or CI/CD pipelines. Moreover, Kubernetes-native event
logs enable the auditing process. Instead, for ABAC, we notice a significantly el-
evated complexity because its static policy file demands API server restarts for
modifications, limiting version control and dynamic policy administration. The
JSON-based policy syntax, although easily understandable and flexible, is prone to
errors and lacks robust testing tools. Moving on to Webhook, it imposes signifi-
cant operational complexity by requiring a highly available external authorization
service. Securing the Webhook with TLS, maintaining its lifecycle, and guaran-
teeing resilience against failures require specialized development, operational, and
security-related expertise. Bridging to the open source solutions, OPA, represent-
ing the PBAC paradigm, imposes a steep learning curve mainly because of Rego,
a specific declarative language that requires a certain level of expertise. Although
policies are managed as version-controlled code, the deployment and synchroniza-
tion of OPA, frequently through Gatekeeper, introduces additional infrastructure
management challenges. Lastly, SpiceDB for the ReBAC paradigm presents the

101

Comparative Analysis

most initial complexity, demanding a solid understanding of graph-based permis-
sions (Zanzibar model) and schema architecture. Instead, in terms of operating
and scaling SpiceDB as a crucial external service, even though it requires sub-
stantial operational investment, its dynamic API-driven management facilitates
post-deployment maintenance slightly better than OPA.

Moving on to the second dimension in our evaluation matrix, granular-
ity. RBAC provides the lowest granularity, limited by its rigid role-permission
bindings. It is unable to enforce deny rules, context-aware rules, or more detailed-
driven rules or support complex settings. Even though it is worth noticing that
it is able to bootstrap and aggregate roles and prevent privilege escalation. So we
can confirm that RBAC lays a good basis for access control, even though of a low
granularity; however, this can be enhanced when combined with other mechanisms
in a chain of authorization. Moving on to ABAC, we notice an enhanced granu-
larity by considering attributes, these being of user, resource, or environment, but
it does not provide inherent support for logical relationships among entities, like
hierarchy or interaction with other data. Last on the native mechanisms, Webhook
provides high granularity by assigning decision-making to custom logic, supporting
dynamic context and deny rules, but imposing complexity on the external service
development. Moving on to the open source solutions, OPA for PBAC provides
remarkable granularity, facilitating context-aware policies through the expressive
capabilities of Rego. It can assess complex settings, include other external data,
implement deny rules, and also modify requests, since it also acts as an admission
controller. Lastly, SpiceDB for ReBAC achieves maximum granularity and contex-
tual accuracy by representing permissions as explicit relationships inside a graph.
It naturally resolves inherited permissions, enhances the ReBAC paradigm by also
incorporating ABAC, and facilitates efficient list and filter operations not possible
by the other mechanisms.

Now we consider our third dimension in our evaluation matrix, scalabil-
ity. RBAC suffers from role explosion in large environments, where numerous roles
and bindings degrade API server performance and complicate auditing processes.
Scaling requires assertive role consolidation, possibly leading to over-privilege. Just
as well, ABAC encounters limitations on policy file sizes and slow and static API
server startup times with large policies. Scaling requires file partitioning or migra-
tion, which is not feasible for now. Instead, the scalability of a Webhook is wholly
dependent upon the architecture of the external service. Poorly constructed services
create bottlenecks, so achieving high availability and low latency requires significant
expertise in distributed systems. Worthy to mention here for ABAC and Webhook,
since they require carrying out configurations with accessibility in the control-plane
node, their usage is limited to self-managed Kubernetes clusters and poses an issue
if we want to scale out with cloud provider clusters instead. Moving on to OPA
for PBAC, it has good horizontal scalability through sidecars or remote services.
Policy bundles are distributed efficiently, while Rego’s indexing capabilities manage
complex rules. Nonetheless, large datasets imported into OPA may affect memory
and performance. And last, SpiceDB for ReBAC is designed for extensive scala-
bility, utilizing the proven architecture of Google Zanzibar. It effectively navigates
billion-edge permission graphs with distributed caching, replication, and optimized
storage solutions. Relationship updates propagate dynamically without demanding

102

Comparative Analysis

global recomputation, making it an excellent choice in scalability terms.

Last in our evaluation matrix is performance. RBAC provides native
speed, as decisions are made through in-memory lookups within the API server,
making it optimal for high-throughput clusters. Alongside, ABAC exhibits mod-
erate speed due to its native nature, but suffers from startup disruptions when
modifying the policy and lags when dealing with an extensive number of policies.
Moving on to Webhook, it introduces considerable latency due to network round-
trip time and external processing delay. The performance is reliant upon the speed
and closeness of the Webhook service. Next, OPA for PBAC also introduces mod-
est latency. Local deployments with sidecar mode reduce network hops; however,
complex Rego rules or large data imports can hinder decision-making times. Al-
ternatives to alleviate this issue are bundling and caching. Lastly, SpiceDB for
ReBAC achieves superior performance at scale via improved graph traversal, en-
during connection pools, and local caching mechanisms. Although network calls to
SpiceDB may introduce latency compared to native RBAC, its architecture guar-
antees relatively fast replies for the majority of queries, greatly surpassing generic
Webhooks and OPA. The filtering and listing operations are also greatly optimized,
something that any of the other mechanisms fail to achieve.

6.3 Final takeaways

The comparative analysis of all the considered authorization mechanisms across the
four-dimensional evaluation matrix reveals that no singular authorization mecha-
nism excels universally in complexity, granularity, scalability, and performance.
The ideal choice is context-dependent, requiring alignment with an organization’s
particular operational needs, security goals, and infrastructure maturity. Thus,
strategic adoption depends on prioritizing dimensions that embody core organiza-
tional limitations and objectives.

In settings where operational simplicity and low-latency performance are
critical, Role-Based Access Control (RBAC) is the optimal option. This mechanism
provides exceptional efficiency for simple permission models, especially in smaller
Kubernetes clusters or static operational environments with clearly defined team
hierarchies. The minimal configuration overhead of RBAC, its direct integration
with Kubernetes object management, and the lack of external dependencies render
it optimal when rapid deployment and administrative efficiency take precedence
over the need for extensive contextual controls. The in-memory decision engine
guarantees minimal performance impact; nonetheless, users must recognize its lim-
itations in dynamic or complex situations, where rigid role-permission bindings may
lead to role explosion or overly permissive access.

Organizations seeking a compromise between policy flexibility and infras-
tructural manageability should consider either ABAC or Webhook authorization.
ABAC is suitable for scenarios requiring basic attribute-based decisions, such as
environment-specific resource access, without the need for external service depen-
dencies. Its viability depends entirely on the acceptance of operational limitations,
such as required API server restarts for policy modifications and the difficulties asso-
ciated with auditing static policy files. On the other hand, Webhook authorization

103

Comparative Analysis

is advantageous when extensive customization is necessary. This methodology ac-
commodates complicated logic via external services, rendering it appropriate for
businesses with advanced DevOps teams adept at sustaining highly accessible, se-
cure authorization endpoints. This flexibility requires considerable investment in
the design, security, and monitoring of the Webhook service to reduce latency and
eliminate single points of failure.

In scenarios where advanced governance, cross-platform consistency, and
auditable compliance are essential, PBAC implemented via OPA becomes a com-
pletely reasonable option. This paradigm is particularly effective in regulated sec-
tors, multi-cluster Kubernetes environments, or integrated CI/CD pipelines that
require context-aware policies documented as version-controlled artifacts. OPA’s
Rego language allows for the formulation of expressive rules that include real-time
resource attributes, external data sources, and explicit denial capabilities, features
that were not achievable with native Kubernetes mechanisms. Despite the steep
learning curve linked to Rego and the operational demands of implementing Gate-
keeper or other deployment patterns, the investment produces considerable benefits
in unified policy enforcement across hybrid settings and dynamic policy updates
without service disruptions.

Finally, for systems requiring authorization logic to reflect complex re-
source relationships or organizational hierarchies at a vast scale, ReBAC, driven
by SpiceDB, represents the state of the art. This design is exceptional for exten-
sive multi-tenant SaaS platforms, collaborative document ecosystems, social net-
works, or any field where permissions originate from complex graph-based rela-
tionships. SpiceDB’s Zanzibar-inspired design provides fast authorization decisions
across billion-edge graphs while natively supporting efficient listing and filtering,
a feature lacking in the other evaluated mechanisms. Organizations should adopt
this paradigm when relationship-driven granularity, horizontal scalability, and fil-
tering performance are critical requirements, regardless of the substantial initial
investment in schema design and SpiceDB-powered cluster management.

To sum up, the authorization landscape presents intrinsic trade-offs: sim-
plicity vs. expressiveness, performance vs. context-awareness, and native integra-
tion vs. cross-platform consistency. Native mechanisms effectively address con-
ventional workloads, while advanced paradigms enable organizations to implement
sophisticated security and compliance requirements inside dynamic cloud-native
environments. The decision route thus reflects the shift from addressing urgent
operational requirements to designing for large-scale strategic governance.

We hereby conclude our in-depth comparative analysis of Kubernetes au-
thorization mechanisms for fine-grained access control.

104

Chapter 7

Conclusions

This thesis addresses the major challenge of fine-grained access control in Kuber-
netes, motivated by the security demands of cloud-native multi-tenant environ-
ments. Through a comprehensive analysis of native and open source authorization
mechanisms, this work delivers a comparative framework to guide practitioners in
balancing security, scalability, and operational efficiency.

Inherent trade-offs are revealed for native methods such as RBAC, ABAC,
and Webhook. RBAC excels in simplicity and low-latency settings but lacks con-
textual granularity because of its box-shaped roles. ABAC provides attribute-based
flexibility but is constrained by high operational costs resulting from static policy
management. Webhook enables customized logic but introduces latency and infras-
tructure dependencies, thus limiting its applicability. Collectively, these solutions
prove insufficient for dynamic settings requiring real-time adaptability.

Open source alternatives overcome these constraints through innovative
paradigms. OPA for PBAC allows the formulation of expressive, context-sensitive
policies through Rego, ensuring cross-platform uniformity and explicit deny rules,
at the cost of a steeper learning curve. SpiceDB for ReBAC achieves exceptional
granularity via graph-based permissions, effectively addressing complex access sce-
narios and optimizing listing and filtering operations; however, the initial schema
design demands expertise. Both solutions demonstrate that improved functionality
necessitates greater architectural investment.

The four-dimensional assessment, in complexity, granularity, scalability,
and performance, confirms the absence of a universal solution. RBAC is ideal
for latency-sensitive situations and basic access control requirements. ABAC and
Webhook support moderate customization needs. OPA is efficient in hybrid infras-
tructure governance. SpiceDB excels in handling relationship-intensive workloads.
The practitioner’s guide consolidates these insights, enabling mechanism selection
that aligns with organizational needs.

Finally, this thesis has contributed a taxonomy of access control paradigms,
clarifying authorization trade-offs, empirical benchmarks for deployment decisions,
and a field-tested practitioner’s guide. As future research work, this analysis could
be extended to integrate real-time threat response and automated validation tools.
These advancements will further strengthen the security-agility balance in cloud-
native ecosystems.

105

Bibliography

[1] “What is kubernetes?” https://cloud.google.com/learn/what-is-kubernetes?
hl=en, accessed: 2025-06-15.

[2] “Owasp top 10:2021,” https://owasp.org/Top10/, accessed: 2025-02-05.

[3] “Owasp api security top 10,” https://owasp.org/API-Security/editions/2023/
en/0x11-t10/, accessed: 2025-02-05.

[4] “Kubernetes documentation,” https://kubernetes.io/docs/home, accessed:
2025-02-01.

[5] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in Proceed-
ings of the European Conference on Computer Systems (EuroSys), 2015.

[6] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes, “Omega:
flexible, scalable schedulers for large compute clusters,” in SIGOPS European
Conference on Computer Systems (EuroSys), 2013, pp. 351–364.

[7] “The history of kubernetes on a timeline,” https://blog.risingstack.com/
the-history-of-kubernetes/, accessed: 2025-06-15.

[8] “Overview - historical context for kubernetes,” https://kubernetes.io/docs/
concepts/overview/#going-back-in-time, accessed: 2025-06-15.

[9] “Overview - why you need kubernetes and what it can do,” https://kubernetes.
io/docs/concepts/overview/#why-you-need-kubernetes-and-what-can-it-do,
accessed: 2025-06-15.

[10] “Cluster architecture,” https://kubernetes.io/docs/concepts/architecture/,
accessed: 2025-06-15.

[11] “Understanding etcd in kubernetes: A beginner’s guide,” https://blog.
kubesimplify.com/understanding-etcd-in-kubernetes-a-beginners-guide,
accessed: 2025-06-15.

[12] “Objects in kubernetes,” https://kubernetes.io/docs/concepts/overview/
working-with-objects/, accessed: 2025-06-15.

[13] “Controlling access to the kubernetes api,” https://kubernetes.io/docs/
concepts/security/controlling-access/, accessed: 2025-02-01.

[14] “Authenticating,” https://kubernetes.io/docs/reference/access-authn-authz/
authentication/, accessed: 2025-04-03.

[15] “Authorization,” https://kubernetes.io/docs/reference/access-authn-authz/
authorization/, accessed: 2025-04-03.

[16] “Admission control in kubernetes,” https://kubernetes.io/docs/reference/
access-authn-authz/admission-controllers/, accessed: 2025-04-03.

[17] “Api access control,” https://kubernetes.io/docs/reference/
access-authn-authz/, accessed: 2025-02-01.

106

https://cloud.google.com/learn/what-is-kubernetes?hl=en
https://cloud.google.com/learn/what-is-kubernetes?hl=en
https://owasp.org/Top10/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://kubernetes.io/docs/ home
https://blog.risingstack.com/the-history-of-kubernetes/
https://blog.risingstack.com/the-history-of-kubernetes/
https://kubernetes.io/docs/concepts/overview/#going-back-in-time
https://kubernetes.io/docs/concepts/overview/#going-back-in-time
https://kubernetes.io/docs/concepts/overview/#why-you-need-kubernetes-and-what-can-it-do
https://kubernetes.io/docs/concepts/overview/#why-you-need-kubernetes-and-what-can-it-do
https://kubernetes.io/docs/concepts/architecture/
https://blog.kubesimplify.com/understanding-etcd-in-kubernetes-a-beginners-guide
https://blog.kubesimplify.com/understanding-etcd-in-kubernetes-a-beginners-guide
https://kubernetes.io/docs/concepts/overview/working-with-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/
https://kubernetes.io/docs/concepts/security/controlling-access/
https://kubernetes.io/docs/concepts/security/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/
https://kubernetes.io/docs/reference/access-authn-authz/

Bibliography

[18] “Creating a cluster with kubeadm,” https://kubernetes.io/docs/setup/
production-environment/tools/kubeadm/create-cluster-kubeadm/, accessed:
2025-02-03.

[19] “Kind official documentation,” https://kind.sigs.k8s.io/, accessed: 2025-02-03.

[20] “Generate certificates manually,” https://kubernetes.io/docs/tasks/
administer-cluster/certificates/, accessed: 2025-02-05.

[21] “Service accounts,” https://kubernetes.io/docs/concepts/security/
service-accounts/, accessed: 2025-02-03.

[22] “What is attribute-based access control (abac)?” https://www.okta.com/
blog/2020/09/attribute-based-access-control-abac/, accessed: 2025-02-15.

[23] “Using abac authorization,” https://kubernetes.io/docs/reference/
access-authn-authz/abac/, accessed: 2025-06-13.

[24] “Abac authorizer in kubernetes repo,” https://github.com/kubernetes/
kubernetes/tree/v1.33.0/pkg/auth/authorizer/abac, accessed: 2025-02-15.

[25] “Subjectaccessreview,” https://kubernetes.io/docs/reference/kubernetes-api/
authorization-resources/subject-access-review-v1/, accessed: 2025-02-25.

[26] “Webhook mode,” https://kubernetes.io/docs/reference/access-authn-authz/
webhook/, accessed: 2025-03-25.

[27] “Kubernetes beyond rbac - make your own autho-
rization via webhook,” https://mstryoda.medium.com/
kubernetes-beyond-rbac-make-your-own-authorization-via-webhook-6b901196591b,
accessed: 2025-03-25.

[28] “The kubernetes authorization webhook,” https://www.styra.com/blog/
kubernetes-authorization-webhook/, accessed: 2025-03-25.

[29] “What is policy based access control (pbac)?” https://www.nextlabs.com/
products/cloudaz-policy-platform/what-is-policy-based-access-control-pbac/
#:∼:text=Policy%2Dbased%20access%20control%20(PBAC)%20also%
20known%20as,permissions%2C%20roles%2C%20groups%2C%20or%20user%
20identities%20alone.&text=This%20central%20management%20makes%
20it%20easier%20to,policies%20and%20ensure%20consistency%20across%
20an%20organization., accessed: 2025-06-03.

[30] “Policy-based access control (pbac): A comprehensive
overview,” https://permify.co/post/policy-based-access-control-pbac/
#what-is-policy-based-access-control-pbac, accessed: 2025-06-01.

[31] “Open policy agent docs - introduction,” https://www.openpolicyagent.org/
docs, accessed: 2025-06-01.

[32] “Open policy agent docs - philosophy,” https://www.openpolicyagent.org/
docs/philosophy, accessed: 2025-06-03.

[33] “Implementing policies with opa — example use
cases,” https://medium.com/@chathuragunasekera/
implementing-policies-with-opa-example-use-cases-6f8f850cdec4, accessed:
2025-06-01.

[34] “Kubernetes authorization via open policy agent,” https://itnext.io/
kubernetes-authorization-via-open-policy-agent-a9455d9d5ceb, accessed:
2025-06-01.

[35] “Opa rego playground,” https://play.openpolicyagent.org/, accessed: 2025-06-
03.

107

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://kind.sigs.k8s.io/
https://kubernetes.io/docs/tasks/administer-cluster/certificates/
https://kubernetes.io/docs/tasks/administer-cluster/certificates/
https://kubernetes.io/docs/concepts/security/service-accounts/
https://kubernetes.io/docs/concepts/security/service-accounts/
https://www.okta.com/blog/2020/09/attribute-based-access-control-abac/
https://www.okta.com/blog/2020/09/attribute-based-access-control-abac/
https://kubernetes.io/docs/reference/access-authn-authz/abac/
https://kubernetes.io/docs/reference/access-authn-authz/abac/
https://github.com/kubernetes/kubernetes/tree/v1.33.0/pkg/auth/authorizer/abac
https://github.com/kubernetes/kubernetes/tree/v1.33.0/pkg/auth/authorizer/abac
https://kubernetes.io/docs/reference/kubernetes-api/authorization-resources/subject-access-review-v1/
https://kubernetes.io/docs/reference/kubernetes-api/authorization-resources/subject-access-review-v1/
https://kubernetes.io/docs/reference/access-authn-authz/webhook/
https://kubernetes.io/docs/reference/access-authn-authz/webhook/
https://mstryoda.medium.com/kubernetes-beyond-rbac-make-your-own-authorization-via-webhook-6b901196591b
https://mstryoda.medium.com/kubernetes-beyond-rbac-make-your-own-authorization-via-webhook-6b901196591b
https://www.styra.com/blog/kubernetes-authorization-webhook/
https://www.styra.com/blog/kubernetes-authorization-webhook/
https://www.nextlabs.com/products/cloudaz-policy-platform/what-is-policy-based-access-control-pbac/#:~:text=Policy%2Dbased%20access%20control%20(PBAC)%20also%20known%20as,permissions%2C%20roles%2C%20groups%2C%20or%20user%20identities%20alone.&text=This%20central%20management%20makes%20it%20easier%20to,policies%20and%20ensure%20consistency%20across%20an%20organization.
https://www.nextlabs.com/products/cloudaz-policy-platform/what-is-policy-based-access-control-pbac/#:~:text=Policy%2Dbased%20access%20control%20(PBAC)%20also%20known%20as,permissions%2C%20roles%2C%20groups%2C%20or%20user%20identities%20alone.&text=This%20central%20management%20makes%20it%20easier%20to,policies%20and%20ensure%20consistency%20across%20an%20organization.
https://www.nextlabs.com/products/cloudaz-policy-platform/what-is-policy-based-access-control-pbac/#:~:text=Policy%2Dbased%20access%20control%20(PBAC)%20also%20known%20as,permissions%2C%20roles%2C%20groups%2C%20or%20user%20identities%20alone.&text=This%20central%20management%20makes%20it%20easier%20to,policies%20and%20ensure%20consistency%20across%20an%20organization.
https://www.nextlabs.com/products/cloudaz-policy-platform/what-is-policy-based-access-control-pbac/#:~:text=Policy%2Dbased%20access%20control%20(PBAC)%20also%20known%20as,permissions%2C%20roles%2C%20groups%2C%20or%20user%20identities%20alone.&text=This%20central%20management%20makes%20it%20easier%20to,policies%20and%20ensure%20consistency%20across%20an%20organization.
https://www.nextlabs.com/products/cloudaz-policy-platform/what-is-policy-based-access-control-pbac/#:~:text=Policy%2Dbased%20access%20control%20(PBAC)%20also%20known%20as,permissions%2C%20roles%2C%20groups%2C%20or%20user%20identities%20alone.&text=This%20central%20management%20makes%20it%20easier%20to,policies%20and%20ensure%20consistency%20across%20an%20organization.
https://www.nextlabs.com/products/cloudaz-policy-platform/what-is-policy-based-access-control-pbac/#:~:text=Policy%2Dbased%20access%20control%20(PBAC)%20also%20known%20as,permissions%2C%20roles%2C%20groups%2C%20or%20user%20identities%20alone.&text=This%20central%20management%20makes%20it%20easier%20to,policies%20and%20ensure%20consistency%20across%20an%20organization.
https://www.nextlabs.com/products/cloudaz-policy-platform/what-is-policy-based-access-control-pbac/#:~:text=Policy%2Dbased%20access%20control%20(PBAC)%20also%20known%20as,permissions%2C%20roles%2C%20groups%2C%20or%20user%20identities%20alone.&text=This%20central%20management%20makes%20it%20easier%20to,policies%20and%20ensure%20consistency%20across%20an%20organization.
https://permify.co/post/policy-based-access-control-pbac/#what-is-policy-based-access-control-pbac
https://permify.co/post/policy-based-access-control-pbac/#what-is-policy-based-access-control-pbac
https://www.openpolicyagent.org/docs
https://www.openpolicyagent.org/docs
https://www.openpolicyagent.org/docs/philosophy
https://www.openpolicyagent.org/docs/philosophy
https://medium.com/@chathuragunasekera/implementing-policies-with-opa-example-use-cases-6f8f850cdec4
https://medium.com/@chathuragunasekera/implementing-policies-with-opa-example-use-cases-6f8f850cdec4
https://itnext.io/kubernetes-authorization-via-open-policy-agent-a9455d9d5ceb
https://itnext.io/kubernetes-authorization-via-open-policy-agent-a9455d9d5ceb
https://play.openpolicyagent.org/

Bibliography

[36] “Styra docs - deploying opa on kubernetes,” https://docs.styra.com/opa/
deploy/k8s, accessed: 2025-06-03.

[37] “Kubernetes authorization webhook using opa,” https://github.com/
open-policy-agent/contrib/tree/main/k8s authorization, accessed: 2025-06-
03.

[38] “Gatekeeper,” https://github.com/open-policy-agent/gatekeeper, accessed:
2025-06-05.

[39] “Spicedb documentation - google zanzibar,” https://authzed.com/docs/
spicedb/concepts/zanzibar, accessed: 2025-05-01.

[40] C. Gates, “Access control requirements for web 2.0 security and privacy,” in
Workshop on Web 2.0 Security and Privacy, 2007.

[41] R. Pang, R. Caceres, M. Burrows, Z. Chen, P. Dave, N. Germer, A. Golynski,
K. Graney, N. Kang, L. Kissner, J. L. Korn, A. Parmar, C. D. Richards, and
M. Wang, “Zanzibar: Google’s consistent, global authorization system,” in
2019 USENIX Annual Technical Conference (USENIX ATC ’19), 2019.

[42] “Owasp cheat sheet series - authorization cheat sheet,” https:
//cheatsheetseries.owasp.org/cheatsheets/Authorization Cheat Sheet.html#
prefer-attribute-and-relationship-based-access-control-over-rbac, accessed:
2025-06-15.

[43] “Spicedb documentation - relationships,” https://authzed.com/docs/spicedb/
concepts/relationships, accessed: 2025-05-01.

[44] “Understanding google zanzibar: A comprehensive overview,” https://
authzed.com/blog/what-is-google-zanzibar, accessed: 2025-05-01.

[45] “Spicedb documentation,” https://authzed.com/docs/spicedb/
getting-started/discovering-spicedb, accessed: 2025-05-01.

[46] “Spicedb documentation - schema language,” https://authzed.com/docs/
spicedb/concepts/schema, accessed: 2025-05-01.

[47] “Spicedb documentation - frequently asked questions,” https://authzed.com/
docs/spicedb/getting-started/faq, accessed: 2025-05-01.

[48] “Spicedb playground,” https://play.authzed.com/schema, accessed: 2025-05-
10.

[49] “spicedb-kubeapi-proxy repo,” https://github.com/authzed/
spicedb-kubeapi-proxy, accessed: 2025-05-05.

[50] “Spicedb operator repo,” https://github.com/authzed/spicedb-operator, ac-
cessed: 2025-05-05.

[51] “Authzed official github page,” https://github.com/authzed, accessed: 2025-
05-10.

108

https://docs.styra.com/opa/deploy/k8s
https://docs.styra.com/opa/deploy/k8s
https://github.com/open-policy-agent/contrib/tree/main/k8s_authorization
https://github.com/open-policy-agent/contrib/tree/main/k8s_authorization
https://github.com/open-policy-agent/gatekeeper
https://authzed.com/docs/spicedb/concepts/zanzibar
https://authzed.com/docs/spicedb/concepts/zanzibar
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html#prefer-attribute-and-relationship-based-access-control-over-rbac
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html#prefer-attribute-and-relationship-based-access-control-over-rbac
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html#prefer-attribute-and-relationship-based-access-control-over-rbac
https://authzed.com/docs/spicedb/concepts/relationships
https://authzed.com/docs/spicedb/concepts/relationships
https://authzed.com/blog/what-is-google-zanzibar
https://authzed.com/blog/what-is-google-zanzibar
https://authzed.com/docs/spicedb/getting-started/discovering-spicedb
https://authzed.com/docs/spicedb/getting-started/discovering-spicedb
https://authzed.com/docs/spicedb/concepts/schema
https://authzed.com/docs/spicedb/concepts/schema
https://authzed.com/docs/spicedb/getting-started/faq
https://authzed.com/docs/spicedb/getting-started/faq
https://play.authzed.com/schema
https://github.com/authzed/spicedb-kubeapi-proxy
https://github.com/authzed/spicedb-kubeapi-proxy
https://github.com/authzed/spicedb-operator
https://github.com/authzed

	List of Figures
	Listings
	Introduction
	Kubernetes
	A bit of history
	Workload management evolution
	Container orchestrators
	Kubernetes architecture
	Control plane components
	Node components

	Kubernetes objects
	Kubernetes access control

	Thesis objectives
	Native k8s authorization mechanisms
	Role-Based Access Control (RBAC)
	Configuration
	Scenario-based analysis
	Strengths and limitations

	Attribute-Based Access Control (ABAC)
	Configuration
	Scenario-based analysis
	Strengths and limitations

	Webhook
	Configuration
	Scenario-based analysis
	Strengths and limitations

	Open source authorization solutions
	Limitation of native mechanisms and evolution paths
	Policy-Based Access Control (PBAC)
	Open Policy Agent (OPA)
	Configuration
	Scenario-based analysis
	Strengths and limitations

	Relationship-Based Access Control (ReBAC)
	SpiceDB
	Configuration
	Scenario-based analysis
	Strengths and limitations

	Comparative Analysis
	Evaluation matrix
	Cross-comparison of all solutions
	Final takeaways

	Conclusions
	Bibliography

