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Abstract

Driving automation technologies have been gradually penetrating the automotive
market. The road infrastructure may be temporarily modified by construction
sites, requiring suitable adjustments for the vehicle driving task. This thesis aims
to develop the lane keeping task in a simulated diversion scenario induced by road-
works, exploiting vision-based lane detection techniques. The vehicle engaged for
the simulation is a 1/10 scaled self-driving car, provided by Bosch for the Bosch
Future Mobility Challenge (BFMC). Two specific scenarios have been reproduced:
lane change and lane narrowing. Color segmentation, performed by using OpenCV
C++ libraries, has been crucial for prioritizing yellow lane markings over white
standard ones, and for detecting predefined obstacles. Analysis have been con-
ducted by evaluating the vehicle speed, steering angle and position with respect
to the lateral lane line. The diversion has been correctly taken in most of the
experiments for both lane narrowing and lane change. The presence of a traffic
sign indicating the diversion path, and of red barriers blocking the closed lane,
improved the lane change behavior. Partial success has been obtained for obstacle
detection when the red barrier is positioned across the lane, forcing the vehicle to
stop. Further refinement through additional testing should enhance driving perfor-
mance, while sensor fusion could improve object detection. Future research should
comprise the integration of additional traffic signs and traffic cones to make the
roadwork environment more realistic.
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Chapter 1

Introduction

1.1 Driving automation

Automation refers to the use of electronic or mechanical devices and computer sys-
tems to perform tasks that were traditionally carried out by human labor. Driving
automation is the execution by hardware and software systems of part or all of
the Dynamic Driving Task (DDT), which includes steering, braking, acceleration,
lane keeping and monitoring the environment. The Society of Automotive Engi-
neers (SAE), a professional organization with activities in automotive engineering,
transport industries, and commercial vehicles including self-driving cars, proposed
six levels of driving automation [2] in the context of motor vehicles and their opera-
tion on roadways. The level of driving automation is determined by the functional
capabilities of the driving automation system, based on the distinction of roles for
the DDT between the system and the human user, and the evaluation of DDT
fallback performance.

e Level 0 - no driving automation: the human performs all DDT, even when
enhanced by active safety systems. Example features of driver support are
automatic emergency braking, blind spot warning, lane departure warning.

o Level 1 - driver assistance: the driving automation system manages to handle
either steering or speed control (but not simultaneously) while the human
driver performs the remainder of the DDT, e.g. lane centering or adaptive
cruise control.

o Level 2 - partial driving automation: the human driver supervises the execu-
tion of the driving automation system control of both steering and speed.

« Level 3 - conditional driving automation: environmental detection allows the
system to perform most driving tasks but the human user is receptive to feature
requests and ready to intervene. A traffic jam feature performs the complete

1



Introduction

DDT within dense traffic and requires a human driver to operate when traffic
clears.

e Level 4 - high driving automation: the automated driving features can drive
the vehicle not requiring over driving. Pedals and steering wheel may or may
not be installed.

e Level 5 - full driving automation: the features can drive everywhere in all
conditions.

Driving automation system features of levels from 0 to 4 are restricted to a context
called Operational Design Domain (ODD) defined by a set of conditions which may
be environmental, geographical or temporal, e.g. on highways in clear weather or
at certain speeds.

Nowadays, current vehicles have some level of driver assistance consisting on, at
most, level 2 driving automation features. Goldman Sachs Research sees signs that
partial automation and assisted driving are becoming more widespread, even if it
has lowered its expectation for Autonomous Vehicles penetration: by 2030, up to
10% (previously 12%) of global new car sales could be Level 3 vehicles [3]. Cur-
rently available level 4 vehicles are designed for ride sharing applications, operating
within a limited area. Considering the fact that fully autonomous vehicles are far
from being achieved, Plebe et al. gave a general overview of imitation learning
approaches in the context of autonomous driving, by investigating paradigms in-
spired by the only existing agents capable of driving: the human beings [4]. Their
analysis focused on brain mechanisms including attention, memory organization,
emotions, consciousness and many others. Although cognitive- and brain-inspired
studies are still marginal, they believe them to be critical to the future of fully au-
tonomous vehicles. Swaayatt Robots, a Bhopal-based startup, centers the research
on autonomous driving on the development of level 5 technology via reinforcement
learning across adversarial and unstructured environments [5]. They have demon-
strated the capability to rely on Global Positioning System (GPS) maps for seamless
end-to-end navigation with a series of trials on Indian roads within intricate traf-
fic scenarios. Future of transportation relies on driving automation systems. The
growing expectation that full driving automation will become a reality is related to
the advancements in artificial intelligence.

1.2 Autonomous driving perception

The environmental perception system relies on the collection of data from multiple
sensors. Data processing enables the system to understand its surroundings [6],
and make driving decisions to determine the DDT. Visual perception, similarly to
human visual perception, provides high resolution images used for lane detection,
object recognition [7] and therefore obstacle detection, traffic signs recognition and
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traffic light detection. GPS provides global position information allowing localiza-
tion on maps. Light Detection and Ranging (LiDAR) sensors use laser pulses to
provide precise distance measurements by creating a 3D map of the environment.
Ultrasonic sensors use sound waves for very short-range detection, commonly used
for parking assistance. Data are elaborated by means of a Convolutional Neural
Network (CNN), or a Deep Neural Network (DNN), to extract significant informa-
tion about the surroundings of the autonomous vehicle. It is important that the
data elaboration and the decision-making process are completed in few fractions
of second to obtain a real-time behavior. Reinforcement learning is a framework
that is utilized by an agent for decision making. It can be embodied in hardware,
such as an autonomous vehicle, and in this way interact with the real world [8].
The perception-action-learning loop describing reinforcement learning seems to be
promising in the context of autonomous driving [5, 9].

Advancements in communication and sensing technologies have paved the way for
a connected vehicular environment. A Connected and Autonomous Vehicle (CAV)
should perform autonomous driving and continuously communicate with the sur-
rounding vehicles and infrastructure [10, 11].

1.3 Dilemma situations

Autonomous driving may provide benefits considering environmental and safety as-
pects. It has the potential to optimize traffic flow, while efficient driving reduces
fuel consumptions and emissions. Moreover, activities as stop-and-go traffic or
long stretches on highway could intensify mental and physical fatigue levels dur-
ing driving. Driver’s ability may be temporarily reduced because of the influence
of medication and lack of concentration. Full driving automation gives the op-
portunity to improve safety, by reducing human error which causes the majority
of accidents, and to increase individual mobility, for instance elderly and disabled
people could gain independence.

1.3.1 Legal aspects

The authors of [12] analyze the autonomous driving developments from an inter-
disciplinary perspective, focusing on legal implications and societal impact of self-
driving vehicles. Traditional liability and current traffic laws, designed for human
drivers, are incompatible with full driving automation. Determining legal responsi-
bility in case of accident, becomes a complex challenge necessitating to account for
the roles of manufacturers, software developers and system operators. For compli-
ance with legal requirements, essential incident-related data must be collected with
clear and informed user consent and stored for legal clarification purposes.
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1.3.2 Ethical considerations

The reaction of the society to the impact of autonomous driving on our roads de-
pends on how autonomous vehicles replicate the human decision-making process.
P. Lin [12] discusses the role of ethics in innovation policy: “it can pave the way
for a better future while enabling beneficial technologies”.

The algorithm of the driving system must be equipped with ethical decision-making
capabilities to effectively manage the full range of possible behavior of the au-
tonomous vehicle. This is a difficult task, especially in situations such as an un-
avoidable crash that could harm people inside and outside the vehicle and a choice
between the two groups must be made. The Moral Machine website [13] has been
designed to explore the ethics of self-driving cars and understand how humans
perceive machine intelligence making such choices. It presents moral dilemmas in
which a self-driving car is required to choose the lesser of two evils, by collecting an-
swers from people of different countries. While human drivers make such decisions
instinctively in a split second, autonomous vehicles manufacturers have the luxury
and responsibility of moral deliberation [14, 15]. Achieving trust and social ac-
ceptance of autonomous driving technologies requires their system decision-making
process to be transparent, explainable and accountable. A research on acceptance
factors from an end-user’s perspective of Nastjuk et al. [16] revealed that trust is
positively related to usage intentions, and perceived ease of use positively affects
attitude towards using autonomous driving. Nonetheless, despite the tremendous
advantages autonomous driving offers to individual and society, several user-related
factors still need to be addressed.

1.3.3 Cybersecurity and privacy

Potential vulnerabilities in the deployment of autonomous vehicles are cybersecurity
and privacy. Autonomous vehicles strongly rely on data coming from multiple on-
board sensors and cameras that collect relevant information about the environment.
The wireless communication network, that allows different vehicle components to
exchange information, may be vulnerable to adversarial attacks, which could alter
the behavior of the DDT of the system by corrupting the exchanged information.
Any compromise in system integrity could have direct safety consequences.
“Cybersecurity” means the condition in which road vehicles and their functions
are protected from cyber threats to electrical or electronic components. Log data
are required to support the detection of cyber-attacks and provide data forensic
capabilities [17].

In addition to environmental data, autonomous systems also collect private data,
personally identifiable information, that may be associated with drivers, passengers,
car owners or even passerby who are sensed. Other potentially significant data may
include driving habits, user preferences, trip frequency and GPS location history.
The improper use of such data and unauthorized access by third parties represent
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a privacy risk. Information security may be guaranteed by limiting access rights
and encryption, or by defining that only groups of entities can jointly access certain
data. Additional surveillance measures, introduced to address potential adversarial
attacks, may lead to additional privacy concerns. A trade-off between security and
privacy is important to find a balanced approach that ensures technical safety.

1.4 Roadwork zones

Current research on driving automation concentrates on standard highway condi-
tions. The road infrastructure is dynamic and may be temporarily modified by
construction sites. There are not many evident data on how autonomous vehi-
cles respond to such situation. It is important for Europe to provide equipped
infrastructure to support clean and smart mobility. The novel European project
iIEXODDUS [18] aims to extend existing Highway-ODDs [17], addressing challenges
in roadwork zones, tunnels, urban canyons, and road incident sites, to ensure safe,
secure, and efficient automated driving operations. Researchers [19] are requiring
that each short- or long-term closure on a public road will respect new protocols
and standards for infrastructure construction practice, and it is also needed to de-
velop a standard protocol for autonomous vehicles, which require special pavement
marking to move smoothly in the work zone. The presence of roadworks is often
indicated by additional traffic signs, cones, red and white barriers, and modified
lane markings, which may be absent or, if present, differ in color or quantity com-
pared to the standard configurations. Roadwork scene recognition [20] is essential
to quickly detect roadworks and offer manual control to the human driver, or to
an alternative navigation algorithm. The environment in roadwork zones can vary
significantly, requiring higher levels of driver attention, and negatively impact road
users by causing increased journey times, traffic congestion, and reduced road safety.
A study using a VISSIM-based traffic micro-simulation, calibrated and validated
with real data, compared the performance of CAVs in two roadwork scenarios [10]:
lane closure, and narrow lanes. Narrow lanes achieved better safety and traffic
efficiency benefits than lane closure. The average delay was lower for narrow lanes,
not requiring a mandatory lane change.

In a simulated environment developed to integrate CAVs and roadwork areas featur-
ing lane closure [11], CAVs started lane changing early, demonstrating a high success
rate. Current driving automation technologies behavior in these circumstances is
still under investigation. Level 2 and level 3 vehicles require human intervention
in case of disengagement, which can be caused by technical malfunctions or acti-
vated for safety considerations. Entering a work zone can cause a disengagement,
require a takeover maneuver and lead to new issues depending on the takeover
performance. The driver’s takeover behavior can impact on the vehicle and on the
traffic flow. Factors which influence the takeover behavior include driver’s indi-
vidual characteristics, environmental conditions, e.g. weather and traffic flow, and
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driving system properties. Xu et al.[21] analyzed the impact of level 2/3 driving
automation on road safety in high-speed highway work zone environments. With
the employment of microscopic traffic simulation and statistical analysis methods,
they found that most disengagements in work zones are instigated by small vehicles.
So, the increase in the proportion of large vehicles can lead to a reduction in the
total number of conflicts. Moreover, increasing work zone speed limits contributes
to reduce both single-vehicle and multi-vehicle conflicts. They concluded that cur-
rent level 2/3 automated driving technology does not contribute to enhanced safety
in work zone; under unfavorable conditions it may even adversely impact. In the
context of roadwork zone safety, the research group of Dr. V. Saillaja provided a
novel strategy to perform construction sites real-time monitoring, by means of the
combination of Internet of Things (IoT) with object recognition [22]. The devel-
oped system includes IoT-embedded traffic cones, equipped with GPS, light and
proximity sensors and cameras to capture real-time data and provide crucial in-
formation about the construction zone surroundings. The CNN models, such as
YOLOv3 and YOLOvV4, perform the object detection to identify items in the work
zone and send real-time warnings to the on-site workers, traffic management au-
thorities and site managers, helping in this way to prevent accidents. Autonomous
vehicles passing through roadwork zones may be able to leverage information from
[0oT devices, transmitted instantaneously to the driving system through its wireless
communication network. Roadwork information will be integrated into the au-
tonomous driving perception module outlined in Section 1.2. Traffic conflicts and
delays at roadworks decrease when CAVs receive additional information in advance
via a smart traffic cone respect to relying only on data from in-vehicle sensors [23].
The framework proposed by N. Andrade et al. utilized YOLOv3-tiny for detecting
roadworks signs in the traveled path, Deep Deterministic Policy Gradient (DDPG)
for controlling the behavior of the vehicle when overtaking the working zones, and
CoppeliaSim as simulation environment [9]. DDPG is model-free and uses DNNs
to improve the actions of the vehicle, by only relying on experience and trial-and-
error. Findings on the results have shown that YOLOv3-tiny is a good choice for
real situations, and DDPG achieves the intended goal more than 50% of the trials.
Application of the studied methods to real-world scenarios requires simulations to
reach very high performance.

1.5 Thesis objective

The goal of the thesis is to examine lane keeping algorithms [24, 25] on a scaled self-
driving car and adapt them to a simulation environment of a roadworks scenario
in the following circumstances:

« lane change in the presence of yellow lane markings;
o lane change in the presence of yellow lane markings and red barriers;
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 lane change in the presence of yellow lane markings and a predefined traffic
barrier;

 lane narrowing highlighted by the presence of yellow lane markings;

« stop after obstacle recognition.



Chapter 2
The self-driving car

The 1/10 scale vehicle in Figure 2.1 has been provided by Bosch for the edition 2021-
2022 of the international technical competition Bosch Future Mobility Challenge
(BFMC), initiated by Bosch Engineering Center Cluj in 2017. The competition
invites student teams every year to develop autonomous driving and connectivity
algorithms to navigate in a designated environment simulating a miniature smart
city [26]. The vehicle is equipped with the required electronic and mechanical
components to support driving tasks by leveraging the lane keeping feature. It can
be considered a prototype of SAE level 5 driving automation car.

Figure 2.1: The self-driving car



The self-driving car

2.1 Hardware

The self-driving car assembled components that have been utilized are represented
in the diagram in Figure 2.2, that shows how they are physically connected. Part
of the original setup has been modified, as outlined in Section 2.1.1.

G
chswwpsw
Al A2
Brain <
i <
Camera Flexi cable Raspbarry Pi § Controller
{Raspberry Pi.5) (Nuckeo) | Legend
D3 04
Communication standard cadle
1 N
Physical connection <\ y
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N 1%
5V «—>
G andsignal AN h 4\
Motor Alimentation “

Brain Alimentation

Figure 2.2: Connection diagram

Chassis - Reely TC-04: the completely assembled base structure of the car.
Servomotor - Reely RS-610WP: actuator for the steering feature.

Motor - Reely 531009: on the left side in Figure 2.3a, equipped with mod-
ular incremental encoder and H-bridge motor driver.

LiPo Battery (2s, 7.4V, 6200mA h, 100 C): used to power up the motors,
showed in Figure 2.3c.

Power board: BFMC custom made power distribution board (Figure 2.3a,
right side), it delivers the power coming from the connection of the LiPo
battery to the motors and returns feedback regarding battery voltage and the
instant consumption. To increase the autonomy, an additional battery may
be connected.

Controller - Nucleo F401RE: used to control the motors and read data
from the power board.



The self-driving car

e Brain - Raspberry Pi 5: single-board computer that controls the automated
part of the vehicle, performing best with its active cooler. It communicates

with the controller with a USB0-miniUSB cable (Figure 2.3d).

e« Camera - DFRobot FIT0729: The main sensor in the vehicle, connected
to the brain through USB port.

« Brain alimentation - UPS HAT (E): connected to the Raspberry Pi 5
through pogo pins and equipped with four 21700 (5000 mA h, 3.7 V) lithium-
ion batteries (see Figure 2.3b).

Figure 2.3: In detail (a) motor equipment and power board, (b) Raspberry Pi 5 on
UPS HAT, (c) LiPo battery, and (d) connection between brain and controller.
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2.1.1 Raspberry Pi 5 power requirement

The original brain for the BFMC, Raspberry Pi 4 Model b, was alimented by the
power distribution board. The LiPo battery was indeed used for powering up the
entire vehicle. The transition to Raspberry Pi 5, a choice made to improve per-
formance and reliability [24, 25], rendered the battery power supply insufficient.
In fact, the Raspberry Pi 5 has a faster quad-core CPU than the previous model
and includes a new chip for managing I/O, both increasing power consumption.
A voltage of 5V and a minimum input current of 3 A are required. Using less
than 5 A could lead to peripheral instability, which is not acceptable in this ap-
plication, because the connections with the controller and the camera are made
through USB port. The solution that has been selected to power up the brain is
the Uninterruptible Power Supply (UPS) HAT type E expansion board, designed
for the Raspberry Pi series, with four lithium-ion batteries. The board includes
multi battery protection circuits, a battery meter chip, a fast-charging chip and a
high-power buck chip, to provide high-power input and output.

2.1.2 Lithium-ion batteries

A battery is a device capable of storing chemicals which can react under different
conditions to convert chemical energy into electrical energy [27]. The chemical re-
action occurs inside the battery cell, cations flow between the anode and cathode
through the electrolyte, generating an electrical current. The electrochemical reac-
tions in a lithium-ion battery are the oxidation of ions, causing the electrons to be
ejected from the anode, and the reduction of ions, allowing the electrons to be re-
ceived in the cathode [28]. In a lithium-ion cell, the cathode is made of a substrate
of a thin film of aluminum, the anode is usually made of a thin copper substrate
coated with active material, most often graphite. The transfer of lithium-ions from
cathode to anode represents the lithium-ion battery charging. The discharging
event is represented by the energy flow generated by lithium-ions moving from an-
ode into cathode. Special attention to battery operating conditions is needed to
monitor the charge-discharge protocol such that any physical damage, aging and
thermal runaways are avoided [29]. Moreover, the battery must be protected from
overcharging and over discharging. Lithium-ion batteries are rechargeable batteries
which have been widely used for electric vehicle application thanks to their attrac-
tive features such as high efficiency, long cycle life, low discharge rate, high voltage,
lightweight and better power and energy density compared to other energy storage
devices. There are different types of lithium-ion cells, distinguished by their form
factors:

o Cylindrical cell: the can, made of steel, nickel-coated steel or aluminum,
offers high strength packaging requiring a lot of energy to damage it. However,
a high initial impedance causes a high rate of heat generation, easy manageable
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due to the small dimensions.

o Prismatic cell: the rectangular shape of a hard steel, plastic or aluminum
can is gaining attention from major auto manufacturers. Its major benefit is
the low quantity of cells required to achieve the voltage and energy needed.

e Pouch cell (also called polymer or laminate - LiPo): this type of cell has be-
come the standard in many portable power applications, thanks to its flexible
pouch-like design. It uses a soft polymer laminate casing. The term polymer
originally referenced to employing a polymer-based instead of a liquid-based
electrolyte. The integration of safety features such as cell venting is more
challenging for this type of lithium-ion cell.

Four cylindrical cell batteries (21700 format - 21 mm x 70 mm) and a LiPo battery
have been used in this application, respectively shown in figures 2.3b and 2.3c.

2.2 The lane keeping algorithm

The research of this thesis leverages the work conducted by C. Gentile [24] and L.
Di Biase [25] in 2024 on the development of a lane keeping algorithm based on lane
detection and speed and steer control. The C++ algorithm running on the brain ac-
quires frames from the camera, elaborates them and computes commands which are
sent to the controller. Lane detection is achieved by means of feature-based tech-
niques aimed to detect lane markings. Multi-threaded programming includes one
thread acquiring frames that are collected into a queue, the main thread responsi-
ble for frame elaboration and commands computation, and the thread continuously
communicating with the controller. The commands sent to the controller are the
values of speed and steer, respectively limited in the intervals [—50,50]cm s~ and
[—25,25]°.

2.2.1 Image processing

Each acquired frame is restored from the queue and gets elaborated. The captured
frame contains information compliant with the Red Green Blue (RGB) color space,
working on three different channels. A conversion to the uni-dimensional grayscale
color space is performed to reduce the image size, and achieve a better edge recog-
nition. Focusing on white lane markings, a mask is applied to the frame to extract
only white pixels. To remove noise from the image a Gaussian blur low-pass filter
is used. Bright areas of the image are expanded by applying gap-filling operations,
and isolated comparing each pixel intensity with a threshold. Once the frame has
been cleaned, the image is transformed from the frontal view into a bird’s eye view
to eliminate the perspective. The lane lines appearing in the frame are now par-
allel. Lines are extracted from the image by means of a Hough Transform (HT)

12



The self-driving car

implementation, and classified as belonging to the left or right lane, or to the stop
line, in accordance to their slope value. A sliding window approach is used to follow
the course of the lane lines and, with the histogram peak detection, their center
points are recognized and used to construct a central line, which will be considered
the reference line of the trajectory.

2.2.2 Mathematical model

The self-driving car has been modeled as simply as possible with the kinematic
single-track model (Figure 2.4). Without accounting for dynamic forces, this model
gives good results for non-critical driving situations [30]. The wheels on each axis
are considered as a single unit.

Y}\.O

8
Y

Figure 2.4: Kinematic single-track model

The nonlinear equations describing this model include the definitions of the linear
and angular velocities affecting the vehicle longitudinal and lateral motion, with
respect to an inertial reference frame (X,Y):

& =wv-cos(v+ ) (2.1)
y=wv-sin(y+ B) (2.2)
6= sin() 2.
v=a (2.4)
lr
B = arctan <l7’ " . tan((&)) (2.5)

where (z,y) are the coordinates of the center of mass, 1 is the inertial heading (yaw
angle, describing the rotation around the vertical axis of the car), v is the speed,
is the angle between the velocity vector and the longitudinal axis of the car, and
0y is the steering angle.
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2.2.3 Control design

The states describing the vehicle behavior in time are the yaw angle ¢ of the car
and the lateral offset, defined as the distance between the position of the car and
the lateral lane line. A gain scheduling control based on v has been developed by
computing the slope of the reference line, the final result of image processing. The
equations of the reference line and the expression of its slope m, which is computed
exploiting linear regression, are given by

y=mx+q (2.6)

(S - (S5
n(X2?) — (X x)?

where n is the number of points and x and y are their coordinates. The steering
value 0 is defined according to the value of m. In general, if |m| is large, then
|0¢| is small because the vehicle is already moving along the correct direction. On
the contrary, if |m| is small, a large |0 will bring the car along the prescribed
trajectory. The sign of d; is negative for left turns and positive for right turns,
which is consistent with the sign of m.
The computed 67 may be updated by taking into account the error due to the lateral
offset. The horizontal position on the frame of the reference line, specifically the
x-coordinate of the third point belonging to it, is subtracted to half of the frame
width, which represents the car position. If |0f] < 10, the subtraction result is
compared to specific thresholds to compute the modification for the steering value,
with a greater correction in case the error is more significant.
The speed value v is set proportionally to refSpeed, an initial reference value,
with the proportionality factor depending on [d¢|. The general trend is to allow
higher velocity values for small |d¢|, and to reduce velocity as |df| increases. For
large steering values, the speed is set to the minimum value required to move. If
a horizontal line is detected, e.g. a stop line, v = Ocms™! and the car stops. In
presence of straight lane lines, the velocity tends to reach the reference speed, while
it decreases when approaching a curve.

(2.7)

2.2.4 Time sampling

To achieve real-time performance, the original program has been modified to ensure
that frame acquisition, image processing and control are executed within a constant
sampling time. Since frame elaboration typically takes 30 ms on average, but may
exceed this under certain conditions, a fixed sampling time of Ty = 50 ms has been
chosen to provide sufficient time for all tasks. During each interval, a frame is
acquired and processed, speed and steering values are computed accordingly with
image processing results, and the corresponding commands are sent to the con-
troller. Figure 2.5 provides an overview of the implemented logic flow. To improve

14
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performance, frame storage in a queue has been removed, indeed each frame is pro-
cessed in real time within T, making buffering unnecessary. The communication
thread responsible for transmitting speed and steering commands to the controller
has been removed, since the commands values depend on the processing of the
acquired frame. Commands are now transmitted once every T;. The lane keep-
ing feature has been enhanced to better handle curves, by continuing the reference
line generation even in cases where only one lane marking (either left or right) is

detected.
Frame acquisition lisoezge PTOCESSILE
for lane detection

Speed and steer
computation

Commands trans-
within T} mission to actuators

Figure 2.5: Lane keeping algorithm
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Chapter 3

Lane keeping in a roadworks
scenario

The design of the roadworks environment and the related considerations are based
on the Italian road infrastructure and regulatory standards, which may differ from
those adopted in other countries. In normal conditions, pavement markings in Italy
are white, whereas in other countries the standard color for lane markings may be
either white or yellow. Roadworks conditions involve the introduction of tempo-
rary yellow lane markings which overlap standard white markings, in certain cases
causing uncertainty in determining the correct lane trajectory. Residual markings
could induce confusion, even among attentive and experienced drivers. The correct
interpretation of lane trajectories may be improved through the combined use of
lane markings and physical traffic barriers.

The lane keeping algorithm described in Section 2.2 demonstrates degraded per-
formance when multiple lane colors are present on the track. Specifically, the
algorithm is designed to detect two lane boundaries, left and right, for construct-
ing the reference line. The introduction of additional lines, such as overlapping or
residual markings, may lead to incorrect boundary identification and, consequently,
errors in lane trajectory estimation. For instance, the algorithm may erroneously
classify a yellow left-curved lane marking as the right boundary and a residual
white marking as the left boundary. The misinterpretation leads to the construc-
tion of an incorrect reference line, resulting in inappropriate steering and velocity
commands. The car may continue on a straight path rather than initiating the
required left turn. The self-driving vehicle must accurately identify the correct pair
of lane markings, which delineate the intended driving trajectory. To replicate the
behavior of a human driver in roadwork conditions, the algorithm is expected to
assign precedence to the yellow lane when present, while discarding leftover white
markings.
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A clear distinction between white and yellow lanes must be established. It is es-
sential to compute two separate masks according to this distinction, enabling to
selectively combine them when appropriate, or to apply a specific one depending on
the driving scenario. The selected mask, either resulting from the combination of
individual masks or chosen singularly, will be applied to the frame before executing
the perspective transformation step.

This thesis investigates a simulated diversion scenario induced by roadworks, con-
centrating on prioritizing yellow lane markings within the lane keeping system. Two
specific scenarios are examined: lane changing and lane narrowing. The former is
analyzed under varying conditions, including the presence of multiple overlapping
lane markings, the integration of a traffic sign to indicate a leftward deviation, and
the addition of red traffic barriers serving the same purpose as the sign in guiding
vehicle trajectory. Lane narrowing is represented exclusively through the use of
yellow lane markings.

3.1 Image processing for color segmentation

Camera sensors are assuming an increasingly critical role in modern autonomous
driving technologies. They provide high-resolution color images that are essen-
tial for detecting lane markings, road signs, vehicles, obstacles and other objects
present in the driving environment. Image processing supports a wide range of
tasks, including lane and object detection, by leveraging software-based methods,
and it is fundamental for understanding the semantic features of the surrounding
environment. Color image segmentation consists on partitioning an image into sev-
eral regions that are homogeneous with respect to one or more characteristics [31].
Color is a very significant low-level feature that can be used to extract homoge-
neous regions related to an object or part of it. The identification of such regions is
typically achieved by comparing the color characteristics of each pixel in an image
with those of its neighboring pixels.

In this work, from the perspective of the self-driving car, frames captured by the
onboard camera are processed to perform color segmentation. This technique is
employed to extract information regarding the color of lane markings, and to de-
tect predefined obstacles and traffic signs. OpenCV is utilized as an efficient tool
for implementing color segmentation due to its speed and reliability, which are
essential for real-time applications.

3.1.1 Color spaces

Frames acquired from the onboard camera are processed using the OpenCV libraries
[32]. In OpenCV, the default color representation format is the RGB color space,
which maps the RGB color model to human perceivable color. The trichromatic
color vision is based on three primary additive colors - red, green, blue - and their
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combinations on the eye cone photo receptors produce the full spectrum of colors
perceived by humans. Each pixel in a frame is composed of three numerical values
corresponding to the intensity levels of the red, green and blue color channels. A
RGB image uses 8 bits per channel, therefore R, G, and B range from 0 to 255 in
value. The conversion of a RGB image to a grayscale image is the transformation
in terms of the standard matrix notion given by

Y] [0299 0587 0.114] [R
I =059 —0274 —0.322| |G (3.1)
Q| 0212 —0523 0311 ] |B

The grayscale image is obtained by keeping its luminance channel Y, containing
most of the signal energy, and discarding /() channel chrominance, which carries
information with much less energy.

Y +0.299- R+ 0.587-G+0.114- B (3.2)

a) RGB

Figure 3.1: RGB vs HSV [1]

In the Hue Saturation Value (HSV) color space, points of a RGB color model are
represented by cylindrical coordinates, where the hue is the rotation angle with
respect to the central vertical axis, the saturation is the distance from the vertical
axis and the value, or brightness, is the distance along the height of the cylinder.
Conversion from RGB to HSV is given by

V « max(R,G, B) (3.3)
V—min(R,G,B) .
S« v itv#0 (3.4)
otherwise
G— : _
B—R : _
0 ifR=G=B
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For 8-bit images, the values are then converted to the destination data type to fit
in the interval [0,255].

V <255V, S < 2555, H < H/2 (3.6)

A comparison between RGB and HSV color spaces is shown in Figure 3.1. While
the RGB color space is useful when pure colors are present in the image, the HSV
color space exploits the purity of color (saturation) in images presenting different
shades of colors.

3.1.2 Mask computation for lane markings

In the grayscale color space, differentiating between yellow and white through mask
creation is challenging due to their very similar luminance values. Moreover, vari-
ations in lighting conditions can further affect these values, reducing the reliability
of grayscale-based color discrimination. As a result, the white mask generated by
the grayscale frame tends to include also yellow markings (Fig. 3.2).

.- T l'm_:‘ Wi

TN -

=T 2

(a) Grayscale converted frame (b) White mask from grayscale image

Figure 3.2: Grayscale mask extraction

The HSV color space has been chosen to differentiate among yellow and white mark-
ings, since it separates color information from intensity, providing greater robust-
ness to variations in lighting conditions. It is clear from Figure 3.3 that conversion
from RGB to HSV allows the yellow and white lines to be easily distinguished. In
particular, it has been possible to generate a yellow mask that exclusively isolates
yellow pixels, together with a white mask that effectively excludes them (Figure
3.4). The original frame has been converted from RGB to HSV format. Within the
HSV color space, two binary masks, each matching the dimensions of the original
image, have been derived to highlight yellow and white areas. The threshold values
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for the different colors have been defined as follows:

H =10;242],S = [0;12], V = [200; 255] for white

(3.7)
H =[20;30],S = [25;255],V = [200;255] for yellow

maskRange + {

Pixels of the computed masks set to 1 indicate the region of interest in the image.
The role of these masks will be detailed in Section 3.1.4.

(a) Original captured frame (b) HSV converted frame

Figure 3.3: RGB to HSV conversion

3.1.3 Color calibration

Indoor illumination can be affected by several factors that change lighting condi-
tions. The amount of daylight entering a space fluctuates throughout the day and
depends on weather conditions. Artificial light is influenced by its type, intensity
and positioning. Additional factors include environmental changes such as move-
ment of people, opening or closing doors and windows. Given these considerations,
the selected threshold ranges may not be optimal in varying environmental or il-
lumination conditions. A maskCalibration function has been developed to modify
the HSV default threshold bounds established in Section 3.1.2. The void function
receives as argument an integer number n, which specifies the target color (with
1 corresponding to white and 2 to yellow). Based on the value of n, the function
sets the reference HSV threshold bounds according to equation (3.7). The function
displays three separate windows to enable real-time visualization of the threshold
adjustments effects: the first shows the original frame captured by the camera, the
second presents the binary mask highlighting the pixels that fall within the current
bounds, and the third window provides interactive sliders for modifying the H, S,
and V thresholds. The function is called and executed before initiating the self-
driving mode to guarantee accurate recognition of lane markings by verifying that
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yellow and white markings are correctly distinguished. High V thresholds are effec-
tive in filtering out light reflections on the track surface, which constitute additional
noise components that are rarely attenuated by the denoising methods presented
in Section 2.2.1. However, this function needs some sort of automatic improvement
to enable online calibration (while driving), which could be an appropriate choice
for real autonomous vehicle applications. The static approach adopted here is not
appropriate, because requiring preliminary computation of the correct bounds.

3.1.4 Lane selection

The number of yellow pixels has been determined by counting the non-zero elements
in the yellow mask in Figure 3.4a. The same procedure has been applied for the
white mask in Figure 3.4b. After the frame has been converted to grayscale to
enable the required transformations for lane detection, a mask has been applied to
enhance the visibility of lane lines. The selection of the appropriate mask to be
applied is based on the count of detected yellow and white pixels. In the absence of
a sufficient number of yellow pixels, suggesting white lane markings are still visible
on the track, both yellow and white masks are merged to support lane detection.
The predominance of yellow lane markings indicates the beginning of a roadwork
zone, requiring the exclusive application of the yellow mask to the grayscale image
to prioritize the temporary roadwork markings over any remaining white lines. The
selection process is depicted in Figure 3.5.

(a) Yellow mask (b) White mask

Figure 3.4: Final masks obtained exploiting the HSV conversion of the original
frame
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/

/ Frame acquisition / l

HSV conversion

Grayscale conversion

White and yellow
masks computation

yellow mask selection Are yellowpixels > threshold?

combine yellow
and white masks
for mask selection

Apply mask to
grayscale image

Lane detection

Figure 3.5: Flowchart summarizing mask choice

3.1.5 Object detection

The complex vision task of object detection is approached using a contour-based
method, with image segmentation serving as a preliminary step. A distinct binary
mask is computed for each of the two target objects, which are a rectangular yel-
low warning sign displaying red directional arrows and a red barrier. The method
involves searching for contours within the binary mask image. For each detected
contour, the area is calculated and compared against predefined thresholds to esti-
mate the distance from the obstacle. The contour area is inversely proportional to
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the distance, and the thresholds are experimentally calibrated to ensure accurate
distance estimation.

Traffic Red-Yellow Barrier (TRYB)

To determine the pixel range, required to extract the region related to the TRYB,
threshold-based segmentation is employed. The initial approach involved combining
red and yellow color masks, by considering a different yellow range from the one used
for lane markings. While this combination was partially effective in isolating the
TRYB, the resulting mask contained blank regions that compromised the accuracy
of contour extraction and subsequent analysis. A manual calibration phase was
then performed using the maskCalibration function, initialized with default HSV
values corresponding to the red color. The HSV parameters were iteratively refined
by adjusting interactive sliders until the target sign was distinctly and reliably
segmented. Final default thresholds for the TRYB are given by

rangeTRY B < {H = [0;23], S = [74;158], V = [147;255] (3.8)

The subtraction of the yellow mask corresponding to lane markings ensures that
these features are excluded from the TRYB mask, thereby preventing interference
during the segmentation process.

The gain scheduling control strategy has been modified to amplify the computed
steering command by 20% when the vehicle is sufficiently close to the detected
TRYB. Additionally, the vehicle speed is progressively reduced as it approaches
the TRYB. Figure 3.6 shows detection of TRYB in a frame captured from the
onboard camera.

Figure 3.6: Detection of roadworks traffic signs

Red barrier

The red obstacle mask is easier to obtain compared to the mask for the TRYB,
due to the homogeneous color distribution of the object. In fact, a single red mask

23



Lane keeping in a roadworks scenario

is sufficient for segmentation, by considering the following threshold bounds as
reference

rangeBarrier {H = [0;10], S = [59;255], V' = [142; 255] (3.9)

The maskCalibration function is modified to support threshold adjustments for the
target objects, with n = 3 corresponding to the traffic sign and n = 4 to the red
barrier. The function assigns the corresponding reference HSV threshold bounds
as defined in equations (3.8) and (3.9), respectively.

The gain scheduling control strategy has been adapted to handle three specific sit-
uations, each managed by dedicated threshold settings, considering as obstacle a
group of four red traffic barriers. If the obstacle is aligned with the curvature of the
yellow markings (shown in the following chapter in Figure 4.10a), its detection en-
hances the lane-change behavior in accordance with the diversion path by means of
an amplification of the computed steering command by 20%. In the second scenario
(Figure 3.7a), the four barriers are positioned over the yellow curvature markings.
The absence of both yellow and white lane markings, replaced by traffic barriers,
may pose challenges to the lane keeping algorithm that rely on their presence. In
fact, the steering value is set inversely proportional to the detected barrier area
regardless of the slope of the reference line. In both first and second situations,
the vehicle speed decreases as the perceived obstacle area increases. In the final
scenario, when the obstacles are positioned across the lane and obstruct the vehicle
trajectory (Figure 3.7b), the speed is explicitly set to zero as the vehicle approaches
closely. Area threshold required to stop is 35000, corresponding to a distance of
33.5cm. For all detected areas above this value, a speed command value of 0 is
sent to the controller. When the obstacles are removed, the car resumes motion,
following the correct lane trajectory.

(a) (b)

Figure 3.7: Detection of red barriers
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Chapter 4

Results

The self-driving car runs on a 6 m long black track. The environment designed for
the roadworks simulation consists on the integration of yellow markings in combi-
nation with white markings to follow the pattern of a diversion. Part of the tests
involve the presence of predefined obstacles, TRYB and red barrier, which have
the function of signaling lane closure. Results will be analyzed by evaluating speed
and steering commands, lateral offset and slope of the reference line over time. In
general, acceptable intervals for the variables of interest are given by

e Slope m € R
For vertical lines m is not defined. As |m| increases, the line becomes steeper
and may visually approximate a vertical orientation. Ideally, |m| is large for
straight roads if the longitudinal axis of the car is positioned parallel to the
lane lines for the start.

« Offset [—320,320] is the maximum interval, which distance (640) corresponds
to the width of the image captured by the onboard camera in pixels. The
optimal solution for lane keeping is offset equal to 0. An acceptable interval
could be [—100, 100], meaning the offset is under the 31.25%. More reasonably,
offset varying in [—25,25] establishes good performance.

o Steer Physical constraints of the servomotor limit the steering angle in the
interval 0y = [—25,25]°. Higher |0;| commands are not effectively obtained.

e Speed It remains nearly constant across the majority of experiments, with a
slight decrease in response to increased curvature. It ranges in the interval
[0.0,0.1], while its precise conversion to physical units (cms™!) depends on
track conditions, such as surface smoothness and the presence of dust or minor
dirt that introduce additional friction.
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Time sampling results

A fixed sampling time of 50.00 ms has been defined as the system target to ensure
timely execution of image processing, control computation, and command trans-
mission to actuators. The experimental results showed an average execution time
of 50.06 ms, with the first iteration excluded due to its consistently higher duration
of approximately 200.00 ms. The obtained results indicate a close adherence to the
intended timing constraint.

4.1 Straight road

Figure 4.1: Test on straight road

First analysis have been conducted for the evaluation of the lane keeping behavior
in a standard straight road exclusively characterized by white lane markings. For
optimal lane keeping achievement, minimal offset and high slope (in absolute value)
are required. Figure 4.1 illustrates driving behavior observed during a test in which
the car follows a straight trajectory, starting with an initial heading angle ¢ > 0.
In particular, the bottom left plot shows how the steering value ¢y is changing de-
pending on the reference line slope m (top left graph) and lateral offset (top right
graph). In general, small §; corrections have been adopted to increase |m| and
decrease the offset. Speed value is almost constant and reaches 0 in occurrence of
a stop line, enabling the car to reach the end of the track in 15s. A comparison of
different successful tests, starting from different positions with respect to the lane,
is given in Figure 4.2. In detail, the green and blue lines refer to tests in which the
vehicle initial position required a larger initial steering correction due to smaller
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Figure 4.2: Comparison of tests on straight road

slope values and higher offset values compared to the other tests. Conversely, the
yellow and red tests exhibit smaller offset values and larger slope values, resulting
in reduced steering effort to maintain the correct trajectory, as indicated by the
variations in steering commands. The purple plots indicate an apparently optimal
initial position, characterized by very high slope magnitudes (ranging from 100 to
150), with oscillations resulting from the vehicle close alignment with a vertical line
direction (m — 400). Due to the improved initial positioning, the vehicle main-
tains a higher constant speed, which decreases its controllability and requires rapid
corrective steering to remain within the lane boundaries. The resulting trajectory
exhibits a zigzag pattern. From the comparison, it can be observed that the car
reaches the stop line at the end of the straight path more quickly when it starts
with a small yaw angle, indicating that its longitudinal axis is already parallel to
the lane and reference lines, and centered between the two lane boundaries. In
contrast, misalignment at the start leads to increased time to reach the end of the
track.

4.2 Lane narrowing

Testing environment for the lane narrowing scenario has been prepared to simu-
late the narrowing of a 50 cm wide lane into a lane of width 35cm (Figure 4.3a),
respectively demarcated by white and yellow lines. Plots in Figures 4.4 and 4.5
describe the driving behavior of the self-driving car during tests. In the former,
two main steering actions are sufficient to achieve the successful result: turning left
when the lane width has been decreasing, then right when the final width has been
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(a) Lane narrowing (b) Lane change

Figure 4.3: Temporary lane markings for roadworks
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Figure 4.4: Test 1 for lane narrowing

reached. The car stops at the stop line requiring almost 13s, and the offset always
remains within the interval [—40,20], corresponding to keep it under the 20% of its
maximum range. In the latter experiment, lane keeping achievement is obtained
through a zigzag initial movement, since the car is starting to run from a position
closer to the right lane line. Higher steering values, with respect to the previous
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Figure 4.5: Test 2 for lane narrowing

test, are needed to correctly follow the reference line trajectory.

4.3 Lane change
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Figure 4.6: Test 1 for lane change

The scenario consists of a one-way highway road represented by two parallel white
lanes, each 35 cm wide. A diversion is simulated using yellow markings that initially
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overlap the white lines of one lane, continue through a leftward curve that tran-
sitions the trajectory onto the second lane, and relinquish precedence back to the
white markings (shown in Figure 4.3b). The lane lines of the curvature maintain a
distance of 35 cm.

Figure 4.6 illustrates the results of a test in which the vehicle completed the diver-
sion trajectory in approximately 14s. The steering angle chart (bottom left) reveals
an initial left turn followed by a right turn of comparable magnitude, reflecting the
geometry of the diversion path. Figure 4.7 presents the outcome of a slower test
run along the same diversion trajectory, during which the car traversed over the yel-
low lane markings, leading to a higher rolling resistance due to the altered surface
characteristics of the yellow markings. In lane changing tests, offset variations are
more significant compared to the straight road scenario, due to the tight curvature
that challenges the stability of the lane keeping algorithm.

4.3.1 Traffic Red-Yellow Barrier for lane closure

The integration of the TRYB as an indicator of a sharp curve has been proposed
to facilitate lane change (as in Figures 3.6 and 4.3b). Figures 4.8 describes the
typical lane changing behavior: a left turn starting at ¢ = 5.0 s followed by a right
turn, around ¢ = 8.0s. dy is included in the interval [—20, 420] for all time instants
and the offset is maintained in [—50,+50]. The peaks observed at ¢ = 9.7s in
the slope (999), offset (-320), and speed (0) profiles indicate a momentary loss of
lane detection, presumably due to insufficient illumination. The subsequent rapid
recovery ensured that no visible effects have been observed during the test. The
second proposed experiment, with results shown in Figure 4.9, exhibits behavior
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similar to that observed in the first experiment: the time required to complete the
diversion trajectory is approximately 13s; in this case the initial left turn, followed
by a right turn that concludes with a straight segment, is more pronounced; the
lateral offset range is wider, spanning in [—150,50]. The integration of TRYB
visually enhances the driving performance, achieving the desired result.
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Figure 4.8: Test 1 for lane change with TRYB
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Figure 4.9: Test 2 for lane change with TRYB
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4.3.2 Red barrier for lane closure

To indicate the correct diversion path and more clearly signal that the lane is
closed, red barriers were also used as indicators in two different scenarios: positioned
behind the yellow lane markings (1) as shown in Figure 4.10a, and placed directly
over the markings (2), blocking the straight path and hiding the roadwork markings
(Figure 4.10Db).

(a) Case 1 (b) Case 2

Figure 4.10: Lane closure due to roadworks

1. For the first scenario, the initial experiment (shown in Figure 4.11) demon-
strates appropriate lane-changing behavior, despite the steering command ex-
ceeding the maximum allowable value around ¢ = 65s. This results in a sig-
nificant offset variation, which remains within acceptable limits. Further re-
finements of the algorithm are necessary to limit the extreme values of the
steering range. Nevertheless, this experiment is visually the most successful
one. Figure 4.12 instead shows the results of a second test conducted within
the first scenario. During this test, the vehicle encountered difficulty mov-
ing over the yellow markings, leading to increased rolling resistance. This
is evident from the repeated speed and steering commands observed in the
time interval ¢ = [15,20]s. Further reducing vehicle speed when approaching
roadworks, indicated by the presence of yellow lane markings, should improve
performance and help preventing this issue.
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Figure 4.12: Test 2 for lane change with barriers

2. The second scenario presents the challenge of operating without lane detec-
tion, as the lane markings are not visible. The results shown in Figure 4.13
indicate that, in the absence of lane recognition, the steering value is computed
independently of the reference line slope during the time interval ¢ = [4,5]s.
As discussed in the context of the first scenario, further refinements to the
algorithm should aim to ensure that the physical limits of the servomotor are
not exceeded. The self-driving car correctly followed the trajectory defined by
the roadwork constraints. At ¢ = 7.9s, lane detection was temporarily lost
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Figure 4.13: Test 3 for lane change with barriers (over markings)

after navigating the curve, an issue also observed in other tests, but it had no
visible impact on the vehicle behavior.

4.4 Stop after obstacle detection

Red barriers have been placed across the entire width of the lane, perpendicular
to its direction, at a distance of 2m from the starting point of the track, in order
to simulate a complete lane closure without the possibility of changing lanes (posi-
tioned on the track of Figure 4.3b as in Figure 3.7b). This setup has been designed
to test the vehicle emergency stop behavior. In general, the testing outcomes have
not been satisfactory, as the vehicle successfully stops in only 50% of the case stud-
ies. The results of the tests in which the vehicle successfully stops at the predefined
distance in approximately 4.5s (Figures 4.14 and 4.15) reveal an initial loss of lane
detection, evidenced by a slope value of 999 and an offset of —320, followed by
an uncertain steering response, intended to correct the travel trajectory. In some
cases, the vehicle stops in time to avoid a collision but does so at a very short
distance from the barriers, as shown in Figure 4.16. In this particular experiment,
the vehicle required 6.2's to come to a complete stop, which is longer than expected
and compared to the stopping times observed in the successful tests. A failed test
is illustrated in the plots of Figure 4.17. In this case, the vehicle required 6.6s to
stop, and this has not been sufficient to avoid impact with the barriers.

Performance improvements could be achieved by decoupling image processing for
object detection from lane recognition, executing it concurrently in a separate
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thread or on a dedicated parallel processor devoted solely to object detection. Fur-
thermore, alternative communication protocols, such as a dedicated serial interface,
could be considered to replace the current USBO-miniUSB cable connection, with
the aim of minimizing latency between command processing and actuation.
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Figure 4.14: Test 1 for emergency stop
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Figure 4.15: Test 2 for emergency stop
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Slope

4.5 Results from other tests

This section presents additional test results from the same categories previously
analyzed, summarized in tabular form. The table reports the test number, the
range of variation of the metrics defined at the beginning of the chapter, and the
time required to complete the prescribed trajectory. The time metric is the only
one for which the measurement unit is indicated, since the other metrics adhere to
the considerations already outlined.
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Test m offset Of v t
1 [-132, 92] [-33, 14] [-7.5, 4.0] | [0.000, 0.077] | 12.95s
2 [-80, 72| | [-118, 128] | [-14.5, 19.5] | [0.068, 0.077] | 14.95s
3 [-133, 114] | [-160, 38] | [-25.5,9.0] | [0.000, 0.077] | 10.50s
4 [-160, 160] | [-25, 10] | [-20.0, 13.0] | [0.000, 0.077] | 11.45s
5 [-160, 107] -24, 7] [-5.0, 9.0] | [0.068, 0.077] | 10.05s
6 [-73, 102] [-28, 29 [-7.0, 20.0] | [0.068, 0.077] | 11.95s
7 [-160, 111] | [-35, 32] [-11.0, 8.0] | [0.068, 0.081] | 9.95s
8 [-60, 999] | [-320, 30] | [-8.5,20.0] | [0.000, 0.077] | 11.95s

Table 4.1: Lane narrowing tests

Test m offset Of v t
1 [-91, 78] [-15, 34] | [-20.0, 20.0] | [0.000, 0.077] | 18.05s
2 [-52, 999] | [-320, 73] | [-31.5, 22.5] | [0.000, 0.081] | 15.95s
3 [-160, 999] | [-320, 40] | [-45.0, 31.5] | [0.000, 0.081] | 22.95s
4 99, 41] [-19, 78] | [-20.0, 18.0] | [0.000, 0.077] | 20.35s
5 [-100, 999] | [-320, 82] | [-20.0, 17.0] | [0.000, 0.077] | 14.95s
6 92, 55] [-28, 56] | [-20.0, 14.0] | [0.000, 0.077] | 13.85s
7 [-74, 78] | [-320, 51] | [-20.0, 20.0] | [0.000, 0.090] | 16.50s
8 91, 67] | [-131, 25] | [-25.5, 30.1] | [0.000, 0.090] | 11.35s

Table 4.2: Lane change tests

In particular, Table 4.1 presents the results obtained from the lane narrowing tests.
On average, the self-driving car required 11.72s to complete the trajectory defined
by the narrowed lane. Steering values remain within the physical limits, in some
cases the variation range is more significant, due to less favorable initial car posi-
tioning. In the final test the reference line trajectory is temporarily lost, as indicated
by the maximum value of the slope m and the minimum offset value, though this
does not result in any visible issues. Slope values reach high magnitudes, and the
speed remains nearly constant within the same interval, except when the minimum
is zero, signifying that the car has halted at a stop line.

Table 4.2 presents the results of lane change tests, based uniquely on the combi-
nation of yellow and white lane markings. The average time to complete the lane
change is 16.74s, which is higher than the times recorded for the narrow lane di-
version. Loss of the reference line trajectory occurs in a greater number of tests. In
some cases, the steering commands exceed the physical limits, requiring algorithmic
correction as discussed in Section 4.3.2.

Tables 4.3 and 4.4 report the outcomes of the integration between lane keeping
and object detection of traffic barriers indicating a lane closure. The mean time of
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15.93 s indicates an improvement compared to the diversion scenario solely marked
by yellow lines. However, this value is still higher than the mean time observed
in the lane narrowing scenarios, highlighting the greater complexity of lane change
maneuvers. Although brief disruptions in the reference trajectory occur more often,

the offset values remain within acceptable ranges.

Test m offset Of v t
1 [-50, 120] | [-14, 18] | [-10.0, 2.0] | [0.000, 0.077] | 10.35s
2 [-84,999] | [-320, 19] | [-17.0, 17.0] | [0.000, 0.081] | 13.35s
3 [-160, 999] | [-320, 21] | [-22.0, 20.0] | [0.000, 0.077] | 12.95s
4 [-160, 999] | [-320, 30] | [-20.0, 20.0] | [0.000, 0.077] | 21.95s
5 [-160, 999] | [-320, 62] | [-36.0, 25.2] | [0.000, 0.081] | 18.255
6 [-110, 999] | [-320, 80] | [-36.0, 32.4] | [0.000, 0.081] | 16.45s
7 [-160, 999] | [-320, 79] | [-36.0, 20.7] | [0.000, 0.081] | 14.95s
8 [-132, 49] | [-117, 30] | [-34.6, 20.4] | [0.000, 0.081] | 13.95s
9 [-77,999] | [-320, 73] | [-36.0, 24.0] | [0.000, 0.081] | 16.25s
10 [-46, 999] | [-320, 76] | [-36.0, 36.0] | [0.000, 0.081] | 15.95s
Table 4.3: Lane change tests with traffic barriers (TRYB or red) and visible lane
markings
Test m offset Of \% t
1 [-160, 999] | [-320, 57] | [-45.0, 25.9] | [0.000, 0.081] | 12.75s
2 [-160, 160] | [-48, 74] | [-45.0, 45.0] | [0.000, 0.081] | 20.95s
3 [-160, 999] | [-320, 38] | [-45.0, 30.4] | [0.000, 0.081] | 19.95s
4 -60, 39] [-59, 83] | [-45.0, 90.0] | [0.000, 0.081] | 14.95s

Table 4.4: Lane change tests with red barriers and not visible lane markings

Table 4.5 contain performance data related to emergency stop tests, a particular
case of the combination of lane keeping and object detection. This table includes
an additional column to indicate the stop outcome for each test instance. The
reference line trajectory is lost in every test, as expected, due to the barriers be-
ing physically placed over the lane markings, resulting in occlusion and preventing
their detection. Successful tests require a stopping time of less than 6s to halt at
the correct distance. However, exceeding this threshold does not necessarily imply
test failure. Test outcomes reveal that the vehicle was unable to stop within the
required distance in nearly half of the trials, as previously outlined in Section 4.4.
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Test m offset Of v t stopped?
1 [-80, 999] | [-320, 10] | [-36.0, 10.8] | [0.000, 0.072] | 7.95s NO
2 [-126, 999] | [-320, 33] | [-3.6, 5.4] | [0.000, 0.072] | 7.95s NO
3 [-102, 999] | [-320, 30] | [-3.6, 10.8] | [0.000, 0.072] | 7.95s YES
4 [-42, 999] | [-320, -4] | [-36.0, 16.2] | [0.000, 0.072] | 5.45s YES
5 [-85, 999] | [-320, 22] | [-48.6, 12.6] | [0.000, 0.072] | 7.95s NO
6 [-37,999] | [-320, 1] [-7.2,0.0] | [0.000, 0.072] | 5.60s YES
7 [-55, 999] | [-320, -3] | [-13.5, 13.5] | [0.000, 0.072] | 6.25s YES
8 160, 999] | [-320, 4] [-7.2,4.8] | ]0.000, 0.072] | 5.95s YES
9 [-88, 999] | [-320, 29] | [-20.4, 20.4] | [0.000, 0.072] | 7.35s YES
10 [-99, 999] | [-320, 4] | [-13.5, 16.2] | [0.000, 0.068] | 5.20s YES
11 | [-160, 999] | [-320, 3] | [-10.1, 10.1] | [0.000, 0.072] | 6.60s NO
12 [-52, 999] | [-320, 20] | [-13.5, 25.5] | [0.000, 0.072] | 5.35s YES
13 [-43, 999] | [-320, 28] | [-14.9, 25.7] | [0.000, 0.072] | 6.60s YES
14 [-52,999] | [-320, 2] | [-22.5,2.3] | [0.000, 0.077] | 6.35s NO
15 [-80, 999] | [-320, 17] | [-42.8, 45.0] | [0.000, 0.068] | 7.55s NO
16 | [-108,999] | [-320,9] | [-13.5,2.3] | [0.000, 0.072] | 6.10s NO

Table 4.5: Emergency stop tests
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Chapter 5
Conclusion and future works

Roadwork conditions present significant challenges for driving automation technolo-
gies and require additional considerations. The dynamic and often unpredictable
situations created by temporary construction sites must be managed accurately and
in a timely manner.

In this thesis, the presence of roadwork-induced diversions necessitated the exten-
sion of a lane-keeping algorithm to enable the recognition and differentiation of
yellow lane markings from white ones. Color segmentation techniques have been
crucial for implementing this enhancement.

In combination with the newly introduced roadwork features, the development of a
maskCalibration function has improved the robustness of the lane detection, due to
the capability of handling varying lighting conditions and of neglecting light reflec-
tions on the track. However, since the calibration cannot currently be performed
online, a one-time calibration must be executed prior to driving mode. Future im-
provements could focus on adapting the function for online use, enabling real-time
responsiveness to changing environmental conditions.

Color segmentation has also proven effective for object detection, enabling the iden-
tification of specific roadwork elements and enhancing the system ability to recog-
nize the beginning of the roadwork zone.

The testing environment for the BFMC self-driving car has been designed in order
to support lane narrowing and lane change scenarios. The integration of two types
of barriers has been investigated to facilitate and evaluate the lane-changing be-
havior. An emergency stop scenario has additionally been included to analyze the
vehicle response to complete lane obstruction. Experimental results demonstrated
that, in the majority of tests, the vehicle correctly performed the diversion in re-
sponse to both lane narrowing and lane change conditions. However, it has been
observed that the vehicle often approaches the diversion at high speed, beginning
to decelerate only after completing the curve. Further refinement through addi-
tional testing should enhance driving performance. For instance, the vehicle could
be programmed to start running at a higher speed and initiate deceleration as soon
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as roadworks are detected, specifically when the yellow lane markings begin. Fur-
thermore, implementing this strategy may help prevent the wheels from running
over the lane markings, an issue encountered in some tests, thereby improving the
vehicle ability to remain entirely within the lane boundaries. Experimental results
also revealed that lane changes generally take longer to complete than lane nar-
rowing maneuvers. This finding suggests that, in roadwork zones, adopting lane
narrowing strategies may be more efficient than implementing full lane closures, as
they are less likely to cause significant delays in travel time.

The presence of traffic barriers indicating the diversion path, and blocking the
closed lane, visibly enhances the lane-changing performance, based on observations
of the vehicle behavior. Partial success has been obtained for obstacle detection
when the red barrier was positioned across the lane, forcing the vehicle to stop.
However, significant improvements are still required. Introducing a dedicated par-
allel processing unit exclusively for object detection could be beneficial.

Sensor fusion involving the camera and a LiDAR sensor could enhance object de-
tection performance. Additionally, integrating hardware components such as head-
lights may support consistent color calibration by leveraging their predefined lumi-
nance conditions, thereby reducing the impact of changing ambient light.

Future research should focus on incorporating a wider range of traffic signs and
traffic cones representative of real-world roadwork scenarios, in order to enrich the
realism of the testing environment. The development of a communication network
facilitating data exchange with smart devices could enhance the perception and
interpretation of the road environment.

The Raspberry Pi 5 offers significantly improved performance compared to previous
models; however, it remains limited in computational resources when compared to a
desktop PC or platforms such as the NVIDIA Jetson, which are commonly used for
AT and advanced robotics. These limitations in processing power may render the
Raspberry Pi 5 insufficient for executing DNNs or supporting a full ROS deploy-
ment, despite the benefits these technologies provide in enhancing image processing
and overall system functionality.

Alternative control algorithms supported by neural networks will be explored in
future work and evaluated against the current vehicle performance.

Research focused on adapting autonomous driving technologies to the complexities
of roadwork environments demonstrates significant potential for enabling robust
and reliable control systems applicable to real-world conditions.

To enable the integration of fully autonomous driving technologies into real-world
environments, a standardized framework for managing roadwork conditions should
be properly defined. Targeted changes to road signage and infrastructure in road-
work zones may include the use of reflective materials for pavement markings in
bright and highly distinguishable colors, such as red, orange, or fluorescent green,
that are clearly differentiated from standard white lines. Additionally, traffic ele-
ments with uniform and high-visibility coloring can improve detectability for both
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human drivers and autonomous vehicle sensors. This would aim to reduce the
high degree of variability that makes autonomous driving particularly challenging.
Moreover, traffic elements should support the integration of smart devices capable
of communicating their position and characteristics to approaching vehicles.

The establishment of international standards, along with the optimization of traf-
fic signals and road markings for machine perception, could significantly enhance
the reliability and safety of self-driving vehicles in real-world environments, and
support further advancements for autonomous driving research.
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Acronyms

ODD  Operational Design Domain
SAE Society of Automotive Engineers
DDT  Dynamic Driving Task

LiDAR Light Detection and Ranging
GPS  Global Positioning System

IoT Internet of Things

CNN  Convolutional Neural Network
DNN  Deep Neural Network

CAV  Connected and Autonomous Vehicle
BFMC Bosch Future Mobility Challenge
UPS  Uninterruptible Power Supply
RGB Red Green Blue

HSV  Hue Saturation Value

TRYB Traffic Red-Yellow Barrier
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