
POLITECNICO DI TORINO

Master´s Degree in Computer Engineering

Master Degree Thesis

UVM verification for Multi-core

architecture RISC-V

Supervisor:

Prof. Ernesto SANCHEZ

Co-Supervisor:

Prof. Annachiara RUOSPO

Candidate

Ismiana QOSE

July 2025

Abstract

Since its release in 2011, the RISC-V Instruction Set Architecture (ISA) has gained
widespread growth thanks to its open-source nature and features. RISC-V has a
lot of free core designs that cover a wide range of applications, including embedded
systems, virtual and augmented reality (VR/AR), artificial intelligence (AI), and
the Internet of Things (IoT).[1] As RISC-V cores have become more common,
this has led to a necessity for multi-core systems that are both resource-efficient
and high-performing. Even though many approaches have been introduced for
integrating a multi-core system on traditional architectures, it still remains difficult
to create an effective ecosystem that makes use of all RISC-V’s characteristics.
This is mostly due to the fact that the majority of open cores are released as a
single core without cache coherence logic, which needs costly development and
design work to fix.

This paper describes the architectural changes necessary to upgrade the CVA6
RISC-V processor from a single to a dual-core configuration. The CVA6 is pro-
grammed in SystemVerilog and has several configuration options. It introduces a
scalable methodology for integrating two CVA6 (Ariane) RISC-V cores within a
shared system-on-chip (SoC) environment, emphasizing efficient memory access
and resource sharing. Both cores are connected to a unified memory subsystem via
an interconnect mechanism with arbitration logic. To handle inter-core coherency
and ensure proper transaction management when both cores access overlapping
memory regions, an invalidation mechanism is employed.

The verification effort leverages the Universal Verification Methodology (UVM)
to ensure the correctness and robustness of the dual core design. The UVM
environment is extended to support dual-core scenarios, including updates to
agents, monitors, and scoreboards for handling transactions from multiple cores.
Arbitration and memory access are validated through UVM sequences, while
coverage metrics ensure thorough testing suite. It is implemented to measure the
completeness of transaction scenarios. Code coverage ensures that all lines of code
and conditional branches are exercised during simulation.

The design is validated through simulation, waveform analysis, log inspection,
and UVM-based verification, demonstrating correct operation, successful arbitra-
tion, and effective transaction handling. This approach highlights the effectiveness
of arbitration methodology, invalidation mechanisms, and UVM-based verification
for simple multi-core RISC-V architectures, providing a foundation for robust and
adaptable designs.

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor
Prof. Ernesto Sanchez and my co-supervisor Prof. Ruospo Annachiara for their
guidance, continuous support, and insightful advice throughout the course of my
thesis. Their expertise and dedication have been instrumental in shaping the
direction of this research and overcoming numerous challenges along the way. I am
also especially grateful to Behnam Farnaghinejad for his patience, encouragement,
and for always challenging me to think critically and pursue excellence in my work.It
has been a privilege to work under their supervision and I am forever thankful for
the inspiration and support they have provided throughout this journey.

“Ismiana”

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms ix

1 INTRODUCTION 1

1.1 Background . 1

1.1.1 Analysis of Comparable Research 2

1.1.2 Modular multi-core methodology 3

1.2 Motivation . 5

1.3 Objectives . 5

2 Literature Review 7

2.1 RISC-V Architecture . 7

2.2 RISC-V Memory Ordering Specifications 7

2.3 CVA6 Core . 8

2.3.1 Key Features . 9

2.4 Multi-Core Approach . 10

3 Methodology 11

3.1 Experimental Setup . 11

3.2 UVM Approach . 12

3.3 UVM Environment . 12

3.3.1 UVM Testbench Adaptation 12

3.3.2 CVA6 Verification ENV . 12

3.4 Coverage Metric . 14

3.5 Performance Evaluation and Validation 15

3.5.1 Functional Validation and Debug/Analysis 15

3.5.2 Coverage Analysis and Iterative Optimization 15

iv

4 Design and Implementation 16

4.1 CVA6 Core Overview . 16
4.2 System Design . 16

4.2.1 Dual-Core CVA6 Integration 16
4.2.2 Interconnect and Arbitration 17
4.2.3 AW-Channel-Based Cache Invalidation for Inter-Core Coher-

ence . 20
4.2.4 Shared Memory Subsystem 22
4.2.5 Debug Infrastructure . 23

4.3 Main Pipeline Stages . 24
4.4 UVM Approach Specifications . 25

4.4.1 Multi-Core Verification . 25
4.5 Challenges . 27
4.6 Agent Structure and Components 28

4.6.1 Multi-Core Verification with Multiple Agents 28
4.6.2 Sequencer . 29
4.6.3 Driver . 29
4.6.4 Monitor . 30
4.6.5 Coverage Model . 30
4.6.6 Sequence Items . 30
4.6.7 Interfaces . 30
4.6.8 CVA6 Multi-Core CSR Implementation 32
4.6.9 Critical CSRs in Multi-Core 32

5 Results and Waveform analysis 35

5.1 Waveform analysis . 35
5.2 UVM Analysis . 36
5.3 Coverage Results . 38
5.4 Area Report . 43

6 Conclusion and Future Work 44

Bibliography 45

v

List of Tables

1.1 Features of the existing RISC-V cores 3

4.1 Multi-Core CSR Configuration . 34

vi

List of Figures

3.1 CVA6 Verification Methodology . 13

4.1 Program Execution . 17
4.2 Dual-Core System . 18
4.3 Round-Robin Arbitration . 20
4.4 Invalidation Mechanism . 21
4.5 CVA6 core overview . 26
4.6 CVA6 Agents Overview . 29

5.1 Arbitration and Invalidation Logic 36
5.2 UVM Infos for Intructions . 37
5.3 MUX configuration . 38
5.4 Coverage of the System . 38
5.5 Coverage for Arbitration Logic . 40
5.6 Line Coverage for Arbitration Logic 40
5.7 Condition Coverage for Invalidation Logic 1st core 41
5.8 Condition Coverage for Invalidation Logic 2nd core 41
5.9 Line Coverage for Invalidation Logic 41
5.10 Toggle Coverage for Invalidation Logic 42
5.11 Area Report . 43

vii

Acronyms

UVM

Universal verification Method

PMP

Physical Memory Protection

ISA

Instruction Set Architecture

AXI4

Advanced eXtensible Interface

UVC

Universal Verification Components

ASIC

Application-Specific Integrated Circuit

FPGA

Field-Programmable Gate Array

CSR

Control and Status Registers

RAS

Return Address Stack

BTB

Branch Target Buffer

ix

ID

Instruction Decode

OOB

Out-of-Order Writeback

ALU

Arithmetic Logic Unit

RVFI

RISC-V Formal Interface

DUT

Device Under Test

FU

Functional Unit

PTW

Page Table Walk

AXI

Advanced eXtensible Interface

SoC

System on Chip

x

Chapter 1

INTRODUCTION

1.1 Background

The growing demand for high-performance and energy-efficient computing systems
has driven the widespread adoption of multi-core processor architectures. These
methodologies enable parallel processing, improve computational throughput, and
provide better resource utilization for modern software applications.

Despite being intended as a single-core processor, the CVA6 core is a high-
performance 64-bit RISC-V processor that can be extended to dual-core configu-
rations because of its open-source nature. This features have made it a leading
platform on fields related to research, experiments, and deployment of scalable
embedded systems and custom SoC designs. The actual dual-core scenario often
rely on designs with limited flexibility and high development costs.

Projects such as CVA6 within the open-source RISC-V system, can simplify hard-
ware development and can motivate collaborative innovation. Modifying the CVA6
core for dual-core support goes in line with these trends by offering a configurable
and cost-effective solution for high-performance computing applications.

Dual-core processors, which integrate two independent processing units on a
single chip, have been representing a significant milestone in this progression. The
limitations of single-core processors related to thermal constraints and diminishing
returns from increasing clock speeds have been addressed through his methodology.
They have become a fundamental element for modern computations technology
and for powering a wide range of applications starting from personal devices up to
large-scale enterprise servers.

Multi-core systems offer some considerable benefits in terms of metrics related to
performance, scalability, and flexibility. They enable advanced features in flexible
communication protocols and in cache coherence mechanisms with the purpose of
maintaining data consistency across cores.

1

INTRODUCTION

However this benefits come with some challenges in terms of adoption of multi-
core architectures. When the number of cores in the system is increased the design
and verification complexity increases significantly, requiring advanced tools and
methodologies to reach correctness and performance specifications. Furthermore,
this architecture experiences additional area and power overheads, which must
be carefully managed to preserve the efficiency. Nevertheless, the advantages of
multi-core systems render them as essential components of modern computing
platforms, with innovation in both hardware and software design.[2]

1.1.1 Analysis of Comparable Research

The work presented in this paper is focused on modifying the UVM environment
to adapt it with dual-core scenario rather than modifying the RTL design. Two
CVA6 cores are integrated in the SoC. Communication between cores and memory
is done thorugh a multiplexer logic that incorporates together features such as
arbitration and response routing. The idea is to focus on building a smarter testing
environment that can handle the complexities of multiple cores, rather than directly
tweaking the hardware.

Multi-core systems struggle a lot due to the demand for effective interaction
between cores, shared memory management, and proper interrupt handling to
avoid conflicts. Debugging process when issues arise in such systems can become
highly challenging. Modifications required in the hardware (RTL) to address these
problems are often time consuming, because they require extensive re-synthesis
and multiple design iterations. Moreover, changes to the RTL can jeopardize the
design flow, and can result in further verification effort and stability issues.

Below in Table 1.1 is represented an overview of existing RISC-V cores. As
seen, most of these cores are released as single-core configurations without a built-
in Cache Coherence Logic (CCL). This limitation forces platform developers to
independently design and implement the CCL when configuring multi-core systems.

2

INTRODUCTION

In some cases, the absence of accessible or readable RTL code further complicates
this task, making it impossible to integrate CCL. On the other hand, some RISC-V
cores support multi-core configurations with CCL but are limited by fixed core
counts. Developers aiming for scalable or heterogeneous multi-core systems often
face the challenge of implementing their own CCL, making platform development
complex and resource-intensive.

Supplier Core Name # of Cores Cache CCL
Andes A25, D25F, N22 1 Yes No
Andes A25MP, AX25MP 1∼4 Yes Yes
ETH Ariane, Zero-riscy 1 Yes No

CloudBEAR BI-350, BM-310 1∼4 Yes No
Codasip BK3, BK5, BK7 1 Yes No
Darklife DarkRISCV 1 No No
Bob Hu Hummingbird E200 1 Yes No

FPGA Cores Instant SoC 1 No No
Cornell Lizard 1 Yes No

LambdaConcept Minerva 1 Yes No
SiFive Rocket Multi Yes Yes

Western Digital SweRV EH1 1 Yes No
IIT Madras Shakti-Eclass, 1class 1 Yes No
Roa Logic RV12 1 Yes No

Table 1.1: Features of the existing RISC-V cores

1.1.2 Modular multi-core methodology

Modern computing systems tend to have a higher performance and to deliver
energy efficiently. To achieve this they are relying on adaption to multi-core
architectures. Open-source platforms are now crucial for education and research
purposes, providing rapid prototyping and innovation.

The OpenPiton project, developed by Jonathan Balkind, Michael McKeown,
Yaosheng Fu, and Tri Nguyen, proposes a rigorous open-source many core research
framework.[2] OpenPiton’s modular structure, scalability, and extensive documen-
tation have established it as a cornerstone for research reasons. It provides both
advanced experiments and reproducible outcomes.

Taking leverage from OpenPiton, the dual-core implementation follows similar
design philosophies:

• Open-source hardware principles

3

INTRODUCTION

• Modular, parameterized architecture

• Emphasis on cache coherence and shared memory communication

• Arbitrated on-chip interconnects for safe memory sharing

OpenPiton targets many core scalability (hundreds of cores) and supports
SPARC ISA. On the other side the focus of our work is on a dual-core RISC-V
system with the following variations:

• Core Architecture:

OpenPiton is based on SPARC structure and aims scalability while Dual-Core
focuses on integration of two instances of the open-source CVA6 RISC-V core.

• System Size and Complexity:

OpenPiton is designed to support large-scaled systems while this work provides a
simpler dual-core setup environment, which is ideal for educational use, verification,
and exploration of coherence protocols.

• Cache Coherence:

OpenPiton implements a directory-based coherence protocol for maintaining
coherence among many cores while this approach uses a simple invalidation-based
coherence logic for dual-core setup.

• Communication Fabric:

OpenPiton uses a network-on-chip (NoC) for inter-tile communication while
this approach uses a shared subsystem with arbitration features.

• Research Focus:

OpenPiton points out scalability, heterogeneity, and research extensibility while
this approach emphasizes clarity, testability, and serves as a minimal starting point
towards multi-core cache coherence research.

Summary
Inspired from OpenPiton, this dual-core architecture demonstrates how open-

source, modular, and scalable design principles can be adapted and simplified but
yet providing support for educational and research goals in the context of RISC-V.
It enables hands-on learning, rapid iteration, and a clear path toward more complex
many core systems.

4

INTRODUCTION

1.2 Motivation

The RISC-V system is quite popular due to its open-source and extensible features,
and has became an attractive platform for hardware innovation. However, some of
the existing multi-core implementations are either restricted or complex, making
them not accessible to academics and developers. The motivation to adapt CVA6
project to support a multi-core configuration is driven by several factors:

1. Parallel Computing Needs: Many modern applications, starting with data
analytics, machine learning, and real-time systems, require multi-threaded
processing for better performance.

2. Open-Source Innovation: Making use of the open-source nature of CVA6
provides innovation and collaboration within the research and development
community.

3. RISC-V Ecosystem Growth: Optimization of multi-core capabilities for RISC-
V processors aligns with the growing interest in RISC-V as a flexible and
scalable hardware platform.

4. Cost Efficiency: Developing open-source multi-core architectures reduces
dependency on high cost designs and offers a customized solution for a lot of
applications.

5. Research and Education: The availability of this platform gives some benefi-
cial resource and studies for academic institutions and research groups that
analyze and work on parallel processing, hardware design, and system software
development.

The motivation to implement this architecture came as the need to build a simple,
significant, efficient, and yet functional multi-core system. This approach can
demonstrate inter-core coherence in terms of access write channel and fair arbi-
tration. It can support 2 up to 4 cores. However it has its own limitations,when
increasing the number of cores is increased the design and verification complexity,
as well as arbitration overhead and contention. So it is not compatible with many
core systems scalable from 10s to 100s of cores.

1.3 Objectives

The main objectives of this project are related to expansion of CVA6 RISC-V
system to support dual-core configurations, to enable shared memory access and to

5

INTRODUCTION

improve computational efficiency. To accomplish this, several key technical and
design goals must be reached:

1. Develop a scalable hardware interconnect to seamlessly integrate both CVA6
cores, in order to facilitate communication and resource sharing among cores.

2. Achieve cache coherence goals among both CVA6 cores by continuously
observing only the AXI AW (write address) channel to ensure that each core
is properly informed of write operations by the other peer. This allows timely
invalidation of stale cache lines without introducing unnecessary broadcasts
or complexity.

3. Built a system where both targeted cores can operate beneficently together
with the shared memory component and support collaborative communication
and data exchange.

4. Provide a robust multi-core system that establishes systematic verification for
advanced RISC-V research purposes.

5. Guarantee fairness and cyclic access to shared memory among both cores
with equal possibility to access the memory and systematically rotating access
priority, so that no core is starved regardless of request patterns.

By accomplishing these objectives, this project seeks to update the CVA6 core into
a versatile and scalable multi-core processor, thus it will contribute to the growing
of RISC-V ecosystem and will address the demand for high-performance computing
solutions.

6

Chapter 2

Literature Review

2.1 RISC-V Architecture

The RISC-V architecture is a modern, open-standard Instruction Set Architecture
(ISA) designed to be simple, scalable, and extensible. It supports a wide range of
applications starting from high-performance computers continuing to embedded
systems. Because of the architecture’s high degree of modularity, developers may
create unique extensions while still adhering to the underlying ISA.

It is adaptable for different applications because of its versatile nature. The
architecture covers both 32-bit (RV32) and 64-bit (RV64) address spaces,as well as
128-bit (RV128). This flexibility makes possible for it to be employed in a wide
range of computing environments, from low-power embedded devices to powerful
server-grade processors. [1]

2.2 RISC-V Memory Ordering Specifications

Memory consistency models vary from weak to strong. Weak memory models are
able to let more hardware implementation flexibility and deliver better performance
in terms of watt, power, scalability, and hardware verification overheads compared
to the strong models. Strong models provide simpler programming models, but
with the cost of facing more restrictions regarding (non-speculative) hardware
optimizations that can be performed in the pipeline and in the memory system.
This results in higher cost in terms of power, area overhead, and verification burden.
[3]

RISC-V uses the RVWMO (RISC-V Weak Memory Ordering) memory model,
which puts it in between the two extremes of the memory model spectrum. The
RVWMO memory model allows constructing simple implementations, aggressive
implementations, implementations embedded deeply inside a much larger system

7

Literature Review

and subject to complex memory system interactions, all while simultaneously
being strong enough to support programming language memory models at high
performance.

RISC-V defines its memory model (RVWMO) in the context of 3 orderings:

• Program Order: It represents a sequence of instructions executed by a single
(cores) hart before any out-of-order effect imposed by hardware or compiler.
They are written in the program and can be affected if processor reorders
them for optimization purposes.

• Global Memory Order: It represents the order in which loads and stores
perform. The formal memory model has moved away from specifications built
around the concept of performing, but the idea is still useful for implementing
informal intuition. A load is said to have performed when its return value is
determined. A store is said to have performed not when it has executed inside
the pipeline, but rather only when its value has been propagated to globally
visible memory. In this sense, the global memory order also represents the
contribution of the coherence protocol and/or the rest of the memory system
to interleave the (possibly reordered) memory accesses being issued by each
hart into a single total order agreed upon by all harts.

• Preserved Program Order: It represents the subset of program order that
must be respected within the global memory order. Conceptually, events
from the same hart that are ordered by preserved program order must appear
in that order from the perspective of other harts and/or observers. Events
from the same hart that are not ordered by preserved program order, on the
other hand, may appear reordered from the perspective of other harts and/or
observers. [3]

Cores in RISC-V architecture have their own private cache, and because of
this it is important to ensure that they are all observing consistent values from
shared memory subsystem. As a result it is essential to implement cache coherence
protocols which will monitor the status of each cache line. When implementing
such mechanism is crucial not to violate the specification defined by the system,
and to ensure that all required cache updates and invalidations are performed
correctly respecting global memory order.

2.3 CVA6 Core

CVA6 (formerly known as Ariane) is an open-source, 64-bit, in-order RISC-V core
developed by the OpenHW Group and initially contributed by ETH Zurich.[4]

8

Literature Review

It operates with RV64GC standard (64-bit base ISA with general-purpose and
compressed extensions) and is totally in sync with the RISC-V ISA specification.

It is made for high-performance embedded applications. Although individual
cores may target a particular implementation technology, the CVA6 targets both
ASIC and FPGA implementations. SystemVerilog is used to write the highly
parameterizable CVA6. For instance, options allow you to adjust the ILEN to
either 32 or 64 bits and enable or deactivate floating point capability.[4]

2.3.1 Key Features

• RISC-V Compliance: This feature is adapted to support the RV64GC (64-
bit, general-purpose, and compressed instructions) standard, and implements
privilege modes such as User, Supervisor, and Machine.

• High-Performance In-Order Design: It is a s-stage in-order pipeline
useful for instruction execution and is optimized for better performance and
power in embedded systems.

• Memory and Cache Support: The architecture includes L1 Data and
Instruction Cache which are configurable for performance optimization and
includes an optional L2 Cache as well to improve memory latency for complex
workloads.

• MMU (Memory Management Unit): It offers a virtual memory support
with page-based memory mapping, which is also adaptive with Linux or other
operating systems.

• Floating-Point and Vector Extensions: It supports floating-point opera-
tions by including F and D extensions and is additionally prepared for further
extension with RISC-V vector processing capabilities.

• AXI4 Interconnect Support: One important feature of this architecture is
also the support of AXI4 bus interface used for efficient implementation with
memory controllers and other SoC components.

• Interrupt Management: It is totally compilant with RISC-V interrupt
specifications for reliable handling of software and hardware interrupts.

• Open-Source and Customizable: It’s open-source features, allow it to be
relevant for academic research and commercial applications.

• Toolchain Compatibility: It is compatible with many toolchains such as
RISC-V GCC, LLVM, and other software tools. Can also support Linux and
other real-time operating systems (RTOS).

9

Literature Review

• Synthesized in FPGAs and ASICs: It is integrated on FPGA boards for
testing and prototyping purposes and is integrated in ASIC implementations
for tape-out purposes. [4]

2.4 Multi-Core Approach

Multi-core architectures have become recently a fundamental component respon-
sible for accomplishing the demand for higher performance and energy efficiency
computing systems. They are increasing and improving concurrent execution
of many instruction set by focusing on the throughput and outcome of parallel
workloads. The RISC-V ISA is a flexible, open alternative to proprietary ISAs,
and is widely adopted in research and commercial field. The CVA6 (formerly
Ariane) core is a high-performance, Linux-capable, in-order 64-bit RISC-V pro-
cessor implemented in SystemVerilog and Chisel. While CVA6 is architecturally
sophisticated, it is designed as a single-core implementation, limiting its utility in
evaluating and developing multi-threaded or parallel systems. Multi-core extension
of CVA6 accomplish the needs of both academic research and industrial research
by providing:

• Studies and researches on inter-core communication, synchronization, and
scalability,

• Development of multi-core RISC-V software stacks (e.g., SMP Linux),

• Custom hardware-software co-design for domain-specific applications.

10

Chapter 3

Methodology

The goal of this work is to implement a dual-core RISC-V system using two CVA6
(Ariane) cores with shared memory access support. The methodology follows a
modular, parameterized approach, that ensures scalability and ease of integration
for future use as well. In the design has been incorporated interconnects, a custom
arbitration (mux) module, and a dedicated invalidation filter to verify that each
core is notified of writes by the other peers.

3.1 Experimental Setup

The first step of this approach is integration of a dual-core CVA6 system in a
controlled simulation environment. Each core has been configured with a unique
identifier and independent interfaces to facilitate the concurrent communication
with memory. Tracking and monitoring infrastructure have provided detailed
information regarding data execution.

One of the critical components of this design is the interconnect mechanism
that is able to control simultaneous memory requests from both cores. It features
the arbitration logic of a round-robin scheme and prepends core identifiers to AXI
transaction IDs, to make sure that responses are correctly routed back to the
originating core. This mechanism is essential for maintaining transaction integrity
and traceability in a shared memory environment.

To address potential data hazards being caused by concurrent memory accesses,
the system incorporates a mechanism related to invalidation logic. It continuously
monitors the addresses and valid signals of incoming requests from both cores.
It ensures that each core is informed of memory accesses by its peers, thereby
maintaining a consistent and up-to-date view of shared memory resources. It can
be used to trigger invalidation logic, such as stalling one core or invoking cache
coherence protocols. The platform is equipped with RISC-V Formal Interface

11

Methodology

(RVFI) probes and UVM agents, to provide detailed monitoring of instruction
execution, memory transactions, and protocol compliance.

3.2 UVM Approach

This section describes the structured approach used to modify the CVA6 RISC-V
core from a single-core architecture to a dual-core configuration. On the focus have
been modifications needed for the current version of UVM (Universal-Verification-
Methodology) environment regarding CVA6. Components such as tesbench de-
velopment, verification strategy, scope of test and UVM environment itself are
the highlights of the approach. In order to give a detailed description of the
development process , below has been analyzed each phase.

Initially, it is important and convenient to understand the limits of the existing
single-core UVM environment and to state the requirements for this implementation.
The design needs to be scalable, to effectively support dual-core verification, to test
data consistency across it and to verify core communication and synchronization
mechanisms.

3.3 UVM Environment

3.3.1 UVM Testbench Adaptation

The current single-core environment is extended to support multi-core verification
through the following procedures:

1. Testbench Hierarchy Modification: The testbench structure is adapted
to integrate and manage two cores under verification.

2. Environment Configuration: Parametrization is used as a technique to
configure dynamically the number of cores under test.

3. UVC (Universal Verification Components) Enhancements: The existing
UVCs are extended and reused to handle dual-core transactions and responses.

3.3.2 CVA6 Verification ENV

Below in the Figure 3.1 is demonstrated a detailed step-by-step representation of
modifications of UVM environment to support our dual-core verification strategy.
On this representation are involved components such as testbench adaptation,
stimulus generation, verification strategy development, and extensive validation
to ensure a robustness and scalability. Then will be discussed the outcomes and
analysis of the verification process, highlighting key results.

12

Methodology

Figure 3.1: CVA6 Verification Methodology

Key Components in Detail

1. CVA6 Environment

This environment is responsible to verify both cores and their interactions with
shared memory. Key components include: Core-Specific Blocks Each core
(Core0, Core1, etc.) is considered as a separate unit within the environment.
For every core, the following agents and components are defined:

Clkreset Agent: It is an agent that handles clocking and reset logic on the
verification environment.

AXI Agent: It is an agent that verifies memory transactions and AXI
interface behavior of the cores.

RVFI Agent: It is an agent that verifies the RISC-V Formal Interface (RVFI),
which duty is to monitor each core’s action for compliance and correctness
purposes.

CSRs: Control and Status Registers (CSRs) are verified for providing infor-
mation regarding correct read/write behavior of the system.

2. Scoreboard

13

Methodology

The scoreboard has an important role in collecting and verifying outcomes from
cores and their agents. It is responsible to compare this actual information
with the expected outputs to ensure that the system is functionaly correct
as required. By doing this check it verifies data coherency across all cores.
Additionally, it may track specific metrics such as coverage, pass/fail rates,
and performance statistics to provide insights into the verification process.

3. Device under Test

The DUT (Design Under Test) describes what is eesential to be processed.
DUT in this scenario includes two CVA6 cores that independently process
instructions while they are sharing resources. The AXI interface makes the
communication between the cores and the shared memory easier, by ensuring
efficient data transfer.

On the other side shared memory subsystem and controller coordinate resources
access across cores as required. The environment uses the AXI interface to
simulate realistic memory accesses, enabling accurate verification of multi-core
operations.

3.4 Coverage Metric

One of the most used metric in software and hardware verification is code coverage.
It measures the degree at which the test suite executes the implementation under
test. It identifies which parts and how much percentage of the source code have
been executed during simulation or testing, thereby it helps in determining the
comprehensiveness and effectiveness of the process.

Within functional verification, code coverage is particularly helpful in identifying
parts of the design that have not been tested since this areas can potentially cause
hidden bugs. It highlights areas of the test scenarios which are incomplete, in order
to assist verification engineers in remodeling their approach and achieving higher
accuracy in terms of correctness of the work.

During this process is evaluated code coverage with the following metrics:

• Line Coverage: This metric is able to track and identify whether each line
of the code is executed during simulation. It provides a basic but yet efficient
way of showing which parts of the design have been executed by test scenarios.

• Toggle Coverage: This type of code coverage metric can measure whether
each bit of a signal has transitioned from 0 to 1 or from 1 to 0 at least once
during simulation. Toggle coverage plays a crucial role in hardware verification
because it reveals if the signal transition within registers, wires, and internal
logic has been fully experienced.

14

Methodology

• Condition Coverage: Condition or expression coverage is a metric that
evaluates if all boolean sub-expressions within control statements (e.g., if,
case) have been independently executed to both states either true or false.
Compared to branch-coverage this is more fine-grained and provides details
regarding the completeness of decision logic testing.

3.5 Performance Evaluation and Validation

3.5.1 Functional Validation and Debug/Analysis

The environment is modified to validate multi-core functionality, by offering a
controlled setup for test suite and various aspects of the system. Extensive tests
are carried out to check the cores communication, and to ensure coherency within
them. Thereby this can guarantee the accuracy and reliability of the multi-core
architecture.

Waveform viewers have been utilized as a way to analyze interactions and to
check debug issues. They provide valuable insights into system behavior if it is as
expected. Additionally, test logs are examined and studied in details to identify
and resolve potential failures on the system.

3.5.2 Coverage Analysis and Iterative Optimization

Coverage reports are generated and analyzed under all scenarios in order to check if
everything have been adequately tested. This reports tend to address any coverage
bottleneck.

Based on the outcome of verification process, iterative optimizations are carried
out. These includes a refinement of the testbench to improve the performance of
UVM environment, expanding coverage points to capture more scenarios, and to
optimize test execution time for multi-core simulations.

15

Chapter 4

Design and Implementation

4.1 CVA6 Core Overview

The CVA6 core’s goal is to run an entire operating system OS at a defined speed
and IPC. The core has a 6-stage pipelined architecture to get the required speed.
The CPU has a scoreboard that should conceal delay to the data RAM (cache) by
sending data-independent instructions in order to raise the IPC.

Accesses to the data RAM (or L1 data cache) have a greater delay of three
cycles on a hit than those to the instruction RAM (or L1 instruction cache), which
has an access latency of one cycle on a hit.[4]

The diagram on Figure 4.5 provided by ARIANE offers an overview of the CVA6
core architecture, breaking down its key components and pipeline stages. [4] In the
below subchapter is given a detailed explanation.

4.2 System Design

The modifications in the system consist on enabling efficient, coherent, and scalable
features using two CVA6 (Ariane) RISC-V cores. A seen in Figure 4.2 it is able
to ensure correct operation under concurrent memory access scenarios by using
industry-standard AXI4 interfaces, a custom arbitration scheme, and a coherency
management unit. The bellow subsections explain each major subsystem and their
integration.

4.2.1 Dual-Core CVA6 Integration

Two CVA6 cores have been integrated in this system, each instantiated within
the top-level wrapper module. On each of them as demonstrated in Figure 4.1
is running a different program and are configured with unique hardware thread

16

Design and Implementation

Figure 4.1: Program Execution

identifiers (ID is 0 for Core 0, ID is 1 for Core 1), in order to activate independent
execution contexts. They are connected to shared interrupt, debug, and boot
address signals, to provide synchronized startup and coordinated exception handling.
The current implementation facilitates future expansion to more cores or usage
with heterogeneous processing elements.

Each core uses an AXI master interface for memory transactions, as well as
signals for debug and interrupt. The design supports full compliance with the
RISC-V privileged architecture, allowing for robust multi-threaded and multi-core
software execution.

4.2.2 Interconnect and Arbitration

The cores are communicating with shared memory subsystem with the help of
the multiplexer logic, which is connected to each core´s AXI master interface.
The multiplexer is applying a round-robin arbitration scheme. This approach is a

17

Design and Implementation

Figure 4.2: Dual-Core System

parameterized, scalable and capable to arbitrate requests from multiple masters.
In this implementation it supports two slave ports (one per core). Memory access
is granted to the cores in a cyclic order following the logic of the arbiter, regardless
of the request urgency or core priority.
Key features of the arbitration logic include:

• ID extension: Transaction IDs are extended with a core index, to ensure
that responses from memory can be routed back to the correct core which
originates the request.

• Arbitration Policy: The arbitration policy implemented is round-robin
scheme which is able to provide fair and deadlock-free access to memory
resources.

18

Design and Implementation

• Protocol Compliance: AXI protocol is fully compiled, involving also support
for out-of-order responses, burst transactions and handling of AXI channels
(AW, W, B, AR, R).

• Scalability: The system is easily extended also to support additional cores
when adjusting its parameters.

As seen in Figure 4.3 when both cores issue memory requests, the arbiter alternates
grant access to Core 0 in first cycle, and then to Core 1 in the next cycle in a cyclic
order. If only one core have issued a request in a particular time event, the arbiter
is going to grant access to that core immediately without waiting for the other one.
By this implementation is achieved a balance between fairness and efficiency, thus
is avoided complex prioritization logic while still maintaining responsiveness to
active cores.

Each memory request is associated with a unique ID to support proper routing
back of memory responses to the originating core. When the arbiter receives a
request it forwards it with the help of multiplexer logic to the memory system,
which keeps track of the associated Core ID. This tagging mechanism makes possible
for the memory responses to correctly match the originating core, maintaining
consistency and correctness in core-memory communication.

This methodology provides several advantages. First, it guarantees fairness by
preventing any core from dominating access to the shared memory. Second, the
simple round-robin algorithm makes it easy to implement and verify, especially
in hardware design environments like SystemVerilog. Third, the deterministic
behavior of the arbiter simplifies debugging and performance analysis. However,
this approach also introduces some trade-offs.

Specifically it may increase memory access latency under some certain conditions.
For example when one of the cores is IDLE and the arbiter waits unnecessarily
amount of time to grant access. Additionally, some bottlenecks are noticed related
with the lack of dynamic prioritization which means that real-time or latency-
sensitive tasks might not be optimally served.

19

Design and Implementation

Overall, this implementation with arbiter scheme, shared memory access, along
with response routing via Core IDs, has provided an accurate and balanced solution
for managing memory access in a multi-core CVA6 architecture. It lets the system to
maintain stability while enabling both cores to interact with the shared subsystem
in an conflict-free manner.

Figure 4.3: Round-Robin Arbitration

4.2.3 AW-Channel-Based Cache Invalidation for Inter-Core
Coherence

Maintenance of data coherency in multi-core systems when multiple cores access
shared or overlapping memory regions is one of the most critical challenges this
architectures faces. This is addressed through, an AXI invalidation implementation
which is a component designed to facilitate memory consistency in a multi-core
system-on-chip (SoC). Each core may independently issue memory access requests,
potentially leading to circumstances where one core’s memory operations can
invalidate or interfere with the cached data of another core. So to ensure that
all cores observe a consistent view of memory is fundamental for correct system
operation.

Key Functions

• Monitoring Memory Accesses:

The system continuously monitors and tracks memory access requests (specifically,
write address requests) from both cores. Each core provides its request address
and a valid signal that indicates whether the request is active.

• Invalidation Signaling:

As soon as one of the cores issue a valid memory access request, an invalidation
signal is generated and the accessed address is forwarded to the other core. As a

20

Design and Implementation

Figure 4.4: Invalidation Mechanism

result the other core is notified that its cached data corresponding to the given
address may be stale and should be invalidated or updated.

• Selective and Efficient Filtering:

It is important to make sure that invalidation is raised only for valid and meaningful
requests, so this way can reduce unnecessary coherence traffic and improve system
efficiency.

Architectural Role Coherence is crucial when dealing with a multi-core CPU
that has private L1 caches. At the interface between the memory subsystem and
the cores, the module serves as a thin coherence filter. It provides a straightforward
but efficient method of preserving communication without the hassle of a full
directory-based or spying protocol by sending out invalidation signals based on
observed memory accesses.

Benefits of this implementation are:

• Simplicity: The design is straightforward, and is suitable for small-scale
multi-core systems.

• Scalability: While the current implementation covers two cores, the underly-
ing logic can be extended to more cores with some modifications related to
the architecture.

• Performance: By taking in consideration only relevant invalidation events,
the mechanism minimizes unnecessary cache invalidation and coherence traffic,
thus improves the overall system performance. This scheme is explained in
the flowchart at Figure 4.4.

21

Design and Implementation

In summary, this mechanism acts as a critical building block for efficiency and
correct cache coherence in a dual-core RISC-V system. It makes sure that each
core is properly informed of memory accesses by its peer, thereby maintaining a
consistent and up-to-date view of shared memory resources.

4.2.4 Shared Memory Subsystem

The shared memory subsystem incorporates together two primary components first
the AXI-to-memory bridge and secondly the parameterized static random-access
memory SRAM. The AXI-to-memory bridge is an interface between the AXI bus
and the memory. It translates AXI protocol transactions into native memory
requests that can be further processed by the SRAM. This bridge is able to support
concurrent read/write operations from both cores, and can ensure that memory
bandwidth is effectively utilized. Both cores can access memory with minimal
contention.

Then the SRAM structure is configurable,and lets that parameters such as
memory size, data width, and access latency to be adjusted based on system speci-
fications. At simulation startup, it is initialized using DPI-C (Direct Programming
Interface for C) functions, which facilitate the loading of ELF (Executable and
Linkable Format) binaries directly into memory. Through this mechanism the
simulation of realistic software execution environments can be possible, as actual
programs can be loaded and executed by the cores during verification and testing
process.

Key features of the memory subsystem include:

• High Throughput and Low Latency:

The subsystem provides high-bandwidth, low-latency access for both cores,and
minimizes memory access delays.

• Burst and Single-Word Transaction Support:

The bridge supports both burst transactions (where multiple data words are
transferred in a single transaction) and single-word accesses. This flexibility allows
the subsystem to cover a wide range of memory access patterns, starting from
sequential program and continuing to random data accesses.

• Flexible Initialization for Testing and Validation:

The use of DPI-C for memory initialization results in a flexible mechanism for
loading test programs, firmware, or arbitrary data patterns into the SRAM. This
feature enables the simulation environment to be easily configured for different test
scenarios, including also corner cases and application-level tests.

22

Design and Implementation

Overall, this subsystem is designed to be both high-performance and flexible,
while supporting all requirements of multi-core systems and providing comprehensive
verification through realistic and configurable simulation setups.

4.2.5 Debug Infrastructure

Verification and debugging phases of the design became easier, when utilizing
UVM’s messaging features, especially UVM_INFO macro which can a give clear
view of what’s happening in the dual-core memory system. Rather then relying only
on analyzing waveforms or manual logs, the system can also automatically produce
informative messages whenever important memory events happen. These messages
are strategically generated to report on transaction initiation, arbitration outcomes,
and invalidation events, ensuring that all important system activities are captured
in a manner that is accessible within the UVM reporting framework. This method
is systematically using this calls to log metadata for every operation, including
transaction IDs, memory addresses, burst lengths, instructions and originating
cores. Every information relevant for building and debugging the system such as
arbitration, invalidation or inter-core logic is reported via UVM messages.

This integration contributes in connection between high-level functional events
and low-level signal activity, especially when they are combined with waveform
viewers. This results in an environment where verification, performance analysis,
and debug processes are all aligned. This changes made significantly easier identifi-
cation of common issues related to memory access, arbitration, and coherency in a
complex multi-core system.

Benefits:

• Verification: UVM messages capture every important memory event under
any possible specification or requirement.

• Performance Analysis: With this implementation the project can be ana-
lyzed deeply including arbitration, memory latency, and system throughput
in a range of workload scenarios.

• Debug and Diagnosis: UVM reporting system shortens debugging time
by making it easy to find/analyze the root cause of bugs and performance
bottlenecks.

Overall, this debugging methodology is crucial for the verification strategy be-
cause can provide additional correctness, performance tuning, and accelerating the
resolution of complex multi-core interaction issues.

23

Design and Implementation

4.3 Main Pipeline Stages

The processor’s core pipeline is organized into many stages, each of them responsible
for specific aspects of overall system performance.

• Frontend (Speculative Regime):

This stage fetches the instructions and prepares them for decoding. Instruction
Scan (IS) unit, which fetches instructions and manages execution paths is
one of the most significant components of this stage. Branch prediction and
speculative control flow are managed by the Branch History Table (BHT),
Return Address Stack (RAS), and Branch Target Buffer (BTB). The PC Select
and Re-aligner components handle program counter selection and instruction
alignment. They make sure having an accurate instruction flow. Then, the
CSR Write unit updates Control and Status Registers (CSRs), which mange
exception and control the system.

• Instruction Decode (ID): Fetched instructions are decoded and processed
in this phase. They are positioned in the instruction queue, and are prepared
for execution. Compressed Decoder handles compressed RISC-V instruction
formats in order to optimize instruction bandwidth. Here instructions are
correctly decoded and ready for the next step.

• Issue Stage: Now decoded instructions are dispatched to some functional
units. The Issue Buffer temporarily stores and issues them in order, with
the aim of having a smooth pipeline operation. The Scoreboard monitors
their dependencies and provides their dispatching only when all operands are
ready. This way is maintained data consistency and is prevented any potential
hazard.

• Execute Stage Pipe: Functional units (FUs) in this stage perform arithmetic
and logical operations. Under this units are included the Arithmetic Logic Unit
(ALU), CSR Buffer, Floating Point Unit (FPU), and multiplication/division
units. Memory operations are managed by the Load-Store Unit (LSU), which
handles load and store instructions to ensure seamless data access.[5]

• Out-of-Order Writeback (OoO WB): This stage handles the final step of
instruction execution. It writes functional results back to registers or memory,
and manages critical operations such as page table walks (PTW) and virtual
address translation. [5]

• Commit Stage: The commit stage puts instruction execution in program
order. It includes robust exception handling mechanisms to manage system
events and exceptions, maintaining system stability. Additionally, a privilege

24

Design and Implementation

check ensures that privileged operations are executed correctly and securely,
preserving system consistency and enforcing access control.

• Cache Subsystem: The shared memory subsystem spans across all stages.
Instruction Stream (IS) and Data Stream (DS) handle cache requests and
manage data for instruction fetches and memory operations. The DS Miss
Unit and DS Controller are relevant in handling memory access and resolving
any possible cache misses. They ensure smooth data flow and reduce latency
across the core pipeline.

• Key Features Highlighted in the Diagram: The core architecture incor-
porates several advanced features together to achieve the desired performance
metrics. Speculative execution provided by branch prediction mechanisms, in-
creases pipeline efficiency by executing instructions based on predicted control
flow.

Out-of-order write back decouples execution from commit for a better resource
utilization. Integrated caching mechanisms support efficient instruction and
data access, reducing memory latency. The dedicated logic handles interrupts
and exceptions.

This architecture emphasizes a well-optimized, pipelined RISC-V core with
support for speculative execution, efficient functional unit utilization, and robust
cache and interrupt management.[4]

4.4 UVM Approach Specifications

UVM verification for dual-core RISC-V architecture relies on a modular testbench
structure that can be mapped to various parts of the CVA6 core pipeline for
comprehensive verification. To develop the environment further for multi-core
setup and to incorporate the new requirements, is needed to focus on several areas
of the current architecture.

4.4.1 Multi-Core Verification

In order to make this approach convenient is modified the UVM environment to
support multiple CVA6 cores(in this case integrating 2 cores) by defining an array
of configurations.

Each core has its own specific settings which help them integrate in the multi-
core setup. Secondly interface replication is performed, and as a result all necessary
interfaces such as clock, reset, debug and AXI are replicated as well for each core.
So they have their own set of interfaces for proper communication and control.

25

Design and Implementation

Figure 4.5: CVA6 core overview

The approach focuses on modularity and scalability. Key principles used are:

• Hierarchical and Modular Design

Cores are equipped with the same verification block, they have the same agents,
and follow the same modular approach that supports the implementation without
major changes to the environment. The testbench is like a hierarchical structure,
with the test layer at the top, aligned with the environment and core-specific agents,
promoting organized and efficient verification.

• Re-usability

All relevant agents in this work starting with clkreset, AXI, and interrupt agents
are considered as reusable components. If in the future the approach is going to
increase the number of cores inside the design the same agent types can be reused.
This feature reduces redundancy in the environment.

• Separate Operation

26

Design and Implementation

Each core operates independently of their peer, but all the results are consolidated
in the scoreboard. This setup allows a separate operation and execution in terms
of verification across cores.

• Coverage

The setup is adapted and organized to cover each core functionality and interaction.
And it is able to provide for any operation, structure, module or function the
amount of the logic covered by coverage metrics.

• Shared Resource Verification

The AXI interface and shared memory subsystem facilitate communication among
cores. Agents and the scoreboard collaborate to verify correct arbitration for
shared resources, maintaining timing and data integrity for AXI transactions, and
detecting and handling potential deadlock and race condition scenarios.

4.5 Challenges

1. Complexity in Synchronization: Multi-core systems often need synchro-
nization between components. Verifying such scenarios (e.g., shared memory
access contention or interrupt synchronization)requires additional checks. Han-
dling race conditions and deadlocks in this approach is particularly challenging.

2. Performance Bottlenecks: Verifying multiple cores simultaneously in-
creases runtime and complexity of simulation. This can lead to performance
bottlenecks if the system is not optimized correctly.

3. Shared Resource Contention: Verifying shared memory and resource
contention scenarios requires precise timing checks to ensure data integrity.
Designing sequences to explore all edge cases can be time-consuming.

4. Debugging Multi-Core Interactions: Debug process in multi-core verifi-
cation is challenging because bugs are harder to isolate. Because the problem
may be caused from core interactions rather than individual core behavior.
Debugging such issues requires detailed communication/interaction monitoring
across cores.

5. Maintaining Coverage Goals: Achieving a high percentage of coverage for
both core-specific functionality and system level interactions can be difficult,
because it requires significant effort in defining coverage models and sequences.

27

Design and Implementation

6. AXI Interface Complexity: The AXI interface has multiple handshake
logic and timing requirements to be met. Verifying correct behavior for all
possible scenarios (e.g., burst transfers, interleaved transactions) across cores
increases complexity.

7. Scalability Limitations: This modular approach is scalable, but in case of
increasing the number of cores the simulation overhead increases as well. In
such scenario is relevant to have an efficient resource allocation and test case
optimization.

8. Arbitration Complexity: Designing an arbitration system that fairly ar-
bitrates between multiple masters (cores) is non-trivial. But ensuring no
starvation, deadlock, or priority inversion needs careful policy selection during
verification process.

9. ID and Response Routing: The extension of IDs so that responses are
always routed to the correct originating core, especially under out-of-order
and burst transactions, increases complexity to both the multiplexing logic
and the tracking logic.

To overcome these challenges is required a combination of careful and detailed
architectural planning, robust parameterization, and thorough verification to ensure
a correct, efficient, and scalable multi-core RISC-V system.

4.6 Agent Structure and Components

The diagram described in Figure 4.6 represents the basic structure of a UVM
(Universal Verification Methodology) agents used to verify the CVA6 core. This
structure is fundamental to any UVM-based verification environment because it
shows all the building blocks for driving individual cores in the CVA6 multi-core
architecture. As seen also earlier each core in such architectures should have its
own dedicated agent. Here’s a simple explanation of the components involved and
their roles.

4.6.1 Multi-Core Verification with Multiple Agents

In this design, each core is managed by a dedicated verification agent. While the
basic structure of the agent remains consistent across all cores, multiple instances
are integrated within the environment.

These agents operate independently from their peers, and they handle tasks
such as driving their respective cores, applying transactions, monitoring outputs,
and collecting coverage data.

28

Design and Implementation

4.6.2 Sequencer

• Purpose: The sequencer role is to generate and send a series of sequence
items (transactions) to the driver. These communication between sequencer
and driver represent the input stimuli that will be applied to the Design Under
Test (DUT).

• Details: The term sequence items involves various operations and components
such as memory reads/writes and interrupt signals which are stored in a
database. The sequencer communicates with the driver through a Transaction-
Level Modeling (TLM) port, enabling the efficient transfer of transaction data
and seamless execution of test scenarios.

Figure 4.6: CVA6 Agents Overview

4.6.3 Driver

• Purpose: The driver serves as a bridge between sequencer and DUT. It
receives the sequence items and translates them into real-world signal-level
activities on the DUT interface.

• Details: The driver interacts with the DUT by ensuring that appropriate
control signals or data are applied to the DUT’s input ports under correct
time constrain. This feature of the driver converts high-level transactions
coming from sequencer into low-level signals essential for DUT.

29

Design and Implementation

4.6.4 Monitor

• Purpose: The monitor passively observes the DUT’s outputs and extracts
data for subsequent analysis.

• Details: It is connected to the DUT’s interface and collects information/data
during simulation process. It uses a TLM port to send the extracted data
to other components such as the coverage model or scoreboard for a detailed
analysis. It is a non-intrusive component, that is why the monitor does not
drive signals or affects the DUT’s behavior. Its aim is just to maintain accurate
observation of system operations.

4.6.5 Coverage Model

• Purpose: The coverage model is responsible to analyze the data monitored
earlier and to measure test completeness.

• Details: The coverage model provides a comprehensive verification because it
checks whether all DUT components have been exercised and are functionally
correct. It keeps track of coverage metrics such as code coverage (e.g., lines of
code executed) and functional coverage (e.g., tested scenarios). The outcome
from the coverage model acts as a guide towards improvement of test cases by
identifying all untested conditions.

4.6.6 Sequence Items

• Purpose: Sequence items are able to represent the individual interactions or
operations that the sequencer has generated.

• Details: It specifies some relevant parameters such as data, addresses, or
control signals to be applied to the DUT. They are stored in a database and
are acquired by the sequencer when needed.

4.6.7 Interfaces

• Purpose: The interface acts as the connection key between all mentioned
components such as the driver, the monitor, and the DUT.

• Details: It contains all signal definitions regarding inputs and outputs of
the DUT, and makes specifications of the communication protocols. It is
frequently used by the driver to apply stimuli and by the monitor to observe
the DUT’s behavior.

30

Design and Implementation

All Components Together

1. The sequencer duty is to generate high-level transactions based on the scenario
and eventually to transfer this transactions to the driver.

2. The driver receives and translates these transactions into signal-level activity
on the DUT with the help of the proper interfaces.

3. The DUT receives and processes this information and accordingly produces
the output.

4. The monitor makes a detailed observation of such outputs in order to extract
accurate information from them. Which is later send to the verification
components of the design.

Key Advantages of Multiple Agents for Multi-Core Design

• Parallelism: Cores are independently verified, this separation allows concur-
rent operation and reduce verification complexity.

• Modularity: Since each core is handled by a separate agent, debugging
process becomes more straightforward since all issues are isolated to specific
cores.

• Scalability: Re-usability of agents for any additional core with minimal
changes, makes the environment highly scalable.

When modifying the CVA6 verification environment for multi-core support,
significant changes were done. The agent structure is replicated in order to be
reused for each of them. Instead of having a single agent instance, with this changes
we have arrays of agents to support multiple cores (in this case, two).
The key agents we’ve replicated for each core are:

AXI Agent: Is responsible to handle AXI bus transactions between cores and
shared subsystem.

Core Control Agent: Is responsible to manage specific control signals related
to each CVA6 core.

RVFI Agent: Is responsible to monitor the RISC-V Formal Interface during
verification process, which deals with instructions.

31

Design and Implementation

The environment involves a shared agent labeled "clknrst agent", which provides
common clock and reset to all cores in order to have a proper synchronization
among all agents.
Agents are defined as arrays in the environment classes and this adaption toward
multi-core approach enable the verification environment to simultaneously monitor
and control CVA6 cores. The re-usability feature of the agents allows concurrent
processing of transactions, coverage collection, and checking across cores.

4.6.8 CVA6 Multi-Core CSR Implementation

To support multi-core functionality in the CVA6 environment, was needed an
extension of the logic to provide independent Control and Status Register (CSR)
interfaces for each core. This was possible to be reached by using two key macros
designed to streamline CSR instantiation and configuration.

Each core maintains its own CSR state to operate independently. Registers like
"mstatus" and "mcause" are coupled to core-specific behaviors, such as privilege
level transitions and exception handling. This individual usage of CSR interfaces
per core, provided an accurate state tracking, eliminated interference, and enabled
isolated execution. This architecture also supports robust debug and verification
by preserving the integrity of each core’s control state.

4.6.9 Critical CSRs in Multi-Core

Most critical CSRs requiring per-core implementation:
Machine-Level:

• mstatus: Machine status register

• mcause: Machine cause register

• mtvec: Machine trap vector

• mepc: Machine exception PC

Supervisor-Level:

• sstatus: Supervisor status

• scause: Supervisor cause

• stvec: Supervisor trap vector

32

Design and Implementation

Debug/Performance:

• dcsr: Debug control and status

• mcycle: Machine cycle counter

• minstret: Machine instruction counter

Why Not Sharing CSRs?

When CSRs is shared between cores some significant challenges may arise that
can affect system integrity and functionality. This violates the RISC-V privileged
specification, which requires each core to maintain its own set of control and status
registers. This results in issues related to race conditions from concurrent CSR
access, leading to unpredictable behavior.

Moreover, it prevents cores to operate independently and limits the system’s
ability to execute tasks correctly. Under this conditions the debug process becomes
nearly impossible due to the entangled states of shared control signals. Moreover the
privilege-based security mechanisms is compromised, creating critical vulnerabilities.

To address these issues, the current implementation aim is to provide to each
core an independent CSR state, thus enabling effective privilege management and
debugging. Another disadvantage with sharing Control and Status Registers (CSRs)
across cores is related with difficulties in verifying per-core behavior, undermining
the ability to monitor and manage core-specific operations.

Conclusion

Control and Status Registers (CSRs) must remain independent for each core in
order to ensure architectural correctness and maintain proper system functionality.
Independent CSRs are essential for accurate exception handling, effective core
isolation, and robust debugging capabilities.

33

Design and Implementation

Additionally, maintaining this separation is a fundamental requirement for
RISC-V compliance. Even if only one core sets the CSRs, the state information is
inherently core-specific and cannot be shared without violating critical architectural
principles and compromising system integrity.

UVM Test Environment

RVFI RVFI
CSR IF CSR IF
Core 0 Core 1

mstatus_0 mstatus_1

mcause_0 mcause_1

mepc_0 mepc_1

... ...

... ...

CVA6 CVA6
Core 0 Core 1
CSRs CSRs

mstatus mstatus
mcause mcause
mepc mepc

... ...

... ...

Table 4.1: Multi-Core CSR Configuration

34

Chapter 5

Results and Waveform
analysis

Evaluation of functional correctness and multi-core behavior of the dual-core CVA6
system, was assured by conducting a series of simulation experiments under the
developed UVM-based verification environment. On this section are presented the
results obtained during simulation, with a particular focus on waveform analysis
and inter-core behavior. The waveforms provide detailed insight into the interac-
tions between the two CVA6 cores, the arbitration and routing performed by the
interconnect mechanism , and the inter-core coherence access write capabilities of
the invalidation logic. By examining these results, is demonstrated how the system
manages concurrent memory accesses, ensures that each core is promptly notified
of writes by the other and maintains correct operation under various test scenarios.
The following subsections show representative waveform snapshots and discuss the
observed behaviors in the context of the design objectives.

5.1 Waveform analysis

In the waveform below is shown the behavior of the components needed to implement
the dual-core approach. It is important to mention that each core has a unique
HART ID, making them distinguishable in the test program and active during
simulation. The first block of siganls in the waveform belong to arbitration logic.
As known in this approach is implemented a round-robin arbitration scheme, and
during investigation of the waveform , we can see that at that specified time stamp
core 1 is rising a request and the grant to access the shared memory component is
given to core 1. Round-Robin ensures that only one request is granted at a time,
and the arbitration works in a cyclic order.

Then the second block of signals in Figure 5.1 belongs to invalidation logic,

35

Results and Waveform analysis

at the defined time stamp core 1 has written to a specific memory address and
has raised an invalidation signal to inform core 0 that it is occupying this address.
Lastly in the waveform are shown the instructions (such as fetch, decode ,issue,
commit) being executed by each of the cores (highlighted in yellow core 0 and blue
core 1).

Figure 5.1: Arbitration and Invalidation Logic

As a result the waveform demonstrate correct arbitration by the multiplexer,
alternating between serving Core 0 and Core 1 based on the prepended core ID
in the AXI ID field. The invalidation filter successfully detects simultaneous
accesses to the memory address. This behavior confirms that the dual-core system,
arbitration, and invalidation logic are functioning as intended, with clear visibility
into which core is being served at each moment.

5.2 UVM Analysis

These UVM INFO messages in Figure 5.2 are generated by the environment to
provide a detailed trace of both CVA6 cores instruction execution in a random
time stamp.

These messages collectively show the activity of each core. Specifically demon-
strate that in a specific time stamp one of the cores is executing on of the instruction
such as decoding,issuing, or committing.

In Figure 5.3 messages are generated by the interconnect mechanism(mux)
during simulation to confirm that the AXI ID widths are correctly configured

36

Results and Waveform analysis

Figure 5.2: UVM Infos for Intructions

for both the slave and master interfaces. The first print shows that the MUX is
configured to prepend 1 bit to the slave AXI ID (which is 4 bits), resulting in a
master AXI ID width of 5 bits. This prepended bit is typically used to encode
which core (or slave port) originated the transaction.

Then the slave AXI ID width is 4 bits, the master AXI ID width is 5 bits, and
there are 2 slave ports (cores). The MUX CHECK regarding slave port shows
that the AXI ID width for the Address Write (AW) and Read (R) channels on
the slave side matches the expected value of 4 bits. The MUX CHECK regarding
master port shows that the AXI ID width for the Address Write (AW) and Read
(R) channels on the master side matches the expected value of 5 bits.

In summary: These checks ensure that the mux is correctly handling AXI ID
widths, which is essential for proper transaction routing and response matching in
a multi-core system. The prepended ID allows the mux to distinguish which core
initiated each transaction when communicating with shared memory or downstream
components. And show that both cores integrated in the architecture have their
program counter and instruction.

37

Results and Waveform analysis

Figure 5.3: MUX configuration

5.3 Coverage Results

To validate the functionality and completeness of the modules being implemented
for core-to-memory access control, detailed code coverage analysis was performed
using simulation-based verification. As seen in the Figure 5.4 the coverage of both
cores implemented in the system is different, because on each of them is running a
different test program and each of them have a different Hardware Thread ID to
distinguish them on software execution. The modules we are interested to improve
the coverage are the highlighted ones, which will be explained below.

Figure 5.4: Coverage of the System

Starting with interconnect mechanism which includes arbitration logic and
memory response routing. The arbiter achieved maximum line coverage and
maximum toggle coverage, both of which have important implications for functional
correctness and design robustness.

Line coverage measures whether every line of code was executed during simu-
lation. Achieving maximum line coverage in the round-robin arbiter implies that
all logical paths were activated at least once. Both corner and typical arbitration

38

Results and Waveform analysis

cases were exercised, including:

• Arbitration when both cores request access.

• Arbitration when only one core is active.

• Arbitration when neither core is active.

This indicates that the arbitration state machine and decision logic were fully
stimulated under all relevant input scenarios, leaving no dead code or untested
branches.
Toggle Coverage Toggle coverage examines whether each bit of every signal
switched between 0 and 1 or 1 to 0 during simulation. Maximum toggle coverage
for the round-robin arbiter confirms that:

• All internal state variables, grant signals, and control outputs toggled dynami-
cally during simulation.

• Each bit of these signals changed value at least once, indicating active partici-
pation in the arbitration cycle.

The round-robin turn logic, typically implemented using a toggling pointer or
rotating priority scheme, has fully exercised transitions, such as:

• Alternating access between cores.

• Updating priority pointers or state variables.

• Asserting and de asserting grant lines per arbitration cycle.

This level of coverage demonstrated on the Figures 5.5 and 5.6 as well shows that
the arbiter was tested across all core interaction scenarios, including alternating
and repeated requests, and that it handled switching between cores correctly and
predictably.
Then moving on invalidation logic the results are as shown on Figures 5.7 , 5.8 , 5.9.
Also for this module the coverage includes all three metrics such as line, toggle and
condition. Line and condition metric show a maximum result of coverage on both
cores whether the condition metric shows a partial coverage on this implementation.

While the line and condition metrics of coverage for invalidation logic reached
100%, indicating that all logic paths and Boolean conditions were exercised during
simulation, the toggle coverage remained below 100%. This discrepancy warrants
deeper analysis, especially as it reflects the nature of signal activity within the
module.

39

Results and Waveform analysis

Figure 5.5: Coverage for Arbitration Logic

Figure 5.6: Line Coverage for Arbitration Logic

This mechanism was designed to track and forward write access notifications
between cores, specifically focusing on:

• Only AW channel signals (such as aw_valid and aw_addr) were used.

• Forwarding address and valid signals to the peer core to trigger invalidation
events.

• Other AXI channels — AR (read address), W (write data), R (read data),
and B (write response) — were excluded from this implementation, as they
were irrelevant to the invalidation logic.

• The address bus width is 64 bits, conforming to the system’s AXI specification.

It operates primarily on control signals (e.g., valid, ready), while address signals
only reflect activity based on actual memory accesses.The partial toggle coverage
arises from the fact that the module monitors only the AXI write address channel,
and that only a small subset of the 64-bit address space was used during simulation.

40

Results and Waveform analysis

Figure 5.7: Condition Coverage for Invalidation Logic 1st core

Figure 5.8: Condition Coverage for Invalidation Logic 2nd core

Figure 5.9: Line Coverage for Invalidation Logic

41

Results and Waveform analysis

While the control logic was fully exercised and verified, the full toggle activity
of the address lines was not observed due to the limited variation in test inputs.
This outcome is consistent with the functional scope and objectives of the current
testbench.

Figure 5.10: Toggle Coverage for Invalidation Logic

42

Results and Waveform analysis

5.4 Area Report

This section provides a detailed comparison of the area utilization between the dual
CVA6 core structure, the arbitration and the invalidation mechanism implemented
in the project. The table summarizes the key metrics and areas for all components,
expressed in square micrometers (m2). The total combinational area of 2 CVA6
cores is 466,018.702 m2, whereas in the Arbitration, it is significantly smaller, at
55,86 m2. The noncombinational area follows a similar pattern: 2 CVA6 occupies
256,190.46 m2, while the Arbitration mechanism occupies only 53.223 m2.

When the Arbitration mechanism is integrated with the dual CVA6 core system,
there is an overall increase in area by 0.018%. This suggests that while it adds
functionality, it does a with minimal impact on the overall area. Same result can be
mentioned for the invalidation mechanism regarding inter-core coherence in terms
of AW (access write) channel of AXI, its combinational are is 196,840003 m2 and
it does as well a minimal impact on the overall area even though its functionality
is important in terms of what it is needed to be achieved, it increase the area only
by 0.03 %.

Figure 5.11: Area Report

43

Chapter 6

Conclusion and Future Work

In summary, this work managed to demonstrate the design implementation and
verification of a dual-core CVA6 RISC-V system with shared memory access
featuring components such as interconnect mechanism for arbitration purpose,
and AW-CHANNEL-based cache invalidation mechanism for inter-core coherence.
By conducting simulation-based experiments and analyzing detailed waveforms
and coverage metrics, the system correctly proved the ability to arbitrate memory
requests, detect simultaneous accesses, and maintain correct operation specific
workloads. The use of verification methodology UVM combined with RVFI tracing
logic provided a complete visibility into core interactions and protocol compliance.
Functional and structural code coverage brought a significant help in ensuring and
improving verification completeness allowing detection of uncovered and untested
logic. However, there is always space for improvement, such as avoiding potential
deadlocks in arbitration in case of scaling the environment to 100s of cores. Is valid
to be mentioned that in such scenarios will be needed an enhanced cache coherence
mechanisms. Future work of this project will focus on scaling the architecture to
support and cover more than two cores (ranging from tens to hundreds). Eventually
in this implementation of many cores will be necessary to refine the arbitration and
invalidation logic to properly handle more complex scenarios, and to implement the
integration of complete hardware cache coherence protocol. Additionally, extending
the verification environment to include more stress tests and formal verification
techniques will further contribute to the improved robustness and reliability of the
multi-core system.

44

Bibliography

[1] The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document
Version 20191214-draft. RISC-V Foundation. May 2011 (cit. on pp. i, 7).

[2] Jonathan Balkind, Michael McKeown, Yaosheng Fu, and Tri Nguyen. «Open-
Piton: An Open Source Manycore Research Framework». In: () (cit. on pp. 2,
3).

[3] RISC-V International. The RISC-V Instruction Set Manual: Privileged Architec-
ture, Version 1.12. Section: Memory Model Explanation. Accessed: 2025-06-27.
2021. url: https://five-embeddev.com/riscv-user-isa-manual/Priv-

v1.12/memory.html#sec:memorymodelexplanation (cit. on pp. 7, 8).

[4] Florian Zaruba and Luca Benini. The Cost of Application-Class Processing:
Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V
Core in 22-nm FDSOI Technology. IEEE. July 2019 (cit. on pp. 8–10, 16, 25).

[5] J. L Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach (6th Edition). 2017 (cit. on p. 24).

45

	List of Tables
	List of Figures
	Acronyms
	INTRODUCTION
	Background
	Analysis of Comparable Research
	Modular multi-core methodology

	Motivation
	Objectives
	Literature Review
	RISC-V Architecture
	RISC-V Memory Ordering Specifications
	CVA6 Core
	Key Features

	Multi-Core Approach
	Methodology
	Experimental Setup
	UVM Approach
	UVM Environment
	UVM Testbench Adaptation
	CVA6 Verification ENV

	Coverage Metric
	Performance Evaluation and Validation
	 Functional Validation and Debug/Analysis
	Coverage Analysis and Iterative Optimization

	Design and Implementation
	CVA6 Core Overview
	System Design
	Dual-Core CVA6 Integration
	 Interconnect and Arbitration
	AW-Channel-Based Cache Invalidation for Inter-Core Coherence
	Shared Memory Subsystem
	Debug Infrastructure

	Main Pipeline Stages
	UVM Approach Specifications
	Multi-Core Verification

	 Challenges
	Agent Structure and Components
	Multi-Core Verification with Multiple Agents
	 Sequencer
	Driver
	Monitor
	Coverage Model
	Sequence Items
	 Interfaces
	CVA6 Multi-Core CSR Implementation
	Critical CSRs in Multi-Core

	Results and Waveform analysis
	Waveform analysis
	UVM Analysis
	Coverage Results
	Area Report

	Conclusion and Future Work
	Bibliography

