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Abstract

Accurate identification of synonyms is crucial for several Natural Language Process-
ing tasks and it presents significant challenges when done in a specialized domain.
These problems arise because of unique vocabularies, domain jargon, semantic
shift of words when used in non-general domains and limited domain-specific re-
sources for synonym detection. This thesis analyzes different methods for synonym
extraction in domain-specific contexts by evaluating a subset of techniques on a
multi-domain dataset which includes terms, their usage contexts and ground truth
synsets in different domains such as agriculture, automotive, economy, geography,
legal, medical and technology.

The analysis include synonym extraction using traditional lexical resources like
WordNet, various available forms of distributional semantic models like fastText,
domain-specific corpus training and fine-tuning, and contextual embedding models
like BERT. Clustering algorithms are also investigated when applied to combined
term and definition representations. For a more thorough analysis, Name Entity
Recognition for term identification is explored and compared with information
extraction models and LLMs for the same task. Additionally, capabilities of large
language models (LLMs) for definition generation and synonym grouping is explored.
Evaluation of experiments is done by using standard Precision, Recall, F1-score
metrics specifically adapted for synset recovery and recall for term identification.

The research concludes that currently the proposed multi-step approach is most
effective in synset creation which consists of: term identification and definition
generation by an LLM, unsupervised clustering, and additionally refining the
clusters by an LLM.

Keywords: Synonym Extraction, Synset Induction
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Glossary

Contextualized Word Embedding A word embedding where the vector repre-
sentation for a word is dynamically generated based on the surrounding text,
allowing the model to capture different meanings of polysemous words (e.g.,
BERT).

Synset A group of one or more synonyms that are interchangeable in a specific
context, representing a single distinct concept. In this thesis, synsets serve
as the ground truth for evaluation and the target output of the extraction
methods.

Target Term The specific word or multi-word expression within a text chunk for
which synonyms are to be identified. It serves as the primary input for the
synonym extraction process.

Text Chunk A segment of domain-specific text that contains a target term. The
chunk provides the necessary linguistic context to disambiguate the meaning
of the target term and identify its appropriate synonyms.

Word Embedding A dense vector representation of a word in a multi-dimensional
space. The geometric relationships between vectors (e.g., distance) are intended
to capture the semantic relationships between the corresponding words.
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Acronyms

K-GMA k-nearest-neighbor Greedy Modularity Algorithm

LLM Large Language Model

MWE Multi-word Expression

NER Named Entity Recognition

NLP Natural Language Processing

OOV Out Of Vocabulary

v



Chapter 1

Introduction

A fundamental part of understanding human language is understanding the relation-
ship between words. In this regard, semantic relationships play an important role.
Synonymy is the relationship between words with close and similar meaning and
it’s needed for many NLP tasks which includes information retrieval [1], question
answering, text summarization [2] and machine translation [3] among others. When
synonyms are identified, systems can detect that some words convey the same idea
and therefore will be better able to to process and generate natural language. The
ability of an intelligence system to understand that ‘USA’ and ‘United States’ refer
to the same entity, or that ‘crabby’ and ‘irritable’ can be used interchangeably in
specific contexts, is necessary for accurate processing and response to user queries
and understanding complex texts [4].

One of the traditional resources for capturing and keeping track of synonyms
were dictionaries and thesauri. These are important resources but cannot keep
pace with the dynamic developments in language and specifically the terms that
emerge and are specifically used in certain domains. Another challenge is that the
meaning and usage of a word can vary based on the domain of discourse. A term
like ‘cell’ have hugely different meaning in biology, telecommunication and prison
system. On the other hand, words that are close together in general language, might
have distinct meanings in a technical field or conversely terms that have different
meaning in general language can have similar meaning in a specific domain.

It’s because of all of the mentioned features of language that domain-specific
language makes synonym extraction challenging. Experts within a field often use
existing words with altered or narrowed meanings, create new terms or use jargon
and acronyms. General-purpose resources or models that have captured the word
relationships based on a broad corpora may fail to capture these delicate nuances.

The increasing volume of digital text data found in specialist domains such as
scientific papers, legal documents, medical histories, technical manuals, financial
statements, etc is both an opportunity and a challenge. The information contains
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the implicit knowledge of domain-specific words and their relations, like synonymy.
The challenge is converted into an opportunity through the use of the information
to automatically extract domain-specific synonyms, thereby building or extending
domain-specific lexical resources. Another challenge is in developing computational
methods that can successfully learn these relationships from unstructured text,
beyond the reach of general-purpose tools and the inherent vagueness of language.

Benchmarking different synonym extraction techniques in specialized domains,
therefore, becomes essential. It allows both researchers and practitioners to learn
about the advantages and limitations of certain methods when applied to specialized
vocabulary. Such benchmarks can guide the selection of appropriate methods to
build applications for special domains, point out areas where current methods
fall short, and stimulate the development of new, better algorithms for domain
adaptation.

Finding accurate and effective synonyms for terms in specialized domains and
from unstructured text data is the main issue this thesis attempts to solve. The
complex and specialized semantic relationships common in domain-specific lan-
guage are usually missed by general-purpose synonym extraction techniques, which
frequently rely on broad lexical resources or models trained on general language
corpora. This failure shows up in a number of ways:

• Inadequate Coverage: Many domain-specific terms and their synonyms
might not be adequately captured in general resources and models [5].

• Problems with polysemy: Domain-specific terms may have multiple mean-
ings and general approaches might not be able to clearly distinguish the
intended domain-specific meaning, resulting in inaccurate synonyms [6].

1.1 Research Questions
The following research questions are addressed in this thesis:

1. How well do traditional lexical resources, distributional semantic models
and contextual embedding models perform in identifying domain-specific
synonyms?

2. Can the accuracy of synonym extraction be increased by fine-tuning, training
distributional semantic models or contextual embedding models on domain-
specific corpora?

3. How well do clustering algorithms group synonyms when they are applied to
vector representations of domain-specific terms enhanced with definitions?
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Introduction

4. Does a combination of clustering and refinement by LLMs perform good on
synonym extraction?

To answer these question, this thesis focuses on a comparison of computational
methods for synonym extraction in several domains by evaluating different off-
the-shelf available models used for this purpose. First, Named Entity Recognition
(NuExtract [7], BERT, NLTK [8], SpaCy [9], variants of OpenAI GPT-4 [10]) are
used for extracting key terms from the text corpora. Then to answer the first
two questions, a comparison is made between available methods to evaluate the
effectiveness of these methods on the specified task. Another analysis goes more
in-depth by fine-tuning some of the models on domain-specific corpora. Methods
that use lexical resources (WordNet [11]), static word embeddings (GloVe [12], fast-
Text [13], Word2Vec [14]), contextual word embeddings (BERT [15]) are evaluated
to understand how do they perform for extracting synonyms.

Finally to answer the third and fourth question on effectiveness of clustering
and LLM refinement for synonym extraction, a new approach is proposed based
on synonym clustering and a final refinement by an LLM. Clustering techniques
(K-Means, Agglomerative, DBSCAN, K-GMA) are applied to Sentence-BERT [16]
embeddings of terms and definitions to find the semantically similar clusters. And
finally the clusters are refined with variants of GPT-4 [10] to get more detailed
synsets. All of the evaluations are based on a dataset that contains target terms,
their domain-specific contexts (text chunks) and ground-truth Synsets. The main
evaluation metrics are Precision, Recall, and F1-score [17] calculated at the word
level and averaged, as well as recall for term extraction.

The thesis is divided into the following seven chapters: ‘Chapter 1: Introduction’
introduces the problem of domain-specific synonym extraction, along with its
significance and difficulties. The research questions covered in the thesis are
also outlined. ‘Chapter 2: Background’ covers the theoretical and computational
underpinnings of synonym extraction. These include named entity recognition,
semantic relationships, conventional lexical resources, different word embedding
models (static and contextualized), clustering techniques, and the function of Large
Language Models (LLMs) in NLP tasks. ‘Chapter 3: Related Work’ reviews the
research on synonym discovery, which also identifies the gaps in the literature that
this thesis seeks to fill and highlights recent developments.

‘Chapter 4: Methodology’ explains the multi-stage methodology, which includes
LLM-based refinement, baseline methods and the suggested hybrid approach in-
volving LLM-generated definitions, Sentence-BERT embeddings, and clustering, as
well as term identification (using NER, IE models, and LLMs). ‘Chapter 5: Dataset
and Experimental Setup’ offers a thorough explanation of the experimental setup,
including particular models, libraries, and the hardware/software environment, as
well as the custom-made, multi-domain dataset that was used. ‘Chapter 6: Results’
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Introduction

presents and discusses the experimental results for term extraction, baseline syn-
onym extraction techniques, and the suggested clustering with GPT refinement
approach which includes an error analysis. ‘Chapter 7: Conclusion’ highlights the
main conclusions, describes the thesis’s contributions, talks about its shortcomings,
and recommends directions for further study.
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Chapter 2

Background

2.1 Understanding Synonymy and Semantic Re-
lationships

This chapter is an in-depth discussion of theory and current computational tech-
niques available for synonym extraction methods in general and specialized domains.
The linguistic notion of synonymy, different techniques for computational represen-
tation of word meaning, techniques for determining key terms in text data, and
clustering techniques involved in grouping semantically similar items are investi-
gated. Particular emphasis is placed on dealing with challenges when applying
these techniques to a domain-specific context.

Synonymy indicates the relation between words that convey closely related mean-
ings. Yet, the task of describing and determining true synonyms is difficult both
linguistically and computationally. According to philosophers such as Quine [18]
and Goodman [19], true synonymy is impossible because one can’t define it. The
majority of words identified as synonymous are actually near-synonyms or share
overlapping but not the same meaning, frequently differing in subtle aspects.

Also it should be mentioned that generally the degree of semantic similarity
between two words is associated with the frequency in which they stand in associa-
tion with the same words (i.e., the similarity of their contexts) as mentioned in the
famous quote by John Rupert Firth saying: You shall know a word by the company
it keeps [20]. This notion underscores the importance of context in understanding
the word meaning and remained a central concept in computational linguistics.

Further research confirmed that human judgment about semantic similarity
correlates strongly with the degree to which words share contexts [21]. This could
be the basis for the distributional hypothesis which posits that words appearing in
similar context tend to have similar meanings.
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Background

In the field of lexical semantics, the meaning of words and the relationships be-
tween them are studied. Other important semantic relationships beyond synonymy
include:

• Antonymy: Words that have opposite meanings (e.g., hot/cold).

• Hypernymy/Hyponymy: One word representing a general category (hyper-
nym) and the other a specific instance (hyponym) which create a hierarchical
relationship (e.g., animal/dog, vehicle/car). This is mostly mentioned as the
"is-a" relationship.

• Meronymy/Holonymy: A part-whole relationship (e.g., wheel/car, finger/-
hand).

• Relatedness: A more general concept which includes any type of semantic
connection between words, such as functional relationships, association, or
participation in the same topic (e.g., doctor/hospital, coffee/cup).

Synonymy is a specific type of semantic similarity, but the terms ‘semantics
similarity’ and ‘semantic relatedness’ are mostly used interchangeably in computa-
tional linguistics. Semantic similarity generally refers to the degree to which words
and terms can be replaced by one another which is often based on their position in
semantic hierarchy (like hypernymy). Semantic relatedness is a broader concept
and includes similarity but also other relationships like antonymy and functional
associations. For synonym extraction task, semantic similarity is the main focus
but methods that capture more general relatedness might still be useful if they can
distinguish near-synonyms from other related terms.

Different studies has explored the distinction between similarity and related-
ness [22, 23, 24]. Datasets like WordSim-353 [25] and SimLex-999 [26] have been
curated to analyze computational models on these differences in semantic meaning.
WordSim-353 consists of pairs that have a relationship (synonymy, antonymy, asso-
ciation) and SimLex-999 focuses on human judgment of similarity and not mere
relatedness between word pairs. These datasets were used to compute the correla-
tion between human relatedness judgment and cosine similarities of model-produced
word embeddings. SimVerb-3500 [27] extends this to verbs.

In domain-specific text, detection of semantic relationships becomes more chal-
lenging. Words can be highly related in one domain and unrelated in another. For
example ‘stock’ and ‘bond’ have close relatedness in economy domain, however they
are less related in general language or other domains. In addition, domain-specific
jargon is generally a multi-word term or compound noun (e.g., ‘electronic control
unit’, ‘precision agriculture’) and it’s more complex to identify the synonyms of
these multi-word expressions.
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The dataset that is used in this thesis provides ‘synsets’ for target terms in
each domain. A synset is a concept mentioned in resources like WordNet, which
represents a group of words that can be interchangeable in some contexts. In
the context of this thesis, these synsets are the ground-truth for domain-specific
synonymy and define the target groups of words to be extracted by different
methods. The task definition is to identify these domain-specific synsets by using
the provided text chunks.

2.2 Traditional Lexical Resources
Historically, manually constructed lexical resources have been the main source for
information about word relationships and meaning. These resources are created by
linguists who study language usage and provide the resulting semantic information
in these resources [28, 29].

2.2.1 WordNet
WordNet [11] can be mentioned as the most prominent of these lexical resources
in English language. This large lexical resource was developed at Princeton
University and includes English nouns, verbs, adjectives and adverbs that are
grouped into synsets. Each of these synsets represent a distinct concept. Synsets are
interconnected by different semantic relationships including hypernymy/hyponymy
(is-a), meronymy/holonymy (part-whole), antonymy, and others which creates a
comprehensive semantic network.

WordNet has been used in Natural Language Processing (NLP) for tasks that
require semantic information such as word sense disambiguation, information
retrieval and measurement of semantic similarity and relatedness. There are several
methods that use the hierarchical structure in WordNet for computing semantic
similarity [30, 31, 32, 33, 34]. These methods measure the distance between synsets
in the WordNet hierarchy, mostly by incorporation of the notion of Information
Content (IC), which measures the specificity of concepts based on their frequency
in a corpus [30, 35, 36, 37, 38]. When concepts are close in the hierarchy or they
share a highly specific and common ancestor, they are considered more similar.
There are other methods that use the glosses (definitions) of synsets and measure
the overlap between the words that are present in the glosses [39].

It can be said the although WordNet has extensive coverage and is rich in
semantic information, it has its own limitations, in particular when it’s applied to
domain-specific language:

• General Vocabulary: WordNet covers the general English vocabulary with-
out a comprehensive coverage for specialized terms, multi-word terms or jargon
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that is used in professional or technical domains.

• Static Nature: WordNet is not updated in a manner to keep pace with the
dynamic evolution seen in the language. It’s mainly a static resource and
can’t keep up with rapid introduction of new terms in fast-changing domains
such as technology.

• Limited Context Sensitivity: Without the use of other external methods
like Word Sense Disambiguation (WSD), WordNet cannot provide a mechanism
to detect the most relevant sense of a word in any specific domain context.

• Subjectivity: WordNet is constructed based on human judgment of words
and their meaning, which introduces subjectivity and possible inconsistencies.

It’s for this reason that using WordNet for domain-specific synonym extraction,
as done in the baseline experiments, mostly produces limited results because many
domain-specific words and their synonyms are not present or correctly linked int
he WordNet structure.

2.2.2 Other Lexical and Knowledge Resources
Other knowledge bases or lexical resources are developed and some of them try to
address the problems of general resources or use information that is provided from
multiple sources.

Thesauri like Roget’s Thesaurus provide lists of synonyms and related words
by grouping words based on ideas and concepts. They are less structured than
WordNet and also are made based on the general language. They have been used
for measurement of semantic similarity [40].

Domain-Specific Terminologies and Ontologies are specific structured
resources that have been made in some domains. Unified Medical Language System
(UMLS) [41] can be named as one of these resources in the biomedical domain.
While invaluable, they’re generally domain-specific and might not be available for
all domains.

Wikipedia and Other Structured Knowledge Bases have been developed
using large collaboration are also used for creating computational resources. For
example, words or texts in Explicit Semantic Analysis (ESA) [42] are represented
as vectors of Wikipedia concepts, measuring similarity based on the overlap and
weighting of different concepts. Other structured knowledge sources like DBpe-
dia [43] and YAGO [44] can be mentioned here which are extracted from Wikipedia
and other sources which represent huge number of entities and relationships that
are useful for semantic tasks [45]. Wikify! [46] is a system designed to link text
to Wikipedia concepts. These resources provide broader coverage than WordNet
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and can include domain-specific entities but accurate mapping of text terms to
concepts is still a challenge.

BabelNet [47] combines information from WordNet, Wikipedia and other
resources to create a multilingual and large semantic network. The aim is to
provide a more complete coverage and associate concepts across different languages.
BabelNet has been useful in different semantic tasks such as measuring semantic
similarity [48].

Paraphrase Databases like ‘The Paraphrase Database’ [49] are created for
collection of paraphrases and semantically equivalent phrases which might include
synonyms. These entities are mostly extracted in an automatic manner from
parallel corpora.

These resources contain valuable information, but they still cannot present a
full coverage for domain-specific synonymy, especially when novel terms or context-
dependent meanings are mentioned. It can be said that because domain language
is dynamic in its nature, it’s necessary to use methods that can directly learn from
the domain-specific text data.

2.3 Distributional Semantics
The distributional hypothesis is famously summarized by Firth’s quote “You shall
know a word by the company it keeps,” and forms the basis for distributional
semantics. According to this paradigm, words with similar meanings appear in
relatively similar linguistic contexts. There are computational models that are
developed based on this hypothesis. These models analyze the word co-occurrences
in large text corpora and therefore learn and create vector representations (embed-
dings) for each word. Semantic properties are captured in these vectors and an
approximate measure of semantic similarity can be computed by calculating the
geometric distance or similarity of these vectors (e.g., cosine similarity).

Models using distributional semantic had a huge impact in NLP and provided a
powerful and data-driven representations of word meaning. By using these methods
on raw text, word relationships can be automatically learned which is far more
useful in many cases compared to static and manually crafted resources, especially
for domain-specific use-cases where there is a lack of resources with full coverage of
the terms.

2.3.1 Count-Based Models
Early distributional models generally used count-based methods by constructing a
co-occurrence matrix with rows being the target words and columns being context
words. The cells in this matrix represent the number of times that a target word
appears in relative proximity of a context word in a defined window. For ignoring
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less informative and common words and emphasizing the informative co-occurrences,
weighting schemes (e.g., Pointwise Mutual Information - PMI) are applied to the
raw counts.

Latent Semantic Analysis (LSA) [50, 51] can be mentioned as a promi-
nent count-based method that applied Singular Value Decomposition (SVD)
for dimensionality-reduction of term-document or term-context matrix. Lower-
dimensional vectors that are produced, form the word embeddings. In LSA words
are similar if they appear beside the same context words but it also considers
higher-order co-occurrences and therefore if they appear with context words that
themselves share similar contexts, they’re considered more similar. It’s been shown
that LSA can capture semantic similarity [52].

Hyperspace Analogue to Language (HAL) model [53] in another early
approach that uses a count-based method to create word-word co-occurrence
matrix within a sliding window. Also some approaches tried to scale distributional
similarity methods to large corpora [54].

2.3.2 Prediction-Based Models
Prediction-based models, in particular those based on neural networks, are a
more recent development in creating word embeddings. They don’t count the
co-occurrences and instead they train a neural network with the task of prediction
of context words given a target word and vice versa. The hidden layer in these
neural networks learn the word embeddings.

Word2Vec [14, 55] is a well-known prediction-based model with two main
architectures: Continuous Bag-of-Words (CBOW) for prediction of a target word
from the surrounding context word, and Skip-gram to predict context words from
a target word. There is popular variant called Skip-gram with negative sampling
(SGNS) for optimizing the training of the model to distinguish between the true
context words and randomly sampled ‘negative’ words. Word2Vec models are have
efficient performance and can be easily trained on large corpora to produce dense,
low-dimensional vectors.

GloVe (Global Vectors for Word Representation) [12] is another one of
the popular models for learning word embeddings. It’s not a predictive model like
Word2Vec and instead it’s based on word-word co-occurrence statistics in a corpus.
It factorizes the logarithm of the corpus’s word co-occurrence matrix. It learns
the word vectors by trying to make the dot product of two words equal to the
logarithm of their co-occurrence probability. Glove embeddings perform sufficiently
well on word analogy tasks and other semantic tasks.

fastText [13, 56] represents each word as a bag of character n-grams. Vector
representations are learned for each character n-gram. For calculating a word
embeddings, the n-gram vectors of the character n-grams of the word are summed
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together. fastText shows strong performance especially in languages with rich
morphology and when a task includes rare words. fastText is able to:

1. Generate vector representations for out-of-vocabulary (OOV) words by sum-
ming the embeddings of the character n-grams in that word.

2. Understand morphological information: Words with similar morphemes (e.g.,
‘national,’ ‘nation,’ ‘nationality’) share character n-grams and therefore their
embeddings are related.

In general, prediction-based models (like Word2Vec’s Skip-gram) outperform
traditional count-based distributional models on different semantic tasks [57].
However, as GloVe showed later, count-based methods can also perform well.

It’s necessary to evaluate unsupervised word embeddings. One study [58] men-
tions two different kinds of evaluations, one being intrinsic evaluation (e.g., analogy
task or word similarity) and the other one being extrinsic evaluation (performance
on downstream NLP tasks). Another reproducible survey [59] compares word
embeddings and ontology-based methods used for word similarity and finds that
linear combinations generally outperform individual state-of-the-art methods by a
large margin.

2.4 Contextualized Word Embeddings
Traditional word embeddings like GloVe, Word2Vec and fastText are static or
type-level embeddings: there is only one single vector representation for each word
type regardless of its context. This is a huge limitations because many words are
polysemous which means that they have multiple meanings. In contextualized word
embedding models this is addressed by the fact that the model generates different
embeddings for words depending on the context in which the word appears in
(token-level embeddings).

ELMo (Embeddings from Language Models) [60] uses a bidirectional Long
Short-Term Memory (LSTM) network trained as a language model and generates
deep contextualized word representations. Each word embeddings is a function
of the internal states of the BiLSTM which captures information from preceding
and succeeding words. These embeddings can be considered deep because they’re
calculated as a weighted sum of hidden states from all of the layers in the BiLSTM.

Transformer Architecture and Attention [61] made a huge impact on
sequence transduction tasks, becoming the foundation for most of the contextualized
embedding models that were introduced later on. Instead of recurrence that was
generally used in transduction tasks, it entirely relies on attention mechanism to
understand global dependencies between input and output. With self-attention,
the model can weigh the importance of words in a sequence to compute the
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representation of a word. Therefore contextualized models can differentiate between
word senses based on context which is highly relevant for synonym extraction
because a word’s synonyms can change significantly with its meaning.

The core of the attention mechanism in Transformer models is the Scaled
Dot-Product Attention, defined as:

Attention(Q, K, V ) = softmax
A

QKT

√
dk

B
V

where:

Q is the Query matrix
K is the Key matrix
V is the Value matrix
dk is the dimension of the keys (and queries)

This mechanism allows the model to weigh the importance of different parts of the
input sequence when processing each element.

For Multi-Head Attention, the process is extended by performing several at-
tention operations in parallel, each with its own learned linear projections for Q,
K, and V . The results from these "heads" are then concatenated and linearly
transformed to produce the final output:

headi = Attention(QW i
Q, KW i

K , V W i
V )

MultiHeadAttention(Q, K, V ) = Concat(head1, . . . , headh)W O

where:

W i
Q, W i

K , W i
V are weight matrices for the i-th head

W O is the output weight matrix
h is the number of attention heads

Multi-Head Attention allows the model to jointly attend to information from
different representation subspaces at different positions.

BERT (Bidirectional Encoder Representations from Transformers) [15]
uses the Transformer encoder architecture and it’s trained on massive corpora on
two unsupervised tasks:

• Masked Language Model (MLM): A portion of input tokens are randomly
chosen and masked and the model is trained for prediction of the original
masked tokens based on available unmasked context which results in BERT
learning deep bidirectional representations.
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• Next Sentence Prediction (NSP): Pairs of sentences are given to the
model and it has to predict whether the second sentence is the next sentence
that follows the first one in the original text. BERT understands sentence
relationships in this way. BERT embeddings are used in combination with fine-
tuning for different NLP tasks and have achieved state-of-the-art performance.

BERT Variants are also proposed to improve its efficiency, performance or
robustness:

• RoBERTa (Robustly Optimized BERT Pretraining Approach) [62]:
Showed that BERT was under-trained and introduced another improved pre-
training strategy (e.g., training on more data for a longer period with dynamic
masking and removing NSP).

• ALBERT (A Lite BERT for Self-supervised Learning) [63]: Used
parameter-reduction techniques to reduce BERT’s parameter size. It main-
tained performance while making the model more memory-efficient by using
factorized embedding parameterization and cross-layer parameter sharing.

• SciBERT [64]: It’s a BERT model that is pre-trained on a large corpus
consisting of scientific text from computer science and biomedicine which
improve the mode’s performance on scientific NLP tasks.

• DistilBERT [65] and TinyBERT [66]: Smaller and faster variants of BERT
that were created by knowledge distillation which are more suitable for resource-
constrained environments.

• ERNIE 2.0 [67]: It introduces novel pre-training tasks in addition to MLM
and NSP as a continual pre-training framework.

• XLNet [68]: Combines the advantages of auto-regressive models (like GPT)
and auto-encoding models (like BERT) with a permutation language modeling
objective.

Sentence Embeddings (Sentence-BERT) [16] is proposed to provide more
accurate embedding for sentences. BERT produces token-level embeddings that
have excellent performance on many NLP tasks, however the performance is lower
when it’s used to generate fixed-size sentence embeddings by using [CLS] token
output or calculating the average of token embeddings. Sentence-BERT (SBERT)
uses a Siamese or triplet network architecture to fine-tune the pre-trained BERT
(or RoBERTa, XLNet). The aim is to be able to generate meaningful sentence
embeddings and to be able to use cosine similarity for the comparison of sentence
embeddings. This thesis uses this model for embedding term definitions.
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While the BERT model is trained on next-sentence prediction and masked-
language prediction and can capture useful semantic information in the special
CLS token, it’s not fine-tuned in a way for similar sentences to have a close CLS
token embedding. Sentence-BERT changes this by applying a pooling operation
(such as mean pooling) on top of BERT’s final contextualized token embeddings.
During training, the new Siamese or triplet network structures, change the original
BERT weights in a way so that similar sentences have closer embeddings. This
training is done on NLI dataset so that the sentences can be classified correctly and
also on triplet loss so that sentences with similar meaning have a closer distance
than sentences with dissimilar meaning.

2.5 Fine-tuning Embeddings for Specific Tasks
and Domains

Static and contextualized pre-trained embeddings are trained on large and general-
domain corpora (e.g., Wikipedia, Google News, Common Crawl). They capture
broad semantic knowledge, however in specialized domains or tasks their perfor-
mance can be suboptimal [5]. In fine-tuning, given a pre-trained model, the training
continues on a smaller and domain-specific or task-specific dataset. This way, the
model can adapts its learned representations to the specific requirements in the
target task or domain.

To do fine-tuning for static embeddings like Word2Vec or fastText, the model
can be initialized with pre-trained vectors and then the training can be continued
on domain-specific corpus. This way the vectors can get updated to be able to
better reflect the semantic meanings in the new domain.

In contextualized models like BERT, fine-tuning can be done by adding a task-
specific layer to the pre-trained Transformer stack and then continuing to train the
entire model (or parts of it) on a supervised task dataset (e.g., question answering,
text classification, NER). After fine-tuning, even if it’s a different task like domain
classification, it can be expected that the underlying representations become more
domain-aware and benefit tasks like synset extraction.

2.6 Named Entity Recognition (NER) and Term
Extraction

Before doing synonym extraction, domain-specific glossary or a list of key terms
should be extracted as a preliminary step. Named Entity Recognition (NER) can be
described as identification and classification of named entities in text and assigning
them to pre-defined categories such as organizations, persons, locations, dates, etc.
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NER focuses on general categories and therefore there is a need for an extension of
the underlying techniques to be able to extract domain-specific terms.

• Traditional NER: These early NER systems relied on handcrafted rules,
lists of known entities and machine learning models.

• Neural NER: Recent approaches use neural networks, in particular Recurrent
Neural Networks (RNNs) such as LSTMs [69] and a combination of BiLSTMs
with a Conditional Random Field layer [70] to achieve the best results. These
NER models now commonly use pre-trained contextual embeddings like BERT
as input features which further boosts their performance [71].

• Models for Information Extraction: The NuExtract models are used in
this thesis and are examples of transformer-based models that are used to
extract information based on templates provided by user. These models can
be adapted for term extraction with the correct template.

• LLMs for Term Extraction: Large Language Models like GPTs are also
another solution to extract key terms or entities from the text. These models
generally show impressive zero-shot or few-shot performance.

The quality of the input glossary which is used for synonym extraction depends
on the chosen term extraction method.

2.7 Clustering for Grouping Similar Terms
Clustering can be defined as an unsupervised machine learning task which involves
grouping some objects (e.g., terms represented by their embeddings) in a way that
objects in the same group (called a cluster) have more similarity with themselves
in comparison with those in other groups. If semantic similarity is captured in
term embeddings, it can be expected to get groups of synonyms or closely related
terms after clustering.

Several clustering algorithms are used in this thesis such as K-Means Clus-
tering which is an iterative algorithm that creates k clusters for the provided
observations. Each observation is assigned to the cluster with the nearest cluster
centroid (cluster mean). Number of clusters k is pre-specified. It’s computationally
efficient method but might be sensitive to initialization and the assumed cluster
shapes are spherical. Agglomerative Hierarchical Clustering uses a bottom-
up method and each observation starts in its own cluster and by moving up the
hierarchy, pairs of clusters are merged. Dendrogram cat be cut at a certain level to
get the resulting clusters and also the desired number of clusters can be specified
for the algorithm to stop there. Common methods to measure the distance between
clusters include:
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• Single linkage: distance between the closest members in two clusters are
measured.

• Complete linkage: distance between the farthest members in the two clusters
are measured.

• Average linkage: average distance between all pairs of members from the two
clusters are measured (which is used in this thesis with cosine metric that for
pre-computed distances).

• Ward’s linkage: minimizes the variance in each cluster

DBSCAN (Density-Based Spatial Clustering of Applications with
Noise) is a density-based algorithm for clustering which groups together points
that are close together and have many nearby neighbors and marks the points
that lie alone or show up in low-density regions as outliers. It does not need
the a specification for the number of clusters and it needs two parameters which
include: eps as the maximum distance of two samples for them to be considered
neighbors and minimum number of samples as the minimum number of samples in a
neighborhood so that the point can be considered a core point. In Graph-based
Clustering (Louvain Method, k-GMA), data is represented as a graph in
these methods with nodes being data points and edges representing similarity or
proximity. To find densely connected subgraphs as clusters, community detection
algorithms are applied.

• The Louvain methods [72]: A greedy algorithm that is used for community
detection when dealing with large networks. It works by iteratively improving
a metric called modularity which is a measure for density of links inside
communities compared to the number of links between them.

• K-GMA (k-Nearest-neighbor Graph-based Modularity Algorithm) [73]:
It’s the algorithm that is used in this thesis and is defined as a graph-based
Louvain algorithm that uses k-nearest neighbors. The resolution parameter
changes the granularity of the detected communities.

2.8 Large Language Models (LLMs) for NLP
Tasks

Large Language Models (LLMs), which are deep learning models with billions of
parameters, are pre-trained on massive amount of text data. These models such as
OpenAI’s GPT series (Generative Pre-trained Transformer) [74, 75, 76], Google’s
T5 [77], PaLM [78], and Meta’s LLaMA [79] are able to demonstrate powerful
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understanding and generating capabilities for human-like text across a range of
NLP tasks.

The rapid advancements in LLMs are continuously opening new possibilities for
tackling complex NLP problems, including those related to lexical semantics and
domain-specific language understanding. Their ability to process instructions and
generate structured output makes them a versatile tool in the NLP toolkit.
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Chapter 3

Related Work

Considering the challenges present in synonym discovery and the need for a better
solution for this task, a range of techniques have been proposed in research, which
includes lexical resource linking [80, 47, 81], the use of lexicosyntactic patterns [82],
word sense induction [32, 83, 84, 85, 86, 87, 88], clustering [89, 90, 86, 84, 91],
graph-based models [92, 93, 94, 95] and distributional semantics [96, 97, 98] or a
combination of them as mentioned by several surveys [99, 100, 101].

Recent research analyzes different methods for domain-specific synonym ex-
traction and addresses challenges like dictionary sparsity [102] and multi-word
terms [103]. The challenge with dictionary sparsity is that some edges (synonyms)
are missing in the input resource. Also, automatic acquisition of synonyms for
multi-word terms is difficult due to their non-compositional nature, data sparsity,
and especially the variable length of their synonyms. Approaches generally use
word embeddings [104, 105] or graph-based clustering [106, 102] tailored for domain
data, including Chinese medical [107] in which combines semantic context from
word embeddings, cross-lingual evidence from English translations, and unique
Chinese linguistic features like character radicals and pronunciation, and knowledge
base entities [104] in which integrates broad, corpus-level distributional statistics
with precise, sentence-level linguistic patterns and uses knowledge-base synonyms
as distant supervision for training. These studies highlight the value of integrating
diverse signals and systematic evaluation in specialized domains.

One study proposes SurfCon [108] and focuses on synonym discovery in clinical
data, for situations where raw text is not available due to privacy concerns and only
the medical terms and their co-occurrence statistics are given. Their framework
makes use of surface form of terms and also global context information from co-
occurrence graphs. Another study proposes SynSetMine [4] which works by distant
supervision from knowledge bases to perform mining entity synonym sets from raw
text. They use a neural set-instance classifier and combine it with a set generation
algorithm which demonstrates effectiveness in their experiments.
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SynSetExpan [109] hypothesizes that Entity Set Expansion (ESE) and Entity
Synonym Discovery (ESD) mutually enhance each other and contrary to previous
research, they can be jointly performed. In each iteration, the framework performs
ESE to output a ranked list of potential candidates for set expansion. It uses this
list, in combination with the current synonym discovery model’s predictions, to
generate pseudo-training data for fine-tuning the synonym discovery model. The
resulting fine-tuned model then provides new scores used to refine the ESE ranking
which is finally used for set expansion. They demonstrate improved performance
on both tasks.

Another framework is proposed for synonym discovery to address the vocabulary
gap in e-commerce search [110]. It is based on an unsupervised two-phase method
that uses dictionaries and query logs for candidate extraction. It then filters them
based on co-occurrence transition probability of products and queries and BERT-
based semantic similarity. They use these synonyms by adding them to product
indices and report improved search performance.

To address some other challenges in entity synonyms discovery in specific domain,
KGSynNet [111] proposes a framework to mitigate out-of-vocabulary terms, hidden
connections and rare appearance of terms in text corpus. It uses domain-specific
sub-word embeddings to capture the meaning of domain-specific terms. It then
uses a joint TransC-TransE knowledge graph model which combines hierarchical
and general relation modeling and learns rich entity representations. Then a
fusion gate is used to combine semantic and knowledge features into a unified
entity representation which is then passed through a classifier based on similarity
matching.

KEML [112] is proposed for Lexical Relation Classification (LRC) which also
includes synonymy extraction. In their Knowledge-Enriched Meta-Learning frame-
work, they first create relation-aware concept embeddings with LKB-BERT which is
a BERT model fine-tuned on text corpora and lexical knowledge bases. KEML then
goes through meta-learning by auxiliary tasks which are each designed to distin-
guish each relation type from random pairs, followed by supervised fine-tuning for
the final multi-way classification. It results in robust relation recognition. KEML
achieves noteworthy performance on LRC benchmarks.

One of the most recent studies working on synonym discovery is ProSyno [113].
It is introduced as a context-free prompt learning method for synonym discovery
that works without any need for contexts or knowledge graphs by using Wikitionary
descriptions as a semantic source. Given a pair of terms, it uses a hierarchical
semantic encoder to extract semantic representations from word descriptions by
using a dynamic matching mechanism so that when multiple descriptions for a word
are available, the more relevant one will have more weight. It then uses a pre-trained
language model and prompt learning to calculate the synonym probability of the
pair of terms. It shows competitive accuracy on different datasets including the
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domain-specific ones.
Another recent study proposes EnSynFields [114] for generation of synonym

sets. It leverages relevant sentence contexts as flexible perceptual fields and
multi-layer contextual information across entity, set, and sentence levels in a three-
layer interaction network and a dynamic-weight-based algorithm for balanced set
construction. It is evaluated on three real-world datasets, including the domain-
specific PubMed and shows efficacy.

3.1 Current Gap
According to a thorough review of related work, from basic distributional techniques
to the use of more advanced contextual language models, there are still several
opportunities and gaps that remain in automatic synonym extraction, especially
when it comes to domain-specific synonymy, which this thesis seeks to fill:

Comprehensive analysis in several domains. Although numerous ap-
proaches have been suggested, there is still a gap concerning the comparative study
of conventional, embedding-based, and modern LM-based methods tailored or
tested specifically for domain-specific synonym extraction across multiple disparate
domains. Most of the existing works concentrate on one method or one domain.
This thesis bridges this gap by creating an analysis for seven different domains.

Analysis of static vs. contextual embeddings for domain synonymy.
The transition towards contextual embeddings has been striking. Still, it is useful to
examine the performance of different forms of static (non-contextual) embeddings
(pretrained or fine-tuned on domain data) against various contextual embedding
types (pretrained or fine-tuned BERT) for domain-specific synonym extraction.

Evaluation of term extraction methods and term extraction by LLMs.
The effectiveness of synonym extraction heavily relies on the quality of the initial
synonyms being searched. Although NER is a typical prerequisite, systematically
evaluating various approaches to term extraction such as traditional NER, template-
based LM extraction, and generative LLMs in specific domains is worthwhile.

Integration of LLM capabilities for synonym extraction. Most studies
on automatic synonym extraction have focused on utilizing the LMs’ embeddings
or probing them for candidates. The application of LLMs, during more interactive
stages, such as curating or filtering synonym sets produced through other methods
is not explored in considerable depth.
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Chapter 4

Methodology

Synonym extraction techniques at domain-specific levels will be measured in the
context of this thesis. In particular, different methods are evaluated which include
baseline strategies, corpus-centric methods, and a new pipeline of embedding-based
clustering followed by LLM refinement. This chapter describes the approaches
used to develop candidate terms for the domains and the subsequent synonym
extraction processes to create synsets.

4.1 Overview of Methodological Stages
The proposed methodology is composed by different steps:

1. Term Identification: The first step involves the identification of domain-
specific relevant terms for which synonyms are to be obtained. This step
is crucial since the quality of input terms greatly influences the success of
the synonym extraction process that follows. A number of approaches were
investigated for this purpose:

• Named Entity Recognition (NER) techniques: Utilizing various
NER models to identify candidate terms from domain-specific text seg-
ments. These methods use statistical or neural models trained to label
sequences of text based on token types.

• Information Extraction Models: Variants of an information extraction
model were used to evaluate their performance in domain-specific term
extraction. Specifically NuExtract variants were used which are fine-tuned
on schema-based extraction tasks.

• Proposed LLM-based Term Extraction and Definition Genera-
tion: Using LLMs facilitates easier term extraction for various domains
in addition to definition generation based on context. The glossary of
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terms and definitions was created with a general-purpose LLM and showed
improved performance in recalling terms.

2. Synset Creation: After coming up with a list of target words, this stage
focuses on the determination of synonyms related to these words in order to
form synsets. This stage involved diverse types of methodologies:

• Baseline Methods: Utilizing established lexical resources such as Word-
Net, alongside pre-trained general-purpose embeddings including GloVe,
fastText, Word2Vec, and BERT.

• Corpus-based Embedding Techniques: Fine-tuning or training em-
bedding models (fastText, Word2Vec, BERT) on the provided domain-
specific corpus in order to acquire more specialized semantic nuances.

• Proposed Hybrid Approach: This new approach encompasses:
– Creating dense embeddings for the terms in the glossary (from an

LLM, along with their definitions) with the Sentence-BERT.
– Employing a range of clustering algorithms, including K-Means, Ag-

glomerative Clustering, DBSCAN, and K-GMA, to categorize seman-
tically analogous terms according to these embeddings.

– The clusters that were produced by the most successful clustering
algorithm, K-GMA, were enriched using prompting techniques for
identifying the ultimate synsets.

3. Post-processing and Merging of Synsets: The same post-processing
pipeline was employed for numerous synonym extraction methods, most signif-
icantly the baseline and corpus-adapted embedding approaches, to transform
sets of candidate synonyms into more organized synsets for evaluation.

In the following sections each of these stages and components are investigated.

4.2 Term Identification
A necessary step in domain-specific synonym extraction is the extraction of relevant
term in the domain. Then the synonym sets are found within these extracted terms.
In this thesis, several methods are evaluated to perform this task and their results
are compared with the ground truth terms available in the dataset.

4.2.1 NER and Information Extraction Models
In Named Entity Recognition, some predefined categories are specified such as
person, names, organizations, locations, etc and names entities are identified and
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classified into one of these categories. Therefore, it is one of the methods that
are evaluated in this thesis for extraction of domain-specific terms from the text
chunks. The general workflow involved:

1. Providing each text chunk available in the dataset to the NER model

2. Creating a collection of all the terms extracted by the model

3. Entities were converted to lowercase for better comparison

4. For evaluation, these terms were compared against the ground-truth terms
available for each domain in the dataset

The following NER techniques and models are evaluated:
BERT-based NER (Standard Token Classification). This was done with

a pre-trained BERT model fine-tuned for NER. In this standard approach, the
pipeline processes each chunk and identifies the entities in each domain.

NLTK-based NER. The Natural Language Toolkit (NLTK) also provides
NER functionalities which are based on part-of-speech (POS) tagging and chunking
rules with a pre-trained classifier inside. This process consists of tokenizing, POS
tagging and the final step to identify named entities. It’s generally effective for
common entity types but might not be suited for novel domain terms.

SpaCy-based NER. Another popular NLP library is SpaCy that offers accurate
and efficient models for NER. In its default models, it uses convolutional neural
networks (CNNs). For term extraction, a SpaCy language model is loaded and text
chunks are processed. As SpaCy models are trained on general-domain corpora,
they might be able to detect more entity types.

NuExtract is a transformer-based model designed for information extraction
using templates. Therefore, a template was provided to guide the model in the
extraction process. The model is specifically instructed to look for the terms in the
provided domain.

This NER stage was done to identify if minimally guided and off-the-shelf NER
tools would be able to identify the target terms present in the dataset which are
considered domain-specific vocabulary.

4.2.2 Proposed: LLMs for Term Extraction and Definition
Generation

As an alternative method, Large Language Models are used for term extraction. This
approach leverages LLMs’ semantic reasoning to follow term extraction instructions
and harnesses their generative power to produce domain-specific definitions.

LLM was prompted to extract the domain-specific key terms from the text
chunks and generate a related definition for each term based on the context. The
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output is two columns as ‘term’ and the related ‘definition’ generated by LLM. For
example, a row might contain ‘aerial application’ as the term and a GPT-generated
definition like ‘The process of applying substances such as pesticides or fertilizers
to crops from an aircraft.’

This LLM-generated glossary has two main purposes:

1. It provides a complete list of extracted domain-specific terms.

2. The definitions generated by LLM give us rich semantic context for each
term which is later used in the hybrid synset creation method by embedding
the whole ‘term: definition’ string for a more rich contextualized vector
representation of each term.

4.3 Synset Creation
The GPT-generated extracted terms are used for synset creation in the proposed
method.

4.3.1 Baselines for Synonym Candidate Generation
Different methods are evaluated, from traditional lexical lookup to more sophisti-
cated embedding-based techniques, to create the synonym sets.

WordNet (NLTK). All the synonyms for each distinct target term in the
dataset were retrieved. Using a widely recognized and manually-created lexical
resource serves as a baseline to show how good can general-purpose thesauri perform
for synonym extraction in specific domains.

Pre-trained Static Embeddings. Several pre-trained word embedding models
are analyzed that were trained on large and general-purpose corpora. Synonyms of
each target term are identified by looking for the closest terms in the embeddings
space (e.g., by cosine similarity).

GloVe. Pre-trained GloVe embeddings are loaded from pretrained GloVe model
which was trained on 42 billion tokens from the Common Crawl dataset that
resulted in creating 1.9 million vocabularies and their 300-dimensional vectors.

fastText. Also pre-trained fastText embeddings are utilized. This model
was trained on Wikipedia articles and News data and provided a vocabulary size
of 1 million words with their 300-dimensional embeddings vectors. A potential
advantage of fastText is that it can grab sub-word information and therefore
generate embeddings for out-of-vocabulary (OOV) words. This analysis provides
another baseline for a model with sub-word information capability.

Word2Vec. Pre-trained Word2Vec model was trained on 100 billion tokens,
and provides 300-dimensional word embeddings with a vocabulary size of 3 million
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words. This add another widely used pre-trained embedding model to the baselines.
For target terms with multiple words (e.g., ‘aerial application’), the vectors of its
words (‘aerial’, ‘application’) were averaged to create one vector (mean-pooling).
Therefore the effectiveness of popular pre-trained static embedding models in
finding domain-specific synonyms are assessed.

Fine-tuned Static Embeddings

Using several models, word embeddings are adapted to each domain corpus in the
dataset to try to capture more relevant semantic nuances.

fastText (fine-tuned on domain classification task). fastText was trained on a
task for domain classification. First, labeled sentences are created from the text
chunks with domain as label for each sentence. Then load the embedding vectors
from a pre-trained model. After that, the fine-tuning for domain classification is
done and word vectors are extracted. The hypothesis is that fine-tuning for domain
classification makes the embeddings vectors present the words in the domain more
accurately.

Word2Vec (fine-tuned from pre-trained). This approach starts by loading
the pre-trained Word2Vec embeddings and further train them on domain-specific
corpus in several versions. For words that are present in the corpus, all the
embedding vectors are copied from the pre-trained model as initialization values
for vocabularies and then training starts on domain sentences. In this way the
model can leverage the general semantic knowledge accumulated by training on a
large dataset while also adapting it to the domain-specific corpus.

Contextual Embeddings (BERT)

BERT was used as the main model representing a powerful contextual embedding
model.

BERT Pre-trained. First, the terms were tokenized using BERT’s tokenizer.
If a term (e.g., ‘deblossoming’) was split into multiples sub-word tokens (e.g., ‘de’,
‘bl’, ‘oss’, ‘omi’, ‘ng’), the embeddings for these sub-word tokens (from the model’s
embedding layer) are averaged. Therefore the capabilities of the embedding layer
of a powerful contextual LM for the synonym extraction task is evaluated.

BERT Fine-tuned (on domain classification task). The pre-trained model was
fine-tuned for domain-classification task on labeled sentences from the text chunks.
Embeddings for vocabulary tokens were then extracted from this fine-tuned model.
The hypothesis is that fine-tuning even for domain-classification task can help the
embedding vector to be more domain-aware.

For all of the embedding-based methods evaluated above (GloVe, fastText,
Word2Vec, BERT), the general synonym extraction process involves representing
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each target term as a vector (by using mean-pooling for multi-word terms) and
then finding the nearest k neighbors in the embeddings space.

4.3.2 Proposed: Clustering and LLM-based Refinement
Clustering Algorithms

Different clustering algorithm are used on embeddings of ‘term: definition’ strings.
The goal is to group terms that are good synonymy candidates and has close
semantic values.

K-Means. A grid search is performed for the optimal number of clusters.
random state is set to zero for reproducibility. Euclidean distance is used as the
metric.

Agglomerative Clustering. Cosine metric and the precomputed cosine
distance matrix are used. The same values as K-Means for the number of clusters
are used for a grid search.

DBSCAN. Different configurations are explored such as Euclidean metric and
cosine metric with different number of minimum samples (the minimum density
required for a region to be considered a cluster).

K-GMA. A customized script is utilized for community detection on a k-
NN graph. A search is performed over resolution parameter to control cluster
granularity. The K-GMA algorithm first builds a k-NN graph from the input
embeddings and then applies the Louvain algorithm.

In the resulting clusters, each cluster is treated as a synset for evaluation
purposes.

LLM-based Synset Refinement

In this step, output of the most promising clustering algorithm is passed to the
LLM to do a refinement on these clusters and create more coherent synsets.

Clusters generated by the best-performing unsupervised clustering method are
used as the basis for this experiment. Each cluster consists of a set of terms which
are treated as batch of potentially related terms. For each of these clusters, an LLM
is prompted for refinement to extract the groups of synonyms from the provided
cluster. Each term from the original K-GMA clusters is assigned a new cluster ID
by the LLM which effectively refines the initial groups.

In this step, commonsense reasoning and vast knowledge base of LLMs is utilized
to correct some of the errors made by purely geometric clustering (e.g., splitting
clusters that are too big, merging clusters that were fragmented incorrectly or
removing outliers) to ensure that synonym extraction is coherent within each
domain. The output of this stage also provides us with synsets which are directly
used for evaluation purposes.
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4.4 Synset Post-processing and Merging
In the baselines, for synonym extraction methods that produce a list of synonyms for
each target term (i.e., WordNet, GloVe, fastText, Word2Vec, BERT), a standardized
post-processing pipeline was applied to create and evaluate synsets.

1. Initial Synset Formation: For each target word ‘T’, if a method extracts
synonyms {S1, S2, . . . , Sn}, an initial synset is formed as {T, S1, S2, . . . , Sn}.
A limit on ‘n’ is applied (set to 5 here). Extracted synonyms are lower-cased.

2. Synset Merging: Synsets that share common terms are merged together.
The synset merging process works by iteratively combining any synonym lists
that share at least one common word. It repeatedly scans all lists, merging
any two that have an overlap, and continues this cycle until a full pass occurs
with no new merges. This ensures that all related synsets are transitively
joined together, transforming many small, overlapping lists into a final set of
larger, distinct, and non-overlapping synonym clusters.

3. Handling Unassigned Terms: If no synonym is found for a target term,
either because its word or sub-word embedding is missing from the model’s
embedding space or it it not found in the lexical resource (e.g., WordNet), is
it assigned to a unique singleton synset. This ensures that all target terms
are accounted for evaluation purposes. Each such target term forms a synset
containing only itself.

4. Final Structure for Evaluation: The result is a number of disjoint synsets.

This approach ensures that the results of different synonym generation methods
are transformed into a standard format to be evaluated. The clustering-based
methods and the final LLM-refined clusters inherently produce disjoint synsets and
therefore bypass this post-processing step and are directly compared against the
ground-truth synsets.

4.5 Potential Benefits of the Proposed Method
The novel methodology that is proposed in this thesis aims to leverage the semantic
richness of domain-specific term definitions provided by an LLM and combine it
with best clustering methods and a final LLM refinement to achieve the best results.
Several benefits can be mentioned for the proposed method:

Avoiding context limit. One of the main limitations when working with
LLMs is that they have a maximum input size that they can accept. For smaller
models, this context size could be smaller, but for recent most-powerful models it
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gets to 1 million tokens. While this might seem like a big enough context size for
most use-cases, the longer inputs to a LLM could introduce other challenges that
is mentioned in the next points.

Avoid lost-in-the-middle effect. A well-known effect called lost in the
middle [115] can happen when a large input is given to an large context LLM.
When some models are prompted with large input, about the size of their context
limit, the performance significantly drops when they have to access information
from the middle parts of their input context.

LLM can focus on fine-grained clustering. Giving a more focused problem
to a LLM to solve, could result in a more fine-grained answer.

Usage of smaller models and less processing power. When the problem
is simple enough, smaller LLMs could be used to solve the task which results in
using less processing power and processing time and also in the case of using LLM
APIs, it results in more budget-friendly solutions.
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Chapter 5

Dataset and Experimental
Setup

This chapter provides a detailed description of the dataset that is used for experi-
ments, different baseline methods that were evaluated, the evaluation metrics used
and the hardware and software environment in which the research was conducted.
A clear review of these components is necessary for the correct interpretation and
possible reproducing of the findings in this thesis.

5.1 Dataset
It’s crucial to understand the main characteristics of the dataset used for the exper-
iments. A private, custom-made dataset was provided for this thesis. Unlike other
naturally occurring corpora, this dataset was engineered to facilitate the evaluation
of domain-specific term and synonym extraction, focusing on interchangeability of
synonyms within specific contexts.

5.1.1 Origin and Nature
The dataset used in this thesis was not a derivation of raw text gathered from
different sources but was rather synthetically constructed through a multi-stage
process that was designed to create a suitable dataset for evaluating synonymy.
This process involved three main steps:

Glossary Acquisition from Curated Sources

The initial step was gathering glossaries specific to each domain. For this purpose
some curated online sources were chosen. Following this path, it can be said with
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high confidence that the terms are already recognized as relevant in their respective
fields. The sources included:

Wikipedia Glossary Pages. For general domain like ‘geography’, glossaries
such as ‘Glossary of geography terms’ [116] from Wikipedia were scraped. These
pages list terms and their definitions which provide a structured starting point for
the dataset creation.

Governmental and Institutional Glossaries. For specialized domain like
‘legal’, resources from official bodies were utilized, such as ‘Legal Terms Glos-
sary’ [117] from U.S. Department of Justice. These sources can be relied on for
providing precise, legally defined terms.

Academic and Expert-Curated Dictionaries. For fields like ‘medical’,
highly reputable academic sources were used such as ‘Medical Dictionary of Health
Terms’ [118] which is curated by Harvard. In this dictionaries, expert-validated
terminology and definitions are provided.

Manual Synset Creation from Acquired Glossaries

Following the acquisition of domain-specific glossaries, the next step is to create
the ground-truth synsets. A human annotator reviewed the scraped terms and
their definitions. The objective was to group terms that could be considered true
synonyms or highly interchangeable in the context of their specific domain.

This process is vital because synonym detection is often ambiguous and context-
dependent. Manually doing this process ensures a high-quality and human-validated
ground-truth for synonymy. Also, some purely automatic methods might make
mistakes in identifying true synonyms from terms with semantic relatedness. It
ensures the precise semantic boundaries for each synset which serves as a gold
standard for evaluation.

GPT-based Text Chunk Generation with Synonym Interchangeability

The final step involved asking GPT-4o-mini to generate contextual text chunks. It
was prompted to create text chunks in such a way that any synonym within that
synset could replace the target term in the chunk without altering the meaning or
grammatical correctness of the sentence.

5.1.2 Size and Structure
The dataset contains 3296 rows. Each row represents a unique text chunk. The
main columns used in this thesis are:

• target: The reference term that is present in the ‘chunk’.

• chunk: A segment of text that contains the ‘target’ term.
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• domain: The specific domain to which the ‘target’ term and ‘chunk’ belong.

• synset: A label which represent the ground-truth synset to which the ‘target’
term belongs.

5.1.3 Content Characteristics and In-depth Analysis

An in-depth analysis shows several observations about the dataset:
Chunks. The average word count per chunk is approximately 60 words. Each

chunk contains about 3 sentences and each sentence is about 20 words long.
Domains. The dataset spans 7 unique domains: ‘agriculture’, ‘automotive’,

‘economy’, ‘geography’, ‘legal’, ‘medical’, and ‘technology’. Because of this diversity,
the robustness of different synonym extraction methods across different domain-
specific vocabularies can be tested.

Target Terms: There are 1099 unique target terms which are distributed
across different domains. These terms are the primary focus in synonym extraction.
According to Table 5.1 About 55% of target terms are one-word terms and the rest
are multi-word terms of mostly 2 to 4 words long.

Synsets. The dataset defines 428 unique ground-truth synsets. Each ‘target’
term is associated with one of these ‘synset’ labels. Synsets include between 4 to
18 terms.

Chunk and Target Term Relationships. According to Table 5.2 each ‘target’
term appears in 2 to 5 different ‘chunk’ entries which provides multiple contextual
examples for each term. 57% of chunks contain exactly one mention of their target
term while others mostly mention the target term 2 to 4 times. 20.3% of chunks
include plural form of the target term which in almost all cases is accompanied
with a singular form of the term in the same chunk.

Number of Words Percentage
1 55.78%
2 36.49%
3 6.64%
4 0.91%
5 0%
6 0.18%

Table 5.1: Term Length Distribution by Word Count
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Count of Term in Chunk Percentage
0 1.7%
1 57.43%
2 32.89%
3 6.74%
4 1.03%
5 0.21%

Table 5.2: Target Term Count Distribution

5.1.4 Errors in the dataset
The dataset includes 46 chunks that don’t include an exact match of their target
term in plural or singular form. They don’t mention the target term at all or change
it in a way that make an exact match impossible (by altering spaces, grammatical
signs, etc). These chunks in total affect 19 unique target terms.

The dataset includes 2 target terms which are each assigned to two different
domains. This is in contradiction to each term being assigned to one domain.

5.1.5 Pre-processing
Two main pre-processing stages was done on the data during different experiments.

Lower-casing. For experiments involving Word2Vec training, all entries of
‘chunk’ column were converted to lower-case. This can be considered as a standard
pre-processing step for many NLP models that are case-sensitive.

Stop-word Removal and Stemming. For specific variants of Word2Vec,
stop-words were removed using English stop-word list provided by NLTK and
stemming provided by SpaCy. This was performed to evaluate the impact of these
common text normalization techniques.

5.1.6 Unique Characteristics and Considerations
The synthetic and controlled character of this dataset offers exclusive advantages
to performing analysis on synset creation methods:

Controlled Synonymy. The systematic design for synonym exchange between
chunks provides clear, strong contextual hints to synonymy, which is ideal for
testing any model’s ability to capture this specific semantic relation.

High-Quality Ground Truth. The careful choice of synsets from credible
glossaries creates a reliable standard for evaluation, thus minimizing vagueness in
the ground truth itself.
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Domain Specificity. The information is inherently domain-specific, so direct
comparison of performance of techniques on specialized domains can be done.

It is necessary to mention that the regulated characteristics also suggest specific
restrictions:

Possible dissimilarity to noisy real-word text. The data may not fully
capture the noise, vagueness, and more implicit semantic relationships found in
truly raw, uncurated, real-world domain-specific text.

Possible unnatural linguistic style. The produced chunks may carry a
particular linguistic style or simplicity that is not found in naturally occurring
expert speech.

Despite these aspects, the dataset concerned presents a solid and targeted
environment for the extensive analysis of synonym extraction methods across
specialized domains, particularly in their ability to identify equivalent terms.

5.2 Experimental Setup
A wide range of models and checkpoints were used for evaluation of different
methods that will follow.

5.2.1 Term Extraction / NER Models
These models were used for evaluation of term extraction methods:

NuExtract. This method deals with extracting domain-related words from
chunks of text according to the NuExtract models. The dataset is read and for
each text chunk in the dataset, a specific extraction template is constructed
dynamically based on the domain of the chunk. The template format is {"
words_related_to_DOMAIN_domain": []} (e.g., {"words_related_to_agriculture_domain
": []}). The AutoModelForCausalLM and AutoTokenizer classes of the transformers
library are used to load either NuExtract-1.5-tiny or NuExtract-1.5. The model is
executed on a GPU.

Batches of text segments are processed along with their corresponding tem-
plates. The prompt required for an extraction is created by joining an input
marker, the JSON template, the text, and an output marker. The model then
produces new tokens to finish the output. The output is decoded as JSON,
from which the list of terms pertaining to the provided extraction field (e.g.,
words_related_to_agriculture_domain) is taken.

NLTK-NER. To find possible domain-specific terms, this approach makes
use of NLTK’s integrated Named Entity Recognition features. The dataset is
loaded by the script. It starts by making sure the required NLTK resources are
downloaded. The following actions are taken for every text segment in the dataset:
nltk.sent_tokenize and nltk.word_tokenize are used to tokenize the sentences that
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make up the chunk. nltk.pos_tag is used to apply part-of-speech (POS) tagging to
the tokenized sentences. Lastly, nltk.ne_chunk is used to identify and label named
entities through Named Entity Recognition. These named entities’ text content is
extracted and gathered.

SpaCy-NER. This technique extracts domain-specific terms using SpaCy’s
pre-trained statistical model for Named Entity Recognition. The SpaCy language
model’s en_core_web_sm is loaded with the dataset. The loaded SpaCy NLP pipeline
processes each text chunk in the dataset. Next, doc.ents is used to extract named
entities from the processed document.

Term Extraction using an LLM. Each chunk of text is separately given to the
GPT-4o-mini model with a prompt specifying the LLM to look for domain-specific
terms in the chunk.

Post-processing

All terms that are extracted with each technique are lower-cased. Only those
extracted terms that occur in the set of all unique ground-truth target terms in the
dataset are considered for the purpose of evaluation. The recall of the extracted
terms is then calculated with respect to the ground-truth target terms, both overall
and domain-wise.

5.2.2 Synonym Extraction Baselines
The main methods used for baselines are reviewed and also the proposed framework
is described. Several experiments were done to perform a through analysis of
different methods that could be used for synset creation. The experimental setup
for each of these methods in described below.

WordNet. This approach uses an existing lexical database to retrieve synonyms.
Every distinct target term in the dataset is iterated through by the script. It
retrieves all synsets related to each target term by executing a query against the
nltk.corpus.wordnet module. All lemma names are taken out of these synsets and
gathered as potential synonyms.

Glove Pre-trained. This approach finds synonyms based on vector similarity
using pre-trained GloVe embeddings. The 300-dimensional GloVe embeddings are
first loaded into memory. These loaded embeddings are used to build an FAISS
(Facebook AI Similarity Search) index, which normalizes the vectors and generates
a IndexFlatIP for inner product (cosine) similarity in order to enable effective
similarity search. The distinct target terms from the dataset are then iterated
through by the script.

The similarity search is carried out for every target term. The vector representa-
tion of a target term that is a multi-word expression (such as ‘aerial application’) is
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calculated by mean-pooling the embeddings of its individual words. The function
then uses cosine similarity to query the FAISS index and retrieve the top nearest
neighbors (apart from the target term itself). For every target term, these potential
synonyms are gathered together with their similarity scores.

fastText Pre-trained. Using a vector similarity approach similar to GloVe,
this method uses pre-trained fastText embeddings for synonym extraction. The
embeddings are loaded in the memory. A FAISS index is constructed for the
loaded embeddings. The distinct target terms from the dataset are then iterated
through by the script. The top nearest neighbors are identified for every target
term. Mean-pooling of constituent word embeddings is used for target terms with
multiple words.

fastText Fine-tuned. Using the given corpus, this approach makes use of
fastText embeddings that have been optimized on a domain classification task. The
first step in the process is preparation of training data, in which labeled sentences
are created by extracting sentences form the text chunks in the dataset and labeling
them with their corresponding domain. Labeled sentences are divided into training
and validation sets. The model is then trained by the script.

For training, the fastText model is initialized with dim=300, lr=0.1, and wordNgrams
set to 2 and the word embeddings are initialized using wiki-news-300d-1M as

pretrainedVectors. The epoch that produces the best validation precision is chosen
for the final model after the model has been trained for a variable number of epochs.
After being extracted, word vectors from the trained model are used to extract
synonyms. The procedure is the same as the ‘fastText Pre-trained’ method: A
FAISS index is constructed and each target word’s nearest neighbors are found
through a search.

BERT Pre-trained. This approach uses embeddings from the bert-base-
uncased pre-trained model. Before searching for synonyms, there are two primary
steps in the process: embedding extraction and synonym search. The first step is
to extract the static input embeddings for every token in BERT’s vocabulary from
model.bert.embeddings.word_embeddings.

Then, the same pre-trained BERT model is loaded. The script uses BertTokenizer
to tokenize each distinct target term. In order to generate a single 768-dimensional
vector representation for the target term, it then retrieves the static input em-
beddings for each sub-word tokens and calculates their mean. Lastly, synonym
extraction is performed. A FAISS index (with size=768) is constructed on the
vocabulary embeddings. The top nearest neighbors are identified for every target
term.

BERT Fine-tuned. This approach makes use of embeddings from a bert
-base-uncased model that has been refined on a domain classification task. To
serve as training data, the dataset’s sentences are labeled with their domain.
transformers.Trainer is used to fine-tune the model with fp16=True enabled, 10
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epochs, a batch size of 16, and a learning rate of 1e-4. Based on evaluation loss,
the optimal model is selected. Following fine-tuning, all vocabulary tokens’ static
input embeddings are extracted. After that, the script loads the fine-tuned model
to calculate mean-pooled static input embeddings for every distinct target term.
Although it makes use of these refined vocabulary and target word embeddings,
the synonym extraction procedure is the same as the ‘BERT Pre-trained’ method.

Word2Vec Pre-trained. The Google News dataset’s pre-trained Word2Vec
embeddings are used in this technique. gensim.downloader.load is used to load
the 300-dimensional embedding vectors. For effective search, a FAISS index is
constructed. After that, the script iterates through each of the distinct target
terms, performing mean-pooling for each one and identifying its closest neighbors.

Word2Vec Fine-tuned. Using a tokenized and lower-cased version of the do-
main corpus, this technique refines the pre-trained Word2Vec (Google News) model.
This corpus is prepared by the script using nltk.word_tokenize to tokenize sentences
and lowercase all text chunks. It starts a Word2Vec model with vector_size=300,
window=5, min_count=1, and workers=4 for fine-tuning. It builds the starting vocab-
ulary from the corpus. Then, it loads the pre-trained word2vec-google-news-300
vectors and copies the overlapping word vectors into the newly initialized model.
model.train is then used to further train the model on the corpus for five epochs.
In order to extract synonyms, word vectors are extracted from this refined model,
a FAISS index is constructed, and for each target term, the nearest neighbors are
found using mean-pooling. Three different experiments were done on Word2Vec
models:

• pri. Is the default experiment that is explained above.

• bis. For creating the corpus in this version, stop-words are removed. The rest
of the process is the same.

• tri. For creating the corpus in this version, words as stemmed. The rest of
the process is the same.

Post-processing

A standard post-processing step is done after synset creation by each method,
which consists of converting all extracted synonyms to lowercase, eliminating any
synonyms that are not included in the dataset’s set of unique target terms, and
combining any synsets that share terms. Lastly, distinctive singleton synsets are
created for any extracted terms that were not allocated to an extracted synset.
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5.2.3 Proposed Method: Clustering of Term Definitions
and GPT Refinement

This methodology, which is the foundation of the suggested approach, aims to use
Large Language Models’ (LLMs) reasoning powers and the semantic richness of
term definitions to extract high-quality synsets. The three primary steps of the
process are glossary preparation, unsupervised clustering and embedding LLM-
based refinement.

Embeddings of Glossaries

The glossary of domain-specific terms and their definitions, produced by the GPT-
4o-mini model, serves as the pipeline’s first input. A list of terms with detailed
definitions is provided in this glossary. The term and its definition are combined into
a single string for every entry in this glossary, using the format ‘term: definition’ (for
example, ‘aerial application: The process of applying substances such as pesticides
or fertilizers to crops from an aircraft.’). In contrast to using just the term itself,
this concatenation gives each term a richer semantic context, which enables the
subsequent embedding model to capture more nuanced meaning.

Dense vector representations are then produced by feeding these concatenated
strings into a Sentence-BERT model, specifically SentenceTransformer("all-MiniLM
-L6-v2"). These embeddings serve as the input for the clustering algorithms
since they capture the semantic meaning of the term as well as its definition.
These Sentence-BERT embeddings are then subjected to a variety of unsupervised
clustering algorithms in the following step. As the goal, semantically related terms
are grouped according to their rich, definition-informed vector representations. The
application and assessment of these algorithms are carried out by the script.

Clustering

Different clustering methods are used to group the terms as the first step of the
proposed hybrid approach.

k-means. The Sentence-BERT embeddings were subjected to the sklearn.
cluster.KMeans algorithm. In order to minimize the within-cluster sum of squares,
this algorithm divides the data into a predetermined number of clusters. The ideal
number of clusters n_clusters was found using a grid search, with values ranging
from 7, 50, 100, 200, 300, 400, and 500. For reproducibility, the random_state
parameter was set to 0. For clustering, the standard Euclidean distance metric was
applied. To ascertain the cluster assignments, the embedding matrix was subjected
to the fit method of the KMeans class.

Agglomerative Clustering. The sklearn.cluster.AgglomerativeClustering al-
gorithm was used, which iteratively merges clusters to accomplish hierarchical
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clustering. The metric was set to precomputed for this method, and the linkage crite-
rion was set to average. The Sentence-BERT embeddings’ pairwise cosine distance
matrix had to be pre-calculated using sklearn.metrics.pairwise.cosine_distances.
The AgglomerativeClustering model was then fed this precomputed distance matrix
as input. A grid search was performed for the n_clusters parameter, similar to
KMeans, and values of 7, 50, 100, 200, 300, 400, and 500 were investigated. The
clustering was done using the fit method.

DBSCAN. The sklearn.cluster.DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) algorithm was also tested. DBSCAN labels points that
are isolated in low-density areas as outliers and groups together points that are
densely packed together. The number of clusters does not need to be predetermined
when using this method. Two distinct distance metrics, euclidean and cosine, were
used in the experiments. Two values for min_samples (the number of samples in a
neighborhood for a point to be considered a core point) were tested for each metric:
2 and 5. Throughout all DBSCAN experiments, the eps parameter (the maximum
distance between two samples for one to be regarded as being in the neighborhood
of the other) was set to 0.1. Cluster labels were obtained using the fit_predict
method.

K-GMA. Additionally, a customized clustering method named K-GMA (k-
nearest neighbors Graph-based Louvain Algorithm) was made available and used
on data points. This algorithm uses the Louvain community detection algorithm
to find clusters after first creating a k-nearest neighbors graph from the input
embeddings (by default, n_neighbors=3 and metric=’cosine’). The embeddings are
subjected to the fit method of the kGMA class. Over the Louvain algorithm’s
resolution parameter, a grid search was conducted, looking at values of 0.2, 0.4, 0.5,
0.6, 0.7, 0.8, 1.0 (default), 1.2, and 1.4. For every resolution, cluster assignments
are obtained using the predict method of the kGMA class.

The resulting clusters from each clustering experiment were transformed into a
dictionary format, with each key denoting a cluster ID (e.g., EXTRACTED_SYNSET_1)
and the value being a list of terms associated with that cluster. In these clusters,
only terms that appeared in the original ground-truth were kept. The average
F1-score, Precision and Recall (as described in Section 5.3) for each target term
were used to assess each clustering configuration’s performance.

GPT Refinement

Lastly, an extra GPT-based synset refinement step was applied to the most promis-
ing clustering results, namely those produced by K-GMA with a resolution of 0.2.
The goal of this innovative step is to further enhance the quality of the machine-
generated clusters by utilizing the semantic comprehension and generative powers of
LLMs. The terms within each cluster that was determined by K-GMA (resolution
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0.2) were supplied as input to the GPT-4.1-nano or GPT-4o-mini models. From
this set of terms, the LLM was asked to ‘extract the group of synonyms related to
a specific domain.’

In order to bring the terms closer to true domain-specific synonymy, this process
essentially asks the LLM to re-evaluate and possibly re-group them, using its
extensive knowledge base to screen out noise or split excessively broad clusters.
Following this procedure, the corresponding GPT model assigns a new cluster ID
to each term. For these GPT-refined synsets, the per-domain F1-score and recall
are computed and compared to the ground truth.

5.3 Evaluation Metrics
5.3.1 For Term Extraction / NER
Primarily recall is used as the percentage of ground-truth target terms that were
correctly extracted by NER/LLM method. this is calculated overall and per domain.

Recall = |Extracted Terms ∩ Ground Truth Target Terms|
|Ground Truth Target Terms|

5.3.2 For Synset Extraction
The primary reported metrics in this section are adapted from information retrieval
and focus on the quality of synonyms found for each target term. The evaluation
is performed on distinct target terms. For each distinct target word w in a domain
(or overall):

1. GT (w): The set of ground-truth synonyms for w excluding w itself.

2. E(w): The set of extracted synonyms for w from the synset generated by the
method being evaluated, excluding w itself. (For baseline methods, initially,
up to 5 candidate synonyms are considered before merging; for clustering
methods, E(w) is the set of other terms in the same cluster as w).

3. TP (w) = |E(w) ∩ GT (w)| (True Positives: correctly identified synonyms)

4. FP (w) = |E(w) \ GT (w)| (False Positives: incorrectly identified synonyms)

5. FN(w) = |GT (w) \ E(w)| (False Negatives: missed ground-truth synonyms)

6.

Precision(w) =


1, if E(w) = ∅ and GT (w) = ∅
0, if TP (w) + FP (w) = 0 and GT (w) /= ∅

T P (w)
T P (w)+F P (w) , otherwise
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7.

Recall(w) =


1, if GT (w) = ∅ and E(w) = ∅
0, if TP (w) + FN(w) = 0 and E(w) /= ∅

T P (w)
T P (w)+F N(w) , otherwise

8.

F1-score(w) =

0, if Precision(w) + Recall(w) = 0
2·Precision(w)·Recall(w)
Precision(w)+Recall(w) , otherwise

The final Precision, Recall and F1-score (overall and per domain) is reported as
the average of these metrics over all distinct target words w in the respective scope.
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Chapter 6

Results

This chapter focuses on presenting experimental results obtained by benchmarking
several synonym extraction methods in domain-specific contexts. The results
are organized based on stages of methodology: term extraction/NER, baseline
and corpus-adapted synonym extraction, and the proposed clustering with GPT
refinement approach. For each set of experiments, results are presented in tabular
format followed by a discussion about performance, trend and implications.

6.1 Term Extraction Results
In the first stage of the experimental pipeline, domain-specific terms are identified.
The effectiveness of various NER and LLM-based methods was calculated by their
ability to recall the ground-truth target terms present in the dataset and are
presented in Table 6.1.

Method Overall Agriculture Automotive Economy Geography Legal Medical Technology
NuExtract-1.5 0.84 0.85 0.91 0.75 0.78 0.84 0.90 0.87
NuExtract-tiny 0.74 0.67 0.90 0.75 0.65 0.60 0.79 0.71
GPT-4o-mini 0.88 0.91 0.90 0.87 0.80 0.87 0.90 0.88
GPT-4.1-nano 0.88 0.88 0.92 0.89 0.80 0.89 0.90 0.86

Table 6.1: Recall of Ground-Truth Target Terms by NER/LLM Term Extraction
Methods (Overall and Per Domain).

As shown in Table 6.1, LLM-based approaches (GPT-4o-mini and GPT-4.1-
nano) and the larger NuExtract-1.5 model demonstrated strong performance in
extraction of target terms.

NuExtract-1.5 also had an acceptable performance with an overall recall of 0.84.
The smaller NuExtract-tiny model achieved a lower overall recall of 0.74. This
indicates that model size and capacity can play a significant role in the NuExtract
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framework’s ability to generalize and perform an accurate term extraction based
on the provided template.

GPT models models have the highest overall recall at 0.88. GPT-4o-mini has
slightly better performance in ‘agriculture’ and ‘technology’ domains and GPT-
4.1-nano had a slight edge in ‘automotive’, ‘economy’ and ‘legal’ domains. Their
strong performance shows that LLMs, when prompted appropriately, can perform
effective term extraction on a wide range of domain-specific vocabulary.

The experimental results for traditional NER tools like NLTK, a standard
BERT-based NER pipeline, and SpaCy showed no success in identifying the specific
target terms in the dataset. They show negligible recall of close to zero.

Although traditional methods can adequately determine common entity types
(like Person, Location, Organization), they are not well-suited for extraction of
more complex and often multi-word technical terms that are present in different
domains.

6.2 Baseline Synonym Extraction Results

This section provides the results of different synonym extraction methods that
relied on pre-trained embeddings vectors for this task or used updated word vectors
from models that were fine-tuned on the corpus. Precision, Recall and F1-Score
was calculated for each method and are presented in in Table 6.2.

Overall, the pre-trained static embeddings, particularly ‘fastText Pre-trained’
and ‘Word2Vec Pre-trained’, provide the best performing, though still low, F1-scores
(around 0.12) among these methods. WordNet shows a slightly lower F1-Score.
Fine-tuning fastText for a classification task improves recall but not F1-score due
to a drop in precision. Also fine-tuning pre-trained Word2Vec models lead to bad
results with extremely high recall but no precision. BERT-based methods also
perform poorly.

Since most embeddings, especially static ones like fastText and Word2Vec,
conflate semantic similarity with broader relatedness, retrieving related but non-
synonymous words, the low F1-scores across methods indicate that nearest neighbor
search in embedding space struggles to capture true synonymy. By overfitting and
increasing recall at the expense of precision, fine-tuning worsens this. WordNet lacks
inclusion of all the terms, and BERT-based embeddings, although context-aware,
are inappropriate for isolated word comparison because they are context-dependent.
In general, the fine-grained semantic alignment required for accurate synonym
detection is absent from the embedding spaces.
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Method Overall Agriculture Automotive Economy Geography Legal Medical Technology
F1-Score

WordNet 0.08 0.11 0.07 0.01 0.14 0.03 0.13 0.02
Glove Pre-trained 0.07 0.07 0.01 0.02 0.08 0.08 0.15 0.09
fastText Pre-trained 0.12 0.13 0.03 0.04 0.15 0.04 0.19 0.23
fastText Fine-tuned 0.11 0.15 0.03 0.04 0.14 0.06 0.19 0.12
BERT Pre-trained 0.03 0.02 0.05 0.01 0.04 0.05 0.02 0.07
BERT Fine-tuned 0.03 0.02 0.05 0.01 0.04 0.05 0.02 0.07
Word2Vec Pre-trained 0.12 0.16 0.11 0.04 0.11 0.10 0.18 0.12
Word2Vec Fine-tuned pri 0.01 0.0 0.0 0.0 0.01 0.02 0.01 0.0
Word2Vec Fine-tuned bis 0.00 0.02 0.0 0.0 0.0 0.0 0.0 0.0
Word2Vec Fine-tuned tri 0.00 0.01 0.0 0.0 0.0 0.0 0.0 0.0

Recall
WordNet 0.07 0.10 0.07 0.01 0.13 0.02 0.12 0.02
Glove Pre-trained 0.34 0.10 0.55 0.15 0.25 0.33 0.55 0.56
fastText Pre-trained 0.30 0.19 0.38 0.10 0.33 0.42 0.39 0.43
fastText Fine-tuned 0.46 0.33 0.59 0.35 0.46 0.48 0.49 0.67
BERT Pre-trained 0.10 0.02 0.21 0.04 0.10 0.29 0.06 0.11
BERT Fine-tuned 0.10 0.02 0.21 0.04 0.10 0.29 0.06 0.11
Word2Vec Pre-trained 0.17 0.17 0.24 0.05 0.15 0.23 0.25 0.17
Word2Vec Fine-tuned pri 0.81 0.73 0.96 0.68 0.79 0.81 0.92 0.82
Word2Vec Fine-tuned bis 0.86 0.82 0.97 0.76 0.81 0.85 0.92 0.95
Word2Vec Fine-tuned tri 0.72 0.69 0.66 0.52 0.83 0.87 0.78 0.83

Precision
WordNet 0.10 0.15 0.08 0.01 0.17 0.05 0.16 0.04
Glove Pre-trained 0.08 0.08 0.01 0.03 0.09 0.09 0.14 0.10
fastText Pre-trained 0.11 0.13 0.02 0.04 0.14 0.04 0.19 0.22
fastText Fine-tuned 0.11 0.15 0.03 0.05 0.12 0.05 0.18 0.12
BERT Pre-trained 0.03 0.02 0.04 0.01 0.04 0.04 0.01 0.07
BERT Fine-tuned 0.03 0.02 0.04 0.01 0.04 0.04 0.01 0.07
Word2Vec Pre-trained 0.12 0.17 0.10 0.04 0.11 0.08 0.18 0.12
Word2Vec Fine-tuned pri 0.01 0.0 0.0 0.0 0.01 0.03 0.01 0.0
Word2Vec Fine-tuned bis 0.00 0.01 0.0 0.0 0.0 0.0 0.0 0.0
Word2Vec Fine-tuned tri 0.00 0.01 0.0 0.0 0.0 0.0 0.0 0.0

Table 6.2: Per-domain basis F1-Score, Recall, and Precision for Baseline and
Corpus-Adapted Synonym Extraction Methods. The best values for each metric
are highlighted.

6.3 Clustering and GPT Refinement Results
This section evaluates the performance of the proposed multi-stage methodology,
which involves:

1. Generating embeddings for ‘term: definition’ pairs (from the GPT-4o-mini
glossary) using Sentence-BERT.

2. Clustering these rich semantic embeddings using various algorithms.

3. Refining the best clusters using GPT models.
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6.3.1 Clustering Algorithm Performance
In the firs step, different clustering algorithms and their parameters are evaluated
on the Sentence-BERT embeddings. The overall F1-score, precision and recall are
averaged across all distinct terms and reported in Table A.1.

The results shown in Table A.1 show that using embeddings of ‘term: definition’
pairs from GPT-4o-mini (via Sentence-BERT) leads to much better F1-score
compared to baseline methods.

K-Means. Performance of this method improves with increasing the number
of clusters. The best F1-score of 0.36 is achieved with number of clusters set to
500 being close to 428 ground-truth synsets which could be a reason for the best
performance.

Agglomerative Clustering. Similar to K-Means, F1-score increases as the
number of clusters increase. It peaks with an F1-score of 0.31 with number of
clusters set to 400 which is again close to the original number of ground truth
synsets.

DBSCAN. This method could not perform adequately with a high recall but
very low precision and F1-score. This indicated that DBSCAN groups many of the
data points together into large clusters or considers many of the data points as
noise.

K-GMA. This method shows strong performance, in particular in lower resolu-
tion values. The best performance in shown with an F1-score of 0.36 with resolution
being set to 0.2 or 0.4. Bigger resolutions lead to a decrease in the number of
clusters detected. It’s the only clustering method that shows strong performance
without needing to force a specific number of clusters which shows the suitability of
this clustering method for this task in combination with rich semantic information
stored in term-definitions vectors that can from district groups that K-GMA can
identify.

6.3.2 GPT Refinement Performance
The candidates from clustering methods were selected and along with the GPT-
refined results of K-GMA clusters, were evaluated on a per-domain basis. It’s also
noteworthy to mention that the number of clusters after GPT refinement increases
form the initial 414 clusters in K-GMA (res=0.2) to 432 in GPT-4o-mini and 460
in GPT-4.1-nano.

The most notable result is the significant improvement in F1-score after applying
GPT-based refinement to K-GMA clusters. It achieved a substantial jump from 0.36
F1-score of K-GMA alone and surpasses all baselines and corpus-based methods,
achieving an F1-score of 0.51 in GPT-4o-mini and 0.53 in GPT-4.1-nano. The GPT
models effectively re-structure the clusters. They improve precision significantly
which implies that these models are doing good at filtering non-synonymous terms
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Method Overall Agriculture Automotive Economy Geography Legal Medical Technology
F1-Score

K-GMA (resolution=0.2) 0.36 0.38 0.44 0.25 0.27 0.28 0.45 0.49
Agglomerative (n_clusters=400) 0.31 0.35 0.37 0.19 0.27 0.16 0.45 0.38
KMeans (n_clusters=500) 0.36 0.41 0.41 0.23 0.32 0.32 0.46 0.50
DBSCAN (metric=_cosine, min_samples=5 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03
K-GMA (resolution=0.2) + gpt-4o-mini 0.51 0.52 0.61 0.31 0.49 0.37 0.64 0.62
K-GMA (resolution=0.2) + gpt-4.1-nano 0.53 0.54 0.63 0.37 0.51 0.42 0.64 0.61

Recall
K-GMA (resolution=0.2) 0.59 0.61 0.69 0.47 0.52 0.48 0.72 0.66
Agglomerative (n_clusters=400) 0.66 0.75 0.76 0.53 0.59 0.54 0.72 0.71
KMeans (n_clusters=500) 0.55 0.59 0.64 0.39 0.51 0.43 0.70 0.63
DBSCAN (metric=_cosine, min_samples=5 0.79 0.83 0.85 0.75 0.71 0.80 0.85 0.81
K-GMA (resolution=0.2) + gpt-4o-mini 0.50 0.53 0.58 0.29 0.47 0.35 0.67 0.61
K-GMA (resolution=0.2) + gpt-4.1-nano 0.51 0.54 0.60 0.35 0.50 0.40 0.62 0.57

Precision
K-GMA (resolution=0.2) 0.31 0.32 0.38 0.23 0.23 0.24 0.38 0.45
Agglomerative (n_clusters=400) 0.26 0.29 0.31 0.13 0.22 0.13 0.40 0.31
KMeans (n_clusters=500) 0.32 0.38 0.36 0.18 0.26 0.30 0.39 0.45
DBSCAN (metric=_cosine, min_samples=5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
K-GMA (resolution=0.2) + gpt-4o-mini 0.55 0.55 0.68 0.37 0.54 0.45 0.66 0.67
K-GMA (resolution=0.2) + gpt-4.1-nano 0.58 0.57 0.71 0.42 0.57 0.50 0.67 0.69

Table 6.3: Per-domain basis F1-Score, Precision and Recall for Selected Clustering
Methods and GPT Refinement. The best F1-score in each family of methods is
highlighted.

and spilling overly broad clusters from K-GMA into more semantically coherent
synsets that are more in-line with the ground-truth.

GPT-4.1-nano outperforms GPT-4o-mini in F1-score across most domains. This
suggests that the capabilities or knowledge base of this model could be better suited
for this synonym refinement task. The GPT-refined methods achieve the highest
F1-score in every domain. Domains like ‘automotive’, ‘medical’, and ‘technology’
see the highest F1-scores with GPT refinement (often >0.60), which suggests that
a combination of clustering and GPT-refinement could be particular effective for
identification of synonyms in technical vocabularies in these domains.

Interestingly, the recall for the GPT-refined methods (0.50-0.51) is lower than
the recall for K-GMA alone (0.59) or Agglomerative clustering (0.66). This suggests
that GPT refinement process might be conservative and potentially discarding some
true synonyms if it prioritizes high confidence. This is a precision-recall tradeoff,
where GPT refinement goes for higher precision.

The proposed method, particularly ‘K-GMA (resolution=0.2)’ clustering of
Sentence-BERT embeddings of ‘term: definition’ pairs, followed by refinement
with GPT-4.1-nano, stands out as the top-performing approach. It achieves an
overall F1-score of 0.53, significantly outperforming all other benchmarked methods.
This highlights the power of combining rich semantic embeddings derived from
LLM-generated definitions with the explicit reasoning and knowledge refinement
capabilities of advanced LLMs.
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The proposed clustering and GPT refinement shows several strong points:
Rich Semantic Input. Utilizing Sentence-BERT on strings formatted as ‘term:

definition’ yields a significantly more comprehensive semantic representation for
each term in comparison to relying solely on the embeddings of the term itself. The
definition serves to explicitly contextualize the term.

Successful Clustering. K-GMA on these dense embeddings was successful in
clustering semantically similar terms, with F1-scores of approximately 0.36, which
is considerably higher than most baselines.

Power of LLM Refinement. The most significant improvement was obtained
by using GPT models to refine the K-GMA clusters. This demonstrates that LLMs
can also act as effective ‘curators’ or ‘reasoners’ over machine-generated candidate
clusters and leverage their vast knowledge to correct errors. They likely help in:

• Disambiguation: When a cluster contains words with slightly different senses,
GPT can separate them.

• Noise Reduction: Elimination of words that bear a very weak relation.

• Enforcing Domain Consistency: Taking note of domain-specific synonyms
for the given domain implied by the cluster’s content.

Common Types of Errors and Challenges

There are several common errors and challenges:
Multi-Word Expressions (MWEs). Processing MWEs is still an open

problem. Mean-pooling MWE embeddings is ad-hoc and not necessarily accurate
in their compositional meaning. Solutions that can process MWEs more globally
are needed. The approach proposed approach exploits the fact that GPT is able to
generate definitions of MWEs, which can be embedded by Sentence-BERT.

Granularity of Meaning. True synonyms are difficult to separate from close
relatives (e.g., co-hyponyms, hypernyms/hyponyms). An F1-score of 0.53, while
the highest, still indicates room for improvement.

Domain Specificity. Certain words have different synonyms in different
domains. While the NER methods and definitions produced by GPT attempt to
introduce domain context, it is still challenging to keep the end synsets strictly
domain-based. The GPT refinement phase asks for domain-relevant synonyms,
which seems to help.

Data Sparsity across Domains. Even with a specialized corpus, some
domain-specific terms will be infrequent, making it difficult for data-driven models
by themselves to learn their meaning comprehensively. LLMs, with their more
comprehensive pre-training, can help mitigate this.
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Answering Key Research Questions

Domain classification fine-tuning of FastText helped recall modestly but not F1-
score. Fine-tuning pre-trained Word2Vec was also problematic. This shows that
naive fine-tuning of static embeddings in small domain corpora needs to be done
with caution. The approach suggested, generating definitions via GPT (using its
general knowledge) and then clustering, seems a more judicious use of domain-
relevance.

GPT-4o-mini (LLM-based) and NuExtract-1.5 (template-based) term extraction
outperformed the traditional NER tools by a great extent in identifying the target
terms exactly in this dataset. It advocates for utilizing guided or sophisticated
methods for developing the initial domain glossary.

6.4 Error Analysis and Further Discussion
The mentioned results provide a quantitative comparison, but a more in-depth
analysis is needed to understand the strengths, weaknesses and characteristic errors
in each of the different approaches discussed. The following challenges can be
named for baseline methods:

Low Precision. Many of the embedding-based methods, including those that
achieve high recall (e.g., GloVe, Word2Vec Fine-tuned), suffer from low precision.
This is because the detected synsets in these cases, are large and including tens if
not hundred of terms.

Insufficiency of Small Domain Corpora. Fine-tuned models performed
poorly, which might indicate that the provided domain corpus (3296 chunks, 200k
words assuming 60 words/chunk) is small for optimal fine-tuning of these models.

BERT’s untapped potential. The poor performance of BERT-based methods
might suggest that using BERT embeddings in this way might not be the optimal
way to use its power.
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Chapter 7

Conclusion

In this master’s thesis, a thorough comparison of different synonym extraction tech-
niques in domain-specific settings was conducted. The need for precise synonyms
to support advanced Natural Language Processing applications in a variety of
industries, including technology, agriculture, automotive, economy, geography, law,
and medicine, served as the driving force behind the study. Traditional methods,
based on static and contextual word embeddings (both pre-trained and tailored
to domain corpora) were investigated and a novel hybrid methodology was pro-
posed that combines Large Language Model (LLM) term extraction and definition
generation, Sentence-BERT embeddings, clustering techniques, and subsequent
LLM-based synset refinement.

Synonym extraction process as a whole is greatly impacted by the first step of
finding domain-specific terms for which synonyms are sought. The poor performance
of conventional NER tools (NLTK, standard BERT-NER, and SpaCy) suggests
that the target ‘terms’ in this dataset are frequently particular key phrases or ideas
that are not adequately covered by general NER models. Guided extraction with
NuExtract-1.5 showed great performance with a recall of 84%. High recall (up
to 88%) of ground-truth target terms was shown by proposed LLM-based term
extraction (using GPT-4o-mini).

For the second step of synset creation, traditional Lexical Resources (WordNet)
produced low overall F1-scores (about 0.08), despite offering some exact synonyms.
This was due to its limited coverage of domain-specific terms. Pre-trained Static
Embeddings (fastText, GloVe, and Word2Vec) produced modest F1-scores when
combined with nearest-neighbor search and mean-pooling for multi-word expressions;
the best performing pre-trained fastText and pre-trained Word2Vec were in this
category (F1 approximately 0.12).

Using corpus Adaptation of Static Embeddings to fine-tune pre-trained Word2Vec
models produced degenerate behavior with nearly zero precision and incredibly
high recall. Recall was raised by fine-tuning fastText word vectors using a domain
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classification task, but the F1-score remained unchanged from its pre-trained
counterpart. For nearest-neighbor synonym search using contextualized Word
Embeddings (BERT), mean-pooled embeddings from pre-trained BERT or BERT
fine-tuned on a domain classification task produced extremely low F1-scores (0.03),
indicating that this is not the best way to take advantage of BERT’s capabilities
for this task.

The proposed combination of clustering and LLM-based refinement worked
best for this purpose. Sentence-BERT’s embedding of ‘term: definition’ strings
gave semantic clustering a solid base. Compared to baselines, K-GMA and K-
Means clustering algorithms on the definition-rich embeddings produced the best
standalone clustering F1-scores (0.36). Using LLMs to refine the K-GMA clusters
resulted in the biggest performance improvement. With the highest overall F1-score
of 0.53, a combination of K-GMA clusters and LLM refinement via GPT-4.1-nano
demonstrated strong performance across a number of technical domains (e.g., 0.63
in automotive, 0.64 in medical). This demonstrates how effective LLMs are at
organizing and selecting semantic data. The process of refinement significantly
improved precision with a slight decrease in recall.

All approaches were greatly outperformed by the innovative combination of
LLM-generated definitions, Sentence-BERT embeddings, clustering, and LLM-
refinement. This thesis advances the field of automatic synonym extraction in a
number of ways, especially when it comes to domain-specific contexts:

• Comprehensive Analysis. Using a common dataset and evaluation frame-
work, it offers a thorough comparative analysis of a broad range of synonym
extraction techniques, from conventional methods to cutting-edge LLM-based
approaches, evaluated methodically across multiple distinct domains. This pro-
vides insightful information about the relative advantages and disadvantages
of these approaches for tasks specific to a given domain.

• Novel Hybrid Methodology. The suggested pipeline is a novel and effi-
cient approach that combines (1) LLM-based term extraction and definition
generation, (2) Sentence-BERT-based rich semantic embedding of these term-
definition pairs, (3) unsupervised clustering of these embeddings, and (4)
LLM-based refinement of the resulting clusters. For a challenging lexical
semantic task, this synergy makes use of the advantages of various AI tech-
nologies.

• Demonstrated Efficacy of LLM-based Refinement. The significant
performance improvement attained by refining machine-generated clusters
using LLMs (GPT-4o-mini and GPT-4.1-nano) is a significant finding. This
demonstrates a promising path for employing LLMs as powerful tools for
organizing, verifying, and curating data produced by other AI systems in
addition to serving as end-to-end solution providers.
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• Insights into Term Extraction for Specialized Vocabularies. The
assessment of different NER and LLM-based term extraction techniques
clarifies their applicability for locating terminology unique to a given domain.
It emphasizes that advanced LLM-based or template-guided extraction works
better than general-purpose NER for non-standard, technical ‘terms’ or key
phrases.

• Empirical Evidence on Corpus Adaptation for Embeddings. The
effects of fine-tuning pre-trained embeddings versus training static embeddings
from scratch on small domain corpora are demonstrated in the thesis. The
results highlight the need for careful strategy when adapting embeddings to
specialized domains, advising caution as naive application on limited data can
result in suboptimal or even degenerate results.

7.1 Future Work
Based on the current research, a number of interesting directions exist for further
investigation:

• Expansion to More Domains. The results would be further validated and
new challenges would be revealed by applying and assessing the benchmarked
methods and particularly the suggested hybrid approach, on a larger, more
naturally occurring domain-specific corpora and a wider range of domains.

• Downstream Task Evaluation. An extrinsic measure of the extracted
domain-specific synsets’ quality would be provided by evaluating their useful-
ness in downstream NLP applications (such as domain-specific information
retrieval, question answering, and machine translation).

• Exploring Other Lexical Relations. Building richer domain-specific ontolo-
gies would be facilitated by expanding the methodology to extract additional
lexical-semantic relations that are pertinent to domain understanding, such
as meronymy/holonymy (part-whole relationships) or hyponymy/hypernymy
(is-a relationships).

In summary, this thesis has shown that although domain-specific synonym
extraction is still a difficult task, it can be significantly improved over more
conventional and straightforward embedding-based techniques by using a hybrid
approach that carefully blends the advantages of LLM-generated semantic context,
rich embeddings, unsupervised clustering, and LLM-based refinement. A clear
picture of the current situation is given by the thorough analysis, and the suggested
methodology presents a viable way forward for automatically creating useful lexical
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resources for specialized domains. The ability of NLP systems to comprehend
and process the complex language of expert fields will continue to be improved by
additional research in the directions mentioned.
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Appendix

A.1 Prompts
A.1.1 Delimiters

1 CONTEXT_BASE = dict(
2 tuple_delimiter =" <|>",
3 record_delimiter ="##",
4 completion_delimiter =" <| COMPLETE |>"
5 )

A.1.2 LLM-based term extractiono and definition genera-
tion prompt

1 ’’’
2 --Task --
3 Given a text and a domain , extract the terms that are strictly

related to the specified domain .
4 The extracted terms will form a technical glossary related to the

domain .
5 Important ! Return only the specific terms and concepts * strictly *

related to the domain .
6
7 --Rules --
8 1. Provide an output in Italian as a single list of all identified

terms.
9 2. Use **{ record_delimiter }** as the list separator .

10 3. When you ’re done , use { completion_delimiter }
11
12 Use the following output format :
13 (("term"{ tuple_delimiter }"TERM1"{ tuple_delimiter }" Description "){

record_delimiter })
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14
15 ######################
16 Example
17 Domain : Sport
18 Text:
19 In the final minutes of the match , the famous midfielder launched

the leather ball with a through pass.
20
21 Output :
22 ("term"{ tuple_delimiter }"MATCH"{ tuple_delimiter }" Sports encounter

between two teams with a competitive goal."){ record_delimiter }
23 ("term"{ tuple_delimiter }" MIDFIELDER "{ tuple_delimiter }" Player who

occupies the center of the field and is responsible for
distributing the play."){ record_delimiter }

24 ("term"{ tuple_delimiter }"BALL"{ tuple_delimiter }" Spherical object
used in football ."){ record_delimiter }

25 ("term"{ tuple_delimiter }" THROUGH_PASS "{ tuple_delimiter }"Type of
pass that bypasses the opposing defensive line to serve a
teammate in a favorable position ."){ record_delimiter }

26 { completion_delimiter }
27
28 ######################
29 Domain : { domain }
30 Text: { input_text }
31
32 Output :
33 ’’’

A.1.3 LLM-based sysnset refinement prompt

1 ’’’
2 I will give you a synset , i.e., a group of synonymous terms , and a

reference domain .
3
4 The synset can be of two types:
5 Type A. Uniform , where the terms are indeed all synonyms
6 Type B. Non -uniform , where the terms can be split into better

synsets
7
8 Your task is:
9 1. Split Type B synsets into a list of Type A sub - synsets

10 2. Return the Type A synsets as they are
11
12 Note: The synsets will be used in a search engine based on Apache

Lucene
13
14 Important ! Never delete synsets !
15
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16 Use the following output format :
17 {{’synset ’:[" TERM1", "TERM2", "TERM3", ...] ,
18 ’description ’: Description of the synset }}
19
20 #### Real Data ####
21 Domain : { domain }
22 Input synset : { synset }
23 ’’’
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A.2 Tables

Configuration F1-score Precision Recall Num. Clusters
KMeans
n_clusters=7 0.02 0.01 0.72 7
n_clusters=50 0.10 0.06 0.62 50
n_clusters=100 0.15 0.10 0.60 100
n_clusters=200 0.22 0.16 0.58 200
n_clusters=300 0.28 0.22 0.55 300
n_clusters=400 0.35 0.30 0.55 400
n_clusters=500 0.36 0.32 0.55 500
Agglomerative
n_clusters=7 0.01 0.01 0.77 7
n_clusters=50 0.08 0.05 0.73 50
n_clusters=100 0.13 0.09 0.71 100
n_clusters=200 0.20 0.15 0.68 200
n_clusters=300 0.26 0.20 0.66 300
n_clusters=400 0.31 0.26 0.66 400
n_clusters=500 0.35 0.30 0.64 500
DBSCAN
metric=euclidean, min_samples=2 0.00 0.00 0.79 1
metric=euclidean, min_samples=5 0.00 0.00 0.79 1
metric=cosine, min_samples=2 0.03 0.04 0.65 578
metric=cosine, min_samples=5 0.01 0.00 0.79 4
K-GMA
resolution=0.2 0.36 0.31 0.59 414
resolution=0.4 0.36 0.32 0.59 418
resolution=0.5 0.17 0.12 0.65 100
resolution=0.6 0.16 0.11 0.65 87
resolution=0.7 0.17 0.12 0.64 96
resolution=0.8 0.16 0.11 0.62 98
resolution=1.0 0.13 0.09 0.64 71
resolution=1.2 0.15 0.10 0.63 83
resolution=1.4 0.16 0.11 0.63 92

Table A.1: F1-Score, Precision and Recall for Clustering Methods. The best
F1-score in each family of methods is highlighted.
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A.3 Implementation Details
Programming Language: Python (version 3.11.11).

Key Libraries and Versions

• transformers:

– 4.50.3 (mainly used)

– 4.47.1 (for NuExtract because of incompatibility with higher versions)

• torch (core deep learning library):

– 2.6.0+cpu (mainly used)

– 2.6.0+cu124 (for BERT fine-tuning and NuExtract on GPU using CUDA)

• nltk: 3.9.1 (WordNet, tokenization, stopword removal, NLTK-NER)

• gensim: 4.3.3 (Word2Vec, loading some embedding formats)

• fasttext: 0.9.3 (fastText model training and usage)

• scikit-learn: 1.6.1 (KMeans, AgglomerativeClustering, DBSCAN, evaluation
metrics)

• sentence-transformers: 4.1.0 (Sentence-BERT for definition embeddings)

• pandas: 2.2.3 (data manipulation)

• numpy: 1.26.4 (numerical operations)

• faiss-cpu: 1.9.0 (efficient similarity search for embeddings)

• spacy: 3.8.4 (stemming, SpaCy-NER)

• SpaCy model: en_core_web_sm (version 3.8.0)

• python-louvain: 0.16 (used by the K-GMA clustering algorithm)
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Specific Model Checkpoints/Files and Models

• GloVe: Pre-trained word vectors trained on Common Crawl (42B tokens,
1.9M vocab, uncased, 300d vectors). Checkpoint name: glove.42B.300d

• fastText (pretrained): 1 million word vectors trained on Wikipedia 2017,
UMBC webbase corpus and statmt.org news dataset (16B tokens) were loaded
using the fastText library. Checkpoint name: wiki-news-300d-1M

• Word2Vec (pretrained): Pre-trained vectors trained on a part of the Google
News dataset. Checkpoint name: word2vec-google-news-300

• BERT (pretrained): bert-base-uncased

• BERT-NER: Standard fine-tuned BERT for NER. Model name: dbmdz/bert-
large-cased-finetuned-conll03-english

• Sentence-BERT: all-MiniLM-L6-v2

• NuExtract: numind/NuExtract-1.5-tiny, numind/NuExtract-1.5

• GPT Models: GPT-4o-mini, GPT-4.1-nano

Code Structure

The project is organized into directories corresponding to different methods (e.g.,
bert/, fasttext/, clustering/, word2vec/) and utilities (utils/). Jupyter notebooks
(.ipynb files) were used for experimentation and some data processing steps, while
.py scripts handle more systematic training, extraction, and evaluation.

A.4 Hardware and Software Environment
Software

• Operating System:

– Ubuntu 22.04.4 LTS (main)
– Ubuntu 24.04.2 LTS (virtual machine used for GPU experiments)

• Python: Version 3.11.11

• Conda: Used for environment management
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Hardware

• CPU: Most processing, especially for non-deep learning tasks and FAISS

• GPU: Used two T4 GPUs simultaneously for BERT fine-tuning and a P100
GPU for term extraction using NuExtract.

This comprehensive experimental setup in combination with the domain-specific
dataset and an array of methods and tools allowed us to perform robust analysis
of synonym extraction techniques.
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