
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Design of a Trustless Protocol
for Secure Message Relay in Inter-Satellite

Communication

Supervisors
Prof. Danilo Bazzanella
Dr. Andrea Gangemi

Company Tutors
Ing. Luca Simonini
Ing. Alberto Congedi

Candidate
Sara SIMONE

ACADEMIC YEAR 2024/2025

Abstract

In recent years, space communications have undergone a significant transformation,
driven by the rapid growth of satellite constellations and the involvement of multiple
independent operators. This increasing complexity calls for secure and interopera-
ble solutions capable of enabling collaboration between networks that do not share
mutual trust.

This thesis proposes a decentralized protocol for securely relaying encrypted mes-
sages between satellite constellations operated by different entities. The system
addresses the challenge of cross-network message delivery, where the source and
destination are covered by different satellite constellations that do not have direct
communication paths. To bridge this gap, the protocol relies on intermediate nodes
that act as relays and are economically incentivized to forward messages in a verifi-
able and secure manner.

Instead of relying on a central authority, the protocol uses blockchain technology
to coordinate operations in a transparent and tamper-proof way. A smart contract
deployed on the Ethereum network records the message handoff, verifies that delivery
conditions are met, and automatically handles payments through an escrow system.
Intermediate nodes are compensated only if they provide cryptographic proof of
correct forwarding and if delivery to the final recipient is confirmed.

Security and authenticity are guaranteed through the combined use of public-key
encryption, Zero-Knowledge Proofs (ZKPs), and digital signatures. The system has
been implemented using Solidity for smart contract development, MetaMask for key
and signature management, and ZoKrates for generating and verifying cryptographic
proofs. Testing has been conducted on the Sepolia Ethereum testnet.

This work demonstrates how a trustless protocol—where correctness and fairness
are enforced by code rather than institutional trust—can support secure, auditable,
and autonomous message relay in space networks. The proposed approach consti-
tutes a concrete step toward the deployment of decentralized and resilient satellite
communication infrastructures, capable of enabling cooperative scenarios among in-
dependent entities. This thesis project was conducted in collaboration with Thales
Alenia Space.

1

Contents

Abstract 1

1 Introduction 1
1.1 Background and Context . 1
1.2 Objectives . 2

2 State of Art 4
2.1 Satellite communication . 4
2.2 Frequency Spectrum and Bands . 6
2.3 Link Types in Satellite Communications 8
2.4 Security and Privacy . 9
2.5 Blockchain and space applications . 22

3 Architecture and Implementation of the Proposed Protocol 27
3.1 Scenario . 27
3.2 Development Environments and Tools 28
3.3 Technical Implementation . 33

4 Comparative Analysis 48
4.1 Spacecoin . 48
4.2 Other Relevant Architectures . 50

5 Conclusions 52
5.1 Achieved Results . 52
5.2 Limitations and Future Perspectives 52

i

1 Introduction

1.1 Background and Context
In recent years, the satellite communications sector has undergone a profound trans-
formation. The number of low Earth orbit (LEO) satellite constellations has grown
rapidly, driven by large-scale deployments from initiatives such as Starlink, OneWeb,
and Kuiper. This proliferation reflects a structural shift in the industry, raising
concerns over coordination mechanisms [1]. At the same time, the private sec-
tor—comprising technology startups, pay-per-use commercial operators, and spe-
cialized ground segment providers—has taken on an increasingly central role in the
development and operation of space infrastructure. [2]

The advent of the so-called Space Economy 4.0—characterized by increased com-
mercialization, the proliferation of LEO mega-constellations, and the involvement
of multiple independent actors—has significantly increased the complexity of space
infrastructure management. This evolving landscape highlights the need for in-
novative solutions that can ensure interoperability, security, and reliability across
heterogeneous and decentralized systems. [3]

In this context, one of the most critical challenges lies in enabling secure commu-
nication between heterogeneous satellite networks, especially in the absence of pre-
established trust among the operators involved. Constellations owned by different
entities do not necessarily share common protocols or mutual authentication mech-
anisms. This significantly complicates the implementation of a secure, verifiable,
and incentivized data exchange process. In parallel, blockchain and zero-knowledge
proof technologies have proven effective in domains where distributed security is crit-
ical, due to their ability to enable trustworthy interactions among untrusted parties
without the need for a central authority. This paradigm is based on the cryp-
tographic verification of code rather than user reputation, making authorization,
payment, and auditing processes both automated and transparent. In this context,
numerous initiatives are emerging that aim to leverage the potential of blockchain
in the space domain, reflecting the sector’s growing interest in decentralized models
of communication and cooperation.

Projects such as SpaceChain and SpaceCoin adopt different approaches to integrate
blockchain, decentralized identities, and smart contracts into orbital infrastructures,
contributing to the development of a more secure and transparent space ecosystem.
These protocols aim to enhance the management of resources and communications
among independent entities, reflecting a growing trend toward the adoption of cryp-
tographic mechanisms as the foundation of trust, in contrast to traditional central-
ized models.

The work presented in this thesis contributes to this innovative line of research
by proposing a secure relay protocol for the exchange of encrypted messages be-
tween independent satellite constellations. Two ground stations, served by distinct
networks, communicate through intermediate satellites that are both economically
incentivized and cryptographically authenticated. The proposed framework fosters

1

the development of an encrypted, resilient, and interoperable orbital infrastructure.
This thesis has been carried out in collaboration with Thales Alenia Space, con-
tributing to the company’s broader exploration of blockchain-based and trustless
architectures for secure inter-satellite communication.

1.2 Objectives
The objective of this thesis is the design, implementation, and experimental val-
idation of a decentralized and trustless protocol for the secure relay of encrypted
messages between satellite nodes operating in independent contexts. In particular,
the work explores how the integration of blockchain-based technologies, advanced
cryptography, and zero-knowledge proofs can ensure the integrity, confidentiality,
authentication, and traceability of communications—even in the absence of pre-
existing trust among the entities involved. The proposed architecture is based on
a hybrid on-chain/off-chain model, in which critical operations—such as verifica-
tion, record-keeping, and the release of funds to the nodes performing the message
relay—are handled by the blockchain, while the physical transmission of the en-
crypted data occurs through traditional channels between space nodes. The system
is designed to operate in distributed scenarios characterized by the absence of cen-
tralized coordination, the presence of heterogeneous actors, and intermittent network
conditions that are features typical of next-generation satellite infrastructures.

To achieve this goal, the protocol integrates the following key components:

• End-to-end asymmetric encryption, based on an ECIES (Elliptic Curve Inte-
grated Encryption Scheme) model adapted to the Ethereum ecosystem. In
this mechanism, the sender encrypts the message using the recipient’s pub-
lic key, ensuring that only the intended recipient can decrypt it using their
corresponding private key.

Starting from a shared secret generated at session initialization via asymmetric
cryptography, the protocol automatically derives two ephemeral keys: one for
symmetric encryption of the payload and one for data authentication (authen-
ticated encryption). In this way, each message is protected using symmetric
algorithms—more efficient for handling large volumes of data—while the un-
derlying trust relationship between sender and recipient remains anchored to
the initial asymmetric encryption.

On one hand, symmetric encryption ensures high performance and message
integrity; on the other, asymmetric encryption enables a secure handshake
without the need for pre-shared secret keys. The result is an end-to-end
communication channel that provides confidentiality, integrity, authentication,
and forward secrecy, while eliminating reliance on central authorities or prior
agreements. This design allows the entire infrastructure to be immediately
operational in heterogeneous, multi-operator environments.

• Smart Contract Solidity for the logical and economic management of the pro-
tocol. Smart contracts act as impartial “digital arbitrators,” responsible for
recording key events in the message relay process, validating cryptographic
proofs, and managing the conditional release of payments through an escrow
mechanism. In this way, the correct behavior of participants is both incen-

2

tivized and verifiable on-chain, without the need for human intervention.

• Zero-Knowledge Proof(ZKP) are used to attest that the message has been
correctly forwarded within a predefined time window, without revealing any
sensitive details about the operation. The use of zk-SNARKs enables the gen-
eration of compact, efficient, and non-interactive cryptographic proofs, fully
compatible with the Ethereum environment and verifiable within a few mil-
liseconds. This module allows off-chain events to be reliably and transparently
anchored to an on-chain timeline.

• ECDSA digital signature, following the standard used by Ethereum, is em-
ployed to unequivocally confirm that the message has been received by the
intended recipient. The signature ensures sender authentication, message in-
tegrity, and non-repudiation, preventing any node from denying the successful
receipt of the packet.

• Deployment and full testing on Ethereum Sepolia, a public testnet that faith-
fully replicates the behavior of the Ethereum mainnet while using tokens with
no real economic value (sepoliaETH). Interaction with the blockchain was
carried out using well-established tools such as MetaMask (for identity man-
agement and digital signatures), Remix IDE (for smart contract development
and deployment), and ZoKrates (for modeling, generating, and verifying zk-
SNARK proofs).

The resulting system is designed to operate without any pre-existing trust between
the parties, integrating the entire decision-making and verification process into rules
encoded in software and enforced through cryptographic guarantees. Each node
involved in the relay is economically incentivized to behave correctly, as the re-
ward is conditional upon the presentation of formal evidence of successful message
forwarding and final receipt. This approach eliminates the need for off-chain agree-
ments, centralized authorities, or trust-based assumptions, significantly reducing the
vulnerabilities and limitations associated with centralized architectures. Together,
these components form an innovative, scalable, and auditable protocol, designed
to integrate seamlessly into a rapidly evolving space ecosystem—where the reliabil-
ity of communications and cooperation among independent operators are becoming
increasingly critical.

3

2 State of Art

2.1 Satellite communication
Satellite communication refers to the use of artificial satellites to provide connectivity
between ground stations, mobile devices, and other infrastructure, enabling the
transmission of data, voice, and video on a global scale. Satellite communications
constitute a fundamental element of the modern telecommunications landscape, as
they overcome the limitations of terrestrial networks, ensuring coverage even in
remote or hard-to-reach areas. These systems rely on the interaction of three distinct
segments -space, ground, and user (Figure 2.1)- and employ various orbital regimes
to position satellites strategically according to operational requirements. [4]

2.1.1 Architecture
User Segment
The user segment consists of all ground-side components that let end users connect
to the satellite network. It includes user terminals (e.g., VSAT antennas, satellite
modems), local networking equipment (such as routers or switches interfacing with
LAN/WLAN), and the software responsible for managing uplink/downlink com-
munication, encryption, and authentication. These terminals typically handle the
transmission and reception of user data directly with the satellite.
Ground Segment
The ground segment comprises Earth stations, gateways, network operation cen-
ters (NOCs), and telemetry, tracking, and command (TT&C) facilities. Its main
functions include:

• Transmission of control signals and reception of satellite telemetry.

• Monitoring and control of the satellite’s health and subsystems.
Space Segment
The space segment is represented by the satellites themselves and the satellite links
for uplink and downlink. To ensure efficient signal transmission, modulation, cod-
ing, and multiple-access techniques are employed within the space segment. Each
satellite consists of two main components [5]:

• Payload: contains the mission-specific instruments and equipment.

• Platform: encompasses and supports all the essential onboard subsystems,
delivering the payload’s required technical services—power, propulsion, ther-
mal regulation and attitude control.

4

Figure 2.1: Ground Segment, User Segment and Space Segment

2.1.2 Satellite Orbits
Satellites can follow different orbital paths to suit specific operational requirements
and ensure the necessary coverage depending on the mission type. Each path offers
distinct advantages as well as limitations; therefore, choosing the appropriate orbit
is a crucial decision in the design of space activities [6].
Geostationary Orbits (GEO)
Satellites in Geostationary Earth Orbit (GEO) are positioned at approximately
35,786 km above the equator, and their orbital period is synchronized with the
Earth’s rotation. As a result, they appear stationary from the perspective of an
observer on the ground. This apparent immobility makes them ideal for applica-
tions such as direct-to-home television broadcasting, global communications, and
meteorological monitoring.

Advantages: GEO satellites provide extensive coverage of the planet. Each satellite
can observe up to one-third of the Earth’s surface; consequently, only three GEO
satellites are required to cover most of the globe. Their fixed position relative to the
ground makes them well suited to applications that demand a stable, continuously
pointed antenna—such as television services and radio broadcasts.

Disadvantages: Due to their high altitude, communication latency can be signif-
icant, rendering GEO satellites less suitable for latency-sensitive applications like
videoconferencing or real-time internet services. Additionally, they require higher
transmission power and are more expensive to launch into orbit compared to satel-
lites in lower orbital regimes.

5

Medium Earth Orbits (MEO)
Satellites in Medium Earth Orbit (MEO) follow trajectories at altitudes ranging
roughly from 2,000 to 35,786 km with various inclinations relative to the equatorial
plane. MEO is the chosen regime for global navigation satellite systems such as
GPS, Galileo, and GLONASS.

Advantages: MEO represents a favorable trade-off between coverage area and
communication latency. Satellites in this orbit experience lower round-trip delays
(approximately 40–125ms) compared to GEO (≈ 250ms) and—when deployed in a
properly designed constellation—can provide continuous coverage with a moderate
number of spacecraft. These characteristics make MEO especially well suited for
applications like global navigation and Earth monitoring.

Disadvantages: To achieve continuous global coverage with MEO satellites, a
larger number of satellites is required compared to a GEO constellation. Addition-
ally, the maintenance and operational costs for MEO satellites are higher than those
for satellites in Low Earth Orbit (LEO).

Low Earth Orbits (LEO)
A LEO orbit is an orbit that is relatively close to the Earth’s surface. It generally
lies at an altitude below 1000 kilometers, with the lowest orbits starting around
160 kilometers. While this is significantly closer than higher orbital paths, it still
represents a considerable distance from the ground. Satellite constellations in Low
Earth Orbit (LEO) represent a true revolution in space technologies providing rapid
communications thanks to low latency and high transmission speeds. Among the
main constellations are Starlink, OneWeb, and Kuiper.

Advantages: Among the benefits of a lower orbital altitude there are the reduction
in launch costs, the reduced communication latency, and the lower power require-
ments for both transmitting and receiving signals.

Disadvantages: The primary drawback is that each LEO satellite, orbiting at a
lower altitude, covers a smaller area. Consequently, to ensure global coverage, a
large number of satellites is required.

2.2 Frequency Spectrum and Bands
The electromagnetic spectrum encompasses the full range of electromagnetic radia-
tion, from low-frequency radio waves to high-frequency gamma rays.

Satellite communications rely on specific frequency bands within the electromag-
netic spectrum, each allocated for particular applications based on their physical
properties and regulatory constraints. Below is an overview of the most commonly
used bands and their primary purposes: [7]

• VHF-band (30-300 MHz): these signals VHF feature relatively long wave-
lengths compared to higher-frequency bands. This characteristic makes them
particularly well-suited for short-distance space communications, such as those
involving Low Earth Orbit (LEO) missions. VHF also exhibits favorable
propagation behavior, enabling reliable links both between satellites and with

6

ground stations.

• UHF-band (300 MHz- 3GHz): Slightly higher in frequency than VHF, UHF
offers better data capacity and is widely used for communication between
spacecraft and ground infrastructure. Its signals can penetrate the Earth’s at-
mosphere more effectively, enabling dependable transmission over longer dis-
tances with minimal signal loss.

• L-band (1–2 GHz): This band is commonly used for mobile satellite services,
navigation systems, such as GPS and telecommunication such as Iridium. It is
valued for its strong atmospheric penetration and reliability in various weather
conditions.

• S-band (2–4 GHz): Employed in telemetry. tracking and command (TT & C)
weather radars and maritime radar systems. This band is also used by NASA
for communication with crewed spacecraft such as the ISS and previously with
the Space Shuttle. It offers a balance between range and bandwidth efficiency.

• C-band (4–8 GHz): Widely adopted for satellite television and data commu-
nications, especially in regions with heavy rainfall, due to its reduced suscep-
tibility to signal degradation caused by atmospheric moisture. Its robustness
against atmospheric attenuation makes it a reliable option for Earth-to-space
links.

• X-band (8–12 GHz): Primarily reserved for military applications, the X-band
supports advanced radar systems including continuous wave, pulsed, synthetic
aperture, and phased array radars. It is also used for weather monitoring,
maritime and air traffic control, and surveillance.

• Ku-band (12–18 GHz): A popular choice for commercial satellite communica-
tion, especially for direct-to-home television broadcasting and satellite broad-
band internet services. It provides higher data throughput compared to lower
frequency bands but is more affected by adverse weather.

• Ka-band (26–40 GHz): Known for its ability to support high-capacity and
high-resolution applications, this band offers wide bandwidth, making it well-
suited for data-heavy applications such as high-speed Internet services and
high-definition satellite television.

The choice of frequency band is a fundamental design decision, influenced by several
factors including the type of communication link (uplink, downlink, or crosslink),
the mission profile, environmental conditions, and spectrum availability. This de-
cision directly affects the performance and efficiency of the communication system.
In particular, the frequency band determines the achievable data rate and band-
width. Higher frequencies typically enable faster data transmission due to their
shorter wavelengths. Lower frequency bands, such as VHF and UHF, are often used
for low-data-rate communication in Low Earth Orbit (LEO), where simplicity and
robustness are prioritized over throughput. When greater data volumes need to be
transmitted—such as for Earth observation or scientific missions—higher bands like
S-band and X-band are preferred, offering a better balance between capacity and
reliability. Ku-band and X-band are commonly adopted for deep-space or interplan-
etary missions

7

However, the benefits of higher frequencies come with increased sensitivity to at-
mospheric conditions. Electromagnetic waves at these frequencies are more prone
to attenuation caused by absorption and scattering from atmospheric particles and
moisture. Therefore, selecting the most appropriate frequency band involves careful
trade-offs between bandwidth availability, signal robustness, system complexity, and
mission-specific constraints.

2.3 Link Types in Satellite Communications
In satellite communications, there are mainly three types of links Figure 2.2:

• Uplink: the transmission link from the ground segment to the satellite. In
this link, data or signals are sent from a ground station (e.g., gateway, user
terminal) to the satellite in orbit. Uplinks require high transmission power to
compensate for atmospheric attenuation and the large propagation distance.

• Downlink: the reception link from the satellite to Earth, employed to convey
data, signals or multimedia content from orbiting satellites to ground sta-
tions. Given the inherently limited transmission power available on board,
the downlink must be designed with optimal efficiency to ensure high-quality
signal reception.

• Crosslink or Inter-Satellite Link (ISL): the direct connection between two
or more satellites without passing through the ground segment. These links are
essential for networked satellite systems—such as LEO constellations—because
they enable data transfer among orbiting nodes, thereby enhancing coverage,
redundancy, and latency performance.

Figure 2.2: Uplink, Downlink, and Inter-Satellite Links (ISLs)

To establish these connections, two primary technologies are employed: radio-frequency
links(RF) and optical links. [8]

8

• Radiofrequency (RF): RF links operate using electromagnetic waves across
frequency bands such as L (1–2 GHz), C (4–8 GHz), and Ka (26–40 GHz).
They are widely adopted due to their robustness against atmospheric inter-
ference and operational simplicity. The technological maturity of RF trans-
mission is evident in the use of standardized components—such as parabolic
antennas and beamforming systems—and in decades of accumulated experi-
ence within the field.

RF links are employed across all types of satellite communication—uplink,
downlink, and crosslink—ensuring reliable connections even over long dis-
tances, despite the challenges posed by widely spaced or fast-moving orbital
configurations. However, the RF spectrum is both regulated and limited,
making it susceptible to congestion, particularly in heavily trafficked orbital
regions.

• Optical Links: rely on the use of laser beams to transmit data at extremely
high speeds. Although primarily employed for inter-satellite crosslinks, they
can also be used in advanced and experimental scenarios for uplink and down-
link communications, particularly between satellites and high-altitude optical
ground stations.

These links offer higher bandwidth capacity, immunity to electromagnetic in-
terference, and enhanced security due to the narrow focus of the laser beam.
However, they require highly accurate Pointing, Acquisition, and Tracking
(PAT) systems, which are difficult to maintain between satellites in relative
motion. [9]

A key characteristic of optical links is the high directivity of the laser, which
minimizes signal dispersion but makes the system extremely sensitive to even
minor pointing errors. Additionally, optical links are affected by channel
anisotropy, meaning non-uniform signal propagation caused by residual at-
mospheric turbulence or micro-vibrations of the satellite platform.

While this anisotropy complicates the maintenance of a stable connection, it
also enhances physical-layer security, as any potential eavesdropper must be
perfectly aligned with the laser beam in order to decode the signal. To fully
exploit this property, techniques such as precoding and optimized constellation
configurations are employed. [10]

In many systems, a hybrid strategy is adopted, in which RF links are used as
a backup channel whenever optical links become degraded or misaligned.

2.4 Security and Privacy
Security is one of the greatest challenges in the space domain and cryptography
plays a fundamental role in protecting confidentiality, integrity, and authenticity in
space communications. In particular, asymmetric cryptography, digital signatures,
and cryptographic hashes—widely leveraged by blockchain—unequivocally prove the
originator of each message, thereby ensuring integrity and non-repudiation. Finally,
Zero-Knowledge Proofs enable the validation of identities or access thresholds with-
out exposing sensitive data, reducing both computational overhead and the risk of

9

profiling in M2M communications.

2.4.1 Cryptography Fundamentals
Cryptography is the discipline that encompasses methods for transforming data in
order to conceal its informational content. The concept of randomness is funda-
mental to cryptography, since transformed data must appear random so that an
attacker cannot derive any information from it. A cryptographic system is based on
two main operations, as illustrated in Figure 2.3 [11]:

• Encryption: the process of converting a plaintext message P into a ciphertext
C through an encryption algorithm E and a key K.

• Decryption: the inverse operation, which converts a ciphertext C back into
plaintext P by means of a decryption algorithm D and a key K, which may
differ from the one used for encryption.

Figure 2.3: Encryption and Decryption

Cryptographic Algorithm Strength and the Principle of Kerckhoffs
A cryptographic algorithm is considered strong when it is computationally infeasible
for an attacker to decrypt the ciphertext without the correct key. The strength of
such an algorithm depends primarily on the key length, which must strike a balance
between:

• Complexity: encryption and decryption operations should not be excessively
time-consuming;

• Security: a brute-force attack must require a prohibitive amount of time for
an attacker.

The robustness of an algorithm is not achieved by relying on the principle of security
through obscurity (STO), which attempts to enhance or preserve system security by
keeping the underlying algorithms secret. This approach is considered weak because
it depends solely on secrecy: once the algorithm is discovered, the system can be
broken. Although deprecated today, it has been historically used (e.g., in the case
of the Enigma machine).

In contrast, the Kerckhoffs’s principle advocates that the strength of a crypto-
graphic system should not depend on the secrecy of the algorithm itself, but rather
on the secrecy of the keys. According to this principle, algorithms should be publicly
known and subject to scrutiny by the cryptographic research community.

10

Therefore, the security of an algorithm relies on the following conditions being met:

• Keys are kept confidential;

• Keys are managed only by trusted systems;

• Keys have sufficient length.

Under these circumstances, the secrecy of the encryption and decryption algorithms
themselves becomes irrelevant.

2.4.2 Symmetric or Secret-Key Cryptography
In symmetric cryptography, there is a single key—denoted by K—that performs
both encryption and decryption. The key is shared between sender and receiver
through the use of key-exchange algorithms.

K1 = K2 = K,

C = Enc(K,P),

P = Dec(K,C).

Symmetric cryptography requires a low computational load; consequently, it is well-
suited for encrypting large amounts of data. The disadvantage is that each pair
of users must share a different key, so for private communication among N people
N(N − 1)/2 keys are needed.
Stream and Block Ciphers
Symmetric encryption algorithms can be classified into two main categories: stream
ciphers and block ciphers.
Stream Ciphers Algorithms
These algorithms operate on a continuous stream of data, typically one bit or byte
at a time, without dividing the plaintext into blocks. For each bit of plaintext, a
corresponding bit from a pseudorandom keystream is generated and combined using
the XOR operator to produce the ciphertext. The same keystream must be used
during decryption to recover the original data.(Figure 2.4)

The ideal stream cipher is the one-time pad, which uses a key as long as the message
and guarantees perfect secrecy. However, it is impractical due to the length and
management of the key. Real-world stream ciphers rely on synchronized pseudo-
random key generators shared between sender and receiver. Only the seed of the
generator is securely exchanged.

11

Figure 2.4: Stream Cipher

According to Kerckhoffs’s principle, the generator must be public, while the seed
must be secret and unpredictable. Modern stream ciphers include Salsa20 (now
considered outdated) and ChaCha20, a faster and more secure variant. Both support
128 or 256-bit keys and perform 20 rounds of XOR-based mixing to ensure strong
diffusion.

To prevent keystream reuse and ensure semantic security, modern stream ciphers
also require a nonce (number used once) as input. The nonce is a unique, public
value that is combined with the secret seed to generate a distinct keystream for
each encryption operation. While the seed remains fixed for multiple messages,
the nonce must vary every time to prevent the reuse of keystream segments, which
would compromise confidentiality by revealing patterns in the plaintext. In particu-
lar, XSalsa20—an extended version of the Salsa20 cipher—adopts a 192-bit nonce,
offering enhanced security and allowing randomly generated nonces to be safely used
with the same seed without risking collisions. [12]

To ensure message authenticity and integrity, stream ciphers are often combined
with a Message Authentication Code (MAC). A MAC is a short tag generated from
the ciphertext and a shared secret, which allows the recipient to verify that the
message has not been altered. [13]

In this context, Poly1305 is a fast and secure MAC algorithm commonly paired
with stream ciphers like XSalsa20. It computes an authentication tag using a one-
time key derived from the encryption process. This tag ensures that any tampering
with the encrypted message is immediately detectable by the recipient, providing
an essential layer of protection in authenticated encryption schemes. [14]
Block Cipher Algorithms
Block cipher algorithms divide plaintext into fixed-size blocks and use the same key
to transform each block into a ciphertext block of equal size. Modern block ciphers
typically operate on 128-bit blocks. Since the encryption operates on entire blocks,
these algorithms are generally slower than stream ciphers.

A widely used example of block cipher is the Advanced Encryption Standard (AES),

12

standardized by NIST in 2001. AES operates on 128-bit blocks and supports key
sizes of 128, 192, or 256 bits.

When the length of the data to be encrypted does not exactly match the block size
required by the algorithm, specific strategies must be employed to ensure proper
processing. If the data exceeds the block size, operational modes such as ECB
(Electronic Code Book) or CBC (Cipher Block Chaining) are used to divide and
handle the plaintext across multiple blocks. If the data is shorter than the block
size, padding techniques are applied to extend the final block to the required length.

• Electronic Code Book (ECB): ECB is the simplest block cipher mode:
each block is encrypted independently from the others:

Ci = Enc(K,Pi) and Pi = Dec(K,Ci)

(a) ECB encryption (b) ECB decryption

Figure 2.5: Electronic Code Book (ECB) mode

Advantages: errors affect only one block; parallel processing is possible.

Disadvantages: identical plaintext blocks produce identical ciphertexts, re-
vealing patterns. Block order can be altered without detection. Therefore,
ECB offers poor security guarantees and should be avoided.

• Cipher Block Chaining (CBC): CBC improves security by XORing each
plaintext block with the previous ciphertext block before encryption:

Ci = Enc(K,Pi ⊕ Ci−1) with C0 = IV

Figure 2.6: CBC Encryption

Decryption is performed as:

Pi = Dec(K,Ci)⊕ Ci−1

13

Figure 2.7: CBC Decryption

The initialization vector (IV) ensures uniqueness for the first block and must
be public but never reused.

Advantages: avoids swapping and known-plaintext attacks.

Disadvantages: errors propagate to subsequent blocks; encryption is sequential
and not parallelizable.

• Padding: To align data with the block size, padding is applied to the final
block:

D + L = N ×B with 1 ≤ L ≤ B

Even if the plaintext length is an exact multiple of the block size, a full padding
block is added to avoid ambiguity. Common padding schemes include a 1-bit
followed by zeros (e.g., in DES) or a sequence from 1 to L (e.g., in IPsec).

• Galois/Counter Mode (GCM): Galois/Counter Mode (GCM) is a mode
of operation for block cipher algorithms, such as AES, that provides both data
confidentiality and integrity. Unlike modes like ECB or CBC, GCM belongs
to the class of Authenticated Encryption with Associated Data (AEAD), as it
combines encryption with a message authentication mechanism.

Specifically, GCM integrates the CTR (Counter) mode, which encrypts blocks
using a counter, with an authentication code computed over a Galois field,
ensuring that any modifications to the data are detected. It is widely used
in security protocols such as TLS (Transport Layer Security), IPsec (Internet
Protocol Security), and SSH (Secure Shell), due to its efficiency and strong
security guarantees.

2.4.3 Asymmetric or Public-Key Cryptography
In asymmetric cryptography, two different keys—a public key and a private key—are
used to encrypt and decrypt data. [11]

• Private key (Kpri): known only to the owner.

• Public key (Kpub): distributed as widely as possible.

Moreover, the keys have the following characteristics:

• Complementary Roles: neither key is intrinsically labeled “encryption only”
or “decryption only”; each pair of keys is generated together and serves both
functions depending on how it is used.

14

• Reciprocal Functionality: data encrypted with one key can only be de-
crypted with the other key in the same pair.

Therefore, the keys are not random; instead, they share a mathematical relationship.
This means that one key provides information about the other in the pair. To
maintain an acceptable level of security, the key length must be at least 2048 bits.
With public-key cryptography, it is possible to create a confidential message for a
specific receiver and thus guarantee confidentiality without sharing any secret, as is
required in symmetric cryptography. Specifically, the sender encrypts the message
with the receiver’s public key, and the receiver decrypts it using their private key.
The decryption output will be correct only if the two keys belong to the same pair.

RSA and DSA. Among the most widely adopted asymmetric algorithms are RSA
(Rivest–Shamir–Adleman) and DSA (Digital Signature Algorithm), both introduced
in the 1970s and 1990s respectively. These algorithms are based on different hard
mathematical problems.

RSA is built upon the Integer Factorization Problem (IFP): given a number n = pq
that is the product of two large prime numbers p and q, it is computationally infeasi-
ble to recover the original factors p and q. This one-way function enables secure key
generation, encryption, and digital signatures. RSA supports both confidentiality
(by encrypting with the receiver’s public key) and authentication (by signing with
the sender’s private key).

DSA, on the other hand, is based on the Discrete Logarithm Problem (DLP) in finite
fields. Specifically, given a large prime p, a generator g, and an output y = gx mod p,
it is hard to determine the exponent x. DSA is designed exclusively for digital
signature generation and verification, making it unsuitable for encryption. The
security of DSA relies on strong randomness and ephemeral keys, which must be
unique for each signature to avoid vulnerabilities.

Although RSA and DSA remain widely used, they are increasingly being replaced by
elliptic curve variants such as ECDSA (Elliptic Curve Digital Signature Algorithm),
which offer the same level of security with smaller key sizes and improved efficiency.

The most common use cases for asymmetric cryptography are:

• Digital signatures : are one of the most common applications of asymmetric
cryptography used also in the blockchain. In this case, asymmetric cryptog-
raphy is used to encrypt a message’s hash h(M) with the sender’s private key
Kpri. Specifically, the flow is as follows:

1. The signer S computes

H = Enc
(
SKpri , h(M)

)
.

2. Transmit M ∥ H.

3. The verifier V computes

X = Dec
(
SKpub , H

)
.

4. If X = h(M), then the signature is valid.

15

The security properties provided by digital signatures include:

– Integrity : any modification to the data will produce a different digest
than the one received.

– Authentication: only the sender, possessing the private key, can generate
the signature on the message hash.

– Non-repudiation: if the digest verification succeeds, the signer cannot
deny having generated the message.

• Key exchange: One of the fundamental applications of asymmetric cryptogra-
phy is key exchange, i.e., the process of establishing a shared symmetric key
between two parties over an insecure channel. This symmetric key will then
be used for actual encryption and decryption using fast symmetric algorithms
like AES.

A prominent example of this approach is the Diffie–Hellman key exchange
protocol, which allows two parties to derive a common secret without trans-
mitting it directly. This is achieved through mathematical operations that rely
on the Discrete Logarithm Problem, ensuring that an attacker who intercepts
the communication cannot compute the shared key.

2.4.4 Elliptic Curve Cryptography (ECC)
Elliptic Curve Cryptography (ECC) is a class of public-key cryptography based on
the mathematical properties of elliptic curves over finite fields. An elliptic curve is
defined by an equation of the form y2 = x3 + ax+ b, and consists of a set of points
that satisfy this equation. In cryptography, special mathematical rules are used to
perform operations on these points, making it possible to build secure cryptographic
systems. [15]

Its security relies on the hardness of the Elliptic Curve Discrete Logarithm Problem
(ECDLP): given two points P and Q = kP on the curve, it is computationally
infeasible to determine the scalar k.

Compared to traditional systems like RSA or DSA, ECC offers equivalent secu-
rity with significantly smaller key sizes, resulting in improved performance, reduced
memory usage, and lower energy consumption. For example, a 256-bit ECC key
provides comparable security to a 3072-bit RSA key.

ECC is employed in a variety of cryptographic primitives and protocols:

• ECDSA (Elliptic Curve Digital Signature Algorithm) is widely adopted
in blockchain systems like Ethereum and Bitcoin. It enables transaction au-
thentication and data integrity through digital signatures composed of a tuple
(v, r, s) generated from the signer’s private key. [16]

• ECIES (Elliptic Curve Integrated Encryption Scheme) is a hybrid en-
cryption scheme that combines ECC with symmetric encryption and message
authentication to ensure both confidentiality and integrity. [17]

• ECDH (Elliptic Curve Diffie–Hellman) is the elliptic curve variant of
the classic Diffie–Hellman key exchange protocol. It enables two parties to
establish a shared symmetric key over an insecure channel without directly

16

transmitting the key. ECDH leverages the mathematical properties of elliptic
curves, offering the same functionality as traditional DH but with significantly
smaller key sizes and improved computational efficiency. The derived shared
secret can then be used in symmetric encryption schemes, making ECDH a
common component in secure messaging protocols and encrypted communica-
tions. [18]

• In the field of Zero-Knowledge Proofs (ZKPs), elliptic curves—particularly
pairing-friendly curves such as BN254—are fundamental. These curves en-
able efficient zkSNARK verifier implementations (e.g., verifier.sol) as used in
frameworks like ZoKrates, allowing for privacy-preserving on-chain verifica-
tion.

Thanks to their balance of security, efficiency, and scalability, elliptic curves are now
essential in modern cryptographic protocols, especially within blockchain environ-
ments, IoT systems, and privacy-enhancing technologies.

2.4.5 Hashing
Hashing is the process of generating a fixed-size output called hash or digest from
an input of variable size using the mathematical formulas known as hash function.
A well-designed cryptographic hash function must exhibit the following essential
properties: [19]

• Determinism: The same input must always produce the same output. This
guarantees consistency and reliability across different computations and sys-
tems.

• Pre-image resistance: Computing the hash of a given input is fast, however
reversing that process is impossible. The only way to discover an input that
matches a particular hash is to try different candidates until one produces the
desired result.

• Avalanche effect: Inputs that differ by a single bit produce hashes that differ
by half of their bits on average, so small tweaks can’t be used to predictably
guide the hash.

• Collision resistance: Since hashes output a fixed-size value, distinct inputs
can in theory collide, but a well-designed hash makes locating any two that
do so require an astronomically large number of trials—so many that finding
a collision is effectively impossible.

Most hash functions process input data in fixed-size blocks. The message is divided
and, if necessary, padded to align with the block size required by the algorithm.
Each block is processed sequentially, with each round updating an internal state
that influences the final result. The output is typically presented as a hexadecimal
string. Due to the avalanche effect, even a one-bit change in the input completely
alters the output hash, ensuring high sensitivity to input variations. This process is
shown in Figure 2.8.

17

Figure 2.8: General structure of a hash function processing an input message.

Hashing plays a central role in various field of cybersecurity. Its main applications
include [20]:

• Data integrity verification: Hashes are used to ensure that data has not been
altered during transmission or storage. Any change in the original data results
in a different hash, making tampering easily detectable.

• Digital signatures: Hashes enable compact, secure representations of data to
be signed and verified efficiently.

• Password storage: Instead of storing passwords in plaintext, systems store
hashed (and salted) versions, which enhances security against data breaches.

• Blockchain technology: In systems like Bitcoin, hashes link blocks together,
verify transactions, and power consensus mechanisms such as proof-of-work.

• Efficient data retrieval: Hashing is used in hash tables and caching systems
to optimize lookup speed in databases and memory structures.

Over the years, various cryptographic hash functions have been developed to ensure
data integrity, authenticity, and resistance against cryptographic attacks. Among
the earliest widely adopted algorithms is MD5 (Message Digest 5), which produces
a 128-bit hash. Although once popular, MD5 is now considered broken due to its
vulnerability to collision attacks and is unsuitable for secure applications.

To address MD5 ’s limitations, the SHA (Secure Hash Algorithm) family was intro-
duced by the U.S. National Security Agency (NSA) and standardized by NIST(National
Institute of Standards and Technology). The first version, SHA-1, outputs a 160-bit
digest and was long used in digital signatures and certificate verification. However,
due to demonstrated collision vulnerabilities, SHA-1 is now deprecated in favor of
more secure alternatives.

The SHA-2 family represents a significant improvement in terms of cryptographic
strength. It includes a set of algorithms—SHA-224, SHA-256, SHA-384, and SHA-
512—named after the number of bits in their output. [21]

Among them, SHA-256 has become one of the most widely used hash functions in
modern cryptography. It is employed in digital signatures, secure communication

18

protocols (such as TLS/SSL), password hashing schemes, and blockchain technolo-
gies. For instance, Bitcoin relies heavily on SHA-256 for block hashing and proof-
of-work consensus. To diversify cryptographic design, SHA-3 was introduced as an
alternative to SHA-2.

In particular Keccak-256 is a cryptographic hash function that belongs to the Keccak
family, which was selected as the winner of the SHA-3 competition organized by
the NIST. It produces a fixed output of 256 bits (32 bytes) and is known for its
distinctive architecture and strong security properties. [22]

Unlike traditional hash functions, Keccak-256 employs a sponge construction, a
flexible and secure design paradigm that processes the input in two distinct phases:
absorption and squeezing. This mechanism relies on a fixed-size internal state of
1600 bits, which evolves through iterative transformations. The overall process can
be summarized as follows:

• Input Preparation: The input message is padded with a specific delimiter to
ensure it aligns with the sponge’s internal structure and block size.

• State Initialization: A 1600-bit state is initialized to zero.

• Absorption Phase: The padded input is absorbed into the internal state in
successive blocks. Each block influences the state, which is transformed at
every step using a permutation function to ensure diffusion and security.

• Permutation Function: The state undergoes a series of nonlinear transforma-
tions designed to ensure diffusion and resistance to cryptographic attacks.

• Squeezing Phase: Once all input data has been absorbed, the output is ex-
tracted from the state. For Keccak-256, the algorithm outputs the first 256
bits, which constitute the final hash.

Key features of Keccak-256 include:

• Variable-length output: Although Keccak-256 itself produces a 256-bit
hash, the Keccak framework supports outputs of arbitrary lengths, making
it adaptable for a wide range of cryptographic needs.

• High resistance to pre-image, second pre-image, and collision attacks;

• Efficient implementation on both hardware and software, including con-
strained devices;

• Parallel processing capability, due to its sponge structure.

Keccak-256 is widely used in the Ethereum blockchain, where it serves as the pri-
mary hash function for a variety of core operations. It is used to compute unique
identifiers for transactions and blocks, derive smart contract addresses, and ensure
the immutability of stored data. Beyond its role in Ethereum, Keccak-256 is also
employed in digital signature schemes, where it helps guarantee the authenticity and
integrity of messages by hashing the data prior to signature generation and verifica-
tion. Furthermore, like other cryptographic hash functions, Keccak-256 is essential
in contexts where data integrity is critical, such as in secure storage systems and
communication protocols. While SHA-3 does not replace the SHA-2 family, it com-

19

plements it by offering an alternative design paradigm based on sponge construction,
with comparable security guarantees and enhanced structural flexibility.
Key Derivation Functions (KDF)
Hash functions, in addition to ensuring data integrity, can also be employed to
derive cryptographic keys from a human-memorable secret, such as a password or
passphrase. This allows users to work with easy-to-remember inputs rather than
random binary sequences. However, since passwords lack sufficient entropy and
are not truly random, they cannot be used directly as encryption keys without
compromising security. [11]

A Key Derivation Function (KDF) is a mechanism designed to transform a secret
passphrase into one or more cryptographic keys, typically using a hash-based process:

K = KDF(P, S, I)

where:

• K is the derived cryptographic key or key set.

• P is the user-provided password or passphrase.

• S is a salt: a unique random value added to ensure that the derived key is
different for each user or session.

• I is the number of iterations used to slow down the computation and make
brute-force attacks more difficult.

KDFs are essential components in password-based encryption schemes, as they
harden weak secrets against attacks. A widely adopted example is PBKDF2
(Password-Based Key Derivation Function 2), which employs a pseudoran-
dom function such as HMAC-SHA1, combined with a salt of at least 64 bits and
a recommended minimum of 1000 iterations, to produce secure cryptographic keys
from passwords.

2.4.6 Zero-Knowledge Proof
A Zero-Knowledge Proof (ZKP) is a cryptographic method that allows one party
(the prover) to demonstrate to another party (the verifier) that a statement is true
without revealing any information beyond the validity of that statement itself. Usu-
ally the prover and the verifier exchange messages over several rounds to lower the
chances of either side guessing or submitting false data. [23]
Features of ZKP
Zero-knowledge proof build on sophisticated cryptographic techniques and mathe-
matical concept. They use tools like hash functions to create unpredictable chal-
lenges for the verifier, helping to establish trust between prover and verifier without
revealing secrets.
Three properties that charcterized a ZKP are:

• Completeness: if the claim is true, an honest prover can convince the verifier
without difficulty.

• Soundness: If the claim is false, no dishonest prover can fool the verifier.

20

• Zero-knowledge: Neither side learns anything beyond the fact that the state-
ment is true—no extra private information is disclosed.

Types of Zero-Knowledge Proofs
There are two types of zero-knowledge proofs: .

• Interactive ZKP: In this approach, the Prover and Verifier carry out a se-
ries of exchanges. The verifier issues challenges or questions, and the prover
replies in a way that demonstrates the statement’s validity without revealing
any secrets. This ZKP method works best when both sides can stay actively
involved.

• Non-Interactive ZKP: In this form, only one message is sent from the Prover
to the Verifier. The Prover creates the proof using shared public parameters,
and the verifier can confirm its validity on their own, without any further
exchanges. Because it eliminates repeated back-and-forth, NIZKPs are far
more efficient and scalable, making them ideal for large, decentralized systems
like blockchain networks. The two most deployed non-interactive costructions
are [24]:

– zk-SNARKs (Succinct Non-interactive Arguments of Knowledge): zk-
SNARKs are a family of zero-knowledge proofs that allow a prover to
convince a verifier they know a secret witness w satisfying some state-
ment, defined by a circuit C, without revealing any information about
that input. Succinct means the proof size is small and can be veri-
fied in milliseconds, making zk-SNARKs ideal for performance-sensitive
blockchains. The non-interactive nature implies the prover sends one
proof to the verifier, who then checks it without further back-and-forth.
The term Argument (instead of “Proof”) reflects that soundness relies on
certain computational assumptions, and of-Knowledge guarantees no one
can forge a valid proof without actually knowing the witness.

Some zk-SNARK constructions, such as Groth16 require an initial phase
called trusted setup. This setup involves generating a pair of crypto-
graphic keys, one for generating proofs and another for verifyng them,
based on a secret parameter usually denoted as τ . The secrecy of this
parameter is crucial: if τ were ever exposed, an attacker could potentially
referred generate fraudolent proofs that still pass verification. This risk
is commonly referred to as the toxic waste problem. To reduce this risk,
practical implementations of zk-SNARKs that involve a trusted setup
often rely on secure multi-party computation. In this approach, multi-
ple independent participants contribute to the generation of the setup
parameters, ensuring that no single entity has access to the complete se-
cret. At the end of the process, all temporary data are destroyed, and
the resulting parameters can be safely used in the system. [25]

– zk-STARKs (Scalable Transparent Arguments of Knowledge) were intro-
duced as an advanced alternative to zk-SNARKs. One of their main
advantages is that they don’t require a trusted setup phase, making the
system more transparent and easier to deploy. This is possible thanks to
the use of symmetric cryptography and strong hash functions, which are

21

considered more secure against future threats such as quantum attacks.
Unlike zk-SNARKs, where the complexity of the proof increases with
the size of the circuit, zk-STARKs keep the cost nearly constant. This
makes them faster and reduces the amount of data exchanged between
the prover and the verifier. [26]

Use cases
Zero-knowledge proofs are one of the most flexible tools for enhancing security and
privacy in machine-to-machine communication. In particular ZKPs enable:

• Mutual authentication without key exposure: each device proves possession
of its cryptographic credentials without ever transmitting them in the clear,
avoiding replay attacks.

• Message-integrity: proofs accompany every transmission, certifying that the
data haven’t been tampered with en route, all without revealing the underlying
payload.

• On-the-fly secure channel setup: complex parameters (for example, cipher
suites or session keys) can be established dynamically via concise proofs, min-
imizing latency and bandwidth consumption.

2.5 Blockchain and space applications
Blockchain, originally designed to make financial transactions with digital currencies
secure and feasible, is now finding application in the space domain. By combining
blockchain’s low-cost, reliable, and decentralized cryptographic framework with the
high intelligence and autonomous communication capabilities of satellite constella-
tions, it becomes possible to create a powerful tool for managing space-based data.
The following paragraphs introduce the fundamental principles of how blockchain
works and then explain how the characteristics of this technology can be adapted
to satellite communication contexts. [27]

2.5.1 Blockchain Fundamentals
Blockchain is a type of DLT (Distributed Ledger Technology) that consists of blocks
linked to one another by cryptographic hashes, forming a “chain”—hence the name
blockchain, or “chain of blocks.” Each block is composed of:

• Blockheader: contains all metadata, the hash of the previous block, infor-
mation on the block’s difficulty level, the timestamp and the nonce.

• Body: holds the transactions and events that need to be recorded.

In this way, blocks are chronologically linked, and altering even a single byte in
any block would invalidate all subsequent blocks, thereby deterring tampering. Fig-
ure 2.9 shows a generic chain of blocks.

22

Figure 2.9: Chain of blocks

Consensus mechanisms
All nodes in the blockchain maintain a real-time updated copy of the ledger. To
determine who will publish the next block in the chain—and thus which transactions
will be considered valid—a consensus mechanism is employed. This is a procedure by
which the peers in a blockchain network (miners) reach agreement on the network’s
current state. The most common consensus mechanisms are:

• Proof of Work (PoW): In this model, the right to publish a block is granted
to the first node that solves a complex cryptographic puzzle using high-powered
computers. The solution to this puzzle, which can be easily verified by any
node in the network, serves as the proof of the work performed.

• Proof of Stake (PoS): This method is based on a process called “staking.”
In this case, miners lock up a certain amount of cryptocurrency and compete
to be randomly selected to validate a new block and receive a reward.

Thus, having described these two consensus mechanisms, it is evident that PoW
awards the reward to the first miner who solves the puzzle—leading to intense com-
petition and high energy consumption—whereas PoS is far less energy intensive and
allows for broader participation without requiring specialized hardware.

Technical Properties
The robustness of blockchain technology stems from a set of characteristics that
render it highly versatile and applicable across a wide range of domains. The primary
properties include: [28]:

• Decentralization: There is no central authority controlling the ledger; in-
stead, each node in the blockchain network maintains an identical copy. A
new block is appended only through a consensus mechanism.

• Transparency: every block on the blockchain, starting from the genesis block,
remains permanently accessible to all participants, since each node holds the
same copy of all transactions. Consequently, any node can verify the entire
transaction history at any time, ensuring a fully transparent ledger.

• Encryption: trust in the blockchain is founded on cryptographic algorithms
that prove the authenticity of each transaction. No third party is required to
verify the validity of the information.

• Immutability: cryptography is also fundamental in this respect. Each block
on the blockchain contains the hash of the previous block, linking them to-

23

gether to form a chain. If anyone attempted to alter a single byte anywhere
in the shared ledger, the entire sequence of hashes would immediately change,
and the network nodes would detect the tampering. Before a block is added,
the entire network verifies its validity and only accepts it with majority con-
sensus. As a result, once a block is appended, it becomes permanent and
unalterable.

• Programable: blockchain technology enables the implementation of so-called
smart contracts. A smart contract is a collection of code and data (often re-
ferred to as functions and state) that is deployed via cryptographically signed
transactions on the blockchain network. These contracts are executed by all
network nodes, each of which must arrive at the same result. The outcome is
recorded on the ledger and becomes immutable, just like the blocks themselves.
Smart contracts allow for the automation of payments, the management of
multi-party processes, and the secure storage of information using a “if-then”
paradigm. Execution of a smart contract proceeds sequentially: each step can
only be executed after the immediately preceding step has completed success-
fully. Running a smart contract incurs a cost in terms of gas/fees and must
stay within predefined computational limits. Thanks to this programmability,
the blockchain becomes much more than a passive ledger; it evolves into a
system capable of automatically enforcing complex business logic without the
need for a central authority.

• Events in Smart Contracts: a key feature of programmable blockchains,
especially in platforms like Ethereum, is the ability of smart contracts to emit
1events. Events are used to log specific actions or states within the contract’s
execution. While they do not affect the blockchain’s state, they are recorded
in the transaction logs and can be efficiently accessed by off-chain applications.
This mechanism is essential for enabling interaction between smart contracts
and external systems, such as user interfaces or monitoring tools. For example,
a decentralized application (dApp) can listen for a particular event and au-
tomatically update its UI (User Interface) when the event is emitted. Events
thus serve as a bridge between on-chain computations and off-chain responses,
enhancing the responsiveness and usability of blockchain-based systems

Gas and Fees
Executing operations on a programmable blockchain—such as sending transactions
or triggering smart contracts—incurs a computational cost. To prevent abuse and
ensure fair allocation of network resources, many blockchains adopt a pricing system
based on virtual computation units, often referred to as gas. [29] Gas measures the
amount of computational effort required to complete an operation.

Each user requesting an operation on the network must specify how much gas they
are willing to consume, and at what price per unit. The total cost, known as the
fee, is paid in the network’s native cryptocurrency (for example, ether on Ethereum)
and serves as compensation for the validators who execute and record the operation.

For example, on the Ethereum network, the actual cost of a transaction is calculated
as:

24

Gas fee = Gas used × (Base fee + Priority fee)

where:

• the base fee is dynamically determined by the protocol based on network con-
gestion;

• the priority fee (or tip) is an optional incentive for validators;

• the gas limit represents the maximum amount of gas the user is willing to
spend.

A transaction will only be accepted if the sum of the base fee and the priority fee
is less than or equal to the maximum cap set by the user (e.g., maxFeePerGas in
Ethereum). Any unused portion is typically refunded.

This system is essential for the security and efficiency of the network, as it pre-
vents infinite or malicious code execution, discourages spam, and enables dynamic
regulation of network traffic.

2.5.2 Blockchain in space
In recent years, the space industry has undergone significant growth: companies
and nations now compete for lunar missions, space programs, and orbital expan-
sions. The emergence of commercial LEO constellations, private lunar missions, and
reusable launch platforms has ushered the sector into its Space 4.0 phase—an ecosys-
tem that includes not only large corporations but also agencies, start-ups, investors,
and digital service providers operating on a global scale. [30] This “democratization”
of space introduces a need to protect an increasing number of assets from poten-
tial cyberattacks, certify payments in real time, and coordinate transactions among
parties that often lack preexisting trust. In such a context, blockchain—with its
smart contracts, decentralized consensus, and immutable ledger—provides a robust
solution to these challenges, adding a “by design” layer of reliability to emerging
business models. The following paragraphs examine the four primary advantages
that blockchain offers to space activities. [31]
Trust
Collaboration between agencies, start-ups, and investors requires a ledger that any-
one can consult at any time without relying on a central authority. In this regard,
blockchain combines transparency and immutability to establish trust among par-
ties that do not necessarily trust one another: every transaction remains visible and
accessible to anyone at any time. This feature is critical for international collab-
orations and partnerships in the space sector, as it reduces the risk of disputes or
mistrust.
Data Security and Integrity
One of the most critical concerns in the space sector is ensuring that data remains
intact and unaltered during transmission, reducing the risk of tampering and inter-
ception. Blockchain provides a secure means of transmitting data between space
assets and ground stations. By employing cryptographic hashes, each block in the
blockchain is linked to its predecessor, forming an unbroken and secure chain. Even
the slightest modification to the ledger is detected, as it will no longer match the

25

recorded hash, and the network immediately discards the corrupted copy.
Resilience
Resilience and availability are two characteristics of blockchain that enable this
technology to continue operating even when some nodes disconnect for a period or
cease functioning. In the space ecosystem, these traits offer advantages from multiple
perspectives. There is no longer a single point of failure: even if a node stops working
or a local malfunction occurs, the system continues to operate, ensuring continuity
of operations that is not present in centralized systems. When nodes reconnect, they
are able to re-synchronize autonomously without the assistance of a third party.
Operational Autonomy
Thanks to the use of smart contracts, blockchain introduces efficiency by automating
payments, escrow, and agreements among different parties. It is possible to imple-
ment specific operational logics—such as a pay-per-use model—where the contract
automatically releases funds as soon as the predefined condition is satisfied; other-
wise, it applies a penalty or remains pending. This fosters the emergence of new
cooperative business models, for example, automatically “leasing” space resources
to multiple users simultaneously, regulating payments and priorities without human
intervention and strengthening trust among collaborators.

2.5.3 Technological Challenges
Despite its rapid evolution, blockchain remains an emerging and, in certain respects,
still immature technology; consequently, it presents challenges and limitations that
must be addressed. Below are some of the constraints associated with this technol-
ogy: [32]

• Energy Consumption: The use of consensus algorithms such as Proof of
Work within blockchains like Bitcoin leads to very high energy consump-
tion—approximately 125 TWh per year—resulting in a significant carbon foot-
print.

• Privacy and security: Although blockchain is theoretically robust and se-
cure, privacy-related vulnerabilities still persist: for example, 51 % attacks,
double-spending, and risks associated with publishing personal data that could
be exploited by malicious actors.

• Scalability, Latency, and Throughput: Blockchain also operates predom-
inantly in the technology and cloud storage sector. One of the limitations of
the technology is scalability in relation to latency and throughput, since all
transactions must be validated and stored. For example, Bitcoin could initially
process only 7 transactions per second, resulting in long transaction times and
high costs when the network is congested. Although there have been signifi-
cant improvements in recent years, it remains a limitation because the goal is
to ensure smooth transaction processing.

• Regulatory Challenges: The decentralization of blockchain can make it
difficult to enforce laws that are often inadequate or unenforceable. This may
lead to conflicts with local and global regulations, especially in the financial
sector.

26

3 Architecture and Implementation
of the Proposed Protocol

3.1 Scenario
In this chapter, we present a blockchain-based secure relay architecture that enables
two ground stations, A and B, to exchange messages reliably via two satellite con-
stellations—Alpha and Beta—operated by independent entities with no prior trust
agreements.

3.1.1 Main Actors
Ground Station A

• Generates the message M to be transmitted and encrypts it.

• Is intermittently covered by one or more nodes of the Alpha constellation (e.g.,
LEO or MEO satellites).

• Has no direct visibility of any node in the Beta constellation, and therefore
cannot deliver the packet to B without intermediaries.

Alpha Node (Alpha Constellation)

• May be a Low Earth Orbit (LEO) or Medium Earth Orbit (MEO) satellite, or
any mobile platform that passes over A with short contact windows but low
latency.

• Receives and temporarily stores the encrypted message from A, and forwards
it via the blockchain as soon as it comes into view of a node in the Beta
constellation.

Beta Node (Beta Constellation)

• May be a Geostationary (GEO) satellite, a MEO satellite, or another node
with continuous coverage over the region where B is located.

• Has no direct visibility of A, but receives the message as soon as it comes into
line of sight with Alpha. As the intermediary node, Beta then forwards the
message to B once it reappears.

• Is financially incentivized to forward the message to B, as compensation is
granted only upon successful completion of the operation. The node sends
the message to B upon reentry into coverage (in the case of LEO/MEO), or
immediately if continuous coverage is available (as with GEO satellites). Upon
successful delivery, it generates a zero-knowledge proof (ZKP) and obtains a
digital signature from B. The payment is automatically released by the smart
contract only if the proof is valid and the signature is correctly verified.

Ground Station B

• Final recipient of the message M .

27

• Lies permanently within the coverage area of one or more nodes of the Beta
constellation, receiving data without intermittent visibility windows (in the
case of GEO) or with predictable windows (in the case of secondary MEO/LEO
nodes).

• Confirms the reception of the message.

The main objectives of the proposed protocol are:

• Guaranteed delivery and timeliness: ensuring that a message originating from
A reaches B even when the destination ground station is not immediately
reachable by the same originating constellation. This is achieved by leveraging
relaying through multiple constellations to minimize waiting times.

• Trustless cooperation: enabling two constellations—potentially operated by
independent entities with no prior trust relationships—to collaborate securely
and with proper incentives through the use of blockchain technology. Each
phase of the relay process is recorded on a public and immutable ledger, en-
suring transparency and minimizing the need for offline legal agreements or
pre-established trust.

3.1.2 Role of the Blockchain
The blockchain serves as the foundational framework for immutably storing the
hash of the encrypted message that A intends to send to B, and for managing an
escrow mechanism in ETH. This mechanism is designed to incentivize the Beta
constellation to correctly forward the data to B and to generate a zero-knowledge
proof attesting to the successful relay. Through this system, ground stations are
able to communicate securely, regardless of their geographical separation.

The proposed solution ensures an optimal trade-off among the following aspects:

• Confidentiality of sensitive information, achieved through asymmetric encryp-
tion and zero-knowledge proofs.

• Integrity and authentication, ensured via the use of cryptographic hashes and
digital signatures.

• Non-repudiation, guaranteed by the application of digital signatures.

• Economic escrow mechanism, which locks the reward intended for Beta until
the data relay is successfully completed, leveraging the trustless nature of the
blockchain.

3.2 Development Environments and Tools
To implement the protocol, a suite of software tools was selected based on their in-
tegration with Zero-Knowledge Proofs, smart contract development, and interaction
with the Ethereum Sepolia testnet.
Remix IDE
For the development of the Solidity smart contract MessageRelayWithZkpAndSigna-
ture, the Remix IDE (Integrated Development Environment) was used. Remix IDE
is an open-source application available both as a web-based and desktop tool. This
environment is specifically designed to facilitate the creation, testing, debugging,

28

and deployment of smart contracts written in Solidity on various blockchain plat-
forms such as Ethereum. Remix stands out for its integrated compiler and native
debugger, which simplify the smart contract development process. Thanks to its
modular architecture and extensive plugin system, it allows users to customize the
development environment according to their specific needs. The Remix interface
is intuitive and user-friendly, aiming to streamline the workflow for smart contract
creation. [33]
Zokrates and Docker
In this protocol, ZoKrates—a widely used open-source toolbox—was adopted to
support the entire process of Zero-Knowledge Proof (ZKP) generation, from defin-
ing the off-chain circuit to generating the verifier.sol contract and performing the
on-chain cryptographic proof verification. ZoKrates provides a comprehensive envi-
ronment that includes a domain-specific language (DSL), a compiler, a zkSNARK
proof generator, and a Solidity smart contract generator for blockchain verifica-
tion. [34]

The framework is designed to simplify the inherent complexity of Zero-Knowledge
Proofs by offering high-level tools that allow developers to express private compu-
tations in a human-readable form, which are then transformed into circuits com-
patible with the Groth16 protocol. This protocol enables the creation of short,
non-interactive proofs with constant verification costs, leveraging elliptic curve cryp-
tography—specifically the BN128 curve. [35]

To ensure portability and isolation from the host operating system, all ZoKrates op-
erations were performed inside a Docker container. Docker is an open-source plat-
form designed for the rapid development, testing, and deployment of applications.
It allows developers to separate applications from the underlying infrastructure,
facilitating consistent and reproducible environments.

The core component of Docker is the container, a lightweight and isolated unit
that includes everything needed to run an application—such as code, libraries, and
dependencies.

Thanks to the isolation provided by containers, it is possible to run multiple ap-
plications simultaneously on the same host without conflicts. Containers guarantee
that the software behaves consistently across different systems, regardless of host
configurations. [36]

In this project, Docker was used to run the ZoKrates environment in a repro-
ducible way, avoiding manual setup and ensuring compatibility across platforms. All
ZoKrates commands—such as circuit compilation, witness computation, and proof
generation—were executed inside a container based on the official zokrates/zokrates
image. [37]

To make the local project directory accessible within the container, a volume mount
was used, allowing files generated inside the container (e.g., proof.json, keys, veri-
fier.sol) to be stored persistently on the host system.

The Docker container was launched with the following command:

29

docker run --rm -it -v C:\path\to\folder:/home/zokrates/workspace

-w /home/zokrates/workspace zokrates/zokrates:latest bash

The entire operational workflow within ZoKrates consists of the following steps
(Figure 3.1):

• Compilation of the circuit written in the ZoKrates language (proof.zok)

zokrates compile -i proof.zok

The proof.zok file, which contains the computation logic, is translated into
flattened code compatible with the R1CS (Rank-1 Constraint System) for-
mat—a standard representation for building zkSNARK circuits.

• Trusted setup

zokrates setup

In this phase, the initial setup required by the Groth16 protocol is performed,
resulting in the generation of two essential keys: the proving key, used to gen-
erate the proof, and the verification key, which is embedded into the Solidity
contract for on-chain verification.

• Witness computation

zokrates compute-witness -a <input1> <input2> ...
<inputN>

The witness generator executes the .zok circuit using the provided private and
public inputs, producing a witness. This assignment represents a proof of the
correct execution of the program and serves as the basis for generating the
zero-knowledge proof.

• Generation of the zkSNARK proof

zokrates generate-proof

Using the proving key and the witness, a proof is generated, consisting of the
values a, b, and c, which can subsequently be verified on the blockchain.

• Exporting the verifier.sol file

zokrates export-verifier

With this command, the verifier.sol contract is automatically generated. It
contains the verifyTx function, which uses elliptic curve pairings to verify
the correctness of the received proof.

30

Figure 3.1: Zokrates process

In the implemented protocol, the proof is provided to the MessageRelayWithZk-
pAndSignature smart contract through the proveAndRelease function, which inter-
nally calls the verifyTx function. ZoKrates thus enables the integration of confi-
dentiality, verifiability, and scalability.
Sepolia and Metamask
For the development and validation of the proposed protocol, the Sepolia net-
work—one of Ethereum’s official testnets—was used in combination with the Meta-
Mask wallet. Sepolia accurately simulates the behavior of the Ethereum mainnet
in terms of smart contract execution, state management, and block structure, while
relying on test tokens (SepoliaETH) that carry no economic value. The network
adopts a Proof-of-Stake consensus mechanism, managed by a limited set of valida-
tors, which ensures a stable and controlled environment—ideal for development and
testing activities. This approach enabled the deployment of complex smart contracts
in a risk-free economic context, while still maintaining technical realism. SepoliaETH
tokens can be obtained for free through faucets, which dispense small amounts of
tokens directly to the user’s MetaMask wallet. An example is the faucet provided
by Google, shown in Figure 3.2, which allows users to receive 0.05 SepoliaETH in
their wallet by simply entering their Ethereum address. [38]

31

Figure 3.2: Sepolia faucet

MetaMask is one of the most widely used wallets in the Ethereum ecosystem,
available as a browser extension (for Chrome, Firefox, Brave, and Edge) and as
a mobile application. [39] In addition to managing private keys and performing
cryptographic signatures, MetaMask acts as an Ethereum provider by injecting the
window.ethereum object into the browser context. This object serves as the pri-
mary interface for interaction between a decentralized application (dApp) and the
blockchain, and it implements the JSON-RPC communication protocol. Through
window.ethereum, a dApp can request access to Ethereum accounts, sign transac-
tions and messages, and communicate with remote nodes. DApps typically rely
on libraries like ethers.js to build and send JSON-RPC calls through MetaMask’s
injected provider; alternatively, developers can skip those abstractions and interact
directly with the window.ethereum API to issue raw JSON-RPC requests. These
requests are handled by MetaMask and forwarded to an Ethereum node, often via
a remote provider like Infura, which serves as an access point to the blockchain net-
work. As illustrated in Figura 3.3, the flow begins with the WebApp running in the
browser, which leverages the injected window.ethereum object to securely interact
with the blockchain, without the need to run a local node. [40]

Figure 3.3: dApp-to-blockchain connection

3.2.1 Use cases
Below are two example use cases demonstrating how the secure relay can be applied:

32

• LEO-GEO Hybrid Architecture: In a hybrid satellite architecture, LEO satel-
lites provide low-latency and temporary coverage over specific regions of the
globe, while GEO satellites provide continuous service over large areas while
maintaining a fixed position relative to the Earth’s surface. In the Figure 3.4
the footprint of Alpha (satellite in LEO orbit) is highlighted in red, while the
coverage of Beta (GEO satellite) is shown in blue. Ground station A, located
within Alpha’s footprint, can only transmit data during direct visibility win-
dows with the LEO satellite. However, the same station results permanently
outside the coverage of the GEO Beta satellite, which has no direct visibility
on it. The receiving ground station B, on the other hand, is permanently lo-
cated within the coverage area of Beta. However, it cannot receive any data
until the relay is activated. When Alpha simultaneously establishes line-of-
sight with both A and Beta, the secure message routing is performed through
the following chain:

A → Alpha → Beta → B

The relay protocol requires each step to be tracked on-chain by committing a
cryptographic hash to the blockchain, ensuring immutability, time verifiability,
and economic incentives for relay nodes, even in multi-operator or trustless
contexts.

Figure 3.4: Communication architecture in LEO-GEO scenario

• IoT in remote areas: A low-power sensor A uses a LEO satellite named Alpha
to send critical data to a gateway B, which is located in a region covered by
a different satellite constellation called Beta. Since A has no direct visibility
to the nodes of Beta, relaying through Alpha speeds up the transmission and,
thanks to blockchain technology, ensures data integrity and provides economic
incentives for the nodes involved in the relay.

3.3 Technical Implementation
The previous sections have outlined the high-level functioning of the secure relay
protocol. This section delves into the details of its implementation: it will analyze
the roles of each on-chain and off-chain actors, the structure and internal logic of the
smart contract, the pipeline for generating Zero-Knowledge Proofs using ZoKrates

33

(executed within Docker container), and the use of MetaMask and Remix for off-
chain signing and contract deployment.

3.3.1 Off-Chain Flow
The off-chain flow represents the portion of the protocol that remains invisible to
the blockchain, yet is essential to ensure the correct transmission of the encrypted
message among the actors involved: A, Alpha, Beta, and finally B. This flow en-
compasses operations such as encryption, data transmission, cryptographic proof
generation, and digital signing. The following subsections describe each phase in
detail.
Message Encryption (A)
Ground station A serves as the origin point of the message M , which is intended
for ground station B. Since the content of the message may be sensitive, it is es-
sential to employ an encryption mechanism that ensures end-to-end confidentiality,
guaranteeing that only the legitimate recipient (B) can access its contents.

To achieve this goal, A employs a hybrid encryption scheme known as ECIES (El-
liptic Curve Integrated Encryption Scheme), which combines the security of asym-
metric cryptography with the efficiency of symmetric encryption. ECIES is not a
single cryptographic algorithm, but rather a framework that can be implemented
using various elliptic curves, key derivation functions, and encryption algorithms.
For instance, it is possible to use curves such as secp256k1 for public key compu-
tation, in combination with key derivation functions like PBKDF2 and symmetric
ciphers such as AES-GCM or ChaCha20-Poly1305. [41]

In all cases, the underlying idea remains the same and can be summarized as follows:

• The input to the ECIES encryption function consists of the recipient’s public
key and a plaintext message.

• The output is a packet containing: the sender’s ephemeral public key, the
encrypted message, the parameters used for symmetric encryption, and an
authentication tag (MAC).

ECIES_encrypt(pubKey, plaintextMessage) ⇒ {cipherTextPublicKey,
encryptedMessage, authTag}

The implementation adopted in this project, however, is based on:

• X25519 key exchange algorithm, an efficient and secure variant of the elliptic-
curve Diffie-Hellman protocol, is used to compute a shared secret between the
sender and the recipient.

• A key derivation function (KDF), based on HKDF-SHA256, which generates
two separate keys: one for message encryption and one for authentication
(MAC).

• The authenticated symmetric cipher XSalsa20-Poly1305, which simultane-
ously ensures the confidentiality, integrity, and authenticity of the encrypted
message.

In the application context ground station B retrieved its own encryption public
key using the standard eth_getEncryptionPublicKey method exposed by MetaMask.

34

This encryption key, used exclusively for the ECIES-based encryption process, is not
the same as the public key associated with B’s on-chain address. This distinction
reflects how, in practice, Ethereum accounts can derive separate keys for encryption
and signing operations, ensuring the separation of confidentiality and authentication
mechanisms.

Although this interaction is specific to the development environment, it effectively
simulates a real-world scenario in which B generates its public key and transmits
it to A through a secure out-of-band channel. Once obtained, A uses this key to
encrypt a message intended for B, thus initiating the secure relay process.

The encryption process was implemented in a custom JavaScript dApp named en-
cryptandsign_dapp, developed specifically for this thesis. The core logic is encapsu-
lated in the component EncryptAndSign.js, as shown in Figure 3.5. The full source
code is publicly available on GitHub at https://github.com/SaraSim98/
encryptandsign_dapp.

Figure 3.5: Core encryption logic in EncryptAndSign.js

This call returns an encrypted object containing:

• The ephemeral public key generated by A (ephemPublicKey)

• The cryptographic nonce used for encryption (nonce)

• The encrypted message (ciphertext), encoded in Base64

• The authentication tag (included within the ciphertext)

Internally, the encrypt() function performs the following steps:

1. Generation of an ephemeral key pair by A

2. Computation of the shared secret using ECDH (Elliptic Curve Diffie-Hellman)
between A’s ephemeral key and B’s public key.

3. Application of the KDF to the shared secret to derive the symmetric key kENC

e kMAC

4. Encryption of the message M using XSalsa20 and computation of the authen-
tication tag with Poly1305

The final output is a packet structured according to the following format:

ECIES_encrypt(pubKey, M) ⇒ {ephemPublicKey, ciphertext, nonce, version}

All these elements are necessary for the recipient B to reconstruct the same symmet-
ric key and correctly decrypt the message. Once encrypted, the ciphertext is ready

35

https://github.com/SaraSim98/encryptandsign_dapp
https://github.com/SaraSim98/encryptandsign_dapp

to be transmitted to a node in the Alpha constellation for forwarding to ground
station B.
Transmission Channel from A to Alpha
The transmission of the ciphertext from ground station A to the Alpha constellation
primarily occurs through radio frequency (RF) links, which remain the most estab-
lished means of communication in satellite systems. The choice of frequency band
depends on the constellation’s architecture and regulatory constraints. In particu-
lar, the UHF and S bands are commonly used for communication with LEO/MEO
satellites, due to their strong atmospheric penetration and reliable performance even
under adverse weather conditions.

When higher bandwidth is required, higher-frequency bands such as X or Ka can be
employed, offering greater throughput at the cost of increased sensitivity to atmo-
spheric attenuation. Looking forward, in more technologically advanced contexts,
optical links may also be adopted, as they provide very high transmission capac-
ity, albeit under more stringent operational conditions. It is therefore clear that
the choice of frequency band directly affects latency, throughput, and transmission
stability.
Alpha Node’s Role: Forwarding and Hash Registration
Node Alpha is responsible for the initial relay step in the forwarding process. Upon
receiving the ciphertext from A, it forwards it to Beta and computes its hash us-
ing the Keccak-256 function, selected for its efficiency and compatibility with the
Ethereum ecosystem. The resulting hash, obtained as

rawHash = keccak256 (ciphertext)

will then be recorded on the blockchain, serving as immutable proof of the successful
forwarding. The hash computation is performed in EncryptAndSign.js.
Transmission Channel from Alpha to Beta
Since both Alpha and Beta are satellites, the transmission occurs through inter-
satellite links (ISLs). This type of connection enables the implementation of relay
functionality directly in space, enhancing coverage and reducing the overall system
latency. The proposed protocol is agnostic to the specific link technology used and
can operate with:

• RF-based ISLs: Suitable for both LEO–LEO and LEO–GEO configurations,
especially in scenarios where greater robustness or ease of integration is re-
quired.

• Optical (laser) ISLs: applicable in the same configurations, they offer advan-
tages in terms of bandwidth and latency but require high-precision alignment
between terminals and careful management of orbital dynamics—particularly
in high relative velocity LEO–LEO scenarios.

The choice of technology therefore depends on the type of orbital architecture and
the operational requirements, but the protocol remains compatible with both ap-
proaches.

36

Beta’s Role: Zero-Knowledge Proof Generation and Message Relay
After receiving the encrypted message from Alpha, the Beta node forwards it to
ground station B. To enable formal verification of the relay operation, in compliance
with the timing rules defined by the protocol, Beta generates a zero-knowledge proof
(ZKP). This cryptographic proof allows the validity of a statement to be confirmed
without revealing any of its confidential elements.

The proof is constructed from a zkSNARK circuit, shown in Figure 3.6, which takes
as input:

• Private values, accessible only to node Beta:

– timestamp: a time marker representing the moment at which the for-
warding took place;

– method : an identifier specifying the channel or protocol used for the
transmission.

• Public values, visible also to the verifier:

– rawHash: the hash of the encrypted message, computed by Alpha and
already recorded on the blockchain, associated with Beta;

– blockTimestamp: the timestamp of the Ethereum block containing the
latest transaction sent by Alpha;

– delta: the maximum allowed time tolerance, which defines the window
within which the message relay must occur.

Figure 3.6: zkSNARK circuit

37

In this protocol, the parameter timestamp represents a private value selected by
Beta, indicating the moment the node claims to have forwarded the message to B.
The Zero-Knowledge Proof generated by Beta enforces that this private timestamp
falls within a valid time window relative to the blockTimestamp, ensuring that the
declared relay operation is consistent with what has already been recorded on the
blockchain. The blockTimestamp refers to the timestamp of the Ethereum block
containing the registerRawHash transaction submitted by Alpha, in which the mes-
sage’s rawHash is recorded and linked to Beta’s address.

This registration occurs through the emission of a specific smart contract event
named RawRegistered, which is triggered during the execution of the registerRawHash
function. When Alpha submits a message hash, the contract emits a RawRegistered
event, which includes three indexed parameters: the rawHashFull (i.e., the hash
of the encrypted message), the address of the Beta node, and the escrow amount
committed for the relay.

These events are not stored in contract storage but are appended to the blockchain’s
logs, making them publicly accessible and efficiently retrievable by any off-chain
client, such as decentralized applications or verification tools. In this protocol, the
event allows an off-chain application to retrieve the timestamp of the block in which
the registration occurred.

This structure allows for the cryptographically reliable simulation of a temporal con-
straint on the relay action. The system thus ensures temporal consistency between
off-chain declared events and on-chain timestamps, while preserving the confiden-
tiality of operational details.

In practice, the BlockTimestamp is retrieved off-chain by the custom JavaScript
component BlockTimestamp.js, which is part of the dedicated web application times-
tamp_dapp developed for this thesis. This module queries the RawRegistered event
and extracts the associated timestamp by accessing the corresponding block through
the getBlock method of ethers.js (Figure 3.7). The full source code is publicly avail-
able on GitHub at: https://github.com/SaraSim98/timestamp_dapp.

This mechanism enables the system to bind the validity of the relay to a specific
and verifiable blockchain state.

Figure 3.7: Off-chain retrieval of block timestamp in BlockTimestamp.js

In the circuit, the Poseidon hash function is applied to the array [rawHash, times-
tamp, method]. The following constraints are applied:

1. The value of timestamp must fall within the interval (blockTimestamp, block-
Timestamp + delta), ensuring that the relay operation occurred after the hash
was recorded on the blockchain and within an acceptable time window, as re-
quired by the protocol.

2. The result of the Poseidon hash must match the value zkpHash, a public com-
mitment published by Beta.

38

https://github.com/SaraSim98/timestamp_dapp

This scheme enables Beta to prove knowledge of a pair of values (timestamp, method)
which, when combined with the public message hash rawHash, produce exactly the
Poseidon commitment zkpHash.

The proof certifies the consistency between private data and public constraints, pro-
viding a cryptographic guarantee of the node’s correct behavior without compromis-
ing operational confidentiality. In addition to the ZKP, Beta also retains a digital
signature provided by B as confirmation of message receipt. Both the ZKP and
the signature will later be used to securely and transparently validate the successful
relay and reception of the message directly on-chain.
Decryption and Signature (B)
The transmission of the ciphertext from node Beta to ground station B occurs via a
direct satellite-to-ground link. The technological considerations regarding the trans-
mission medium are similar to those discussed for ground-to-satellite links: both
optical and radio-frequency links can be employed, depending on the architecture’s
specifications and the desired performance. Ground station B receives the ciphertext
and decrypts it using its private key, thus obtaining the plaintext:

plaintext = Decrypt(ciphertext , privKeyB)

Then, it recalculates the hash of the plaintext using the same function previously
employed by Alpha, obtaining:

rawHash = keccak256 (ciphertext)

To prove the successful reception of the message, and to ensure the authenticity
of the sender, the integrity of the data, and non-repudiation, B digitally signs the
freshly computed hash using their private key. The signature is generated using
the ECDSA (Elliptic Curve Digital Signature Algorithm) standard, based on the
secp256k1 elliptic curve—commonly used in Ethereum.

In the context of this thesis, the signature is computed through the custom JavaScript
dApp encryptandsign_dapp, previously introduced in the context of the encryption
process. The signing logic is encapsulated in the EncryptAndSign.js component,
which also handles the encryption functionality described earlier. The process is
handled programmatically using JavaScript, as shown in the following snippet:

Figure 3.8: ECDSA signature generation via MetaMask in EncryptAndSign.js.

Here, hashHex represents the hexadecimal encoding of the Keccak-256 hash of the
ciphertext. The signer object corresponds to ground station B’s on-chain identity

39

and is obtained via MetaMask. The method signMessage produces a flat signature
flatSig, which is then parsed into a structured object sigObj using the Ethereum
library. This object exposes the canonical ECDSA triplet:

• r: represents the x-coordinate of a point on the elliptic curve, derived from a
random number k selected during the signature generation process.

• s: binds the message hash to the signer’s private key in a non-reversible man-
ner.

• v: an auxiliary value that allows for the unique determination of the public key
associated with the signer, useful for recovering the corresponding Ethereum
address.

This tuple is sent to Beta, which will use these values to validate the signature
on-chain and, consequently, to confirm the successful receipt of the message by B.

3.3.2 On-Chain Flow
The on-chain flow constitutes the public, immutable, and transparent component
of the protocol, where all cryptographic operations and interactions between the
various nodes are permanently recorded on the blockchain. This phase ensures the
traceability of the relay, the formal validation of the proofs generated off-chain, and
the secure distribution of economic incentives. All on-chain logic is implemented
within the smart contract MessageRelayWithZkpAndSignature, written in Solidity
and deployed, in the context of this project, on the Ethereum Sepolia testnet. The
complete source code of the contract, including the contract verifier.sol generated via
ZoKrates, is publicly available at https://github.com/SaraSim98/smart-
contract. This contract serves as a decentralized arbiter that coordinates three
main functionalities:

• to record the ciphertext hash on the blockchain and immutably associate it
with an authorized Beta node

• to verify the validity of the Zero-Knowledge Proof generated by node Beta
and the ECDSA digital signature provided by ground station B.

• to manage an economic incentive mechanism through an Ether-based escrow
system

Contract Initialization
The contract is initialized through the special constructor function shown in Fig-
ure 3.9, which is executed only once at the time of deployment on the blockchain. Its
purpose is to define the system’s initial parameters. Specifically, it performs three
main tasks:

• Registration of the deployer’s identity: the address that deploys the contract
is stored in the alpha variable using the msg.sender keyword. In this way, the
Alpha node is assigned a privileged role within the protocol.

• Configuration of ground station B: the address of the ground station is passed
as the _groundStationB parameter and assigned to the groundStationB vari-
able. This address will later be used to verify the ECDSA digital signature
from B on the hash of the received message.

40

https://github.com/SaraSim98/smart-contract
https://github.com/SaraSim98/smart-contract

• Whitelist of Beta nodes: the _betas array of addresses, passed as input to the
function, is processed to validate each node (address) and register it within the
isBeta data structure. This mapping acts as a whitelist of authorized Beta
nodes allowed to perform data relay.

Figure 3.9: Constructor function of the smart contract MessageRelayWithZk-
pAndSignatureFunzione

Registration of the rawHash on the Blockchain and Escrow Deposit
Following the contract initialization, the first on-chain phase of the relay process is
executed through the registerRawHash function, shown in Figure 3.10. This function
is called exclusively by node Alpha, the only entity authorized to do so, and it
performs three main actions:

• Register on the blockchain the rawHash of the ciphertext computed off-chain
by Alpha. This operation immutably records the hash on-chain, making it
publicly verifiable at a later stage.

• Associate the message hash with a specific Beta node selected for the relay
from the isBeta whitelist defined at deployment. In addition to the hash,
Alpha also specifies the Ethereum address of the Beta node beta as an input
to the function. This association is mapped on-chain via the byRawHash
data structure, effectively binding the relay of that particular message to a
designated Beta node.

• Alpha deposits a certain amount of Ether (msg.value), which is stored in the
escrow mapping linked to the rawHash. The deposited amount is not imme-
diately accessible but remains locked within the smart contract as an economic
guarantee. The release of these funds will only occur after the successful vali-
dation of the correct message forwarding by the Beta node. This validation is
performed through the proveAndRelease function, which is invoked by Beta
and executes all the protocol’s required checks. Only if these checks are passed
successfully, the previously locked amount is released and credited to Beta’s
internal balance.

The registerRawHash function concludes by emitting the RawRegistered event.
This event serves to publicly notify the registration of a new rawHash, specifying
both the Beta node assigned to perform the relay and the amount deposited in
escrow. Although this data is already stored in the internal state of the smart
contract, the event provides an optimized and secure channel for off-chain retrieval.

41

In this project, the event is leveraged by a web interface developed in React, which
connects to the Sepolia testnet via the ethers.js library. This interface listens for
events emitted by the smart contract and displays data related to the most recent
event. In particular, the key piece of information is the timestamp of the block
in which the last event was triggered, which is later used for the creation of the
off-chain ZKP. This approach enables direct access to the relevant data without the
need to query the internal state of the smart contract.

Figure 3.10: registerRawHash function of the MessageRelayWithZkpAndSignature
smart contract.

Verification of the Relay and Escrow Release
The second phase of the on-chain flow is implemented through the proveAndRelease
function, shown in Figure 3.11 and Figure 3.12. This function represents the core of
the on-chain verification process for secure message relay. It can only be invoked by
a previously authorized Beta node (present in the whitelist) and performs a sequence
of essential cryptographic checks to ensure the integrity of the relay. The following
list outlines the main operations carried out by the function:

• Caller Authentication: The function first verifies that the msg.sender address
belongs to the isBeta whitelist and that the input rawHash is indeed associated
with that node by checking the byRawHash mapping.

• Unique Registration of the zkpHash: The function ensures that the zkpHash
computed off-chain by the Beta node has not been previously used. The
byZkpHash mapping allows each zkpHash to be uniquely registered to the
node that generated it. This prevents replay attacks by ensuring that the same
proof cannot be reused to release funds multiple times.

• Verification of the Zero-Knowledge Proof: The verifyTx function (Figure 3.13),
inherited from the verifier.sol contract generated by ZoKrates, is invoked.
This function takes as input the proof components a, b, c, along with the
two public values rawHash and zkpHash. Specifically, rawHash is reduced
modulo a predefined prime number FIELD_PRIME to ensure it fits within
the finite field required by the zkSNARK circuit generated via ZoKrates. The
function returns true only if the proof provided by Beta is valid with respect
to the off-chain defined zk-SNARK circuit; otherwise, it returns false and the
transaction is reverted.

• ECDSA Signature Verification: After the Zero-Knowledge Proof is validated,
the digital signature from ground station B is verified. This signature is gener-
ated off-chain. Specifically, the contract reconstructs the signed hash aggHash

42

by applying the keccak256 function to the concatenation of the Ethereum stan-
dard prefix emph"\x19Ethereum Signed Message:\n32" and the rawHash. At
this point, the ecrecover function is used to verify that B’s ECDSA signature
(v, r, s) was indeed produced by the private key associated with the ground
station B’s Ethereum address. This step ensures that ground station B actually
received the message, effectively preventing spoofing attempts by unauthorized
nodes.

• Escrow Release: Upon successful validation of both the Zero-Knowledge Proof
and the digital signature, the funds previously deposited by Alpha and locked
to the rawHash are released. The corresponding amount is retrieved from
the escrow mapping and credited to the internal balance of the Beta node by
updating the balances structure. This mechanism prevents immediate with-
drawal and enables precise tracking of the credits accrued by each node, re-
ducing the risk of irreversible loss of escrow funds in case of errors.

The function concludes with the emission of the zkpAndSigRelay event, which
publicly records on the blockchain the successful validation of the relay.

Figure 3.11: proveAndRelease function - verification of the beta node and the ZKP
of the MessageRelayWithZkpAndSignature smart contract

43

Figure 3.12: proveAndRelease function – Signature Verification and Escrow Release
of the smart contract MessageRelayWithZkpAndSignature.

Figure 3.13: Function verifyTx of the contract verifier.sol.

Funds Withdrawal (B)
The final stage of the off-chain flow involves the withdrawal of funds by the Beta
node that successfully performed the relay. This operation is implemented through
the withdraw function (Figure 3.14). Specifically, the function

• Retrieves the funds associated with the node from the balances mapping.

• Checks that the balance is positive.

• Resets the node’s internal balance before performing the transfer to prevent
reentrancy attacks.

• Executes the transfer of Ether to the Beta node’s address.

Finally, the Withdrawal event is emitted, recording the node’s address and the
amount withdrawn. This procedure completes the economic flow of the protocol,

44

ensuring that funds are released only in the presence of relays that have been cryp-
tographically verified and approved.

Figure 3.14: withdraw function of the MessageRelayWithZkpAndSignature smart
contract.

3.3.3 Practical Implementation of the Protocol Using Devel-
opment Tools

In this protocol, integration between the technologies described in Section 3.2 and
the React framework was essential to develop a verifiable and consistent opera-
tional flow, both on-chain and off-chain. The goal was to implement a secure relay
mechanism for forwarding messages between nodes, leveraging a simulated but re-
alistic Ethereum environment such as Sepolia. The on-chain logic was implemented
through the MessageRelayWithZkpAndSignature smart contract written in Solidity
using the Remix IDE. Remix, in addition to providing integrated tools for writing
and compiling Solidity code, allows direct connection to MetaMask via the Injected
Provider option. This is shown in Figure 3.15.

Figure 3.15: Option InjectedProvider on Remix

In this way, the contract was deployed directly on the Sepolia testnet using the ac-
count selected in the Metamask wallet, which signed and authorized the transaction.
Each time a contract function is invoked, a JSON-RPC request is generated, This

45

request is then handled by MetaMask, which intercepts it and displays a signature
confirmation window to the user. Here, the user can review the transaction details
before approving: the contract address, the parameters passed, the estimated gas,
and the cost. fig. This pop-up ensures control and transparency, as no transaction is
ever sent to the network without the user’s explicit consent as shown in Figure 3.16.

Figure 3.16: MetaMask pop-up for transaction confirmation.

Upon confirmation, MetaMask signs the transaction with the private key of the se-
lected account. The transaction is then forwarded to the Ethereum network via an
RPC provider on the Sepolia testnet (in this case, Infura), which serves as the exter-
nally accessible Ethereum node. Once the node receives the transaction, it is added
to the mempool and subjected to validation and consensus. After confirmation, the
transaction is recorded in a blockchain block and becomes visible on Sepolia through
block explorers like Etherscan. (Figure 3.17)

46

Figure 3.17: Transaction details on Etherscan

On the client side, two React-based web applications were developed to support
the off-chain execution of the protocol. The first, encryptandsign_dapp, simulates
the behavior of the nodes involved in the relay and handles encryption, Keccak-256
hashing, and ECDSA signature generation through MetaMask. It interacts with
the Ethereum provider via the window.ethereum object and leverages the ethers.js
library to perform cryptographic operations securely in the browser.

The second application, timestamp_dapp, is designed to retrieve, directly from the
blockchain, the block timestamp associated with the RawRegistered event emit-
ted by the Alpha node. This timestamp is then processed and displayed in a
human-readable format, enabling the temporal verification step required by the
Zero-Knowledge Proof.

47

4 Comparative Analysis

This chapter presents a comparative analysis between the protocol implemented
in this thesis and the protocol described in the SpaceCoin white paper. [42] Al-
though both architectures share the goal of incentivizing message forwarding in a
trustless manner within decentralized environments, they differ in terms of applica-
tion domain, architecture, communication flow, verification mechanisms, and design
objectives. The analysis addresses both implementation and conceptual aspects,
offering a structured and in-depth comparison that helps position the contribution
of this thesis within the context of a broader, existing project such as SpaceCoin.

4.1 Spacecoin
SpaceCoin is a project born from the ambition to provide global Internet access
through a decentralized infrastructure. The proposed solution is based on a network
of low Earth orbit (LEO) satellites, integrated with a public blockchain that manages
economic incentives for the nodes responsible for data transmission—referred to as
transmitters—in a reliable manner. The goal is to decentralize global connectivity
infrastructure, overcoming the limitations of traditional centralized networks, such
as censorship and lack of access in remote areas.

The operational flow of the protocol is based on the interaction of three main actors
(Figure 4.1):

• Requester : the entity that aims to obtain information and initiates the request

• Trasmitter : the node responsible for transmitting the requested data to the
Requester

• Smart Contract : the blockchain component that autonomously mediates in-
teractions and manages funds.

Figure 4.1: Data exchange flow in the Spacecoin protocol

The process begins with the Requester locking a sum of money in the smart contract,
specifying the parameters of the request. An eligible Transmitter then takes charge

48

of the operation, collects the data, and transmits it to the Requester. Once the Re-
quester receives the data it generates a digital signature (ACK) using its private key.
This signature serves as a cryptographic confirmation of receipt. The Transmitter
sends the ACK to the smart contract, which verifies the validity of the signature
and its correspondence with the original request. If the verification is successful,
the smart contract releases the funds to the Transmitter as a reward for the service
provided. This scheme introduces a post-verification payment logic, in which the
Requester’s signature serves as unequivocal proof that the data has been received.
The blockchain ensures that all interactions are immutable, traceable, and free from
external arbitration, guaranteeing transparency among the parties involved.

The SpaceCoin roadmap is structured into three main development phases, each
with progressively more ambitious objectives:

• Short Term – Space-to-Earth Connectivity : establish connectivity between
space and Earth to ensure a stable, resilient, and global connection.

• Medium Term – Space-to-Space Connectivity : extend the system’s capabil-
ities to support direct communication between satellite nodes, introducing
advanced services for the transmission and security of aerospace data.

• Long Term – Interplanetary Communication: establish a global standard for
secure data transmission even in interplanetary environments, expanding the
paradigm beyond Earth’s orbit.

The protocol proposed in this thesis aligns with the objectives outlined by Space-
Coin, particularly those related to the Medium-Term phase. In fact, the designed
solution implements advanced cryptographic mechanisms such as Zero-Knowledge
Proofs and the combined use of ECDSA signatures, anticipating the needs for au-
thentication, security, and verifiability that arise in future scenarios of inter-satellite
communication. At the same time, thanks to its well-defined structure, it is al-
ready compatible with the reliability and transparency requirements necessary for
space-to-Earth connectivity.

From this perspective, the protocol can be considered an effective proof of concept :
it demonstrates the feasibility of an incentivized and verifiable infrastructure for
message forwarding among distributed nodes, and provides a model adaptable to
the future developments outlined in the SpaceCoin roadmap. The thesis thus offers
a concrete experimental contribution which, although still in a validation phase,
reflects the technological ambitions of SpaceCoin.

4.1.1 Comparison with the Proposed Protocol
The following paragraph highlights the main differences between the two protocols:

• Objectives: SpaceCoin aims to ensure global and decentralized Internet ac-
cess through LEO satellites. The proposed protocol focuses on the secure
and verifiable implementation of message forwarding via satellites, offering a
technical solution for distributed environments.

• Actors Involved and Operational Model: SpaceCoin involves two main
actors, the Requester and the Transmitter, who interact through a smart con-
tract. The proposed protocol adopts a more articulated flow, involving A,

49

Alpha, Beta, and B. This structure allows for a more granular management of
roles, making the system suitable for multi-hop flows and more refined verifi-
cations.

• Verification and Privacy Protection Mechanisms: In SpaceCoin, suc-
cessful transmission is confirmed through a signature from the Requester. In
the thesis protocol, verification is twofold: it combines the recipient’s signature
with a Zero-Knowledge Proof generated by the relay node. This architecture
not only enhances security but also protects the privacy of participants by
concealing sensitive information such as timing, message path, or the identity
of the relay. The ZKP thus serves a dual purpose: ensuring the integrity of
the communication flow and safeguarding confidentiality.

• Incentive Management: Both protocols adopt an escrow model: funds are
locked in the smart contract at the beginning and released only after successful
verification. However, while SpaceCoin adopts a binary and direct model, the
proposed protocol binds escrow to additional cryptographic conditions, making
the system more secure.

The analysis has shown that, although the two protocols operate in different contexts
and at different levels, they share the common goal of building reliable, verifiable,
and transparent communication infrastructures. SpaceCoin offers a broad, long-
term vision aimed at providing global Internet access through a shared infrastructure
coordinated by the blockchain. The thesis protocol, on the other hand, represents
a concrete and targeted response to a specific issue: the secure transmission of
messages between distributed nodes.

Although differing in scale, the two approaches can be seen as complementary. The
protocol presented in this thesis serves as a practical building block that aligns
with the broader vision of SpaceCoin, addressing some of its anticipated future
needs. As a proof of concept, it demonstrates the technical feasibility of a secure,
verifiable multi-hop relay system, and lays the groundwork for potential integration
into larger-scale architectures. In the long term, solutions of this kind could become
key enablers of reliability, security, and auditability in next-generation decentralized
space networks.

4.2 Other Relevant Architectures
SpaceChain
SpaceChain is an open-source platform that integrates blockchain nodes into satel-
lite infrastructure, enabling decentralized services to be executed directly in orbit.
Unlike SpaceCoin, which focuses on incentivized message forwarding to support
decentralized Internet access, SpaceChain provides a more general-purpose environ-
ment for executing smart contracts, signing transactions, and securely storing data
in space.

The system deploys satellites equipped with Ethereum-compatible blockchain nodes
capable of validating transactions and hosting decentralized applications (dApps).
Security is ensured through multisignature protocols and encrypted communication
with ground-based clients.

50

Among its key use cases are:

• Offline crypto transactions via satellite

• Storage of private keys in orbit

• Execution of smart contracts for Earth Observation or IoT applications

Although SpaceChain does not explicitly target incentivized relay between satellites,
it shares with the proposed protocol the foundational goal of enabling secure and
trustless interactions in decentralized infrastructures. In this sense, the two sys-
tems are complementary: the protocol developed in this thesis could theoretically
operate on top of a SpaceChain node, using its infrastructure as a secure execution
environment for relaying proofs and transactions. [43]
Blockstream Satellite
Blockstream Satellite is an initiative developed by Blockstream that enables users
to receive the Bitcoin blockchain via satellite, removing the need for a traditional
internet connection to stay synchronized with the network. The service continuously
broadcasts Bitcoin blocks through a global network of geostationary satellites, mak-
ing blockchain access possible even in remote, rural, or censorship-prone regions.
While it operates as a unidirectional system that does not support the direct sub-
mission of transactions, the project stands as a compelling example of how space in-
frastructure can be integrated with blockchain technology. Although it differs signif-
icantly from the protocol proposed in this thesis—which focuses on multi-hop relay
and on-chain cryptographic verification—Blockstream Satellite nonetheless demon-
strates how decentralized technologies and satellite-based systems can be combined
to enhance resilience and accessibility. [44]

51

5 Conclusions

5.1 Achieved Results
The work presented in this thesis fits within the rapidly evolving field of secure
and autonomous space communications, proposing a decentralized protocol for the
reliable relay of encrypted messages between satellite constellations operated by in-
dependent entities. Starting from an analysis of the main limitations of traditional
communication models, a solution was designed that leverages blockchain technol-
ogy to overcome the lack of prior trust between parties, while ensuring traceability,
integrity, and economic incentives in an automated manner. The proposed archi-
tecture integrates advanced cryptographic techniques (ECIES, ECDSA signatures),
zk-SNARKs, and Ethereum smart contracts to manage every phase of the relay
process on a public blockchain. In particular, the protocol guarantees that each in-
termediate node is compensated only after a cryptographic proof of correct message
forwarding to the final recipient is successfully verified.

Beyond the technical integration of multiple technologies, particular emphasis was
placed on achieving an optimal balance between functionality and efficiency. The
smart contract was designed with a deliberately minimal and essential set of func-
tions, avoiding unnecessary state changes, external calls, and redundant verifica-
tions. This architectural choice significantly reduced the gas consumption and sim-
plified the auditing of the contract’s logic, resulting in lower operational costs and a
smaller attack surface—key aspects in blockchain-based environments where every
on-chain computation has a financial impact.

These considerations guided the protocol’s development toward a solution that is
not only secure and verifiable, but also cost-effective and practical to deploy. The
result is a modular, verifiable, and economically sustainable protocol for secure
message forwarding between distributed nodes, capable of operating in adversarial
or trustless scenarios without sacrificing performance or traceability.

5.2 Limitations and Future Perspectives
Despite the positive results, the protocol presents some limitations, primarily related
to the Ethereum infrastructure:

• Scalability : the Ethereum network still suffers from congestion and high gas
costs under high traffic, limiting the efficiency and economic viability of the
approach in large-scale operational scenarios

• Intermittent Connectivity : satellites—especially those in GEO or interplane-
tary orbits—cannot guarantee continuous connectivity to the Ethereum net-
work.

The protocol developed in this thesis can be interpreted as a first functional pro-
totype, which demonstrates the possibility of integrating security, automation and
blockchain in a satellite context. However, the operational challenges associated

52

with the use of a terrestrial public blockchain such as Ethereum require technologi-
cal evolution.

In the short term, one possible improvement lies in the adoption of Layer 2 scalability
solutions such as optimistic or zero-knowledge rollups, which enable batch processing
of multiple transactions off-chain before settling them on the main chain. These
techniques drastically reduce gas consumption and increase throughput, making
them particularly attractive for protocols like the one proposed in this thesis, where
cost efficiency and verifiability are critical. Rollups could also mitigate congestion
issues and support higher message relay volumes without compromising security
guarantees. [45]

In the long term, more radical innovations may be required. In this regard, the
paper “Beyond Earth’s Boundaries: Blockchain-Driven Autonomy for Satellites and
Probes” by Thales Alenia Space proposes a completely new paradigm: a blockchain
distributed natively in space, capable of supporting autonomous, secure and efficient
machine-to-machine (M2M) communications between space entities such as satellites
and probes.

This blockchain network solves the problem of isolation, allowing clusters of satellites
to operate even in the absence of connection to the global network, through deferred
synchronisation and sharing of resources. Among the main innovations are:

• New consensus mechanism: Proof Of Useful Work, which replaces the classic
Proof of Stake or Proof of Work with a model that rewards the computational
contribution that is truly useful to the mission, such as scientific data pro-
cessing, image processing or packet compression. This allows the consensus
mechanism to be integrated into the operational logic of the mission itself,
lowering energy costs and making the system more efficient and sustainable

• Sharding : the division of the blockchain into fragments managed in parallel
by different subsets of satellites, increasing scalability and reducing latency
in environments where direct communication between all nodes is not always
possible.

• Dynamic clustering and adaptive relay mechanisms that adjust to continuously
evolving spatial configurations and the varying connectivity between orbiting
nodes. This capability is essential to ensure resilience in scenarios where nodes
may operate in isolation for extended periods and later reconnect to the net-
work.

This solution would enable a blockchain infrastructure that is autonomous, resilient,
and inherently space-native, capable of supporting new forms of cooperation, com-
merce, and interplanetary communication. Within this framework, the protocol
proposed in this thesis serves as an important experimental foundation for the de-
velopment of such advanced architectures and represents a significant step toward a
future of autonomy and reliability beyond Earth’s boundaries.

53

Bibliography

[1] J. Zhang, C. McInnes, and M. Macdonald, LEO Mega Constellations: Review
of Development, Impact, Surveillance, and Governance, Space Policy, vol. 61,
Elsevier, 2022, [Online]. Avaiable: https://spj.science.org/doi/10.
34133/2022/9865174

[2] S. Mansfield, Private Sector Innovation and Its Impact on the Space Indus-
try, SpaceDaily, [Online]. Avaiable: https://www.spacedaily.com/
reports/Private_Sector_Innovation_and_Its_Impact_on_the_
Space_Industry_999.html

[3] Knowledge for Policy, Space becomes a new area of expansion, Knowledge for
Policy (European Commission), 2024, [Online].
Available: https://knowledge4policy.ec.europa.eu/foresight/
space-becomes-new-area-expansion_en

[4] Festo Didactic Staff, Principles of Satellite Communications: Courseware Sam-
ple 86311-F0, 1st ed., Revision 05/2016, Festo Didactic Ltée/Ltd, Québec,
Canada, 2014. ISBN 978-2-89640-417-9.

[5] New Space Economy, “What are the Components of a Satellite?”, [Online]. Avail-
able: https://newspaceeconomy.ca/2023/04/05/what-are-the-
components-of-a-satellite/

[6] L. J. Ippolito, Jr., Satellite Communications Systems Engineering: Atmospheric
Effects, Satellite Link Design, and System Performance, Wiley, 2008.

[7] PrimaLuceSpace, frequencybands, PrimaLuceSpace Blog, Dec. 2024. [On-
line]. Available: https://www.primalucespace.com/it/what-radio-
frequencies-are-used-for-space-communication/

[8] National Aeronautics and Space Administration (NASA), 9.0 Communications,
in State-of-the-Art of Small Spacecraft Technology, Chapter 9, NASA SmallSat
Institute, 2025. [Online]. Available: https://www.nasa.gov/smallsat-
institute/sst-soa/soa-communications/#9.2

[9] H. Kaushal and G. Kaddoum, Free Space Optical Communication: Challenges
and Mitigation Techniques, Journal of Optical Communications and Networking,
vol. 7, no. 11, pp. 1–20.

[10] H. Wu, J. Ma, P. Guo, Q. Wang and J. Wu, Secrecy outage probability anal-
ysis in a free-space optical system based on partially coherent beams through
anisotropic non-Kolmogorov turbulent atmosphere, Journal of the Optical Soci-
ety of America B, vol. 39, no. 4, 2022, [Online]
Available: https://opg.optica.org/josab/viewmedia.cfm?uri=
josab-39-5-1378&seq=0&html=true

[11] Basile, Cataldo, Appunti di Sicurezza dei Sistemi Informativi, Corso di Si-
curezza dei Sistemi Informativi, Politecnico di Torino, Torino, 2025.

54

https://spj.science.org/doi/10.34133/2022/9865174
https://spj.science.org/doi/10.34133/2022/9865174
https://www.spacedaily.com/reports/Private_Sector_Innovation_and_Its_Impact_on_the_Space_Industry_999.html
https://www.spacedaily.com/reports/Private_Sector_Innovation_and_Its_Impact_on_the_Space_Industry_999.html
https://www.spacedaily.com/reports/Private_Sector_Innovation_and_Its_Impact_on_the_Space_Industry_999.html
https://knowledge4policy.ec.europa.eu/foresight/space-becomes-new-area-expansion_en
https://knowledge4policy.ec.europa.eu/foresight/space-becomes-new-area-expansion_en
https://newspaceeconomy.ca/2023/04/05/what-are-the-components-of-a-satellite/
https://newspaceeconomy.ca/2023/04/05/what-are-the-components-of-a-satellite/
https://www.primalucespace.com/it/what-radio-frequencies-are-used-for-space-communication/
https://www.primalucespace.com/it/what-radio-frequencies-are-used-for-space-communication/
https://www.nasa.gov/smallsat-institute/sst-soa/soa-communications/#9.2
https://www.nasa.gov/smallsat-institute/sst-soa/soa-communications/#9.2
https://opg.optica.org/josab/viewmedia.cfm?uri=josab-39-5-1378&seq=0&html=true
https://opg.optica.org/josab/viewmedia.cfm?uri=josab-39-5-1378&seq=0&html=true

[12] Libsodium, XSalsa20 Stream Cipher - Libsodium Documentation, [Online].
Available: https://libsodium.gitbook.io/doc/advanced/stream_
ciphers/xsalsa20

[13] Fortinet, Message Authentication Code (MAC) - Definition, [Online].
Available: https://www.fortinet.com/resources/cyberglossary/
message-authentication-code

[14] Xilinx, Poly1305 – High-Performance MAC Algorithm, [Online]. Available:
https://xilinx.github.io/Vitis_Libraries/security/2019.
2/guide_L1/internals/poly1305.html

[15] SSL.com, Cos’è la crittografia a curva ellittica (ECC)?, [Online].
Available: https://www.ssl.com/it/articolo/cos%27%C3%A8-la-
crittografia-a-curva-ellittica-ecc/

[16] Encryption Consulting, What is ECDSA? (Elliptic Curve Digital Signature
Algorithm), [Online]. Available: https://www.encryptionconsulting.
com/education-center/what-is-ecdsa/

[17] Fiveable, Elliptic Curve Integrated Encryption Scheme (ECIES), [Online].
Available: https://library.fiveable.me/elliptic-curves/unit-
3/elliptic-curve-integrated-encryption-scheme-ecies/
study-guide/ld7deLPycGFCjeeR

[18] How.dev, What is the Elliptic Curve Diffie-Hellman Algorithm?, [Online]. Avail-
able: https://how.dev/answers/what-is-the-elliptic-curve-
diffie-hellman-algorithm

[19] Corporate Finance Institute, Hash Function – Definition, Purpose, and
Examples, [Online]. Available: https://corporatefinanceinstitute.
com/resources/cryptocurrency/hash-function/#:~:text=A%
20hash%20function%20is%20a%20mathematical%20function%
20that%20converts%20any,output%20(called%20the%20hash)

[20] GeeksforGeeks, Applications of Hashing, [Online]. Available: https://www.
geeksforgeeks.org/dsa/applications-of-hashing/

[21] freeCodeCamp, MD5 vs SHA-1 vs SHA-2 – Which is the Most Se-
cure Encryption Hash and How to Check Them, [Online]. Available:
https://www.freecodecamp.org/news/md5-vs-sha-1-vs-sha-
2-which-is-the-most-secure-encryption-hash-and-how-to-
check-them/

[22] GeeksforGeeks, Difference Between SHA-256 and Keccak-256,[Online].
Available: https://www.geeksforgeeks.org/ethical-hacking/
difference-between-sha-256-and-keccak-256/

[23] Chainlink, Zero Knowledge Proof (ZKP), [Online]. Available: https://
chain.link/education/zero-knowledge-proof-zkp

[24] C. Nightingale, A Full Comparison: What are zk-SNARKs and zk-STARKs?,
Cyfrin Blog, Oct. 1, 2024. [Online]. Available: https://www.cyfrin.io/
blog/a-full-comparison-what-are-zk-snarks-and-zk-starks

55

https://libsodium.gitbook.io/doc/advanced/stream_ciphers/xsalsa20
https://libsodium.gitbook.io/doc/advanced/stream_ciphers/xsalsa20
https://www.fortinet.com/resources/cyberglossary/message-authentication-code
https://www.fortinet.com/resources/cyberglossary/message-authentication-code
https://xilinx.github.io/Vitis_Libraries/security/2019.2/guide_L1/internals/poly1305.html
https://xilinx.github.io/Vitis_Libraries/security/2019.2/guide_L1/internals/poly1305.html
https://www.ssl.com/it/articolo/cos%27%C3%A8-la-crittografia-a-curva-ellittica-ecc/
https://www.ssl.com/it/articolo/cos%27%C3%A8-la-crittografia-a-curva-ellittica-ecc/
https://www.encryptionconsulting.com/education-center/what-is-ecdsa/
https://www.encryptionconsulting.com/education-center/what-is-ecdsa/
https://library.fiveable.me/elliptic-curves/unit-3/elliptic-curve-integrated-encryption-scheme-ecies/study-guide/ld7deLPycGFCjeeR
https://library.fiveable.me/elliptic-curves/unit-3/elliptic-curve-integrated-encryption-scheme-ecies/study-guide/ld7deLPycGFCjeeR
https://library.fiveable.me/elliptic-curves/unit-3/elliptic-curve-integrated-encryption-scheme-ecies/study-guide/ld7deLPycGFCjeeR
https://how.dev/answers/what-is-the-elliptic-curve-diffie-hellman-algorithm
https://how.dev/answers/what-is-the-elliptic-curve-diffie-hellman-algorithm
https://corporatefinanceinstitute.com/resources/cryptocurrency/hash-function/#:~:text=A%20hash%20function%20is%20a%20mathematical%20function%20that%20converts%20any,output%20(called%20the%20hash)
https://corporatefinanceinstitute.com/resources/cryptocurrency/hash-function/#:~:text=A%20hash%20function%20is%20a%20mathematical%20function%20that%20converts%20any,output%20(called%20the%20hash)
https://corporatefinanceinstitute.com/resources/cryptocurrency/hash-function/#:~:text=A%20hash%20function%20is%20a%20mathematical%20function%20that%20converts%20any,output%20(called%20the%20hash)
https://corporatefinanceinstitute.com/resources/cryptocurrency/hash-function/#:~:text=A%20hash%20function%20is%20a%20mathematical%20function%20that%20converts%20any,output%20(called%20the%20hash)
https://www.geeksforgeeks.org/dsa/applications-of-hashing/
https://www.geeksforgeeks.org/dsa/applications-of-hashing/
https://www.freecodecamp.org/news/md5-vs-sha-1-vs-sha-2-which-is-the-most-secure-encryption-hash-and-how-to-check-them/
https://www.freecodecamp.org/news/md5-vs-sha-1-vs-sha-2-which-is-the-most-secure-encryption-hash-and-how-to-check-them/
https://www.freecodecamp.org/news/md5-vs-sha-1-vs-sha-2-which-is-the-most-secure-encryption-hash-and-how-to-check-them/
https://www.geeksforgeeks.org/ethical-hacking/difference-between-sha-256-and-keccak-256/
https://www.geeksforgeeks.org/ethical-hacking/difference-between-sha-256-and-keccak-256/
https://chain.link/education/zero-knowledge-proof-zkp
https://chain.link/education/zero-knowledge-proof-zkp
https://www.cyfrin.io/blog/a-full-comparison-what-are-zk-snarks-and-zk-starks
https://www.cyfrin.io/blog/a-full-comparison-what-are-zk-snarks-and-zk-starks

[25] A. Nitulescu, A Survey of SNARKs, [Online]. Available: https://www.di.
ens.fr/~nitulesc/files/Survey-SNARKs.pdf.

[26] Bit2Me Academy, What Are zk-STARK?, [Online]. Available: https://
academy.bit2me.com/en/what-are-zk-stark/.

[27] D. Yaga, P. Mell, N. Roby, and K. Scarfone, Blockchain Technology Overview,
NISTIR 8202, National Institute of Standards and Technology, October 2018.
[Online]. Available: https://doi.org/10.6028/NIST.IR.8202

[28] The Linux Foundation, “Blockchain: Understanding Its Uses and Implications
(LFS170) – Course Information”, Training Portal – The Linux Foundation,
[Online]. Available: https://trainingportal.linuxfoundation.
org/learn/course/blockchain-understanding-its-uses-and-
implications-lfs170/introduction/course-information

[29] Ethereum Foundation, Gas and Fees, [Online]. Available: https://
ethereum.org/en/developers/docs/gas/

[30] Aviate Labs, “Blockchain and the New Space Age”, Aviate Labs – Blog,
[Online]. Available: https://www.aviatelabs.co/post/blockchain-
and-the-new-space-age

[31] K. L. Jones, Blockchain in the Space Sector, Center for Space Policy
and Strategy, Game Changer Series, March 2020. [Online]. Available:
file:///C:/Users/User/OneDrive/Desktop/blockchain%20x%
20tesi/Jones_Blockchain_03052020.pdf

[32] N. E. Villanueva, Blockchain Technology Application: Challenges, Limitations
and Issues, Journal of Computational Innovations and Engineering Applications,
vol. 5, no. 2, pp. 8–14, 2021.

[33] D. Shah, Remix IDE Explained: A Brief Guide, [Online]. Available:
https://medium.com/@danishshahh22/remix-ide-explained-
a-brief-guide-76ee27a411d0

[34] F. Eberhardt, ZoKrates – Scalable Privacy-Preserving Off-Chain Com-
putations, Technische Universität Berlin, 2018. [Online]. Available:
https://www.static.tu.berlin/fileadmin/www/10002238/
projekte/2018_eberhardt_ZoKrates.pdf

[35] Coinmonks, Under the Hood of zkSNARK: Groth16 Protocol – Part 4, [On-
line]. Available: https://medium.com/coinmonks/under-the-hood-
of-zksnark-groth16-protocol-part-4-53667944366f

[36] Docker Inc., Docker Overview, [Online]. Available: https://docs.docker.
com/get-started/docker-overview/

[37] ZoKrates, Getting Started, [Online]. Available: https://zokrates.
github.io/gettingstarted.html

[38] GetBlock, What is Sepolia? A Beginner’s Guide to Ethereum Test Net-
works, [Online]. Available: https://getblock.medium.com/what-
is-sepolia-a-beginners-guide-to-ethereum-test-networks-
866663a26698

56

https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf
https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf
https://academy.bit2me.com/en/what-are-zk-stark/
https://academy.bit2me.com/en/what-are-zk-stark/
https://doi.org/10.6028/NIST.IR.8202
https://trainingportal.linuxfoundation.org/learn/course/blockchain-understanding-its-uses-and-implications-lfs170/introduction/course-information
https://trainingportal.linuxfoundation.org/learn/course/blockchain-understanding-its-uses-and-implications-lfs170/introduction/course-information
https://trainingportal.linuxfoundation.org/learn/course/blockchain-understanding-its-uses-and-implications-lfs170/introduction/course-information
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/gas/
https://www.aviatelabs.co/post/blockchain-and-the-new-space-age
https://www.aviatelabs.co/post/blockchain-and-the-new-space-age
file:///C:/Users/User/OneDrive/Desktop/blockchain%20x%20tesi/Jones_Blockchain_03052020.pdf
file:///C:/Users/User/OneDrive/Desktop/blockchain%20x%20tesi/Jones_Blockchain_03052020.pdf
https://medium.com/@danishshahh22/remix-ide-explained-a-brief-guide-76ee27a411d0
https://medium.com/@danishshahh22/remix-ide-explained-a-brief-guide-76ee27a411d0
https://www.static.tu.berlin/fileadmin/www/10002238/projekte/2018_eberhardt_ZoKrates.pdf
https://www.static.tu.berlin/fileadmin/www/10002238/projekte/2018_eberhardt_ZoKrates.pdf
https://medium.com/coinmonks/under-the-hood-of-zksnark-groth16-protocol-part-4-53667944366f
https://medium.com/coinmonks/under-the-hood-of-zksnark-groth16-protocol-part-4-53667944366f
https://docs.docker.com/get-started/docker-overview/
https://docs.docker.com/get-started/docker-overview/
https://zokrates.github.io/gettingstarted.html
https://zokrates.github.io/gettingstarted.html
https://getblock.medium.com/what-is-sepolia-a-beginners-guide-to-ethereum-test-networks-866663a26698
https://getblock.medium.com/what-is-sepolia-a-beginners-guide-to-ethereum-test-networks-866663a26698
https://getblock.medium.com/what-is-sepolia-a-beginners-guide-to-ethereum-test-networks-866663a26698

[39] CoinMarketCap Academy, What Is MetaMask?, [Online]. Available: https:
//coinmarketcap.com/academy/article/what-is-metamask

[40] MetaMask Docs, Wallet API, [Online]. Available: https://docs.
metamask.io/wallet/concepts/wallet-api/

[41] S. Nakov, ECIES: Public Key Encryption, [Online]. Available: https:
//cryptobook.nakov.com/asymmetric-key-ciphers/ecies-
public-key-encryption.

[42] T. Oh, SPACECOIN: A Decentralized Connectivity Network, Gluwa Inc., Wilm-
ington (US), 2024, [Online].
Available: https://docsend.com/view/msj8249wcy9xxvwh

[43] SpaceChain Foundation, SpaceChain Whitepaper v3.1, SpaceChain Founda-
tion, [Online]. Available: https://www.spacechain.com/wp-content/
uploads/2023/06/SpaceChain-Whitepaper.pdf

[44] Blockstream, Blockstream Satellite, Blockstream, [Online]. Available: https:
//blockstream.github.io/satellite/,

[45] Coinbase, What are Zero-Knowledge Rollups (ZK Rollups)?, [Online]. Available:
https://www.coinbase.com/it/learn/crypto-glossary/what-
are-zero-knowledge-zk-rollups

57

https://coinmarketcap.com/academy/article/what-is-metamask
https://coinmarketcap.com/academy/article/what-is-metamask
https://docs.metamask.io/wallet/concepts/wallet-api/
https://docs.metamask.io/wallet/concepts/wallet-api/
https://cryptobook.nakov.com/asymmetric-key-ciphers/ecies-public-key-encryption
https://cryptobook.nakov.com/asymmetric-key-ciphers/ecies-public-key-encryption
https://cryptobook.nakov.com/asymmetric-key-ciphers/ecies-public-key-encryption
https://docsend.com/view/msj8249wcy9xxvwh
https://www.spacechain.com/wp-content/uploads/2023/06/SpaceChain-Whitepaper.pdf
https://www.spacechain.com/wp-content/uploads/2023/06/SpaceChain-Whitepaper.pdf
https://blockstream.github.io/satellite/
https://blockstream.github.io/satellite/
https://www.coinbase.com/it/learn/crypto-glossary/what-are-zero-knowledge-zk-rollups
https://www.coinbase.com/it/learn/crypto-glossary/what-are-zero-knowledge-zk-rollups

	Abstract
	Introduction
	Background and Context
	Objectives

	State of Art
	Satellite communication
	Frequency Spectrum and Bands
	Link Types in Satellite Communications
	Security and Privacy
	Blockchain and space applications

	Architecture and Implementation of the Proposed Protocol
	Scenario
	Development Environments and Tools
	Technical Implementation

	Comparative Analysis
	Spacecoin
	Other Relevant Architectures

	Conclusions
	Achieved Results
	Limitations and Future Perspectives

