POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

A Service-Oriented Design Framework
for Automotive Architectures

Supervisor Candidate
Prof. Fulvio RISSO Giorgia TORTORELLI

Company Supervisors

Ing. Paolo PICCIAFOCO

Ing. Massimiliano RASPANTE
Ing. Domenico PERRONI

ANNO ACCADEMICO 2024-2025

Summary

(N L] |

TALDESIGN

In recent years, the automotive industry has undergone a profound transformation,
driven by the growing demand for advanced functionalities such as autonomous
driving, advanced driver assistance systems (ADAS), and sophisticated infotain-
ment platforms. These innovations have led to a significant increase in the com-
plexity of vehicle electronics, challenging the limits of traditional architectures
based on numerous Electronic Control Units (ECUs), each dedicated to a specific
function (like braking or managing the engine) and interconnected through legacy
protocols like CAN or LIN.

This complexity has highlighted the limitations of static and tightly coupled sys-
tems, making it increasingly difficult to integrate new features in a modular and
scalable way. To address these challenges, the industry is gradually shifting to-
ward Service-Oriented Architectures (SOA), in which software services are
designed to be independent, interoperable, and dynamically deployable, en-
abled by the adoption of standardized interfaces. This paradigm, supported by
modern communication protocols such as SOME /TP over Ethernet, promotes
flexibility, reusability, and scalability.

This thesis, carried out in collaboration with Italdesign, explores the transition
toward SOA in the automotive domain, proposing an innovative and distributed
approach to service management, and also streamlining the path from system
modeling to the development and validation of a working application. The pro-
posed methodology aims to reduce production times, which are currently long
and fragmented due to the involvement of multiple stakeholders (OEMs and Tier-
1s), making it possible to quickly generate testable prototypes directly from the
architectural model.

Contents

List of Tables

List of Figures

1 Introduction

2 State of the art

3 Background and Technological Principles
3.1 Service-Oriented architecture vs Software-Oriented architecture
3.1.1 Software-Oriented architecture: a monolithic approach
3.1.2 Service-Oriented architecture: modularity and flexibility . .
3.1.3 Comparing traditional and SOA approaches
3.2 Zonal architecture: evolutionof E/E 0.
3.2.1 Overcoming the decentralized model
3.3 The V-Model
3.4 Model-Based Systems Engineering in the automotive sector

4 Tools and Technologies for SOA Automotive Development
4.1 PREEvision: a model-based tool for E/E design
4.1.1 Support for AUTOSAR classic and adaptive
4.1.2 Advantages in the automotive sector
4.2 SOME/IP protocol: middleware for Service-Oriented architectures .

5 Modeling a Service-Oriented Architecture with PREEvision

5.1 Adopted development approach
5.2 Modeling in PREEvision
5.3 Requirements definition 0oL
5.4 Software architecture oL
5.5 Service architecture

5.5.1 Custom attributes definition and dynamic service shifting . .
5.6 Hardware architecture 0oL

5.6.1 Mapping software/hardware layers
5.7 Communication layer

11

14

18
18
18
19
21
24
24
26
29

32
32
34
35
36

6 Building C++ application using SOME/IP
6.1 Parsing the ARXML file and generating the JSON file
6.2 Generating configuration files for vSomelIP
6.3 Implementation of the C++ application with vSomeIP
6.3.1 Provider implementation
6.3.2 Consumer implementation

7 Conclusions

7.1 Main outcomes
7.2 Limitations and improvements

7.3 Future work

Bibliography

72
73
75
7
79
80

84
84
86
86

38

List of Tables

5.1 Example of Requirements for Alternative Route Service

List of Figures

3.1
3.2
3.3

3.4
3.5

4.1
4.2
4.3

4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
2.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

Service-Oriented architecture. 20
Monolith vs microservices [22] 22
Comparison between Software-Oriented and Service-Oriented archi-

tectures 24
Zonal topology [20] 26
V-Model 27
PREEvision layers [15], 33
AUTOSAR adaptive [21] oo 35
Typical use cases of the SOME/IP protocol in automotive systems

18] . 36
How SOME/IP works on Ethernet backbone [18] 37
Request/Response 38
Fire-and-Forgeto o 38
Event 39
Field 39
SOME/IP header format [23] 41
SOME/IP-SD header format [24] 42
Project workflow 45
System and software design process in PREEvision [15] 50
Alternative route service software diagram 52
Alternative route service service diagram 54
Requirement GPS mapping 55
Service-Oriented modeling workflow in PREEvision [15] 56
Service interfaces Lo o7
Software design SOA 58
Custom attributes. 60
Get zonal info service 61
Hardware Architecture 62
Mapping software architecture 65
Mapping service architecture L. 66
Signal mapping between infotainment and front right zone ECU . . 68
ECU Ethernet configuration 69
Socket configuration in the Ethernet network 69
Mapping between service instances provided and consumed 70

8

5.18 Mapping of event groups between providers and consumers 71

6.1 SOME/IP services 73
6.2 Service deployments 74
6.3 Configuration file L 76
6.4 vSomelP overview 78
6.5 Provider sequence diagram 81
6.6 Consumer sequence diagram 83

Chapter 1

Introduction

In recent years, the evolution of digital technologies has radically transformed the
way complex systems are designed and implemented. Among the sectors most af-
fected by this revolution is the automotive industry, which has seen a clear shift
from traditional mechatronic paradigms towards increasingly software-defined
architectures. Modern vehicles are no longer simple modes of transportation,
but sophisticated cyber-physical systems equipped with connectivity, advanced
computational capabilities, and intelligent functions.

In particular, the automotive industry is currently at the center of a deep dig-
ital transformation, driven by the introduction of advanced features such as au-
tonomous driving, advanced driver assistance systems (ADAS), Vehicle-
to-Everything (V2X) connectivity and electric vehicles. This scenario has
put traditional electronic architectures in crisis, as they are based on separate
functional control units and have obvious limitations in terms of scalability, inter-
operability, and efficient resource management.

To address these challenges, the industry is gradually moving towards more
flexible and modular architectural solutions, such as Service-Oriented archi-
tectures (SOA) and zonal architectures. SOA allows software functionality
to be decoupled from physical hardware, promoting reusability, updatability, and
dynamic service management. Zonal architecture, on the other hand, logically di-
vides the vehicle into physical zones, each controlled by a central node, simplifying
the electrical topology and reducing wiring complexity.

This is the context for the work described in this thesis, whose goal is to design
and validate a service-oriented architecture applied to a zonal hardware infrastruc-
ture. A further goal is to create an internal benchmark to demonstrate how the
initial phases of the automotive software development cycle can be significantly
optimized. The proposed approach aims to partially automate the design flow, en-
abling a fluid transition from abstract modeling to concrete implementation, with
a consequent reduction in errors and increased consistency between phases.

11

ET AL.

The project is divided into two main phases:

« Modeling phase: PREEvision, one of the leading tools in the field of elec-
trical and electronic (E/E) vehicle design, is used to create a complete logical
model of the software architecture in accordance with the AUTOSAR stan-
dard. PREEvision enables the definition of components, services, interfaces,
and signals, as well as the automatic generation of ARXML files, i.e., XML
files in accordance with AUTOSAR standard that formally describe the ele-
ments of the system.

o Implementation phase: starting from the ARXML file produced in the pre-
vious phase, a C++ application is developed using the open source library
vsomeip, based on the SOME /IP protocol, by BMW. This protocol, widely
adopted in the automotive industry, is designed to support SOA architectures
thanks to its lightness, interoperability, and service-oriented communication
capabilities.

The result is a robust, scalable and coherent workflow that meets the current needs

of the automotive industry, which is increasingly oriented towards the Software-
Defined Vehicle (SDV) paradigm.

The thesis is structured as follows:

o Chapter 2: presents an overview of the state of the art, analyzing the main
approaches and academic references concerning the evolution of automotive
architectures towards service-oriented architectures. The context in which the
proposed work is set is also discussed.

o Chapter 3 introduces the fundamental concepts underlying SOA in the au-
tomotive sector. After comparing the monolithic and service-oriented ap-
proaches, the zonal architecture, V-Model and the role of Model-Based Sys-
tems Engineering (MBSE) as an advanced design methodology in the auto-
motive world are explored in depth.

o Chapter 4: describes the tools used to support the design and implementa-
tion of SOA architectures in the automotive field, used in this thesis project. In
particular, PREEvision is analyzed as a model-based tool, and the SOME /TP
protocol is analyzed as middleware for communication between control units
according to the service-oriented paradigm.

o Chapter 5: illustrates in detail the architectural modeling process, within
PREEvision, created in this thesis project. All the main phases are addressed,
from the definition of requirements to the communication level, including
software and hardware design and mapping between levels.

o Chapter 6: describes the technical implementation of the modeled system,
starting from the parsing of ARXML files to the generation of the JSON
files needed to configure vSomelP. The concrete implementation of the C++

12

1 — Introduction

applications for the provider and consumer roles is then explained, also tested
on real embedded devices.

o Chapter 7: collects the final reflections on the work carried out, highlighting
the results obtained, the original contributions, the limitations encountered,
and the prospects for future development.

13

Chapter 2

State of the art

The automotive industry is undergoing a profound architectural transformation,
in which software is no longer a simple support element but has become the main
driver of innovation and value in vehicles. In this context, traditional architectures
based on signal communications and tightly coupled control units are showing clear
limitations in terms of the flexibility, modularity, and updating required by new-
generation vehicles. With the number of ECUs ranging from a few dozen to several
hundred depending on the specific system architecture, each communication is usu-
ally defined statically and rigidly during production. This configuration makes it
extremely complex to introduce changes or new features, as it requires complete
revalidation of the entire software system and intense coordination between the
various teams involved, with development times that can last for months, signifi-
cantly delaying innovation.

The answer to this complexity resides in the progressive adoption of develop-
ment strategies based on modeling and modularity, in particular through the use of
Model-Based Design (MBD) and the introduction of Service-Oriented archi-
tecture, now adopted as the foundation for the realization of Software-Defined
Vehicles (SDVs). In this case, the vehicle is like a dynamic platform, updatable
over-the-air and capable of integrating vehicle functions that are divided into in-
dependent services. This new approach allows for a decoupling of hardware and
software.

The Adaptive AUTOSAR standard [16], an evolution of Classic AUTOSAR,
was introduced to meet the new requirements of the automotive industry, offering
greater architectural flexibility, service-oriented communication, and support for
dynamic and updatable runtime systems. Contrary to Classic, which is based on
static signal communication and deterministic cycles, Adaptive AUTOSAR en-
ables interaction between components via methods, events, and fields, adopting
modern protocols such as SOME /IP (Scalable service-Oriented Middleware over
IP) and DDS (Data Distribution Service) and offering full support for Automotive
Ethernet.

Despite these differences, Classic AUTOSAR still has a central role in hard real-
time applications, such as sensor data acquisition and actuation. Its efficiency in

14

2 — State of the art

terms of computational resource usage (CPU, memory) and simplicity in managing
real-time use cases make it still suitable for low-complexity but highly critical
scenarios.

In literature, numerous studies have analyzed this transition in the automo-
tive context. Among these, Sreeraj Arole’s work [1] describes the migration of a
legacy battery charging system from a monolithic architecture to a service-oriented
architecture. The resulting system is built using a model-based software design ap-
proach, leveraging tools such as Simulink, MATLAB System Composer, and C++
code autogeneration.

The original system had strong couplings between software modules, making
each update costly and subject to complete revalidation. The new architecture,
on the other hand, redefined the system into independent services: for example,
a Sensor Fxtractor service, services for charging protocols, and others, separated
and orchestrated via SOME/IP events and methods.

The new system, tested in a Docker environment on Linux executables, demon-
strated a 25% improvement in system response time and a 30% reduction in mean
time to repair (MTTR). In addition to increased reliability (0.1% failures vs. 1%
in the monolithic model).

These results demonstrate that the adoption of SOA, while involving a slight
increase in CPU and memory usage, leads to substantial benefits in scalability,
maintenance, and updatability of automotive software.

A second case of great industrial relevance is the study presented at the MECO
2020 conference [2]. This work addresses the implementation of SOA within a hy-
brid architecture, which combines traditional automotive networks (such as CAN
and FlexRay) with a high-performance Ethernet backbone, on which a SOA plat-
form is run. The goal of this balanced solution is to preserve the robustness
and reliability of legacy networks for critical functions—such as brakes, steering,
and transmission—while leveraging the flexibility and modularity of SOA for less
safety-critical domains, such as infotainment and ADAS.

However, the introduction of SOA induces significant methodological challenges.
In particular, the traditional V-Model used in the automotive industry is not
well-suited to managing the dynamic, modular, and distributed nature of services
typical of an SOA. This approach is too rigid to efficiently support the incremental
validation of individual services and the management of dependencies between
distributed components, requiring a fundamental new approach to the software
development cycle.

In this context, the SuperTuxKart use case was presented, a video game inte-
grated into the Mercedes CLA infotainment system. Although an external appli-
cation, this game is able to communicate with the car’s services, such as climate
control, steering wheel, and pedals, demonstrating the interoperability possible

15

ET AL.

thanks to SOA and SOME/IP middleware. The architecture also provides integra-
tion with Update and Configuration Management (UCM) modules, which enable
secure over-the-air (SOTA) software updates, making the vehicle upgradeable like
an I'T system.

However, the study also highlights some challenges:

» the complexity of creating new services compatible with legacy networks;
 the security risk associated with exposing critical functions via APIs;

» the need to design strict governance of permissions and access to services from
the outset.

Another significant contribution to the transition to service-oriented architec-
tures is the study by Obergfell, Kugele, and Sax [3], which also proposes a model-
based design approach for the synthesis and analysis of SOA architectures in the
automotive sector. The work describes a modeling framework consisting of three
main components: a meta-model for the formalization of services (including events,
methods, and temporal and functional attributes), a Design Space Exploration
(DSE) engine for the optimized allocation of services on hardware resources, and
an artifact generator for run-time verification of temporal properties, with support
for dynamic reconfiguration.

The method has been validated through a case study on an environmental
perception function for automated driving, demonstrating how optimal service
deployment can be achieved by taking into account multiple constraints, includ-
ing computational resource usage, functional safety levels (ASIL), and execution
latencies.

This approach shows itself to be particularly effective in view of the new require-
ments introduced by advanced autonomous vehicles according to the SAE J3016
classification. Starting from level 3, in fact, the E/E architecture of vehicles must
be able to dynamically support complex services, ensuring flexibility, safety, and
continuous updatability.

This work is part of this line of research and development, proposing a con-
crete use case that demonstrates the effectiveness of designing and implementing
a SOME/IP service on embedded control units, starting directly from modeling in
PREEvision. Compared to previous work, the main contribution of this the-
sis lies in the complete closure of the Model-Based Systems Engineering
(MBSE) cycle with the creation of two autonomous C++ applications —
provider and consumer — that really interface with each other as modeled and
the real SOME/IP communication test was also performed between embedded
control units and not only virtually. Furthermore, it has been shown how it is
possible to test communication between control units, bypassing OEMs, Tier 1s,
and other external suppliers, significantly speeding up internal benchmarking.

16

2 — State of the art

Another innovative aspect concerns the introduction of custom attributes
in service modeling. These elements, already present in the design phase, are
designed to support, in the future, the development of a system for dynamically
moving services between control units in the case of overload or malfunction, with
a view to dynamic reconfiguration and greater system resilience.

The work therefore is based upon previous studies, but represents an extension
of their application, which may inspire future activities in both academia and
industry.

17

Chapter 3

Automotive Background

This chapter analyzes the architectural evolution of vehicles, starting from tradi-
tional monolithic software solutions to the more recent adoption of Service-
Oriented architecture and zonal hardware architecture, which are essential
for enabling the transition to SDVs.

It also examines the V-Model development process and compares it with its
more advanced evolution, the Model-Based Systems Engineering approach.

3.1 SOA vs Software-Oriented architecture

Traditionally, vehicles have been built using a software-oriented approach but
with increasing system complexity and the demand for greater flexibility, scala-
bility, and updatability, the industry is moving toward Service-Oriented archi-
tecture.

3.1.1 Software-Oriented architecture: a monolithic approach

In a classic software-oriented system, vehicle functions are implemented as mono-
lithic software modules, tightly integrated with specific ECUs. Each ECU is
responsible for a well-defined function, and the entire software is strongly depen-
dent on the hardware on which it runs. This approach, while initially successful
for less complex systems, has several limitations:

« Difficult to update: every change requires re-flashing the entire system.

o Low reusability: the code is written for a specific hardware configuration,
and the same function must be implemented multiple times if requested in a
different context.

e Poor scalability: adding new features often requires a complete revision of
the system.

« High complexity of testing and integration: every change requires end-
to-end testing of the entire system.

18

3 — Background and Technological Principles

Software development for the automotive industry is also characterized by a
complex division of work between the OEM and a wide ecosystem of suppliers,
each providing control units that implement their own software or firmware. In-
tegrating all the hardware and software to compose the final vehicle requires a
delicate and highly coordinated process. The absence of modularity makes
any change a costly and time-consuming procedure, significantly increasing
time-to-market.

With the increase in digital features in vehicles, software complexity has also
grown exponentially. In 2010, the average car contained around 10 million lines of
code; by 2016, this had exceeded 150 million. This growth has had a direct impact
on costs: in 2018 alone, software problems caused recalls for millions of vehicles,
with economic damage of more than 17 billion [5].

So, the entire industry is undergoing a historic transition: from hardware-
defined vehicles to software-defined vehciles.

However, the growing centrality of software brings new challenges. Industry
stakeholders now consider aspects such as software quality, maintainability,
and safety to be fundamental requirements for ensuring proper vehicle perfor-
mance, especially in view of autonomous and safety-critical features. Further-
more, software maintenance costs now exceed 67% of the total lifecycle. Even a
simple change can take weeks or months to validate, increasing operating costs
and delaying the release of updates [5].

In summary, monolithic architectures have reached the limits of their scalability
and efficiency. The evolution of the automobile requires a new software develop-
ment model that is more flexible, modular, and capable of addressing increasing
complexity. This model is represented by SOA, which will be analyzed in the
following section.

3.1.2 Service-Oriented architecture: modularity and flexi-
bility

SOA is the answer to the need for modularity and reusability in automotive
software. In an SOA, vehicle functions are implemented as independent services,
published and dynamically discovered through an intermediate layer called mid-
dleware, which is located between the operating system and the applications
and uses standardized interfaces (APIs). This level of abstraction allows the
software to be decoupled from the underlying hardware, allowing services to be
transferred from one ECU to another or reused on different platforms, regardless
of the specific vehicle configuration. This is also shown in Figure 3.1.

Adopting a secure SOA framework simplifies all phases of development, from
design to maintenance, enabling a more agile and efficient software lifecycle.

19

ET AL.

Each service, such as speed control or adaptive lighting management, can be de-
veloped, tested, and updated independently. Communication between services
takes place according to standardized paradigms such as RPC (remote procedure
calls) or publish /subscribe, often implemented via protocols such as SOME /TP
or DDS. This allows for a distributed architecture, which can also be extended to
third parties, where updating a single service does not require reconfiguring the
entire system [7].

In the automotive context, SOA is typically implemented following the AU-
TOSAR Adaptive standards, which work alongside AUTOSAR Classic, de-
signed for real-time and deterministic components. The Adaptive environment
is designed for data-intensive systems and allows the use of technologies such as
POSIX, C++, and middleware protocols such as SOME/IP, mentioned above and
now among the most widely used in the industry for ECU interoperability.

Service-Oriented Architecture

HW 1 HW 2
Service A Service C
........ Use
................................. 4
........... Use.
ServiceB e U Service D
.. .
. _

Network + Middleware

Figure 3.1: Service-Oriented architecture

SOA features The key features of an SOA include [6]:

e Loose coupling: services are independent and communicate through stan-

dard middleware (such as SOME/IP).

e Modularity: individual services can be developed, tested, and deployed sep-
arately.

« Portability: services can be run on different ECUs or moved during the
vehicle’s life cycle.

e Scalability and reusability: a service can be reused in multiple vehicles
and configurations, promoting development efficiency.

20

3 — Background and Technological Principles

e Dynamic updatability: even after the vehicle is purchased, services can be
updated or enhanced with new features.

e Abstraction and autonomy: each service is defined only by its interfaces
and manages its own lifecycle autonomously.

o Composability and discoverability: services can be composed into com-
plex applications and are dynamically discoverable, even by third parties.

This approach drastically reduces integration complexity and enables
faster development cycles with fewer errors and fewer testers. According to
industry estimates, validation cycles can be reduced from several months to a few
weeks, with positive impacts on time-to-market and operating costs.

SOA also redefines collaboration between OEMs and suppliers: while
the OEM keeps responsibility for the general architecture and reference framework,
the implementation of individual services can be outsourced to external suppliers
or third-party developers. This open model allows new players — even outside
the traditional automotive ecosystem — to develop applications for the vehicle
without needing detailed knowledge of the underlying hardware. This encourages
competition, expands the available functionality, responds quickly to market needs,
and brings the automotive user experience closer to that of personal devices such
as smartphones or smart TVs.

3.1.3 Comparing traditional and SOA approaches

As discussed in sections 3.1.1 and 3.1.2, vehicle software architecture has been
evolving from the traditional monolithic model towards a service-oriented paradigm.

Monolithic architectures concentrate all functionality in a single integrated
system, with a strong dependency between components. This approach, his-
torically adopted in the automotive industry, offers simplicity in the initial devel-
opment phases but is rigid and not very flexible when it comes to maintenance,
updates, or scalability.

Service-oriented architecture, and more generally a microservices model that
shares modularity and functional independence with SOA, introduces a more mod-
ern paradigm. The software is divided into independent and loosely coupled
components, each with a well-defined functional logic and the capacity to oper-
ate autonomously. This structure allows for more agile development, dynamic
updates, and greater adaptability to market changes or the needs of the end user.

Below is a direct comparison of the two models, highlighting their advantages,
disadvantages, and practical impacts in the field of automotive software develop-
ment.

21

ET AL.

Monolith Microservices
|
|
1
,]
|
1
|

|
EN ..

Figure 3.2: Monolith vs microservices [22]

Time-to-market and flexibility The reuse of software components in the
shape of services makes the development of new features much faster, as develop-
ers do not have to build every feature from scratch. In a monolithic architecture,
every new feature may require integration into an already complex and interdepen-
dent system, significantly slowing down release times. In contrast, an SOA-based
system allows for frequent iterations and shorter development cycles.

Extensibility and scalability SOA architecture makes it easier to adapt soft-
ware to new markets and platforms. Each service can be adapted or replicated in
different contexts without having to redesign the entire application. This is partic-
ularly useful in the automotive industry, where different hardware configurations
can coexist. Furthermore, thanks to the distributed nature of SOA, it is possible
to selectively scale the most requested individual services, whereas in a monolithic
system the entire application must be scaled, with a high waste of resources.

Maintenance and upgradeability In a monolithic system, even the smallest
change requires global retesting and redistribution of the entire application, in-
creasing costs and risks. SOA allows for timely and localized updates, improving
software lifecycle management and drastically reducing the risk of bug propaga-
tion.

22

3 — Background and Technological Principles

Debugging Debugging monolithic applications is more direct as it takes place in
a single environment, but can become extremely complex in large systems. In mi-
croservices, each component must be analyzed separately, but their independence
allows for better traceability of problems.

Implementation and deployment Monolithic applications are easier to de-
ploy, as they require the installation of a single software package. However, this
approach limits flexibility and introduces infrastructure constraints. Microservices
require more sophisticated deployment management (e.g., containers, orchestra-
tors), but offer independent deployment, which is essential for continuous delivery
scenarios.

Efficiency and costs Although the initial cost of a monolithic project may
seem cheaper, microservices are more cost-effective in the long run. They allow
for more efficient use of computational resources (horizontal scalability) and reduce
maintenance costs. In particular, independence from a specific hardware platform
avoids the need for costly adaptations to legacy systems.

Reliability and resilience The functional separation of services in an SOA ar-
chitecture allows for greater resilience: a localized malfunction has minimal impact
on the system as a whole, reducing the risk of critical downtime. In a monolithic
structure, on the other hand, a bug can compromise the entire application, with
serious consequences for the performance of the vehicle. [8]

An overview of the advantages and disadvantages of the two architectures sum-
marized is shown in the Figure 3.3.

In summary, the comparison between the two architectures confirms the find-
ings already outlined in the theoretical analysis of Service-Oriented Architecture
(Section 3.1.2): the SOA approach offers a concrete and structured solution to
the increasing complexity of automotive software systems. Its adoption entails not
only a technological shift, but also a cultural and organizational one.

While monolithic solutions may still be suitable for simple or legacy systems, the
growing demand for dynamic and flexible E/E (Electrical /Electronic) architectures
clearly points to service-oriented paradigms as the foundation for future automo-
tive developments, particularly in enabling advanced scenarios such as Vehicle-to-
Everything (V2X) communication, cloud-based integration, and dynamic
service orchestration in connected vehicles.

23

ET AL.

Structure

Communication &
Integration

Flexibility & Updability

Reusability &
Maintainability

Scalability

Time-to-market

Compatibility with

Software-Oriented

Architecture

Tightly coupled and
monolithic components

Limited and rigid

Difficult to adapt or update
modules

Components are partially
reusable

Limited

Slow

Requires adaptation

Service-Oriented
Architecture

Modular and independent
services

Based on standard APIs,
easy to integrate

Services can be modified
without system impact

High reusability, thanks to
isolation

High, safe to add new
services

Faster

Natively compatible

SOME/IP

Figure 3.3: Comparison between Software-Oriented and Service-Oriented archi-
tectures

3.2 Zonal architecture: evolution of E/E

As a natural extension of the SOA described in the previous section, vehicle hard-
ware architecture is also undergoing a transformation. In response to increasing
functional complexity, the centrality of software, and a need to reduce costs, clas-
sic decentralized E/E architectures based on a multitude of dedicated ECUs and
extensive wiring are giving way to zonal architecture: a more modular and
scalable structure that integrates well with SOA principles.

3.2.1 Overcoming the decentralized model

Traditionally, automotive E/E architectures are based on a decentralized model:
each function is implemented in a dedicated ECU connected to a network of wiring
that extends through the entire vehicle. This structure has supported the evolution
of vehicles for years, but has reached its limits in terms of weight, cost, maintain-
ability, and scalability. Wiring, for example, is now the third heaviest and most
expensive component in a modern car, after the engine and battery [9].

24

3 — Background and Technological Principles

With the continuous introduction of new features — ADAS, infotainment, con-
nectivity — the continuous addition of ECUs and cables has further increased
complexity. The hardware-first paradigm, where software is adapted to exist-
ing hardware, has proven inefficient. In contrast, modern architectures follow a
software-first logic, where software defines the architecture and hardware require-
ments, creating what we now call SDVs, as mentioned in previous sections.

The zone concept Zonal architecture divides the vehicle into macro areas
(zones), each managed by a high-performance zonal ECU (often a multicore SoC).
These ECUs are connected to local sensors and actuators and communicate with
each other via a high-speed Ethernet backbone. Zones are defined based on
physical location (e.g., front left zone) or function (e.g., infotainment, active
safety). This enables:

e a drastic reduction in the number of ECUs,

e significant optimization of wiring,

« more modular and scalable management of functionality,
e casier maintainability,

o hardware consolidation that allows multiple functions to be unified into mul-
tifunctional control units.

Features that in the past would have required a dedicated control unit, such as
adaptive lighting or window management, can now be performed by zonal ECUs or
even by a central High Performance Computer (HPC), which acts as a coordinating
node for the entire vehicle.

Ethernet as a communication backbone The heart of the zonal architecture
is the Ethernet backbone, which enables data exchange between zones and to any
central HPCs. Speeds reach 1-10 Gbps, sufficient to handle video, radar, LIDAR,
and other data-intensive applications. The use of Ethernet, together with support
for Time-Sensitive Networking (TSN), ensures minimal latencies and determinism,
which are essential for active safety systems.

Furthermore, a multi-protocol approach is still necessary: peripheral local net-
works can continue to rely on traditional protocols such as CAN, LIN, or FlexRay,
but interfacing transparently with the Ethernet backbone via zone controllers.

One of the main advantages of this model is flexibility: software services can
be dynamically reassigned to different ECUs or HPCs, depending on operating
conditions or available resources. The hardware thus becomes programmable, and
the functional configuration can be varied not only during production but also
after sales, with OTA (Over-The-Air) updates.

In economic terms, it is estimated that the transition to a zonal architecture
can significantly reduce development, maintenance, and production costs. The

25

ET AL.

simplification of wiring, standardization of modules, and reduction of dedicated
ECUs lead to a drastic reduction in vehicle weight, also contributing to greater
energy efficiency, which is particularly important in electric vehicles.

Finally, thanks to the close integration between zones and the fast communi-
cation guaranteed by the Ethernet backbone, the vehicle system can respond in a
coordinated way to critical events. In scenarios such as emergency braking, sensors
in the front zone (cameras, radar, lidar) send signals in real time to the zonal ECU
or the HPC. These, via the network, activate a series of events in a matter of mil-
liseconds: brakes are applied, seat belts are tightened, headlights flash, windows
are lowered, airbags are activated, and warnings are displayed on the screens. All
this is achieved by exploiting the synergy between local sensors and central logic
[10].

P, S
rr ‘7" 26GHz
r. —_— _ ' ; (BEFA \\
y_ .

)
 Sensor \\.\

>1Gbps

/ W/ .II
[\/ \
@ Sensor Zone ECU < Sensor .))
e T7GHz

(ﬁ&#‘ﬂn

* Sensor B : 4 _LSeﬁsor f
\° = “Jn. ®)
® d (FEREFA)
N ’
S
g

Figure 3.4: Zonal topology [20]

As we will see in the following chapters, this hardware architecture, combined
with service-oriented middleware, provides the technical and conceptual basis for
the development of modern, agile, and interoperable SDV platforms.

3.3 The V-Model

One of the most widely adopted development models in the automotive industry is
the so-called V-Model (where V stays for verification and validation), an approach
that divides the development process into two distinct but mirrored branches:
requirements gathering, design and software development on the left branch, while
validation are on the right branch, followed by release. Each definition activity on
the left side has a corresponding validation phase on the right side, which allows
for traceability and quality control of the product.

26

3 — Background and Technological Principles

Each of these phases begins with a formal document and ends with another,
allowing different parties to perform each phase with minimal overlap.

In the automotive context, the V-Model is the basis for fundamental regulatory
standards such as ISO 26262, which defines requirements for functional safety in
the automotive industry, and ASPICE (Automotive Software Process Improve-
ment and Capability dEtermination), which allows OEMs to check the quality
of the software supplied to them. The widespread adoption of these standards
has further established the V-Model as the dominant development framework for
safety-critical systems, including automatic braking, Advanced Driver Assistance
Systems (ADAS), and autonomous driving technologies [12].

Figure 3.5: V-Model

The process begins with requirements gathering, in which the desired func-
tionalities and operating modes of the system are precisely formalized. It is essen-
tial that this phase is conducted accurately, as the entire success of the development
depends on the clarity and consistency of the initial requirements.

Next, system design defines the overall architecture, the software and hard-
ware components, the ECUs involved, their interaction, and the network topol-
ogy. The design can make use of advanced modeling environments (such as MAT-
LAB/Simulink or PREEvision) that allow the behavior of the system to be simu-
lated in realistic scenarios. The first tests carried out on these models are called
Model-in-the-Loop (MiL).

27

ET AL.

This is followed by software development, often implemented in C lan-
guage and following AUTOSAR guidelines. During this phase, automatic tests
Software-in-the-Loop (SiL) are often performed to validate the behavior of the
software in simulated environments, still without physical hardware.

Finally, the integration phase gets started, in which the software components
are assembled and implemented on the physical ECUs. All these phases are for-
mally documented and tracked. Testing in this phase includes both simulations in
Hardware-in-the-Loop (HiL) environments and tests on real vehicles. [11]

From Figure 3.5, we can see the different phases. On the right-hand side,
we have the specific tests associated with each phase: unit testing for individual
software modules, integration testing for interactions between modules, system
testing to verify the entire system, and acceptance testing to ensure compliance
with the initial requirements. Techniques such as MiL, SiL, and HiL are used to
simulate real-world scenarios and validate system behavior.

The main advantages of the V-Model are:

e Structured and transparent approach, with clearly defined phases. It
synchronizes the development, testing, and validation phases.

e Advance test planning, which allows bugs to be identified early, saving
substantial costs.

 Regulatory compliance, thanks to the production of accurate documen-
tation and the traceability of design decisions, it is possible to demonstrate
compliance with automotive safety standards.

« High product quality, facilitated by continuous verification and formal
validation.

« Risk minimization, thanks to early testing.

However, this model also has some limitations, especially in the view of the new
demands of the automotive industry:

« Rigidity: it is not very flexible in handling late changes or iterative cycles,
making customer feedback complicated;

o High costs and long lead times, especially for prototyping or limited
production projects;

o Long development cycles, which are incompatible with the need for rapid
time-to-market;

o Laborious documentation, which can increase overall costs in terms of
time, resources, and expenses;

28

3 — Background and Technological Principles

o Difficulty of application in agile contexts, where requirements evolve
dynamically.

For this reason, more dynamic approaches are emerging that integrate agile
methodologies into the traditional V-Model (Agile-V), or that reinterpret its struc-
ture in a more iterative and collaborative way, such as the DevOps paradigm or
continuous verification and validation throughout the software development life-
cycle, integrating the phases rather than separating them.

One of the most promising developments in this sense is the adoption of Model-
Based Development, a methodology that uses models to represent software
behavior. It allows testing and simulation to be performed as early as the design
phase using tools such as MATLAB/Simulink, increasing the efficiency of the V-
model. This approach has made it possible to detect bugs earlier, achieve greater
safety and reliability, and reduce development time in the early stages. The model,
validated through MiL testing, then becomes the basis for the embedded code,
which is either generated automatically or written by hand.

Despite its limitations, the V-Model remains an essential reference for ensuring
safety and quality in automotive software development. However, as will be seen
in the next section, the increasing level of complexity of systems and the expansion
of SDVs require an evolution of design methodologies.

Although many of the phases followed still reflect a structure inspired by the
V-Model — such as requirements definition, architectural design, and subsequent
functional validation — the approach adopted has been deeply model-based and
iterative.

In this context, Model-Based Systems Engineering MBSE represents a
natural extension and evolution of the V-Model, and the project of this thesis is a
concrete example of the evolution of the traditional paradigm.

The choice of a model-based approach, also supported by the automatic gener-
ation of artifacts (such as ARXML files or SOME/IP configurations), has allowed
for greater traceability, simulability, and modularity compared to a workflow based
exclusively on static documentation and post-development verification. This made
it possible to iterate quickly between design, simulation, and validation, anticipat-
ing errors and improving the efficiency of the development cycle, even on embedded
platforms.

3.4 Model-Based Systems Engineering in the au-
tomotive sector

MBSE does not aim to replace the V-Model entirely, but rather evolves it by

introducing an iterative and incremental process centered on the use of executable

digital models. Unlike the traditional V-Model, where testing and validation
occur mainly in the final stages, MBSE enables early simulation of system behavior,

29

ET AL.

allowing for the prompt identification of errors, inconsistencies in requirements,
and integration issues between software and hardware components. This leads to
cost reduction and faster time-to-market.

This model-driven approach responds to the increasing need for modularity,
traceability of requirements, and early validation, which traditional methods
based on manual documentation, reliant on static diagrams and isolated specifi-
cations, struggle to address. In MBSE, the hardware, software, and communica-
tion architectures are represented through formal, executable models that describe
system behavior, structure, and interactions in a consistent and automated way.
These models are used throughout the development lifecycle to design, simulate,
verify, and document the system, and sometimes even to generate code.

The advantages of MBSE extend to all levels of the development cycle, par-
ticularly in highly complex sectors such as aerospace, medical, and, of course,
automotive.

In the automotive industry, this methodology has gained wide adoption, sup-
ported by tools such as PREEvision, AUTOSAR, and MATLAB /Simulink.
In particular, PREEvision — used in this thesis project — enables the integra-
tion of requirements, logical architecture, and network configuration into a unified
platform, supporting a consistent and realistic implementation of architectures.

Furthemore, MBSE in this context, is better suited to handling changes in
requirements during development, as all stakeholders (OEMs, Tier-1s, and valida-
tors) work on a shared representation of the system.

MBSE integrates effectively with advanced engineering practices, including:

o Data centralization: models consolidate requirements, architecture, logic,
and tests into a single platform, reducing ambiguity and inconsistencies.

o Architectural design: logical, software, and hardware structures and their
interactions can be described graphically.

o Early simulation and validation: models enable scenario simulation and
behavior validation, identifying design errors before the implementation phase.

» Life cycle management: all system artifacts are traceable; requirements
are mapped to software and hardware components, improving development
management.

o Integration with advanced toolchains: many MBSE tools support ex-
port/import in standard formats such as ARXML (AUTOSAR), facilitating
integration into the industrial workflow.

The model-based approach can be divided into several branches, each with
specific focuses and outputs:

30

3 — Background and Technological Principles

Model-Based Development (MBD): focused on the development of algo-
rithms and control logic; produces C code autogenerated from environments
such as MATLAB/Simulink, ready for embedded integration.

Model-Based Systems Engineering (MBSE): focused on modeling soft-
ware/hardware architectures and functional system requirements; uses tools
such as PREEvision or Capella.

Model-Based Testing (MBT): enables the automatic generation of test
scenarios (MIL, SIL, HIL) from models; mainly used in the validation phase.

Model-Based Communication Design: focuses on the design and con-
figuration of communication networks, generating standard configuration files

(DBC, ARXML) for protocols such as CAN, FlexRay, or SOME/IP.

A typical use case in the automotive sector could follow the flow described
below:

Modeling of functional and safety requirements;

Definition of the software architecture (e.g., AUTOSAR Adaptive compo-
nents) and hardware (e.g., zonal ECU);

Validation of communication flows and network configurations (e.g., radar —
control unit — actuators);

Automatic generation of ARXML configuration files.

MBSE, therefore, provides a solid methodological basis for the development of
distributed, interoperable, and scalable architectures, such as service-oriented
and zone-based, which will be the subject of analysis in the following chapters.

Starting from the next chapters, PREEvision modeling will be introduced,
the tool adopted for architectural modeling in the project described in this thesis,
showing how it applies the principles illustrated in this chapter.

31

Chapter 4

Tools and Technologies for
SOA Automotive
Development

This chapter analyzes in detail the tools and protocols used for designing service-
oriented architectures in the automotive sector. In particular, it explores the use
of PREEvision for E/E modeling and the SOME/IP protocol for implementing
communication between ECUs.

4.1 PREEvision: a model-based tool for E/E de-
sign

In the context of the growing complexity of electrical and electronic (E/E) sys-
tems in modern vehicles, advanced architectural modeling tools are playing an
increasingly central role. Among these, PREEvision, developed by Vector Infor-
matik 1 , is one of the most advanced MBSE tools and facilitates the design and
management of complex E/E architectures. It supports the entire design lifecycle,
from requirements collection to wiring generation, integrating software, hardware,
communication modeling and validation in a consistent and shared environment.

PREEvision, follows a model-based approach, which allows all dimensions of a
vehicle architecture to be represented in a single, centralized platform, as men-
tioned in the previous chapter. Following the basic principles of systems engineer-
ing — abstraction, decomposition and reuse — the tool allows complex projects to

Wector Informatik is the leading manufacturer of software tools and integrated components
for the development of electronic systems and their interconnection with many different systems,
from CAN to automotive Ethernet.

Vector has been a partner to automotive manufacturers and suppliers and related industries
since 1988.

32

4 — Tools and Technologies for SOA Automotive Development

be managed through a hierarchy of interconnected levels, each of which represents
a specific view of the system. (Figure 4.1) This makes it possible to model different
product lines and architectural variants [15].

Requirements

Logical Function
Architecture

Software/Service
Architecture

Hardware
Architecture

Diagnostics
Communication

Wiring Harness

Figure 4.1: PREEvision layers [15]

PREEvision’s integrated data model includes:

e« Requirements and change management: representation of functional
and non-functional requirements and enables complete tracking of changes
and dependencies between system layers.

e Logical architecture: modeling of functions in abstract terms independent
of implementation.

o Software architecture: definition of software components, services, inter-

faces according to AUTOSAR standard.

« Hardware architecture: modeling of ECUs, sensors, actuators, and other
physical devices.

o« Communication design: facilitates the configuration and optimization of
CAN, LIN, Ethernet, and FlexRay networks.

« Wiring and geometry: design of the wiring harness and physical routes in
the vehicle.

e Simulation and validation: includes tools for consistency analysis and sys-
tem behavior simulation, even before physical implementation.

33

ET AL.

These layers are organized vertically, representing a flow of increasing abstrac-
tion, from geometry to software. In parallel, the horizontal direction allows func-
tional decomposition (both top-down and bottom-up), while a third orthogonal
dimension allows the modeling of variants and reuse on each layer of the model

[14].

The connection between the different layers of the model is ensured
through a system of mappings, which logically links requirements, functions,
software components, ECUs, and wiring, allowing for consistent management of
dependencies and changes at every stage of the design.

Every element modeled in PREEvision is an integrated part of a centralized
database, accessible by multiple users and locations. This ensures not only end-
to-end traceability of every edit, but also effective collaboration between OEMs,
suppliers, and multidisciplinary teams, ensuring consistency even when changes or
adaptations are made for new vehicle generations.

A further strength of the multi-level approach adopted by PREEvision lies in
the separation between logical architecture and physical implementa-
tion: many vehicle functions can be modeled at an abstract level, independent of
hardware and software, allowing the logical structure to remain stable over
time, even when the underlying platforms (software and hardware) are updated.

4.1.1 Support for AUTOSAR classic and adaptive

One of the distinctive features of PREEvision is its native support for AUTOSAR
standards [16], both in the Classic and Adaptive versions. For the latter, which
has been the main focus in this thesis project and is intended for software-defined
vehicles and service-oriented communications, PREEvision provides a dedicated
user interface for defining:

« Services and interfaces (SOME/IP, DDS)
o Application, service, and ECU manifests

o Ethernet topology and software-to-hardware mapping

The Adaptive Ezplorer enables modeling in line with AUTOSAR Adaptive stan-
dards, guiding the user through the design of services, software, and network
topologies. In addition, it enables the automatic export of all relevant configura-
tions in ARXML format — including service interface descriptions, application and
service instance manifests — thus enabling integration with external toolchains for
code generation, system configuration, and behavior simulation, improving inter-
operability with other tools and project partners.

34

4 — Tools and Technologies for SOA Automotive Development

Automotive trends

Connectivity (IoT)

\’
o0 N
@
y

» Infotainment

Automated Driving

O

-
-
B X
>

» Sophisticated sensors
» Sensor fusion » Cloud Services

» Security » V2X

» Safety » Security

» Highly complex algorithms » OTA Update

» High definition maps » Remote Diagnostics

» Map updates » Automotive APP Store

Electrification

» Start/Stop

» Sailing

» Hybrid

» Multi Voltage

» Charger communication

New requirements

Interoperability
with Classic Libraries for high
performance computing

File handling

Good Hardware Update of Software

Abstraction
Multi/Many Core
support \
_—

Safety

Connection to non-
__— AUTOSAR Services
Service Oriented
Architecture

Adaptive
Platform

>

Realtime Diagnostics

Common Methodology Easy configuration
for Classic and Adaptive 24
Faster Development

New Pregramming Security Cyeles

Model

Figure 4.2: AUTOSAR adaptive [21]

4.1.2 Advantages in the automotive sector

The use of PREEvision in the automotive sector offers numerous advantages:

e Reduction in development time and costs, thanks to early validation

and automation.

» High design quality, facilitated by simulations, consistency analyses, and

compliance with standards.

o Multi-site collaboration and centralized change management.

o Flexibility and reuse of models across multiple vehicle variants and gener-

ations.

e Scalability, from small projects to complex SDV architectures.

In the project described in this thesis, PREEvision was used for service-oriented

architecture modeling.

It allowed to define software components and design SOME/IP interfaces be-
tween ECUs, define functional requirements, keeping consistency between the dif-
ferent logical and physical levels. This approach has made it possible to transform
the principles of MBSE into concrete artifacts, significantly reducing development
times and improving the consistency of the entire design process.

35

ET AL.

4.2 SOME/IP protocol: middleware for Service-
Oriented architectures

In the context of the evolution of vehicles towards SDVs, the need to manage an
increasing amount of data in real time and in a flexible way has driven the automo-
tive industry to move away from traditional signal-based communication models
(such as CAN, LIN, and FlexRay) towards a service-based paradigm. This change
has made it necessary to adopt technologies that guarantee high performance,
interoperability, and scalability. (Figure 4.3)

Diagnostics and '
Flash Update

Infotainment systems Diyvers Assisince Eltipmet Fiwan
e.g. RSE connectionor €-g- surround view Backbone
AV transport [T @

Figure 4.3: Typical use cases of the SOME/IP protocol in automotive systems [18]

In this scenario, Ethernet has emerged as the reference standard for meeting new
communication requirements inside and outside the vehicle, thanks to its reliability,
bandwidth (up to 1000 Mbps), and compatibility with established protocols such
as TCP/IP and UDP. However, the direct use of Ethernet is not sufficient to meet
the specific requirements of the automotive sector. It is therefore necessary to
introduce middleware that enables fundamental features such as:

e Data serialization — ensures interoperability between ECUs with different
operating systems and hardware architectures by transforming data into and
from on-wire representations appropriate for network transmission.

« Remote Procedure Call (RPC) — allows remote invocation of functions be-
tween client and server ECUs, with or without return values, i.e., the client
can request data as a response or simply call a function to execute certain
tasks on the server side.

36

4 — Tools and Technologies for SOA Automotive Development

o Service Discovery (SD) — allows dynamic discovery of services available on
the network. In a service-oriented architecture, it is essential that a service
can be found.

o Publish/Subscribe — enables efficient transmission of data only to clients that
explicitly request it.

The middleware that implements all these features is SOME /IP, introduced
by BMW in 2011 and now integrated into the AUTOSAR Adaptive standard.
The protocol is the best way to set up dynamic communication between ECUs in
a service-oriented architecture.

The behavior is also illustrated in the Figure 4.4.

Client Server
Visible: ‘ App. ‘ App.
Interface
I
SOME/IP Middleware
Visible: |—
- '

Figure 4.4: How SOME/IP works on Ethernet backbone [18]

Automotive Ethernet Network

From signal-based model to service-oriented communication In tradi-
tional architectures, communication between ECUs was statically defined: each
signal was transmitted regardless of the actual need of the receivers. This ap-
proach, suitable for systems with static software and strongly linked to hardware,
tends to overload the network with redundant data, limiting flexibility and the
possibility of updating. However, assuming that the software would never change,
the signal-based model was the most suitable solution.

With the SOA paradigm, data transmission only occurs upon explicit request.
Server ECUs must be aware of which clients are interested in the data. This
mechanism allows the software to be decoupled from the hardware, improving
modularity, scalability, and efficiency.

Client-Server model SOME/IP follows a client-server architecture: a provider
offers services, and one or more clients can consume them.

Every service can expose [18]:

e« Methods, which can be invoked via RPC calls;
37

ET AL.

o Events, which notify changes asynchronously;

» Field, data structures that can be updated with getters, setters, and notifiers
method.

Supported communication types include:

« Request/Response — The client receives a direct response to the request
from the server.

%‘

\J Y

Figure 4.5: Request/Response

e Fire-and-Forget — The client sends a request without expecting a response.

Reqt”est

Figure 4.6: Fire-and-Forget

38

4 — Tools and Technologies for SOA Automotive Development

o Event — The server sends asynchronous notifications to subscribed clients,
either cyclically or when there is a change in one of the attributes managed
by the server.

Client Server

Figure 4.7: Event

« Field — Optionally includes getter (to read the value), setter (to update the
value), and notifier for dynamic data access.

%‘

y
gve™

Figure 4.8: Field

This structure supports both synchronous (critical for control) and asyn-
chronous (typical for infotainment or ADAS) communications, providing maxi-
mum flexibility.

39

ET AL.

Compatibility, transport, and segmentation SOME/IP uses TCP or UDP
as transport protocol over Ethernet and supports both IPv4 and IPv6. This en-
sures compatibility with legacy and modern networks, promoting interoperability
and integration in distributed architectures.

Furthermore, in the case of very large messages, the protocol implements UDP
packet segmentation logic, avoiding fragmentation at the IP level.

Service discovery and Pub/Sub The SOME/IP-SD (Service Discovery)
protocol is responsible for dynamic service discovery and is the main part of
SOME/TP.

The server can:
o send OfferService via multicast to announce services;

e respond to FindService requests from clients, in case the client has not re-
ceived the OfferService or explicitly requests a service;

« announce the deletion of services via StopOffer.

The Subscribe mechanism allows clients to receive only the events or groups
of events they are interested in, via messages:

Subscribe;

SubscribeAck, i.e., confirmation by the server that the subscription has been
successful;

SubscribeNack, i.e., rejection by the server due to service unavailability;

StopSubscribe, i.e., when the client cancels the subscription to an event.

Packet structure of SOME/IP SOME/IP messages use a structured format
designed for interoperability between heterogeneous systems. A typical SOME/IP
message, illustrated in Figure 4.9, contains an header that includes [23]:

e Service ID — uniquely identifies the service;

e Method/Event ID — identifies the specific method or event;

o Client ID - unique identifier for the calling client inside the ECU;
e Session ID — identifier for session handling;

o Length — contain the length in byte starting from Request ID/Client ID until
the end of the SOME/IP message;

e Protocol version and Interface version;
« Message Type — specifies the type (request, response, notification, etc.);

40

4 — Tools and Technologies for SOA Automotive Development

o Return Code - specifies the result of the request or indicates the type of
error that occurred during its processing.

The payload, serialized according to middleware rules, follows the header.

0| 1 |2\ 34 | 5 | 6 | 7 \ 8 \ 9 |10|11|12‘13‘14|15|16|1T‘18|19|20|21|22|23‘24|25|26|27|28|29‘30‘31 bit offset

Message ID (Service ID / Method ID) [32 bit]

eader

Length [32 bit]

Request ID (Client ID / Session 1D) [32 bit]

Protocol Version [8 bit] | Interface Version [8 bit] | Message Type [8 bit] Retun Code [8 bit]

Covered by Length

Payload [variable size]

Figure 4.9: SOME/IP header format [23]

Service Discovery (SD) messages, illustrated in Figure 4.10, are used to
dynamically advertise and locate services. These shall be sent over UDP and
composed of [24]:

o Service ID, always set to OxFFFF, and Method ID to 0x8100, identifying
the message as a Service Discovery packet;

» Protocol Version and Interface Version are both set to 0x01, indicating
the standard version of the SD protocol;

o Message Type is set to 0x02, which stands for a Notification;

e Return Code is set to 0x00, meaning that no error occurred;

e Client ID is always 0x0000 because only one SD instance exists;

o Session ID is an identifier for session handling. It must never be zero;

o Entries (such as 0fferService, FindService, Subscribe), with the corre-
sponding length;

e Options, with the corresponding length, are used to transport additional
information to the entries. This includes for instance the information how a
service instance is reachable (IP address, Transport Protocol, Port Number).

41

ET AL.

o[1]2]3]4[5][6]7]8]9]10[11]12[13]14]15[16]17]18]19]20]21]22]23] 24]25]26]27]|28[29]30[31

Message ID (Service ID / Method ID) [32 bit]
(= OxFFFF 8100)

Length [32 bit]

SOME/IP

Request ID (Client ID / Session ID) [32 bit]

Protocol Version [8 bit]
=0x01

Interface Version [8 bit] | Message Type [8 bit]
=0x01 =0x02

Return Code [8 bit]
=0x00

Flags [8 bit]

Reserved [24 bit]

Length of Entries Array [32 bit]

Entries Array

SOMENP SD

Length of Options Array [32 bit]

Options Array

T

Figure 4.10: SOME/IP-SD header format [24]

Y

\

Covered by Length

Covered hy Length

bit offset

Covered by Length

This format allows efficient real-time negotiation and setup of service-based

communication.

Advantages in the automotive context The advantages of the SOME/IP

approach are:

« High performance: ability to handle large volumes of data with low latency.

e Reliability: error handling and message receipt confirmation.

o Scalability: suitable for networks with few or many ECUs, making it the

ideal protocol for use in complex automotive systems.

o Efficiency: multicast support to reduce traffic.

o Standardization: compliant with AUTOSAR Adaptive, ensuring interoper-

ability between different automotive manufacturers and suppliers.

« Flexibility: independent of data format.

e Security: support for message encryption and authentication.

Practical example of use In a modern vehicle, when the driver enters the
destination, the navigation system’s ECU can send turn-by-turn instructions to
the digital cluster via SOME/IP messages. This ensures that the driver sees the
directions on the dashboard. The same data can also be used by the infotainment
system to provide additional information to the user, such as points of interest

42

4 — Tools and Technologies for SOA Automotive Development

or real-time traffic. This type of integrated and asynchronous communication
demonstrates the protocol’s ability to provide advanced user experiences and sys-
tem modularity [17].

Implementation with vSomelP In this project, vSomelP, an open source
implementation in C++ based on SOME/IP protocol, used in AUTOSAR Adap-
tive environment and developed by COVESA (formerly GENIVI) 2, was used.

It provides:

o API for defining and managing servers and clients;
o serialization and publication of events.

 discovery and subscription management;

Thanks to its compatibility with AUTOSAR and the modularity of its approach,
vSomelP made possible, in this project, to move from ARXML models exported
from PREEvision to a concrete implementation in testable C++ code.

SOME/IP is now a key element in the transition to SDVs and zonal E/E archi-
tectures. Supporting dynamic communication, interoperability and stan-
dardization, it represents a robust and scalable middleware for the integration
of distributed services in the intelligent vehicles of the future.

The theoretical concepts, technologies, and tools described in this chapter form
the foundation on which the developed project was built. The next chapter will
present the practical implementation of a SOA architecture based on PREEvision
and SOME/IP, highlighting the design choices, challenges encountered, and results
obtained.

2The Connected Vehicle Systems Alliance, previously known as the GENIVI Alliance, is a
non-profit automotive industry alliance that develops reference approaches for the integration of
operating systems and middleware in connected vehicles and related cloud services.

43

Chapter 5

Modeling a
Service-Oriented
Architecture with
PREEvision

This chapter describes in detail the architectural modeling process carried out
using PREEvision. The model created represents the entire software and hardware
architecture of a distributed system based on the Service-Oriented architecture
paradigm, in accordance with AUTOSAR standards. The modeling flow, which
is structured and hierarchical, covers all the fundamental phases of development:
it starts with the definition of functional requirements and then describes the
software and service architecture. Next, the hardware architecture is illustrated,
with particular attention to the mapping between software and hardware levels,
and the analysis of the communication level concludes the process.

5.1 Adopted development approach

In the project described in this thesis, a model-based engineering approach (Model-
Based Systems Engineering) was adopted, as described in Section 3.4, with the aim
of designing a Service-Oriented architecture conforming to the AUTOSAR
Adaptive standard and implementing it in a simplified zonal network topol-
ogy.

This approach made it possible to address the growing complexity of modern
vehicle systems by following a structured, traceable, and automatable flow, in line
with the needs of the contemporary automotive industry.

The complete workflow followed for the design, modeling, and implementation
of the architecture is shown in Figure 5.1.

44

5 — Modeling a Service-Oriented Architecture with PREEvision

The process is divided into two main phases: a first phase dedicated to architec-
tural modeling using the PREEvision tool, and a second phase of implementation
in C4++4 language, using the vSomeIP middleware, and run-time verification on
embedded boards. In particular, in the initial phase, both a software-oriented
system, based on traditional functional control units, and a service-oriented sys-
tem, in which the functionalities are implemented as interoperable services on an
Ethernet network, were modeled to see the significant differences.

The board used for practical validation is the miriac® SBC-S32G274A from
MicroSys, an embedded board based on the NXP S32G27/A automotive proces-
sor, with TSN Ethernet support, Cortex-M7 real-time core, and CAN, LIN, and
FlexRay interfaces. It is ideal for testing SOA architectures on Ethernet networks
thanks to native support for SOME/IP and compatibility with safety-critical en-
vironments [19].

C++
PREEVISION ARXML PYTHON SOME/IP DEPLOYMENT

MODELING EXPORT (G APPLICATION ON BOARD

PARSING GENERATIO

Figure 5.1: Project workflow

5.2 Modeling in PREEvision

For the modeling phase, PREEvision was used, one of the most comprehensive
MBSE tools for E/E engineering in the automotive sector, already discussed in
Section 4.1. The tool made it possible to create and compare two different archi-
tectural configurations:

« a first software-oriented architecture, in which the functionalities are imple-
mented through software components directly linked to specific ECUs, typical
of traditional architectures;

e a second service-oriented architecture, in which the functionalities are de-
coupled from the hardware and implemented as services according to the
AUTOSAR Adaptive standard, with communication based on SOME/IP.

Both configurations were modeled and mapped onto a simplified Ethernet net-
work reflecting a zonal logic.

The modeling performed in PREEvision followed a well-defined flow, divided
into the following four macro-phases:

1. Requirements definition: the functional requirements of the system were
described using the Requirements Management module.

45

ET AL.

2. Software design and service definition: the software components were
modeled with the various inputs and outputs according to the defined require-
ments. Subsequently, following the Service-Oriented approach, the services
were defined with their interfaces. In particular, the client and server entities,
methods, events, and fields to be communicated via the SOME/IP protocol
were specified.

3. Mapping to ECUs and network topology: each software component or
service provider/consumer was assigned to a specific ECU within a logical
Ethernet topology.

4. Export of ARXML files: finally, the complete configurations were exported
in ARXML format for use in the implementation phase with vsomeip.

This pipeline minimized the gap between design and implementation, improving
traceability, consistency between layers, and the quality of the resulting code.

The following paragraphs describe this phases and analyze in detail the two ar-
chitectural models developed (Software-Oriented and Service-Oriented), highlight-
ing the main differences, design choices, and benefits obtained from the transition
to the SOA paradigm.

5.3 Requirements definition

As a starting point for designing the Service-Oriented architecture, the functional
requirements for four main services were defined and modeled. Although simpler
than in a real system, these services were chosen as representative examples of
functionality that could actually be present in a modern vehicle E/E architecture.

The goal was not to replicate the full complexity of a real system, but to design a
modular and coherent structure that could serve as a foundation for demonstrating
the MBSE flow, ensuring multi-level consistency within the model, and enabling
seamless integration with the AUTOSAR Adaptive standard — with the potential
to scale to larger architectures in future developments.

The selected services are:

e Alternative Route Service — Calculates an alternative route for the driver
based on specific metrics.

e Driving Monitoring Service — Monitors driver behavior and sends alerts
if the attention level is low.

e Driving Hours Monitoring Service — Monitors and calculates the driver’s
driving hours and is linked to the Driving Monitoring Service.

o Traffic Condition Service — Analyzes traffic conditions and categorizes
them as 0 (low), 1 (medium), or 2 (high).

46

5 — Modeling a Service-Oriented Architecture with PREEvision

All functional requirements related to the modeled services have been formally
defined and reported in PREEvision using the Requirements Management module.

This tool allows each requirement to be associated with key attributes such as
hierarchical level, technical description, requirement type, and direct links to other
architectural elements (functions, software components, interfaces, etc.), ensuring
complete traceability throughout the development cycle.

In the context of the project, requirements were classified into three main cat-
egories:

« Requirement (shall): technical requirements that the system should meet
to ensure proper functioning. For example: “The position of the vehicle should
be updated at least every 5 seconds”. These requirements are verifiable, but
in some cases may allow for tolerances.

o Definition (must): binding requirements that the system must meet without
exception, as they are related to physical, normative, or safety constraints. For
example: “The vehicle must be equipped with front airbags for the driver and
passenger”. Failure to comply with a “must” requirement would compromise
the validity of the system.

o Information (can): requirements of a descriptive or informative nature,
that the system can fulfill to enhance quality, usability, or user experience.
For example: “The interior lights of the vehicle may turn on automatically
when the doors are opened”.

This categorization, adopted directly within PREEvision, has made it possible
to clearly distinguish between mandatory, desirable, and accessory requirements.
In addition, each requirement has been linked to its respective functions or compo-
nents, establishing a direct link between the initial requests and the actual imple-
mentations, according to the top-down traceability principles of the Model-Based
approach.

Below is an example of requirements gathering for the Traffic Condition Ser-
vice [Table 5.1].

Table 5.1: Example of Requirements for Alternative Route Service

Level | Text Type

1-1 1 AlternativeRoute Req Package
2-2 1.1 DataCollectionRealTime Req Package
3-3 1.1.1 Radar Is Heading

4-4 It should measure the distance and speed of other | Req (shall)
vehicles around, to detect slow traffic situations
to suggest alternative route

5-4 The radar must have a detection range of at least | Definition
100 meters and an update rate of at least 10 Hz | (must)

47

ET AL.

Level | Text Type
6-3 1.1.2 Camera Is Heading
7-4 It should detect the presence of traffic, obstacles | Req (shall)

or road works in real time to suggest a change of
route

8-3 1.1.3 GPS Is Heading
9-4 It should detect the current position of the vehi- | Req (shall)
cle and update it continuously (every second) to
ensure accurate alignment of the suggested route
with the actual position
10-4 | The GPS module must guarantee an accuracy of | Definition
at least +3 meters and support real-time posi- | (must)
tioning updates at 1 Hz or higher
11-3 1.1.4 InfoV2V Is Heading
12-4 The system need to integrate data from nearby | Req (shall)
vehicles, such as speed and location, to get an
up-to-date view of the traffic
13-4 Vehicles must be equipped with V2V-compatible | Definition
communication devices to exchange data on | (must)
speed, position and surrounding situation
14-3 1.1.5 Map Integration Is Heading
15-4 It should align updated data from online maps | Req (shall)
to check for road congestion, roadworks and ac-
cidents. It should calculate all possible route op-
tions from the current location to the destination,
highlighting alternate routes in case of problem
along the main route
16-4 The system must use a map provider with real- | Definition
time traffic updates and route recalculation APIs | (must)
accessible via HTTPS
17-3 1.1.6 BackendInfo Is Heading
18-4 | It should access stored traffic history to identify | Req (shall)
usual congestion areas and suggest routes that
typically remain less affected
19-4 | The backend must store at least 30 days of his- | Definition
torical traffic data, indexed by time, location and | (must)
road segments
20-2 1.2 DataAnalysis Req Package
21-3 1.2.1 RealTimeUpdated Is Heading
22-4 | The system should combine data from GPS, cam- | Req (shall)
eras, radar and V2V to continuosly update traffic
status, automatically recalculating the alterna-
tive route if traffic conditions change
23-3 1.2.2 SpeedAnalysis Is Heading

48

5 — Modeling a Service-Oriented Architecture with PREEvision

Level | Text Type
24-4 | It should monitor the average speed of both the | Req (shall)
vehicle and surrounding vehicles to identify slow-
down or congestion situations and update the
suggested route based on this information

25-3 1.2.3 BackendIntegration Is Heading
26-4 | The system should be able to access alternative | Req (shall)
routes already calculated by the backend and
should receive real-time updates on traffic con-
ditions from the cloud, which may affect the sug-
gested routes

27-3 | The system can take into account seasonal traffic | Info (can)
variations (e.g., holidays, school closures, typical
summer congestion) to refine route suggestions
28-2 1.3 Output Req Package
29-3 | The output is the definition of an alternative | Req (shall)
route possibly with an audible signal on the info-
tainment system

5.4 Software architecture

After defining the requirements, the software architecture was modeled following
a functional scheme inspired by the AUTOSAR Classic paradigm.

The software architecture was modeled entirely within the graphical environ-
ment provided by PREEvision. In this phase, the application software components
and their logical connections were defined, independently of their physical imple-
mentation and assignment to the ECUs.

As shown in Figure 5.2, the design flow adopted in PREEvision for exporting
the ARXML file follows a well-defined sequence of steps, starting with the mod-
eling of the software and hardware architecture. Once these two levels have
been defined, the software components are mapped to the physical ECUs
explicitly establishing on which control unit each component will be executed.

Once the mapping is complete, PREEvision allows automatic configuration
of communication between components via data elements, which describe the
information exchanged by the logic blocks. The signal router, a function integrated
into the tool, automatically generates the signals and their transmissions based
on the mappings made and configures the routing for the network. This makes
it possible to design communication on CAN, LIN, FlexRay, or Ethernet buses,
ensuring consistency between the software and physical levels.

All these steps are preparatory to the export of ARXML files, which represent
the standard AUTOSAR artifacts that can be used in subsequent low-level software
development phases.

49

ET AL.

CAN

Software Dat LIN
ARXML Hardware Ma e in Signal Routing ARXML
Mapping apping FlexRay

Software Design

0
0

Hardware Design
Import Ethernet

Figure 5.2: System and software design process in PREEvision [15]

The model was not imported from ARXML files, but the modeling process
was carried out entirely from scratch. Furthemore, in this phase, the generation
of physical signals, such as those on CAN buses, was not included, as this had
already been addressed in previous theses by Luca Valentini and Giovanni Musto
and was not central to the objectives of this work. The focus was on the evolution
towards a service-oriented architecture: as will be seen in the following paragraphs,
only in the Service-Oriented context have communication signals been effectively
modeled, in particular using the SOME/IP protocol.

Within this workflow, one of the central activities is the software design phase,
which is described exclusively in this section, while hardware design and mapping
to physical nodes will be covered in subsequent paragraphs.

Each Application Software Component has been defined as a functional
block equipped with communication ports (Sender Port and Receiver Port), through
which it exchanges data with other components or with virtual peripherals. The
ports are in turn associated with interfaces defined by Sender/Receiver In-
terface (SRI), which describe how the components interact. Each interface is
characterized by one or more Data Elements (DE), which represent the infor-
mation entities exchanged within the system and are associated with a data type
(Application Data Type).

Sensor and Actuator SW Components were used to represent the input
and output points of the system, simulating the acquisition of signals by sensors
or the activation of actuators, respectively. In this context, a sensor typically has
only sender ports, while an actuator has only receiver ports.

50

5 — Modeling a Service-Oriented Architecture with PREEvision

Figure 5.3 shows a concrete example of the Traffic Condition Service mod-
eled in PREEvision, in which are visible:

the Application Software Component;

the connections via SRI interfaces;

the associated Data Elements;

the mapping with the previously defined functional requirements.

In this example, the main application component is the Alternative Route
Controller, which is responsible for the route recalculation logic.

Among the inputs, there is, for example, a Sensor Software Component
called Radar Info, modeled to simulate the collection of environmental information.
This component sends data via a Sender Receiver Interface RadarInfo SRI,
which is associated with the Data Element RadarSensor DE. The latter repre-
sents the information value transmitted to the controller, which uses it as logical
input.

At the output, the Alternative Route Controller produces a result through
the AlternativeRoute_ SRI interface, connected to the Data Element Alternative
Route DE, which transmits the information to an Actuator Software Compo-
nent called Alternative Route Actuator. The latter represents the block responsible
for managing the command to the physical system, thus completing the functional
chain from the sensor to the actuator.

Each component has been graphically linked to the others in a coherent data
flow, and the overall structure has been kept aligned with the requirements de-
fined above (Section 5.3). Furthermore, direct mapping between functional blocks
and requirements is not mandatory but is extremely useful for ensuring design
consistency and end-to-end traceability.

Finally, it should be noted that the focus of PREEvision in this phase is on
architectural design — and not code implementation — according to the AU-
TOSAR methodology. The generated artifacts, such as ARXML files, can then be
used in external environments for actual software development.

All design choices made in the context of this modeling have been deliberately
oriented towards simplicity, with the aim of focusing on the methodological
process of building the architecture, rather than on the exact reproduction of the
behavior of a specific vehicle service.

51

oy Josuss) [+ / ojujpusyoeg jadi

18510022% DY - oJulpudeg o' L'y mnm

lagram

14T O4UIPUNEE: LOEHO] SRPUSS

] opupUaNaEg

emay Josuss) vy - 7 ojuf AZA Bl

aepdnpwileay 17y

uoneibaupUNReg £ 7 fa TYSTO4UIAZA EGZHO J2PLRS

|

AN T LF 25E

L) OJUTAZA

9y JOSuaS) |- / UOiSo4sds) adA)

+

/307 ojupuayeg/

f
-/3g7ojur Az,
sdguonisod/-} q

145 sdouoipsodisEENOd J2PUS

5d9 ULy g==

(adf} jusuodiion Mg uonesiddy) L +4 - /i8jjeiuodainoyenews))y sdi}

L uosngsds

985100Z/% 0IY - ndin

(2dd} uoiisoduwion) |+ ¢ sdeyy edf)’

145 OJUIPUINIBRIGSEUIOG JANRIAY

R = s opusdepyizeHod i3puas
145 OMITAZAISFENOG IBNBIRY [o~ sdaw
145" SA9UORISOdFPEND ;AN0RY |

-/3q

voneibaudepy g1y 5 fv_

UL fIOJENIOYRInON ALY BdA] 145 ousdRESEMO JAAI23Y | {-/3a"oguisdep/}

[450JU[BIRWEINSEND IBARBY |« {30 ojuje1zwed/} “09) pad= 7 ebewspwe) wapxg adfi]
5 ~ - TS OUlEPRHFENO JANIY |-
. TS T3IN0YSANBUISYY: LpEHO 13AR3Y | <~ (/30 SINOYIAIELISY/ g Y5 PINOHBARLISIY: LOEHOG J3pUSS elwe) £
- ADJENIF AN0YRAEUIEY Y | A0S aIN0YaAELEYY | I¥SOJUIBISWEY: [EHOd 13PURS

afBwRawe UIERg

EMOY JOSUSS) | +4'- / OjupEPEY Bf]

{~/aa"1osuasiepey/} g 145 0JULEPRYI0DENOd I2PUs

Tepey 7'y BRE

e opuepEy

te service software d

Alternative rou

Figure 5.3

5 — Modeling a Service-Oriented Architecture with PREEvision

5.5 Service architecture

After creating a first software model explained in the previous section, modeling
continued following the Service-Oriented paradigm.
This second phase was also developed in PREEvision, leveraging the features

of the AUTOSAR Adaptive standard, designed to support SDVs.

The main difference between the two models lies in the level of abstraction
and modularity. In the first case, the software blocks (sensor, application, and
actuator components) are connected via sender and receiver ports, defined by
S/R interfaces and Data Element. Each connection represents a direct flow
of data that is exchanged via punctual and predefined signals, typical of static
(signal-based) communication.

In the second case, however, the system is modeled as a set of services, each of
which is offered by a Service Provider and can be requested by one or more Service
Consumers. Services (such as GPS, Radar, Maps, V2V, Historical Data) are
identified by specific interfaces and instances, which allow them to be dynamically
identified via Service Discovery, and communication is managed in a dynamic
client-server model managed via middleware such as SOME/IP.

The service-oriented architecture ensures a high degree of decoupling between
components, promotes the reusability and updatability of services, and enables
flexible and scalable interaction between ECUs as discussed in previous chapters.

This architectural evolution reflects the shift from rigid embedded systems to
more dynamic and reconfigurable vehicle systems.

Figures 5.3 and 5.4 show the different architectural modeling of the two cases.

In the first model (Figure 5.3), as explained in the previous section, each block
has a specific role (e.g., sensor, actuator, controller) and is subsequently mapped
to ECUs or physical peripherals, thus defining a direct coupling between software
logic and hardware implementation.

In the second model (Figure 5.4), on the other hand, components act as providers
or consumers, and interactions happen through Service Interfaces, within which
RPC methods, asynchronous events, or accessible fields are defined. People no
longer think in terms of signals or direct connections, but in terms of services of-
fered and requested. Coupling no longer occurs between software and ECUs, but
between providers and consumers, which increases the modularity, updatabil-
ity, and reusability of the software.

The figure illustrates, as in the previous case, the Alternative Route func-
tion. However, while in the first scenario this functionality was handled by a
centralized controller component (Alternative Route Controller) implementing the
logic through clearly defined input/output flows, in this case it is modeled as a
distributed service (Alternative Route Service).

In the traditional approach, inputs and outputs follow a predetermined and

53

ET AL.

Service Provider R: [Rad... dis - -use - — - Service Provider ARS: [... s
- - -
I
I
Service Consumer R: [] ... § o
§ Service Consumer ARS:... §
N L,
! :
--=h 1 I I
I 1 1 |
1 1 I I
Service Provider GPS: ... dis : : : !
I 1 1 I
3 L |
: | 7 :
Service Consumer GPS:... § ' ' ' !
I | | :
V! ' !
o l
E 1 a
0ol |
1 I
Ol '
Service Provider EC: [Ex... dis ' Service Provider HD: [Hi... dils !
| |
I
8 |
Service Consumer EC: [... §> ! Service Consumer HD: [... §2 !
| l
1 I
1 I
1 I
[somoorarg @] ifwe ss]
1 I
1 I
onn -
Service Provider V2V: [... dis Service Provider M: [Ma... s
Service Consumer V2V:... §> Service Consumer M: [] ... §
. j

Figure 5.4: Alternative route service service diagram

54

5 — Modeling a Service-Oriented Architecture with PREEvision

centralized flow. In contrast, the service-oriented representation does not rely on
a single 1/O flow but is composed of multiple interacting services, each defined by
a provider and consumer communicating with each other.

In particular, it is possible to see how, for example, the Radar function in the
first case is represented by a sensor block equipped with a sender port connected
directly to a receiving application component. Communication takes place via a
Data Element and an S/R interface and represents a static point-to-point connec-
tion defined during the design phase.

In the service-oriented model, the same functionality is implemented as a ser-
vice, accessible through a Service Interface. This service is offered by a provider
(Service Provider R) and can be used by one or more consumers. The use of the
service is represented graphically by the “use” arrow in PREEvision, which clearly
shows how the service can be shared and reused by different components.

As in traditional software modeling, it was also possible to map the functional
requirements. However, in this model, the link was established at the service
level, highlighting the link between each planned functionality and the service
that implements it. End-to-end traceability and consistency in the design process
is therefore also guaranteed in this case, as shown in Figure 5.5. In particular,
the figure shows the mapping of the GPS service, but this has been done with all
the other services present.

GPS 1]

Service Provider GPS: [... 4l

& % 411GPS

Service Consumer GPS:... §2

Figure 5.5: Requirement GPS mapping

The workflow followed to model the entire service-oriented architecture is illus-
trated in Figure 5.6. It starts with the abstract definition of the services and ends
with the configuration of Ethernet communication, thanks to PREEvision’s SOA
and FEthernet Explorer.

In this case too, we did not start by importing the ARXML, but modeled the
architecture from scratch.

55

ET AL.

Software
Design

) Software

Hardware
Mapping

Data Mapping/ Communi ication | ARXML
Signal Routing Design

Figure 5.6: Service-Oriented modeling workflow in PREEvision [15]

The nine main phases that make up the process are detailed below.

1. Service Definition: In this initial phase, the services offered by the system
are defined. Each service represents a logical functionality that can be pro-
vided by a provider and used by one or more consumers. For example, the
services already described in Section 5.3 have been modeled in the project:

o Traffic Condition Service
o Alternative Route Service
e Driving Hours Monitoring Service

o Driving Behavior Monitoring Service

These main services, which represent comprehensive application features aimed
at vehicle behavior, have been supplemented by numerous auxiliary services,
such as Radar, GPS, External Camera, etc.

These services provide data or specific information that is consumed by the
main services, according to a modular and reusable logic. For example, both
the Traffic Condition Service and the Alternative Route Service use the Radar
Service as a source of environmental data. In Figure 5.4 it is possible to see
this interaction between the Alternative Route Service and the Radar Service.

2. Service Interface Definition: Each service is associated with an interface,
i.e., an API between the provider and the consumer that describes how the
consumer can use the service. Interfaces include:

o« Methods: i.e., functions that are executed by providers upon request
from one or more consumers.

56

5 — Modeling a Service-Oriented Architecture with PREEvision

« Events: i.e., an update to the data. The provider decides when to send
these updates to one or more consumers who have subscribed to receive
such notifications.

o Properties: i.e., fields exposed by providers to one or more consumers
through methods such as get() and set(), if provided. Consumers can
also optionally receive notifications if the value of a field changes.

An example of Service Interface modeled in this project is represented
by the Alternative Route Service_I and Driver Behavior Monitoring
Service I interfaces, shown in Figure 5.7, and respectively associated with
the Alternative Route Service and Driver Behavior Monitoring Seruvice.

For the Alternative Route Service, the interface provides:

e a activate() method for activating the service;
« a property named route, accessible via the get () method;

e an asynchronous event new Route Available to notify the availability of
a new route.

The Driver Behavior Monitoring Service_I interface, on the other hand,
is more complex and includes:

e the activate() method to start monitoring;

o carSeatInfo(), which should return information from a sensor located
on the seat, if present;

e numberGearShifts(), which should detect how many times the driver
has changed gear, useful for evaluating their level of activity;

o numberPedalPressed(), which should monitor the frequency of pedal
pressure;

e steeringWheelInfo(), which should provide data derived from a sensor
on the steering wheel, if present;

« a property called driverBehavior, accessible via get () method;

e a new Behavior Detected event, emitted whenever a new behavior pat-
tern is detected.

All interfaces defined in this project share a common method called activate ().
This method should allow the associated service to be dynamically activated
or deactivated, promoting system modularity.

Service Interface HH Used by Service - ‘ Method | F&F Meth... ‘ Property ‘ Get”.| Setu.| No... | Event
E AlternativeRoute_| 52 AlternativeRouteService activate() [raute [[<lnewRouteAvailable
4[5 DriverBehaviorMonitoring_| 2 DriverBehaviorManitorin... @a(tivate{) [# drivergeh.. & O O HnewBehaviorDetected
carSeatinfo()
[l numberGearShifts()
numberPedalPresses()
[steeringWheellnfo()

Figure 5.7: Service interfaces

57

ET AL.

3. Service Interface Binding: In this phase, the transport layer of the mid-

dleware is configured. In order for the middleware to be able to recognize
method calls and correctly transmit event information, each Service Inter-
face and its elements must be uniquely identified by an ID so that messages
can be correctly routed on the bus.

In the context of AUTOSAR Adaptive, the middleware currently supported
is exclusively SOME/IP.

In this phase, it is also possible to create Event Groups. These are used
to reduce communication overhead for subscribing to an event. A client sub-
scribes to a group of events, i.e., a logical grouping of events offered together.
Event Groups also require unique IDs.

. Software Design: In AUTOSAR Adaptive, the software architecture is de-
scribed by Adaptive Application SW Components. The Adaptive Ap-
plication SW Components implement the Service Interfaces. How to group
Service Interfaces in software components depends on how we model the ser-
vices. A server and a client software component are necessary for each Service
Interface.

In this scenario, Client/Server ports replace traditional S/Rs, as we can
see in Figure 5.8. A client component can access the methods offered by a
server component through a Service Interface. In this context, a client port
makes requests to the service, while a server port provides the implementation
of the service itself. The interfaces associated with these ports no longer
contain simple Data Elements as in the Classic approach, but are structured

according to the service paradigm, including elements such as methods, events,
and fields, in line with the AUTOSAR Adaptive architecture.

DriverBehaviorMontaringPravider [] DriverBehaviothonitoringConsumer

Type: DnverBehaviorMonitonngProvider / -- (Ap...

SomelpnewbBehaviorDetectedinterfac.., ‘-—{-_-’SomelpnewBeha\riorDetectedf—} — SomelpnewBehaviorDetectedinterfac...
DriverBehaviorMonitoring_|_Somelpd... *3—{-,"get_dri\rerﬂeha\riourMonitoringState.."-} —— DriverBehaviorMonitoring_|_Somelpd...
DriverBehaviorMonitoring_|_Method... —C‘{-;‘SomeIpad:ivateU,SomelpcarSeatInfou,so... B DriverBehaviorMonitoring_I_Method...

Type: DnverBehaviorMonitoringConsumer / =- (..

Figure 5.8: Software design SOA

Figure 5.8 shows the software components that implement the provider and
consumer of the Driver Behavior Monitoring Service. How it can be seen,
communication between the two is modeled using two distinct types of ports.

The methods and properties of the Service Interface, such as activate(),
getDriverBehavior () or carSeatInfo(), are managed through client /server

58

5 — Modeling a Service-Oriented Architecture with PREEvision

ports. These ports model synchronous communication, in which the client
component invokes a method or reads/writes a property offered by the server,
waiting for a response.

In addition to these, there are also sender /receiver ports, which are associ-
ated with event management. These ports allow asynchronous transmission
of notifications, such as the new Behavior Detected event, from the service
provider to the service consumer. This is because an event can be notified to
multiple recipients simultaneously, without waiting for a response.

. Network Design: this phase involves the definition of the network infras-
tructure between ECUs and will be analyzed in detail in the next section.

. Software-Hardware Mapping: Each software component (provider or con-
sumer) is assigned to an ECU unit on the network. In the Section 5.6.1 there
are further details.

. Data Mapping and Signal Routing: With the modeling of services and
software interfaces on one side, and the definition of the hardware network
topology along with the mapping of software components to ECUs on the
other, the next step enabled by PREEvision is the configuration of signal
routing. This phase allows for the automatic generation of signals to be
transmitted over communication buses and the mapping of data elements/op-
erations to the corresponding signals, which is discussed in detail in Section

5.7.

This enables the design of communication over various bus systems, including
CAN, LIN, FlexRay, and Ethernet. In this project, the focus is specifically
on Ethernet communication using the SOME/IP protocol.

. Communication Design: The Ethernet network is modeled with IP con-
figuration, multicast /unicast, TCP and UDP ports. The socket addresses are
defined for each provider/consumer communication. See section 5.7 for more
details.

. ARXML Export: Finally, PREEvision allows the entire modeled architec-
ture to be exported in ARXMIL format, including descriptions of services,
interfaces, software components, and network configurations. These files can
then be used during implementation, as was done in this project, which we
will see later in Chapter 6.

This service-oriented modeling has enabled a modular, reusable, and scalable

representation of the vehicle architecture with a high level of abstraction and
consistency. Furthermore, the transition from S/R to C/S ports represents one of
the fundamental changes between AUTOSAR Classic and Adaptive. Ports are no
longer simple “signal conduits,” but define functional roles within a distributed
service-oriented architecture.

59

ET AL.

5.5.1 Custom attributes definition and dynamic service
shifting

One of the innovative aspects of this work lies in the definition of custom at-
tributes within the PREEvision modeling environment. Although PREEvision
already offers an extensive meta-model specific to the automotive domain, suited
to supporting the modeling of complex E/E architectures, there are cases where the
predefined attributes are not sufficient to represent specific architectural properties
or desired dynamic behaviors. In such situations, PREEvision allows the meta-
model to be extended by creating custom attributes, which behave like native
attributes and can be applied at any level of abstraction, from software compo-
nents to hardware elements.

SW_Attributes

= AlternativeRoute SW Type (Software Architecture Diagram)

ServiceAttributes

Interruptible
Relocatable

Priority |2

Figure 5.9: Custom attributes

In the context of this thesis, three custom attributes associated with each mod-
eled software service have been defined and are shown in Figure 5.9.

o Priority (integer): indicates the criticality level of the service with respect
to the overall functioning of the system.

« Relocatable (boolean): specifies whether the service can be dynamically
migrated from one ECU to another during run-time.

 Interruptible (boolean): defines whether the service can be temporarily sus-
pended or interrupted in case of resource lack.

These attributes were introduced with the aim of supporting and testing the
concept of dynamic service shifting, i.e., the ability to reallocate software ser-
vices in real time between ECUs according to their operating conditions. This
approach represents an evolution from traditional static deployment models, in

60

5 — Modeling a Service-Oriented Architecture with PREEvision

which each service is permanently assigned to a specific ECU, without taking into
account the actual computational load or resource availability during execution.

In combination with custom attributes, the Get Zonal Info service has been de-
fined in PREEvision modeling, as shown in Figure 5.10. This service has been de-
signed to enable the dynamic exchange of operational information between ECUs,
such as current CPU load, RAM and ROM availability, or the number of running
tasks.

Service Interface Used by Service Method Property Get Set Not Event

4 E GetZonallnfo_| 2 GetZonallnfo actsvate{l [#zonalState %] O O [newZonalStateAvailable

[availableBandwith()

[l communicationProtocol()

cpuPercemageO

networkSpeed()

NRunm’ngTasksi‘l

RAMAvailable(

Ll ROMAvailable

Figure 5.10: Get zonal info service

The main goal is to provide the system with an up-to-date overview of the
computational load and any malfunctions of each ECU, so as to enable real-time
assessment of the advisability of transferring certain software services. If a service
is marked as “relocatable” and “interruptible”, and another ECU has sufficient
spare capacity, the system can decide to migrate the service safely. The priority
attribute further helps establish a hierarchy among services, which is useful for
deciding which ones should be kept active, suspended, or reallocated in critical
situations, such as overloads, partial failures, or system degradation.

This flexible service shifting strategy opens the way for more resilient and adap-
tive software architectures, in which runtime conditions determine the allocation
of services dynamically.

5.6 Hardware architecture

After defining and modeling the software architecture according to both paradigms,
we moved on to designing the hardware architecture, following a zonal model.

In particular, the vehicle was logically divided into four main zones: Front Left,
Front Right, Rear Left, and Rear Right. Each zone is coordinated by a Zonal
Controller, responsible for managing local control units and communicating with
other controllers in neighboring zones, if necessary. This configuration reflects one
of the emerging approaches in the automotive industry to reduce wiring complexity,
improve internal communication efficiency, and simplify system maintenance.

The ECUs have been placed in a specific zone (area) of the vehicle due to their
physical and functional proximity. These ECUs are connected via a shared local

61

ET AL.

RL

RearleftZone |

L]

(FL

-

FrontLeftZone (]

EngineECU L

ADAS_ECU £

InternCameralma... [

Figure 5.11: Hardware Architecture

62

:

RearRightZone [
[FR B
FrontRightZone [

InfotainmentECU [

ExtemCameralma...[

RadarECU

-

5 — Modeling a Service-Oriented Architecture with PREEvision

Ethernet network (LAN), managed by the respective zonal controller.

Communication between ECUs belonging to different zones does not take place
directly, but the only point of interconnection between the zones is represented by
the respective zonal controllers, which act as intelligent gateways for inter-zone
traffic.

Figure 5.11 shows the modeling of the zonal architecture implemented in PREE-
vision. It can be seen that each block represents an ECU, while the lines con-
necting the blocks indicate the Ethernet connections modeled in the system.
These connections represent the logical topology of the network, which reflects the
physical configuration planned for a vehicle with a zonal architecture.

In particular, each zone is equipped with a local Ethernet backbone,
to which all ECUs in the zone are connected. This diagram simulates a vehicle
LAN, in which messages exchanged between ECUs are carried over the common
bus, enabling direct and low-latency communication within the zone. Every mes-
sage sent over that Ethernet link is potentially visible to all ECUs in the zone,
optimizing the required bandwidth.

The connections between the different zonal controllers, visible in the central or
upper part of the figure, constitute the inter-zone backbone network, which is
necessary to enable communication between different zones.

In the context of modeling, these connections are also essential for the subse-
quent configuration of SOME/IP instances, which will be transmitted over
these Ethernet lines according to the parameters defined in the previous steps.

In this topology, for simplicity, the rear zones contain only their respective zone
controllers, without additional local ECUs. This simplification is due to the fact
that the aim of the project is not to completely model the architecture of an entire
vehicle as said before.

In the front zones, on the other hand, the control units that could realistically
host the services defined in the thesis project, have been positioned. In particular,
the Front Left zone contains:

o FEngine ECU
« ADAS ECU

o Intern Camera Image ECU

This location reflects both the physical proximity typical of the actual vehicle
and the functional logic, as these nodes are expected to participate in the genera-
tion or consumption of services related, for example, to driving behavior analysis
or driving hours management.

63

ET AL.

The Front Right zone instead includes:
o Infotainment ECU

o FExtern Camera Image ECU

e Radar ECU

Again, the layout has been designed taking into account the physical location
of the control units in the actual vehicle and the need to correctly model commu-
nications between providers and consumers of the defined services, such as traffic
analysis or the generation of an alternative route.

5.6.1 Mapping software/hardware layers

After modeling the software and hardware architectures in PREEvision, the software-
hardware mapping phase was carried out. Mappings are model artifacts that
connect artifacts from different levels of the E/E architecture. The mapping be-
tween one architecture level and another represents a consistent relationship be-
tween the components of the E/E architecture.

This operation is necessary to assign each software component to a specific
ECU within the defined topology, enabling the automatic generation of signals
and communication channels at the network level, as provided by PREEvision.

In the case of software architecture inspired by the Classic paradigm, each
Application Software Component has been mapped to an ECU within its corre-
sponding zones. In this model, components communicate with each other via
Sender/Receiver ports, connected via Data Elements and Signals.

So, after mapping, the automatic Signal Routing algorithm provided by PREE-
vision can generate the relevant System Signals and PDUs (see section below),
preparing the system for communication on Ethernet or CAN buses (not explic-
itly modeled in this thesis, as discussed in section 5.4).

In service-oriented software architecture, on the other hand, mapping
has a more flexible strategy: what is assigned to the ECUs are not the application
components, but the service instances they provide or consume. Thanks to support
for the AUTOSAR Adaptive standard, it has been possible to define client and
server instances for each service and logically place them on the ECUs through
mapping.

In this case, communication is no longer managed via Signal and Data Elements,
but via a Service Interface configured at the network level through the SOME /TP
middleware functionality. Each service instance is associated with an IP address,
a port, and a transport protocol (TCP or UDP).

In both cases, PREEvision allowed the mapping to be visualized within the
zone topology, as we can see in Figures 5.12 and 5.13.

64

5 — Modeling a Service-Oriented Architecture with PREEvision

FR

E Zone2 =

InfotainmertECL
- |4' @ AlternativeRoute SW Type |
|_ |" & TrafficCondition SW Type |
ExternCameralmageECL fi5]
RadarECU fi2]

Figure 5.12: Mapping software architecture

This two figures illustrate the mapping on the Infotainment ECU located in
the Front Right Zone.

Figure 5.12 shows the mapping created according to software-oriented archi-
tecture. In this case, the Application Software Components (Alternative Route
SW Type and Traffic Condition SW Type) responsible for the internal logic of the
Traffic Condition and Alternative Route services have been mapped directly onto
the same ECU. These components, implemented according to the AUTOSAR Clas-
sic style, directly contain the application functionality and should be connected to
sensors and actuators via S/R ports.

Figure 5.13 shows the mapping according to the service-oriented approach:
the provider instances of the previously mentioned services, such as Traffic Con-
dition Provider and Alternative Route Provider, are mapped to the Infotainment
ECU in accordance with the AUTOSAR Adaptive paradigm. In this context,
what is assigned to the ECU is not a monolithic application block, but rather the
functional role (provider or consumer) associated with each service.

65

ET AL.

FR &

E FrontRightZone [

|1' Il TrafficConditionProvider_Infotainmen... |
- |1' Bl AlternativeRouteProvider Infotainmen.., |
MR |1' Il VehicleinfoSharingConsumer_Infotain... |
E 7 |1' Il RadarConsumer_InfotainmentECU |
|1' Ml HistoricalDataConsumer_Infotainment... |
|1' Bl GPSProvider InfotainmentECU |
|1' Bl ExternCameralmageConsumer_Infotai.. |
|1' Il MapsProvider_InfotainmentECU |

ExternCameralma...[)

=

RadarECU 12 |

Figure 5.13: Mapping service architecture

5.7 Communication layer

Once the services and software interfaces, as well as the hardware architecture of
the system, have been modeled, it is possible to proceed with the modeling of
the communication layer, which is the layer responsible for data transmission
within the vehicle. This step is important to ensure consistency and traceability
between the functional model and the implementation of communication on the
Ethernet network.

In this project, the communication layer was modeled exclusively for the service
architecture, as this represents the main focus of the thesis work.

At the heart of this phase is the Signal Routing module, an advanced tool
provided by PREEvision to automate the generation and configuration of commu-
nication artifacts. The signal router is designed to determine the best transmission
paths through a predefined switched Ethernet network topology, taking into ac-
count the presence of VLANs and existing network configurations. In mixed or
legacy systems, it is also able to suggest the optimal points for inserting inter-bus

66

5 — Modeling a Service-Oriented Architecture with PREEvision

gateways, for example between CAN and Ethernet, thus improving communication
efficiency and automating failure-prone design steps.

During this phase, the software interfaces — whether Sender /Receiver or
Client /Server — are directly associated with the communication elements. In the
first case, the Data Elements become the data transmitted from one component
to another; in the second case, Operations represent methods that can be invoked,
synchronously or asynchronously, according to the client/server paradigm.

The PREEvision Signal Router is not only capable of automatically generating
Signals, but also of creating the necessary System Signal Mappings. This
makes associations between Data Elements/Operations and the respective Signals,
i.e., the entities that represent the data actually transferred through the vehicle’s
physical network.

In addition, the Signal Router also handles the physical instantiation of signals
on the bus, i.e., the creation of Signal Transmissions.

Therefore, among the communication artifacts necessary to complete the design
of Ethernet network communication, we find:

« Signals: representing the instances of transmitted data.
« PDUs (Protocol Data Units): logical containers for signals.

o Signal Transmissions and PDU Transmissions: which define the meth-
ods, timing, and priorities with which signals and PDUs should be sent over
the bus in the network.

e Socket Addresses, Application Endpoints, and Network Endpoints:
uniquely identify the sender and recipient at the network level.

o Consumed Service Instances and Provided Service Instances: specify
which services are requested and offered by each ECU.

All these elements are automatically generated and integrated into the model,
reducing the possibility of human error in the most complex phases of design.
Furthermore, thanks to tight integration with AUTOSAR standards, the generated
artifacts are consistent with the ARXML structure and can be exported for final
implementation.

Figure 5.14 shows the ECU involved in the communication generated from
a specific signal. In particular, the signal shown is associated with the response
of the get_route() method belonging to the Alternative Route Service (not vis-
ible in the figure for reasons of clarity). In this context, the Infotainment ECU,
highlighted in orange, acts as the sender, i.e., the component that provides the
response to the method. The Front Right Zone control unit, highlighted in yellow,
acts as the receiver, i.e., the recipient of the response. This example clearly shows

67

ET AL.

E FromtRightZone []

FR

InfotainmertECL [

ExternCamerslma...]

RadarECL]

Figure 5.14: Signal mapping between infotainment and front right zone ECU

how, within a service-oriented architecture, it is possible to explicitly model the
flow of information between the various ECUs involved in the system.

In addition to Signal Routing, PREEvision provides a series of tables that allow
to define the details of the physical and datalink layer (OSI Layer 1 and 2).
In particular, it is possible to configure Ethernet controllers by specifying their
MAC addresses and the type of physical connection (e.g., 100BASE-T1). In
addition, Network Endpoints can be defined, i.e., the network nodes at OSI
Layer 3, to which the IP addresses, required for communication between ECUs
in an Ethernet environment, can be assigned.

Figure 5.15 shows details of some of the nodes involved in Ethernet communi-
cation. In particular, it shows the ADAS, Engine, and FExternal Camera Image
control units, each of which is equipped with an Ethernet controller (represented
as Bus Connector).

All control units use a 100BASE-T1 physical interface, a standard designed

68

5 — Modeling a Service-Oriented Architecture with PREEvision

ECU |ID H Controller Physical Layer Type || MAC-Address
b ADAS_ECU 10 %®Bus Connector.. 100 BASE T1
" 3 EngineECU 2 @?Bus Connector.. 100 BASE T1

b ExternCameralmage.. 1 & Bus Connector.. 100 BASE T1

~ | MACKind|| vLAN

AABB:.CC.DD:00:0A Flashed ™ VLAN19
AABB:CC:DD:00:02 Flashed M V[AN19
AA:BB:CC:DD:00:01 Flashed M VAN19

Figure 5.15: ECU Ethernet configuration

| NEP | 1Pv4 Address

1Py4

< %1192.168.11.10 | FIXED
< %1192.168.11.2 | FIXED
< 51192.168.11.1 | FIXED

specifically for the automotive sector. This technology allows data transmission
at 100 Mbps over a single twisted pair, ensuring robustness, compatibility with
critical electromagnetic environments, and a significant reduction in weight and
wiring complexity compared to traditional Ethernet solutions (e.g., 100BASE-TX).
The choice of 100BASE-T1 is therefore ideal for modern automotive Ethernet-

based architectures.

The following is also defined for each controller:

e The MAC address, unique for each network device;

« The MAC address assignment mode, set in this case as Flashed (i.e.,
preconfigured and written to the device memory);

e The VLAN to which it belongs, which in this configuration is common
to all ECUs shown, simplifying the broadcast domain;

« The Network Endpoint, to which a static IPv4 address is associated. It is
also possible to configure IPv6 addresses, but this has not been done in this

project.

Next, it is possible to generate automatically sockets (OSI Layer 4) for each
node in the network. Each socket address consists of an IP/port pair and repre-
sents an Application Communication Endpoint, which is essential for establishing
connections between services distributed over an Ethernet network.

ECU |||| socket Address |AEP |TP
4 (J ADAS_ECU M SD_SoAddr_Multicast A uDP
M Socket Address ADAS_ECU EY & upp
M. SD_SoAddr_ADASECU (A uDP
4 () EngineECU M SD_SoAddr_Multicast B Euop
M Socket Address EngineECU EY = upp
M SD_SoAddr_EngineECU Al uDP

Port #
30490
30500
30490
30490
30500
30490

Network Endpoint

@ Network Endpoint_MC

“@ NE_ADAS_ECU_Bus System5
& NE_ADAS_ECU_Bus System5
@ Network Endpoint_MC

“& NE_EngineECU_Bus System5
~@NE_EngineECU_Bus System5

Ipv4 Address
239.255.11.255
192.168.11.10
192.168.11.10
239.255.11.255
192.168.11.2
192.168.11.2

Figure 5.16: Socket configuration in the Ethernet network

H Mac Multicast...
01:00:5E:FF:0B:FF

01:00:5E:FF:0B:FF

Figure 5.16 shows the ADAS and FEngine control units again, which are asso-
ciated with different socket addresses. In particular, each ECU has three socket

addresses:

69

ET AL.

« a multicast socket, dedicated to the Service Discovery (SD) mechanism
provided by the SOME/IP protocol, to announce the presence of services on
the network.

« a unicast socket, used for point-to-point communication (unicasting) of
service-related data.

» an additional unicast socket, reserved for sending Service Discovery re-
sponses.

All sockets use UDP as their transport protocol and have a corresponding port
number, specified in the relevant Application Endpoint, while the Network End-
point assigns the IP address, which in all cases coincides with the one already seen
in the previous Ethernet configuration. For multicast sockets, the corresponding
MAC multicast address is also indicated, which is used to receive service alerts
on the network.

The presence of two unicast sockets with the same IP address may initially
appear redundant, but each socket is uniquely identified by the IP, port, and
protocol combination, and the separation between sockets intended for service
data and those intended for discovery management allows for a more modular
and robust system organization.

This configuration, in particular, is in line with the specifications of SOME /IP-
SD, which supports a distributed discovery infrastructure based on periodic
multicast messages and punctual unicast responses.

In this phase, the links between the Provided Service Instances and the
Consumed Service Instances are also defined, i.e., respectively, the service
instances offered by an ECU and those expected by another ECU, as shown in
Figure 5.17. This association is necessary to establish correct communication
routing in the context of the service-oriented paradigm.

4 |dentifier |

Provided Service Instance Service Instance assigned Consumed Service Instance
*® Provided Service Instance AlternativeRoute InfotainmentECU 1 1 %> Consumed Service Instance AlternativeRoute FrontRightZone
® Provided Service Instance DriverHoursMonitoring EngineECU 3 #> Consumed Service Instance DriverHoursMonitoring FrontLeftZone

9> Consumed Service Instance TrafficCondition FrontRightZone
%> Consumed Service Instance VehiclelnfoSharing InfotainmentECU

® Provided Service Instance TrafficCondition InfotainmentECU 14
% Provided Service Instance VehicleInfoSharing FrontRightZone 15

i
*® Provided Service Instance DriverMonitoring ADAS 4 1 > Consumed Service Instance DriverMonitoring FrontlLeftZone
% Provided Service Instance ExternCameralmage ECI_ECU 6 1 %> Consumed Service Instance ExternCameralmage InfotainmentECU
® Provided Service Instance HistoricalDate FrontRightZone 9 1 %> Consumed Service Instance HistoricalData InfotainmentECU
® provided Service Instance InternCameralmage ICI_ECU 10 1 %> Consumed Service Instance InternCameralmage ADAS
® Provided Service Instance Radar R_ECU 12 1 %> Consumed Service Instance Radar InfotainmentECU
1
1

Figure 5.17: Mapping between service instances provided and consumed

Each service can also have one or more Event Groups associated with it, which
merge corresponding events to be transmitted as logical units. Associating Event
Groups with Service Instances allows for efficient management of asynchronous
communication, typical of SOME/IP protocol.

70

5 — Modeling a Service-Oriented Architecture with PREEvision

EH - |EGID|PSI | ceg
EH_AlternativeRoute_EVG 1001 % Provided Service Instance AlternativeRoute InfotainmentECU mCEG?AIternativeRouteAEVG
EH_DriverHoursMonitoring_EVG 1003 ¥ Provided Service Instance DriverHoursMonitoring EngineECU mCEG‘DriverHoursMonitoring‘EVG
EH_DriverMonitoring_EVG 1004 > Provided Service Instance DriverMonitoring ADAS mcEG_DriverMonitoring_EVG
EH_ExternCameralmage_EVG 1006 ¥ Provided Service Instance ExternCameralmage ECI_ECU mCEG_ExtemCameralmage_EVG
EH_HistoricalData_EVG 1009 > Provided Service Instance HistoricalDate FrontRightZone mCEG_HistoricalData_E\/G
EH_InternCameralmage_EVG 2001 *®Provided Service Instance InternCameralmage ICI_ECU uCEG_IntemCameraImage_EVG
EH_Radar_EVG 2003 *®Provided Service Instance Radar R_ECU T8 CEG_Radar_EVG
EH_TrafficCondition_EVG 2005 >®Provided Service Instance TrafficCondition InfotainmentECU mCEG_TrafficCondition_EVG
EH_VehiclelnfoSharing_EVG 2006 ~%Provided Service Instance VehiclelnfoSharing FrontRightZone mCEG_VehiclelnfoSharing_EVG

Figure 5.18: Mapping of event groups between providers and consumers

In Figure 5.18, for each Fvent Group, the relative ID and association with the
corresponding Provided Service Instance are visible, i.e., the control unit respon-
sible for generating and transmitting the events belonging to that group. Each
Fuvent Group is also associated with the respective Consumed FEvent Group, which
represents the logical link with the service consumers who subscribe to the events
emitted. This link allows updates to be propagated in Publish /Subscribe mode
according to the SOA paradigm provided by the SOME/IP protocol.

Finally, to enable the correct functioning of Service Discovery, PREEvision
automatically generates all the multicast communication artifacts required for
ECUs belonging to the same FEthernet Cluster to dynamically discover the services
available on the network. These artifacts include the configuration of ports and
multicast addresses, as required by the SOME /IP-SD protocol.

Once the modeling of all architectural levels has been completed, it is possible
to proceed with exporting the ARXML file, which includes all the specifications
defined in this chapter. In particular, the file will contain information relating to
the modeling of the service-oriented architecture, which will create the basis for
the practical implementation described in the next chapter.

71

Chapter 6

Building C++4 application
using SOME /TP

After modeling the software and hardware architecture in PREEvision and export-
ing the ARXML file, the second phase of the project started, which was dedicated
to the actual implementation by creating a C++ application. The goal of this
phase is to simulate the behavior of two nodes, one acting as a provider and one
acting as a consumer, located on two different control units using the vSomelIP
middleware.

So this chapter analyzes the implementation phase of the architecture previously
modeled in PREEvision.

The workflow can be summarized in three main steps, also illustrated in Figure
5.1 in Chapter 5:

o Parsing the ARXML file: a Python parser processing the PREEvision
output to extract relevant information about SOME /IP services and generate
a JSON file that is simplified and more easily interpretable.

o Configuration file generation: the extracted data is used to dynamically
create the "provider. json" and "consumer. json" files required by vSomelP
for the correct startup of participants on the Ethernet network, with a C++
executable.

o Development of C++4 applications: two separate applications have been
developed, one to simulate the behavior of a provider and one to simulate a
consumer, in accordance with the architectural model.

This process, excluding modeling on PREEvision, can be automated through a
custom bash file "setup.sh", which runs these steps sequentially.

The following paragraphs describe in detail the technical choices adopted, the
contents of the generated JSON file, the structure of the vSomelP configuration
files, and the logic for implementing the two simulated nodes.

72

6 — Building C++ application using SOME/IP

6.1 Parsing the ARXML file and generating the
JSON file

To process the ARXML file exported from PREEvision, a custom parser was
developed in Python. Although there are modules dedicated to reading ARXML
files, Python was found to be a more direct and faster approach using the lxml
library to read and navigate the XML tree. Developing a custom script also made
it possible to understand the structure of the file itself.

The goal was not to cover the entire spectrum of information contained in
ARXML, but only to extract the minimum information necessary for implementing
the C++ application, including:

All SOME/IP services (providers and consumers);

All Service Interfaces associated with the above services;

SOME/IP Deployments, i.e., all IDs associated with SOME/IP elements;

Information to enable multicast traffic useful for Service Discovery;

v SOMEIP Services
v Provided Services []
vO
Provided Service Name "Provided_Service_Instance_AlternativeRoute_InfotainmentECU"
ECU "InfotainmentECU"
ipv4 "192.168.11.5"
Service UUID "Obfa8010f1958ff5314a4bd0aX0bfa8010f1958ff5314a4bd0900"
Instance ID "1"
ServiceID "1"
Protocol "UDP"
Port "30500"
» Signals [] 40items
v Events /]
v O
Event Name "EH_AlternativeRoute_EVG"
Event GroupID "1001"
v Consumed Services []
vO0 []
0 "Consumed_Service_Instance_AlternativeRoute_FrontRightZone"
1 "CEG_AlternativeRoute_EVG"

Figure 6.1: SOME/IP services

For each service modeled in PREEvision, the parser extracted the relevant in-
formation and structured it in JSON format, as shown in Figure 6.1. The image
shows, for example, the data associated with the Alternative Route Service,
already seen in the PREEvision modeling discussed in the previous chapter.

73

ET AL.

In particular, the following information is listed for each service:

the provider instance, mapped to the Infotainment ECU,
the IPv4 address on which the service will be available;

the UUID, the service ID and the instance ID, which uniquely identify
the service in the SOME/IP context;

the communication protocol (in this case UDP) and the corresponding
port;

the event offered by the service and the corresponding event group ID:;
the list of signals transmitted that are associated with the service;

the consumer instance of the service and the control unit on which it is
mapped, in this case the Zonal Controller Front Right.

SOMEIP Deployments []
v o0
SomelP Service Interface Deployment "SomelpAlternativeRoute_|"
Service Interface "AlternativeRoute_|"
Service Interface ID "1"
v Event Deployments /]
v O
Event Name "SomelpnewRouteAvailable"
Event Ref "newRouteAvailable"
EventID "12932"
v Field Deployments [/
v O
Field Name "Somelproute"
Field Ref "route"
v GET []
vo0
GET Name "get_route"
Method ID "2076"
NOTIFIER []
v Method Deployments [/
v 0
Method Name "Somelpactivate__"
Method Ref "activate_ "
Method ID "2077"
v Event Groups [/
v 0
Event Group Name "AlternativeRoute_EVG"
Event GroupID "1001"
v Linked Events []
v O
Event Name "SomelpnewRouteAvailable"
Event Ref "newRouteAvailable"
EventID "12932"

Figure 6.2: Service deployments

74

6 — Building C++ application using SOME/IP

Each modeled service is associated with an interface, consisting of methods,
events, and fields. For each of these interfaces, all the identifiers necessary to
enable communication according to the SOME/IP protocol on an Ethernet network
have been generated. Figure 6.2 shows the SOME /IP Deploy relating to the
Alternative Route Service interface.

The Service Interface ID is visible, a unique identifier for each service, which
corresponds to the Service ID already presented in the previous figure. This link
ensures consistency between the two blocks of the JSON file and allows consistent
reading of the available data.

In addition, all events associated with the interface are listed, with their
respective names (both the name of the SOME/IP signal and the name of the event
to which they refer) and their Event IDs. Any fields with possible associated
operations are then listed: get, set, notifier, each with its own name and unique
identifier.

This is followed by the methods, also defined by name and Method ID. Fi-
nally, the Event Group is indicated, which collects one or more events, specifying
the Event Group ID and the list of events that are part of it.

The JSON format was chosen because it is the de facto standard for data
exchange between applications, ensuring portability and simplifying any future
migration to a different programming language.

This representation allows clear mapping between the logical modeling per-
formed in PREEvision and the subsequent C'++ implementation based on vSomelP.

6.2 Generating configuration files for vSomelP

After parsing the ARXML with the Python tool, the next step is to generate the
configuration files, which are again in JSON format, used by vSomelP. These files
are essential for the correct initialization of the SOME/IP middleware and
contain:

e Unique IP network address

« Applications and client IDs: each participant (server or client) has an
applications section with a unique name and ID;

« Services and instances: services section, containing service ID, instance ID,
and associated TCP or UDP port (configured as “reliable” or “unreliable”,
respectively). Depending on if it’s the case of providers or consumers, the
services will be those provided or consumed.

« Events: in the services section, there are also events offered /requested by the
instance with ID, name, type, and associated Event Group.

75

ET AL.

» Service discovery: configurations related to multicast, port, protocol, and
timing used for dynamic service discovery.

An example of a configuration file is shown in Figure 6.3.
Specifically, the consumer instance of the Driver Hours Monitoring service
mapped to the Front Left control unit is shown.

vsomeip-consumer_FrontLeftZone_3.json >
{
"unicast": "192.168.11.3",
"applications": [
{
"name": "Consumed_Service_Instance_DriverHoursMonitoring_FrontLeftZone",
"id": "ex1871"
} 1, "services": [{
"service": "3",
"instance": "1",
"unreliable": "30500",
"events": [
{
"event": "12934",
"type": "AdtInt",
"event_name": "newHoursCalculated"
P,
"eventgroups": [{
"eventgroup": "1003",
"events": [
'12934"
1+131,
"service-discovery": {
"enable": "true",
"multicast": "239.255.11.255",
"port": "30490",
“"protocol": "UDP",
"initial_delay_min": "10",
"initial_delay_max": "100",
"repetitions_base_delay": "200",
"repetitions_max": "3",
"ttt "3,
"cyclic_offer_delay": "2000",
"request_response_delay": "1500"

Figure 6.3: Configuration file

Generation occurs as follows:

1. The Python script reads the ARXML file correctly, parses it, and creates a
JSON file, extracting all relevant metadata. In a C++ module, this data
is used to produce the vSomelP configuration files: for example, “vsomeip-
consumer__FrontLeftZone.json” will contain the network parameters, client
ID, and list of services consumed by the Front Left Zone control unit.

76

6 — Building C++ application using SOME/IP

2. These configuration files, in JSON format, are then read at launching by the
C++ application integrated with vSomelP, which we will discuss in the next
section.

The advantage is dual:

o The MBSE model is kept synchronized with the actual middleware, also elim-
inating possible manual errors.

o The approach is modular: it is possibile to have separate configurations for
each ECU (provider or consumer), which can be easily generated automati-
cally.

6.3 Implementation of the C++ application with
vSomelP

Once the configuration files were generated in JSON format, the implementation
of the C++ applications was started to simulate the behavior of the control
units modeled in PREEvision. In particular, for each ECU involved in the com-
munication of the defined services (e.g., Alternative Route, Traffic Condition), a
dedicated configuration file was created containing information on the services
offered or consumed by that specific ECU.

Starting from these files, two separate C++ programs were developed, each
representing a control unit of interest:

« one for the control unit acting as the service provider;
« one for the control unit acting as the service consumer.

For communication, the vSomelIP middleware was adopted, and the applica-
tions are based on the use of the API it provides, following the classic asynchronous
structure:

o The provider registers a service by specifying a service ID and an instance
ID, opens a socket on a TCP or UDP port, and waits for connections or
notifications.

e The consumer uses service discovery functions to locate the service offered
and, once found, sends requests (method calls) or subscribes to asynchronous
events (event subscription).

Both applications read the JSON file corresponding to their configuration, and
the environment is initialized using the “runtime :: get()— > init()” function.

The interaction between the two simulated control units confirmed correct
alignment: services are published and consumed according to the configuration
derived directly from PREEvision, ensuring perfect consistency between the mod-
eling phase and the prototype implementation.

77

ET AL.

How vSomelIP works As shown in Figure 6.4, vSomelP manages both SOME/IP
interactions between devices (external communication) and those between local
processes on the same ECU.

Two devices communicate via so-called communication endpoints, which deter-
mine the transport protocol used (TCP or UDP) and its parameters, such as the
port number or other parameters. All these parameters are configuration param-
eters that are set in the vSomelP configuration files (described in the previous
section).

DEVICE 1 DEVICE 2

Routing Manager Proxy
Local Endpoint

Routing Manager Routing Manager

Routing Manager Stub

Local Endpoint

Service Discovery

Routing Manager Stub

Service Discovery

TCP/UDP Endpoint TCP/UDP Endpoint

Ethernet

Figure 6.4: vSomelP overview

The central element of the middleware is the Routing Manager, an inter-
nal process that manages message routing between providers and consumers, both
within the same ECU (local endpoints) and between different ECUs. Internal com-
munication takes place via local endpoints implemented by UNIX domain sockets.
Since this internal communication is not routed through a central component (such
as the D-Bus daemon), it is very fast.

In each node, there is only one Routing Manager per device; if nothing is con-
figured, the first vsomeip application running that calls “vsomeip :: runtime ::
get()— > init()” also starts the Routing Manager. The other subsequent ones
behave as local clients (proxy) that interface with the Routing Manager via UNIX
sockets. If, on the other hand, the applications are distributed on different ma-
chines or ECUs, each one runs its own Routing Manager, and communication
happens via the configured Ethernet network, according to the rules established
in the JSON configuration files.

Service Discovery is also managed by the Routing Manager, using the SOME /IP-
SD protocol. Each provider announces the availability of its services, indicating
the service ID, instance ID, IP, and listening port. Consumers, on the other hand,
send discovery requests to subscribe to services of interest. When a provider is

78

6 — Building C++ application using SOME/IP

detected, the Routing Manager establishes a connection between the two peers,
enabling method calls, property reading/writing, or the reception of asynchronous
events.

The entire middleware configuration — from the services offered and consumed,
to the discovery policies and network parameters — is defined in the JSON con-
figuration files.

6.3.1 Provider implementation

For each control unit modeled in PREEvision as a provider, there is a C++ ap-
plication suited to offering the expected services. Implementation is based on the
correct initialization of services via the vSomelP API. The main features imple-
mented are described below.

1. Offer of a service: the first operation performed by the program is to register
the service using the function:

1 |app_->offer_service(service_id, instance_id);

This call notifies the Routing Manager (local or remote) that the application
is ready to offer a specific service, identified by its service ID and instance ID.
From this moment, consumers can discover and connect to the service.

2. Offer events: after offering the service, the application offers the events
associated with the service using:

1 |app_->offer_event(service_id, instance_id, event_id,
its_groups, ...);

For each event (identified by event id) defined in the JSON file, this call
allows the provider to enable the sending of asynchronous notifications, also
declaring membership of an Event Group (its_group).

3. Sending notifications: payloads are sent periodically to consumers in the
notify () function, in a dedicated thread. For each event, a payload is dy-
namically constructed according to its type (integer, string, boolean, etc.) and
sent with:

1 |app_->notify(service_id, instance_id, event_id, payload);

In the case, for example, of the newBehaviorMonitoringDetected event, the
program simulates realistic scenarios of irregular driving or abnormal condi-
tions, generating dynamic JSON messages and broadcasting them to regis-
tered consumers.

79

ET AL.

4. Integration and cyclic behavior: The program follows a cyclic logic, alter-
nating between “offer” and “stop offer” states to simulate dynamic provider
behavior.

Figure 6.5 shows the sequence diagram for the behavior of a Provider appli-
cation. In addition to the main calls described, the diagram also shows how the
subscription phase is handled by the Consumers.

In particular, the Provider receives SUBSCRIBE messages and upon receipt
of a subscription request, the Provider responds with a SUBSCRIBE__ACK
message, confirming that the Consumer’s interest in one or more events has been
registered.

Only after this interaction asynchronous communication can start.

6.3.2 Consumer implementation

To simulate a consumer control unit, however, a C++ application capable of using
the required services was developed. The main features implemented are described
below.

1. Event request: the following function allows the consumer to express interest
in a specific event offered by a service (after first checking that the service is
available). The method accepts the service ID, instance ID, event ID, and
associated event group as parameters.

1 |app_->request_event (service_id, instance_id, event_id,
event _group, ET_FIELD);

In addition, the type of event is specified. In this case, it is the ET_FIELD
option, which indicates that the event will only be notified if the content
(payload) changes, reducing the frequency of unnecessary messages.

2. Subscribing to an event: next, the consumer can subscribe to the desired
event group, by specifying the event group ID, using the function:

1 |app_->subscribe(service_id, instance_id, event_group_id);

This two-step process — request event followed by subscribe — is necessary
for vSomelP to activate the communication flow and allow the consumer to
receive asynchronous notifications from the provider.

3. Notification reception: finally, when an event is actually notified, the mid-
dleware calls the on_message () function. Within this callback, the program
receives the event via a message object, from which it extracts the binary
payload and interprets it according to the expected type (integer, boolean,
string, JSON; etc.).

8o

6 — Building C++ application using SOME/IP

N

A, .
ProviderApplication

offer_service(service_id, instance_id)

Y

offer_service(service_id, instance_id)

Network (UDP Multicast)

SOME/IP-SD Multicast

| ! >
E offer_event(servide_id, instance_id, event_id, its_group) }E ’E
| | offer_event{servide id, instance_id, event_id,| its_group) >:
E{ SUBSCRIBE E E
E SUBSCRIBE_ACK }E E
loop): [every cycle (e.g. 1000ms)] ! .
! notify(event_id,payload) ! :

e R—

ProviderApplication routing_manager

Figure 6.5: Provider sequence diagram

81

SOME/IP-SD Multicast

ET AL.

For example: if the name of the event is newBehaviorMonitoringDetected,
a JSON object describing behavioral anomalies is extracted; for other events,
it behaves accordingly.

Figure 6.6 shows the sequence diagram for the behavior of a Consumer appli-
cation.

As shown in the diagram, following the subscribe () call, the Consumer receives
a SUBSCRIBE__ACK message, which represents confirmation of the subscrip-
tion by the Provider (consistent with the diagram in Figure 6.5).

Once this phase is complete, the Consumer application is ready to receive asyn-
chronous notifications of subscribed events, which will then be processed within
the on_message () handler.

This architecture allows to simulate in a realistic way the behavior of two control
units capable of sending and receiving periodic or conditional events, as defined in
the initial modeling on PREEvision.

82

6 — Building C++ application using SOME/IP

% Network (UDP Muilticast)

AN q :
ConsumerApplication routing_manager SOME/IP-SD Multicast

i request_event{service_id, instance_id, event_id, eventgroup_id) |
" >

request_event(service_id, instance_id, event_id, eventgroup_id) _

Y

| subscribe(servide_id, instance_id, eventgroup_id)
| SUBSCRIBE_ACK

-

loop / | [every cycle (e.g. 1000ms)]

1 on_message()

ConsumerApplication routing_manager SOME/IP-SD Multicast

A

Figure 6.6: Consumer sequence diagram

Chapter 7

Conclusions

The thesis aimed to explore and validate a model-based approach suited for
the design and prototyping of SOA architectures in the automotive sector. Start-
ing from a model created in PREEvision, digital artifacts (ARXML files) were
generated, which formed the basis for the concrete implementation of a commu-
nication system based on vSomelIP middleware. The transition from theory to
practice was at the core of the work, demonstrating how it is possible to ensure
consistency between the architectural definition and the runtime implementation
of SOME/IP services on an Ethernet network.

The approach adopted fits into a context in which the complexity of modern
vehicles requires tools and methodologies capable of reducing errors, promot-
ing collaboration, and improving the quality of distributed software.
Model-based systems engineering has confirmed these advantages, although it re-
quires more time initially than more direct approaches. However, the time spent
in the modeling phase leads to significant savings in the next development phases,
reducing the likelihood of systemic errors and simplifying the analysis of overall
behavior.

Among the main advantages found:

o Communication within the team is facilitated by the graphical and modular
representation of the system;

o The localization of any errors was simple and immediate, thanks to the clear
definition of interfaces and components;

e The models created were found to be reusable in different contexts, reducing
the time needed for future designs.

7.1 Main outcomes

The thesis successfully demonstrated the possibility of completing an entire
design cycle, starting from high-level modeling and ending with the concrete im-
plementation of a functioning distributed communication system. The interfaces

84

7 — Conclusions

and services modeled in PREEvision were exported in ARXML format, from
which a Python parser extracted and restructured the information in JSON for-
mat. These files were then used to automatically generate the vSomelP middleware
configurations, avoiding the introduction of manual errors.

Starting from these configurations, two distinct C++ applications were imple-
mented — a provider and a consumer — capable of communicating with each
other using asynchronous communication and event management typical of the

SOME/IP standard.

The correct functioning of the infrastructure was verified both in a simulated
environment and on real embedded devices, confirming the portability and
robustness of the proposed approach.

One of the most important results of this work is the perfect consistency
maintained between the modeling in PREEvision and the implementa-
tion in code. All service identifiers, events, methods, event groups, and properties
defined during modeling were correctly processed and used in the implementation.
Alignment with the specifications was ensured thanks to the intermediate JSON
structure, which acted as a bridge between the architectural description and the
configuration files required by vSomelP.

The system was able to correctly start service discovery, subscribe to events, and
receive notifications consistent with the expected behavior. Asynchronous event
management demonstrated the reliability and efficacy of the middleware and the
validity of the SOA approach even in realistic scenarios.

The use of vSomelP was a strategic technical choice: the middleware offered
features such as Service Discovery, Routing Manager, and event man-
agement, faithfully replicating the dynamics expected in a real distributed ar-
chitecture and demonstrating high compatibility with the modeling obtained in
PREEvision.

The clear separation between service definition and application logic made it
possible to create a modular, flexible, and easily extensible system. The entire
workflow was found to be automatable and adaptable even to wider industrial
contexts, with a potential positive impact on the entire development cycle.

Another significant result of this thesis is the optimization of the architectural
development and validation process. Thanks to the direct approach it was possible
to bypass many of the typical stages of the traditional automotive chain.
In particular, costly steps such as interaction with OEMs, involvement of Tier-1
suppliers, or access to industrial toolchains that can slow down the development
cycle have been avoided.

This has made it possible to perform internal benchmarks in extremely short
times, enabling rapid iteration on architectures and their conceptual validation
without having to wait for external partners to take action. In quantitative terms,
it is estimated that this approach can reduce the time needed to obtain a working
proof-of-concept considerably, halving it in some cases. This leads to concrete

85

ET AL.

advantages in terms of time-to-market, rapid prototyping, and agile innovation.

This simplification of the process allows:

e to test new architectures in-house independently;

» to validate the correctness of communication between ECUs already in the
design phase;

« to validate architectural concepts before involving external suppliers.

In summary, the proposed approach allows to move more quickly from idea
to prototype while maintaining methodological rigor and consistency. This rep-
resents an important step forward in the development of software-defined vehi-
cles, where flexibility, modularity, and continuous verification are essential require-
ments.

7.2 Limitations and improvements

Although the work has achieved concrete and satisfactory results, some limitations
have emerged that could provide ideas for future research.

Firstly, the absence of a formalized test environment is a critical issue. Although
the system has been validated on real embedded devices, no objective metrics on
latency, reliability, or throughput under high load conditions have been acquired.
The definition of a test scenario would allow for a quantitative assessment of the
infrastructure’s behavior in realistic contexts.

7.3 Future work

The work opens numerous prospects for further development. An initial idea could
be to extend the current implementation, which has so far focused on asynchronous
events, to also include client/server mechanisms based on GET and SET methods.
This extension would allow for even more complete simulation of bidirectional
communication between ECUs, bringing the prototype even closer to a real-world
scenario.

Other developments concern integration with more complex simulation en-
vironments capable of reproducing network traffic and computational
load conditions. Furthermore, the adoption of automatic validation techniques
— for example, through metrics performed directly on PREEvision models —
would improve consistency between specification and implementation and further
reduce the margin of error.

In a wider perspective, integration with emerging technologies such as the adop-
tion of alternative middleware such as DDS or MQTT in collaborative and

86

7 — Conclusions

distributed contexts could expand the framework’s field of application and make
it suitable for areas beyond traditional automotive.

A first concrete step in this direction has already been taken with the modeling,
within PREEvision, of the Get Zonal Info service, discussed in the Section 5.5.1.

The main goal is to enable the system to evaluate the computational load
and malfunctions of each ECU in real time. This makes it possible to deter-
mine whether specific software services can be offloaded or migrated in response
to ECU failures or overload. This functionality opens the way for more flexible
and resilient architectures, in which service transfer is determined by the runtime
conditions of the system.

From a wider perspective, such a mechanism also lays the foundation for a
cloud-based architecture that can host additional automotive services exter-
nally or where services could be partially or temporarily offloaded to external
infrastructures. In this vision, the vehicle becomes part of a broader distributed
ecosystem in which services can be provisioned on demand, allowing the vehicle’s
capabilities to evolve and expand over time without requiring hardware modifica-
tions. By offloading selected functions to the cloud when necessary, it is possible to
enhance performance, optimize resource usage, and introduce new features post-
sale, enabling a truly software-defined vehicle paradigm.

In such a scenario, the exchange of information on the status and availability
of resources between control units becomes not only useful but essential to ensure
efficient orchestration and optimal performance in distributed automotive systems.

Each service has been associated with custom attributes, discussed always
in Section 5.5.1, which represent the fundamental metadata for enabling runtime
decisions. This can be exploited in the future for the implementation of a dynamic
service relocation system.

This system, inspired by load balancing and fault tolerance principles, aims to
improve the resilience of the zonal architecture by allowing automatic reassignment
of services in case of overload or malfunctions. This provides a solid base for the
future development of autonomous service orchestration mechanisms, which will
become more central to the evolution towards SDVs.

87

Bibliography

[1] S. Arole, “From Monolith to Service-Oriented Architecture: A Model-Based De-
sign Approach towards Software-Defined Vehicles”, Wipro Limited, Bangalore,
India, 2022.

[2] A. Vetter, P. Obergfell, H. Guissouma, D. Grimm, E.Sax, M. Rumez “Develop-
ment Processes in Automotive Service-oriented Architectures”, MECQO, Budva,
Montenegro, 2020.

[3] P. Obergfell, S. Kugele, E. Sax, “Model-Based Resource Analysis and Synthesis
of Service-Oriented Automotive Software Architectures”, ACM/IEEE 22nd In-
ternational Conference on Model Driven Engineering Languages and Systems
(MODELS), 2019.

[4] GuardKnox, “Automotive SOA for Software-Defined Vehicles”, 2025. URL:
https://www.guardknox.com/automotive-soa/.

[5] GuardKnox, “Distribuited automotive SOA service for automo-
tive infrastructure”, 2020. URL: https://blog.guardknox.com/
distributed-soa-service-for-automotive-infrastructure.

6] IBM Documentation, “SOA - Service Oriented Architecture”,
2025. URL: https://www.ibm.com/docs/it/baw/22.0.x7topic=
designer-service-oriented-architecture.

[7] MeshlQ, “A Service-Oriented Architecture — for — the Auto-
motive Industry”, 2022. URL: https://www.meshiq.com/
a-service-oriented-architecture-for-the-automotive-industry/.

[8] Amazon Web Service, “The Difference Between Monolithic and Microser-
vices Architecture”, 2025. URL: https://aws.amazon.com/it/compare/
the-difference-between-monolithic-and-microservices-architecture/

[9] Elettronica News, “La tecnologia Ethernet mnelle architetture a
zone”, April 2022. URL: https://www.elettronicanews.it/
tecnologia-ethernet-nelle-architetture-a-zone/

[10] InsideEVs Italia, “Auto elettriche: architetture zonali per ridurre

peso e costi”, May 2024. URL: https://insideevs.it/news/725936/
auto-elettriche-architetture-zonali/.

[11] T. Smishad, “Applying the V-Model in Automotive Software Development”,
elnfochips, 2021.

[12] Aptive, “What Is the V-Model in Software Development?”,
March ~ 2023. URL: Thttps://www.aptiv.com/en/insights/article/
what-is-the-v-model-in-software-development.

88

https://www.guardknox.com/automotive-soa/
https://blog.guardknox.com/distributed-soa-service-for-automotive-infrastructure
https://blog.guardknox.com/distributed-soa-service-for-automotive-infrastructure
https://www.ibm.com/docs/it/baw/22.0.x?topic=designer-service-oriented-architecture
https://www.ibm.com/docs/it/baw/22.0.x?topic=designer-service-oriented-architecture
https://www.meshiq.com/a-service-oriented-architecture-for-the-automotive-industry/
https://www.meshiq.com/a-service-oriented-architecture-for-the-automotive-industry/
https://aws.amazon.com/it/compare/the-difference-between-monolithic-and-microservices-architecture/
https://aws.amazon.com/it/compare/the-difference-between-monolithic-and-microservices-architecture/
https://www.elettronicanews.it/tecnologia-ethernet-nelle-architetture-a-zone/
https://www.elettronicanews.it/tecnologia-ethernet-nelle-architetture-a-zone/
https://insideevs.it/news/725936/auto-elettriche-architetture-zonali/
https://insideevs.it/news/725936/auto-elettriche-architetture-zonali/
https://www.aptiv.com/en/insights/article/what-is-the-v-model-in-software-development
https://www.aptiv.com/en/insights/article/what-is-the-v-model-in-software-development

Bibliography

[13] N. Shevchenko, “An Introduction to Model-Based Sys-
tems Engineering (MBSE)”, Carnegie Mellon University,
SEIL 2020. URL: https://insights.sei.cmu.edu/blog/

introduction-model-based-systems-engineering-mbse/.

[14] J. Schauffele “Design and Optimization of E/E Architectures: PREEvision as
Model-Based Tool for the Next Generation”, 2016

[15] Vector Informatik, “PREFEvision Documentation and Product Information’
URL: https://www.vector.com/preevision

[16] AUTOSAR, “AUTomotive Open System ARchitecture”, URL: https://www.
autosar.org/

[17) COVESA, “The SOME/IP protocol”, White paper, March 2025.

U

[18] Embitel Technologies, “How SOME/IP Enables Service
Oriented Architecture n the New Age ECU Network”,
2020 URL: https://www.embitel.com/blog/embedded-blog/

how-some-ip-enables-service-oriented-architecture-in-ecu-network
[19] MicroSys Electronics GmbH, “miriac® SBC-S32G274A” URL: https://
microsys.de/products/miriac-sbc-s32g274a/
[20] Allion, “Are You Ready For Automotive High-performance Computing in Fu-
ture Smart Cars?”, URL: https://www.allion.com/tech_auto_smartcar_

hpc/.
[21] Vector, “AUTOSAR Adaptive in PREFEvision”,Webinar Vector, March 2019.
[22] C. Harris, Atlassian, “Microservices vs. monolithic — archi-
tecture”, URL: https://www.atlassian.com/microservices/

microservices-architecture/microservices-vs-monolith.

[23] AUTOSAR, “SOME/IP Protocol Specification”, Release R22-11, November
2022, URL: https://www.autosar.org/fileadmin/standards/R22-11/F0/
AUTOSAR_PRS_SOMEIPProtocol.pdf.

[24] AUTOSAR, “SOME/IP Service Discovery Protocol Specification”, Release
R22-11, November 2022, URL: https://www.autosar.org/fileadmin/
standards/R22-11/F0/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.
pdf.

89

https://insights.sei.cmu.edu/blog/introduction-model-based-systems-engineering-mbse/
https://insights.sei.cmu.edu/blog/introduction-model-based-systems-engineering-mbse/
https://www.vector.com/preevision
https://www.autosar.org/
https://www.autosar.org/
https://www.embitel.com/blog/embedded-blog/how-some-ip-enables-service-oriented-architecture-in-ecu-network
https://www.embitel.com/blog/embedded-blog/how-some-ip-enables-service-oriented-architecture-in-ecu-network
https://microsys.de/products/miriac-sbc-s32g274a/
https://microsys.de/products/miriac-sbc-s32g274a/
https://www.allion.com/tech_auto_smartcar_hpc/
https://www.allion.com/tech_auto_smartcar_hpc/
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf

	List of Tables
	List of Figures
	Introduction
	State of the art
	Background and Technological Principles
	Service-Oriented architecture vs Software-Oriented architecture
	Software-Oriented architecture: a monolithic approach
	Service-Oriented architecture: modularity and flexibility
	Comparing traditional and SOA approaches

	Zonal architecture: evolution of E/E
	Overcoming the decentralized model

	The V-Model
	Model-Based Systems Engineering in the automotive sector

	Tools and Technologies for SOA Automotive Development
	PREEvision: a model-based tool for E/E design
	Support for AUTOSAR classic and adaptive
	Advantages in the automotive sector

	SOME/IP protocol: middleware for Service-Oriented architectures

	Modeling a Service-Oriented Architecture with PREEvision
	Adopted development approach
	Modeling in PREEvision
	Requirements definition
	Software architecture
	Service architecture
	Custom attributes definition and dynamic service shifting

	Hardware architecture
	Mapping software/hardware layers

	Communication layer

	Building C++ application using SOME/IP
	Parsing the ARXML file and generating the JSON file
	Generating configuration files for vSomeIP
	Implementation of the C++ application with vSomeIP
	Provider implementation
	Consumer implementation

	Conclusions
	Main outcomes
	Limitations and improvements
	Future work

	Bibliography

